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Abstract

The nature of people’s web navigation has significantly changed in recent years.

The advent of smartphones and other handheld devices has given rise to web

users consulting websites with more than one device, or using a shared device.

As a result, large volumes of seemingly disjoint data are available, which when

analysed together can support decision-making. The task of identifying web ses-

sions by linking such data back to a specific person, however, is hard. The idea

of session stitching aims to overcome this by using machine learning inference to

identify similar or identical users. Many such efforts use various demographic

data or device-based features to train matching algorithms. However, often

these variables are not available for every dataset or are recorded differently,

making a streamlined setup difficult. Besides, the often result in vast feature

spaces which are hard to use for actionable interpretation.

∗Corresponding author
Email addresses: johannes.desmedt@kuleuven.be (Johannes De Smedt),

ewelina.lacka@ed.ac.uk (Ewelina Lacka), s.nita@epcc.ed.ac.uk (Spyro Nita),
{hans;ross}@queryclick.com (Hans-Helmut Kohls, Ross Paton)

Preprint submitted to Decision Support Systems April 22, 2021



In this paper, we present an alternative approach based on the fingerprinting

of web pages visited by users in a single session. By learning behavioral patterns

from these sequences of page visits, we obtain features that can be used for

matching without requiring sensitive user-agent data such as IP, geo location,

or device details as is common with other approaches. Using these sequential

fingerprints does not rely on pre-defined features, but only requires the recording

of web page visits, making our approach actionable. The approach is empirically

tested on real-life web logs and compared with matching using regular user-agent

features and state-of-the-art embedding techniques. Results in an ecommerce

context show sequential features can still obtain strong performance with fewer

features, facilitating decision-making on session stitching and inform subsequent

related activities such as marketing or customer analysis.

Keywords: session stitching, web analytics, sequence mining, session

fingerprinting.

1. Introduction

The widespread use of handheld devices offers web users new portals to

consult information which combined with a general digitization of services has

led to an explosion of web logs leaving traces of people. A major challenge

exists in identifying which entries in these web logs, from now on referred to as

sessions, belong to the same user. The expiration of cookies, the use of different

IPs, and sharing devices makes it difficult to link sessions back to the same entity.

As a result it is difficult, or even impossible, to derive actionable insights from

such high dimensional and seemingly disjoint data to support decision-making

as users cannot, e.g., be effectively targeted for marketing campaigns, or offered

tailored browsing experiences. Companies have widely invested in web analytics

tools such as Google Analytics1 or Adobe2 to keep track of users, however, a

1https://analytics.google.com/analytics/web/
2https://www.adobe.com/uk/analytics/adobe-analytics.html
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dedicated site-based login is often required to deal with the aforementioned

problems properly.

Various machine learning and information retrieval approaches were pro-

posed for entity matching, and dedicated approaches exist that focus on web

log data specifically such as [1] and [2]. Typically, Google Analytics logs provide

features such as the device, browser, geographic location, previously visited web

pages, campaigns, and so on. However, the range of variables might vary from

implementation to implementation, as well as give rise to a variety of ways to en-

code particular variables with many possible values leading to high-dimensional

feature spaces. Furthermore, user-agent variables (comprising device, browser,

and location) are typically very sensitive and cannot be used straightforwardly

in case privacy-preserving processing is required. The use of an array of queries

with information on gender, age, and location makes the chance of user iden-

tification high [3, 4, 5]. In general, query and web visit information is very

sensitive and companies often have to dispose of identifiers such as IP [6]. This

topic has become especially relevant given General Data Protection Regulation

(GDPR) compliance [7] where companies retain information of user visits over

international borders. Given the reliance of many session stitching techniques

such as the approaches used for benchmarking in the experimental evaluation

([1, 8]) on IP, device, and user-agent information, the proposed approach based

on behavioural patterns mined from sequential item sets can be applied from

a pure symbolic standpoint which facilitates, e.g., randomization. It has been

shown that reverse item set mining is hard [9], which means that sequential

item set reversal is at least as hard. While the data used for building the be-

havioural features is still at scruntiny under GDPR as it is pertaining to users’

website browsing behaviour, at least the manual reversal of the features and

using them to identify particular individuals will be a close to impossible task.

This is evidenced by the fact that the party providing the data for the empirical

evaluation used the resulting features and insights over different companies as

the risk of privacy leaks were deemed to be non-existent.

To facilitate the interpretability and actionability of session stitching, we
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User Session ID Timestamp Web page

User 1 8,401 08:11:20-10/11/2016 /Products/Product1

User 1 8,401 08:12:20-10/11/2016 /Help page/FAQ

User 1 8,401 09:41:32-10/11/2016 /Products/Product1

User 2 8,402 15:10:21-10/11/2016 /Products/Product2

User 3 8,403 04:01:21-10/11/2016 /About/History

User 4 8,404 10:54:23-12/11/2016 /Products/Product1

User 4 8,404 10:55:45-12/11/2016 /Help page/FAQ

Table 1: Example of a web log.

propose an approach founded on fingerprinting the sequence of web page visits

(also sometimes referred to as hits) to generate features that can be used to

match web log sessions similar to the example present in Table 1. In session

stitching, the user label is unavailable and needs to be established by matching

different session IDs. For example, in this case user 1 and 4 have similar behavior

(visiting the product page of product 1, then visiting the FAQ page) and can

be eligible for stitching. The underlying motivation is that users tend to visit

either particular sites, e.g., of products of interest, or have a specific order in

which they navigate a website, leaving a discernible mark which can be picked

up by sequence mining algorithms. More specifically, we use the interesting

Behavioral Constraint Miner which excels in generating sequence patterns (also

referred to as behavioral constraints) for classification [10] to extract page visit

fingerprints. The approach is capable of outperforming traditional sequence

mining approaches by returning fewer, though highly discriminating features

while retaining a strong level of interpretability which renders them ideal for

decision support.

We compare the outcome with two approaches. Firstly, we use typical user-

agent information including device, location, and traffic source information.

Secondly, network embedding-based approaches are employed, which create a

heterogeneous network over the web pages of a website as well as other ele-

ments tied to a visit, and their users. Experiments on two real-life datasets

show that sequence fingerprinting achieves strong results for sessions stitching

that outperforms network embeddings in terms of predictive performance and

dimensionality. Also, it is capable to provide interpretable features in constrast
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with the latent dimensions provided by embeddings. Although, it does not out-

perform the fully-fledged information that is available in user-agent information,

the advantage of sequence fingerprinting is that it only requires web page visit

sequences without any personal information while doing so with only few con-

straints. This increases interpretability and actionability of insights obtained,

as the sequential features used to match users can still be verified by analysts to

understand the rationale behind the matching of different session IDs. This is

typically hard with traditional approaches using 1,000+ features, or embeddings

which cannot be interpreted. Furthermore, it retains a level of generalizability,

as the use of fewer features indicates that the matching is not as fine-granular

pertaining to intricate combinations of feature values required to match users.

This paper is structured as follows. In the next section, the related work is

covered. Section 3 explains the rationale for generating sequential features from

sessions, which is used in Section 4 in an empirical evaluation. Finally, Section

6 discusses the implications and threads for future research.

2. Related Work

In this section, an overview of session stitching approaches is given. To this

purpose, the field of entity matching is introduced which forms the basis for

many session stitching approaches. Next, dedicated sequence-based approaches

are covered.

