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ABSTRACT Inspired by the development of the IT industry and the need for a continuous monitoring method, Structural Health Monitoring 

(SHM) systems have been installed on critical infrastructure like bridges in recent years. However, data from major infrastructure is often 

untouched apart from monitoring purposes – partly because most data owners lack the computational power for analysis. The high volume of 

data collected from the Forth Road Bridge’s SHM system has provided a unique opportunity to develop damage detection and response 

prediction models for structure integrity assessment purposes. The goal of this paper is to apply statistic models and some machine learning 

methods to this SHM data, aiming to develop prediction models of bridge structural responses.  Principal component analysis (PCA) reduced 

the dimensions of the dataset to save computational power for further analysis. Autoregressive Integrated Moving Average (ARIMA) models 

are used to predict traffic volumes. Comparisons between two different machine learning methods, Random Forest and traditional Artificial 

Neural Networks for building prediction models of strain data have been made. It is discovered that the Random Forest technique has higher 

accuracy in this scenario.  Based on the current research progress, future work is also proposed. 

 

1. Introduction 

Transport infrastructure like bridges play an important role in 

modern society. Most bridges were designed to have a life span 

of 120 years. However, the engineering community has 

discovered that some of these bridges will not live up to the 

designed life span and are approaching the premature end of 

their operational life. In the US, it was found that 9.1% bridges 

which carried 188 million trips per day were structurally 

deficient in 2016. (ASCE, 2017) Structurally deficient means 

these bridges require significant maintenance, rehabilitation or 

replacement. This can be caused by: 

• Discrepancies between the designed and constructed 

structures (Lopez & Love, 2012) 

• An unanticipated rate of material deterioration. The 

material deficiency can be caused by manufacturing  

errors provided that bridge components are 

prefabricated. For example, lower grade materials are 

used during manufacture. (Wardhana & Hadipriono, 

2003) 

• An Unexpected increase in traffic volume.  

1.1. Structural Health Monitoring 

Assessments and monitoring on existing bridges are required 

for maintenance purposes. Conventional assessment 

techniques on living bridges rely on visual inspections, which 

could be inaccurate due to the subjectivity of the inspectors, 

inaccessibility of the structure and irregular inspections. 

(Phares, et al., 2001) Therefore, a continuous monitoring 

technique for damage detection purposes is required. Inspired 

by the disadvantages of conventional evaluation techniques 

and developments in the informatics industry, the Structural 

Health Monitoring (SHM) method has drawn attention in 

recent years. SHM can be described as a combination of 

multiple systems including sensory, data manipulating, 

damage detection and modelling to acquire information about 

the integrity of in-service structures continuously. (Bakht & 

Mufti, 2015)  

There are two approaches for data-interpretation algorithms for 

SHM systems data: model-based (inverse strategy) or data-

driven (pattern recognition). (Worden & Dulieu-Barton, 2004) 

In the model-based method, data collected from SHM systems 

are used to develop detailed numerical models (e.g. finite 

element models). By comparing the predicted responses and 

measured ones, anomalies can be discovered. However, for 

bridges, these kinds of models have proved difficult and 

expensive. (Cavadas, et al., 2013) By contrast, in the data-

driven method, no numerical models of the structures 
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themselves are required. Anomalous behaviours are detected 

through patterns in the data. Thus, data-driven methods are 

faster and more efficient than model-based methods. Pattern 

recognition becomes critical in this method. 

Farrar and Worde (2006) presented the use of statistical pattern 

recognition for analysing the data collected by SHM systems. 

This can be summarised in four steps: 

• Operational evaluation - justification of employing 

SHM techniques 

• Data pre-processing - preparation for data analysis 

• Feature extraction - perform data analysis to extract 

relevant information 

• Statistical model development - apply algorithms to 

determine the state of the structure 

1.2. Statistical Pattern Recognition 

To extend beyond the application of monitoring, patterns and 

trends can be detected by applying statistical pattern 

recognition algorithms. There are a few commonly used 

methods for anomalies and trend detections in time-series 

analyses: 

Principal component analysis (PCA) – can be used to extract 

critical information from the data set and present it in a set of 

uncorrelated variables named principal components. (Abdi & 

Williams, 2010) Hence, by using a small number of principal 

components to represent the original data set, further analysis 

time and computational power can be saved. 

