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Abstract

In this paper we study the set of prime ideals in vector lattices and how the properties
of the prime ideals structure the vector lattice in question. The different properties
that will be considered are firstly, that all or none of the prime ideals are order dense,
secondly, that there are only finitely many prime ideals, thirdly, that every prime ideal
is principal, and lastly, that every ascending chain of prime ideals is stationary (a
property that we refer to as prime Noetherian). We also completely characterize the
prime ideals in vector lattices of piecewise polynomials, which turns out to be an
interesting class of vector lattices for studying principal prime ideals and ascending
chains of prime ideals.

Keywords Vector lattices - Prime ideals - Principal prime ideals - Ascending chains
of prime ideals

Mathematics Subject Classification Primary 46A40; Secondary 46B40

1 Introduction

Prime ideals play an important role in the study of vector lattices. These ideals have
been studied extensively in [10] and the analogy between the prime ideal structure in
commutative rings and vector lattices was studied in some detail in [6]. The prime
ideals are precisely the ideals for which the quotient vector lattices are linearly ordered,
and every vector lattice contains an abundance of prime ideals. Indeed, for any element
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f inavector lattice, the collection of ideals that do not contain f has a maximal element
with respect to set inclusion by Zorn’s lemma, and this maximal element is a prime
ideal. Furthermore, any ideal containing a prime ideal is again a prime ideal, and the
set of prime ideals containing a fixed prime ideal is linearly ordered. The set of prime
ideals in a vector lattice, and certain subsets herein, also yield various representations
of vector lattices. For instance, Yosida proved in [13] that an Archimedean vector
lattice is isomorphic to the vector lattice of extended functions on the set of prime
ideals that avoid a maximal disjoint set in the underlying vector lattice. Johnson and
Kist proved a more general result in [7] which states that every Archimedean vector
lattice is isomorphic to the extended functions on a subset of prime ideals that have
zero intersection and avoid a maximal disjoint set in the underlying vector lattice.
Properties of the prime ideals in a vector lattice can also encode the structure of the
vector lattice. For example, in C (K), the continuous functions on a compact Hausdorff
space K, it follows that every prime ideal is maximal if and only if K is finite, and more
generally, in a uniformly complete vector lattice every prime ideal is maximal if and
only if the vector lattice is isomorphic to coo(£2) for some set 2. See [10] for details.
The goal of this paper is to further study the structure of vector lattices in terms of the
properties of its prime ideals. We characterize the vector lattices for which the set of
prime ideals is specialized to having the following properties. Firstly, that all or none
of the prime ideals are order dense, secondly, that there are only finitely many prime
ideals, thirdly, that every prime ideal is principal, and lastly, that ascending chains of
prime ideals are stationary.

The connection between order dense prime ideals and atoms in vector lattices is a
dichotomous one. Namely, every prime ideal is order dense if and only if the vector
lattice is atomless, and that none of the prime ideals are order dense if and only if the
vector lattice is of the form cgy(£2) for some set 2.

As for vector lattices with only finitely many prime ideals, we prove that these
vector lattices must be finite-dimensional.

The specialization to all prime ideals being principal is inspired by Cohen’s theorem
for commutative rings, which says that a commutative ring is Noetherian if and only
if every prime ideal is finitely generated, see [5,Theorem 2]. Since in vector lattices
an ideal is finitely generated if and only if it is principal, the restriction to principal
prime ideals is taken for this reason. Cohen’s theorem is connected to another clas-
sical result from commutative ring theory, Kaplansky’s theorem. Kaplansky proved
in [9,Theorem 12.3] that in a Noetherian commutative ring every ideal is principal
if and only if every maximal ideal is principal. Combining the two theorems yields
that a commutative ring is a principal ideal ring if and only if every prime ideal is
principal, which is referred to as the Cohen—Kaplansky theorem. It turns out that
an Archimedean vector lattice is Noetherian if and only if it is finite-dimensional.
Hence, we prove the vector lattice analogue of the Cohen—Kaplansky theorem stating
that every prime ideal in an Archimedean vector lattice is principal if and only if it is
finite-dimensional, which is further equivalent with all ideals being principal. We prove
that in a uniformly complete Archimedean vector lattice there are no non-maximal
principal prime ideals, and we use this result to prove a vector lattice analogue of the
Cohen—Kaplansky theorem for uniformly complete vector lattices. More precisely,
every ideal in a uniformly complete Archimedean vector lattice is principal if and
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only if every maximal ideal is principal, which in turn is equivalent with the vector
lattice being finite-dimensional.

Since Noetherian vector lattices are finite-dimensional and, as mentioned above,
there are naturally occurring chains of prime ideals in vector lattices, studying vector
lattices in which every ascending chain of prime ideals P € P> C ... is stationary
is more interesting. We propose to call these vector lattices prime Noetherian. The
uniformly complete Archimedean prime Noetherian vector lattices are completely
characterized, and these characterizations depend on the existence of a strong unit. It
turns out that a prime Noetherian vector lattice with a strong unit is finite-dimensional
and in general, a prime Noetherian vector lattice is isomorphic to coo (£2) for some set €2.

The vector lattices of piecewise polynomials are a resourceful class of non-
uniformly complete vector lattices when studying principal prime ideals and prime
Noetherian properties. In these vector lattices we can explicitly construct prime
Noetherian vector lattices with prescribed finite maximal lengths of ascending chains
of prime ideals. Furthermore, we can construct chains of non-maximal principal prime
ideals of prescribed length in these vector lattices, which further shows the signifi-
cant role uniform completeness plays when studying principal prime ideals in vector
lattices.

The structure of our paper is as follows. Section 2 is the preliminary section where
the basics about vector lattices are covered. In Sect. 3 we investigate the relation
between order dense prime ideals and atoms in vector lattices. The main result of this
section is the dichotomous connection between the two. In Sect. 4 we characterize
vector lattices with only finitely many prime ideals. Vector lattices in which every
prime ideal is principal are studied in Sect. 5 and the main results are Theorem 5.2, the
vector lattice analogue of the Cohen—Kaplansky theorem for commutative rings, and
Theorem 5.6, the uniformly complete vector lattice analogue of the Cohen—Kaplansky
theorem for commutative rings. Prime Noetherian vector lattices are studied in Sect. 6.
The main result of this section characterizes the uniformly complete Archimedean
vector lattices with this property in Theorem 6.9. In Sect. 7 we study vector lattices
of piecewise polynomials.

2 Preliminaries

Let E be a vector lattice. We say that E is Archimedean whenever it follows from
0 < nx < yforeachn € N that x = 0. A vector subspace I of E is called an
order ideal or just an ideal whenever 0 < |x| < |y|and y € [ imply x € I. Given a
non-empty subset A consisting of positive vectors in E, there is the smallest ideal /g
in E containing the set S. It is a standard fact that

n
Is = yeE:O§|y|§ZAkxkforsomeneN, My.ooyry >0, andxy,...,x, €St .
k=1

The ideal I is called the ideal generated by S.If S = {x}, then Iy is said to be principal
and we write /, instead of /(). It should be clear that the ideal /g is principal if and
only if § is finite. If I, = E for some positive vector x, then x is called a strong unit.
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13 Page4of26 M. Kandi¢, M. Roelands

A proper ideal M of E is called maximal whenever for each ideal J satisfying
M C J C E it follows that either / = M or J = E. If the co-dimension of an
ideal I in E is one, then [ is a maximal ideal and conversely, all maximal ideals have
co-dimension one by [11,Corollary p.66]. If a vector lattice contains a strong unit,
then every proper ideal is contained in a maximal ideal (see [10,Theorem 27.4]). If E
does not contain a strong unit, then it may happen that there are no maximal ideals in
E (see [10,Example 27.8]). A vector lattice contains a strong unit whenever it contains
a principal maximal ideal. In fact, we prove a more general statement below.

Lemma 2.1 Let I be a principal ideal in a vector lattice E such that the quotient vector
lattice has a strong unit. Then E has a strong unit.

