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SPLIT AND NON-SPLIT HUB NUMBER OF GRAPHS

M. PAVITHRA1∗, B. SHARADA2, §

Abstract. A split hub set S in a graph G is a hub set such that the induced subgraph
〈V \ S〉 is disconnected. The split hub number of G, denoted by hs(G) is the minimum
size of a split hub set in G. In this paper, the split hub number for several classes of
graphs is computed and we investigate the relationship of hs(G) with other known pa-
rameters of G. Also the concept of non-split hub number is introduced and its exact
values for some standard graphs are computed.
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1. Introduction

All graphs considered here are finite, undirected without loops or multiple edges.
As usual p and q denote the number of vertices and edges of a graph G. Any undefined
term or notation in this paper can be found in [1, 3]. The degree of a vertex v in a graph
G denoted by degv is the number of edges of G incident with v. The maximum (mini-
mum) degree among the vertices of G is denoted by ∆(G)(δ(G)). We denote the minimum
number of edges in independent set of G (i.e., edge independence number) by β1(G). A
vertex of degree one is called a pendant vertex. The symbols α(G) and κ(G) denote the
vertex cover number and the connectivity of G, respectively.
The distance between vertices vi and vj is the length of the shortest path joining vi and
vj . The shortest vi−vj path is often called a geodesic. The diameter of a connected graph

G is the length of any longest geodesic, denoted by diam(G). The complement G of a
graph G has V (G) as its vertex set, two vertices are adjacent in G if and only if they are
not adjacent in G.
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The graph obtained from G by removing the vertex v and all of its incident edges is de-
noted by G− v. In a tree, a leaf is a vertex of degree one.

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is a path
where all intermediate vertices are from H. (This includes the degenerate cases where the
path consists of the single edge xy or a single vertex x if x = y, call such an H-path trivial).
A set H ⊆ V (G) is a hub set of G if it has the property that, for any x, y ∈ V (G) \ H,
there is an H-path in G between x and y. The smallest size of a hub set in G is called
a hub number of G, and is denoted by h(G). The connected hub number of G, denoted
hc(G), is the minimum size of a connected hub set in G [17].
In 2018, the authors in [6] introduced the concept of hubtic number of graphs. In 2018,
Shadi and Veena [7] introduced the restrained hub number. The authors in [8, 9], studied
the edge hub number in graphs and edge hubtic number in graphs. For more details on the
hub studies we refer to [5, 13]. With this motivation, we define and introduce the concept
of split hub number of graphs, also we introduce the concept of non-split hub number of
graphs.
In this paper, the split and non-split hub numbers of some graphs are obtained. The
relations between split and non-split hub number and other parameters are determined.
Also, a split and non-split hub numbers of join and corona of graphs are computed.
A set S ⊆ V (G) is called a dominating set of G if each vertex of V \ S is adjacent to
at least one vertex of S. The domination number of a graph G denoted as γ(G) is the
minimum cardinality of a dominating set in G [4]. We need the following to prove main
results.

Theorem 1.1. [16] For any graph G, d p
1+∆(G)e ≤ γ(G), where dxe is the least integer not

less than x.

Theorem 1.2. [17] Let T be a tree with p vertices and l leaves. Then h(T ) = hc(T ) = p−l.

Theorem 1.3. [16] For any (p, q) graph G,

(1) p− q ≤ γ(G).

(2) ddiam(G)+1
3 e ≤ γ(G).

Lemma 1.1. [17] Let diam(G) denote the diameter of G. Then h(G) ≥ diam(G)− 1 and
the inequality is sharp.

Lemma 1.2. [14] For any graph G, β1(G) ≤ α(G).

MAIN RESULTS

2. Split hub number of graphs

Definition 2.1. A split hub set S in a graph G is a hub set such that the induced subgraph
〈V \S〉 is disconnected. The split hub number of G, denoted by hs(G) is the minimum size
of a split hub set in G.

A split hub set S of minimum cardinality is called hs- set of G. We note that hs-
sets exist if the graph is not complete and either contains a non-complete component or
contains at least two non-trivial components. In this section, we will assume that G is a
non-complete graph. It is clear that hs(G) is well-defined for any graph G, since V (G)
is a split hub set. In all situations of interest, we will assume G to be connected, if G
is a disconnected graph then any split hub set must contain union of the set of vertices
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from all the components except one chosen component and the split hub set of the chosen
component. It is obvious that any split hub set in a graph G is also a hub set and thus
hs(G) ≥ h(G).
We now proceed to compute hs(G) for some standard graphs.

