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SOME RESULTS ON GRACEFUL CENTERS OF Pn AND RELATED

α-GRACEFUL GRAPHS

H. M. MAKADIA1, V. J. KANERIA2, P. ANDHARIA3, D. JADEJA4, §

Abstract. In this paper, we have proved that the graph obtained by joining two copies
of a bipartite graceful graph by an edge with any two corresponding vertices of both the
copies of graphs is α-graceful. We also proved path step tree and path double step tree
are α-graceful and the graph Pm × Pn × P2 is α-graceful. Graceful center of graceful
graph defined. We also found some some graceful centers of path Pn. Acharya and Gill
[1] proved Pn × Pm is α-graceful. In this paper we proved its generalized result.

Keywords: Graceful center of a graceful graph, universal graceful graph, α-graceful graph,
Path step tree, Path double step tree.
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1. Introduction

In this paper a graph G = (V (G), E(G)) is a pair of set of vertices and edge of G and
a (p, q) graph G, we mean p = |V (G)| and q = |E(G)|. Terms not defined here are used
with standard notation from Harary [3]. A Labeling f : V (G) −→ {0, 1, 2, . . . , q} is said
to be a graceful labeling for G, if f is an injective map and its edge induced function
f? : E(G) −→ {1, 2, . . . , q} defined by f?(uv) = |f(u) − f(v)|, ∀uv ∈ E(G) is a bijective
map. A graph G is called a graceful graph if it admits a graceful labeling. A graceful label-
ing f : V (G) −→ {0, 1, 2, . . . , q} is called an α-labeling for G, if ∃ an integer k(0 ≤ k < q)
such that for any uv ∈ E(G), min{f(u), f(v)} ≤ k < max{f(u), f(v)}. A graph G is
called an α-graceful graph if it admits an α-labeling. An α-graceful graph is always a
bipartite graph.

Let G be a graceful graph with a graceful labeling f : V (G) −→ {0, 1, 2, . . . , q}. A
vertex v ∈ V (G) is called a graceful center of G with respect to f if f(v) = 0 or f(v) = q.
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A graph G is said to be a universal graceful graph if for any v ∈ V (G), there is a graceful
labeling f such that either f(v) = 0 or f(v) = q.

Any graceful graph G with a graceful labeling f has at least two graceful centers. If G
has precisely two graceful centers, then they are obtained in G, as they both produce the
edge label q under the edge induced labeling function f? : E(G) −→ {1, 2, . . . , q}.

Suppose a graph G is an α-graceful graph with α-labeling f : V (G) −→ {0, 1, 2, . . . , q}
and an integer k(0 ≤ k < q) such that for any uv ∈ E(G), min{f(u), f(v)} ≤ k <
max{f(u), f(v)}. In this case V (G) partition into two parts V1 = {v ∈ V (G)/f(v) ≤ k}
and V2 = {v ∈ V (G)/f(v) > k}. Moreover, there are w1, w2 ∈ V1, w3, w4 ∈ V2 such that
f(w1) = 0, f(w2) = k, f(w3) = k + 1 and f(w4) = q. Defined h : V (G) −→ {0, 1, 2, . . . , q}
by h/V1 = k− f/V1, h/V2 = q + k+ 1− f/V2. Here h is an injective and its edge induced
map h? : E(G) −→ {1, 2, . . . , q} defined by h?(uv) = |h(u)−h(v)|, ∀uv ∈ E(G) is bijective.
In this case w1, w2, w3, w4 are graceful centers for G, as f(w1) = 0, h(w2) = 0, f(w4) = q
and h(w3) = q. Also G admits four α-graceful labelings f, q − f, h and q − h.

Cycle C4n, complete bipartite graph km,n are universal graceful graph. C4n+3 and Wn

are also universal graceful graphs, but do not admits α-labeling, as they are not bipartite
graphs.