Autoregressive integrated moving average (ARIMA) model – 

can be used in time series data analysis for anomaly detection, 

notably in seasonal varying responses. 

Artificial Neural Networks (ANNs) – machine learning 

algorithms can be used to generate a predictive model based on 

exploring the correlations of existing data, e.g. images and 

time-series data. 

Autoregressive moving average (ARMA) models were used to 

perform time-series classifications for a four-storey frame 

structure with experimental data. (Carden & Brownjohn, 2008) 

Nine test configurations were investigated. The results showed 

the ARMA classifier can identify structural changes in all 

configurations.  

Cavadas, et al. (2013) applied data-driven methods on moving-

load data to identify anomalies and their positions on a simple 

frame subjected to a point-load, including the use of Principal 

Component Analysis (PCA) and Robust regression analysis 

(RRA). The results showed successful early discoveries on 

changes of structural responses and anomaly positions using 

PCA. RRA reduced the detection time compared with PCA but 

didn't provide damage positions. 

Omenzetter & Brownjohn (2006) analysed static strain data 

recorded by the SHM system installed on the Singapore-

Malaysia Second Link during construction and in-service 

period. An Autoregressive Integrated Moving Average 

(ARIMA) model was used in the analysis. The model was able 

to detect significant changes during construction and post-

construction periods, matched with corresponding events such 

as cable tensioning and maintenance. This shows the 

effectiveness of ARIMA models on the detecting structural 

changes. 

Chalouhi, et al. (2017) applied machine learning techniques on 

data collected from the SHM system installed on a railway 

bridge located in Northern Italy. The research employed 

Artificial Neural Networks (ANNs) training and Gaussian 

processes for pattern recognition and compared predicted deck 

accelerations with measured ones at each train passage. Any 

difference between predicted and measured responses can be 

treated as an anomaly. However, in their research, only deck 

accelerations were discussed under given environmental and 

operational conditions. The relation between environmental 

conditions and bridge responses was not investigated. 

Furthermore, for a railway bridge, passing train information is 

relatively easy to acquire than a road bridge where traffic can 

be hard to anticipate. 

Sohn, et al. (2002) applied a combination of time-series 

analyses, ANNs and statistical inference techniques for 

damage classification of an 8-DOF experimental system 

subject to virtually changing environmental and operational 

conditions. Their results indicated that the proposed methods 

enabled damage detection when the system is under a range of 

normal environmental and operational conditions. 

Despite the fact that some researchers have successfully used 

ANNs for damage detection of SHM data, improvements can 

be made. Firstly, many researches used experimental 

specimens which cannot represent the complex operational 

conditions for a living structure. Secondly, the volume of data 

the researchers collected was insufficient to reliably train an 

ANN model. Therefore, some researchers only used ANNs for 

data normalisation purposes. (Sohn, et al., 2002) Furthermore, 

the potential of ANNs in forecasting is enormous compared 

with other statistical forecasting models. (Zhang, et al., 1998) 

ANNs can have non-linear input data with no restrictions on 

their value or distribution, matching the behaviours of real-

world systems. In theory, with some tweaking to the 

parameters and optimisations, this technique can be applied to 

different SHM systems. However, a large amount of data is 

required to accurately train an ANN model. This often 

increases the cost of monitoring the structure since the 

accuracy of the model varies with the size and range of the 

captured data. Furthermore, the underlying mechanisms of a 

data-driven, non-linear black-box model is difficult to interpret, 

increasing the difficulty of examining the model to improve 

our understanding of the theory of a structure. 

1.3. Forth Road Bridge 

In this paper, several statistical analyses were used to explore 

patterns and trends in the data collected by the SHM system 

installed on the Forth Road Bridge (FRB). The Forth Road 

Bridge, constructed and opened during the 1960s, is a 2.5 km 
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long suspension bridge located in South Queensferry, Scotland. 

(Figure 1) The main tower is 156 m above the sea level, with a 

steel stiffening truss suspended deck with a width of 33 m. 