Proof Suppose that there exists a positive vector x € E suchthat I/ = I, and let y + /
be a strong unit for £/ for some positive vector y € E. Pick a vector u € E. Then
there exists a A > 0 such that |u| + I < Ay + I. From the definition of the order on
a quotient vector lattice, it follows that there exists a positive vector w € I, such that
lu] < Ay + w. Hence, there exists a u > 0 such that |#| < Ay 4+ pux which proves that
x + y is a strong unit for E. O

The set of all maximal ideals is completely characterized in the vector lattice C (K )
of continuous functions on a compact Hausdorff space K. It is well-known that an
ideal 7 in C(K) is maximal if and only if 7 is of the form

My :={f e CK): f(x) =0}

for some x € K. If E is a sublattice of C(K), then for x € K we denote the ideal
{feE: f(x) =0} by MXE. The norm convergence in the Banach space C(K) is
sometimes referred to as uniform convergence. This notion can be generalized to
vector lattices as follows. We say that a net (x4), in a vector lattice E converges
relatively uniformly to some x € E if there exists a positive vector y, the regulator,
such that for each € > 0 there exists an index «, such that for all @ > o we have
|xe — x| < €y. In general, a sequence can converge relatively uniformly to more than
one vector. If every relatively uniform Cauchy net converges relatively uniformly in
E with respect to the same regulator, then E is called uniformly complete. If E is
Archimedean, then the relative uniform limit is uniquely determined. In Archimedean
vector lattices the general notion of relative uniform convergence is not far away from
the classical one for C (K) spaces. Given a positive vector x in an Archimedean vector
lattice E, the principal ideal I, equipped with

[yllx :=1inf{A > 0: [y| < Ax}

is a normed space. The norm completion of (I, || - ||x) is an AM-space with a strong
unit x which by the Kakutani representation theorem (see [2,Theorem 4.29]) is lattice
isometric to the Banach lattice C(K) for some compact Hausdorff space K where
the strong unit x is mapped to the constant one function. Hence, if the normed lattice
(I, || - llx) is norm complete, then I itself is already lattice isometric to C(K). It is
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quite easy to see that E is relatively uniformly complete if and only if (/, || - ||x) is a
Banach lattice for each positive vector x € E.

Anideal P C E is said to be prime whenever x Ay € P impliesx € Pory € P.
By [10,Theorem 33.3] every maximal ideal is prime. For the proof of the following
useful characterization of prime ideals we refer the reader to [10,Theorem 33.2].

Theorem 2.2 For an ideal P in a vector lattice E the following conditions are equiv-
alent.

(i) P is prime.
(ii) If x Ny =0, thenx € Pory € P.
(iii) The quotient vector lattice E /P is linearly ordered.
(iv) For any ideals I and J satisfying [ N J € P we have I € P or J C P.

If P is a prime ideal, then by [10,Theorem 33.3] every ideal containing P is also
prime, and furthermore, the family of all ideals containing P is linearly ordered.

A non-zero positive vector a € E is said to be an atom whenever it follows from
0<x <a,0<y<aandx Ay =0thatx = 0ory = 0. If the principal
ideal I, generated by a equals the linear span of a, then a is a discrete element. While
every discrete element is an atom, both classes coincide in Archimedean vector lattices.
Examples of atomic vector lattices are R” ordered coordinatewise and the vector lattice
coo(€2) of all functions with finite support ordered pointwise on a non-empty set €2.
The atoms in cg(€2) are precisely the positive multiples of characteristic functions of
singleton sets. In an Archimedean vector lattice the principal ideal 7, generated by an
atom a is a projection band and so M, := {a}? is a maximal ideal in E. The linear
span Ay of all atoms in a vector lattice E is always an ideal. The atomic part A of E is
the band generated by Ag. The disjoint complement C = A< is called the continuous
or atomless part of E. If C = 0 or equivalently A% = E, then E is an atomic vector
lattice. An ideal I in E with the property 1¢ = {0} is said to be order dense. It turns
out that / is order dense in E if and only if for each non-zero positive vector x € E
there is a non-zero positive vector y € [ such that 0 < y < x. We refer the reader
to the standard texts [2, 10, 11] and [1] for any unexplained terminology about vector
lattices.

3 Order dense prime ideals in vector lattices

It turns out that order dense prime ideals are closely related to the existence of atoms,
in fact, their dichotomous connection is proved in Theorem 3.2. For example, if an
Archimedean vector lattice E contains an atom «, then its disjoint complement M, =
{a }d is of co-dimension one, so it is a maximal ideal in E. Since a is disjoint with M,
it follows that the prime ideal M, is not order dense in E. The canonical Archimedean
vector lattice which does not contain any order dense prime ideals is of the form coo (£2)
for some set €2 as stated in Theorem 3.2. The equivalent statements in the proposition
below follow from a combination of [10,p. 430] and [10,Theorem 61.4].
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Proposition 3.1 Ler Q be a non-empty set. Then an ideal I C coo(S2) is maximal if
and only if I is of the form

My = {x € coo(2): x(w) =0}

for some w € Q. Moreover, for a proper ideal I in coy(S2) the following statements
are equivalent.

(i) I is a minimal prime ideal.
(ii) I is a prime ideal.
(iii) I is a maximal ideal.

Proof For w € K the ideal M,, is maximal since it has co-dimension one. If I is
maximal in cgp(€2), then it follows that I € M,, for some w € 2. Indeed, if for every
w € Q there is a function f € [ such that f(w) > 0, this would imply I = co(£2).
Hence, there must exist w € 2 such that f(w) = Oforall f € I. Since [ is a maximal
ideal, we conclude that I = M,,,. O

The dichotomous connection between the existence of order dense prime ideals and
the existence of atoms is made precise in the following theorem.

Theorem 3.2 Let E be an Archimedean vector lattice.

(i) E is atomless if and only if every prime ideal in E is order dense in E.
(ii) None of the prime ideals are order dense in E if and only if E is atomic and
E = Ay.

Proof (i) Suppose that E contains a prime ideal P that is not order dense. Then P? #
{0}. If dim P9 > 2. then as E is Archimedean, there must exist two vectors x1 and xp
in P4 that are incomparable. It follows that x := x; —x; Axp and y := xp —x] Ax) are
now two non-zero disjoint vectors in P9 Since neither x nor yisin P, this contradicts
the fact that it is a prime ideal. Hence dim P¢ = 1, so that P%¢ is necessarily a maximal
band in E. By [10,Theorem 26.7] we conclude that there exists an atom a € E such
that P4 = {a}.

To prove the converse implication, assume that £ contains an atom. Then M, is a
maximal ideal in E. Since there is no positive vector x € M, such that 0 < x < a,
the prime ideal M, is not order dense in E.

(ii) Suppose that E does not contain order dense prime ideals. We first show that
E has the projection property. To see this, pick a band B in E and consider the sum
J := B® BY. Then J is an order dense ideal in E. If J # E, then there exists a vector
x € E\ J,sothatby [10,Theorem 33.4] there exists a proper prime ideal P containing
J which does not contain x. Since P is necessarily order dense, this contradicts our
assumption. It follows that E = B @ B? and so B is a projection band.

To prove that E is atomic, note that by (i) the vector lattice E contains an atom.
We need to prove that E = A or equivalently C = {0}. Suppose that C # {0}. Then
C is a non-trivial atomless band in E. By (i), there is an order dense prime ideal P in
C. The set A @ P is clearly an ideal in E. Since (A @ P)? = AN P4 = CN P4 and
since P is order dense in C, we conclude that A @ P is order dense in E.
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We claim that A @ P is a prime ideal in E. To see this, pick vectors x and y € E
withx Ay = 0. Since E = A & C, x and y can be decomposed as x = x| + x» and
y = y1 + y» where x1, y; € A and x2, y» € C. From

XAY=X1AYI+xX2A»=0

we conclude that x» A y» = 0. Since P is a prime ideal in C, we conclude that x, € P
or yo € P. This provesthatx € A@ Pory € A® P, and so A @ P is an order
dense prime ideal in E which is impossible. Hence C = {0}, which proves that E is
atomic. If Ag # E, then there exists a proper prime ideal P in E which contains Ayp.
Since E is atomic, it follows that A, and therefore also P, is order dense in E which
is impossible by assumption, hence £ = Ay.

To conclude the proof note that by Proposition 3.1 the class of prime ideals coincides
with the class of maximal ideals in Ag and that none of the maximal ideals in Aq are
order dense. O

Remark 3.3 Note that statement (i) in Theorem 3.2 can be reformulated so that it
characterizes when non-order dense prime ideals exist in E. That is, an Archimedean
vector lattice E contains a prime ideal that is not order dense if and only if E contains
an atom.

4 Vector lattices with finitely many prime ideals

In this section we consider vector lattices which have finitely many (minimal) prime
ideals and prove in Theorem 4.3 that these vector lattices must be finite-dimensional.
We start with a general lemma that locates prime ideals and characterizes maximal
ideals of norm dense sublattices of C(K)-spaces.

Lemma4.1 Let K be a compact Hausdorff space and let E be a sublattice of C(K).

(i) Forevery properideal J in E there exists apoint x € K suchthat J is contained
in ME.
(ii) If E is norm dense, then an ideal J in E is maximal if and only if it is of the
form Mf for a unique point x € K.
(iii) If E is norm dense, then for every prime ideal P in E there exists a unique point
x € K such that P is contained in ME.