2.1. Entity matching

Session stitching aims at recognising whether two data samples were gener-

ated by the same individual or source. Various works in the field of information

retrieval address the more general problem of entity matching, also referred to

as record linkage, entity resolution, etc. [11]. Given that matching large sets

of entities requires a full N-to-N matching, often blocking is used to pre-group

entities to avoid computationally intractable calculations. To this purpose, var-

ious clustering techniques such as neighbourhood searches can be used [12].
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Entities can be matched using various distance functions such as string dis-

tance (e.g. edit distance, Jaro distance) and token-based distance metrics (e.g.

Jaccard, cosine simlarity) [13, 14], which can serve as input to algorithms such

as probabilisitic matching approaches (expectation maximisation) or supervised

learning approaches such as Naive Bayes, support vector machines, etc. [15, 16].

Recently, many graph or network-based approaches have surfaced [17] where clo-

sure properties can be exploited to recognise similar entities, or to learn other

representations of entities such as embeddings [18, 19].

2.2. Entity Matching For Web Data

Tailored entity matching approaches for web logs exist, e.g., [1] investigate a

probabilistic approach to stitch together users with probabilistic soft logic from

IP, geo location, and user-agent information such as device, operating system,

etc. To this purpose, distance metrics are used based on location, as well as

textual similarity in IP and user-agent information to train the probability of

2 entities being the same. In [2], various touch points in the web usage process

are considered to stitch users together using the Jaccard distance and problem-

specific blocking rules for IPs and other identity information. The issue of noisy

labels and data that are often making such approaches difficult has been tackled

using robust factorization machines in [20]. Location data can also be used

towards identifying similar users over multiple devices by using a graph-based

approach for user-location relations [21]. Identity graphs [22] can be constructed

to provide a probabilistic view on overlapping user behavior in various online

sources as well. Per user, a graph is created to connect information of entities

to their visiting a website, IPs, logins, etc. These graphs can be matched to

obtain a similarity score.

Furthermore, various graph embedding-based approaches have recently sur-

faced to link entities. node2bits [8] introduces time-aware graph-based embed-

dings that are learnt over users linked to various elements tied to their web

behaviour such as IP, web pages visited, devices used, etc. These embeddings

are used for entity linking using supervised learning algorithms. [23] introduce
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a similar approach which links entities in a graph over heterogeneous sources

such as work interactions (emails) and social events. [24] use graph convolution

networks to connect entities from email and other graph-based relations. The

latter two works also stress the importance of the privacy-aware processing of

data. In the case such sensitive data is needed, pre-clustering has to be applied

to (partially) obfuscate any specific personal data.

2.3. Sequence-Based Approaches

While there exists a sub-domain of sequence-to-sequence matching [25], it

focuses on aligning similar sequences rather than generating a similarity score.

Sequence mining has been applied to web logs before in the form of 2-grams to

identify frequent surfing patterns suitable for caching on larger web nodes [26].

[27] use term frequency-inverse document frequency to identify patterns of web

page visits which can be used for session identification. [28] introduce sequence

rules for entity matching. They assign weights to different attributes tied to

entities and match them based on the importance of weights, however, the se-

quential aspect here is the order of the attributes, rather than ordered item

sets. Text-based approaches exist in entity matching where sequential models

are applied to documents. [29] use sub-strings similar to the 2-grams approach,

and [30] use deep learning models generating embeddings to recognise seman-

tic similarities between text-enriched entity data. In [31], the authors exploit

neural networks for identity stitching by increasing misclassification costs for

the matches between identical entities which are often sparse. To this purpose,

they use the websites visited by users and use word embeddings to vectorise link

strings first.

However, the field of sequence mining typically focuses on creating a database

of sub-sequences expressed as partial orders/sub-sequences that either sum-

marise most of the sequences, or can re-generate the whole sequence database

completely. Sequence mining encompasses a variety of works ranging from text

analysis to DNA classification. Most notably, sequence mining has grown from

an Apriori-based approach [32] to a range of derivative and novel techniques
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such as SPADE [33] and PrefixSPAN [34]. The downside of these approaches

is that they tend to generate a high number of partial orders which are not

necessarily informative for supervised approaches which require discriminating

features. More recently, probabilistic approaches such as Interesting Sequence

Miner [35] and MiSeRe [36] have been introduced which focus on generating

informative sub-sequences suitable for a concise representation of the general

behaviour in a sequence database. In contrast, the interesting Behavioural Con-

straint Miner (iBCM) [10] was proposed for finding pre-defined sequence pat-

terns (called constraints), defined in linear temporal logic/regular expressions,

to classify sequences. These patterns are more expressive than partial orders,

and can concisely summarise behaviour in sequences with low dimensionality.

Finally, neural network and embedding-based approaches are surfacing for se-

quence analysis [37]. While they often reach competitive levels of predictive

performance, they are limited or unable to provide any insight into the inter-

pretation of underlying important patterns.

In web log analysis, sequence mining has not yet been employed for session

stitching. In this study, we investigate the potential of sequence mining in the

form of iBCM to obtain concise, interpretable features that can match users

from different sessions and subsequently inform decision-making.

2.4. Positioning

The most related studies to this work are [1] and [8] as both works pro-

pose an approach specifically tailored towards using web logs in contrast to

the other works. As indicated before, the former uses web log data existing of

user-agent data (IP, operation system, device type, etc.) and geographic loca-

tions. These data are then used in Probabilistic Soft Logic (PSL) rules such as

V isitorIP (V1, I1) ∧ V isitorIP (V2, I2) ∧ SimIP (I1, I2) ⇒ SameUser(V1, V2)

where SimIP is a proprietary function to measure the similarity between dif-

ferent IPs which in combination with ground truth on which users have which

IPs is used to iteratively estimate the probability for SameUser using PSL in-

ference. Various other experience-based rules are proposed for user-agent and
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location variables which are verified over a real-life case sample showing strong

results in terms of predictive performance with F1-scores up to 97%. The work

is harder to replicate in different settings as distance measures used for locations

and IP similarity cannot be applied to every web log. The latter work proposes

the use of network embeddings by representing various elements of a web log

as a node in a network over time. E.g., IPs are connected to sessions, which

are connected to web sites that are visited during that session. By employing

typical embeddings approaches based on temporal random walks, temporal con-

texts are created to avoid overwhelming dimensionality which is subsequently

used to hash contexts into binary reprsentations of nodes. Note that other

variables such as device, geographic location, etc. can also be incorporated as

nodes, although this can quickly increase the size of the network. Experimental

evaluation shows strong performance compared to other network embedding ap-

proaches on a variety of networks, as well as session stitching. Both approaches

are evaluated on proprietary datasets which are not shared for benchmarking

or experimental evaluation. Also, ground truth is available in both cases, which

is not necessarily the case in web logs. One of the main challenges of session

stitching is working in an environment where ground truth might be missing,

which is the case for the real-life event log used in the experimental evaluation

of this work. The approaches differ in that the former is heavily reliant on

domain insights to establish the PSL rule set, while the latter employs a more

generic technique which is suitable for web log data and especially time- and

sequence-based data. Hence, they represent different takes on the problem of

which the proposed sequence fingerprinting technique lies in between.