Proposition 2.1.

(1) For any path Pp with p ≥ 3, hs(Pp) = p− 2.
(2) For any cycle Cp,

hs(Cp) =

{
p− 2, if p = 4 ;
p− 3, if p ≥ 5.

(3) For the star K1,p−1, hs(K1,p−1) = 1.
(4) For the double star Sn,m, hs(Sn,m) = 2.
(5) For the complete bipartite graph Kn,m, hs(Kn,m) = min{n,m}.
(6) For the wheel graph W1,p−1,hs(W1,p−1) = 3.
(7) For the complete k-partite graph Kn1,n2,.......,nk

,

hs(Kn1,n2,.......,nk
) =

k∑
i=1

ni −
k

max
i=1

ni.

Proposition 2.2. If a hub set H of G is also a split hub set, then there exist two vertices
v1, v2 in V −H such that d(v1, v2) ≥ 2.

Proof. Suppose for any two vertices v1, v2 in V \H, d(v1, v2) = 1. Thus, 〈V \H〉 is connected
which is a contradiction to the fact that H is a split hub set of G and this completes the
proof. �

Observation 2.1.

(i): For any graph G, 1 ≤ hs ≤ p− 2.
(ii): hs(nK2) = 2n− 2, n > 2, where nK2 is the n copies of K2.

Definition 2.2. [12] A firefly graph Fs,t,p−2s−2t−1(s ≥ 0, t ≥ 0 and p−2s−2t−1 ≥ 0) is a
graph of order p that consists of s triangles, t pendant paths of length 2 and p−2s−2t−1
pendant edges sharing a common vertex.

Proposition 2.3. hs(G) = 1 if G = Fs,0,p−2s−1.

Theorem 2.1. For any connected graph G, hs(G) = 1 if and only if there exists only one
cut vertex in G with degree p− 1.

Proof. Let hs(G) = 1 and Hs = {v} is a split hub set of G. It is clear, 〈G \ {v}〉 is
disconnected. Since v is adjacent to all vertices and 〈G \ {v}〉 is disconnected. Then v is
a cut vertex with degree p− 1. The converse is obvious. �

This result has the following immediate corollary.

Corollary 2.1. If the graph G has no cut vertices, then hs(G) ≥ 2.

Observation 2.2. In general, the inequality hs(G
′) ≤ hs(G) is not true for a subgraph G′

of G. For example, consider the graph G and a subgraph G′ of G shown in Figure 1.
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Figure 1

We note that hs(G) = 5 and hs(G
′) = 7.

Theorem 2.2. Let T be a tree with p vertices and l leaves. Then hs(T ) = p− l.

Proof. Hs the set of all internal vertices of T which is a split hub set of T . So hs(T ) ≤ p−l.
Since h(T ) = p − l by Theorem 1.2 and since hs ≥ h, we get hs(T ) ≥ p − l. Therefore
hs(T ) = p− l. �

Theorem 2.3. For any graph G 6= Kp, hs(G) ≥ γ(G).

Proof. Since every split hub set ofG is a dominating set, the required result is obtained. �

Theorem 2.4. For any tree T , hs(T ) ≥ α(T ).

Proof. Since a split hub set of T is a vertex covering set, this completes the proof. �

Lemma 2.1. For any tree T , hs(T ) ≥ β1(T ).

Proof. By Lemma 1.2 and Theorem 2.4 we get the result. �

By Lemma 1.1 and by using the inequality hs ≥ h for any graph G, we get the following
theorem.

Theorem 2.5. For any connected graph G 6= Kp, hs(G) ≥ diam(G)− 1.

Theorem 2.6. For any graph G 6= Kp, hs(G) ≥ p− q.

Proof. By Theorem 1.3 and Theorem 2.3 we get the result. �

Theorem 2.7. For any graph G 6= Kp, hs(G) ≥ d p
1+∆(G)e.

Proof. The proof follows from Theorem 1.1 and Theorem 2.3. �

Theorem 2.8. For any graph G 6= Kp, hs(G) ≥ ddiam(G)+1
3 e.

Proof. By Theorem 1.3 and Theorem 2.3 the result follows. �

Definition 2.3. [3] Let G1 and G2 be two graphs with disjoint vertex sets V1 and V2 and
edge sets E1 and E2, respectively. Then their join G1 + G2 is the graph consisting of
G1 ∪G2 with all edges joining V1 with V2.

Theorem 2.9. For any connected graphs G1 and G2, hs(G1 + G2) = min{|V (G1)| +
κ(G2), |V (G2)|+ κ(G1)}, if G1 and G2 are both non-complete.