Proof (i) Suppose that for each x € K there exists f, € J such that f,(x) > 0. By
continuity, for each f € J one can find an open neighborhood U, of x such that f is
strictly positive on U,. Since we have an open covering {U, : x € K} of K, there exists
a finite subcover Uy, ..., Uy,. The function f := fy, + -+ fx, is strictly positive
on K, so it is a strong unit in E and therefore, we have J = E. This contradiction
shows that there exists x € K such that / C M f .

(ii) Let x € K and consider the ideal ME in E. It follows that ME is proper, as
otherwise f(x) = Oforall f € C(K) since E is norm dense in C (K ). Suppose that J
is a proper ideal in E containing Mf .By (i) thereis apoint y € K suchthat J C Mf .
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If there would exist a function f € MP \ M, then for h € E \ M} we can define
g € Eby

ey T
g2) = f(2) h(x)h(z).

But then g(x) = 0 and g(y) # 0, which contradicts the fact that ME C Mf. Hence
Mf = Mf, andso J = Mf showing that Mf is a maximal ideal in E.

On the other hand, if J is a maximal ideal in E, then there is a point x € K such
that J € ME by (i) and so J = ME.

For the uniqueness of the point x € K, suppose that M = M} for x # y. We
claimthatforany f, g € E itfollowsthat f(x)g(y) = f(y)g(x).Indeed,if f(x) =0,
then f € M = MY, 50 f(y) = 0and f(x)g(y) = f(y)g(x). If f(x) # 0, then
h € E defined by

iy 8
h(z) := g(2) f(x)f(z)

satisfies h(x) = 0,s0 h € ME = ME and h(y) = 0 implies that f(x)g(y) =
f(y)g(x), proving the claim. Since E is norm dense in C(K), it follows that
fx)g(y) = f(y)gx)forall f, g € C(K),butthis contradicts Urysohn’s lemma. We
conclude that x = y and the maximal ideals in E are therefore uniquely determined
by the points in K.

(iii) Let P be any prime ideal in E. Then by (i) there is a point x € K such that
P C ME. Suppose that there is another point y € K such that P € M yE . Since
P is a prime ideal, it follows that we must have Mf C Mf or MVE C Mf and so

ME = M. Hence, x =y by (ii). o

Although Lemma 4.1 is stated for sublattices of C (K )-spaces, it is useful in a more
general setting when studying prime ideals in Archimedean vector lattices. Indeed, if
E is an Archimedean vector lattice and x € E is a non-zero positive vector, then by
the Kakutani representation theorem, the normed lattice (1, || - ||) is lattice isometric
to a dense sublattice of C(K) for some compact Hausdorff space K. Since any prime
ideal P in E yields a prime ideal P N I, in I, this allows us to study the properties
of the principal ideals in E and the topological properties of K given the restrictions
on the set of prime ideals in question.

Lemma4.2 Let K be a compact Hausdorff space. If there is a norm dense sublattice
E of C(K) that contains only finitely many minimal prime ideals, then K is finite and
E = C(K).

Proof Suppose K contains a sequence of distinct points (x,),cn all of which corre-
spond to maximal ideals M f; by Lemma 4.1. Since every maximal ideal contains a
minimal prime ideal by [10,Theorem 33.7] and distinct maximal ideals do not contain
the same minimal prime ideal by [10,Theorem 33.3], it follows that E must contain
infinitely many minimal prime ideals, contradicting the assumption. Hence KX is finite
and so £ = C(K) as it is norm dense. O
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The main result of this section is proved by using Lemma 4.1 since Archimedean
vector lattices are saturated with copies of dense sublattices of C(K)-spaces.

Theorem 4.3 Ifan Archimedean vector lattice E contains finitely many minimal prime
ideals, then it is finite-dimensional.

Proof Pick any positive vector x € E and consider the principal ideal 7,,. We claim
that 7, contains only finitely many minimal prime ideals. Suppose that I, contains
infinitely many minimal prime ideals {P,: n € N}. For each n € N there exists a
minimal prime ideal Q,, in E such that P, = Q, N I, by [10,Theorem 52.3]. Since
P, # P, forn # m,the family {Q,,: n € N} of minimal prime ideals of E is infinite.
Thus, I, contains only finitely many minimal prime ideals.

The Banach lattice completion of the normed space (I, || - ||x) is lattice isomet-
ric to C(K) for some compact Hausdorff space K by the Kakutani representation
theorem. Hence, C(K) contains a norm dense sublattice with only finitely many
minimal prime ideals. By Lemma 4.2 we conclude that K is finite, so that I, is
finite-dimensional. Hence, by [10,Theorem 61.4] we have that E is lattice isomorphic
to the space cog (£2) for some set 2. By Proposition 3.1 we have that 2 is finite, making
E finite-dimensional. O

5 Cohen’s and Kaplansky’s theorem in vector lattices

In this section we prove vector lattice analogues of two well-known results in the theory
of commutative rings that involve prime ideals. Cohen’s theorem (see [5,Theorem 2])
states that a commutative ring is Noetherian if and only if every prime ideal is finitely
generated, and Kaplansky’s theorem (see [9,Theorem 12.3]) states that in a Noetherian
commutative ring every ideal is principal if and only if every maximal ideal is principal.
Combining Cohen’s theorem and Kaplansky’s theorem yields that a commutative ring
is a principal ideal ring if and only if every prime ideal is principal, which is referred to
as the Cohen—Kaplansky theorem. In vector lattices an ideal is finitely generated if and
only if it is principal, so Cohen’s theorem becomes a statement about principal prime
ideals in vector lattices. We prove the vector lattice analogue of the Cohen—Kaplansky
theorem stating that every prime ideal in an Archimedean vector lattice is principal if
and only if it is finite-dimensional, which is further equivalent with all ideals being
principal. Furthermore, we prove that in a uniformly complete Archimedean vector
lattice there are no non-maximal principal prime ideals, and we use this result to prove
a vector lattice analogue of the Cohen—Kaplansky theorem for uniformly complete
Archimedean vector lattices. That is, every ideal is principal if and only if every
maximal ideal is principal, which in turn is equivalent with the vector lattice being
finite-dimensional.

We say that a vector lattice E is Noetherian if every ascending chain of ideals in
E is stationary. This notion is completely analogous to that of Noetherian rings or
modules. Since Noetherian vector spaces are precisely the finite-dimensional ones,
the following result should not be too surprising.

Proposition 5.1 For an Archimedean vector lattice E the following statements are
equivalent.
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(i) E is finite-dimensional.
(ii) E is Noetherian.

Proof Since every finite-dimensional vector lattice can only have finitely many ide-
als, it is clear that (i) implies (ii). Assume that E is infinite-dimensional. By
[10,Theorem 26.10] E contains an infinite sequence (e, ),eN of pairwise disjoint pos-
itive vectors. If for each n € N we define the ideal J,, generated by the set {e1, ..., e,},
then the ascending chain J; € J, C ... of ideals in E is not stationary. O

In view of Proposition 5.1 the vector lattice analogue of Cohen’s theorem charac-
terizes the finite-dimensional vector lattices among those for which all prime ideals
are principal. Furthermore, a well-known alternative definition of a commutative ring
being Noetherian is that every ideal is finitely generated, which leads to the following
theorem. This result can be thought of as a combination of Cohen’s theorem and the
Cohen—Kaplansky theorem for vector lattices.

Theorem 5.2 (Cohen—Kaplansky theorem for vector lattices) Let E be a vector lattice,
and consider the following statements.

(i) E is finite-dimensional.
(ii) Every proper ideal in E is principal.
(iii) Every prime ideal in E is principal.

Then (i) implies (ii), (i) implies (iii), and (iii) implies (ii). Moreover, in the case
where E is Archimedean, we have that (ii) implies (i), so all statements are equivalent.

Proof Since every finite-dimensional vector lattice has a strong unit, the fact that (i)
implies (ii) and (iii) is clear. We proceed to prove that (ii7) implies (i7). To this end,
suppose there is a proper ideal I in E which is not principal. Let z € E \ I be positive
and define

& :={J C E: J is anon-principal ideal with z ¢ J}.

Then . is non-empty an can be partially ordered by set inclusion. For any chain
(Ji);i in it follows that its union Jo := |J; J; is an ideal which is not principal.
Indeed, if Jo = I, for some positive vector x € E, then x € J; for some i and
soJo € I, € J; € Jy hence J; = I, which is impossible by definition of .7.
Furthermore, Jy does not contain z making it a proper ideal in E. By Zorn’s lemma
# has a maximal element, say P.