3. Sequence Fingerprinting of Web Page Visits

Sequence mining algorithms aim to retrieve a set of sequential patterns

from a sequence log L. σ = 〈σ1, σ2, ..., σl〉 is a sequence of length l with the

items in the sequence elements of alphabet Σ. Hence a sequence is a string

from the language of Σ, σ ∈ Σ∗. Consider the example in Table 1 where
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L = {〈a, b, a〉, 〈c〉, 〈d〉, 〈a, b〉}, Σ = {a, b, c, d} with a = Products/Product1,

b = Help page/FAQ, c = Products/Product2, and d = About/History. In our

case, Σ comprises the web pages available in the web logs and σ is the string

of pages visited during a single session. The goal is to find the smallest set

of sub-sequences F ∈ Σ∗ that can replicate L, or that excel in distinguishing

sequences for classification. In that case, the presence of each sub-sequence of

sequential patterns is used as a feature, i.e., Classifier : {0, 1}|F| → C with C

the classes. Sequence mining algorithms often resort to the concept of support

supf = |{σ|f∈σ, σ∈L}|
|L| to avoid eliciting all possible sequences in a database or

take a probabilistic approach to generate sequences attributing to differences in

sequences. In both cases, sequence patterns are typically increased in length

during inference only when the items are frequent enough.

3.1. iBCM

3.1.1. Background

All currently available sequence mining approaches use partial orders to ex-

press the sub-sequences returned by their algorithms. iBCM, however, uses

behavioral patterns based on the Declare language [38] which have a higher ex-

pressive power (i.e. the language they can express) and are capable of capturing

various other information, such as whether an item occurs at the beginning of

a string, how many times an item occurs, and whether they do not occur after

a certain occurrence of another item (negative behavior). An overview of the

sequential patterns used can be found in Table 2.

Due to the higher level of expressiveness, iBCM is capable of quickly finding

patterns that, when combined, can replicate a sequence quickly without having

to discover all underlying partial orders of an increasingly longer length. Be-

sides, these rules are especially useful for classification [10]. iBCM uses support

as a parameter to prune items from the alphabet that are infrequent before

discovering patterns including these items. Next, it checks the presence of all

patterns from Table 2 which include patterns for both one and two items. The

latter are checked for all pairs of frequent items given they are present in a
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Type Template LTL Formula [38] Regular Expression [39]

Unary

Existence(A,n) ♦(A ∧©(existence(n− 1, A))) .*(A.*){n}

Absence(A,n) ¬existence(n,A) [ˆA]*(A?[ˆA]*){n-1}

Exactly(A,n) existence(n,A) ∧ absence(n +

1, A)

[ˆA]*(A[ˆA]*){n}

Init(A) A (A.*)?

Last(A) �(A =⇒ ¬X¬A) .*A

Unordered
Responded existence(A,B) ♦A =⇒ ♦B [ˆA]*((A.*B.*) |(B.*A.*))?

Co-existence(A,B) ♦A⇐⇒ ♦B [ˆAB]*((A.*B.*) |(B.*A.*))?

Simple ordered
Response(A,B) �(A =⇒ ♦B) [ˆA]*(A.*B)*[ˆA]*

Precedence(A,B) (¬B UA) ∨�(¬B) [ˆB]*(A.*B)*[ˆB]*

Succession(A,B) response(A,B) ∧

precedence(A,B)

[ˆAB]*(A.*B)*[ˆAB]*

Alternating Alternate response(A,B) �(A =⇒ ©(¬AU B)) [ˆA]*(A[ˆA]*B[ˆA]*)*

ordered Alternate precedence(A,B) precedence(A,B) ∧ �(B =⇒

©(precedence(A,B))

[ˆB]*(A[ˆB]*B[ˆB]*)*

Alternate succession(A,B) altresponse(A,B) ∧

precedence(A,B)

[ˆAB]*(A[ˆAB]*B[ˆAB]*)*

Chain ordered
Chain response(A,B) �(A =⇒ ©B) [ˆA]*(AB[ˆA]*)*

Chain precedence(A,B) �(©B =⇒ A) [ˆB]*(AB[ˆB]*)*

Chain succession(A,B) �(A ⇐⇒ ©B) [ˆAB]*(AB[ˆAB]*)*

Negative
Not co-existence(A,B) ¬(♦A ∧ ♦B) [ˆAB]*((A[ˆB]*) |(B[ˆA]*))?

Not succession(A,B) �(A =⇒ ¬(♦B)) [ˆA]*(A[ˆB]*)*

Not chain succession(A,B) �(A =⇒ ¬(©B)) [ˆA]*(A+[ˆAB][ˆA]*)*A*

Choice
Choice(A,B) ♦A ∨ ♦B .*[AB].*

Exclusive choice(A,B) (♦A ∨ ♦B) ∧ ¬(♦A ∧ ♦B) ([ˆB]*A[ˆB]*) |.*[AB].*([ˆA]*B[ˆA]*)

Table 2: An overview of Declare constraint templates with their corresponding LTL formula

and regular expression.

sequence. All these checks can be performed using efficient string operations.

3.1.2. Algorithm

Given a minimum support min sup and an alphabet Σ, iBCM first re-

tains only the most frequent items Σf = min sup · |Σ|. If min sup = 0.5

then we obtain Σf = {a, b}. Then, for every sequence in L Algorithm 1

(adopted from [10]) can be applied to retrieve a set of constraints Cσ (referred

to as just C in the Algorithm). In line 3, occ(σi, σ) = {i | σi = σj , ∀j ∈

[1, |σ|]}, a set which returns all positions of item σi in sequence σ, is created

to perform the string queries. For example, occ(a, σ1) = {1, 3}. Lines 5-9

check for unary constraints of single items by checking the absence or pres-

ence/existence of an item as well as its cardinality (e.g. existence 2 or 3),

and an item’s exact position (e.g. at the beginning or end of the sequence:
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Algorithm 1 Mining behavioral constraint templates
1: procedure mineConstraintsInString(σ,Σf )

2: C ← ∅ . C is a set of constraints outputted

3: for σi ∈ σ do occ(σi, σ) ← i

4: for a ∈ Σf ∩ Σσ do . Σσ is the alphabet of the sequence

5: if |occ(a, σ)| = 0 then C ← C ∪ absence(a, 1) . Unary constraints

6: else if |occ(a, σ)| > 2 then C ← C ∪ existence(a, 3)

7: else C ← C ∪ exactly(a, |occ(a, σ)|)

8: if 1 ∈ occ(a, σ) then C ← C ∪ init(a)

9: if |σ| ∈ occ(a, σ) then C ← C ∪ last(a)

10: for b ∈ {Σf ∩ Σσ} \ {a} do . Binary constraints

11: C ← C ∪ CoExist(a, b)

12: if min(occ(a, σ)) < min(occ(b, σ)) then

13: C ← C ∪ prec(a, b)

14: i ← min(occ(b, σ))

15: chain ← (i − 1) ∈ occ(a, σ), continue ← >

16: while ∃n ∈ occ(b, σ), n > i ∧ continue do

17: if ∃p ∈ occ(a, σ), i < p < n then i ← n

18: if ¬chain ∨ (n − 1) /∈ occ(a, σ) then chain ← ¬

19: else continue ← ¬

20: if continue ∧ |occ(b, σ)| > 1 then C ← C ∪ altPrec(a, b)

