Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

G. Suarez-Tangil, J. E. Tapiador, F. Lombardi and R.
D. Pietro, "Alterdroid: Differential Fault Analysis of
Obfuscated Smartphone Malware," in IEEE
Transactions on Mobile Computing, vol. 15, no. 4, pp.
789-802, 1 April 2016

DOI: 10.1109/TMC.2015.2444847

©2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/TMC.2015.2444847

ALTERDROID: Differential Fault Analysis of
Obfuscated Smartphone Malware

Guillermo Suarez-Tangil, Juan E. Tapiador, Flavio Lombardi, Roberto Di Pietro

Abstract—Malware for smartphones has rocketed over the last years. Markiet operators face the challenge of keeping their stores
free from malicious apps, a task that has become increasingly complex as malware developers are progressively using advanced
technigues to defeat malware detection tools. One such technigue commonly cbserved in recent malware samples consists of hiding
and obfuscating modules containing malicious functionality in places that static analysis tools overlook (e.g., within data objects). In
this paper, we describe ALTERDROID, a dynamic analysis approach for detecting such hidden or obfuscated malware components
distributed as parts of an app package. The key idea in ALTERDROID consists of analyzing the behavioral differences between the
original app and a number of automatically generated versions of it, where a number of modifications (faults) have been camsfully
injected. Observable difierences in terms of activities that appear or vanish in the modified app are recorded, and the resulting
difierential signature is analyzed through a pattern-matching process driven by rules that relate different types of hidden functionalities
with patterns found in the signature. A thorough justification and a description of the proposed model are provided. The extensive
experimental resuls obtained by testing A LTERDROID over relevant apps and malwane samples support the quality and viability of our

proposal.

Index Terms—Computer security, Mahware, Mobile computing

1 INTRODUCTION

Smartphones present a number of security and privacy
concerns that are, in many respects, even more alarming
than those existing in traditional computing environ-
ments [1]. Most smartphone platforms are equipped with
multiple sensors that can determine user location, ges-
tures, moves and other physical activities, to name a few.
Smartphones also feature high-quality audio and video
recording capabilities. Sensitive pieces of information
that can be captured by these devices could be easily
leaked by malware residing on the smartphone. Even
apparently harmless capabilities have swiftly turned
into a potential menace. For example, access to the
accelerometer or the gyroscope can be used to infer the
location of screen taps and, therefore, to guess what the
user is typing (e.g., passwords or message contents) [2].
Similarly, the Radio Data System (RDS) embedded in
most AM/FM channels can be exploited to inject attacks
on Software Defined Radio (SDR) systems [3].

A major source of security problems is precisely the
ability to incorporate third-party applications from avail-
able online markets. Thus, security measures at the mar-
ket level constitute a primary line of defense [4]. Many
market operators carry out a revision process over sub-

o G. Suarez-Tangil and |.E Tapiador are with the Dept. of Computer Sdence,
Universidad Carlos 111 de Madrid, 28911 Leganes, Madrid, Spain.
E-mul: guillermo.suarez. tangil@ucim.es (G. Suarez-Tangil),
jesteveziding. ucim.es (LE. Tapiador).

E Lombards is with IAC-CNE, via dei Taurini 19, 00185, Rome, Faly.
E-muil: flaviolombardi@crrit (F. Lombards).

Eoberto D§ Pietro is with Bell Labs, Cyber Security Research, 91620
Nozay, Paris, France. He is also with Maths Dept. Unin. of Padua, Ttaly.
E-muil: roberto.di_pictro@alcatel-ducent.com (. Di Pietro)

mitted apps that involves some form of security testing,
Official details about such revisions remain unknown,
but the constant presence of malware in many markets
and recent research studies [5] suggest that operators
cannot afford to perform an exhaustive analysis over
each app submitted for release to the general public.
This is further complicated by the fact that determining
which applications are malicious and which are not is
still a formidable challenge, particularly for the so-called
grayware—namely, apps that are not fully malicious but
that constitute a threat to the user security and privacy.

1.1 Obfuscated Smartphone Malware

The rapid growth of smartphone sales has come hand
in hand with a similar increase in the number and
sophistication of malicious software targeting these plat-
forms. For example, according to the mobile threat report
published by Juniper Networks in 2012, the number
of unique malware variants for Android increased by
33255% during 2011 and by 614% between 2012 and
2013 [6]. Smartphone malware has become a rather
profitable business due to the existence of a large number
of potential targets and the availability of reuse-oriented
malware development methodologies that make exceed-
ingly easy to produce new samples.

Malware analysis is a thriving research area with a
substantial amount of still unsolved problems [7], [6],
[8]. In the case of smartphones, the impressive growth
both in malware and benign apps is making increasingly
unaffordable any human-driven analysis of potentially
dangerous apps. This has consolidated the need for
intelligent analysis techniques to aid malware analysts in

their daily functions. Furthermore, smartphone malware
is becoming increasingly stealthy [9] and recent specimes
are relying on advanced code obfuscation techniques to
evade detection by security analysts [10]. For instance,
DroidKungFu has been one of the major Android mal-
ware outbreaks. It started on June 2011 and has already
at least six known different variants. It has been mostly
distributed through official o r a lternative m arkets by
piggybacking the malicious payload into a variety of
legitimate applications. Such a payload is encrypted into
the app’s assets folder and decrypted at runtime using
a key stored in a local variable and located at one class.
Another remarkable example is GingerMaster, the first
malware using root exploits for privilege escalation on
Android 2.3. The main payload was stored as PNG and
JPEG pictures in the assets file, w hich were interpreted
as code once loaded by a small hook within the app.

More sophisticated obfuscation techniques, particu-
larly in code, are starting to materialize (e.g., stego-
malware [11]). These techniques and trends create an
additional obstacle to malware analysts, who see their
task further complicated and have to ultimately rely
on carefully controlled dynamic analysis techniques to
detect the presence of potentially dangerous pieces of
code.

1.2 Overview and Contributions

In this paper we describe ALTERDROID, a tool for de-
tecting, through reverse engineering, obfuscated func-
tionality in components distributed as parts of an app
package. Such components are often part of a malicious
app and are hidden outside its main code components
(e.g. within data objects), as code components may be
subject to static analysis by market operators. The key
idea in ALTERDROID consists of analyzing the behavioral
differences between the original app and an altered ver-
sion where a number of modifications (faults) have been
carefully introduced. Such modifications are designed to
have no observable effect on the app execution, provided
that the altered component is actually what it should be
(ie., it does not hide any unwanted functionality). For
example, replacing the value of some pixels in a picture
or a few characters in a string encoding an error message
should not affect the execution. However, if after doing
so it is observed that a dynamic class loading action
crashes or a network connection does not take place, it
may well be that the picture was actually a piece of code
or the string a network address or a URL

At high level, ALTERDROID has two differentiated
major components: fault injection and differential ana-
lysis. The firstonetakesa c andidate a pp—the entire
package—as input and generates a fault-injected one.
This is done by first e xtracting a Il c omponents i n the
app and then identifying those suspicious of containing
obfuscated functionality. Such an identification is done
on an anomaly-detection basis by comparing specific
statistical features of the component's contents with a

predefined model for each possible type of resource (ie.,
code, pictures and video, text files, databases, etc.). Faults
are then injected into candidate components, which are
subsequently repackaged, together with the unaltered
ones, into a new app. This process admits simultaneous
injection of different faults into different components
and it is driven by a search algorithm that attempts to
identify where the obfuscated functionality is hidden.
Both the original and the fault-injected apps are then exe-
cuted under identical conditions (ie. context and user
inputs), and their behavior is monitored and recorded in
the form of two behavioral signatures. Such signatures
are merely sequential traces of the activities executed
by the app, such as for example opening a network
connection, sending or receiving data, loading a dynamic
component, sending an 5MS, mnteracting with the file
system, etc. Both behavioral signatures are then treated
as in a string-to-string correction problem, in such a way
that computing the Levenshtein (edit) distance between
them returns the list of observable differences in terms of
msertions, deletions, and substitutions. Such a list, called
the differential signature, is finally matched against a
rule-set where each rule encodes a relationship between
the type of presumably hidden functionality and certain
patterns in the differential signature.

Our prototype implementation of ALTERDROID builds
on a number of Android open source tools that facilitate
tasks such as extracting components [12], repackaging
them back into an app [13], and analyzing dynamic
behavior [14]. The present ALTERDROID base platform
does not have a fully comprehensive set of fault injection
operators and differential rules. In fact, ALTERDROID
is designed and built to allow ease of tailoring and
flexibility in functionality addition. Required extensions
depend on the kind of usage the proposed system is built
for. In order to build a production system, of course,
the entire set of possible operators has to be created.
However, this is out of the scope of present paper, aimed
at showing and discussing benefits and limitations of the
proposed approach rather than proving its completeness
of suitability for production usage in its present shape.

The main contributions of this paper can be summa-
rized in what follows:

+ We introduce the notion of differential fault analysis
for detecting obfuscated malware functionality in
smartphone apps.

s We provide simple yet powerful enough models for
fault injection operators, behavioral signatures and
rule-based analysis of differential behavior.

s We describe the functional components of ALTER-
DROID, a prototype implementation of our diffe-
rential fault analysis model for Android apps. The
system includes instantiations for key tasks such
as identifying components to be faultinjected and
a search-based approach to track down obfuscated
components in an app. Moreover, ALTERDROID's
functional architecture supports distributed deploy-
ment of different modules, which allows runming

various analysis tasks in parallel and also poten-
tially offloading them to the cloud.

