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The maintenance and regeneration of adult tissues
rely on the self-renewal of stem cells. Regeneration
without over-proliferation requires precise regulation
of the stem cell proliferation and differentiation
rates. The nature of such regulatory mechanisms
in different tissues, and how to incorporate them
in models of stem cell population dynamics, is
incompletely understood. The critical birth-death
(CBD) process is widely used to model stem cell
populations, capturing key phenomena, such as
scaling laws in clone size distributions. However, the
CBD process neglects regulatory mechanisms. Here,
we propose the birth-death process with volume
exclusion (vBD), a variation of the birth-death process
that considers crowding effects, such as may arise
due to limited space in a stem cell niche. While
the deterministic rate equations predict a single non-
trivial attracting steady state, the master equation
predicts extinction and transient distributions of
stem cell numbers with three possible behaviours:
long-lived quasi-steady state (QSS), and short-lived
bimodal or unimodal distributions. In all cases, we
approximate solutions to the vBD master equation
using a renormalized system-size expansion, QSS
approximation and the Wentzel–Kramers–Brillouin
method. Our study suggests that the size distribution
of a stem cell population bears signatures that are
useful to detect negative feedback mediated via
volume exclusion.

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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1. Introduction
Stem cells (SCs) are a population of cells capable of self-renewing and differentiating into all the
cells in a particular lineage. In adult tissue homeostasis, SCs slowly self-renew and differentiate
to compensate for the death of other cells while maintaining a constant average population size
[1–4]. Upon injury, however, the SC proliferation and differentiation rates increase dramatically to
repair the tissue, only settling back into homeostasis when regeneration is completed [5–7]. Such
tight control over the SC proliferation and differentiation rates requires regulatory mechanisms
providing feedback to the SCs.

Against the backdrop of recent advances in experimental techniques in stem cell biology, a
broad range of SC regulatory mechanisms have been reported, such as negative feedback exerted
by the more differentiated cells [6–8], competition between SCs for fate determinants [9,10], or
mechanical feedback [11–13]. An additional plausible mechanism stems from the confinement of
SCs to a particular microenvironment, the stem cell niche [9,14–16]. This microenvironment plays
a key role in maintaining cell stemness and promoting SC quiescence [17–19], self-renewal, or
differentiation, according to tissue requirements; however, it also triggers a competition between
SCs for niche access [10,20,21].

Crowding effects are often associated with volume exclusion [22–26]. The non-negligible
volume of particles restricts their movement, thus obstructing their access to available free space
[22]. As a consequence, the accessible phase space can be greatly reduced. If cells are dividing
without reducing their size, crowding effects can have an impact on the SC proliferation and
death (or differentiation) rates. For example, a proliferation event reduces the available space,
which in turn reduces the proliferation rate, thus creating a negative feedback loop. Volume
exclusion has also been suggested to play a role in the regulation of cancer stem cells and tumour
growth [27]. However, it is not yet clear how to distinguish between crowding effects and other
regulatory mechanisms from observations of the population evolution (e.g. from snapshots of the
SC population at different times).

Stem cell division and differentiation have been previously modelled stochastically by the
simple chemical reaction network S → 2S, S → ∅ [1,28], where differentiation is equivalent to
death if differentiated progeny do not self-renew. To prevent the population from diverging or
vanishing, the birth and death rates must be equal, thus obtaining a critical birth-death (CBD)
process. For stem cell population dynamics, the CBD process has been frequently treated under
well-mixed and dilute gas conditions, which facilitate its computational implementation, e.g.
Gillespie algorithm [29,30] and mathematical analysis through the master equation formalism
[31,32]. This approach has been successfully employed to illustrate key features of SC populations,
such as population asymmetry (the maintenance of a constant average population via symmetric
divisions that are balanced at the population level, instead of asymmetric divisions), neutral
competition [1,28,33] and scaling properties of clone size distributions [28,33–35]. However, the
CBD ignores the finite-size nature of cells and thus disregards the role of available space in cell
division.

Here, we present a modification of the birth-death process that includes competition for niche
access, the birth-death process with volume exclusion (vBD). We subdivide the space within a
niche into N voxels (small volumes of space); each voxel is either occupied by a stem cell or else
is empty. Assuming well-mixed conditions, the effective chemical reaction network describing
this process is S + E → 2S, S → E, where S and E describe stem cells and empty voxels in the
niche, respectively. The first reaction reflects the need for a stem cell to find an empty voxel
to divide, while the second one represents the birth of an empty voxel after stem cell death or
differentiation (assuming differentiated progeny leave the niche space). Naturally, the system
obeys the conservation law nS + nE = N, where N is the niche carrying capacity, and nS, nE are
the number of stem cells and empty voxels, respectively. Note that the vBD resembles a stochastic
SIS model, with the number of infectious given by the species S, and susceptible by E. However,
while the SIS model is usually treated for N → ∞, we are interested in the low N behaviour.
In terms of the vBD model parameters, the basic reproduction number for the equivalent SIS

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 O

ct
ob

er
 2

02
2 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220376

..........................................................

model is given by R0 = Nk1/k2, where k1 and k2 are the rates of proliferation and differentiation,
respectively. The deterministic rate equations for the vBD process predict a logistic convergence
to a non-trivial attracting steady state. From a microscopic perspective (i.e. the master equation’s
solutions), however, this prediction is not realized, and the vBD process relaxes to extinction,
irrespective of the parameter values and initial conditions.

Our analysis reveals the three different behaviours of the stochastic vBD process that are
absent in its deterministic counterpart. When the birth rate is much larger than the death rate, the
system quickly takes the form of a long-lived, quasi-steady state (QSS) and very slowly relaxes
to extinction through a transient bimodal distribution. Conversely, for death rates much larger
than the birth rates, the system quickly converges to extinction through a unimodal transient.
Lastly, when the birth and death rates are comparable, the transient distribution is bimodal but
the convergence to extinction is fast. For these three different parameter regimes, we approximate
the solution of the vBD master equation using a quasi-stationary approximation, a renormalized
system-size expansion (SSE) (including finite size corrections to the linear-noise approximation
(LNA)), and the Wentzel–Kramers–Brillouin (WKB) method. In particular, the renormalized SSE
is a recent modification of the original van Kampen’s SSE that has not been widely used yet,
but proves useful for tackling master equations of non-linear birth-death processes. Finally, we
derive an expression for the expected extinction time based on Kolmogorov’s backward equation
and first-passage time theory. Our analytical solutions provide insights into the rich behaviours
of the vBD model.

2. Birth-death process with volume exclusion model
The vBD is defined by the chemical reaction network

S + E
k1−→ 2S; S

k2−→ E, (2.1)

where S and E represent stem cells and empty voxels, respectively (see figure 1a for an
illustration). For the deterministic system to have a non-trivial steady state, we require that
k1 > k2. Note that the two species are coupled by the conservation law nS + nE = N. Assuming
mass-action kinetics and defining the dimensionless time τ = k2t, the rate equation for the average
stem cell concentration φ = nS/N adopts the logistic form

∂φ

∂τ
= (φ∗ − φ)φ

1 − φ∗ , (2.2)

where φ∗ = 1 − k2/k1 is the non-trivial steady state. The deterministic evolution of the stem
cell concentration has the form φ(τ ) = (φ∗φ0)/[(φ∗ − φ0) e−φ∗τ/(1−φ∗) + φ0], where φ(0) = φ0 is
the initial condition, and we can appreciate that φ

τ→∞−−−→ φ∗ when φ0 �= 0 (figure 1b). In this
deterministic system, the extinction state φ = 0 is never reached unless φ(0) = 0.