Take n ≥ 3, paths Pi(i = 2, 3, . . . , n) with V (Pi) = {vi,j/1 ≤ j ≤ i}, E(Pi) =
{vi,j , vi,j+1/1 ≤ j ≤ i} and arrange them vertically. Join vi,1 with vi+1,1 by an edge,
∀i = 2, 3, . . . , n − 1, such tree is called a path step tree of size n and denote it by PSTn.
Take two copies of PSTn with PST l

n = ({vl,i,j/1 ≤ j ≤ i, 2 ≤ i ≤ n}, {vl,i,j , vl,i,j+1/1 ≤
j < i, 2 ≤ j < n}

⋃
{vl,i,1, vl,i+1,1/2 ≤ i < n}) and l = 1, 2. The tree obtained by joining

v1,n,1 with v2,n,1 by an edge is called path double step tree and denoted it by PDSTn.
Acharya and Gill [1] have investigated α-graceful labeling for the grid graph. Kaneria

and Makadia [4] showed that union of two grid graphs is graceful. But M.Z. Youssef said
that in the paper [7], the graph union of two grid graphs is α-graceful. Kaneria, Makadia
and Viradia [5] show that union of three grids and union of finite copies of a grid is graceful.
In [6], they extended it further to prove that union of finite grids is graceful as well.

2. Main Result

Theorem 2.1. Let G be a bipartite graceful graph. The graph obtained by joining two
copies of G say G(1) and G(2) by edge between any two corresponding vertices v(1) ∈ V (G(1))

and v(2) ∈ V (G(2)), for some v ∈ V (G) is α-graceful.

Proof. As G is bipartite, take V (G) = V1
⋃
V2 and for any uv ∈ E(G), either u ∈ V1, v ∈ V2

or u ∈ V2, v ∈ V1. Let f : V (G) −→ {0, 1, 2, . . . , q} be a graceful labeling for G, where
q = |E(G)|.

Let H be a graph obtained by joining two copies G(1) and G(2) of G by an edge between
any two corresponding vertices v(1) ∈ V (G(1)) and v(2) ∈ V (G(2)) for some v ∈ V (G).

It is observed that V (H) = V (G(1))
⋃
V (G(2)), E(H) = E(G(1))

⋃
E(G(2))

⋃
{v(1)v(2)},

|V (H)| = 2|V (G)| and |E(H)| = 2q+1. define g : V (H) −→ {0, 1, 2, . . . , 2q+1} by g/V
(1)
1

= f/V1, g/V
(2)
2 = f/V2, g/V

(1)
2 = f/V2 + (q + 1) and g/V

(2)
1 = f/V1 + (q + 1).
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Since f is one-one, g is also one-one. Take uv ∈ E(G) be any edge. Now for any i = 1, 2,

g?(u(i)v(i)) = |g(u(i))− g(v(i))|,

=

{
q + 1 + f(u)− f(v), if g(u(i)) > g(v(i))
q + 1− (f(u)− f(v)), otherwise

=

{
q + 1 + f?(uv), if u ∈ V1 & i = 2 oru ∈ V2 & i = 1
q + 1− f?(uv), otherwise

Since, range of f? is {1, 2, . . . , q}, g?(v(1) v(2)) = q+1, we must have range of g? is {1, 2,
. . .,2q + 1}. Therefore, g? : E(H) −→ {1, 2, . . . , 2q + 1} defined by g?(uv) = |g(u)− g(v)|,
∀ uv ∈ E(H) is a bijective. Hence, g is a graceful labeling for H.

Take k = q. Now for each u ∈ V (G), f(u) ≤ q and min{g(u(1)), g(u(2))} ≤ q,

max{g(u(1)), g(u(2))} ≥ q + 1.

⇒ min{g(v(1)), g(v(2))} ≤ k < max{g(v(1)), g(v(2))}.
Observe that, for any (u(i), w(i)) ∈ E(H), (u,w) ∈ E(G), ∀i = 1, 2. Also one of u,w lies

in V1 and another of them lies in V2. min{g(u(i)), g(w(i))} ≤ k < max{g(u(i)), g(w(i))},
∀(u(i), w(i)) ∈ E(H) and ∀i = 1, 2. i.e. for any uw ∈ E(H), min{g(u), g(w)} ≤ k <
max{g(u), g(v)}. Therefore, g is an α-graceful labeling for H and so, H is α-graceful.