+ We illustrate our approach by providing a step-
by-step analysis of three relevant Android mal-
ware samples that incorporate hidden functionality
in repackaged apps: DroidKungFu, AnserverBot,
and GingerMaster.

s We evaluate the performance of our approach over
a number of malware samples found in the wild.
Specifically, we use ALTERDROID to analyze around
10000 apps from a malware repository (VirusShare),
an unofficial Android Market (Aptoide), and Google
Flay (GF).

» Finally, we provide an open-source version of AL-
TERDROID' to foster further research in automated
tools for advanced smartphone malware analysis.

The rest of this paper is organized as follows. In

Section 2 we introduce the formal models for fault
injection and differential analysis. Section 3 describes
ALTERDROID's architecture and its key functional com-
ponents, and provides an overview of our proof-of-
concept implementation. Subsequently in Section 4 we
discuss the analysis of three Android malware samples
with ALTERDROID and present a performance evalua-
tion. Section 5 provides an overview of related work in
this area and compares ALTERDROID to other proposals
targeting the problem of Android malware detection.
Finally, in Section 6 we conclude the paper by summa-
rizing our main contributions and discussing limitations
and directions for future research.

2 A DIFFERENTIAL FauLT ANALYSIS MODEL

This section introduces the theoretical background used
in ALTERDROID to:

» inject faults into apps;

» represent behavioral differences between apps;

» deduce properties from such behavioral differences

considering injected faults and observed differences.

The overall dynamics of the differential fault analysis
process (ie., the mechanism governing which faults are
injected and where) is external to this model and will be
discussed in Section 3.

2.1 Fault Injection Model
An app P can be seen as a collection of components

P={c1,09,...,cx} (1)

A component can be composed of a number of classes
(i.e., code), but also other resources that are dynamically
accessed, such as for example asset files. Components
have a type, such as for example code, picture, video,
database, etc. A type function v(c) can be defined that
returns the type of component c

1. Code and documentation can be downloaded from http:/ fwwow
seginfucdmes/ ~guillermo-suamz- tangil / Alterdroid /

Fault conditions can be injected into an app by altering
one or more of its components. If C is the set of all
possible app components, a Fault Injection Operator
(FIO) is a transformation

oo 9, 9T @)
¥ (P) =P\ {e} u {¥(e)}

That is, T%(P) retums a modified version of P where
component ¢; has been replaced by ¥(c;). Depending
on the functionality of ¢ and on the nature of the
modifications introduced by ¥, replacing ¢ by ¥(c) may
(or may not) translate into observable differences in the
execution of P.

In this paper, we restrict ourselves to FIOs that make
alterations to data components only, not to instructions.
Data components include the value of variables found in
the code and also asset files such as databases, pictures,
and audio and video files. We will abuse notation and
write 7(¥%) for 7(c); i.e., we consider that the type of
a FIO 1s the type of all components it can be applied to.

FIOs can be arbitrarily complex and, in some cases,
their operation may depend on the type and/or current
value of the component to be altered. However, some
simple FIOs treat components as bit strings, such as for
example:

s rrept(-): replaces the value of component ¢ for a

randomly chosen bit string,.

» zero®(-): replaces the value of component ¢ for a

string of zeros of the same length.

o rmutj(-): flips the j-th bit of of compornent

The above FIOs are rather generic. In some cases,
we might want to define datatype-specific operators.
These will allow modifying specific data objects (e.g.,
multimedia files) in a syntax-preserving way, when the
focus is on changing the content without rendering the
object unusable.

2.2 Modeling Differential Behavior

A key task in our system is the analysis of the behavioral
differences between an original app and a slightly modi-
fied version of it after applying a FIO. We next introduce
a model to represent traces of activities and differences
between such traces.

2.2.1 Behavioral Signatures

An app interacts with the platform where it is executed
by requesting services through a number of system
calls. These define an interface for apps that need to
read / write files, send/ receive data through the network,
place a phone call, etc. Rather than focusing on low-
level system calls, in this paper we will describe an app’s
behavior through the activities it executes (see also [15]).
In some cases, there will be a one-to-one correspondence
between a behavioral activity and a system call, while in
others a behavioral activity will encompass a sequence of

system calls executed in a given order. In what follows,
we assume that

A={ay,a0,...,a5} (3)

is a set of all relevant and observable activities an app
can execute.

The execution flow of an app F may follow different
paths depending on its inputs. We group such inputs
into two main classes:

s A sequence u of user-provided inputs, such as for

example those acquired through the touchscreen.

s A sequence t of contexts, defining the state of the
environment when the execution takes place. Each
context (state) is represented by a set of variables
that provide the app with information such as cur-
rent location, time, energy level, temperature, etc.

We will denote by P{ujt) the execution of P with user
inputs u in context t.

The observable behavior resulting from the execu-
tion of P(ult) is summarized in a behavioral signature
a[P(ult)], this being a time series given by

o[P(ult)] = {s1,52,...,5a),

Notice that the adopted signature model does not take
into account the duration of each behavioral activity or
the time elapsed between (each two of) them, but only
their relative ordering. We will abuse notation and omit
the associated app and its inputs when it is irrelevant or
clear from context.

Finally, we will denote by len(r) the length of signa-
ture o, defined as the number of activities in the series.

s € A. (4)

222 Differential Signatures

We are interested in analyzing the differences between
two observed behaviors given by their respective be-
havioral signatures. We approach this problem as one
of string-to-string correction, where differences are re-
spresented as the minimum number of edit operations
needed to transform one signature into the other. Given
a behavioral signature o = (51, 52,..., 8n), we define the
next three families of signature transformation operators
(STO) for alla € A and 1 € [1,n]:

o Insp(o) = (51,1 5,8, 841, 5n)
o Delf(o) = {51, .., 851, 5041, 50}
s Subf(a) = {s1,...,8_1,8,8541,---5n)
Let
0 =_J (insf U Del{ U Subf) (5)

1,2

be the set of all possible 5TOs. Given two behavioral
signatures o and o», we define the differential signature
Aloy, o) as an ordered sequence of 5TOs

Aoy, 09) = {oy,09,...,0¢) o, €0 (6)

such that
o 0 Op—1°---0o1(o1) = o3, (7)

where o;00; denotes de composition of 5TOs o; and o;. In
other words, the differential signature A(ezy, o2) provides
a sequence of insertions, deletions, and substitutions that
transforms o into o2, Notice that, in general, Aoy, o2) #
Moa, o).

For the purposes of this work, we are interested in
minimal differential signatures, i.e., sequences of mini-
mum length. The most straightforward way to compute
the minimal differential signature is by computing the
Levenshtein distance [16] (also known as edit distance)
between oy and o9, assuming that all operators have
equal cost [17]. This computation returns not only the
distance, but also the optimal differential signature.

2.3 Analyzing Differential Signatures

Let
P =®(P) =¥ oWl o0 Uf(P) ()

be the app resulting after the sequential application of
FIOs Wy,..., ¥, to components cy,...,c. of app P. Let
o[P] and o[¥(P)] be the behavioral signatures obtained
after executing P and ¥(P) under the same conditions?,
and let A(o[P],c[®(P)]) be their differential signature.
The analysis model used in this paper is based on
deducing properties of P from the presence or absence
of certain patterns in A(o[P], o[¥(P)]) and the properties
of the FID ¥. We next describe these two elements in
detail.

2.3.1 FO Classes

We identify two broad classes of FIOs:

«» A FIO 9% is said to be indistinguishable if
A(c[P],o[T%(P)]) = @ for all apps P containing
component ¢, In other words, a FIO is indistin-
guishable if it does not affect the execution flow
of any app and, therefore, the behavioral signatures
before and after applying it coincide.

« A FIO 9% is said to be distinguishable if
A(o[P],o[T%(P)]) # O for all apps P containing
component ¢;. Thus, distinguishable FIOs always
manifest as nonempty differential signatures.

In what follows, the predicate ind(¥%) models this

property:
¢ e | true if ¥% is indistinguishable
o S { false otherwise ©)

2.3.2 Properties of Differential Signatures

Fatterns in differential signatures are modeled as first-
order logical predicates upon which Boolean formulae
can be defined. Thus, analyzing a differential signature
reduces to evaluating a number of Boolean formulae
linked to properties of the app and the FIO, ie,

P has property © = &, I[\I'] ﬁl{a’["f-’},a’[‘[‘{‘]}}]]} = true.
(10)

2. That is, the same sequence of user inputs and contexts,

We consider two basic predicates:

. Equal{ﬂhﬂg} = true iff Ay = Ag, where Ay and Ao
are differential signatures. Notice that the empty set
is a valid differential signature.

« contains(A. o) = true iff A = {o1,00,...,08) and
Jo; € A such that o; = 0.

Standard symbols will be used for Boolean formulae,

including quantifiers (3, ¥), negation (=), conjunction (),
and disjunction (V).