The stochastic behaviour of the vBD differs from the deterministic predictions. Trajectories of
the vBD generated using the stochastic simulation algorithm (SSA [29]) fluctuate in the vicinity of
the deterministic steady state for some finite period of time (figure 1b), but fluctuations eventually
drive the stem cell number to extinction. The ensemble average of stochastic trajectories thus
converges to zero (see blue line in figure 1b), disagreeing with the deterministic model’s
prediction.

A stochastic treatment of the vBD process is provided by its chemical master equation (CME),
i.e. Kolmogorov’s forward equation. The CME describes the time-evolution of the probability
that the system is in one of its states [31,36–38]. To construct the CME, we first note that the vBD
model only involves reactions that increase or reduce the number of stem cells by one unit. Hence
the stochastic process underlying the reaction network (2.1) takes the form of the Markov chain
depicted in figure 2a, where the states 0, 1, . . . , N represent the number of stem cells. Note that
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Figure 1. The vBDmodel and its deterministic approximation. (a) Stem cells (solid circles)move randomly in the niche (grid) by
switching positions with empty voxels (dashed, empty circles). At any time, a stem cell can ‘react’ with a neighbouring empty
voxel to create two stem cells (cell division), and a single stem cell can differentiate or die, leaving a new empty voxel in return.
The propensities follow mass-action kinetics. (b) Under well-mixed conditions, the deterministic approximation predicts the
evolution of the mean stem cell concentration satisfying the logistic equation (2.2), thus portraying a logistic convergence to
the average stem cell number Nφ∗ (black line). Stochastic trajectories (green and orange lines) obtained by the SSA, however,
are driven to the extinction state by fluctuations. The ensemble average (blue line) of 2 × 104 stochastic trajectories reveals the
eventual distinction—in contrast to the deterministic prediction of a non-zero steady state. (Online version in colour.)

the vBD process features a reflecting boundary at n = N and an absorbing boundary at n = 0.
The propensities are determined by the law of mass-action and in dimensionless units read:

an = (n − 1)(N − n + 1)/[N(1 − φ∗)], n ≥ 1

and bn = n + 1, n ≥ 0.

}
(2.3)

Let P(n, τ | P(τ0) = P0) be the probability of finding the system in a state of n cells at time τ , given
that it was P0 at time τ0, which we will abbreviate as P(n, τ ). Defining the probability vector P(τ ) =
(P(0, τ ), P(1, τ ), . . . , P(N, τ ))T, where T denotes the vector transpose, the CME can be expressed as
dP/dτ =MP, where M is the operator defined by

M=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 b0 0 0 . . .

0 −a2 − b0 b1 0 . . .

0 a2 −a3 − b1 b2 . . .

0 0 a3 −a4 − b2 . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.4)

The nth row of the master equation reads

dP
dτ

= anP(n − 1, τ ) + bnP(n + 1, τ ) − (an+1 + bn−1)P(n, τ ), (2.5)

with a0 = b−1 = 0. Note that the only parameters present are the carrying capacity, N, and the
steady state from the deterministic equations, φ∗, as per (2.3).

The solution of the master equation, for an initial probability distribution P(0), is given
by P(τ ) = eMτ P(0). The main properties of the solution are captured by the eigenvectors and
eigenvalues of M. It is easy to prove that λ0 = 0 is always an eigenvalue associated with the
eigenvector [1, 0, . . . , 0]T (the extinction state), while the other eigenvalues are real and negative
[39]. Therefore, the extinction state is always reached, irrespective of the parameter values and
initial conditions. Moreover, the expected extinction time is the inverse of the spectral gap,
|λ1 − λ0|−1, where λ1 is the smallest (in absolute value) non-zero eigenvalue. The third eigenvalue,
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Figure 2. Stochastic properties of the vBD model. (a) The vBD system jumps between states of 1, 2, . . . , N stem cells in a
Markov process, with propensities an and bn. (b) The leading eigenvalue of the operatorM, λ1, vanishes as the deterministic
equation’s steady state solution,φ∗, increases (blue line, inset for logarithmic scale). Correspondingly, the expected extinction
time, |λ1|−1, is large for high φ∗, indicating the presence of a QSS. The relative spectral gap of the system conditioned on
non-extinction, i.e. |(λ2 − λ1)/λ2|, increases with φ∗ (orange line). In general, |λ2| is at least 2.6 times higher than |λ1|,
supporting a solution of the formof equation (2.6) for the vBDmaster equation. (c–e) Probability distributions of the vBDmodel
for differentφ∗ values and times. All time-dependent PDFs are found by numerically solving the master equationdP/dτ =
MP using direct matrix exponentiation. For high φ∗ a QSS is achieved before relaxation into extinction through transient
bimodality (c). For intermediateφ∗ transient bimodality is present but a long-lived QSS is absent (d). For lowφ∗ extinction is
fast via unimodal transient (panel e). In all parameter regimes, the probability distributions of the surviving trajectories reach
steady states (insets in c–e). (f ) Behaviours of the vBD model for differentφ∗ values and carrying capacities; see main text for
explanation of how the phase boundary lines are numerically determined. Note that the discrete jumps of the transition lines
reveal the finite-size nature of the niche since the concentrations can only be of the form n/N, with n integer, and the carrying
capacity N can only adopt integer values. (Online version in colour.)
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λ2, has a considerably higher absolute value than λ1, as we can appreciate from the spectral gap
of the reduced system obtained by eliminating the extinction state (orange line in figure 2b)—we
observe that the smallest gap is λ2 ≈ 2.6λ1 which is achieved in the limit of small φ∗. Hence, after
an initial transient, the PDF is dominated by the eigenvectors associated with λ0 and λ1, leading
to

P(n, τ ) ≈ e0 + e−λ1τ e1, (2.6)

where e0 = [1, 0, . . . , 0]T is the extinction state and e1 = [−1, f (1), f (2), . . . , f (N)]T is the leading
eigenvector. The first element of e1 comes from the lower boundary of the state space. The first
row in the CME reads dP(0, τ )/dτ = b0P(1, τ ) = b0f (1) e−λ1τ , which leads to (i) λ1 = b0f (1) and (ii)
P(0, τ ) = 1 − e−λ1τ . Note that f (n) is the PDF of stem cell numbers conditioned on non-extinction.
It follows that the expected extinction time is

T = [b0f (1)]−1. (2.7)

The distribution of the surviving trajectories is defined as

P̃(τ ) = [P̃1(τ ), . . . , P̃N(τ )]T = P′(τ )∑N
k=1 Pk(τ )

= P′(τ )
1 − P0(τ )

, (2.8)

where P′(τ ) = [P(1, τ ), . . . , P(N, τ )]T. Hence, the master equation for the PDF conditioned on non-
extinction reads

∂P̃
∂τ

= ∂P′

∂τ

1
1 − P0

+ P′

(1 − P0)2
∂P0

∂τ
= M̃P̃ + b0P̃1P̃, (2.9)

where the operator M̃ results from eliminating the first row and column of M. Note that even
though the steady state in the original CME is the extinction state, the CME for the surviving
trajectories presents a non-trivial steady state (figure 2c–e). In effect, the steady state of equation
(2.9) yields the entries f (k) of e1.