We claim that P is a prime ideal in E. Suppose x, y € E are so thatx Ay = 0 and
neither x nor y are in P. Then the prime ideals P + I, and P + I, are principal, so
there are positive vectors v, w € E suchthat P+ I, = I and P + I, = I,,. It follows
that (P + I,) N (P + Iy) = I, N I, = Iyny and by [11,Proposition II.2.3] we find

P+Io)NP+1L)=P+PNL+PNIy+1,NIy=P+ Iy =P.
Hence, P = Iy, but that is impossible as P € .#. Thus, P must be a prime ideal,

but then by assumption it must be principal contradicting P € .# once more. We
conclude that every proper ideal in E must be principal.
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Let E be Archimedean such that every proper ideal in E is principal. To prove
that (i7) implies (i) by contradiction, suppose that E is not finite-dimensional. Then
by [10,Theorem 26.10] there exists an infinite sequence (x,),en of non-zero positive
pairwise disjoint vectors in E. Let / be the ideal generated by {x,11: n € N} in E.
By construction / is proper, so it is principal and there exists x € E such that [ = I,.
Hence there are xi,, . .., x,, and positive scalars A1, ..., A, such that

0 <x < Aixpy + Aoxpy, + -+ ApXg,, -

Thus, there is an n > 1 such that x L x,. Since x,, € I, we conclude that x,, = 0
which is impossible. This contradiction shows that E is finite-dimensional. O

By Theorem 5.2 it is clear that every infinite-dimensional Archimedean vector
lattice contains a non-principal prime ideal. The following example shows that there
even exists an atomic infinite-dimensional Archimedean vector lattice whose maximal
ideals are all principal, yet none of the remaining prime ideals are principal.

Example 5.3 Let x := (x,),eN be an element of ¢y and suppose x,, > 0 forall n > 1.
By adjoining the constant sequence 1 to the ideal I, generated by x in ¢ we obtain the
atomic vector lattice E := I, + R1 that is not uniformly complete, and its uniform
completion equals c. Since c is lattice isometric to C(N U {oo}), where N U {oo}
denotes the one-point compactification of N, the maximal ideals in E are of the form
Mf = M, N E for a maximal ideal M,, in C(N U {oo}) by Lemma 4.1. For n € N the
maximal ideal ME is principal with generator 1 — ¢, € E and for the adjoined point
it follows that M, = ¢g and so Mob; = I which is principal by construction.

We claim that no non-maximal prime ideal P can be contained in M for some
n € N. Indeed, if there is an n € N such that P C Mf , then it follows from the fact
that e, ¢ Mf and e, A (1 —e,) = Othat 1 — ¢, € P, but this would imply that
P = MFE. Thus, there are no proper non-maximal prime ideals contained in M[ for
alln e N.

Suppose now that there exists a principal prime ideal P which is not maximal.
Since P is not a subset of Mf forn € N, we have P C I,.If y € I is positive such
that P = I, then y, > O for all » > 1. Moreover, for all k € N there are x,,, and y,,
such that x,, > kyp, since I, is properly contained in /. Define v := (vjn)men and
W = (W) men as follows. If m = ny; for some k € N, then put v, = x,,, otherwise
put v, = 0. Similarly, if m = no,_; for some k € N, then put w,, = x,,,,_, otherwise
putw,, = 0.Thenv, w € I, and vAw = 0, but there is no multiple of y that dominates
v or w. We conclude that P is not principal and E is an infinite-dimensional atomic
Archimedean vector lattice that is not uniformly complete in which all maximal ideals
are principal and all non-maximal prime ideals are not principal. Note again that by
Theorem 5.2 such non-maximal prime ideals must exist in E.

Hence, by Example 5.3 it is not true in general that an Archimedean vector lattice
in which all maximal ideals are principal must be finite-dimensional. However, when
passing to uniformly complete Archimedean vector lattices, it follows that the Cohen—
Kaplansky theorem reduces to the vector lattice analogue involving only principal
maximal ideals.
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Theorem 5.4 Let E be an Archimedean uniformly complete vector lattice.

(i) If E has a strong unit, then every principal prime ideal is maximal and equals the
disjoint complement of an atom.
(ii) If E contains a principal prime ideal, then E has a strong unit.

Proof (i) Suppose that E has a strong unit e. Since E is uniformly complete it is
lattice isometric to C(K) for some compact Hausdorff space K by the Kakutani
representation theorem. Hence, we may assume without loss of generality that £ =
C(K). Let P = Iy be a principal prime ideal in E for some non-negative function
f € E.By [10,Theorem 34.1] there exists a unique point xqo such that each function
in P vanishes at xq. Since P is principal, the point xq is the unique zero of f.

We will show that xp must be an isolated point in K. Indeed, suppose that x is not
isolated in K. Then we can inductively construct a sequence (x;),cn in K such that
(f (xp))nen is a strictly decreasing sequence with f(x,) — 0. For n > 1 define the
open neighbourhoods of x(y by

Up:={x e K: f(x) < f(xn)}.

As x,41 € Up \ Uy, it follows that U,y € U, for all k > 1, and since U, C
{x € K: f(x) < f(xp)}, it follows that Un+1 C U, for all n > 1. Furthermore, the
closure U, 5 is properly contained in U, forall n > 1. Hence, the open neighborhoods
Vy := Upp_1 of xq satisfy V4 C V,, forn > 1 and we define the non-empty closed

sets Fy, := V,_1 \ Vo, for n > 1. Note that for n < m we have
FyNFy= Vo 1N Va1 NVs, NV =Vou_1 N Vs, S Vo, N Vs, =0,

so the closed sets F;, are pairwise disjoint. Define for n > 2 the continuous function
fn on the closed set F,, U Vo, U Vg _, by

JT@ ifx e F,
Su(x) = . — c
0 ifxeVyp1 UV, ,,

which by the Tietze extension theorem can be extended to a positive continuous func-
tion on K that will also be denoted by f;, suchthat f;, < ./ f.The functions f>, and f>,,
are disjoint for all m # n and we define the sequences of partial sums g, := Y ;_; fax
and h, = Zzzl fak—2. Note that for n and m the functions g, and h,, are disjoint
and that for m < n we have (g, — g)(x) < /f(x) on Vg, 16 and (g, — gm)(x) =0
on Vg, ¢, so that (g,)nen is a Cauchy sequence in C(K) for || - [[oc. Similarly, we
find that (h,),cn is a Cauchy sequence in C(K) for || - || . Let g and & be the uniform
limits of (g,)nen and (h,)nen, respectively, in C(K). Since g, Ah, = Oforalln > 1,
it follows that g Ah = 0 and so either g € P or h € P as P is a prime ideal. Suppose
that g € P. Then thereisa A > O such that f4, < g, < g < Af foralln > 1. Hence,
for all x € Fy, we have that \/f(x) < Af(x) and since x16,—1 € Fa, it follows that
1 < A/ f(x16n—1) for all n > 1 which contradicts the fact that f(x,) — 0. Hence,
g ¢ P and similarly we have & ¢ P, so we conclude that xp must be an isolated point.
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The set K \ {xo} is therefore closed in K and since f is strictly positive on K \ {xo},
it attains a strictly positive minimum on K \ {xp}. Thus, for each function g € My,
there exists a A > O such that g < A f which implies that P = Iy = M, is a maximal
ideal. Furthermore, the characteristic function yxy, is an atom in E and M, = { Xxo}d~

(ii) Let P = I, be a prime ideal in E, and let y € E \ P be positive. Then
Q := P+ 1y, = I,4y is anideal in E and suppose that Q C E. Then for a positive
vector z € E \ Q it follows from the fact that ideals in uniformly complete vector
lattices are uniformly complete that E' := I,4 . is a uniformly complete vector
lattice with a strong unit that contains a principal prime ideal that is not maximal. This
contradicts (i), so Q@ = E and we conclude that E has x + y as a strong unit. O

It will be shown in Sect. 7 that there are vector lattices containing non-maximal prin-
cipal prime ideals. In view of Theorem 5.4, these vector lattices cannot be uniformly
complete.

Corollary 5.5 Let K be a compact Hausdorff space. For x € K the maximal ideal M,
in C(K) is a principal ideal if and only if x is an isolated point of K.

Proof It was shown in the proof of Theorem 5.4 that x must be an isolated point of
K whenever M, is principal. On the other hand, if x is an isolated point of K, then
the characteristic function x, is continuous on K and it follows that M, = Iy for

fi=1—xx. O

The vector lattice analogue of the Cohen—Kaplansky theorem for uniformly com-
plete Archimedean vector lattices is the following.