233 Examples
We next illustrate the concepts introduced above through
a number of examples.

Example 1. Assume that ¢, is an icon image used
by an app P in the GUL Modifying some pixels of
such an icon, or even replacing it by another valid
icon should not affect at all the execution flow of P. If
nonetheless the icon is replaced and the modified app
behaves differently from the original app under exactly
the same conditions, it can be deduced that the original
icon contained some functionality, for instance a piece of
compiled code masqueraded as an icon. This mtuition
can be generalized through the following rule (hidden
functionality in component, or HFC):

Byurpc : ¢ € P contains hidden functionality <=
ind(¥¢) A —equal(A(a[P],a[T(P)]),0),

where ¥5(FP) is the FIO that replaces icon ¢ in P by
another valid icon.

Example 2. A more specific case of the situation dis-
cussed in the previous example occurs when modifying
a component ¢ results in the absence of a dynamic
loading action, which is used to load code pieces into
memory. In such a case, it may be possible that ¢ contains
hidden code that is dynamically loaded. The following
rule captures this:

Repe @ ¢ € P contains dynamic code <=
ind(¥) A J1 :

Example 3. Let v be a variable such that its content
should have no influence on the program flow. For
example, v could be a string containing an error message
that may be displayed at some point. Such strings have
been broadly used in existing malware to hide URLs
that point to services from where the malware can
download further code, receive instructions, send data,
etc. To avoid detection, the string is often obfuscated
and the UEL is only revealed at execution time after
applying some transformation. Thus, any modification
of the string such that the URL is damaged will likely
result on the impossibility of establishing a connection.
The following rule captures this intuition:

Rugrt : v £ P contains an URL +—
ind(¥") A Ji : contains(A(c[P],c[T7(P)]), Delf).

Example 4. Similarly to the cases discussed above, it
may be possible to find out whether a component c leaks

contains(A(a [P}, o [¥°(P)]),D E|::u_iuud) ;

information from a number of sensors (e.g, accelerom-
eter, GP5, etc.) if, after modifying it, the differential
signature lacks an access to such a sensor and a network
connection:

Rspr : ¢ € P leaks sensor data <= ind(%°) A
(3 i1 : contains(A(a[P],c[¥(P)]), Deliy) v
Jiy : contains(A(c[P],c[¥4(P)]), DelfF*) v

) A 3 j : contains(A(a[P], o[¥5(P)]), Delf<").

3 ALTERDROID: DIFFERENTIAL FAULT ANA-
LYSIs oF OBFUSCATED APPs

We next describe ALTERDROID, our approach to study-
ing obfuscated malware code based on the differential
fault analysis model discussed above. The high level
architecture of ALTERDROID is shown in Fig. 1 (see [18]).
There are two differentiated major blocks:

1) The first one generates a number of fault-injected
apps. This process is carried out by first extrac-
ting all app components and identifying those of
interest (ColS?), ie., those components suspicious
of containing hidden functionality. An iterative
process then selects candidate Cols and imjects
faults into them. Both modified and unmodified
components are then repackaged together into a
new app’.

2) The second block generates stimuli (user inputs
and context) for both apps and executes them,
generating a pair of behavioral signatures. The di-
fferential signature is then computed and matched
against a database of patterns to identify the pres-
ence of hidden functionality.

We next provide a detailed description of the key
modules of ALTERDROID and the current prototype im-
plementation.

3.1 Ildentifying Components of Interest

The first step in the analysis of an app is identifying com-
ponents of interest (Cols), ie., parts of an app suspicious
of containing hidden functionality. Such components will
be later fault injected according to some strategy in order
to analyze the resulting behavior.

We say that a component ¢ of type 7(c) in an app P
is of interest if it does not fit a model M, defined
for all components of type (c). In our current version
of ALTERDROID, models measure statistical features only,
such as for example the expected entropy, the byte distri-
bution, or the average size. Such features are computed
from a dataset of components of the same type, such

3. We denote as ColS (with capital 5) the set of Compoments of
Interest Cols

4. Note this does not require the source code of the app to be
available

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

A | Extract | Identify
PP Components "l co
Differential Analysis i Select
------- qr"-""""""""'"""""""-""""-"""'""""-" "'~.1~ i ¥ cmmﬂtﬂ
L Generate N _ Repackage | Inject |
e Inputs Exen E Components Faults
Activity . Differential Activity
Signature Signature Signature
|
t App
Patte .
Rules —~ \zicing =~ Corruption
__ Report
Fig. 1. ALTERDROID architecture.
Input:

as text files, pictures, code, etc. For each model M, we
assume a Boolean function test(c, M) that returns true if
¢ complies with M, and false otherwise. For example,
if M is a byte distribution, then test(c, M) could be a
goodness-of-fit test (e.g., x”) between M and ¢'s byte
distribution. More formally
c € ColS(P) += test(c, M,(y) = false. (11)

In our experience, such simple models suffice to
spot the most common—and rather simple—obfuscation
methods observed in smartphone malware, including
code camouflaged as supplementary multimedia files,
connection data hadden in text varables, etc.

ALTERDROID also supports an exhaustive analysis
mode in which some additional components may be con-
sidered Cols even if they comply with their type model.
In this mode, a component is considered Col if it is Col
as defined abowve, or if there exists an indistinguishable
operator for it. Formally

ceCol§(P) «— Etes:(c,MT.:ﬂ}} = false) or
3P ind(T7)).
(12)
The rationale for including this mode 1s to also check
components for which we know in advance that alte-
rations do not translate into noticeable differences. This
is very useful for detecting more sophisticated obfus-
cation methods that try to evade detection by carefully
modifying the code so that it fits the statistical model of
the component. As a side effect, however, the exhaustive
analysis mode may end up with a large set of Cols
(ColS).
The algorithm shown in Fig. 2 describes the process
discussed above to identify the ColS in ALTERDROID.

App P ={ec1.00,..., ck}

Set of type normality models: { A€y, Ada,--- , Mp}

Set of FIOs: {4, ¥a,--- , ¥m}

Mode: normal / exhaustive

Procedure:

1 ColS+ @

2 For each c £ P do

3 if [test(e, M_) = false] or
[imode = exhaust ive) and (3 ¥,

4 ColS + ColSu {c}

5 return ColS

1 7(¥) =7(c))] then

Fig. 2. Algorithm for obtaining ColS from an app.

3.2 Generating Fault-injected Apps

Components of interests identified in the previous stage
are injected with faults and reassembled, together with
the remaining app components, to generate a faulty app
F'. This process can generate several fault-injected apps,
as there are multiple ways of applying different FIOs to
different components in the set of Cols. In ALTERDROID,
fault-injected apps are generated one at a time and
sent for differential analysis. If no evidence of malicious
behavior is found in the differential analysis, the fault
injection process is invoked again to generate a different
faulty app, and so on.

Assume that ColS = {c,...,cn} and that for each
c; € ColS there is a set of FIOs F, = {¥3,... ¥ }
that can be applied to c;. (Recall that FIOs can be quite
specific and, therefore, not all FIOs are applicable to
all components.) All possible fault-injected apps can be
generated by a naive strategy that applies each FIO to
each component one at a time, producing the sequence

of apps
V(P B (P, U (P), .. U (P).

1

(13)

SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING

A ! | Extract | Identify
PP Components i Col l
Differential Analysis Select
------- kit et i A 1 Components
Execution [-y = Execuion |e—t—1 HEmcluge = et -—I
Inputs o Components Faults
Activity Differential Activity
Signature Signature | Signature
Pat;ern App
Rules —= | ing -~ Corruption
__ Report
Fig. 1. ALTERDROID architecture.
as text files, pictures, code, etc. For each model M, we ['EP"; = .
assume a Boolean function test(c, M) that returns true if Set of type normality models: {Mi, Ma,--- Mn}

¢ complies with M, and false otherwise. For example,
if M is a byte distribution, then test(c, M) could be a
goodness-of-fit test (e.g., x”) between M and ¢'s byte
distribution. More formally
c € ColS(P) += test(c, M) = false. (11)

In our experience, such simple models suffice to
spot the most common—and rather simple—obfuscation
methods observed in smartphone malware, including
code camouflaged as supplementary multimedia files,
connection data hadden in text varables, etc.

ALTERDROID also supports an exhaustive analysis
mode in which some additional components may be con-
sidered Cols even if they comply with their type model.
In this mode, a component is considered Col if it is Col
as defined abowve, or if there exists an indistinguishable
operator for it. Formally

c e ColS(P) (test(e, Mr () = false) or

(39 : ind(T9)).

—

(12)
The rationale for including this mode 1s to also check
components for which we know in advance that alte-
rations do not translate into noticeable differences. This
is very useful for detecting more sophisticated obfus-
cation methods that try to evade detection by carefully
modifying the code so that it fits the statistical model of
the component. As a side effect, however, the exhaustive
analysis mode may end up with a large set of Cols
(ColS).
The algorithm shown in Fig. 2 describes the process
discussed above to identify the ColS in ALTERDROID.

Set of FIOs: {1, %a,---, ¥m}

Mode: normal /f Exh,aust ive
Procedure:

1 ColS«— @

2. For each c £ P do

3 if [test(e, M,) = false] or

[imode = exhaust ive) and (3 ¥,
4 ColS « ColSu {c}
5. return Col5

: 7(¥;) =7(c))] then

Fig. 2. Algorithm for obtaining ColS from an app.