Numerical experiments reveal the presence of three different behaviours in the solution given
by equation (2.6). For high φ∗ values, the system relaxes to a long-lived QSS, f (n), before slowly
relaxing again to extinction through a transient bimodal distribution (figure 2c). The two modes
given by the eigenstates e0 and e1 in equation (2.6) are located at the extinction state and near
(but not necessarily at) Nφ∗, respectively. The leading eigenvalue vanishes for high φ∗ (blue line
in figure 2b), indicating the presence of a QSS. For intermediate φ∗ values, the transient bimodality
is still present, but the relaxation to extinction is faster than the time to reach the QSS (figure 2d).
For low φ∗ values, the system rapidly goes extinct, and the mode around Nφ∗ is absent (figure 2e).
The phase diagram in figure 2f summarizes the three types of behaviour of the vBD model
as a function of φ∗ and the carrying capacity N. To determine the parameter regimes for these
three behaviours, we compute numerically the solution to the master equation, P(τ ) = eMτ P(0),
choosing P(n, 0) = δnk, where δij is the Kronecker delta and k = 
Nφ∗�. We then extract the PDF
conditioned on non-extinction after the initial transient. The black region in figure 2f corresponds
to the case in which such distribution does not present maximum for n > 1. To distinguish
between the bimodal extinction and QSS regions, we compute numerically the second eigenvalue
of M, λ1, and set a tolerance α = 1 × 10−2. The grey region in figure 2f corresponds to λ1 > α, and
the white region to λ1 ≤ α. In the next two sections, we derive approximate solutions for f (n) and
T in the three different regimes.

3. Approximate solutions
Here, we present approximate solutions for the vBD master equation. From equation (2.6), it
follows that the solution adopts the form P(n, τ ) = f (n) e−λ1τ , ∀ n ≥ 1, and P(0, τ ) = 1 − e−λ1τ .
Hence, the asymptotic solution is determined by the PDF conditioned on non-extinction, f (n),
and the inverse of the expected extinction time, λ1. In this section, we tackle the problem of
approximating f (n), assuming λ1 is known, while in the next section, we derive an accurate
expression for the expected extinction time and correspondingly for λ1.
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Substituting equation (2.6) into the master equation, we obtain

anf (n − 1) + bnf (n + 1) + (λ1 − an+1 − bn−1)f (n) = 0, (3.1)

where 1 ≤ n < N. Defining un = f (n)/f (n − 1) leads to the recurrence relations

uk = ak

bk−1 + ak+1 − λ1 − bkuk+1
, k ≥ 2, (3.2)

with the boundary conditions u2 = (a2 + b0 − λ1)/b1 and uN = aN/(bN−1 − λ1). Equation (3.2) can
be solved iteratively, leading to a solution in terms of the continued fraction

uk = ak

ck
− bkak+1

ck+1
· · · − bN−2aN−1

cN−1
− bN−1aN

bN−1 − λ1
, (3.3)

where we have defined ck = λ1 − bk−1 − ak+1. To obtain an expression for f (n), we apply the
boundary condition f (1) = λ1/b0, thus leading to

f (n) = λ1

b0

n∏
k=2

uk. (3.4)

Equations (3.3) and (3.4) are exact solutions for the post-transient dynamics given by equation
(2.6). However, the slow convergence of the continued fraction and the difficulty in applying
truncation methods render equations (3.3) and (3.4) unsuitable for the analysis of the system’s
dynamics. On the other hand, the continued fraction solution offers a fast computational
estimation for the master equation’s time-dependent solution, often less demanding than direct
matrix exponentiation to estimate P(n, τ ) = eMτ P(0). In what follows, we derive three different
approximate solutions to the master equation of the vBD process, one for each region of the phase
diagram shown in figure 2f.

(a) QSS approximation
For high φ∗ values, λ1 � 1 and correspondingly the mean extinction time is very large (see
figure 1b). Since λ1 = b0f (1), we can impose a QSS condition by disregarding the second term in the
r.h.s. of equation (2.9), leading to ∂P̃/∂τ ≈ M̃P̃. The steady state of the CME conditioned on non-
extinction can be obtained by solving M̃P̃ = 0; the Nth row yielding f (N − 1) = (bN−1/aN)f (N).
This relationship can be iterated to obtain

f (k) =
N−1∏
i=k

bi

âi+1
f (N), 1 ≤ k < N, (3.5)

where âi = ai + δi2b0, and δi2 is the Kronecker delta. Finally, to find f (N), we make use of the
normalization condition which leads us to a closed-form solution for the QSS PDF

f (N) =
[

1 +
N−1∑
k=1

N−1∏
i=k

bi

âi+1

]−1

. (3.6)

Substituting the propensities an and bn from equation (2.3) yields the approximate QSS solution

f (k) =
(Σ2)N−k

[
1 + δk1

(N−1)
N−1+Σ2

]
/(N − k)!

1 +∑N−1
i=1

(Σ2)N−i

(N−i)!

[
1 + δi1

(N−1))
N−1+Σ2

] , (3.7)

for 1 ≤ k ≤ N, where we defined Σ2 = N(1 − φ∗). The QSS approximation accurately describes the
PDF conditioned on non-extinction for high φ∗ values (figures 3a and 4a).
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Figure 3. Approximate solutions of the vBD master equation. The SSE, QSS, WKB, LNA and HG lines correspond to the
renormalized SSE (up to order N−1), QSS approximation, WKB approximation, linear-noise and half Gaussian approximations,
respectively. (a) For (N,φ∗) within the bimodal extinction region the QSS, SSE and WKB provide good approximations of the
probability distribution conditioned on non-extinction, f (n), although the QSS is the most accurate one (see inset in d). (b) In
the bimodal extinction region, the renormalized SSE is the only accurate approximation. (c) In the unimodal extinction region,
the HG provides the best approximation. (d) The Hellinger distance between the various distribution approximations and the
exact distribution confirms that the QSS, SSE and HG are the best approximations for the QSS, bimodal extinction and unimodal
extinction regions, respectively. (Online version in colour.)

From the QSS approximation, we can calculate the position for the non-zero mode. To do so,
it is convenient to study the discrete first derivative ∂f (n)/∂n = f (n + 1) − f (n). For a maximum or
minimum to take place, it is necessary that f (n + 1)/f (n) = 1. According to equation (3.7), we have

f (n + 1)
f (n)

= n(N − n)
N(1 − φ∗)(n + 1)

∀ n ≥ 2. (3.8)

Solving for n, we have

n∗± = 1
2

[
Nφ∗ ±

√
(Nφ∗)2 − 4N(1 − φ∗)

]
. (3.9)

The sign of the discrete second derivative, ∂2f/∂n2 = f (n + 1) + f (n − 1) − 2f (n) reveals that, when
both solutions exist, n∗+ corresponds to a maximum and n∗− to a minimum. Note that, for n∗±
to adopt real values, (Nφ∗)2 ≥ 4N(1 − φ∗), which is the case for all parameter sets in the QSS
region. Hence, in general, the position of the non-zero mode differs from the deterministic model’s
prediction, i.e. n∗+ �= Nφ∗. As an example, for a carrying capacity of N = 100 and φ∗ = 0.4, then
n∗+ ≈ 38. Note that when φ∗ → 1 or N → ∞, n∗+ → Nφ∗ and n∗− → 0. Thus, in these limits, the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 O

ct
ob

er
 2

02
2 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220376

..........................................................