�

Theorem 2.2. Let n be an odd integer and Pn be a path on n vertices with V (Pn) =
{vi/1 ≤ i ≤ n} and E(Pn) = {vivi+1/1 ≤ i < n−1}. Let t = n+1

2 then v1, v2, . . . , v6, v9, v10,
v19, v20, vt−1, vt and vt+1 are graceful center for Pn.

Proof. For each i = 1, 2, . . . , 5, defined fi : V (Pn) −→ {0, 1, 2, . . . , n− 1} as follows

f1(vi) =

{
i−1
2 , when i is odd
q − ( i−2

2 ), when i is even

∀i = 1, 2, . . . , n;
f2(v1) = q + 1, f2(v2) = 1, f2(v3) = 3, f2(v4) = 0, f2(v5) = q − 3, f2(v6) = 2, f2(v7) =

q−2, f2(v8) = 4, f2(v9) = q−4, f2(v10) = 3, f2(vi) = f2(vi−6)+3(−1)i, ∀i = 11, 12, . . . , n−6
and f2(vn), f2(vn−1), . . . , f2(vn−5) define according to table−1, where t = n+1

2 .

f3(vi) =



3− ( i
2), when i = 2, 4, 6

n+ ( i−7
2 ), when i = 1, 3, 5

f3(vi−6)− 3, when i = 7, 9, 11
f3(vi−6) + 2, when i = 8, 10
f3(vi−6)− 2, when i = 13, 15
f3(vi−10) + 5, when i = 12, 14, 16
f3(vi−10) + 5(−1)i, when i = 17, 18, . . . , n− 10,
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and f3(vn), f3(vn−1), . . . , f3(vn−9) define according to table-2.

f4(vi) =



5− ( i
2), when i = 2, 4, . . . , 10

n+ ( i−11
2 ), when i = 1, 3, . . . , 9

f4(vi−10 − 5), when i = 11, 13, . . . , 19
f4(vi−10) + 4, when i = 12, 14, 16, 18
f4(vi−10)− 4, when i = 21, 23, 25, 27
f4(vi−18) + 9, when i = 20, 22, . . . , 28
f4(vi−18) + 9(−1)i, when i = 29, 30, . . . , n− 18,

and f4(vn), f4(vn−1), . . . , f4(vn−17) define according to table-3.

f5(vi) =



10− ( i
2), when i = 2, 4, . . . , 20

n+ ( i−21
2 ), when i = 1, 3, . . . , 19

29− ( i
2), when i = 22, 24, . . . , 38

f5(vi−20)− 10, when i = 21, 23, . . . , 39
f5(vi−38) + 19, when i = 40, 42, . . . , 58
f5(vi−38)− 20, when i = 41, 43, . . . , 57
f5(vi−38) + 19(−1)i, when i = 59, 60, . . . , n− 38;

and the set of remaining vertex labels {f5(vn), f5(vn−1), . . . , f5(vn−37)}, choose from
table-4, according to value of k, when n ≡ k (mod 38).

To define f6 : V (Pn) −→ {0, 1, 2, . . . , n− 1}, consider following two cases,
Case-1 : n ≡ 1 (mod 4)

f6(v1) =
n− 1

4
,

f6(v2) =
3n+ 1

4
,

f6(vj) =


0, when j = t
n−1
2 , when j = t+ 1
t, when j = t = 2,

f6(vi) =

{
f6(v − i− 2) + (−1)i, ∀i = 3, 4, . . . , t− 1
f6(v − i− 2)− (−1)i, ∀i = t+ 3, t+ 4, . . . , n.

Case-2 : n ≡ 3 (mod 4)

f6(v1) =
3n− 1

4
,

f6(v2) =
n− 3

4

f6(vj) =

 0, when j = t
t− 1, when j = t+ 1
t− 2, when j = t+ 2,

f6(vi) = f6(vi−2)− (−1)i, ∀i = 3, 4, . . . , t− 1, t+ 3, t+ 4, . . . , n.

Above defined labeling pattern fi(i = 1, 2, . . . , 6) give rise graceful labeling to Pn and so,
they are graceful labelings for Pn. Since {f1(v1), f1(v2)} = {0, n− 1} = {f2(v3), f2(v4)} =
{f3(v5), f3(v6)} = {f4(v9), f4(v10)} = {f5(v19), f5(v20)} = {f6(vt−1), f6(vt)} and symmet-
ric structure of Pn, v1, v2, . . . , v6, v9, v10, v19, v20, vt−1, vt, vt+1, vn−5, vn−4, . . . , vn, vn−8, vn−9,
vn−18 and vn−19 are graceful centers for Pn.