3.2 Generating Fault-injected Apps

Components of interests identified in the previous stage
are injected with faults and reassembled, together with
the remaining app components, to generate a faulty app
F'. This process can generate several fault-injected apps,
as there are multiple ways of applying different FIOs to
different components in the set of Cols. In ALTERDROID,
fault-injected apps are generated one at a time and
sent for differential analysis. If no evidence of malicious
behavior is found in the differential analysis, the fault
injection process is invoked again to generate a different
faulty app, and so on.

Assume that ColS = {ej,...,cn} and that for each
c; € ColS there is a set of FIOs F, = {¥3,... ¥ }
that can be applied to c;. (Recall that FIOs can be quite
specific and, therefore, not all FIOs are applicable to
all components.) All possible fault-injected apps can be
generated by a naive strategy that applies each FIO to
each component one at a time, producing the sequence

of apps

VE(P),..., U2 (P),..., Wr(P),..., ¥ (P). (13)

Input:
App: P

ColS = {e1,e3,..., en}
Set of FIOs: F = [¥1, ¥a,--- , ¥m}
Procedure:

1. maliciousComp ¢ mnll
2. For each FIO ¥ do
3 P+ P
-+ For each ¢; € ColS do
5. if ¥, is applicable to ¢, then
. Pr =¥5(P)
T if DiffAnalysis(P, P, ¥;) # @ then
8 maliciousComp + SearchComponent{¥;, P, Col5, 1, n)
9, return maliciousComp
Function SearchComponent(¥;, P, Col5, min, mazx)
LPi+ P
2. For i = min to mar do
if ¥, is applicable to ¢; then
Pr = US(P)
. if DiffAnalysis(T, 7', ¥,) # @ then
if min = mar then
return ey
else

SEmmn

SearchComponent| ¥, P, ColS, min, (maz — min)/2)
SearchComponent(¥, P, Col5, (mar — min)/2), maz)

Fig. 3. Algorithm for injecting faults and searching for
malicious components after differential analysis.

Thus, there are 7, m; possible fault-injected apps, one
for each possible component-FIO pair.

Although ALTERDROID implements several distingui-
shable FIOs, all FIOs tested in our experiments are
indistinguishable. This allows for a more efficient fault
injection process based on the fact that the composition
of indistinguishable FIOs is an indistinguishable FIO.
Consequently, if the same FIO is applied to multiple
components and there is lndden functionality in just one
of them, the resulting app will behave exactly as if just
the malicious component would have been fault injected.
The resulting fault injection process is as follows:

1) For each FIO ¥, generate P; by applying it to all

o € ColS

Py =y(P) =¥ o U oo U(P), (14)
where 17 is the identity operator if ¥, is not appli-
cable to ¢;. The resulting Fj is sent for differential
analysis with respect to the original P.

2) If there is one T; such that the differential analysis
spots malicious 1E’eha‘w'i-:mr, the component responsi-
ble for it can be identified by searching over all
c; € ColS with just the corresponding FIO ¥,.
This process can be done in logarithmic time by
ordering all components and recursively applying
¥; to half of them, rather than in linear time by
just applying ¥; to each ¢ € ColS in turn.

The overall process, which is entwined with the di-
fferential analysis stage discussed later, is summarized
in the algorithm shown in Fig. 3. Notice that in this
description the process stops when just one malicious
component is identified. Extending the algorithm so that
it searches for all of them is straightforward.

Input
Apps: P and P’
FIO ¥
Set of rules: R = {Ry, Rz, ... By}

Procedure:
1. (u,t) + GenUsagePatterns()
2 o + GenBehavioral5ig(P, u, t)
3. o' + GenBehavioralSig{P', u, t)
4. Afe, o'} +— ComputeDiffSig(o, o)
5. matchingRules +— @
6. Foreach R; & R do
7. if match(Ri, ¥, Alr,o")) then

B matchingRules + matchingRules U {R;}
9, end-if
10. end-for

11. return matchingPules

Fig. 4. Algorithm DiffAnalysis for generating differential
signatures and identifying matching rules.

3.3 Applying Differential Analysis

Differential analysis between a candidate fault-injected
app and the original app is carried out following the
model described in Sections 22 and 2.3. The process
comprises the following steps:

1) Generate an appropriate usage pattern u and con-
text t [19], [20] to feed both apps and extract their
behavioral signatures, o{P(ujt)] and o[P'(ult)].
Both the original and the fault-injected app are
tested under the same conditions and using the
same inputs. Note that this assumes that the exe-
cution of an app is completely deterministic.

2) Generate the differential signature
A(c[P(ujt)],o[P’'(ult)]) from the behavioral
signatures obtained above.

3) Apply sequentially all rules R; over
Alo[P(ult)],o[P'(ult)]) and metumn those for
which a match is obtained.

The process i1s summarized in the algorithm in Fig. 4

3.4 Implementation

We next describe our prototype implementation of AL-
TERDROID, including the currently available operators
for extracting the components of interest, generating
fault injected apps, and a rule-set used for differential
signature matching.

3.4.1 Prototype Implementation

ALTERDROID is implemented using Java and Python
components and relies on a number of Android open
source tools for specific tasks. App components are
extracted using Androguard [12]. After fault injection,
components are repackaged into a modified app using
apkTool [13]. Monkey [21] is used to generate a com-
mon sequence of events to interact with both the original
app and the faultimjected app. These events should
be generated specifically for each test to intelligently
drive the GUI exploration [19], [20], ie. to test code
implementing different functionalities of the app. In its

current version, ALTERDROID uses Monkey to generate
5 classes of input events: activity launch, service launch,
action buttons, screen touch, and text input.

Each app is then executed in a controlled environment
using the stream of events generated above. For this
purpose, we use Droidbox [22], a sandbox that allows
monitoring various features related to the execution
during a fixed, u ser-given amount o f time. In order to
generate behavioral signatures, ALTERDROID monitors
the execution of 11 different activities:

» crypto: generated when calls to the cryptographic
APl are invoked;

» net-open, net-read, net-write: associated with network
I/0O actitivites (opening a connection, receiving, and
sending data);

« file-open, file-read, file-write: associated with file sys-
tem I/0O activities (opening, reading, and writing);

» sms, call: generated whenever a text message or a
phone call is sent or received;

» leak: generated whenever the app leaks private in-
formation, as determined by Taintdroid [23]; and

» dexload: generated when an app loads native code.

Finally, our prototype allows performing analysis

tasks in parallel. We presently limit cur implementation
to a small number of Col models, FIO operators, and
differential matching operators. Nonetheless, our archi-
tecture allows security experts to further extend this and
configure their own operators based on their experience.

34.2 Col Models

ALTERDROID currently supports the following models
for identifying Cols:

» EXEFileMatch. This model analyzes components of
type Dalvik Executable Format (DEXFileMatch), Ap-
plication Package file format (APKFileMatch), and
Executable and Linkable Format (ELFFileMatch),
ie, 7(c) = (DEX,APK, ELF). The model defined
for these components is based on the magic number
defined in the file header.

s ImgFileMatch. This model analyzes components of
type picture, such as PNG, JPG, or GIF images, ie.,
7(e) = (PNG,- -- , JPG). This model is based on the
magic number defined in the file header, similarly
to the model above.

s EncryptedOrCompressedMatch. This model matches
any file whose entropy, measured at the byte level,
exceeds a given threshold. In such a case, the file
is considered to contain random or encrypted infor-
mation and, therefore, is selected for fault analysis.
We set the current threshold to 3.9. Such value was
chosen after measuring the entropy of several files
before and after being encrypted with DES.

s ExtensionMismatch. This model identifies files such
that their magic numbers do not match the file
extension. For instance, we found several APK
files with DB extension and several encrypted
files with JPG extension. We currently support

[FID [Type [Targeted Cols [ind]
ImgEx tensionMismatch 'S
GenericFMutation | Any file EncryptedirCompressed | —
APEFExtensionMismatch | «
ImgFileChange Any image ImgFileMatch v
Non-
ScriptFilaChange | compiled TextScriptMatch ®
program
APFFileChange Android app | APEFileMatch x
. Dalvik .
DEXFileChange AL DEXFileMatch
L Executable £
ELFFileChange and linkable ELFFileMatch E

TABLE 1
FIOs implemented in ALTERDROID's current version and
their corresponding Cols (ind. = indistinguishable).

two submodels: ImgFileExtensionMismatch and
APKFileExtensionMismatch
s TextScriptMatch. This model analyzes components
that match any ASCII text executable file, ie., 7(c) =
Seript. This model is also based on the magic num-
ber defined in the file header.
All Cols described above are implemented in Python.
The set can be easily extended to incorporate additional
models by simply adding the corresponding module.

