
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of remote sensing satellite data for carbon emissions
reduction

Citation for published version:
Chen, J, Gao, M, Huang, S & Hou, W 2021, 'Application of remote sensing satellite data for carbon
emissions reduction', Journal of Chinese Economic and Business Studies, vol. 19, no. 2, pp. 109-117.
https://doi.org/10.1080/14765284.2021.1920329

Digital Object Identifier (DOI):
10.1080/14765284.2021.1920329

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Chinese Economic and Business Studies

Publisher Rights Statement:
This is an Accepted Manuscript version of the following article, accepted for publication in the Journal of Chinese
Economic and Business Studies. Jiandong Chen, Ming Gao, Shasha Huang & Wenxuan Hou (2021) Application
of remote sensing satellite data for carbon emissions reduction, Journal of Chinese Economic and Business
Studies, 19:2, 109-117, DOI: 10.1080/14765284.2021.1920329. It is deposited under the terms of the Creative
Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Nov. 2022

https://doi.org/10.1080/14765284.2021.1920329
https://doi.org/10.1080/14765284.2021.1920329
https://www.research.ed.ac.uk/en/publications/3d97a216-c0e6-4b27-a36f-e48f6a60b543


Application of remote sensing satellite data for carbon emissions reduction

Jiandong Chena, Ming Gaoa, Shasha Huanga*, Wenxuan Houb

aSchool of Public Administration, Southwestern University of Finance and Economics, 

Chengdu 611130, China

b Business School, University of Edinburgh, 29 Buccleuch Place,

Edinburgh, EH8 9JS, UK

∗Corresponding author. Email: h_shasha@163.com, tel.: +86 15195807668

School of Public Administration, Southwestern University of Finance and Economics, 

Chengdu 611130, China



Application of remote sensing satellite data for carbon emissions 

reduction

There  is  a  global  consensus  that  carbon  dioxide  and  other  greenhouse  gas

emissions  must  be  reduced  as  a  response  to  global  climate  change.  Remote

sensing satellite  data  have  become an important  means of  monitoring carbon

emission due to its unique advantages such as availability, high resolution, and

wide coverage, and remote sensing data are playing an increasingly important

role  in  carbon  monitoring  and  fixation.  This  article  summarizes  the  main

applications of remote sensing satellite data in reducing carbon emissions and

prospects for future research. 

Advantages of remote sensing satellite data

In response to global climate change caused by emission of greenhouse gases, most

countries worldwide have made commitments to reduce such emissions. At the 75th

session  of  the  United  Nations  General  Assembly,  China  proposed  to  scale  up  its

nationally  determined  contributions,  strive  to  peak  carbon  dioxide  emissions  before

2030 and achieve carbon neutrality before 2060. The Climate Ambition Summit held in

December  2020  reviewed  the  achievements  of  countries  in  implementing  the  Paris

Agreement  and further  renewed a new climate  change response plan.  The 26th UN

Climate Change Conference of the Parties (COP26), originally scheduled to be held in

2020, was postponed due to the coronavirus pandemic, but the climate crisis has not

abated.  According to  Forster  et  al.  (2020),  although  the  measures  taken by various

countries to deal with the coronavirus pandemic have caused global carbon emissions to

drop significantly in the short term, with the end of world closures, carbon emissions

will rebound and may increase rapidly.

   Environmental  issues  have  been widely  discussed by many scholars  (Fu and

Zhang, 2011; Cheng, 2020), and the topics are quite broad, such as the relationship

between  economic  growth  and  pollution  emissions,  environmental  efficiency,  etc.



(Llorca and Meunié, 2009; Färe et al., 2014; Ma et al., 2018). However, most of the

environmental  indicators measured by the above-mentioned studies are derived from

statistical  data,  so  that  the  update  is  slow  and  there  are  many  human  factors.

Implementing  these  commitments  requires  the  accurate  scientific  monitoring  of  the

concentrations  and  sources  of  greenhouse  gases.  Satellite  data  have  become  an

important means of monitoring carbon emission due to the following advantages. First,

the  biggest  advantage  of  remote  sensing  satellite  data  is  its  wide  availability.  For

example,  after  the occurrence of natural  disasters  such as  fires  or  earthquakes,  it  is

difficult  to  know  the  situation  on  the  ground  due  to  the  accessibility  challenges.