�
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Theorem 2.3. For any n ≥ 3, PSTn and DPSTn are α-graceful graphs.

Proof. Let G = PSTn i.e. V (G) = {vi,j/1 ≤ j ≤ i, 1 < i ≤ n} and E(G) = {vi,j , vi,j+1/1 ≤
j < i, 1 < i ≤ n}

⋃
{vi,1, vi+1,1/1 < i < n}. It is obvious that p = 1

2(n2 + n − 2)

and q = 1
2(n2 + n − 4) in PSTn. To define α-graceful labeling for PSTn, use induction

hypothesis. Consider V (PSTn) = V (PSTn−2)
⋃
{vn,j/1 ≤ j ≤ n}

⋃
{vn−1,j/1 ≤ j < n}.

α-graceful labeling for PST3 and PST4 are shown in following figures

1

4

0

3

2

0

8

1

7

5

2

6

4

3

PST PST

By induction hypothesis take f : V (PSTn−2) −→ {0, 1, 2, . . . , 12(n2 − 3n − 2)} as α-

graceful labeling for PSTn−2. To define vertex labeling g : V (PSTn) −→ {0, 1, . . . , 12(n2 +
n− 4)} take following two cases.
Case-1 : n is odd

g(vn,j) =

{
(n−j

2 ), when j = 1, 3, 5, . . . , n

q − (n−1−j
2 ), when j = 2, 4, . . . , n− 1,

g(vn−1,j) =

{
q − (n−2+j

2 ), when j = 1, 3, . . . , n− 2

q − (n−1+j
2 ), when j = 2, 4, . . . , n− 1,

Case-2 : n is even

g(vn,j) =

{
( j−1

2 ), when j = 1, 3, . . . , n− 1

p− ( j2), when j = 2, 4, . . . , n,

g(vn−1,n−1) = g(vn,n)− 1,

g(vn−1,n−2) = g(vn,n−1) + 1,

g(n−1,j) = g(vn−1,j+2) + (−1)j ,∀j = n− 3, n− 4, . . . , 1,

g(v) = f(v) + n− 1

2
− (−1)n

2
,∀v ∈ V (PSTn−2).

Above defined labeling pattern give rise graceful labeling to PSTn(n ≥ 3) as g is injec-
tive and its edge induced function g? : E(PSTn) −→ {1, 2, . . . , 12(n2 + n− 4)} defined by
g?(uv) = |g(u)− g(v)|, ∀uv ∈ E(PSTn) is bijective.

It is observed that for any PSTn(n ≥ 3), g?(v2,1, v2,2) = 1. It is also observed that, for
any uv ∈ E(PSTn), min{g(u), g(v)} ≤ g(v2,1) < max{g(u), g(v)}. By taking
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k = g(v2,1), in PSTn

= n− 1

2
− (−1)n

2
+ g(v2,1), in PSTn−2

=

{
n+ (n− 2) + (n− 4) + . . .+ 3, when n is odd
(n− 1) + (n− 3) + (n− 5) + . . .+ 3, when n is even

=

{
1
4(n2 + 2n− 3), when n is odd
1
4(n2 − 4), when n is even

g is an α-labeling for PSTn(n ≥ 3). By applying Theorem-2.1, it is easy to get α-
graceful labeling for DPSTn from graceful labeling of PSTn.

�

Theorem 2.4. Pm × Pn × P2 is an α-graceful graph, ∀ m,n ∈ N − {1}.