(a) (b)

(c) (d)

200

150

100

ca
rr

yi
ng

 c
ap

ac
ity

, N

50

0
0 0.2 0.4 0.6 0.8

φ*

200

150

100

ca
rr

yi
ng

 c
ap

ac
ity

, N

50

0
0 0.2 0.4 0.6 0.8

φ*

200

150

100

ca
rr

yi
ng

 c
ap

ac
ity

, N

50

0
0 0.2 0.4 0.6 0.8

φ*

200

150

100

ca
rr

yi
ng

 c
ap

ac
ity

, N

50

0.2 0.4 0.6 0.8

φ*

0.20

0.15

0.10

0.05

0 0

0.20

0.15

0.10

0.05

0

0.20

0.15

0.10

0.05

0.20

0.15

0.10

0.05

0

Hellinger distance QSS-exact Hellinger distance SSE-exact

Hellinger distance WKB-exact Hellinger distance LNA-exact

Figure 4. Hellinger distance between the exact and approximate probability distributions conditioned on non-extinction, as a
function of the carrying capacity, N, and the deterministic rate equation’s steady state, φ∗. Red lines represent the interfaces
between the QSS and the non-QSS regions,while the black lines are the interfaces between the transient unimodal and bimodal
extinction regions; note these lines demarcate the three different phases shown in figure 2f. For high carrying capacities, the
QSS approximation performs well at capturing the PDF conditioned on non-extinction (bimodal extinction region; see (a)). The
renormalized SSE is accurate in both fast and QSS bimodal extinction regions (see b). The WKB has a similar range of validity
as the QSS approximation (see c). The LNA is noticeably less accurate than the other three approximations except for low φ∗

(unimodal extinction region; see d). (Online version in colour.)

distribution has a single mode sitting at the deterministic model’s prediction of the mean stem
cell number.

(b) Renormalized system size expansion
For parameter sets (φ∗, N) in the bimodal and unimodal extinction regions (grey and black areas
in figure 2f ), the QSS approximation is unable to capture the PDF conditioned on non-extinction
(as it can be seen in figures 3b,c and 4a). In such cases, the condition λ1 � 1 does not hold, and
hence the second term in the r.h.s. of equation (2.9) can no longer be considered negligible (which
is needed to find the steady state of the CME conditioned on non-extinction iteratively, as we did
in the QSS case). Hence a different approximation is needed. In what follows, we derive a new
approximate PDF conditioned on non-extinction based on a high-order renormalized SSE of the
vBD’s master equation. In §3(i), we provide a general analytical recipe to obtain an expression for
the PDF conditioned on non-extinction, equations (3.20) and (3.21) being the main results. While
self-contained, this derivation is mathematically lengthy, and the reader can skip it should they
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be solely interested in its application to the vBD process. We point the reader to [40] for a detailed
derivation of the method. In §3(ii), we apply the renormalized SSE results to the vBD system, and
obtain an analytical expression for the PDF conditioned on non-extinction.

(i) Derivation of the renormalized SSE formula

The van Kampen SSE approximates a master equation by splitting the random variable that
describes the stem cell number, n, into deterministic and non-deterministic components, to then
obtain a master equation for the non-deterministic components (usually taken as a continuous
random variable). The resultant CME can be expanded in powers of N−1/2, truncated to the
desired order and solved, leading to a hierarchy of approximate solutions [41]. Whilst the bulk
of applications are centred in truncating the CME after the order N0 to obtain the LNA, which
considers the particle concentration equal to its deterministic value, other works have used
higher order truncation schemes to obtain corrections to the mean concentration [42,43]. The
deterministic component is commonly assumed to be given by the solution of the rate equations.
However, the disagreement between the deterministic and stochastic predictions (see figure 1b)
makes it sensible to introduce a correction term to the mean stem cell concentration in the original
ansatz. To do so, we follow the procedure from [40] that starts by considering the ansatz

n
N

= φ + N−1/2〈ε〉 + N−1/2ε̂, (3.10)

where the first term in the r.h.s. is the zero-order mean stem cell concentration obtained from
the deterministic rate equations, the second term is a correction to the mean concentration due
to fluctuations, and the third term in the r.h.s. represents fluctuations about the corrected mean
concentration. This renormalization of the mean concentration leads to a different SSE than the
conventional one by van Kampen, which we refer to as the renormalized SSE.

Next, we briefly describe how to compute the corrections to the mean concentration as a series
in powers of N−1/2:

〈ε〉 =
∞∑

j=0

N−j/2a(j)
1 . (3.11)

The expansion coefficients for the correction term to the mean concentration are calculated
iteratively as follows:

a(j)
n = − 1

nJ

j∑
k=1


k/2�∑
s=0

k−2(s−1)∑
p=1

Dk−p−2(s−1)
p,s

3(j−k)∑
m=0

a(j−k)
m Ip,k−p−2(s−1)

mn , (3.12)

where J is the Jacobian of the deterministic rate equations, and we assume a(0)
m = 0. To define

the operators Dq
p,s, we assume that the propensity functions for a birth or death event when the

system is in a state of n stem cells (an+1 and bn−1), expressed in terms of the concentrations, can
be expanded in power series of the inverse carrying capacity (N−1) as

a(Nφ, N) = N
∞∑

s=0

N−sg(s)
1 (φ) (3.13)

and

b(Nφ, N) = N
∞∑

s=0

N−sg(s)
2 (φ), (3.14)

where g(s)
r (φ) are the expansion coefficients. For example, g(s)

1 (φ) can be obtained by defining
z = N−1, transforming a(Nφ, N)/N → za(φ/z, 1/z), and Taylor-expanding around z = 0. Following
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we define

Dq
p,s =

2∑
r=1

(Sr)p ∂qg(s)
r (φ)

∂φq , (3.15)

where Sr is the net change in the number of stem cells when the rth reaction occurs, namely S1 = 1
and S2 = −1. The functions Iαβ

mn in equation (3.12) are defined as

Iαβ
mn = σβ−α+n−m

α!

min(n−α,m)∑
s=0

(
m
s

)
[β + α + 2s − (m + n) − 1]!!

[β + α + 2s − (m + n)]!(n − α − s)!
, (3.16)

for (α + β) − (m + n) even, and zero otherwise. We have introduced the notation (2k − 1)!! =
(2k)!/(2kk!) for the double factorial, and σ is the standard deviation of the concentration according
to the standard LNA [41]

∂σ 2

∂τ
= 2J σ 2 + D2

0,0. (3.17)

The variance of the fluctuations can also be computed as a series in powers of N−1/2

σ̂ 2 = σ 2 +
∞∑

j=1

N−j/2σ̂ 2
j , (3.18)

where the expansion coefficients are given by

σ̂ 2
j = 2

⎡
⎣a(j)

2 −
Bj,2({χ !a(χ)

1 }j−1
χ=1)

j!