3.4.3 Fault Injection Operators

FIOs in ALTERDROID are strongly typed. This pevents
syntactic errors during the execution of the modified
app. For instance, if a generic FIO randomly modifies
chosen bits of a JPEG without considering the file struc-
ture, it may end up with a malformed picture that could
cause the app to crash during execution. We currently
support the following FIOs (see also Table 1):

Name Contains Hule
Metwork 341 : contains(A(o[P], o[¥5(P)]), Delf P) |
Rync| Behavior v Jip : contains(A(o[P], a[F5(PI), Del:‘l“*‘"“d]
Component | 5, . contains(A {a[P], a[#=(P)]), Delpet—write)
i Jir : com(A(o[P], o{¥°(P)]), Delf =P
Rypo| Behavior v Jiz : contains(A (o [P], o[¥ PI]), [;E|'-f’”“—"*‘-ﬂd}
Component | 34 : contains(A (o[, a[#e(P)]), Delf e uTite)
Rprc| Data Leak 37 : contains|A(F[P), o[#5(P)]), Deler)
Rzpc| SMS Behaw i : contains{A(o[P], c[¥=(F)]), Del™)
Rppc| Payload i : contains(A(o[F], o[#5(P)]), Delf“ﬂ‘“"}
34y : contains(A ([P, a[¥E(P)]), Dell o eod
Rupc Ef;l:::l Adi: mnmins{{ﬁ{(nr[[‘I]L 1;r[[\;r'={{p]]]]1 De;;!“"mj]
Ronc| Crypio 31 : contains([A(o[P], o[¥°(F)]), Dell 7F0)
o 34 : contains{A (o[P], o[¥#5(PI]), Dell, ")
Ropo Payload A 3i o contains(A(e[P], o[FS(P))), Del] :im)
Rypp| Hidden Fune| — equal(A (o[F], e[#(F1]1, #)

TABLE 2
Basic indistinguishable differential rules implemented.

s ImgFileChange. This FIO changes a number of pi-
xels of image file components. The FIO type matches
components of type ImgFileMatch. This is an indis-
tinguishable FIO due to the nature of the changes

and the type of component. Thus, although the
image resulting from the injection will be different,
this change should not alter the app execution flow.

» EXEFileChange. This FIO replaces the file with a
well-formed APK, DEX or ELF file that effectively
does nothing, equivalent to a NOFP (no-operation)
imjection. This change should cause a different be-
havior in the resulting differential signature as the
former EXE file has been replaced. Thus, this FIO is
distinguishable.

s ScriptFileChange. This FIO replaces the file with
a valid NOP script. It only matches components of
type ScriptFileChange. This FIO is also distingui-
shable.

» GenericFileMutation. It randomly changes seve-
ral bytes of a file. This FIO is applied when
there is no information about the file type and its
structure, e.g., when injecting faults to encrypted
files (EncryptedlrCompressedMatch) or when the
file extension does not match its magic number
ExtensionMismatch. This FIO might be distingui-
shable or indistinguishable, depending on the file.

As in the case of Col models, FIOs are implemented

in Python and provided with ALTERDROID's current
version. Again, the set can be easily extended with
additional FIOs by adding the corresponding module.

34.4 Differential Rules

The basic set of differential rules incorporated in AL-
TERDROID comprises the 9 rules shown in Table 2. They
all apply to indistinguishable FIOs and cover the most
common examples of obfuscated functionality: network
activity, file activity, data leakage, SMS5 activity, hidden
payloads, update attacks, cryptographic activity, crypto-
graphic payloads, and generic hidden functionality.

To reduce the complexity of the search space, all basic
rules apply to indistinguishable FIOs. However, for the
sake of completeness our implementation incorporates
several distinguishable FIOs, and new rules can be fur-
ther added to match them. For instance, given an app
that incorporates a DEX program used to enhance photos
taken from the camera, we can use a rule to check
whether this Col actually does just that or not

Thus, if after applying a FIO over this component
the differential signature shows, for instance, changes in
network activity, we may suspect that the Col contamned
other functionality piggybacked on the DEX.

Formally, given DEXFileMach £ CoIS and its corre-
sponding distinguishable FIO (ie., DEXFileChange), the
following rule captures this intuition:

Rpex : der € P contains NET activity <=
—ind(Ty A Ji

4 EVALUATION

We next report a number of experimental results ob-
tained with our prototype implementation of ALTER-
DROID. These results illustrate how our system can

: contains(A(a[P], [(P)]), Delf<t).

be used by market operators and security analysts to
facilitate the analysis of complex obfuscated mobile mal-
ware. We first present the results of testing ALTERDROID
against two datasets of smartphone mahlwvare samples
found in the wild, including a performance analysis of
the entire differential fault analysis process. We finally
discuss in more detail three representative case studies.

4.1 Analytical Results

We tested ALTERDROID against a dataset composed of
around 10000 apps retrieved from the following reposito-
ries: Aptoide (AP) alternative market®, VirusShare (VS)®
and Google Play (GP) 7. Every app was executed over a
time span of 120 seconds—current malware is generally
quite eager to run their payloads promptly [18], so this
time suffices to activate most malicious payloads.

Table 3 provides a summary of the obtained experi-
mental results, including the average time required for
analyzing one app (this includes the time for extracting
ColS and injecting faults into each component). Further,
repackaging time, testing time as well as differential
signature creation and analysis are included as well.

When analyzing the distribution of Cols through-
out the apps in our datasets, we observed that some
apps have a fairly large amount of Cols. For mstance,
some apps contain over 5K pictures (ImgFileMatch).
Conversely, we found many others with less than 10
Cols. On average, our experiments show that there are
about 146, 284, 410 Cols per app in VS, AP, and GP
respectively, as shown in Table 3. Note that the number
of Cols from AP is twice the number of Cols from
V5. Similarly, the number of Cols in GP is significantly
higher than in VS and AP. In any case, the amount
of potentially malicious components is significant and
the time required to manually analyze each of them is
affordable.

Finally, our results report the number of apps match-
ing against the rules implemented in our prototype. For
instance, we could identify 220 apps reporting compo-
nents containing SM5 functionality (Rscc) from all 29K
samples in V5. Conversely, we could not find any Rsac
rule in Aptoide nor in GP (see Table 3). One alarming
result is that we found a significant number of apps (669)
reporting components containing data leakage function-
ality (Rprc) in AF. However, our results show that GP
contains a much lower number of apps reporting data
leakage functionality.

One interesting aspect of ALTERDROID is that it can in-
ject all selected FIOs at once. Furthermore, ALTERDROID
allows performing several analyses concurrently. In fact,
our current experimental setup allows the execution
of 15 Android instances in parallel. Thus, this simple
optimization strategy reduces the average execution time

5. httpe/ faptoide.com/
6. httpe/ /virusshare.com,/
7. http:/ / play.google.com/ apps/

V5 AT GP
: No. Apps 2013 7 994 1000
15 Avg. No. Cal8 JELY: TELT X
Avg. No. FIDs 1383 735 3
TmageFileMatch 397 748 | 813754 | 1566 579
EncOrCompressed Te sy | 35093 | 45781
Er:: ImgExtension Mismatch 51 5 b 3130
U [DEXFIMaich p vy T 955 007
[APKFileMatch | 1087 58 il
[APKExtensionMismalch 517 0 jE)
& ImageFile 397 246 | 813754 | 1586 379
E | GenencMufaBionFile 57 5237 TE9E |
E No. R 2 502 2 962 3 961
; No. Ensc 7773 T 909 TO50 |
j No. Burc Ta1 [o5
No. Rspc il i]
[— | Average Overhead | 584515 | 6666/ 5 | 567998 |
TABLE 3

Analysis of the VS (VirusShare), AP (Aptoide), and GP
(Google Play) datasets. The number of Cols and FIOs is
summarized (Sum.) on average per app and also given
on absolute value. The number of rules matching (NAC
and DLC) is also given in absolute value, and the
overhead is given in seconds on average per app.

#Apps IT TN TPE TNE

DKF X 33 nfa || 97.06% n/a

ASB 187 186 | n/fa || 99.47% nfa

GM 4 3 n/a 7% n/a

GM+ E] 4 n/a 100 n/a
[Gray T 16 [16 [nja [[T00% | nfa |
[Good T 81 [n/a [81 [nfa [T00% |

TABLE 4

Accuracy evaluation against existing malware, grayware,
and goodware apps. True Positives, True Negatives, and
their ratios are defined as expected.

per app at 32,62, 44.44 and 37.87 seconds for V5, AP, and
GP respectively.

One challenge we faced when analyzing apps from AP
is identifying whether some behaviors were malicious
or not. Many legitimate apps are not fully malicious
but carry out activities that may constitute a privacy
risk for some users. During our analysis, most such
suspicious behaviors were related with accessing local
data and exfiltrating it over the network We did not
analyze in detail whether this was an intrinsic behavior
of the app caused by the fault-injection process, for
example because the app contained an integrity check.
Monetheless, this indicates that the app was behaving
suspiciously and therefore it is worth analyzing,

4.2 Accuracy

From all apps tested above, we selected 300 known
obfuscated malicious samples, grayware [6], and good-
ware and evaluated the accuracy of ALTERDROID. More
precisely, we tested more than 200 variants of DKF, ASB,
and GM and about 100 legitimate apps from GP. Every

10

app was executed over a time span of 120 seconds except
for the GM+ ones, requiring 1200 seconds. Table 4 sum-
marizes the experimental results obtained and shows the
detection rates. A usual measure of accuracy (sensitivity)
is the True Positive Rate (TPR); that is, the percentage of
functionality-hiding apps (malware, grayware) correctly
identified as such. Another relevant measure of accuracy
(specificity) is the True Negative Rate (TNRE), which
accounts for the percentage of goodware apps correctly
identified as not containing hidden functionality.