21: if chain then C ← C ∪ chainPrec(a, b)

22: if max(occ(a, σ)) < max(occ(b, σ)) then

23: C ← C ∪ resp(a, b)

24: if max(occ(a, σ)) < min(occ(b, σ)) then

25: C ← C ∪ notSuc(a, b)

26: i ← min(occ(a, σ))

27: chain ← (i + 1) ∈ occ(b, σ), continue ← >

28: while ∃n ∈ occ(a, σ), n > i ∧ continue do

29: if ∃p ∈ occ(b, σ), i < p < n then

30: i ← n

31: if ¬chain ∨ (n + 1) /∈ occ(b, σ) then chain ← ¬

32: else continue ← ¬

33: if continue ∧ |occ(a, σ)| > 1 then C ← C ∪ altResp(a, b)

34: if chain then C ← C ∪ chainResp(a, b)

35: add succession if (alternate/chain) response and precedence

36: if b /∈ Σσ ∧ b ∈ A then C ← C ∪ exclChoi(a, b)

37: return C

init/last). Lines 10-36 check the combination of two-item sets to establish co-

existence (occurring together regardless of their order), precedence (1 item ap-

pears before), alternation (items occur in alternating order), and chain-based

behaviour (items occur right after each other in a sequence). Also negative

constraints, such as exclusive choice between two items, or non succession

are discovered. After running the Algorithm, we obtain a feature set, e.g.,

Cσ1 = {exactly(a, 2), exactly(b, 1), init(a), last(a), chain precedence(a, b),

not succession(a, b)}. Note that a hierarchical reduction is applied to the con-

straints afterwards where chain/alternate precedence/response/succession ranks
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higher than (alternate) precedence/response/succession [40] to retain the most

expressive constraints. Finally, the algorithm returns F =
⋂
σ∈L Cσ, the full set

of constraints which serves as the features used in the subsequent classification.

Each sequence in L can then be labelled according to whether the constraints

hold for that sequence. This sequence fingerprint can be used to compare two

sequences and fed to a classifier, e.g., the end result of matching sessions with

(a subset of the features) is captured in Table 3.

sequence 1 sequence 2

exactly(a,2) init(a) last(a) not succession(a,b) exactly(a,2) init(a) last(a) not succession(a,b)

〈a, b, a〉,〈c〉 1 1 1 0 0 0 0 0

〈a, b, a〉,〈d〉 1 1 1 0 0 0 0 0

〈a, b, a〉,〈a, b〉 1 1 1 0 0 1 0 0

Table 3: An example of a session sequence matched with 3 other session sequences using

sequence constraints.

3.1.3. Performance

As can be seen from Algorithm 1, three major factors have an impact on

the number of features generated and runtime. Firstly, the minimum support

will affect the size of Σf and hence the number of pairs of items that have to

be checked for binary constraints. This means that the impact of the separate

sequences is strong as well. The alphabet of each sequence can further reduce

the number of pairs that have to be checked. Hence, the dispersion of the

alphabet in combination with the minimum support both influence the number

of constraints returned. Finally, iBCM is efficient because most constraints can

be checked without traversing the sequence and hence are just discovered using

boolean checks. Nevertheless, the checks for alternate and chain constraints

(lines 16-21 and lines 27-34) can become expensive for long strings. However,

given that these constraints are very specific, they typically do not hold for

many sequences which makes issue often non-existent.
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3.2. Considerations For Web Log Analysis

A web page sequence fingerprinting approach can be performed by any se-

quence mining approach. However, iBCM outperforms other approaches for

classification in terms of accuracy, number of constraints necessary, and ex-

ecution time [10], even LSTM-based approaches. Word embeddings such as

word2vec [41], which are often used for text mining, are not appropriate in this

scenario given the relatively short length of web page sequences.

The benefit of generating sequential features is their interpretability. In-

stead of using LSTMs or embedding-based approaches which are essentially

black boxes, sequential features can still be readily interpreted. Especially in

matching, it is possible to gauge what matching variables are particularly dif-

ferent for matching and non-matching sessions, or drive predictive models.

There are a few considerations to make that are specific to web log data. In

web sites, fingerprinting can be troublesome in case there is a large alphabet

because of the size of the website. To overcome this issue, we consider links

at various levels of depth, e.g., in Table 1 only the first part of the link can be

considered such as Products, Help page, and About, or longer lengths including

the full page string. Besides, users can generate very long page visit strings

which might hamper overall performance as discussed in Section 3.1.3. In the

experimental analysis, the number of constraints generated will give the best

idea of how computationally expensive the generation of sequence fingerprints

is.

4. Empirical Evaluation

In this section, we apply sequence fingerprinting to two Google Analytics

data logs for empirical evaluation. To this purpose, we compare this with

two other methods. Firstly, we use user-agent data which contains the most

individual-specific information on device, location, and so on. Secondly, we use

node2bits [8] as it is one of the most recent embedding-based approaches which

14



focus on web log data. Finally, iBCM is used to generate sequential features to

match sessions.

4.1. Data

The data was provided by a Digital Marketing and SEO company and spans

1 month’s worth of Google Analytics data of a significant retailer and a leisure

goods retailer, referred to as case 1 and 2 respectively. For the former, 1,642,984

sessions were retrieved, for the latter 744,984. Statistics on the datasets can be

found in Table 4. The parameters influencing the size of training and test set

are discussed below. Sessions with the same visitor ID are used as matches

(returning visitors), with a detailed sampling approach being discussed below.

Note that for dataset 2, the proportion of returning visitors in the dataset is

higher.

dataset 1

mpl mv Train Test Ret. Train Ret. Test Ret. All

2

2 294,369 145,745 7,489 6,778 14,267

3 294,369 145,745 539 792 1,331

5 294,369 145,745 19 34 53

3

2 226,777 112,507 5,295 4,930 10,225

3 226,777 112,507 363 551 914

5 226,777 112,507 7 24 31

dataset 2

2

2 104,880 52,450 9,792 8,813 18,605

3 104,880 52,450 1,862 2,607 4,469

5 104,880 52,450 134 377 511

3

2 89,126 44,415 7,413 6,822 14,235

3 89,126 44,415 1,246 1,911 3,157

5 89,126 44,415 71 222 293

Table 4: Overview of the datasets’ size given the different parameter configurations. Train/test

indicate the size of the training and test set respectively. Ret. train/ret. test/ret. all stand

for the number of returning visitors for the training/test/whole dataset respectively.

4.2. Approaches and Sampling

As discussed in Section 2, there are numerous branches in entity matching,

in particular for session matching. Some techniques are better applicable than
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others. For example, using probabilistic soft logic [1] relies on an extensive ex-

ample base to iteratively generate inference rules to obtain probabilities. Given

that no other blocking ID (such as IP) was available, there are too few examples

to obtain any meaningful inferences. Therefore, we use a general feature-based

approach which employs similar variables (these codes are used in the result

tables below):

• Device or browser version (1)

• Geographic location (2)

• Traffic source (3): the origin of traffic (e.g. Google.com)

• Traffic source medium (3): the source’s category (e.g. organic)

• Session start time: hour/day (4)

This evaluation approach is similar to the classifier evaluation of [1] which boasts

results close or similar to PSL. For a more detailed description of these variables

and how they are recorded we refer to the Google Analytics definitions3.