⎤
⎦ , (3.19)

with Bj,k being the partial Bell polynomials, where {·} denotes the set of arguments [44]. For

example, B4,2({χ !a(χ)
1 }) has as arguments 1!a(1)

1 , 2!a(2)
1 , and 3!a(3)

1 .
To summarize, the SSE procedure involves expanding the master equation for the fluctuations

about the mean concentration (assuming the fluctuations are a continuous random variable) in
powers of N−1/2, and truncating after O(N0) to obtain a Fokker–Planck equation that yields
the LNA, thus describing Gaussian fluctuations around the mean concentration. The higher-
order approximate solutions can then be expressed in terms of the first-order approximation.
However, this approach often leads to non-physically meaningful distributions for truncations of
the SSE beyond the LNA level of approximation, e.g. yielding negative probabilities or oscillatory
behaviour. Such effects can be greatly reduced by introducing a discrete formulation of the SSE’s
approximate solutions [40].

The discrete formulation replaces the continuous-variable LNA approximate solution with the
discrete approximation

P0(n, τ ) = 1
2

e−(x2/2Σ2)
√

2πΣ

[
erf

(
ix + πΣ2

√
2Σ

)
− erf

(
ix − πΣ2

√
2Σ

)]
, (3.20)

where erf is the error function, x = n − Nφ − N1/2〈ε〉 is the stem cell number centred about its
(corrected) deterministic value, and Σ2 = Nσ̂ 2 its variance. Note that the time dependence is
implicit in the temporal change of the mean concentration and the variance of concentration
fluctuations, φ(τ ) and σ (τ ), respectively. Equation (3.20) is the discrete version of a Gaussian in the
sense that every moment of the distribution coincides with their corresponding of a continuous-
variable Gaussian. Next, the expansion of the SSE approximate solution up to any order can be
expressed in terms of P0(n, τ ) and its derivatives

P(n, τ ) = P0(n, τ ) +
∞∑

j=1

N−j/2
3j∑

m=1

â(j)
m (−N1/2∂n)mP0(n, τ ), (3.21)
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where the new expansion coefficients â(j)
m are related to the coefficients found earlier (a(j)

m in
equation (3.12)) by the relation

â(j)
m =

j∑
k=0

3k∑
n=0

a(k)
n k(j−k)

m−n , (3.22)

with

k(n)
j = 1

n!

�j/2�∑
m=0

(−1)j+m
n−m∑

k=j−2m

(
n
k

)
× Bk,j−2m({χ !a(χ)

1 }k−j+2m+1
χ=1 )

× Bn−k,m

({
χ !
2

σ̂ 2
(χ)

}n−k−m+1

χ=1

)
. (3.23)

To calculate the derivatives of P0(n, τ ), it is possible to prove by induction the following formula:

∂mP0

∂ym = − (m − 1)
Σ2

∂m−2P0

∂ym−2 − y
Σ2

∂m−1P0

∂ym−1 + (−1)
m/2�+1F(y, m)πm−2 e−(π2Σ2/2)

Σ2 , (3.24)

where 
·� denotes the ceiling function, and F(y, m) is sin(πy) for m odd and cos(πy) for m even.
Calculation of the correction terms to the mean concentration and the variance of fluctuations,

〈ε〉 and σ̂ 2, respectively, by truncation of equations (3.11) and (3.18) to any desired order, followed
by substitution into equation (3.21) and truncation, provides a means to systematically obtain
approximate solutions to the CME. Note that the order of the approximate solution is determined
by order of truncation of 〈ε〉 and σ̂ 2. For example, to obtain an approximation of order (s + 1)/2
with s = 0, 1, . . ., both 〈ε〉 and σ̂ 2 are expanded up to that order (assuming that at least one of the
coefficients is non-zero) using equations (3.11) and (3.18), and then the approximate distribution
is obtained by truncating equation (3.21) after the order (s + 1)/2.

(ii) The expansion of the vBD master equation

We now employ the renormalized discrete formulation of the SSE to approximate the probability
distributions conditioned on non-extinction in the bimodal extinction region, i.e. the grey zone in
figure 2f. To do so, we observe that the absorbing boundary, which is the factor that renders the
deterministic rate equations inaccurate for calculating the evolution of the mean stem cell number,
is absent when conditioning on non-extinction. In effect, the rate equations capture meaningful
information about the mean stem cell number of the surviving stochastic trajectories. Thus, to
approximate the steady states of equation (2.9) we can apply the renormalized SSE described
in the previous subsection, under stationary conditions, to the non-conditional master equation
(2.5), which includes the extinction state. We then recover the PDF conditioned on non-extinction
by removing the extinction state and multiplying the resulting distribution by a normalization
constant 1/(1 − P(0)), where P(0) is the probability of being in the extinction state obtained by the
SSE. In particular, to capture non-Gaussian fluctuations, we truncate the renormalized SSE after
terms of O(N−1).

The expansion coefficients for the vBD propensities (g(s)
r in equation (3.14)) are given by

g(0)
1 (φ) = φ(1 − φ)

(1 − φ∗)
; g(0)

2 (φ) = φ, (3.25)

and g(s)
r (φ) = 0 ∀ s ≥ 1, which allows us to calculate the values of Dq

p,s.
From the standard LNA, we obtain the order N0 approximation for the first two moments of

the distributions
∂φ

∂τ
= (φ∗ − φ)φ

1 − φ∗ (3.26)

and
∂σ 2

∂τ
= 1

1 − φ∗ [2(φ∗ − 2φ)σ 2 + φ(2 − φ − φ∗)], (3.27)
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where the first line is the rate equation and the second one is equation (3.17) in the vBD case. These
equations predict the first two moments to be φ = φ∗ and σ 2 = 1 − φ∗ under stationary conditions.
The Jacobian in stationary conditions reads J = −φ∗/(1 − φ∗). We can now calculate the first few

expansion coefficients a(j)
n from equation (3.12):

a(1)
1 = φ∗ − 1,

a(1)
3 = (1 − φ∗)2

6φ∗ [(2 − 3φ∗)(1 − φ∗) − 2],

a(2)
2 = 1

4φ∗ [a(1)
1 (3φ∗ − 4) − 12a(1)

3 − (1 − φ∗)],

a(2)
4 = (1 − φ∗)

8φ∗

[
a(1)

3
(5φ∗ − 8)

1 − φ∗ − a(1)
1 φ∗ − φ∗

6
− 1

]

and a(2)
6 = 1

2
(a(1)

3 )2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.28)

whilst a(j)
n = 0 for n + j odd. Next, we expand the corrections to the mean concentration and

fluctuation’s variance (〈ε〉 and σ̂ 2 in equations (3.11) and (3.18)) up to order N−1: 〈ε〉 ≈ N−1/2a(1)
1 +

N−1a(2)
1 , and σ̂ 2 ≈ σ 2 + N−1/2σ̂ 2

1 + N−1σ̂ 2
2 . Equation (3.19) yields σ̂ 2

1 = 0 and σ̂ 2
2 = 2[a(2)

2 − (a(1)
1 )2].