Proof. Let V (G1) = {v1, v2, v3, ..., vp} and V (G2) = {u1, u2, u3, ..., up}.
Case 1: If |V (G1)| ≤ |V (G2)| and κ(G2) < dp2e consider Hs = {v1, v2, v3, ..., vp} is a split
hub set of G1 +G2 and |Hs| = |V (G1)|. Since vi, 1 ≤ i ≤ p is adjacent to all the vertices
of graph G2 then there exists Hs-path between any two vertices of G2, but (G1 +G2) \Hs

is connected graph and (G1 + G2) \Hs = G2. To complete the proof, we should remove
some vertices of G2 to get disconnected. So the connectivity set is the smallest set that
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will be obtained by removal of minimum number of vertices from G2 such that it gets
disconnected. Therefore, |Hs| = |V (G1)|+ κ(G2).
Case 2: If |V (G1)| ≤ |V (G2)| and κ(G2) ≥ dp2e, consider Hs = {u1, u2, u3, ..., up} is
a split hub set of G1 + G2, and |Hs| = |V (G2)|. The proof is similar to case 1. So
|Hs| = |V (G2)|+ κ(G1). Hence the result.
Case 3: If |V (G2)| ≤ |V (G1)| and κ(G1) < dp2e consider Hs = {u1, u2, u3, ..., up} is
a split hub set of G1 + G2, and |Hs| = |V (G2)|. The proof is similar to case 1. So
|Hs| = |V (G2)|+ κ(G1). Hence the result.
Case 4: If |V (G2)| ≤ |V (G1)| and κ(G2) ≥ dp2e consider Hs = {v1, v2, v3, ..., vp} is
a split hub set of G1 + G2, and |Hs| = |V (G1)|. The proof is similar to case 1. So
|Hs| = |V (G1)|+ κ(G2). Hence the result. �

Proposition 2.4. Let G be disconnected graph and K1,K2, ...,Ks be its components. Then

hs(G) = min1≤r≤s{wr}, where wr = hs(Kr) +

s∑
j=1,j 6=r

|Kj |.

Proof. From the definition, the split hub set Hs of a disconnected graph must contain
union of vertices from all the components, except vertices from the rth component and
split hub set of the rth component. It remains to show that Hs is minimum. By taking
the arbitrary union of the order of all components except rth component, we count hs of
rth component that gives all possible value of hs(G). Thus, wr = hs(Kr) +

∑s
j=1,j 6=r |Kj |.

Then hs(G) = min1≤r≤s{wr}. �

Definition 2.4. [2] The corona G1 ◦G2 of two graphs G1 and G2 is the graph G obtained
by taking one copy of G1 (which has p1 vertices) and p1 copies of G2, and then joining the
ith vertex of G1 to every vertex in the ith copy of G2.

Theorem 2.10. For any connected graphs G1 and G2,

hs(G1 ◦G2) =

{
1 + κ(G2), if |V (G1)| = 1 and G2 is non-complete ;
|V (G1)|, if |V (G1)| ≥ 2.

Proof. Suppose |V (G1)| = 1 and G2 is non-complete, this means that G1 ◦G2 is G1 +G2

and hs(G1 +G2) = 1 + κ(G2) by Theorem 2.9 .
Now, suppose |V (G1)| ≥ 2,
Consider Hs = V (G1), and let x, y ∈ V (G1 ◦G2) \Hs, we discuss the following cases:
Case 1: Suppose x, y ∈ V (G2a) for some a ∈ V (G1). Then {x, a, y} is a path in G1 ◦G2

and a ∈ G1. Therefore, there is an Hs-path between x and y in G1 ◦G2.
Case 2: If x ∈ V (G2a) and y ∈ V (G2b) for some a, b ∈ V (G1). Note that there is a path
{x, a, v1, v2, ..., b, y} in G1 ◦ G2. Thus, there is an Hs-path between x and y in G1 ◦ G2.
Then Hs is a split hub set of G1 ◦ G2 and h(G1 ◦ G2) ≤ |V (G1)|. To show that V (G1)
is the minimum split hub set, if vi ∈ G1, for 1 ≤ i ≤ p, is removed from set Hs, then
there do not exist path between x and y. Thus Hs is a minimum split hub set, hence
h(G1 ◦G2) = |V (G1)|. �

Definition 2.5. [15] The binomial tree Bn is an ordered tree defined recursively. The
binomial tree B0 consists of a single vertex. The binomial tree Bn consists of two binomial
trees Bn−1 that are linked together: the root of one is the leftmost child of the root of the
other.