Proof. Let H = Pm × Pn × P2 and V (H) = {vi,j,k/1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ 2}.
Take V (H) = {vi,j,1/1 ≤ j ≤ m, 1 ≤ j ≤ n}

⋃
{Vi,j,2/1 ≤ i ≤ m, 1 ≤ j ≤ n} = V (Pm ×

P
(1)
n )

⋃
V (Pm × P (2)

n ) and E(H) = E(Pm × P (1)
n )

⋃
E(Pm × P 2

n)
⋃
{(vi,j,1, vi,j,2)/1 ≤ i ≤

m, 1 ≤ j ≤ n}. It is obvious that p = 2mn and q = 5mn − 2(m + n) in H. Define
f : V (H) −→ {0, 1, 2, . . . , q} as follows

f(v1,j,1) =

{
q − ( j−1

2 ), when j is odd

( j−2
2 ), when j is even ,

f(v1,j,2) =

{
min {f(v1,n,1), f(v1,n−1,1)}+ bn+1

2 c+ ( j−1
2 ), when j is odd

max {f(v1,n,1), f(v1,n−1,1)} − dn+1
2 e − ( j−2

2 ), when j is even ,∀1 ≤ j ≤ n,

f(v2,j,2) =

{
max {f(v1,n,2), f(v1,n−1,2)}+ bn+1

2 c+ ( j−1
2 ), when j is odd

min {f(v1,n,2), f(v1,n−1,2)} − d3n+1
2 e − ( j−2

2 ), when j is even ,∀1 ≤ j ≤ n,

f(v2,j,1) =

{
min {f(v2,n,2), f(v2,n−1,2)}+ bn+1

2 c+ ( j−1
2 ), when j is odd

max {f(v2,n,2), f(v2,n−1,2)} − dn+1
2 e − ( j−2

2 ), when j is even ,∀1 ≤ j ≤ n,

f(vi,j,k) =

{
f(vi−2,j,k − 4n+ 2, when f(vi−2,j,k) < q

2
f(vi−2,j,k + 6n− 2, when f(vi−2,j,k) > q

2 ,∀3 ≤ i ≤ m,∀1 ≤ j ≤ n, ∀1 ≤ k ≤ 2.

Above labeling pattern give rise graceful labeling to the graph Pm × Pn × P2 and so, it
is graceful. Take

k =


f(vm,n,1), if m is even and n is odd
f(vm,n−1,1), if m and n both are even
f(vm,n,2), if m and n both are odd
f(vm,n−1,2), if m is odd and n is even .

Then it is observed that for any uv ∈ E(H), min{f(u), f(v)} ≤ k < max{f(u), f(v)}
and hence, H is α-graceful.

�

Theorem 2.5. Let T be an α-graceful tree and p = |V (T )|. Let f : V (T ) −→ {0, 1, 2, . . . , p−
1} be an α-labeling and k > 0 with min{f(u), f(v)} ≤ k < max{f(u), f(v)}, ∀ uv ∈ E(T ).
Let V1 = {u ∈ V (T )/f(u) ≤ k} and V2 = {u ∈ V (T )/f(u) > k}. If | |v1| − |v2| | ≤ 1, then
Pn × T is α-graceful.
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n≡ i (mod 6) f2(vn) f2(vn−1) f2(vn−2) f2(vn−3) f2(vn−4) f2(vn−5)

i=1 t-2 t t-1 t-4 t+1 t-3
i=3 t-2 t-1 t+1 t-3 t t-5
i=5 t t-3 t-1 t-2 t+2 t-4

Table 1. For f2(vi)

Proof. Let q = |E(T )|. Since q − f is α-labeling for T and V1, V2 exchange their role in
this case, without loss of generality assume that |V1| ≥ |V2|.

Since, T is a tree, f and its edge induced function f? : E(T ) −→ {1, 2, . . . , q} both
are bijections. Let G = Pn × T . It is obvious that P = n × p and Q = (2n − 1)p − n
in G. Let V (G) = V (T (1))

⋃
V (T (2))

⋃
. . .
⋃
V (T (n)), where V (T (i)) = V

(i)
i

⋃
V

(i)
2 , ∀

i = 1, 2, . . . , n.
Define g : V (G) −→ {0, 1, 2, . . . , Q} as follows.

g/V
(1)
1 = f/V1, g/V

(1)
2 = f/V2 + (n − 1)(2q − 1), g/V

(2)
1 = (2q + 1)(n − 1) − f/V1,

g/V
(2)
2 = n(2q + 1) − g/V

(1)
2 and g/V

(i)
j = g/V

(i)
j−2 − (−1)i(2q + 1), ∀ i = 1, 2 and ∀

j = 3, 4, . . . , n.