Thus, we arrive at

〈ε〉 ≈ N−1/2a(1)
1

and σ̂ 2 ≈ 2N−1
[
a(2)

2 − (a(1)
1 )2

]
,

⎫⎬
⎭ (3.29)

which, upon substitution on equation (3.20) leads to our order N0 (LNA) approximation:

f0(n) = P0(n)
1 − P0(0)

. (3.30)

Note that, since we have imposed the stationary conditions φ = φ∗ and σ = 1 − φ∗, there is no
longer a time dependence in P0. To calculate the higher order approximate solutions we make use
of equation (3.21). The expansion coefficients, corrected by renormalization, are given by equation
(3.22). The first few coefficients are

â(1)
1 = â(1)

2 = â(2)
1 = â(2)

2 = â(2)
3 = â(2)

5 = 0,

â(1)
3 = (1 − φ∗)2

6φ∗ [(2 − 3φ∗)(1 − φ∗) − 2],

â(2)
4 = (1 − φ∗)2

2φ∗

(
3φ∗ − 5

4

)
− 1 − φ∗

48
− φ∗ + (2 − φ∗)(8 − 5φ∗)

48φ∗(1 − φ∗)

and â(2)
6 = 1

72
(1 − φ∗)2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.31)

Remarkably, there are fewer non-zero renormalized coefficients than regular ones; hence, the
analytical expressions for the SSE distributions corrected by renormalization adopt a simpler
form.

Next, equation (3.21) yields the following expression for the order N−1/2 approximate solution

P1(n) = P0(n) − N−1/2

{
â(1)

1 N1/2 ∂P0

∂n
+ â(1)

3 N3/2 ∂3P0

∂n3

}

and f1(n) = P1(n)
1 − P1(0)

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.32)
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Finally, the order N−1 approximate solution is

P2(n) = P1(n) + N−1

{
â2

4N2 ∂4P0

∂n4 + â2
6N3 ∂6P0

∂n6

}

and f2(n) = P2(n)
1 − P2(0)

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.33)

The renormalized SSE accurately describes the probability conditioned on non-extinction for
φ∗ in the QSS region (figure 3a), as well as in the fast bimodal extinction region (figure 3b),
where the QSS approximation breaks down, and accurately captures the distribution skewness.
Moreover, this result is robust to changes in the carrying capacity (figure 4b). However, the
accuracy of the renormalized SSE decreases dramatically for very low φ∗ values, as can be
seen in figure 3c. For non-linear birth-death processes featuring non-Gaussian fluctuations, the
renormalized SSE consistently performs better than the LNA, which is unable to capture the
distribution skewness under stationary conditions.

(iii) Approximation for lowφ∗ values
The phases with extinction through a bimodal and unimodal transient are separated by a critical
curve, which also accurately demarcates the regions of parameter space where the renormalized
SSE expansion is accurate and where it is not (see figure 4b). We attribute the inaccuracy of the
SSE in the low φ∗ region to the fact that the PDF conditioned on non-extinction no longer features
a mode around Nφ∗, which is the basis of the SSE approximations.

In the unimodal extinction region—black region in figure 2f —the time-dependent probability
distribution features a mode at n = 0 as extinction is approached. This suggests that we can
approximate the cell number concentration by the steady-state of the deterministic equations,
φ∗, and the cell number concentration fluctuations (conditioned on non-extinction) by means of
the LNA, equation (3.27), yielding σ 2 = 1 − φ∗ under stationary conditions. Note that the latter
conditions naturally arise from the conditioning of the distribution on non-extinction. Given
the mode at zero, a Gaussian is clearly not a good approximation and hence instead we try a
half-Gaussian approximation with the aforementioned first two moments

f (n) =
√

2
N(1 − φ∗)π

e−n2/[2N(1−φ∗)]. (3.34)

The half-Gaussian provides an excellent approximation to the PDF conditioned on non-extinction
in the low φ∗ unimodal region (figure 3c). However, as expected, this approximation breaks down
for higher φ∗ values, where the non-trivial mode is present (figure 3b,d).

(c) Wentzel–Kramers–Brillouin approximation
An alternative way to obtain a QSS approximation is the popular WKB approximation [45–47].
The WKB approximation often leads to simpler expressions for a QSS than equation (3.5).
A detailed derivation of the WKB approach to solve master equations in QSS conditions can be
found in [45], although we repeat the main ideas in what follows.

The WKB approximation starts by transforming the vBD’s PDF of observing n cells, P(n) to
a continuous PDF for the cell concentration, φ = n/N, assuming N sufficiently large. The vBD
master equation reads

∂P
∂τ

= anP(n − 1, τ ) + bnP(n + 1, τ ) − (an+1 + bn−1)P(n, τ ). (3.35)

Defining φ = n/N, we can transform the propensities to Ω+(φ) = an+1/N and Ω−(φ) = bn−1/N,
arriving at

Ω+(φ) = φ(1 − φ)
1 − φ∗ ; Ω−(φ) = φ. (3.36)
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We can now write the master equation for the PDF of the continuous variable φ, Π (φ, τ ) =
P(Nφ, τ ). It follows that P(n ± 1, τ ) = P(N(φ ± 1/N), τ ) = Π (φ ± 1/N, τ ). Multiplying the CME by
1/N and applying the quasi-stationary condition ∂P/∂τ = 0 yields

Ω+
(

φ − 1
N

)
Π

(
φ − 1

N

)
+ Ω−

(
φ + 1

N

)
Π

(
φ + 1

N

)
− (Ω−(φ) + Ω+(φ))Π (φ) = 0. (3.37)

Next, the WKB approximation amounts to assuming a solution of the form,

Π (φ) = K(φ) e−NS(φ)
[

1 + O
(

1
N

)]
, (3.38)

where S(φ) and K(φ) are of the order of unity. Substituting in the quasi-stationary master equation,
expanding with respect to N−1, and collecting the leading order terms yields

Ω+(φ) eS′(φ)−1 + Ω−(φ) e−S′(φ)−1 = 0, (3.39)

where S′(φ) = dS(φ)/dφ. From here, we note that the above equation corresponds to a stationary
Hamilton–Jacobi equation (H(φ, S′(φ)) = 0), for an action S with Hamiltonian

H(φ, p) = Ω+(φ) ep−1 + Ω−(φ) e−p−1, (3.40)

with p = S′(φ). The corresponding Hamilton equations are

φ̇ = ∂H
∂p

= Ω+(φ) ep + Ω−(φ) e−p

and ṗ = −∂H
∂φ

= (1 − ep)
∂Ω+(φ)

∂φ
+ (1 − e−p)

∂Ω−(φ)
∂φ

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.41)

Since we are interested in the zero-energy solution (H = 0), with initial conditions φ(t0) = φ∗, the
action along a fluctuation trajectory will be given by

S =
∫ t

t0

pφ̇ dt′. (3.42)