We will use these variables on/off with a standard classifier to gauge their im-

portance in matching sessions. Besides, we use the embedding-based approach

node2bits [8] which is tailored to using heterogeneous graphs representing ses-

sions and web page visits. The graph is constructed by connecting sessions with

page visits as they occur, which in combination with the underlying word2vec-

based embedding constitutes a sequence-based result in the form of a |F|-size

vector per node. Besides, nodes for device (1) and location (2) are included

as well to see whether these improve the embeddings. Note that the approach

can also incorporate timing information, however, this resulted in empty em-

beddings during the experiments. Hence, only order is considered which makes

for a good benchmark for the timing-agnostic approach of iBCM. node2bits

3https://developers.google.com/analytics/devguides/collection/analyticsjs/

field-reference
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was originally verified using artificially-generated nodes based on existing data

points.

In this paper, we adhere to the following sampling strategies given a full-

on match of all data points is intractable. For every session matched based

on visitor ID in the training set, 5 other randomly-selected sessions are used

as non-matches to obtain negative examples. In the test set, we again match

all newly-occurring visitor IDs’ sessions with 5 other sessions for verification.

A similar approach was used in [1] and [31] by retaining a particular ratio of

matching/non-matching sessions in the training and test sets. Note that in a

common real-life setup, previous IDs would be included in the matching in a

second (test round), however, the sampling setup chosen here prevents any data

leaking in from the training set.

4.3. Experimental Setup

The features F generated by each approach per session si are used to create

a feature vector fsi ∈ {0, 1}F . Next, every session si with an ID matching other

sessions are considered, and 5 counter examples are generated to reflect the

imbalance caused by the low level of matching sessions. Increasing the number

would be more realistic, however, would lead to unnecessarily large datasets

for experimental purposes. Thus, we obtain a final feature vector for every

match, fm = fs1 , fs2 , the concatenation of feature vectors of both sessions.

For the general user-agent feature-based approach, all variables are one-hot-

encoded. Finally, these vectors are passed on to a classification algorithm with

their respective label indicating whether they match or not (have the same

user/visitor ID). After testing various classifiers, i.e., logistic regression, naive

Bayes, and support vector machines, we only report the results of random forests

given their superior classification results. As two standard binary classification

metrics we use the F1-score (the harmonic mean of recall and precision) and the

area under receiver operating characteristic curve (AUC) for both are capable

of adequately measuring imbalanced datasets. This is reflected in the fact that

increasing or decreasing the number of counter examples did not affect AUC
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drastically.

The iBCM implementation was written in Java and can be found here4. The

evaluation was run multi-threaded on a Xeon E3-1230 v5 CPU with 32GB of

memory which makes it possible to retrieve all behavioural patterns in less than

30 seconds for the first dataset, and les than 2 minutes for the second dataset

which is denser (see Table 5).

4.4. Parameters

The evaluation considers various parameters that have an impact on the

outcome and usability of the different approaches:

• Minimum number of visits (mv - values used: 2,3): number of sessions/visits

before a visitor with the same ID is considered for matching. Given the

low numbers for retained sessions at mv = 5 as reported in Table 4, the

final results are not included.

• Minimum page visit length (mpl - values used: 2,3,5): web logs often

suffer form high bounce rates. We set the minimum web page sequence

at various lengths to reflect how many pages a user needs to have visited

before being considered as a sample.

• Page string cutoff (pc - values used: 2,3): as discussed in Section 3, the

alphabet of web pages can have a significant impact on the number of se-

quential features generated, and hence on the dimensionality of the match-

ing. Various cut-offs will be considered to see whether deeper web page

information results in more informative features. This parameter is only

relevant to iBCM/node2bits. Besides, note that at cutoff 2 we obtain the

first page level (e.g. products, info, help, etc.), as the first is reserved for

the top-level domain (the website itself).

• Support level (sup. - values used: 0.1, 0.01, 0.05): iBCM uses support to

4https://github.com/JohannesDeSmedt/iBCM
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only consider web pages that are present frequently enough which controls

how many features are generated eventually.

• Use of device (1)/location (2)/traffic source/medium (3)/timing (4): the

inclusion of these various variable types are considered for the feature-

based approach and node2bits.

An overview of the influence of parameters on the number of samples, num-

ber of samples with enough sequences, and the number of returners in the

training/test/full dataset can be found in Table 4. It is clear that the minimum

page length mpl requirement cuts a significant proportion of the overall number

of sessions and that the minimum visit number drastically reduces the number

of eligible IDs used for matching. It shows that in both datasets, very few IDs

are returning more than 3 times although this proportion is higher for dataset

2. Also, more sessions are retained for mpl = 3, meaning page visit lengths are

longer than for dataset 1. This might be related to the type of online business,

or the fact that cookies expire sooner making the visitor ID less reliable. The

table also illustrates that the proportion of sessions stemming from returning

visitors is low with a ratio of 1-3%. This makes the matching problem very

unbalanced given the discrepancy between the few sessions that actual match.

An overview of the size of the web page alphabet size Σ of the training set can

be found in Table 5. It appears that the web site hierarchies are different in both

cases. For dataset 1, there is a bigger difference when having pc = 2 compared

to pc = 3, meaning there are fewer top-level pages but very detailed links when

deeper cutoffs are considered. For dataset 2, the difference is less pronounced

and the top level covers a very wide range of pages already. This indicates that

the web site has a much flatter hierarchy. Nevertheless, the alphabet size of

dataset 2 is considerably higher than of dataset 1. The ratio between page-

cutoff values for a longer minimum page length is similar, meaning that the top

level pages of the datasets are well-visited regardless, and that the longer web

page visit sequences often contain similar top-level and deeper-level web pages

as shorter visits.
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alphabet size

mpl pc dataset 1 dataset 2

2 2 1,211 92,428

2 3 77,184 130,500

3 2 1,160 87,840

3 3 69,994 125,592

Table 5: Overview of the alphabet size of the training set for both datasets depending on

minimum page length and page-cutoff.

4.5. Results

In this section, both the analysis of the predictive results, as well as the

importance of mined sequential features are covered.

4.5.1. Matching

The results of applying the three approaches can be found in Tables 6 to 11.

Overall, the AUC and F1-score of the user-agent features is consistently the

highest of all the approaches. When using all features, it achieves AUC up to

98/98, 96/97% for the two values of mv and datasets 1/2, respectively. The

F1-sore is lower with 93/92, 92/91%, which is mostly due to precision being

lower. The size of the feature space is comparable between both datasets, indi-

cating that there are a similar number of values for device, location, etc. The

incorporation of the device information (1) and location information (2) boosts

AUC and F1-score the most, while using just the medium/channel information

(3) achieves reasonable results still. Using timing information (4) results in a

weak AUC and poor F1-score for either dataset possibly due to the low dimen-

sionality and little variance introduced by the timing features. The minimum

page length mpl has no significant impact, as it only changes the sample slightly

as demonstrated in Table 4.