However,  satellite  data  can  help  experts  make  accurate  assessments  of  the  damage

caused by these natural disasters. For example, Shi, Sasai, and Yamaguchi (2014) used

MODIS burned-area products in multi-source remote sensing and field surveys to obtain

parameters  such  as  fuel  capacity  and  combustion  efficiency  to  estimate  carbon

emissions from fires in Southeast Asia from 2001 to 2010.

Second, remote sensing data sources are available at a substantially higher degree of

spatial resolution than the traditional data. At present, most publicly available remote

sensing  satellite  images  are  based on 30×30 m grid  units;  some are even based on

0.5×0.5 m units, allowing more detailed analyses. Hansen et al. (2013) used Landsat

TM/ETM+ multi-temporal remote sensing images with a spatial resolution of 30 m to

draw the first high-resolution map of changes in global forest cover from 2000 to 2012,

based on which the loss or increase in natural resources could be evaluated.

Third,  the  geographic  coverage  of  remote  sensing  satellite  data  is  wider  than

traditional data and is not restricted by political, climatic, and geographical boundaries.

It is essentially the only method to obtain realistic data on a large scale (Nagendra 2001;



Kerr and Ostrovsky 2003). For example, Song (2018) used multiple global land-cover

data sets to study the value of global ecological services.

Fourth, remote sensing satellite data can trace historical changes. Traditional carbon

emission monitoring relies on ground stations.  The number of stations positioned in

some areas is small; thus, the representativeness and coverage of monitoring sites are

limited, and data-quality uniformity between different sites can be difficult to control.

Therefore, it is challenging for researchers to trace past carbon emissions conditions.

However,  the emergence  of remote sensing satellite  data  has significantly  expanded

researchers’  ability  to  track  the past emissions  data  of  carbon dioxide.  Zheng et  al.

(2020) constructed a high-temporal-resolution dynamic inversion technology for carbon

emission monitoring that combined satellite remote sensing data and emissions source

information,  revealing  that  the  drivers  of  China's  carbon  emissions  changed  under

COVID-19.

Fifth, combining remote sensing satellite data with artificial intelligence can expand

its applicability and value. Artificial intelligence empowers remote sensing technology

to  process  and  analyze  heterogenous  massive  multi-source  heterogeneous  data  and

shares it with other applications, thereby greatly shortening the interpretative cycle of

remote  sensing  data,  improving  interpretation  accuracy,  and  spawning  new  remote

sensing technologies  and applications.  Chen et al.  (2020a) adopted a particle  swarm

optimization-backpropagation  (PSO-BP)  algorithm  to  unify  DMSP/OLS  and

NPP/VIIRS satellite images for the calibration of night-time light data, thus obtaining

stable,  high-quality,  long-term night-time  light  data.  Therefore,  the  incorporation  of

artificial  intelligence  not  only  represents  an  advancement  in  the  field  of  remote

emissions  sensing  but  is  also  promising  for  the  prediction  of  future  population

distributions, GDP forecasting, and pollutant estimation.



Applications of remote sensing satellite data for carbon emissions reduction 

Although researchers in several fields have investigated the use of remote sensing

satellite data for research on carbon emissions reduction, several studies have focused

on  estimating  the  volume  of  above-ground  biomass  and  its  carbon  storage,  the

relationship between productivity and carbon storage, estimating soil carbon storage,

and the relationship between land use and carbon emissions. Here,  we overview the

current state of relevant literature in these fields.

[Insert Table 1 here.]

Estimation of above-ground biomass and carbon storage

Biomass refers to the total amount of organic matter contained in an ecosystem at a

given time and is the main component of the vegetation carbon pool within the carbon

reserves  of  terrestrial  ecosystems  (Muukkonen  and  Heiskanen  2007;  Eckert  2012).

Thus,  its  volume and characteristics  must  be accurately  estimated  to  understand the

distribution of vegetation carbon reserves and carbon sources (Le Toan et al.  2011).

Researchers  have  long  applied  satellite  data  for  the  dynamic  monitoring  of  above-

ground  biomass  in  grasslands  and  woodlands  (McDaniel  and  Haas  1982;  Roy  and

Ravan 1996). 