(Figure 2) The main span and side spans have a length of 1006 

m and 408m respectively. Expansion joints were used and 

installed under the main towers. 

The truss end links of the bridge were discovered to be 

significantly overstressed during certain combinations of load 

during a full assessment of the bridge by the Forth Estuary 

Transport Authority (FETA). Also, FETA suggested the full 

replacement of these truss end links in 2011. (SPICe, 2016) 

Following a truss end link failure, the bridge was closed in 

2015 for major maintenance. The SHM system was installed 

during that maintenance. 

Around 20 GB of data is produced every month from 180 

sensors on the Forth Road Bridge. Hence, the high-

performance computing facilities (Eddie 3 and Terra 

Correlator) from the University of Edinburgh are required for 

analysis purpose. The data used in this paper covers from 

December 2015 to September 2017. 

Figure 1 the Forth Road Bridge showing viaducts, main 

towers, piers, main cables, hangers, suspended span and 

roadway (SPICe, 2016) 

 

Figure 2 Forth Road Bridge: Suspended deck section 

(from Amey Consulting) 

 

The layout of this paper: The “Methodology” section will 

discuss the background of the statistical models and machine 

learning methods used for the analysis of the SHM data. The 

“Results & Discussion” section will present the analysis results 

and discuss the accuracy of the prediction models. The 

“Conclusions” section will summarise the paper and suggest 

the future work. 

2. Methodology 

2.1. Principal Component Analysis (PCA) 

PCA maps high dimensional data sets to lower dimensions 

with minimal loss of information.  

Firstly, mean normalization is calculated: 

𝑥𝑗
𝑖 = 𝑥𝑗 − 𝜇𝑗                                                                                              ( 1) 

Where 𝑥𝑗
𝑖 is the value of 𝑗 with index 𝑖, μ𝑗 is the mean of 𝑗 

The covariance matrix is computed to reduce the data from n-

dimension 𝑥(𝑖) ∈ ℝ𝑛 to k-dimension 𝑧(𝑖) ∈ ℝ𝑘, 

𝛴 =
1

𝑚
∑ (𝑥(𝑖))(𝑥𝑖)𝑇𝑛
𝑖=1                                                                             ( 2) 

Where Σ is a 𝑛 × 𝑛 covariance matrix and 𝑚 is the number of 

data points. 

The eigenvectors of the covariance matrix are calculated using 

a singular-value decomposition function (𝑠𝑣𝑑) , giving 

covariance 𝑈 size 𝑛 × 𝑛. 

To reduce the size of the matrix, 𝑘 columns are extracted from 

matrix 𝑈, giving a 𝑈𝑟𝑒𝑑𝑢𝑐𝑒𝑑  matrix with size 𝑛 × 𝑘. 

𝑧(𝑖) = 𝑈𝑟𝑒𝑑𝑢𝑐𝑒𝑑
𝑇 × 𝑥(𝑖)                                                                             ( 3) 

Where 𝑧 is the transformed values from set 𝑥. 

2.2. ARIMA 

An Autoregressive Integrated Moving Average (ARIMA) 

model will be developed to improve our understanding of the 

data, estimate the trends and set threshold levels to detect 

anomalies. 

Assumptions The fundamental assumption behind ARIMA is 

that the time series data will behave and correlate in the future 

values in the same way as in the past, allowing it as a valid 

model to detect anomalies. However, the anomalies (e.g. 

bridge closure) in the past needs to be labelled and maybe 

normalized so that it does not violate the assumption and 

drastically change the fitted model. 

Theory ARIMA model, as known as the Box-Jenkins method, 

is a composite of time-series models (Naylor & Seaks, 1972): 

AR(p) Autoregressive (AR) model, where the predicted value 

is based on its previous (lagged) value, with the number of 

iterations with p, can be represented by: 

𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯+𝜙𝑝𝑌𝑡−𝑝 ( 4) 

Where 𝑌𝑡 is the value of data at time index 𝑡 in the series and 

ϕ is the AR coefficient. 
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MA(q) Moving-average (MA) model, where the model is 

composed of the mean and white noise values, with the number 

of iterations as q, can be represented by: 

𝑌𝑡 = 𝜇 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 +⋯+ 𝜃𝑝𝜖𝑡−𝑞 ( 5) 

 

Where μ is the mean value, ϵ is the error term and θ is the 

MA coefficient. 