Our experiments show that ALTERDROID performs
very well, especially when dealing with obfuscated mal-
ware (DKE ASB and GM). In fact, a significant number
of rules per app matched the aforementioned differential
signatures containing suspicious behaviors, such as net-
work (R po) or data leakage (Rpp o) activity (see tables
2 and 3). Additionally, no false positive was produced
in the above tests on goodware (i.e. TNR reached 100%).
The overall accuracy (ie. (I'P+TN)/(Total# Apps)) was
around 99%. The only case where TPR drops below 97%
(GM) was related to the short time given to dynamic
analysis. This was corrected by just increasing it. In par-
ticular, when the increased time window was adopted
(GM+), the TPR achieved 100%.

4.3 Performance

The time taken by the entire differential analysis process
depends on the number of different fault-injected apps to
be explored, the time required to generate each of them,
and the time taken by the differential analysis over each
one:

t= MfaultApps ° tm}rlFaultApp * tdiFFArlaI;rsis {15}
As for the first term, if |Col5| = n and there are m FIOs,
the fault injection algorithm shown in Fig. 3 generates
O(m+log n) different fault-injected apps to be analyzed.
Each one of those apps has been imjected with at most
n faults, one per component. The time trpg required to
inject one fault depends on the specific FIO, although
most of them run in constant time or are linear in the size
of the component to be fault-injected. Finally, differential
analysis requires:

» Executing the two apps. In ALTERDROID this is done
by a component which admits as input the time
taec during which the app will be executed. In our
experiments, we determined that around 2 minutes
suffice for most malware samples in our dataset.

» Obtaining the differential signature, which reduces
to computing an edit distance between the two be-
havioral signatures. If these signatures have lengths
51 and sa, then this process takes (s - s3] steps.

» Pattern-matching the differential signature with the
rule-set, which takes O(|R]).

Apart from fae., the two most critical parameters
affecting the total analysis time are n and m, as defined
above (Le., the number of Cols and FIOs, respectively).

u10*

LGl - PRI T PR EL

LT =120, 10 Fids
‘e

L1 =1203, 50 FI0s o™

.t =503, 10 F0s

Al - e85 5T FIOS ol

aﬁmﬁv

| =

Search tinme (s)
5 i
[t
£y
1
[\
1

T

q! 000 2000 3000 4000 SOO0 6000 7000 EO0O0 S000 10000

Numiber of Cols per app

Fig. 5. Average execution time of the SearchComponent
algorithm for difierent number of FIOs and dynamic ana-
lysis time.

Fig. 5 shows the average execution time of the Search-
Component identification algorithm at the core of AlL-
TERDROID for different values of n, m, and fsec.. For
example, the analysis of an app containing 100 Cols for
which 10 FIOs are applicable, and executing each fault-
injected app 120 s, will require around 5 minutes. This
time increases to 2.5 hours and 4.5 hours if the app
contains 1K or 10K ColS, respectively. If we decrease
the dynamic execution time of each app to 60 s, these
figures reduce to 2.7 minutes, 1.3 hours, and 2.9 hours,

respectively.

4.4 Case Studies

We finally provide a more detailed discussion on the
analysis of three relevant malicious apps found in An-
droid markets. These three samples constitute represen-
tative cases as they incorporate obfuscation techniques
of various degrees of sophistication [10], as well as some
malicious features common in malware for smart devices
[6] such as aggressive privilege escalation exploits, C&C-
like functions [24] and information leakage.

For these three cases, we analyze their ColS, we inject
various faults into such components, and perform the
resulting differential analysis. The findings discussed be-
low about these three malware families are in accordance
with previous reports, including those undertaken by
Jiang and Zhou in [10].

Finally, we discuss several cases of recent apps that
use different obfuscation techniques.

4.4.1 DroidKungFu (DKF)

DKF's main goal is to collect details about the infected
Android device, including the IMEI (International Mo-
bile Station Equipment Identity) number, phone model,
and OS version. It is mostly distributed through open or

11

alternative markets via repackaging—that is, by piggy-
backing the malicious payload into various legitimate
applications. Apps infected with DKF are distributed
together with a root exploit hidden within the app's
assets, namely, Rage Against the Cage (RAC) [25]. To
hinder static analysis, this encrypted payload is only
decrypted at runtime.

We fed one DKF variant to ALTERDROID, whach first
extracted the variant’s ColS, injected various faults into
these components, and then applied differential analysis
by executing the resulting app and comparing it to the
original. The sample contained about 170 resource files,
including 153 PNG files, 6 MP3 files, 2 XML files, 1 DEX
file, and an RSA key file. All these assets were, in prin-
ciple, suspected of containing obfuscated functionality.

Figure 6 (top left) shows the differential behavior
reported by ALTERDROID over a two-minute period.
Activities launched by the onginal piggybacked app
correspond to the full plot, while the behavior after fault
injection is indicated by the green (legitimate app) and
black (DKF) squares. ALTERDROID revealed that a text
file pertaining to the assets was randomly modified. We
later identified this file as the component containing the
FAC exploit and found that disabling the malware’s
access to such functionality prevented it from establish-
ing a network connection (net-open, net-write), leaking
information through it (leak), and later performing some
I/O operations (file read). This analysis agrees with
previously reported results about DKE

In the case of DKE applying standalone static detec-
tion techniques was not sufficient by itself to identify
malicious payloads without human-driven inspection.
This is due to the way the malware obfuscates its core
components. Specifically, each variant uses a different
encryption key hidden throughout the code. Even when
we attempted to apply standalone dynamic analysis,
this technique only gave a rough notion of the app's
holistic behavior. In fact, the behavior ntroduced by
DKF is strongly entwined with the original code of the
repackaged app such that some of its key activities, like
network connections, might be easily seen as normal.

4.4.2 AnserverBot (ASB)

The ASB specimen we analyzed is similar to the first ver-
sions of DKF in terms of sophistication and distribution
strategy. However, ASB introduces an update component
that enables it to retrieve at runtime secondary payloads
and the latest C&C URLs from public blogs. It also
incorporates advanced anti-analysis methods to avoid
detection: on the one hand, ASB introduces an integrity
component to check if the app has been modified, while
on the other, it piggybacks the main payload in native
runnable code. Furthermore, ASB obfuscates its internal
classes and methods, and partitions the main payload
into two different parts: while one is installed, the other
is dynamically loaded without actually being installed.
Specifically, ASB hides one of these components mnto
the assets folder under the names anservera.db or

12

Fig. 6. Activities of DKF, GM and ASB during a time span of 120 seconds.

anserverb.db. In addition, it inserts a new compo-
nent named com. sec.android.provider.drm that
executes a root exploit known as Asroot.

As 1 the case of DEKF we observed that all ASB
variants contain a non-negligible amount of candidate
Cols. The specimen we examined had about 78 resource
files, including 54 image files, 1 database file, 1 DEX file,
and a ZIP file. After a few iterations of the fault injection
process, ALTERDROID positively identified the actual
payload within the database file, as well as the behavior
related to this component. More precisely, it triggered
this Col after observing a mismatch between the magic
number of the file (APK) and the actual extension of
the database. In fact, when a fault is injected into the
database file, ASH's integrity check naturally aborts its
execution and produces a result similar to that expected
from the original app.

Figure 6 (bottom) shows the exhibited differential be-
havior over two minutes. ASB first establishes a network
connection (net-open, net-write) after loading the main
payload (file-read, dex-load). After that, it continues
reading data that it finally leaks out. Interestingly, the
legitimate app uses the network as well, although it does
not leak any personal information.

4.4.3 GingerMaster (GM)

GM is the first known malware to use root exploits for
privilege escalation on Android 2.3. Its main goal is to
exfiltrate private information such as the device ID (IMEI
number, MSI number, and so on) or the contact list stored
in the phone. GM is generally repackaged with a root
exploit known as GingerBreak [26], [27], which is stored
as a PNG and a JPEG asset file. Right after infecting the
device, GM connects to the Cé&C server and fetches new
payloads.

We analyzed a GM sample with around 60 asset
resources, 30 of which were photos in different formats.
Of those images, ALTERDROID identified four as strongly
suspicious. A detailed analysis later revealed that they
were malformed PNGs that also contained several ASCII
scripts. ALTERDROID was also able to determine that
such malformed image files play a key role in trigger-
ing the payloads piggybacked into the legitimate app,
including the ASCII scripts.

Figure & (top right) shows the differential behavior
exhibited over a two-minute period when Alterdroid in-
jected such images with faults. GM started execution of a
service that performs some I/ O operations (file-read, file-
write) before finally leaking private information through
the network (net-write, leak). Again, even when the
malicious components were hidden, Alterdroid was able
to differentiate them and help identify the underlying
malicious behavior.