Above labeling pattern give rise graceful labeling to G and so, G is graceful. Take

k =

{
max {g(v)/v ∈ V (n)

1 }, when n is odd

max {g(v)/v ∈ V (n)
2 }, when n is even .

It is obvious that for any uv ∈ E(G), min{g(u), g(v)} ≤ k < max{g(u),g(v)} and so, G
is α-graceful.

�

Corollary 2.1. Grid Pn × Pm is α-graceful.

Proof. As Pm is α-graceful and it satisfies require condition mentioned in Theorem-2.5,
Pn × Pm is α-graceful. �

Corollary 2.2. Pn × PSTn and Pn × DPSTn are α-graceful.

Proof. As PSTn and DPSTn satisfies require condition mentioned in Theorem-2.5, they
are α-graceful graphs. �

Corollary 2.3. Let T be a graceful tree. The tree S obtained by joining two copies of T
say T (1) and T (2) by an edge between any two corresponding vertices v(1) ∈ V (T (1)) and

v(2) ∈ V (T (2)), for some v ∈ V (T ) and Pn × S are α-graceful.

Proof. S is α-graceful followed by Theorem-2.1 and Pn × S is α-graceful followed by
Theorem-2.5, as S satisfies require conditions mentioned in Theorem-2.5. �

k=1 { t-10, t+8, t-9, t+7, t-8, t+6, t-7, t+5, t-6, t+4, t-5, t+3, t-4, t+2, t-3, t+1,
t-2, t, t-1, t-20, t+17, t-19, t+16, t-18, t+15, t-17, t+14, t-16, t+13, t-15, t+12,
t-14, t+11, t-13, t+10, t-12, t+9, t-11 }
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k=3 { t-4, t-3, t-1, t+3, t-2, t+1, t-5, t+2, t-6, t+4, t-7, t+5, t-8, t+6, t-9, t+7, t-10,
t+8, t-11, t+9, t, t-21, t+18, t-20, t+17, t-19, t+16, t-18, t+15, t-17, t+14, t-16,
t+13, t-15, t+12, t-14, t+11, t-13 }

k=5 { t, t+2, t-1, t-2, t-7, t-3, t+3, t-4, t+4, t-5, t+5, t-6, t+6, t-8, t+7, t-9, t+8,
t-10, t+9, t-11, t+10, t-12, t+1, t-22, t+19, t-21, t+18, t-20, t+17, t-19, t+16,
t-18, t+15, t-17, t+14, t-16, t+13, t-15 }

k=7 { t-2, t-3, t, t-4, t+3, t-5, t+1, t-1, t-6, t+4, t-7, t+5, t-8, t+6, t-9, t+7, t-10,
t+8, t-11, t+9, t-12, t+10, t-13, t+11, t+2, t-23, t+20, t-22, t+19, t-21, t+18,
t-20, t+17, t-19, t+16, t-18, t+15, t-17 }

k=9 { t-2, t-1, t-3, t, t-4, t+1, t-5, t+2, t-6, t+4, t-7, t+5, t-8, t+6, t-9, t+7, t-10,
t+8, t-11, t+9, t-12, t+10, t-13, t+11, t-14, t+12, t+3, t-24, t+21, t-23, t+20,
t-22, t+19, t-21, t+18, t-20, t+17, t-19 }

k=11 { t-10, t-1, t, t-2, t+1, t-3, t+2, t-4, t+3, t-5, t+5, t-6, t+6, t-7, t+7, t-8, t+8,
t-9, t+9, t-11, t+10, t-12, t+11, t-13, t+12, t-14, t+13, t-15, t+4, t-25, t+22,
t-24, t+21, t-23, t+20, t-22, t+19, t-21 }

k=13 { t-4, t-11, t, t-1, t+1, t-2, t+2, t-3, t+3, t-5, t+4, t-6, t+6, t-7, t+7, t-8, t+8,
t-9, t+9, t-10, t+10, t-12, t+11, t-13, t+12, t-14, t+13, t-15, t+14, t-16, t+5,
t-26, t+23, t-25, t+22, t-24, t+21, t-23 }