ARMA (p,q) Combining the AR and MA model, we can 

represent the behaviour as a function of the past values and 

errors with the following equation: 

𝑌𝑡 − 𝜙1𝑌𝑡−1 −⋯− 𝜙𝑝𝑌𝑡−𝑝 = 𝜖𝑡 + 𝜃1𝜖𝑡−1 +⋯+ 𝜃𝑝𝜖𝑡−𝑞 ( 6) 

 

I(d) Integrated (I) value to remove the non-stationarity of the 

series into stationary series by the degree of differentiation d: 

ARIMA (p,d,q) The ARIMA model can be given by: 

(1 −∑ϕ𝑖𝐿
𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑌𝑡 = δ + (1 +∑θ𝑖𝐿
𝑖

𝑞

𝑖=1

) ϵ𝑡 

 

Figure 3 is an illustration of the ARIMA model, where the 

shaded areas are the range of predicted values with a pre-

defined confidence interval. 

The stationarity and parameters of the series can be determined 

using the autocorrelation function (ACF) and partial auto-

correlation function (PACF). On the other hand, an iterative 

approach can be used to determine the parameters instead by 

comparing the predicted value with the actual value. 

Figure 3 ARIMA Visualised 

 

2.3. Machine Learning 

2.3.1. Random Forest 

Random forest works as an ensemble learning method for 

classification, regression or other problems. In this paper, it is 

the regression problem that has been addressed. At the training 

stage, a random forest contains various decision trees. 

Decision Tree A decision tree is a tree-like or flow-chart like 

structure of decisions and represents possible consequences. In 

summary, the tree model determines the importance 

(sensitivity) ranking of the features, then uses a probabilistic 

approach to generate a predictive outcome. 

Random Forest is an ensemble learning method that uses 

multiple decision trees together, reducing the chance of over-

fitting. However, Random Forest models are slow in making 

predictions, which might be a significant drawback for real-

time applications. Also, they have poor performance on 

predicting the outcome of rare observations, requiring a large 

range of observations in the training data. 

2.3.2.  Artificial Neural Network 

An Artificial Neural Network (ANN) is a computational model 

inspired by biological neural networks. An ANN consists of 

artificial neurons, processing elements and connections (like 

biological synapse) between these neurons. (Shanmuganathan 

& Samarasinghe, 2016)  

The output of an artificial neuron is calculated by a non-linear 

function of the sum of its inputs. Also, the connections passing 

"signals" between neurons always have weights to adjust the 

inputs of a neuron. The weight will influence the strength of 

inputs to a neuron in its calculations. The "signals" are real 

numbers. Also, each neuron will have a threshold value to 

determine whether the neuron should become "active" by the 

sum of computed inputs. If the neuron is "activated", the sum 

of computed inputs will become an output and pass to the next 

layer. 

Therefore, for a supervised learning process (input and output 

are known for the training set), the following procedures are 

taken in the ANN: 

• Weights are randomly assigned to all connections at 

the beginning 

• Computed outputs can be then acquired through 

multiple hidden layers 

• Calculate the errors between the actual outputs and 

the computed outputs 

• Adjust the weights by the errors 

• Iterate the steps above until the computed outputs are 

highly similar to the actual outputs 

The ANNs machine learning method has been widely applied 

in computer vision and voice. 

Long Short-Term Memory (LSTM) Models with Long 

Short-Term Memory (LSTM) cells are a type of Recurrent 

Neural Network (RNN) - ANN with connections between 

neurons within the same layer. As the name suggested, LSTM 

models can retain and use information from previous time steps. 

This is particularly useful in time-series analysis, as future 

values correlate with previous. 

It is shown that LSTM is able to model complex nonlinear 

feature interactions with a large volume high-dimensional 
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dataset. (Ogunmolu, et al., 2016) This gives more flexibility 

for LSTM compared with traditional ANNs. 

3. Results & Discussion 

3.1. Principal Component Analysis (PCA) 

Using the data on February 2017, component scores between 

the sensors were computed. Figure 4 shows the cumulative sum 

of explained variance at the 𝑛𝑡ℎ component. 