Theorem 5.6 (Cohen—Kaplansky theorem for uniformly complete vector lattices) The
Jfollowing statements are equivalent for a uniformly complete Archimedean vector
lattice E.

(i) E is finite-dimensional.
(ii) Every proper ideal in E is principal.
(iii) E contains maximal ideals, and every maximal ideal in E is principal.

Proof Statements (i) and (ii) are equivalent by Theorem 5.2, and the fact that (i)
implies (iii) is clear. Suppose E contains maximal ideals and all of them are principal.
By Lemma 2.1 the vector lattice E has a strong unit, so it is lattice isometric to a C (K )-
space. It follows from Corollary 5.5 that every point in K is isolated. We conclude
that K must be finite in order to remain compact, so £ must be finite-dimensional. O

6 Prime Noetherian vector lattices

As was proved in Proposition 5.1, all Noetherian Archimedean vector lattices are finite-
dimensional. When considering chains of ideals in vector lattices, the prime ideals are
also a natural class of ideals to study. For example, all ideals that contain a fixed prime
ideal are prime ideals and this set is linearly ordered by set inclusion. The vector
lattices for which the ascending chains of prime ideals are finite will be studied in this
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section, and we propose the following definition. A vector lattice E is said to be prime
Noetherian if every ascending chain of prime ideals P C P, C ... in FE is stationary.
Uniformly complete Archimedean prime Noetherian vector lattices are completely
characterized in Proposition 6.8 and Theorem 6.9, and these characterizations depend
on the existence of a strong unit. More specifically, if E has a strong unit, then E is
finite-dimensional and in general £ must be lattice isomorphic to coo(£2) for some
set 2. We start this section by studying how the prime Noetherian property transfers
between sublattices, ideals, and the whole vector lattice.

Proposition 6.1 Let E be a vector lattice and let F be a vector sublattice. If E is prime
Noetherian, then F is prime Noetherian.

Proof Suppose that Q1 € Q> C ... is an ascending chain of distinct proper prime
ideals in F. We can now create an ascending chain of distinct prime ideals Py € P,
...in E such that 9, = P, N F for all n € N by induction. Indeed, for 01 € Q>
there are distinct prime ideals P; € P in E suchthat Q1 = PiNFand 0> = P,NF
by [10,Theorem 52.4]. Suppose that for Q1 € Q> C ... € Q there are distinct
prime ideals Py € P, C ... € Prin E suchthat Q; = PN F fori = 1,...,k.
Consider the canonical Riesz homomorphism 7 : E — E /P, and note that 7 (F)
is a sublattice of w(E). The zero ideal is prime in both quotient vector lattices, so
that 7 (Qk+1) is a prime ideal in 7w (F) by [10,Theorem 33.3(iii)]. Furthermore, by
[10,Theorem 52.2] there is a prime ideal P’ in w(E) such that 7 (Qy11) = P' N7 (F),
and define Pry; := 7~ NP Tt is readily verified that Py is a prime ideal in E
that contains Py. Furthermore, if x € Pry1 N F then there is a p € Py such that
X —p € Qk+1,hence p € Pp N F = Qj so that x € Q4. Since for x € Q41
it follows that 7w (x) € P’ we also have x € Py11, s0 Qx+1 = Pry1 N F. Note that
since Qr and Qg4 are distinct, we must have that Py and P4 are distinct, which
concludes the induction argument. Since we assumed E to be prime Noetherian, the
chain Q1 € Q> C ... must be stationary. Hence, F is prime Noetherian. O

If on the other hand we have a vector lattice £ with a prime Noetherian sublattice
F, then it is not true in general that E is prime Noetherian even if F is an order dense
ideal. See the paragraph preceding Corollary 6.12. In the case where F is a projection
band we can prove the following.

Proposition 6.2 Let B be a projection band in a vector lattice E. Then E is prime
Noetherian if and only if B and B? are prime Noetherian.

Proof If E is prime Noetherian, then B and B¢ are prime Noetherian by Proposi-
tion 6.1. Assume now that B and BY are prime Noetherian and let P| € P, C ... be
a chain of prime ideals in E. Then

PPNBCP,NBC... and P NB'cP,NBYC...

are increasing chains of prime ideals in B and B¢, respectively. Hence, there exists
n € N such that for all m > n we have

P,NB=P,NB and P,NBY=P,NB.
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Since the lattice of ideals in a vector lattice is distributive, for each m > n we obtain
Py = (PuNB)& (PyNBY)=(P,NB)&(P,NBY) =P,
O

In a prime Noetherian vector lattice there are large prime ideals in the sense that
they have finite co-dimension and every prime ideal is always contained in a large
prime ideal.

Proposition 6.3 In a prime Noetherian vector lattice every prime ideal is contained
in a prime ideal of finite co-dimension.

Proof Pick a prime ideal P in a prime Noetherian vector lattice E. Suppose that for
eachideal Q containing P the vector lattice £/ Q is infinite-dimensional. Let P; := P.
Let P C P> be any proper ideal in E. By assumption E/ P, is infinite-dimensional.
Pick any proper ideal P, C Pz in E. By assumption the vector lattice E/ P is infinite-
dimensional. Inductively we can construct an ascending chain Py C P, C P3 C ...
of distinct prime ideals which contradicts the assumption that E is prime Noetherian.

O

It is not true in general that vector lattices contain maximal ideals, however, prime
Noetherian vector lattices always do.

Proposition 6.4 Let E be an at least two-dimensional prime Noetherian vector lattice.
Then every proper ideal of E is contained in a maximal ideal.

Proof Let I be a proper ideal in E. By [10,Theorem 33.5] the ideal / is contained in a
non-trivial prime ideal P. By Proposition 6.3 the ideal P is contained in a prime ideal
Q such that the dimension of E/( is finite. Let

0=01C0C...C0, 1CS0n=E

be the maximal chain C of ideals between Q and E. Clearly, O, is then a maximal
ideal in E which contains /. O

In the proposition below we show that maximal lattice ideals in Co(X), where X
is a locally compact Hausdorff space, also consist of functions that are zero at a fixed
point in X.

Proposition 6.5 Let X be a locally compact Hausdorff space and let M be a maximal
ideal in Co(X). Then there exists an x € X suchthat M = {f € Co(X): f(x) =0}

Proof Let Cy(X), be the complexification of Co(X) and let M. be the complexification
of M in Cy(X).. By [14,Theorem 13.8] it follows that M, is an ideal in the vector
lattice Co(X). and we claim that it is maximal. If this is not the case, then there exists
a proper order ideal N in Co(X). such that M, C N. From this it follows that the
real parts satisfy M C N, and since M is maximal, we have that either N, = M or
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N, = Co(X) as N, is an ideal in Co(X) by [14,Theorem 13.8]. The former yields that
M = N and the latter yields that N = Co(X). which is impossible. Hence, M, is
maximal in Co(X), and has co-dimension one as M has co-dimension one in Cqo(X).
Since M, is an order ideal, it is also a maximal algebra ideal. By [4,Theorem 2.4(i)]
we conclude that either Co(X )g C M, or M, is closed. We claim that the former
is impossible. To this end, assume that Co(X )? C M, and pick any non-negative
function f € Co(X). Then f = (/f )2 € M., hence, M, contains all non-negative
functions of Cy(X).. Since M, is an order ideal, we conclude that M, = Cy(X).
which is impossible. By [8,Theorem 1.4.6] there exists a unique point x € X such that
M. ={f € Co(X).: f(x) = 0}. To finish the proof note that M = (M,),. O

The following proposition will be useful for proving the main results of this section.
It characterizes the maximal ideals in a uniformly complete vector lattice with a strong
unit among the prime ideals with finite co-dimension.

Proposition 6.6 Let E be an Archimedean uniformly complete vector lattice with a
strong unit. Then a prime ideal P is a maximal ideal if and only if dim E /P < oo.

Proof If dim E = 1, there is nothing to prove. So we may assume that the dimension
of E is at least two. Furthermore, since E is uniformly complete with a strong unit,
by the Kakutani representation theorem we may assume that £ = C(K) for some
compact Hausdorff space K where K contains at least two points.

Pick a prime ideal P in C(K) such that dim C(K)/P < oo. Then there exists an
x € K such that P is contained in the maximal ideal M. Let

P=PCPhC...C P 1S P =M

be the maximal chain C of ideals, that are necessarily prime, in E between P and M,.
Since C is maximal, the ideal P,_; is a maximal order ideal in P,,.