4.4.4 Other Recent Specimens

We have analyzed some of the most recent specimens
hitting both official and unofficial markets. Although
obfuscation techniques and algorithms might vary, re-
sults confirm that malware keeps hiding payloads within
app resources such as images or XML files. The most
significant analyzed specimens were:
+» Emmental: this malware sample targets users of
several banks worldwide, collecting one-time pass-
words used to authorize transactions. Apps infected
with Emmental are distributed together with an mi-
tial configuration containing a phone number where
certain SMSs are sent and several Command and
Control (C&C) URLs. To hinder static analysis, this
configuration is only decrypted at runtime using

Blowfish. According to a report from Trend Micro
[28], Emmental was still active as of 2014

s Gamex: this specimen introduces an update com-
ponent that enables it to retrieve new payloads, at
runtime, from a C&C server Its main goal is to
exfiltrate private information such as the device ID
(IMEI number, MSI number, and so on). Gamex [29]
obfuscates the main payload using XOR operations
while hiding it into the app resources—specifically,
a file called logos.png.

s SmsSpy: this mahware is similar to Emmental in
terms of sophistication and distribution strategy
[30]. It also uses Blowfish to encrypt its payload and
hinder analysis. The payload is generally stored in
a file called data.xml and the decryption key is hard-
coded in the app code.

4.5 Discussion

Although current malware is relatively naive, more
sophisticated obfuscation techniques—particularly in
code—are starting to materialize. Cryptography is
one recurrent technique used by malware developers.
Monetheless, we believe that malware could be already
using other advanced techniques for hiding their com-
ponents such as, for instance, steganography [11]. This
technique would allow them to conceal their malicious
components within other objects of the code. This is
specially critical when these components are hidden
within distinguishable components.

In practice, any detection mechanism can be evaded,
especially if its internals are well known. In the case
of ALTERDROID, an attacker can run it on his own
malware and then progressively adapt the sample so as
to minimize the chances of the obfuscated payload being
detected. For instance, the attacker can try to modify the
payload in such a way that the component where it is
included is not identified as a Col. In addition, it is well
known that dormant or targeted functionality /malware
is the Achille’s heel for any approach involving dynamic
analysis. In this regard, we believe that the approach
introduced in ALTERDROID is relevant in the context
of the never-ending battle between malware developers
and detection mechanisms. However, addressing some
limitations of current dynamic analysis techniques is left
for future work.

5 RELATED WORK

A substantial amount of recent work has addressed the
problem of analyzing malware in smartphones using a
variety of techniques [6]. Static analysis techniques are
well known in traditional malware detection and have
recently gained popularity as efficient mechanisms for
market protection [15], [31], [32]. However, these tech-
niques fail to identify malicious components when they
are obfuscated or embedded separately from the code
(e.g., hidden into an image) [33], [34], [35]. Approaches
based on dynamic code analysis [36] are promising,

13

but current works [37], [20], [38] [39] only provide
an holistic understanding of the behavior of an app.
This feature challenges the identification of grayware
and the attribution of malicious behavior to compo-
nents of the app. Thus, these approaches tend to miss
their identification and further human (costly) efforts are
required to dissect each malware sample, understand
its rationale, and identify their payloads as shown by
Zhou and Jiang in [10], [40]. For instance, XManDroid
[41] extends Android’s security architecture to prevent
privilege escalation attacks at runtime based on security
policies. Mahwvare detection depends on such previously
defined policies. Thus, nadequate policy rules can result
in both overlooking grayware and affecting functionality
of legitimate applications. Furthermore, the definition
of these policies does not allow identifying hidden or
obfuscated functionality as we do in this paper.

Recent work aims at detecting obfuscated malware by
mining identifiable static features such as cryptographic
functions [42]. However, Schrittwieser et al. [43] demon-
strate the incompleteness of these and other semantic-
aware detectors [44] by means of “covert computation.”
As for the various ways to obfuscate or locate obfuscated
code in binary data, [45] describes the most relevant
steganographic and steganalytic techniques, including
active [46], [47] and passive wardens. These wardens
are used in this paper to deploy semantic-aware FIOs
to sanitize Cols, eliminating hidden information and
detecting where it is hidden.

Fuzz Testing or Fuzzing is a technique commonly used
for providing nputs when testing software for security
purposes [48]. Fuzzing has been recently gaining pop-
ularity for automating the dynamic analysis of apps in
smartphones [19], [20], [49], [38]. Basically, Fuzzing aims
at providing different streams of events to the app for
further monitoring the behavior of the device. Fuzzing
was originally proposed to find software crashes or
unexpected behaviors by deliberately introducing faulty
inputs. Cur approach is similar to Fuzzing, but focuses
on the manipulation of a program’s components rather
than its inputs.

Fault injection analysis has been widely used for soft-
ware assurance against fault tolerance [50], [51]. This
paper extends an early version of this work [18], where
differential fault injection analysis is introduced and
discussed. Together with our previous work, differential
fault analysis is a novel approach compared to existing
works aiming at analyzing malware in smartphones.

Finally, our differential fault analysis approach can
be integrated on top of any system aiming at recon-
structing apps’ behavior, such as CopperDroid [39] or
Targetdroid [52]. As these approaches were not avail-
able during the initial phase of our development, we
instead implemented several state-of-the-art techniques
to automatically extract the behavior of monitored apps.
Nonetheless, other monitoning systems can be further
plugged into ALTERDROID to extend the number of
monitored features or to better detect reactive malware

[52].

6 CONCLUSIONS

In this paper we have presented ALTERDROID, a frame-
work for mabware analysis based on the notion of di-
fferential fault analysis. We have described its archi-
tecture and provided a formal model of differential
fault analysis. Additionally, we have presented an open-
source prototype implementation of ALTERDROID with a
versatile design that can be the basis for further research
in this area.

Differential fault analysis in the way implemented by
ALTERDROID is a powerful and novel dynamic analysis
technique that can identify potentially malicious com-
ponents hidden within an app package. Additionally,
empowering dynamic analysis with a fault injection
approach can be used to differentiate “gray” from le-
gitimate behavior when analyzing grayware. This is a
good complement to static analysis tools, more focused
on inspecting code components but possibly missing
pieces of code hidden in data objects or just obfuscated.
Finally, we believe that differential fault analysis is an
effective technique to detect stegomalware—malware us-
ing advanced hiding methods such as steganography. As
future work, we are currently extending ALTERDROID to
support differential fault analysis over distinguishable
components such as those involving Dex bytecode.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their useful comments.

This work was partally supported by the MINECO
grant TIN2013-46460-R (SPINY: Security and Privacy in
the Internet of You) and the CAM Grant 52013 /ICE-3095
(CIBERDINE: Cybersecurity, Big Data, and Risks).

REFERENCES

[1] ¥ Wang, E. S5treff, and 5. Raman, “Smartphone security chal-
lenges,” IEEE Computer, vol. 45, no. 12, pp. 52-58, 2012

[2] L. Caiand H. Chen, “Touchlogger inferring keystrokes on touch

screen from smartphone motion,” in Proc. USENIX, ser HotSed'11,

Berkeley, CA, USA, 2011, pp. &9

E. Fernandes, B. Crispo, and M. Conti, “Fm 99.9, radio virus:

Exploiting fm radio broadcasts for malwane deployment,”™ IEEE

TIFS, 213,

T. Vidas and M. Christin, “Sweetening android lemon markets:

Measuring and combating malwame in application marketplaces,”

in Proc. ACM, ser. CODASPY "13. ACM, 2013, pp. 197-208.

J. Oberheide and C. Miller, “Dissecting the android bouncer,”

SummerCon 2012, New York, 2012

G Suarez-Tangil, J. E. Tapiador, P Peris, and A. Ribagorda,

“Evolution, detection and analysis of mabware for smart devioes,”

IEEE Comms. Surveys & Tut., vol 16, no. 2, pp. 961-987, May 2014,

M. Rangwala, F Zhang, X. Zou, and FE Li "A tawonomy of

privilege escalation attacks in andrmoid applications,” Int. | Secur.

Netin, vol 9, no. 1, pp. 40-55, Feb. 2014

5. Chakradeo, B. Reaves, P Traynor, and W. Enck, “Mast Triage

for market-scale mobile mabwame analysis,” in Proc ACM, ser

WiSec 13 New York, NY, USA: ACM, 2013, pp. 13-24

M Grace, Y. Zhou, Q. Zhang, 5. Zou, and X. Jiang, “Riskranker:

scalable and accurate zero-day Android mabwame detection,” in

Proc., ser. MobiSys '12 ACM, 2012, pp. 281-294.

[3]

[4]

(5]
[6]

7]

(8]

[#]

[1o]

[

[z

[13]

[14]

[15]

[15
7]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25
[26]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

14

Y. Zhou and X. Jiang, “Dissecting Andrmid malware: Characker-
ization and evolution,” in Proc. IEEE, ser. SP "12. Washington,
DC, USA: [EEE Computer Society, 2012, pp. 95-109.