The  most  commonly  used  optical  remote  sensing  data  sources  include

NOAA/AVHRR, MODIS, Landsat TM/ETM+, and QuickBird. Table 1 summarizes the

main remote sensing satellite resources used in carbon emission reduction. Biomass can

also be estimated using radar data or by combining radar data with traditional optical

remote  sensing  data  (Englhart,  Keuck,  and Siegert  2011;  Berninger  et  al.  2018)  to

compensate  for  optical  sensors  affected  by  severe  weather  (Thomas  et  al.  2017).

Regarding  research  methods,  the  vegetation  index,  leaf  area  index  (LAI),  absorbed



photosynthetically active radiation (APAR), and other parameters are mainly obtained

using remote sensing satellites to estimate biomass (Ribeiro et al. 2008; Propastin et al.

2012; Fernández-Martínez et al. 2014; Li et al. 2018). Commonly used remote sensing

data extraction methods include visual interpretation (Shalaby and Tateishi 2007; Zhang

and Zhu 2011), the maximum likelihood method (Jia and Richards 1994; Erbek, Özkan,

and Taberner 2004), the object-oriented classification method (Wang, Sousa, and Gong

2004;  Myint  et  al.  2008),  and the support vector  machine  method (Heumann 2011;

Singh et al. 2014).

Table 1. Remote sensing satellite resources used to combat carbon emissions

Type Platform Spatial resolution (m)
Revisit 

period (days)

Temporal 

coverage 

Optical:
high 

spatial 

resolution

QuickBird
Multi-spectral: 2.44

Panchromatic: 0.61
1–6 2001–2013

Ikonos
Multi-spectral: 4

Panchromatic: 1
1.5–3 1999–2015

ALOS
PRISM: 2.5

AVNIR-2: 10
2 2006–2011

SPOT 4 Panchromatic: 10 26 1986–2013

SPOT 5
Multispectral: 10 

Panchromatic: 2.5-5 
26 2002–2015

Worldview 

2

Multi-spectral: 1.8 

Panchromatic: 0.5
1.0–4.5 2009–

Worldview Multi-spectral: 1.24 1.1–3.7 2014–



3
Panchromatic: 0.31

Optical：
medium 

spatial 

resolution

Landsat 5 Multi-spectral: 30 16 1984–2013

Landsat 7 
Multi-spectral: 30

Panchromatic: 15
16 1999–

Landsat 8 
Multi-spectral: 30

Panchromatic: 15
16 2013–

Sentinel-2
Multi-spectral: 

10/20/60
10 2015–

MODIS
Terra: 250/500/1000

Aqua: 250/500/1000
1–2

Terra: 1999–

Aqua: 2002–

ASTER

Visible:15

Infrared: 30

Thermal infrared: 90

16 1999-

SAR

ALOS PALSAR: 10–100 46 2006-2011

ALOS-2
Spotlight: 1–3

Stripmap: 3/6/10
16 2014–

Sentinel-1

Interferometric Wide 

Swath: 5

Stripmap: 5

12 2014–

LiDAR
Airplane, 

UAV
0.1

mobilized to 

order
2000–



Estimation of productivity and carbon storage 

Vegetation productivity

Vegetation net primary productivity (NPP) is a key parameter of the carbon cycle

process in an ecosystem, reflecting the ability of vegetation to fix atmospheric CO2 via

photosynthesis (Cai et al. 2010; Chen et al. 2020b). The application of remote sensing to

measure ecosystem productivity  is  mainly  realized  in  two ways.  One is  a statistical

model based on a remote sensing vegetation index; the other is a light-energy utilization

model  based  on remote  sensing  data.  Commonly  applied  examples  of  the  methods

include the CASA model (Liu, Dong, and Liu 2015), MODIS-GPP (Turner et al. 2003),

CENTURY model (Peng and Apps 1999), and VPM model (Xiao et al. 2004), among

others.

Marine productivity

The CO2 entering the ocean is fixed by phytoplankton and photosynthetic bacteria

into  organic  carbon  via  photosynthesis  and  thus,  enters  the  marine  ecosystem.  The

carbon fixation capacity of plankton can be expressed by their primary productivity.

Certain parameters in ecological mathematical productivity models are often acquired

through remote sensing. After appropriate processing, this remote sensing data can be

used to estimate ocean primary productivity. Commonly used ecological mathematical

models  include  the Bedford Productivity  Model  (BPM) (Longhurst,  Sathyendranath,

and  Caverhill  1995),  Laboratoire  de  Physique  et  Chimie  Marines  (LPCM)  model

(Antoine, André, and Morel 1996), and the Vertically Generalized Production Model



(VPGM) (Behrenfeld and Falkowski 1997).