We claim that P,_; is a maximal algebra ideal in P,. To see that P,_; is also
an algebra ideal in M, pick f € P,_; and g € M, and note that the inequality
|fgl < llglleo | f] together with the fact that P,_ is an order ideal in M, yields that
fg € P,—1. Since P,_1 is a maximal order ideal in P,, the co-dimension of P,_; in
P, is one, so that P,_ is also maximal as an algebra ideal in P,.

We claim that there exists y € K \ {x} such that

Py ={f e CK): f(x)=f(y)=0}.
To see this, consider the locally compact Hausdorff space K \ {x}. It is a standard fact

from general topology that the one-point compactification of K \ {x} is homeomorphic
to K and that the mapping ®: Co(K \ {x}) - M, € C(K) defined by

F@) ifr#x,
0 ifr=ux,

Q(f)@) = {

is an isometric lattice and algebra isomorphism. Since P,_; is a maximal algebra
ideal in M., it follows that ®~1(P,_;) is a maximal algebra ideal in Co(K \ {x}). By
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Proposition 6.5 there exists y € K \ {x} such that

O (Pyo1) = {f € Co(K \ {x)): f(y) =0},

so that

Pyt = @@ (Pym) = {@(f): fed (P}
={feCK): f(x)=f(y) =0}

We claim that P,,_ is not a prime ideal. To this end, note that Urysohn’s lemma yields
functions f and g in C(K) such that f(x) = g(y) = 1l and f(y) = g(x) = 0.
Then f A g belongs to the ideal P,_1, yet neither f nor g belongs to P,_;. This
contradiction shows that n = 1 so that P = M, is a maximal ideal. Since maximal
ideals have co-dimension one, this concludes the proof. O

Corollary 6.7 A uniformly complete Archimedean vector lattice E with a strong unit
is prime Noetherian if and only if every prime ideal in E is maximal.

Proof If every prime ideal in E is maximal, then E is necessarily prime Noetherian.
Suppose now that E is a prime Noetherian vector lattice and pick a prime ideal P in
E. We will prove that E/ P is finite-dimensional since Proposition 6.6 will yield then
that P is a maximal ideal in E.

By way of contradiction, assume that E/ P is infinite-dimensional and let Py := P.
Pick any non-maximal ideal Q in E that properly contains P;. By Proposition 6.6 we
have that £/ Q is infinite-dimensional. Now let P, := Q. Inductively we can construct

an ascending chain P; C P, C --- of prime ideals in E such that for eachn € N
the dimension of E/ P, is infinite. However, this contradicts the fact that E is prime
Noetherian. O

The following proposition proves that the finite-dimensional vector lattices are
precisely the uniformly complete Archimedean prime Noetherian vector lattices with
a strong unit.

Proposition 6.8 Let E be a uniformly complete Archimedean vector lattice with a
strong unit. Then E is prime Noetherian if and only if E is finite-dimensional.

Proof By Corollary 6.7 every prime ideal in E is a maximal ideal, so that by
[10,Theorem 37.6] the quotient vector lattice E/J is Archimedean for every ideal
J in E. Since E is uniformly complete, [10,Theorem 61.4] yields that E is lattice
isomorphic to the vector lattice cop(€2) for some set 2. Since E has a strong unit, €2
needs to be finite. Hence, the vector lattice E is finite-dimensional.

The converse follows from the fact that finite-dimensional vector lattices have only
finitely many ideals. O

In general, the uniformly complete prime Noetherian vector lattices are character-
ized as cgo(£2) for some set 2.

Theorem 6.9 A uniformly complete Archimedean vector lattice E is prime Noetherian
if and only if it is lattice isomorphic to coo(R2) for some set Q2.
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Proof Suppose that E is a prime Noetherian vector lattice. Pick a positive vector x € E
and consider the principal ideal 7, which is a uniformly complete vector lattice with
a strong unit. Since I, is prime Noetherian by Proposition 6.1, it follows that 7, is
finite-dimensional by Proposition 6.8. Hence, E is lattice isomorphic to coo(€2) for
some set 2 by [10,Theorem 61.4]. For the converse implication, note that coo(£2) is
prime Noetherian by Theorem 3.1. O

If E is equipped with a completely metrizable locally solid topology, then the prime
Noetherian property implies that E is finite-dimensional.

Lemma 6.10 If coo(S2) is lattice isomorphic to a completely metrizable locally solid
vector lattice E, then 2 is finite.

Proof Let ®: coo(2) — (E, t) be a lattice isomorphism where 7 is a completely
metrizable locally solid topology on E. Then ®~! induces a completely metrizable
locally solid topology t/ on cgp(£2). Hence, ® is an isomorphism between completely
metrizable locally solid vector lattices.

Suppose that 2 is infinite and let (w,),cN be a sequence in 2 of distinct points.
Denote by x, the vector ®(x,) in E. Since T is metrizable, there exists a local basis
{U, : n € N} of solid neighborhoods of zero in E with the property that Uy, +1+U,+1 €
U, for each n € N. Since each set U,, is absorbing, there exists a A,, > 0 such that
MnXxn € U,. Denote the vector A1x1 + - - - + A, x, by s5.

We claim that the sequence (s,),cN is a Cauchy sequence in (E, 7). Pick any
neighborhood U of zero in (E, t) and find ng € N such that U,, € U. By [3,Exercise
2.1.14] for all m’ > m > ng we have

Sm' — Sm = Am+1Xm+1 + -+ A X € U1 + -+ Uy S Uy C Uno cvU

which proves the claim. Hence, the increasing sequence (s;),cN converges to some
positive vector s € E. Since @ is an isomorphism, the increasing sequence (t,),eN
where t, = A1 Xw, + -+ + Ay X, 1S convergent to the vector &~ 1(s). However, the
inequality &~ (s) > A, Xw, Which holds foreachn € Nyields that &~ !(s) has infinite
support. This clearly contradicts the definition of the space cgo(€2). Therefore, 2 is
finite and the proof is completed. O

Proposition 6.11 A completely metrizable locally solid vector lattice is prime Noethe-
rian if and only if it is finite-dimensional. In particular, a Banach lattice is prime
Noetherian if and only if it is finite-dimensional.

Proof Let E be a completely metrizable locally solid vector lattice with the prime
Noetherian property. Since E is uniformly complete, it is lattice isomorphic to coo(£2)
by Theorem 6.9. By Lemma 6.10 we conclude that E is finite-dimensional. O

Corollary 6.11 we can construct an example of a vector lattice E that contains a
prime Noetherian sublattice as an order dense ideal, however E itself is not prime
Noetherian. Indeed, the vector lattice ¢y contains cqg as an order dense ideal.

Corollary 6.12 The following assertions are equivalent for a uniformly complete prime
Noetherian Archimedean vector lattice E.
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(i) E has a strong unit.
(ii) E is lattice isomorphic to a Banach lattice.
(iii) E is finite-dimensional.

The following example shows that there exists an infinite-dimensional prime
Noetherian vector lattice with a strong unit which is not uniformly complete.

Example 6.13 The vector lattice E := cqop + R1 of all eventually constant sequences
is not uniformly complete, and every quotient space of E is Archimedean by
[10,Exercise 61.5] and therefore, every proper prime ideal in E is a maximal ideal
by [10,Theorem 37.6]. Hence, E is an infinite-dimensional atomic prime Noetherian
vector lattice with a strong unit.

7 Vector lattices of piecewise polynomials

In this section the prime ideals in vector lattices of piecewise polynomials are stud-
ied. It turns out that this class of non-uniformly complete vector lattices is a source
of insightful examples when studying principal prime ideals and prime Noetherian
properties of vector lattices.

Forn € Nlet PPol"([a, b]) be the vector lattice of piecewise polynomials of degree
at most n that are continuous on the interval [a, b], and we shall denote the space of
piecewise polynomials that are continuous on the interval [a, b] without any bound
on the degree by PPol([a, b]). By the lattice version of the Stone-Weierstrass theorem
all these spaces are uniformly dense in C([a, b]). For the system of (not necessarily
open) neighborhoods N (#p) of 79 € [a, b], we define the ideal

Inw =1{f € B 710 € N}
Note that for 7y € (a, b) theideal Iy (4, is not prime. To see this, consider the functions
f() == (t —t9)+ and g(¢) := (t9 — t)+. Then f A g = 0, but neither f nor g are
in Iy (). Furthermore, if we write E for either PPol” ([a, b]) or PPol([a, b]), then it

follows from Lemma 4.1 that all maximal ideals in E are of the form Mtg for some
to € [a, b]. For tg € (a, b] we define

Ly = {f € Mtf: there exists a § > O such that f(t) =0 fort € (to — 9, to]}
and for 7y € [a, b) we define
Ry = {f € M,f: there exists a § > 0 such that f(t) = 0 for ¢ € [tg, o + 8)} .