k=15 { t-4, t, t-1, t-3, t+3, t-2, t-5, t+2, t-6, t+4, t-7, t+5, t-8, t+1, t+15, t-17, t+14,
t-16, t+13, t-15, t+12, t-14, t+11, t-13, t+10, t-12, t+9, t-11, t+8, t-10, t+7,
t-9, t+6, t-27, t+24, t-26, t+23, t-25 }

k=17 { t-4, t+1, t-3, t-1, t-2, t-5, t+2, t-6, t+3, t-7, t+4, t-8, t+5, t-9, t+6, t, t+16,
t-18, t+15, t-17, t+14, t-16, t+13, t-15, t+12, t-14, t+11, t-13, t+10, t-12, t+9,
t-11, t+8, t-10, t+7, t-28, t+25, t-27 }

k=19 { t-2, t, t-3, t+1, t-4, t+2, t-5, t-6, t+3, t-7, t+4, t-8, t+5, t-9, t+6, t-10, t+7,
t-1, t+17, t-19, t+16, t-18, t+15, t-17, t+14, t-16, t+13, t-15, t+12, t-14, t+11,
t-13, t+10, t-12, t+9, t-11, t+8, t-29 }

k=21 { t, t+1, t-4, t+2, t-5, t+3, t-1, t-3, t-6, t+4, t-7, t+5, t-8, t+6, t-9, t+7, t-10,
t+8, t-11, t-2, t+22, t-20, t+21, t-19, t+20, t-18, t+19, t-17, t+18, t-16, t+17,
t-15, t+16, t-14, t+15, t-13, t+14, t-12 }

k=23 { t+2, t-4, t-2, t-1, t-5, t, t-7, t+1, t+4, t-6, t+3, t-8, t+5, t-9, t+6, t-10, t+7,
t-11, t-8, t-12, t+9, t-3, t+19, t-21, t+18, t-20, t+17, t-19, t+16, t-18, t+15,
t-17, t+14, t-16, t+13, t-15, t+12, t-14 }

k=25 { t-2, t-1, t+1, t-3, t+3, t, t-5, t+2, t-6, t+4, t-7, t+5, t-8, t+6, t-9, t+7, t-10,
t+8, t-11, t+9, t-12, t+10, t-13, t-4, t+20, t-22, t+19, t-21, t+18, t-20, t+17,
t-19, t+16, t-18, t+15, t-17, t+14, t-16 }

k=27 { t-2, t, t-1, t+2, t-3, t+3, t-4, t+4, t-6, t+5, t-7, t+6, t-8, t+1, t-14, t+11, t-13,
t+10, t-12, t+9, t-11, t+8, t-10, t+7, t-9, t-5, t+21, t-23, t+20, t-22, t+19, t-21,
t+18, t-20, t+17, t-19, t+16, t-18 }

k=29 { t-2, t+7, t-1, t, t-3, t+1, t-4, t+2, t-5, t-7, t+3, t-8, t+4, t-9, t+5, t-10, t+6,
t-11, t+8, t-12, t+9, t-13, t+10, t-14, t+11, t-15, t+12, t-6, t+22, t-21, t+21,
t-23, t+20, t-22, t+19, t-21, t+18, t-20 }

k=31 { t+8, t-2, t-1, t-3, t, t-4, t+1, t-5, t+2, t-6, t+3, t-8, t+4, t-9, t+5, t-10, t+6,
t-11, t+7, t-12, t+9, t-13, t+10, t-14, t+11, t-15, t-12, t-16, t+13, t-7, t+23,
t-25, t+22, t-24, t+21, t-23, t+20, t-22 }
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k=33 { t-4, t-1, t+1, t, t-5, t+2, t-6, t+3, t-7, t-3, t+9, t-2, t+4, t-9, t+5, t-10, t+6,
t-11, t+7, t-12, t+8, t-13, t+10, t-14, t+11, t-15, t+12, t-16, t+13, t-17, t+14,
t-8, t+24, t-26, t+23, t-25, t+22, t-24 }