Hence, we can find S by solving Hamilton’s equations and integrating pφ̇. From Hamilton’s
equations (3.41), we note that there is a trivial solution with p = 0. This solution leads to the
deterministic rate equations and hence is of no interest to us. The other solution comes from
setting H = 0 in the Hamiltonian expression (3.40), solving for p, and substituting in Hamilton’s
equations, to yield

p = log
(

Ω−(φ)
Ω+(φ)

)
; φ̇ = Ω−(φ) − Ω+(φ). (3.43)

We are now ready to calculate the action S(φ). Substituting in equation (3.42) and integrating, we
obtain

S(φ) − S(φ∗) = (1 − φ) log
(

1 − φ

1 − φ∗

)
+ φ − φ∗. (3.44)

It is possible to prove, using the next order contributions to the WKB expansion, that the prefactor
K(φ) is

K(φ) = A(Ω+(φ)Ω−(φ))−1/2, (3.45)

where A is later determined by the normalization condition [45]. Finally, the WKB expansion for
the vBD system yields the probability distribution

Π (φ) =
√

N
2π (1 − φ)

φ∗

φ
eN(φ∗−φ)

(
1 − φ

1 − φ∗

)N(φ−1)
. (3.46)

While the WKB is a good approximation for large values of φ∗ (figure 3a), it fails for small and
intermediate values of φ∗ (3b,c). In general, the range of validity of the WKB approximation
coincides with that of the QSS approximation (compare figure 4a,c). An advantage of the
WKB approximation stems from its simple analytical form. However, the QSS approximation
is generally more accurate than the WKB approximation (see figure 3d).
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4. Calculation of the extinction time
In the previous section, we have shown different approximations for the leading eigenvector of
the vBD model’s master equation solution, equation (2.6). The time-dependent component of
the solution is determined by the leading eigenvalue, λ1, which is the inverse of the expected
extinction time. The most direct method for estimating this eigenvalue would be to calculate
the probability conditioned on non-extinction, f (n), and making use of equation (2.7) to yield
λ1 = b0f (1). However, the absorbing boundary at n = 0 leads to an inaccurate estimation of the
probability of having n = 1 stem cells (using all approximation methods considered) and thus
we cannot use this method to estimate the extinction time (see figure 5a). Hence, we present
an alternative calculation for the expected extinction time that is based on averaging the mean
extinction time starting from any state, and makes use of Kolmogorov’s backward equation. This
approach has been effectively used for other similar problems (see, for example, [48,49]). Instead
of relying solely on the estimation of f (1), this method involves averaging among all the f (n)
values, which significantly improves the accuracy with respect to direct application of λ1 = b0f (1).

Given an estimate for the probability distribution of the surviving trajectories, f (n), the
expected extinction time T is simply the average among initial conditions of the mean first passage
times to hit the extinction state

T =
N∑

n=1

τ∗
n f (n), (4.1)

where τ∗
n is the mean first passage time to hit the extinction state, starting from the state with n

cells. Hence, to estimate T we need to find the mean first passage times τ∗
n . To do so, we make use

of the discrete-time Kolmogorov’s backward equation

Q0,n(τ + �τ ) = an+1�τQ0,n+1(τ ) + b0,n−1�τQ0,n−1(τ ) + (1 − an+1�τ − bn−1�τ )Q0,n(τ ), (4.2)

where Q0,n(τ ) is the probability of being extinct at time τ , given that initially there were n cells. The
backward equation just states that the total probability of becoming extinct from state n at time
τ + �τ equals the probability of jumping to the state with n + 1 cells and then going extinct, plus
the probability of jumping to state with n − 1 cells and then going extinct, plus the probability of
staying in the same state and going extinct. The probability density of becoming extinct at time
τ + �τ is Q0,n(τ + �τ ) − Q0,n(τ ). Hence, the mean first passage time to extinction, starting from
a state of n cells, reads

τ∗
n =

∞∑
k=0

k�τ [Q0,n(k�τ ) − Q0,n((k − 1)�τ )]. (4.3)

Here, we assume Q0,n(−�τ ) = 0. To simplify the notation, let us denote with Qn(τ ) the
cumulative probability of becoming extinct at time τ given that the system started in state
with n cells. Substituting τ + �τ → τ in equation (4.2), we have Qn(τ ) = an+1�τQn+1(τ −
�τ ) + bn−1�τQn−1(τ − �τ ) + (1 − �τ (an+1 + bn−1))Qn(τ − �τ ). Subtracting both expressions,
multiplying by τ = k�τ and integrating over time (which in this case amounts to sum over all
k), leads to

∞∑
k=0

k�τ [Qn((k + 1)�τ ) − Qn(k�τ )] =
∞∑

k=0

an+1k(�τ )2[Qn+1(τ ) − Qn+1(τ − �τ )]

+ bn−1k(�τ )2[Qn−1(τ ) − Qn−1(τ − �τ )]

+ k(�τ )(1 − �τ (an+1 + bn−1))[Qn(τ ) − Qn(τ − �τ )]. (4.4)

We can rewrite the l.h.s. as
∑∞

k=0(k − 1)�τ [Qn(k�τ ) − Qn((k − 1)�τ )] = τn − �τ , where we have
used that Qn(t) = 0 ∀τ < 0, and the normalization condition of the probability density. The r.h.s.
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Figure 5. Inverse of the expected extinction time, λ1, as a function of φ∗ for a fixed carrying capacity of N = 100. (a) λ1

estimated as b0f (1), following equation (2.7), with f (1) extracted from the PDF approximations shown in figure 3. (b) λ1

calculated from equation (4.1) and equation (4.8), using different approximations of the probability distribution conditioned
on non-extinction. The black dashed line represents the exact λ1 value, numerically obtained from the leading eigenvalue of
the master operator. The λ1 estimation via equation (4.1) with f (n) calculated numerically (labelled ‘Theo’, orange line) is in
good agreement with the exact λ1. For very lowφ∗, equation (4.1) with the half Gaussian approximation is the best fit, while
for higher φ∗ the SSE performs better. For high φ∗ all approximations except the half Gaussian lead to good estimates of λ1.
The application of equation (4.1) outperforms the direct approximation ofλ1 using equation (2.7) (contrast (a) and (b)).

of the expression is an+1�ττ∗
n+1 + bn−1�ττ∗

n−1 + (1 − �τ (an+1 + bn−1))τ∗
n . Thus, we obtain

an+1τ
∗
n+1 + bn−1τ

∗
n−1 − (an+1 + bn−1)τ∗

n + 1 = 0. (4.5)

The first boundary condition for this recurrence relation is τ∗
0 = 0, i.e. the mean first passage time

to extinction starting from extinction is zero. The second condition is τ∗
N = τ∗

N−1 + 1/bN−1, i.e. the
mean first passage time to extinction from N cells is the corresponding one from N − 1 cells plus
the meantime in which the system hops from N cells to N − 1 cells.