Theorem 2.11. Let n ≥ 2 be a positive integer. Then hs(Bn) = |V (Bn−1)|.



M. PAVITHRA, B. SHARADA: SPLIT AND NON-SPLIT HUB NUMBERS OF GRAPHS 1415

Proof. Let Hs be a minimum hub set of Bn and let r be the number of internal vertices
in Bn, so |Hs| = r because the internal vertices in Bn form a minimal split hub set of
Bn. Since the number of internal vertices of Bn from a minimum split hub is equal to
the number of vertices in Bn−1, it follows that |Hs| = |V (Bn−1)| and V \ Hs is totally
disconnected graph. Hence split hub number of Bn is |V (Bn−1)|. �

3. Non-split hub number of graphs

Definition 3.1. A non-split hub set Hns in a graph G is a hub set such that the induced
subgraph by 〈V \Hns〉 is connected. The non-split hub number of G, denoted by hns(G),
is the minimum size of a non-split hub set in G.

Proposition 3.1.

(1) For any complete graph Kp, hns(Kp) = 0.
(2) For any path Pp, with p ≥ 4, hns(Pp) = p− 2.
(3) For any cycle Cp, p ≥ 4, hns(Cp) = p− 3.
(4) For the star K1,p−1, hns(K1,p−1) = p− 2.
(5) For the double star Sn,m , hns(Sn,m) = n+m− 2.
(6) For the complete bipartite graph Kn,m, hns(Kn,m) = 2.
(7) For the wheel graph W1,p−1,hns(W1,p−1) = 1.

Theorem 3.1. Let G = Kn1,n2,...,nk
with k ≥ 3. Then

hns(G) =

{
1, if ni ≥ 2, nl = 2 for some l, 1 ≤ l ≤ k ;
2, if ni ≥ 3 for all i, 1 ≤ i ≤ k .

Proof. Two cases are considered:
Case 1: ni ≥ 2,and nl = 2 for some l ,1 ≤ l ≤ k. Let V1, V2, . . . , Vk be the partite sets
of V (G). Consider v1, v2 ∈ Vl. Then Hns = {v1} is a non-split hub set of G. Now, v1 are
adjacent to all vertices in the other partite sets of G, so there exists an Hns-path between
any two vertices of other partite sets. Also, v2 is adjacent to all vertices of V (G)\v. Since,
G is non-complete graph, Hns is a minimum non-split hub set of G and hence, hns(G) = 1.

Case 2: ni ≥ 3 for all i, 1 ≤ i ≤ k. Let Hns = u, v be a set of any two vertices of G
taken from two different partite sets of G. Then G \ u, v is connected, and there exists
a path between any two vertices of the other partite sets of G. We must show that Hns

is a minimum non-split hub set of G. If u is removed from set Hns, then there do not
exist Hns-path between the remaining vertices of the same partite sets that contains v.
Similarly if we remove v, then the resulting set will not be a non-split hub set. Therefore,
hns(G) = 2. �

Proposition 3.2. For any graph G, 0 ≤ hns(G) ≤ p− 2.

Theorem 3.2. Let T be any tree of order p ≥ 3. Then hns(T ) = p− 2.

Proof. Let Hns be the set of all vertices of T except two vertices u, v such u is adjacent to
v, this implies that V \ {u, v} is non-split hub set of T . It is clear that Hns is minimum,
because if Hns consists of all vertices of T except three vertices u, v and w such that uvw
is a connected path, so u and w is not adjacent, then there do not exist H-path between
them and hence Hns is not hub set of T . �

Proposition 3.3. For any tree T , hns(T ) ≥ hs(T ).

Theorem 3.3. For any connected spanning subgraph H of G, hns(G) ≤ hns(H).
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Since their proofs are trivial, we omit the same.

Theorem 3.4. For any graph G,

(1) hns(G) ≥ γ(G)− 1.
(2) h(G) = min{hs(G), hns(G)}.

Theorem 3.5. For any connected graphs G1 and G2,

hns(G1 +G2) =

{
0, if G1 and G2 are complete ;
1, if G1 or G2 is complete,

and hns(G1 +G2) ≤ 2, if G1 and G2 are both non-complete.