Using iBCM results in an AUC with peaks of 80/72, 81/68% for the two

values of mv and datasets 1/2, which is significantly lower. Also, the F1-score

is lower with 80/74, 71/73%, with these results not necessarily being coupled

to the best AUC in terms of parameter usage. The number of behavioural

features generated, despite the bigger alphabet size for dataset 2, is similar to
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mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

pc |F | (1) (2) F1 AUC F1 AUC F1 AUC F1 AUC

2

64

x x 0.489 0.601 0.459 0.593 0.379 0.596 0.415 0.589

x 0.552 0.610 0.546 0.607 0.460 0.617 0.483 0.612

x 0.576 0.614 0.558 0.608 0.495 0.624 0.594 0.609

0.697 0.600 0.673 0.596 0.754 0.599 0.701 0.593

128

x x 0.453 0.593 0.435 0.589 0.420 0.589 0.424 0.583

x 0.548 0.607 0.526 0.607 0.456 0.618 0.530 0.608

x 0.566 0.612 0.538 0.606 0.513 0.626 0.608 0.611

0.682 0.600 0.670 0.594 0.722 0.593 0.674 0.587

256

x x 0.443 0.584 0.436 0.587 0.362 0.584 0.319 0.585

x 0.549 0.609 0.553 0.605 0.478 0.615 0.520 0.602

x 0.561 0.612 0.568 0.608 0.474 0.622 0.509 0.601

0.691 0.600 0.637 0.593 0.647 0.597 0.631 0.587

3

64

x x 0.360 0.563 0.359 0.572 0.377 0.564 0.408 0.568

x 0.434 0.598 0.427 0.595 0.458 0.599 0.435 0.596

x 0.438 0.607 0.411 0.605 0.458 0.607 0.458 0.605

0.497 0.652 0.445 0.643 0.503 0.647 0.474 0.647

128

x x 0.485 0.611 0.474 0.614 0.541 0.616 0.524 0.635

x 0.521 0.635 0.513 0.637 0.554 0.649 0.498 0.653

x 0.520 0.636 0.515 0.643 0.497 0.641 0.553 0.652

0.498 0.650 0.461 0.649 0.543 0.662 0.532 0.668

256

x x 0.549 0.639 0.562 0.656 0.586 0.643 0.568 0.671

x 0.566 0.650 0.541 0.653 0.582 0.656 0.535 0.662

x 0.554 0.646 0.526 0.656 0.564 0.651 0.579 0.665

0.511 0.659 0.501 0.661 0.527 0.673 0.549 0.688

Table 6: An overview of the results for dataset 1 using iBCM. The gray scale for AUC indicates

relatively performance over all parameter settings.

dataset 1 for higher support values (0.1/0.05), and lower for lower support values

(0.01) indicating that these pages from the large alphabet are not as frequently

occurring as the less diverse page alphabet of dataset 1. The minimum page

length mpl does not impact AUC and F1-score performance drastically. The

page-cutoff pc has an effect on AUC with an overall lower score for dataset 2

when pc = 3. Using more detailed, low-level page information leading to more

behavioural patterns to be discovered hence does not necessarily result in better

performance, but most of the best results for dataset 1 can be found for a longer

page-cutoff in combination with lower support. The F1-score mimics this result

as well, with a higher page-cutoff resulting in the best performance due to a

higher precision. The lower the support, and the higher the number of features

returned, the better the results for dataset 1 in terms of AUC/F1, although the
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mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

pc sup. |F | F1 AUC |F | F1 AUC |F | F1 AUC |F | F1 AUC

2 0.1 10 0.707 0.767 9 0.689 0.779 10 0.649 0.785 9 0.670 0.793

2 0.05 14 0.694 0.768 13 0.662 0.778 14 0.612 0.783 13 0.557 0.796

2 0.01 27 0.695 0.770 25 0.671 0.778 27 0.668 0.784 25 0.703 0.799

3 0.1 14 0.710 0.769 18 0.667 0.773 14 0.690 0.766 18 0.670 0.772

3 0.05 45 0.668 0.765 60 0.662 0.782 45 0.644 0.777 60 0.692 0.807

3 0.01 249 0.678 0.774 311 0.702 0.796 249 0.711 0.793 311 0.710 0.813

Table 7: An overview of the results for dataset 1 using node2bits.

mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

(1) (2) (3) (4) |F | F1 AUC |F | F1 AUC |F | F1 AUC |F | F1 AUC

x x x x 3,422 0.857 0.940 2,902 0.809 0.926 3,422 0.848 0.898 2,902 0.858 0.891

x x x 2,211 0.827 0.958 1,879 0.852 0.962 2,211 0.804 0.908 1,879 0.851 0.919

x x x 3,419 0.909 0.965 2,899 0.913 0.965 3,419 0.900 0.950 2,899 0.890 0.951

x x 2,208 0.933 0.977 1,876 0.927 0.975 2,208 0.915 0.962 1,876 0.913 0.954

x x x 3,261 0.735 0.902 2,757 0.761 0.909 3,261 0.739 0.860 2,757 0.770 0.868

x x 2,050 0.721 0.923 1,734 0.697 0.907 2,050 0.676 0.881 1,734 0.730 0.884

x x 3,258 0.875 0.951 2,754 0.864 0.949 3,258 0.835 0.924 2,754 0.830 0.918

x 2,047 0.872 0.959 1,731 0.854 0.944 2,047 0.850 0.945 1,731 0.840 0.942

x x x 1,375 0.711 0.866 1,171 0.698 0.858 1,375 0.749 0.838 1,171 0.622 0.810

x x 164 0.704 0.874 148 0.721 0.875 164 0.609 0.831 148 0.697 0.839

x x 1,372 0.839 0.912 1,168 0.834 0.910 1,372 0.827 0.895 1,168 0.819 0.885

x 161 0.815 0.909 145 0.811 0.908 161 0.807 0.904 145 0.798 0.893

x x 1,214 0.527 0.723 1,026 0.493 0.703 1,214 0.564 0.724 1,026 0.535 0.711

x 3 0.337 0.587 3 0.328 0.564 3 0.306 0.553 3 0.303 0.545

x 1,211 0.805 0.768 1,023 0.802 0.771 1,211 0.779 0.771 1,023 0.791 0.779

Table 8: An overview of the results for dataset 1 using the user-agent feature-based approach.

increase is not strong meaning that even for lower support values good AUC/F1

can be obtained with fewer features. For dataset 2, the effects of support are

not as clear, with the best AUC/F1 typically with lower support and lower

page-cutoff. In general it does not seem to pay off to use very low support and

longer page-cutoff, especially when the alphabet of the web pages is lower which

is the case for dataset 1.