To solve for τ∗
n we define vn = τ∗

n − τ∗
n−1. Thus, the recurrence relation becomes

an+1vn+1 − bn−1vn + 1 = 0

and vN = 1
bN−1

,

⎫⎪⎬
⎪⎭ (4.6)

which can be solved iteratively (applying the corresponding boundary condition), to yield

vn−k =
k+1∑
j=1

1
bN−j

k∑
i=j

aN−i+1

bN−i−1
. (4.7)

Finally, solving for τ∗
n yields

τ∗
n =

N−1∑
k=N−n

k+1∑
j=1

1
bN−j

k∏
i=j

aN−i+1

bN−i−1
. (4.8)

Naturally, the accuracy of the expected extinction time T (and its inverse, λ1) is sensitive to the
accuracy of the approximate PDF conditioned on non-extinction, f (n). When calculating λ1 from
equations (4.1) and (4.8) (with f (n) estimated numerically), the result is in very good agreement
with λ1 numerically calculated from the master operator’s eigenvalues (compare the orange
and black dashed lines in figure 5b). The approximate λ1 calculated using equation (4.8), where
f (n) is obtained using one of the approximations for the probability distribution conditioned
on non-extinction (figure 5b), is much closer to its real value than λ1 calculated via equation
(4.1) (figure 5a). For high φ∗, all f (n) approximations lead to accurate λ1 estimations, with the
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exception of the half-Gaussian. On the other hand, the half-Gaussian approximation performs
well for very low φ∗, when every other approximation of f (n) yields inaccurate λ1 estimations. In
the intermediate region, the renormalized SSE turns out to be the best choice.

Extinction times vary significantly between parameter regimes, which we can think of as
corresponding to different stem cell niches. Assuming that the system is in QSS, the average
number of stem cells is roughly given by 〈n〉 ≈ Nφ∗. Hence, given the average number of stem
cells in a niche, we can estimate the effective carrying capacity for different φ∗ values from the QSS
parameter regime. For example, for adult human crypt stem cell niches harbouring 4–6 cells with
division period of 24–30 h [50,51], the extinction times fall between 13 days and 50 years when
comparing the results for different φ∗ values spanning all the QSS region. A predicted extinction
time on this scale could point to the need of additional regulatory mechanisms preventing
extinction of a tissue’s stem cell population within the lifetime of an organism. For slow-cycling
stem cells such as haematopoietic stem cells, the lowest estimates yield the presence of 104 cells
dividing once every 40 weeks [52]. More recent estimates point to the number of hematopoietic
stem cells in the human body falling within 5 × 104 − 2 × 105 [53]. It is unclear how these stem
cells are distributed in individual niches, but even for niches hosting 100 stem cells, the extinction
times fall within 1011–1013 years, much higher than the human lifetime. For niches hosting a larger
number of stem cells, the extinction time is even higher.

5. Discussion and conclusion
We have introduced the vBD, a variation of the birth-death process that incorporates crowding
effects due to the finite size of stem cell niches. For cell division to occur there needs to be free
space in the niche to accommodate the newborn cell—hence the effective proliferation rate is
higher (lower) when the niche is less (more) populated. In effect, the expected stem cell number
in the vBD model is independent of the initial condition, in contrast to the CBD case, in which the
expected number of stem cells is constant in time. Regulation through volume exclusion could
also affect clone size distributions and their scaling with average clone size. In contrast to the CBD
process, in which the size evolution of different clones is independent, in the vBD all clones are
coupled through the empty space species. When one clone grows in size, the probability of other
clones growing is decreased, thus affecting the clone-size distribution. Hence, it might be possible
to detect evidence of volume exclusion effects from snapshots of clone size distributions, which
are commonly measured experimentally [54–57]. We will explore this in follow-up research.

At the stochastic level, the predictions of the vBD master equation differ significantly from
those of its deterministic counterpart. While the deterministic rate equations feature a stable
steady state, φ∗, to which the system converges logistically, the master equation’s solution predicts
the vBD model converging to extinction for all parameter sets. However, for φ∗ sufficiently large,
a long-lived QSS appears, and convergence to extinction is very slow. Hence, for high φ∗, a single
stochastic trajectory representing a real system might fluctuate around the QSS’s non-trivial mode
for all its lifetime.

We have shown the vBD model to have three phases with different behaviours that, to the
best of our knowledge, have not been analysed before: fast extinction dynamics through a
unimodal transient, fast extinction dynamics through a bimodal transient and slow extinction
dynamics with a QSS. Transient bimodality rarely occurs in chemical reaction networks, but has
been reported in recent works [58,59]. For the QSS region, we have shown two independent
approximate solutions to the master equation, the QSS and WKB approximations. The QSS
provides a more accurate approximation, whilst the WKB adopts a simpler mathematical
expression. Moreover, the QSS approximation allowed us to prove that the position of the non-
trivial mode generally differs from the deterministic prediction. For the bimodal extinction region,
we have derived an approximate time-dependent solution to the master equation by making use
of a renormalized SSE, which is particularly useful for solving master equations of non-linear
birth-death processes, but has not been widely applied. Remarkably, the expression obtained by
the renormalized SSE is simpler than the one from the regular SSE.
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The vBD model is mathematically similar to susceptible-infected-susceptible (SIS) models in
epidemiology [60–63]. Most of the stochastic SIS models studies consider a very large carrying
capacity, or let it tend to infinity. Here, we have instead focused on solving the master equation
for low carrying capacities, motivated by the application to stem cell population dynamics in
niches that can have a carrying capacity as low as a few tens of cells. The approximate solutions
to the master equations we present here, thus, can shed light into the behaviour of SIS-like systems
when the effect of having a finite carrying capacity becomes evident. In particular, the solutions of
the vBD master equation can be interpreted as the time-dependent PDF of the number of infected
individuals, and our approximation of the expected extinction time as the population’s expected
time to recovery. Another similar model can be found when studying the role of positive feedback
in cluster formation of signalling molecules [64]. In this case, the transition from quasi-steady to
extinction states is interpreted as a switch from clustered to non-clustered states. A difference
between such a model and the vBD is that transitions to non-clustered to clustered states are
allowed, whilst in the vBD model it is not possible to exit the extinction state.

Our study proposes and describes a minimal model for stem cell dynamics with regulation
through competition for space. In this context, the system parameters should be taken as effective
parameters encompassing many different features. Let us conclude by discussing aspects of
biological realism that could be represented explicitly in future extensions of our model. The
vBD model assumes Markovian dynamics, which implies exponentially distributed waiting
times between consecutive cell divisions. There is increasing evidence showing that the cell-
cycle times are not exponentially distributed [65–69]. The inclusion of realistic cell-cycle time
distributions in the vBD model will require further research. Spatially, our model considers cells
distributed on a grid, assuming that the cell shapes remain unaltered. This hypothesis ignores the
mechanical plasticity of cells, their mechanical response to pressure in different environments,
and the irregular geometry of the stem cell niches [16,70]. Moreover, here we have modelled cell
populations as well-mixed systems. This well-mixing assumption may be inappropriate when a
niche is highly occupied. Since our aim is to study the hallmarks of regulation through volume
exclusion, we have also neglected other plausible regulatory mechanisms that might be acting in
parallel, such as competition for other resources [10,71,72] or cell–cell communication pathways
between more differentiated (for example, transit amplifying) cells and stem cells [6,73]. In open
niches these more differentiated cells might also compete with stem cells for space [10,72,74,75].
The role of multiple cell types in competition for space and the interaction between different
plausible regulatory mechanisms are interesting avenues for future research.
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