In fact, these are exactly the minimal prime ideals in E.

Lemma 7.1 Let E be either PPol"([a, b]) or PPol([a, b]). The minimal prime ideals
in E are precisely Ly, for ty € (a, b] and Ry, for ty € [a, b).

@ Springer



13 Page 20 of 26 M. Kandi¢, M. Roelands

Proof 1t is straightforward to check that L, and R, are ideals. Suppose f, g € E are
such that f A g = 0. Since f and g are piecewise polynomials and have only finitely
many zeros when they are not constant, there must be a § > 0 such that f () = 0 on
either (t9 — 8, fo] or on [19, t9 + J), or g(¢) = 0 on either (tp — 8, fo] or on [fg, ty + 5).
Hence f isin Ly, orin Ry, or g isin L, or Ry, and if f isnotin Ly, then g isin L.
Similarly, if g is not in Ly, then f isin L. Thus Ly, is a prime ideal and it follows
analogously that Ry, is a prime ideal.

Next we will show that I, is contained in every prime ideal in Ml'g. Indeed, if
P is a prime ideal in Mtg and f € Iy, is positive, then there is an € > 0 such
that (fp — €,79 + €) isin {t € [a, b]: f(t) = 0} and we can construct a piecewise
linear continuous function g that is zero outside (g — €, o + €) and g(zy) = 1. Since
f A g=0,itfollows that f € P.

We proceed to show that L, and Ry, are the minimal prime ideals in E. Suppose
P is a minimal prime ideal in M tg , and there is a function f € L, thatis notin P and
that there is a function g € Ry, thatisnotin P. Then f A gisnotin P,but f A gisin
IN (1) contradicting the fact that Iy, € P. Hence, L, C P or R;y € P. Since P is
a minimal prime ideal, it follows that P = L;, or P = Ry,. Moreover, if 7y € (a, b],
then the prime ideal L;, contains a minimal prime ideal P. So, there is an s € [a, D]
suchthat P = Ly € L, or P = Ry € L;,. Then by Lemma 4.1 it follows that s = #.
If Ry, is contained in L,,, then we must have that R, = In(,), which is impossible.
Hence, for all 1y € (a, b] the prime ideals L, are minimal. Similarly, for all #y € [a, b)
the prime ideals Ry, are minimal as well. O

For t9 € (a,b] any f € PPol"([a, b]) has left derivatives at fy, which we will

denote by fﬁ’ )(to) for 0 < j < n where it is understood that ffo) (to) = f(to). The
left j-th derivatives of f yield a map ¢ : PPol"([a, b]) — R"*! defined by

oL (f) = (f o), —f (o), £ (1), ..., (=1 £ (10)). (7.1)

Similarly for 79 € [a, b) and any f € PPol"([a, b]) we have right derivatives fJ(rj )(to)
for 0 < j < n which yield the map @g : PPol"([a, b]) — R"*! defined by

OR(S) = (f(t0), — f1(t0), f1(t0), .., (=1)" £ (10)), (7.2)

where we again put ff_o) (to) = f(to). It follows that if we equip R"*! with the

lexicographical ordering, the maps ¢ and ¢g are Riesz homomorphisms.

Lemma 7.2 Equip R"*! with the lexicographical ordering. Then for ty € (a, b] the
map ¢y, as in (7.1) is a Riesz homomorphism with kernel L., and for ty € [a, b) the
map @g as in (7.2) is a Riesz homomorphism with kernel Ry,.

Proof If f(tp) > 0O, then | f| = f onaleft neighborhood of #, and ¢ (f) > ¢r(—f),

so ¢ (| f) = |¢L(f)]. On the other hand, if f(f)) < O, then |f| = —f on a left

neighborhood of 79 and ¢ (f) < ¢r(— ), s0 ¢ (| f]) = |#r(f)]. Suppose that
fo)=fl)=...= fP ) =0
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for some 0 < k < n = deg(f). Then on a left neighborhood of 7y we have that f is
of the form

F) = a1t — 10+ a1t —10)" "+ an(t — 1)

If £% D 10) = (k + 1lags1 > 0, then for k odd we have that

F@ =10 =10 (a1 + asalt = 10) + o e =0 ™) (73)

so we may choose a sufficiently small left neighborhood of 79 such that | f| = f on
that left neighborhood and as ¢, (f) > ¢r(—f), it follows that ¢ (| f|) = |¢L(f)].
In case k is even, we have that

— 1O =l =10/ (@1 + a2t = 10) .+ @ — 0" ) (74

so | f| = — f ona sufficiently small left neighborhood of #y. Hence ¢1. (f) < ¢r(—f)

and ¢1. (| f]) = |1 (f)|. Suppose now that £ TV (10) = (k+ Dlaxs1 < 0. Ifk is odd,
then similarly, we find that we may chose a sufficiently small left neighborhood of #

such that | f| = — f. Since ¢ (f) < ¢r(—f), it follows that ¢r (| f]) = |or (f)]. If k
is even, then there is a sufficiently small left neighborhood of 7y such that | f| = f, and

as ¢ (f) > ¢ (—f), weseethat ¢ (| f]) = |édr(f)]. Hence ¢ is a Riesz homomor-
phism with kernel L. A similar argument shows that ¢y is a Riesz homomorphism
with kernel Ry, . O

For brevity, write E := PPol"([a, b]). Let ty € (a, b] and define Lfo for1 <k <nby

L= {remt: 1P =4 Pw == =0}, @5

and similarly

RE = {f e ME: fPu0) = & V) = ... = flL) = 0} (7.6)

for 1 < k < n whenever ty € [a, b). Note that LZ) = L4 and RZ) = Ry,. It turns out
that all non-maximal prime ideals in E are of this form.

Theorem 7.3 The non-maximal prime ideals in PPol” ([a, b]) are of the form L’,‘O for
some 1 < k < nandty € (a,b), or are of the form Rf) for some 1 < k < n and
to € [a, b).

Proof Write E := PPol"([a, b]). Let t9 € (a, b]. Then Lfo is the preimage of the
prime ideal

Lo={xeR":x =0 1<i<k)
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under ¢ forcing it to be a prime ideal in E as ¢, is a Riesz homomorphism by
Lemma 7.2. Indeed, consider the linear map oy : R**! — RK by oy (x1, ..., Xpi1) 1=
(x1, ..., xx). If we equip R+ and R* with the lexicographical ordering, it follows that
oy is a Riesz homomorphism. To see this, let x € R+ If x; < —x1, then x| = —x
and oy (|x]) = |ox(x)|, and if x; > —xj, then |x| = x and or(|x]) = |or(x)].
Suppose that x; = Ofor 1 <i </ < k and x;41 < —xj41, then |x| = —x and
or(Ix]) = |ox(x)], and if x;41 > —x741, then |x| = x and ok (|x]) = |ok(x)]. In the
case where x; = O for all 1 <i < k itis clear that 0% (|x|) = |ox(x)| = 0. Hence, oy
is a Riesz homomorphism. Since the kernel of oy is I, it follows that I} is an ideal
in R"*! and as the quotient vector lattice R"*!/I; is linearly ordered, we conclude
that Ij is a prime ideal in R"*! by [10,Theorem 33.2]. Similarly, we conclude for
to € [a, b) that Rﬁ) is a prime ideal in E for all 1 < k < n. Note that the linear maps

br: th‘o — R given by

oe(f) == 5P o)

have kernels Ly for 1 < k < n — 1, and the linear map ¢o: ME — R given by
do(f) := f’ (1) has kernel L,lo. Hence

-1 ~ ~ 1k j7k+]l ~ ~ a7E 11 ~
Ly Ly = ... =Ly /L™ = =My /L, =R,
and similarly, we have

RIVR,= ... =Rl /RIT = =ME/RL =R

It follows that if P is a non-maximal prime ideal in E, then it contains a minimal
prime ideal which is of the form L, for some 1y € (a, b] or R, for some 1y € [a, b)
by Lemma 7.1. Thus, we have L,, € P C Mtf or R,y € P C Mtf. If Kk > 11s the
smallest number such that Lfo C P, then we must have Lfo CPC Lfo_l, SOP = Lfo
or P = Lﬁ;l. Similarly, if P is a non-maximal prime ideal such that R,, € P C Mlg,
then P = Ry, orP:Rﬁ) for some k > 1. O
Corollary 7.4 The vector lattice PPol" ([a, b]) is prime Noetherian. Furthermore, any
ascending chain of prime ideals is of length at most n, and it contains a chain of
ascending prime ideals of length n.