k=35 { t, t-1, t+1, t-2, t+2, t-4, t+3, t-5, t+4, t-6, t+5, t-7, t+6, t-8, t-3, t-18, t+15,
t-17, t+14, t-16, t+13, t-15, t+12, t-14, t+11, t-13, t+10, t-12, t+9, t-11, t+8,
t-10, t+7, t-9, t+25, t-27, t+24, t-26 }

k=37 { t, t-3, t-1, t-2, t-6, t+1, t-4, t+2, t+11, t-5, t+3, t-7, t+4, t-8, t+5, t-9, t+6,
t-11, t+7, t-12, t+8, t-13, t+9, t-14, t+10, t-15, t+12, t-16, t+13, t-17, t+14,
t-18, t+15, t-19, t+16, t-10, t+26, t-28 }

Table 4: For f5(vi)

3. Conclusions

In Th-2.1, if G is a bipartite universal graceful graph, then the graph H mentioned in
Th-2.1 is also a universal α-graceful graph. Every Pn(n ≤ 16) is universal graceful graph.
Any graceful graph G has at least two graceful centers as well as any α-graceful graph has
at least four graceful centers.

According to Th-2.2, we would like to make a conjecture that every Pn(n is odd) is a
universal graceful graph and so, according to Th-2.1, every path Pn(n is even) is a universal
α-graceful graph. Here we also make another conjecture that the graph Pm × Pn × Pr is
α-graceful.
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n ≡ k (mod 10) f3(vn) f3(vn−2) f3(vn−4) f3(vn−6) f3(vn−8)
f3(vn−1) f3(vn−3) f3(vn−5) f3(vn−7) f3(vn−9)

k=1 t+1 t t-1 t+3 t+2
t-3 t-2 t-6 t-5 t-4

k=3 t-1 t-2 t+2 t t+4
t+1 t-3 t-4 t-7 t-6

k=5 t-3 t-2 t+3 t+2 t+1
t t-1 t-5 t-4 t-8

k=7 t-3 t t+1 t+4 t+3
t-1 t-4 t-2 t-6 t-5

k=9 t-1 t-4 t+1 t+2 t+5
t t-2 t-5 t-3 t-7
Table 2. For f3(vi)

n≡ k (mod 18) f4(vn) f4(vn−3) f4(vn−6) f4(vn−9) f4(vn−12) f4(vn−15)
f4(vn−1) f4(vn−4) f4(vn−7) f4(vn−10) f4(vn−13) f4(vn−16)
f4(vn−2) f4(vn−5) f4(vn−8) f4(vn−11) f4(vn−14) f4(vn−17)

k=1 t+3 t-4 t t-10 t+6 t-7
t-5 t+1 t-2 t+7 t-8 t+4
t+2 t-3 t-1 t-9 t+5 t-6

k=3 t-1 t+1 t-5 t+4 t+8 t-9
t-3 t-4 t+3 t t-10 t+6
t-2 t+2 t-6 t-11 t+7 t-8

k=5 t-1 t t+2 t-6 t+1 t-11
t+3 t-3 t-5 t+5 t-12 t+8
t-2 t-4 t+4 t-7 t+9 t-10

k=7 t-1 t+4 t t-6 t+6 t-13
t-4 t-3 t-5 t+5 t-8 t+10
t-2 t+1 t+3 t-7 t+2 t-12

k=9 t-1 t t+1 t-6 t+6 t-9
t-4 t-2 t-5 t+4 t-8 t+3
t+5 t-3 t+2 t-7 t+7 t-14

k=11 t+3 t-5 t t-2 t+7 t-8
t-6 t+1 t-3 t+8 t-9 t+5
t+2 t-4 t-1 t-10 t+6 t-7

k=13 t-1 t+1 t-5 t+4 t+9 t-10
t t-4 t+3 t-7 t-11 t+7

t-2 t+2 t-6 t-3 t+8 t-9
k=15 t-3 t-1 t+2 t-7 t+5 t-12

t+1 t-6 t-5 t+4 t-4 t+9
t-2 t t+3 t-8 t-10 t-11

k=17 t-3 t-2 t+1 t-6 t+5 t-5
t t-1 t-4 t+4 t-9 t+11

t+2 t-7 t+3 t-8 t+6 t-13
Table 3. For f4(vi)
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