Figure 5 shows that the 1st component can represent 

approximately 58 % of the variance in 127 columns. 

Furthermore, 90 % of the data in the 127 dimensions can be 

represented by 3 components, showing some features in the 

dataset strongly correlate to others, especially for sensors in the 

same sensor group. PCA also has the ability to normalize 

extreme values, reducing the noise in the dataset but potentially 

losing valuable data that describes uncommon behaviours. 

This analysis shows the ability to use PCA to reduce the 

dimensionality of the dataset, reducing computational power 

required while maintaining the majority of the information in 

the dataset. 

Results from PCA indicates a strong correlation between 

sensors, which might suggest the structural response is 

influenced by other factors. 

Figure 4 PCA explained variance ratio (cumulative 

sum) 

 

Figure 5 PCA explained variance by each component 

 

3.2. Prediction Models 

In this paper, the ARIMA model and some machine learning 

algorithms are used to impute missing data due to faulty 

sensors and maintenance. 

3.2.1. ARIMA 

Among all kinds of monitoring data from the SHM system on 

the FRB, the traffic volume behaves in a seasonal manner with 

minor anomalies and variations. Therefore, a univariate 

ARIMA model is suitable to serve as a prediction model. 

Figure 6 shows a 6-month period traffic volume with 1 month 

of missing records. Data prior to the missing part was used to 

train the ARIMA model. The 7-day moving average shows the 

traffic volume on the bridge has a weekly varied cycle with an 

indication of seasonal patterns. An additive model was used, 

representing the time series as a combination of trend, 

seasonality and noise, to explore the seasonality of the data. 

(Figure 7) 

The trend plot suggests the general traffic volume has no 

noticeable change throughout the 6 months, except for a 

significant reduction during the Christmas holiday period.  

The seasonality plot suggests a repetitive cycle in the daily 

traffic volume, with traffic volume on weekdays larger than on 

weekends, with the highest on Fridays. 

The residual plot gives the similar information as the trend plot. 
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Figure 6 Traffic Volume 

 

Figure 7 Decomposed traffic data 

 

Using the differencing of 336 samples (1 week), the 

transformed series is visualized in Figure 8. The plot suggests 

a pattern of randomness, so the parameter 𝑑 in the ARIMA 

model can be set to 1. The ACF and PACF plots of the series 

are shown in Figure 9. The series reaches the critical level at 

lag 4 in the ACF plot and lag 2 in the PACF plot, indicating the 

moving-average (MA) parameter of 4 and the autoregressive 

(AR) parameter of 2 can be used. 

Therefore, an ARIMA(2,1,4) model was fitted using the 

transformed series. By applying a reverse differencing process, 

the predicted series without differencing can be calculated. 

Figure 10 shows the predicted and the original traffic volume 

variation over a period of 11 weeks with approximately  2600 

samples, with a coefficient of determination (𝑅2 ) of 0.981, 

indicating the predicted series was able to match the seasonal 

pattern of the original series. 

Using the same model, the missing data from 2017-01 to 2017-

02 was filled in and visualized in Figure 11. The plot shows the 

model predicted a similar seasonal pattern. 

Event and inspection log can be used to fine-tune the predicted 

value manually. For example, the traffic volume might be 

lower if there was an accident or no traffic at all if there was a 

bridge closure. 

Figure 8 Traffic Volume: 336 differencing 

 

Figure 9 Autocorrelation function plot - 336 

differencing 

 

Figure 10 ARIMA model prediction 
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Figure 11 Filling missing data using ARIMA model 

 

3.2.2.  Machine Learning Methods 

Compared with traffic volume data, other types of data, e.g. 

displacement and strain, are more influenced by environmental 

and operational conditions of the bridge. Therefore, the 

seasonality and trends are not as explicit as traffic data. For 

example, data from strain gauge (id 136) shows weak 

seasonality and periodical trends. (Figure 12) The ARIMA 

model is incapable of making predictions on such a dataset. 

Therefore, other models are required. By using machine 

learning, it is possible to develop prediction models on this 

kind of data.  