Proof. Suppose G1 and G2 are both complete. Then G1 + G2 is complete and the proof
follows from Proposition 3.1.
Suppose G1 is complete. Let x ∈ V (G1) and Hns = {x}. Let y, z ∈ V (G1 +G2)\Hns. The
following cases are considered:
Case 1: y, z ∈ V (G1). Since G1 is complete, there is a path {y, x, z} in G1. Hence, there
is an Hns-path between y and z in G1 +G2.
Case 2: y ∈ V (G1), z ∈ V (G2), y and x are adjacent and x is adjacent to z, (by definition
of G1 +G2). Thus, there is {y, x, z}-path in G1 +G2.
Case 3: Suppose y, z ∈ V (G2). Clearly, x is adjacent to both y and z. So there is
{y, x, z}-path in G1 + G2 and G1 + G2 − {x} is connected graph. Therefore, Hns is a
non-split hub set of G1 +G2 and hns(G1 +G2) = 1.
If G2 is complete, the proof is similar.
Now, suppose G1 and G2 are both non-complete. Consider the following cases:

Case 1: hns(G1) = 1. Consider x ∈ V (G1) and let H = {x} be a minimum non-split
hub set of G1. Let y, z ∈ V (G1 +G2)\{x}. Consider the following subcases:
Subcase 1.1: y, z ∈ V (G1)\{x}. It is clear, there is an Hns-path between y and z in
G1 +G2.
Subcase 1.2: y ∈ V (G1)\{x}, z ∈ V (G1) and y is adjacent to x, because Hns is a non-
split hub set of G1 and also x is adjacent to z, by definition of G1 +G2. So {y, x, z} is an
Hns-path in G1 +G2. Then hns(G1 +G2) ≤ 1.
Subcase 1.3: y, z ∈ V (G2). From the definition of G1 + G2, x is adjacent to y and z,
{y, x, z} is an Hns-path in G1 +G2. Therefore, hns(G1 +G2) ≤ 1.
Since G1 and G2 are both non-complete, G1 +G2 is non-complete. So hns(G1 +G2) 6= 0.
Then hns(G1 +G2) = 1.
Case 2: Suppose hns(G2) = 1. The proof is similar to Case 1.
Case 3: hns(G1) = hns(G2) ≥ 2. Let q ∈ V (G1), r ∈ V (G2) and Hns = {q, r}. We have
the following cases:
Subcase 3.1: x, y ∈ V (G1) \ {q}. Note that x and y are adjacent to r, this means
that there is {x, r, y}-path in G1 + G2. Thus, Hns is a non-split hub set of G1 + G2 and
hns(G1 +G2) ≤ 2.
Subcase 3.2: Let x, y ∈ V (G2) \ {r}. The proof is similar to subcase 1.3.
Subcase 3.3: Consider x ∈ V (G1) \ {q}, y ∈ V (G2) \ {r}, it is clear that x is adjacent to
r, r is adjacent to q and q is adjacent to y. That is {x, r, q, y} is an Hns-path in G1 +G2.
Then Hns is a non-split hub set of G1 +G2. Therefore, hns(G1 +G2) ≤ 2. �

Proposition 3.4. Let G1 be a graph of order 1 and G2 be non-complete graph. Then
hns(G1 ◦G2) = 1.

Theorem 3.6. Let G1 be a connected graph of order p1 > 2 and G1 6= Kp and G2 be any
connected graph of order p2. Then hns(G1 ◦G2) = p1 + (p1 − 1)p2.
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Proof. Let V (G1◦G2) = V (G1)∪(∪p1i=1Vi) where, Vi = {ui1, ui2, ui3, ...., uip2} and 〈Vi〉 ∼= G2

for i = 1, 2, ..., p1 and V (G1) = {v1, v2, ..., vp1}
Let Hns = V (G1) ∪ (∪p1−1

i=1 Vi) is non-split hub set of G1 ◦ G1. Then clearly, Hns is a
minimum non-split hub set and the induced subgraph 〈V (G1 ◦ G2)\Hns〉 is connected

graph and hns(G1 ◦G2) = |V (G1) ∪ (∪p1−1
i=1 Vi)|=p1 + (p1 − 1)p2. �

4. Conclusions

In this paper, we introduced the concept of split and non-split hub numbers of a graph
and there is still much to be discovered in this concept. Among the questions raised by
this research, the following are of particular interest to the authors:

(1) Characterize graphs G for which hs(G) = h(G).
(2) Characterize graphs G for which hns(G) = h(G).
(3) Characterize graphs G for which hns(G) = hs(G).
(4) Characterize graphs G for which hs(G) = 2.

Acknowledgement: Our thanks are due to the anonymous referee(s) for careful read-
ing and constructive suggestions for the improvement in the first draft of this paper.
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