. Suarez-Tangil, |. E. Tapiador, and P Peris-Lopez, “Stegoma-
Iwam: Playing hide and seek with malicious components in
smartphone apps,” in INSCRYFT 2014, December 2014,

A, Desnos and et al,, “ Androguard: Reverse engineering, mabwvame
and goodwame analysis of android applications,” hitps:/ /code.
googhe.com,/p/androguard /, Visited Feb. 2015

Pamxiaobo, “Apktook A tool for reverse eng. android files,” https:
[/ {code google.com/ p/ android-apktool /, Visited Feb. 2015

L K Yan and H Yin, “Dmidscope: seamlessly meconstructing
the o8 and Dalvik semantic views for dynamic Android mabwvame
analysis,” in Proc USENIX, ser. Security’12. Berkeley, CA, USA:
USENIX Association, 2002, pp. 29-29,

(. Suarex-Tangil, . E. Tapiador, B Peris-Lopez, and]. Blasco,
“Dendroid: A text mining approach to analyzing and classifyi
code struchures in android mabware families,” Expert Systems wi
Appiications, vol 41, no. 1, pp. 11041117, 2014

V. L. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertioms and Reversals,” 5. Physics Doklady, vol. 10, p. 707, 1966,
T Kumazawa and T. Tamai, “Counter example-based ermor lo-
calization of behavior models,” in Proc, ser NFM'11L Berlin,
Heidelbergy Springer-Verlag, 2011, pp. 222-236,

G. Suarer-Tangil, F Lombardi, . E. Tapiador, and E. Di Pietro,
“Thwarting obfuscated malware via differential fault analysis,”
IEEE Computer, vol. 4, no. 6, pp. 24-31, June 2014

C. Zheng, 5. Zhu, 5 Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: an automatic system for revealing Ul-based trigger
conditions in Andmid applications,” in Proc. ACM, ser. SPSM "12.
MNew York, NY, USA: ACM, 2012, pp. 93-104.

V. Rastogi, ¥ Chen, and W. Enck, “Appsplayground: automatic
security analysis of smartphone applications,” in Proc. ACM, ser
CODASPY "13. New York, NY, USA: ACM, 2013, pp. 209-220.
Android, “Android developers,” Visited Feb. 2015, htip://
developerandroid. com /.

Google, “Droidboe: Android application sandbee,” hitps:/ / code.
google.com /p/dmidbox, 2012

W. Enck, B Gilbert, B-G. Chun, and al, “Taintdroid: an
information-flow tracking system for realtime privacy monitoring
on smartphones,” in Proc. USENIX, ser. OSDE10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1-4

E. Hasan, N. Saxena, T. Haleviz, 5 Zawoad, and [0 Rinehart,
“Sensing-enabled channels for hard-to-detect command and con-
trol of mobile devices,” in Proc. ACM SIGSAC, ser. ASIA CCS "13.
MNew York, NY, USA: ACM, 2013, pp. 469480,

C-skill, “Rage against the cage,” https//github.com/bibanon/
android- development-codex/ wiki/ rageagainstthecage, 2011

C Skill, “Gingerbreak,” httpe//c-skills blogspothk/ 2011 /(4/
yummy-yummy-gingerbreak. html, 2011,

M. Zheng, M. Sun, and]. C. Lui, “Droidray: A security evaluation
system for customized android firmwares,” in Proc ACM, ser
ASIA CC5'14 New York, NY, USA: ACM, 2014, pp. 471482
D Sancho, F. Hacquebord, and E. Link, “Finding holes: Operation
emmental,” Tend Micro, Tech. Rep, 2014, hbpe//fwww
trendmicro.com,/ cloud-content, us, pdfs /security -intelligenoe /
white- papers fw p- find ing- holes- operation-emmental pdf.
Symantec, “Andmid.gamex,” http/ /www.symantec com /
security esponse Swriteup. Eptdocid=2012-051015- 1808-99,
F-secure, “Smsspy,” https: / / www.fsecume.com/ weblog /
archives,/ (02202, himl.

M. Lindorfer, 5. Volanis, A. Sisto, and al, “ Andradar: Fast discov-
ery of android applications in alternative markets,” in Detection
of Intrusions and Malware, arnd Vilmeralility Assessment, ser. LNCS,
5. Dietrich, Ed,, 2014, vol. 8550, pp. 51-71.

D. Arp, M. Spreitzenbarth, M. Hidbner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android mabwame
in your pocket,” in Proc. NDSS, February 2014

C. Linn and 5 Debray, “Obfuscation of executable code to im-
prove resistance b0 static disassembly” in Proc. 10th ACM CCS.
ACM, 2003, pp. 290299,

V. Rastogi, Y. Chen, and X. Jiang, “Dmoidchameleon: evaluating
android anti-malwame against transformation attacks,” in Proc.
ACM SIGSAC, ser. ASIACCS, 2013, pp. 329-334.

H. Huang, 5. Zhu, B Liu, and D. Wu, “A framework for evalu-
ating mobike app repackaging detection algorithms,” in Trust and
Trustworthy Computing. Springer, 2013, pp. 169-186.

[36] . Gae, X. Bai, W-T. Tsai, and T. Uehara, “Mobile application
testing: A tutorial,” Computer, vol 47, no. 2, pp. 46-55, Feb 2014,

[37] M Egele, T. Scholte, E. Kirda, and C Eruegel, “A survey on au-

tomated dynamic malwame-analysis techniques and tools,” ACM

Comput. Surm, vol 44, no. 2, pp. 6:1-6:42, Mar. 2012

[38] A. Shabtai L. Tenenboim-Chekina, D. Mimran, L. Rokach,

B. Shapira, and Y. Elowici, “Mobile malware detection through

analysis of deviations in application network behavior™ Comput-

s & Security, 2004

K. Tam, 5.]. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Au-

tomatic reconstruction of android malware behaviors,” in NDSS

Symp Internet Sodety, February 2015

: Ku-at, G. Vigna, and C. Knmegel “Barecloud: bare-metal
evasive malware detection,” in Proc USENIX

SEC'14, 2014, pp. 287-301

[41] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege
escalation attacks,” Tech. Universitat Darmstadt, Tech. Rep., 2011,

[42]]. Calvet, . M. Fernandez, and [.-Y. Marion, “Aligot u'}l‘ptﬂg;ra'phlc
function identification in obfuscated binary programs” in Proc.
ACM, ser. CCS'12. ACM, 2012, pp. 160-182.

[43] S. Schrittwieser, 5. Katzenheisser, P Kieseberg, M. Huber, M. Lei-
thner, M. Mulazzani, and E. Weippl, “Covert computation: hiding
code in code for obfuscation purposes,” in Proc. 8th ACM SIGSAC,
ser. ASIA CCS'13. New York, NY, USA: ACM, 2013, pp. 529534,

[44] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-awam: malwame detection,” in Sequrity and Privecy,
2005 IEEE Symposium on, May 2005, pp. 32-46.

[45]]. Blasco Alis, “Information keakage and steganography: detecting
and blocking covert chanmels,” Ph.D. dissertation, Universidad
Carlos 1T de Madrid, 2012,

[46] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, “Eliminating
steganography in internet traffic with active wardens,” in 5t Intl.
Warksh. on Information Hiding, ser. TH '02. London, UK, UK:
Springer-Verlag, 2003, pp. 18-35.

[47] E. Li and S. Craver, “A square-oot law for active wardens,” in
Proceedings of the thirteenth ACM multimedia workshop on Multimedia
and security. New York, NY, USA: ACM, 2011, pp. 87-92

[3]

[40] D

15

[48] A. Takamen, J. [Demott, and C Miller, Fuzzing for softusre
security testing and quality assurance. Arbech House, 2008,

[49] A. Gianazza, E Maggi, A. Fattori, L. Cavallaro, and 5 Zanero,
“Puppetdroid: A usercentric ui ewerciser for automatic dy-
namic analysis of similar android applications,” arXiv preprint
arXim 14024826, 2014

[50] J. Gray, “Why do computers stop and what can be done about

it?" in Symposium on rdiakility in distributed software and database

systems. Los Angeles, CA, USA, 1986, pp. 3-12.

E. Natella, D Cotroned, . Duraes, and H. Madeira, “On fault rep-

msentativeness of softwame fault injection,” Software Engineering,

IEEE Transactions on, vol. 39, no. 1, pp. 80-%6, Jan 2013.

G. Suamez-Tangil, M. Conti, . E. Tapiador, and F Peris-Lopesz, “De-

tecting targeted smartphone mablwame with behavior-triggering

stochastic models,” in ESORICS 204, sex LNCS, vol. 8712

Springer International Publishing, 2014, pp. 183-201.

[51]

[52]

Guillermo Suarez-Tangil is Teaching Assistant in the Computer Se-
curity (COSEC) Lab at Universidad Carlos Ill de Madrid. His esearch
focuses on security in smart devices, intrusion detection, event cormela-
tion, and cyber security.

Juan E. Tapiador is Associate Professor of Computer Science in the
Computer Security (COSEC) Lab at Universidad Carlos Il de Madrid,
Spﬂi_n. His main research interests ane in computernetwork security and
applied cryptography.

Flavio Lombardi is a Researcher at IAC-CNR and Adjunct Professor
of Computer Science at Dept. of Mathematics and Physics, Homa Tre
University. His main research interests focus on: cloud security; GPGPU
computing; virtualization; S&P for mobile and distributed systems.

Roberto Di Pietro is with Bell Labs, Cyber Security Research. He is
also with Maths Dept. at University of Padua, ltaly. His main research
interests include: security and privacy for wireless systems; cloud and
virtualization security; security and privacy for distibuted systems;
applied cryptography; computer forensics, and rode mining for access
control systems (RBAC).