Finally, node2bits achieves the lowest AUC, with peaks at 66/67 and 69/63%

for the two values of mv and datasets 1/2, which is the lowest of the three ap-

proaches. For the F1-score, this comes down to 70/64 and 75/60%. The results
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mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

pc |F | (1) (2) F1 AUC F1 AUC F1 AUC F1 AUC

2

64

x x 0.373 0.593 0.383 0.587 0.361 0.571 0.364 0.571

x 0.400 0.606 0.397 0.594 0.376 0.581 0.371 0.574

x 0.404 0.610 0.384 0.601 0.373 0.586 0.390 0.580

0.473 0.673 0.367 0.647 0.473 0.634 0.405 0.617

128

x x 0.447 0.599 0.440 0.594 0.425 0.582 0.428 0.579

x 0.432 0.613 0.407 0.603 0.418 0.594 0.402 0.584

x 0.422 0.621 0.412 0.606 0.390 0.594 0.401 0.580

0.442 0.662 0.415 0.636 0.444 0.627 0.412 0.613

256

x x 0.480 0.610 0.480 0.608 0.453 0.593 0.472 0.588

x 0.454 0.622 0.447 0.611 0.436 0.597 0.441 0.598

x 0.434 0.626 0.438 0.613 0.441 0.605 0.437 0.596

0.434 0.660 0.423 0.637 0.423 0.624 0.446 0.612

3

64

x x 0.401 0.586 0.359 0.566 0.376 0.560 0.356 0.549

x 0.411 0.593 0.381 0.580 0.393 0.570 0.372 0.570

x 0.436 0.602 0.384 0.589 0.401 0.579 0.369 0.573

0.638 0.667 0.441 0.635 0.595 0.630 0.426 0.610

128

x x 0.441 0.590 0.409 0.575 0.412 0.568 0.386 0.558

x 0.443 0.600 0.411 0.583 0.430 0.576 0.395 0.568

x 0.446 0.609 0.404 0.590 0.419 0.579 0.420 0.572

0.508 0.645 0.414 0.616 0.506 0.616 0.408 0.601

256

x x 0.486 0.603 0.439 0.590 0.469 0.579 0.436 0.571

x 0.452 0.606 0.431 0.595 0.443 0.586 0.429 0.584

x 0.467 0.612 0.415 0.592 0.447 0.587 0.431 0.579

0.509 0.643 0.417 0.614 0.496 0.620 0.424 0.603

Table 9: An overview of the results for dataset 2 using iBCM.

are relatively insensitive to the embedding dimension (|F|), and are highest

when neither device, nor location are used which is especially pronounced for

dataset 2 in terms of AUC and dataset 1 in terms of F1-score. In general, the

higher embedding dimensions do contribute to better AUC for dataset 1, but

it is unclear whether the incorporation of the other variables is necessary. The

higher page-cutoff does lead to better results for dataset 1 in terms of AUC,

but not F1-score. The impact of incorporating device information (1) does not

seem to have any impact, while incorporating location information (2) slightly

boosts performance. Nevertheless, it seems these results are not as effective in

terms of predictive performance as the two other approaches.

In general, retrieving page information using pc at a deeper level does not

necessarily result in better performance for the two sequence-based approaches.

Given mv = 2/3, it appears that mostly node2bits can leverage some extra
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mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

pc mv sup. —F— F1 AUC —F— F1 AUC —F— F1 AUC —F— F1 AUC

2 2 0.1 10 0.733 0.692 10 0.711 0.684 10 0.700 0.666 10 0.710 0.664

2 2 0.05 20 0.729 0.697 22 0.712 0.700 20 0.694 0.670 22 0.689 0.678

2 2 0.01 103 0.708 0.715 119 0.675 0.707 103 0.675 0.684 119 0.628 0.673

3 2 0.1 10 0.742 0.638 12 0.718 0.628 10 0.729 0.629 12 0.686 0.626

3 2 0.05 20 0.741 0.647 23 0.718 0.656 20 0.691 0.634 23 0.691 0.649

3 2 0.01 164 0.707 0.690 197 0.674 0.678 164 0.680 0.670 197 0.645 0.661

Table 10: An overview of the results for dataset 2 using node2bits.

mv=2 mv=3

mpl=2 mpl=3 mpl=2 mpl=3

(1) (2) (3) (4) |F | F1 AUC |F | F1 AUC |F | F1 AUC |F | F1 AUC

x x x x 3,559 0.918 0.970 3,331 0.915 0.967 3,559 0.909 0.965 3,331 0.901 0.958

x x x 2,492 0.887 0.963 2,357 0.878 0.958 2,492 0.859 0.952 2,357 0.847 0.943

x x x 3,556 0.922 0.973 3,328 0.913 0.968 3,556 0.910 0.965 3,328 0.911 0.963

x x 2,489 0.874 0.982 2,354 0.882 0.971 2,489 0.879 0.937 2,354 0.869 0.919

x x x 3,368 0.864 0.949 3,142 0.866 0.946 3,368 0.853 0.941 3,142 0.851 0.931

x x 2,301 0.791 0.923 2,168 0.785 0.918 2,301 0.761 0.908 2,168 0.748 0.892

x x 3,365 0.872 0.958 3,139 0.869 0.958 3,365 0.852 0.947 3,139 0.852 0.944

x 2,298 0.861 0.957 2,165 0.866 0.941 2,298 0.851 0.909 2,165 0.844 0.892

x x x 1,261 0.828 0.920 1,166 0.823 0.917 1,261 0.825 0.915 1,166 0.805 0.904

x x 194 0.766 0.853 192 0.739 0.834 194 0.690 0.814 192 0.654 0.794

x x 1,258 0.856 0.934 1,163 0.864 0.931 1,258 0.842 0.922 1,163 0.848 0.917

x 191 0.873 0.867 189 0.869 0.858 191 0.867 0.864 189 0.807 0.847

x x 1,070 0.711 0.824 977 0.707 0.823 1,070 0.678 0.803 977 0.674 0.800

x 3 0.728 0.681 3 0.656 0.667 3 0.499 0.617 3 0.460 0.607

x 1,067 0.825 0.854 974 0.830 0.854 1,067 0.819 0.833 974 0.819 0.835

Table 11: An overview of the results for dataset 2 using the user-agent feature-based approach.

performance with a higher pc, while for iBCM mostly the F1-score increases

while AUC is lower. This means that the extra features generated by iBCM

are likely not frequent enough to be discriminative to match even very specific

visitors.

Overall, there seems to be a prevalent trade-off between the number of fea-

tures and predictive performance as illustrated in Figure 1. The best precision

and AUC are obtained by using user-agent features which often have a high

number of values resulting in feature space sizes exceeding 2,000, with the low-

est value achieving AUC over 70% being 145 for dataset 1 and 191 for dataset

2. iBCM reports similar AUC regardless of support values and hence feature
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(a) iBCM (b) n2b (c) User-agent

(d) iBCM (e) n2b (f) User-agent

Figure 1: Boxplots of the AUC results for different bins for the number of features of all

approaches (top row = dataset 1, bottom row = dataset 2).

space size. Lower support values resulting in |F| as low as 10 can already

obtain AUC close to the best performance. For example, iBCM achieves |F|

9/20, and AUC 80/70% for datasets 1/2 where user-agent features achieve |F|

145/189, and AUC 91/86%. This indicates that obtaining a very detailed pic-

ture is still necessary to uniquely identify users as the same, however, using

sequence fingerprinting can already provide an anonymous proxy which is ca-

pable of achieving good results. While it is possible to reduce the feature space

of user-agent features using, e.g., PCA, this would make the interpretation of

results harder again. Using wrapper methods to select features on the other

hand is computationally costly.

4.5.2. Variable Analysis and Decision Making

As previously discussed, using sequential features has the main benefit of

offering results that are still interpretable instead of being part of an embedded

structure or neural network. Hence, it is possible to grasp how each of them
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influences the predictive outcome.