Estimation of soil carbon storage

Soil is the largest carbon pool in terrestrial ecosystems (Jobbágy and Jackson 2000;

Scharlemann et al. 2014), and relatively small changes in the soil can cause fluctuations

in the atmospheric CO2 concentration. Two methods are commonly used to estimate soil

carbon  storage.  One  is  to  directly  use  different  bands  provided  by  remote  sensing

satellite  to  establish  a  soil  organic  carbon  spectrum model  to  estimate  soil  organic

carbon (Chen et al. 2000). However, this method can only be applied to bare surface-

level soil, and other characteristics of the soil can affect the accuracy of the estimation.

The other method is to use indirect parameters measured by remote sensing satellites,

such as vegetation status, soil water content, biomass, and temperature to build a data-

driven model to evaluate soil properties (Mondal et al. 2017; Huang et al. 2020).

Land-use and carbon emissions

Carbon emissions related land-use types and changes 

Some scholars  have  used  satellite  data  to  estimate  the  biomass  associated  with

different land-use and cover types to calculate carbon storage and its historical changes,

thereby  estimating  the  current  status  and  changes  in  carbon  storage  on  regional,

national, and even global scales (Houghton et al. 2012; Zhang et al. 2015). For example,

using a series of field measurements and satellite data, Wang et al. (2020) reported that

the huge carbon sink of China's terrestrial ecosystem is mainly attributable to carbon

sequestration by China’s  major  forests.  Thus,  these findings  point  to  the success  of

China's efforts to restore natural forest vegetation and strengthen plantation cultivation

over the past 40 years. 



Carbon emissions from human activities associated with various land-use types 

Sources of carbon emission include energy consumption in settlements and exhaust

emissions from vehicles. For example, Chen et al. (2020a) drew on the high correlation

between  night-time  light  data  and  human  activities  to  retroactively  estimate  CO2

emissions in 2,735 Chinese counties from 1997 to 2017 using two sets of night-time

light data (DMSP/OLS and NPP/VIIRS Data) provided by the National Geophysical

Data Center (NGDC).

Further research

With the rapid development of remote sensing platforms and sensor technologies,

future remote sensing monitoring platforms will become more diverse, and the technical

methods to collect and analyze remote sensing data will become more detailed. In future

studies, the following two aspects deserve attention:

First, remote sensing satellite data will play an important role in future research on

the reduction in large-scale carbon emissions. The rapid development of remote sensing

technology has made satellite data more widely used in the field of carbon emission

reduction.  Research  on  a  large  regional  scale  has  already  taken  advantage  of

advancements in remote sensing technology. However, on the global scale, high-quality

estimates of carbon emissions and carbon fixation remain insufficient. Therefore, the

use of remote sensing satellite data for large-scale analyses, such as estimates of global

vegetation  carbon  sequestration  capacity,  global  blue-carbon  habitat  mapping,  and

carbon sequestration  potential  assessments,  should be further  explored.  Such studies

could  be  highly  significant  for  the  identification  of  global  carbon  peaks  and  the

achievement of carbon neutrality, and assist countries in meeting the "Paris Agreement"



and  United  Nations  Intergovernmental  Panel  on  Climate  Change  (IPCC)  emissions

reduction targets.

Second,  the  GEE  (Google  Earth  Engine)  platform  and  artificial  intelligence

technology are powerful tools for large-scale remote sensing data analysis. In recent

years, the spatial,  temporal,  spectral,  and radiation resolution of remote sensing data

have improved continuously, and the types of data available have increased. However,

traditional  image  processing  tools  such  as  ENVI (The Environment  for  Visualizing

Images) face challenges when dealing with extremely large data volumes. However,

Google’s  GEE cloud  platform possesses  PB-level  data  processing  capabilities  on  a

global  scale  and  has  greatly  improved  the  processing  and  information  mining

capabilities available for big Earth observation data (Gorelick et al. 2017). Moreover,

this powerful platform, is a promising tool for large-scale data analyses in the future,

particularly in conjunction with new developments in artificial intelligence technology

that could serve as a powerful instrument for information extraction and image analysis.
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