Figure 12 Strain Data 

 

To evaluate the machine learning algorithms, one target sensor 

and a correlated group with 3 sensors plus traffic data are 

selected. The details of these sensors are given in Table 1.  

The correlation coefficients between all sensors are given in 

Table 2, where 1 represents total positive linear correlation, -1 

for total negative linear correlation and 0 for no correlation. It 

can be discovered that correlations are generally small among 

sensors, ranging from -0.2 to 0.2. However, the data of 

displacement sensor 93 and thermometer 266 have a relatively 

high correlation, nearly -0.9. As a group, the correlation 

between the predicting group and the target sensor is higher. 

Figure 13 and Figure 14 show the observations of correlated 

group and target sensor respectively. The whole sample set is 

chosen as the machine learning training set and a subset 

containing a part of the missing values is chosen as the 

predicting set, shown in Figure 15. Two machine learning 

techniques are applied for the training set data: Artificial 

Neural Networks and Random Forest Regression. 

Table 1 Sensor Specifications 

 Sensor ID Sensor Type Location 

Target 

Sensor 

136 Dynamic 

Strain 

Main 

SpanInner 

Link 

(bottom pin) 

Correlated 

Group 

60 Dynamic 

Strain 

South West 

Side 

SpanInner 

Link 

(top pin) 

93 Displacement South West 

Side 

SpanTruss 

End Post 

266 Thermometer South East 

Side 

SpanTruss 

End Post 

 

Table 2 Correlations 

  str  60 str  136 disp  93 tmp  266 traffic 

str  60 1.000 0.190 0.199 0.011 -0.333 

str  136 0.190 1.000 -0.119 0.054 -0.464 

disp  93 0.199 -0.119 1.000 -0.899 -0.291 

tmp  26

6 
0.011 0.054 -0.899 1.000 0.214 

traffic -0.333 -0.464 -0.291 0.214 1.000 

 

Figure 13 Correlated Group 
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Figure 14 Target Group 

 

Figure 15 Predicting Set 

 

Artificial Neural Network The number of hidden layers and 

neurons per hidden layer can be manually set to optimise the 

results. The model accuracy can also be computed where the 

best prediction score is 1 and the worst is 0. It is found that 

training the model with 2 hidden layers and 100 neurons gives 

the best model accuracy, 0.415. The prediction results on the 

predicting set is shown in Figure 16. 

Random Forest The number of decision trees in the random 

forest can be manually set to acquire the best model accuracy. 

The model accuracy achieves over 0.92 with 10 trees. The 

prediction results on the predicting set is shown in Figure 17. 

Model Comparison Artificial neural networks (ANNs) 

models show a relatively lower accuracy on recognising data 

patterns. The random forest regression model can deliver more 

accurate predictions. Therefore, random forest regression 

behaves better in this scenario. However, the ANNs used in 

this paper are the basic type which may not be efficient for 

time-series analysis. Prediction models based on Recurrent 

Neural Networks (RNN) with Long Short Term Memory cells 

(LSTM) are still under development by the authors at this 

moment. 

Figure 16 ANNs Predicting Set 

 

Figure 17 Random Forest Training Set 

 

4. Conclusion 

This paper presents an overview of analysis methods used for 

the very large amount of data collected by the bridge structural 

health monitoring system. The PCA results suggest that the 

high-dimensional monitoring data can be aggressively reduced 

while maintaining the integrity of its information. The use of 

the ARIMA in prediction models for time-series data with high 

seasonality and strong periodical trends has proved successful. 

For more complex data, machine learning methods, random 

forest and ANNs, are proposed. Random forest shows more 

accurate prediction results compared with ANNs. 

Regardless of the poor behaviours of traditional ANNs on 

time-series analysis, it cannot be concluded that ANNs are not 

suitable for this kind of prediction. The use of Recurrent Neural 

Networks (RNN) is still being investigated by the authors. This 

kind of neural networks will have better performance on time-

series data. On the other hand, RNN makes predictions based 

on history of time-series data itself. Therefore, preparing a 

correlated group of sensors is not necessary. This will reduce 
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the dependency on highly correlated datasets which could be 

difficult to discover for SHM data of real structures. 
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