In Table 12, an overview is given of the behavioural features that had the

highest reduction in Gini impurity throughout the random forest that generated

the highest AUC in Tables 6 and 11 (dataset 1, AUC 81% for support 0.01 with

a minimum number of visits of 2, page cutoff of 3, and minimum page length 3).

In this case, fewer two-item constraint were withheld, and mostly cardinality

(absence/existence/exactly) seems to influence the prediction. Note that ‘direct’

indicates the channel used for entering a website.

Some clear indications can be gathered from these features on how match-

ing was performed. It appears that the absence (yes/no) of particular product

categories are discriminatory (clothing and groceries), and most importantly,

the absence of a checkout/basket/order step is effective in finding matching

sessions. This indicates that returning visitors are likely to be the ones who

eventually make a purchase and are more identifiable towards having similar

behaviour. Furthermore, the consultation of the store-locator page and access-

ing a wishlist are strong predictors, again hinting that visitors further on in the

conversion process are easier to stitch. The constraints containing less frequent

items which are not reducing Gini impurity as much on a global level act as

further match steering for individuals in combination with these major trends.

Binary constraints also indicate that particular sequences are predictive, e.g.,

visiting clothing accessories after search results (response), or not returning to

the more general clothing/groceries page after consulting a particular accessory

or product respectively (not succession). In combination, all these features are

capable of discerning which users are similar. E.g., it might be that particular

customers are prone to visit some websites twice before visiting a wishlist and

checkout, while others proceed to checkout immediately. Added with product

information (e.g., did the customer buy groceries or clothing), this can quickly

create an intricate, unique picture of a visitor. This can aid in verifying whether

the matching makes sense, e.g., that two customers are not matched with com-

pletely different product interests, or different browsing behaviour. This would

be an arduous task for, e.g., matching based on IP address or a combination of
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Constraint Antecedent Consequent

Absence ’clubcard’, ’boost’

Absence ’direct’, ’clothing-accessories’

Absence ’direct’, ’clothing’

Absence ’direct’, ’my wishlist’

Absence ’direct’, ’search-results’

Absence ’groceries’

Absence ’groceries’, ’basket’

Absence ’groceries’, ’checkout’

Absence ’groceries’, ’order’

Absence ’groceries’, ’product’

Absence ’store-locator’, ’uk’

Chain response ’groceries’ ’groceries’, ’product’

Exactly ’store-locator’, ’uk’

Exactly(2) ’direct’, ’search-results’

Exactly(2) ’groceries’

Exactly(2) ’groceries’, ’product’

Existence(3) ’direct’, ’clothing-accessories’

Existence(3) ’direct’, ’my wishlist’

Existence(3) ’direct’, ’search-results’

Existence(3) ’groceries’, ’checkout’

Existence(3) ’groceries’, ’product’

Init ’direct’, ’clothing-accessories’

Init ’groceries’

Init ’groceries’, ’product’

Init ’store-locator’, ’uk’

Not succession ’direct’, ’clothing-accessories’ ’direct’, ’clothing’

Not succession ’groceries’, ’product’ ’groceries’

Precedence ’groceries’, ’basket’ ’groceries’, ’product’

Response ’direct’, ’search-results’ ’direct’, ’clothing-accessories’

Succession ’groceries’ ’groceries’, ’product’

Table 12: Overview of the most frequently similar sequence patterns for matching sessions.

geolocation and device where often values are too specific to be matched without

extensive prior knowledge. Finally, it also gives insights into users’ behavior in

general, and how they navigate a website in different ways which can support

web site layout optimisation and marketing efforts.

5. Managerial implications

In this paper we elaborate on the web page visit fingerprinting approach,

which addresses the challenges marketing managers are facing. Specifically, this
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paper derives the following managerial implications:

• First, currently web users access ecommerce websites using different de-

vices, or they access the sites using a device they share with others. This

is problematic for marketing managers, as multi-device and shared device

use renders them unable to identify individual users and depict their web

browsing patterns. As a result, they are unable to design websites that

would suit users’ individual needs and behaviours. This paper shows that

session stitching can be performed using sequential rules from website data

which allows to identify users based on browsing paths, product discovery,

and more to create an intricate image of how a website is used, as well

as the profiles of the people visiting it. Marketing managers can use this

approach to develop a profile of online persona that will depict a user who

uses multiple devices to access the site, or shares a device with others.

Such profile will allow them to gain a good understanding of individual

web users browsing patterns, which can inform web design. This is crit-

ical, as web design does not only effect consumer online experience but

also conversion rates [42].

• Key to the development of a profile of online persona is data. Although it

may seem that a vast array of data is available as a result of users’ engage-

ment with the website, access to such data often depends on particular

vendors such as Google Analytics. Moreover, from the practical point of

view, not all available information can be easily used and processed. To

mitigate those issues, marketing managers can rely on our approach as the

use of sequence fingerprinting is not dependent of particular vendors, and

it can be used across platforms. Moreover, since our approach does not

rely on sensitive data types such as IP and location, or require domain

knowledge to match such variables as introduced in [1], managers can eas-

ily process available information and derive insights. In practice, this has

been instrumental to the company providing the data as pre-processing

geolocation data is often considered tedious. It is also vital to other ecom-
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merce companies, as although they have access to the ’new gold’ struggle

to use it for decision-making.

• One of the fundamental tasks of marketing managers is to ensure users

privacy online. GDPR provides a useful guideline to follow, but at the

same time it limits marketing managers in terms of information they can

use. Our approach minimizes limitations imposed by GDPR and allows

to extract useful information without compromising user privacy as item

sets are hard to reverse engineer [9], meaning despite the use of user-based

information a level of privacy can be retained. This allowed the company

providing the data to also use the insights with different ecommerce clients

by having initial customer profiles ready. Other companies can also use

this approach to enrich the user profile with valuable information without

compromising on GDPR principles.

The insights, however, are so far only verified in the context of ecommerce.

Other websites with different setups in terms of topology, or usage (with extra

login and/or security) might benefit from using more specific information such

as IP and location.

6. Conclusion and Future Work

This work elaborates a web page visit fingerprinting approach using sequence

mining and compares it to other session stitching approaches tailored to web

logs gathered from the domain of ecommerce. This new approach allows to

utilise seemingly disjoint data, minimize challenges including but not limited

to GDPR, and divide actionable insights to support decision-making on ses-

sion matching which feeds into further marketing and web site analysis. It was

empirically shown that with a relatively low number of sequential features, it

is possible to obtain a good predictive result to identify matching sessions of

the same users which is privacy-insensitive compared to the strongly reveal-

ing user-agent features that allow to uniquely identify sessions from the same
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users. Furthermore, it outperforms embedding-based approaches while retain-

ing a strong level of interpretability of the generated features. This was further

illustrated by a number of managerial implications which were drawn from the

result and aid decision-making for ecommerce stakeholders.

In future studies, we aim to look into larger datasets over long periods

of time, potentially in combination with recurrent neural network-based ap-

proaches to capture the change in sequential behavior of visitors. We plan

to apply the proposed approach to different contexts, e-commerce structures

and industry sectors to demonstrate its genaralizability. Furthermore, we in-

tend to investigate the influence of parameters further, more specifically whether

stronger requirements on user visits helps further identify matching. Finally, we

intend to investigate the use of dimensionality reduction techniques in combina-

tion with regular user-agent variables which can be combined with the sequential

features.
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