Proof The ascending chains of prime ideals
_rn n—1 1 E __ pn n—1 1 E
Ly=L,<Ly <...CL,<M,; and Ry =R SR~ <S...CR S M,

are of length n. O

For the piecewise polynomials of arbitrary degree PPol([a, b]) and #y € (a, b] we
define the linear map 1 : PPol([a, b]) — coo by

YL (f) = (f (o), — (o), £ (t0), - -, (=D fPap), (=DM £ E D), ).
(7.7
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Similarly for ty € [a, b) we define the linear map ¥ : PPol([a, b]) — cgp by

YR(S) == (f(t0), — F1(t0)s [ (t0)s s (—DF £EF D ag), (1} pEFD g0y, ).
(7.8)

If we equip coo with the lexicographical ordering, then this yields a totally ordered vec-
tor lattice which will be denoted by Lex (N). For a literary reference, see [12,Section 2].
It follows that ¥; and ¥ are Riesz homomorphisms.

Lemma 7.5 For ty € (a, b] the map Y1 as in (7.7) is a Riesz homomorphism with
kernel Ly, and for ty € [a, b) the map g as in (7.8) is a Riesz homomorphism with
kernel Ry,.

Proof Note that ¥ is surjective as for any (x,),ecn in coo there is a smallest N > 1
such that x, = 0 foralln > N + 1, and the polynomial defined by

@) =x1—x20 —10) + ...+ (DY et — 1)V !

satisfies Y1 (f) = (xn)nen. Let f € E. Then it follows that ¥ (| f) = |[¥rL(f)]
via analogous reasoning for the map ¢, in (7.1) where n equals the degree of the
polynomial that equals f on a left neighborhood of #y. Hence, 1 is a Riesz homo-
morphism with kernel L,,. Analogous to the reasoning in proving that g is a Riesz
homomorphism, it follows that v is a Riesz homomorphism with kernel Ry, . O

If we write E := PPol([a, b]), then as in (7.5) and (7.6) we consider
h={remt: 1O =4 =... = 1 1w =0}
for ty € (a, b] and all k € N in this case, and
RE={femf: fPuw = ¢ Vw =... = flu) =0}
for fo € [a, b) and all k € N in this case. Note that (2, L = Ly, and (72, R} =

Ry, and it follows that these are in fact all the non-maximal prime ideals in E.

Theorem 7.6 The non-maximal and non-minimal prime ideals in PPol([a, b]) are of
the form Li‘o for some k € N and ty € (a, b], or are of the form R{; for some k € N
and ty € [a, b).

Proof Write E := PPol([a, b]). Letty € (a, b]. Then Lfo is the preimage of the prime
ideal

Jyi={xeLlex(N): x; =0, 1 <i <k}
under the Riesz homomorphism v . It follows that J is the kernel of 7 : Lex(N) —

RK defined by % ((Xxp)nen) = (x1, ..., xx), which is proved to be a Riesz homo-
morphism analogously to showing that oy is a Riesz homomorphism in Theorem 7.3.
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Similarly, we have prime ideals

R = {remf: fPaw = ¢ w = = i) =0}

forall k € N. Furthermore, as in Theorem 7.3 we have th‘0 /Li‘o'|rl = Rand R;B/R;B‘H =
Rfork € N,and ME/L} =Rand ME/R} =R.

Let P be a non-maximal prime ideal in E such that L,, € P C Mt‘g for some
to € (a, b]. If P is contained in L];O for all k € N, then P C ﬂ,fil L]t‘o = Ly, so
P = L;,. On the other hand, if k¥ € N is the smallest number such that Li‘o C P, then
Lfo cCPC Lfo_l, so P = Lfo or P = Lfo_l as Li‘o_l/L’;0 = R. Similarly, if P is a
non-maximal prime ideal such that R,, € P C Mtf, then P = Ry or P = Rﬁ) for
some k € N. O

Corollary 7.7 The vector lattice PPol([a, b)) is prime Noetherian and contains ascend-
ing chains of prime ideals of arbitrary finite length.

Proof Write E := PPol([a, b]). Let P} € P, C ... be an ascending chain of prime
ideals. Then for any n € N, it follows that L,, € P, C M,f for some 79 € (a, b]
or Ry € P, C Mtf for some 7y € [a, b). By Theorem 7.6 the only P, such that
L, C P, C Mtg or R,y C P, C MIE must be of the form P, = Lﬂ‘o or P, = Rg),
respectively, for some k € N. In this case P, can only be contained in finitely many
prime ideals, so the chain must be stationary. Note that for n € N we have ascending
chains of prime ideals

n n—1 1 E n n—1 1 E
LpcLi'c...CcL) cME and R CR!'C...CR) CMf

of length n in E. O

In view of Theorem 5.4 there are no non-maximal principal prime ideals in uni-
formly complete Archimedean vector lattices. However, there is an abundance of
principal prime ideals, even ascending chains of arbitrary finite length, in vector lat-
tices of piecewise polynomials.

Theorem 7.8 Ler E be the vector lattice PPol" ([a, b]) or PPol([a, b]). Then all non-
minimal prime ideals in E are principal.

Proof By Lemma4.1, every maximal ideal in E is of the form M ,f forsome gy € [a, b],
that is,

My ={f € E: f(t) = 0}.

We will show that f (¢) := |t — 19| generates Ml'(f . Indeed, suppose first that ty € (a, b).
IfgeM f , then there is a left neighborhood I;, and a right neighborhood J;, of ¢ in
[a, b] such that g is a polynomial on Iy, and J;, and |t — #o| < 1 forall t € I, U J;,.
That is, we have

gty =ai(t —to) +...+an(t —10)" onl, and
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g) =bi(t —to) + ...+ byt —10)™ on Jy,.

Hence, for pu := max{Y y_; lax|, >_p—; |bk|}, we find that |g(t)| < | f(1)| for all
t € Iy U Jyy. Outside I, U J;, we have that f is strictly positive, so gf ~! is bounded
there and we conclude that |g| < A f for some A > 0, showing that M,"g is generated
by f. If ty is either a or b, a similar argument using only a left or right neighborhood
of 7o shows that M,g is generated by f as well.

Let P be a non-maximal and non-minimal prime ideal in E. Then by Theorem 7.3
and Theorem 7.6 there is a ty € [a, b] such that P = Lfo or P = Rgf) for some k € N.
Suppose first that #p € (a, b). The functions

to—t ifa <t <t 0 ifa <t <t
fiy=1" Ra=r=0nd ) = na=i=0

0 ifto <t <b t—ty iftg<t<b

are disjoint, so it follows that either f; € P or f. € P. Note that P cannot contain
both f; and f; as that would force P to be the maximal ideal Mg as discussed in

the paragraph above. Suppose f; € P. Then P = RZ and since each f € E can be
written as

f®) =ao+ai(t—1t)+...4+a,t —10)"
locally on a right neighborhood of #y for some n € N, it follows that f € P if and

only if ag = ... = a; = 0. Define gi41(¢) := |t — t0|k‘"1 and note that for f € P
there is a § > O such that |t — 1g| < 1 for all ¢ € [19, ty + §), and then

FO1 =l = 10 | + axanlt = 10) + .+ e = 10"

<gen® ) lail. (7.9)

i=k+1
Since gi+1 is strictly positive on [fg + &, b], it follows that fg, l | is bounded there

and so there is a A > O such that | f| < Agr41 on [#, b]. Since P C M,’OE, there also is
ap > Osuchthat | f| < f; on [a, to], which implies that the function

o) {fl(t) ifa <t <1

gkr1(t) iftg <t <b

generates the ideal P. Similarly, in the case where f, € P instead of f;, it follows that
P = Lfo and the function

h(t) = 8k+1(1) %fa§t<to
Jr(®) ifto <t <b
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generates the ideal P. Finally, if tp = a or 7o = b, then it follows from (7.9) that P is
generated by either (r — a)**! or (b — 1)**!, respectively. O

Note that by Theorem 5.2 the vector lattices of piecewise polynomials must contain
non-principal prime ideals, which are precisely the minimal prime ideals as shown
below.

Corollary 7.9 Let E be the vector lattice PPol” ([a, b]) or PPol([a, b]). Then none of
the minimal prime ideals in E are principal.

Proof For any minimal prime ideal P in E there is a fo € [a, b] such that P = L,
or P = R;, by Lemma 7.1. For every positive function g in P thereisa é > 0 such
that g is zero on either (fo — 8, fo] or [#o, to + §). Hence, we can construct two disjoint
non-zero functions supported in (fy — 8, f9] or we can construct two disjoint functions
supported in [#o, fo + ). Hence, neither L, nor R;, can be principal. O
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