
Neurocomputing 510 (2022) 159–171
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
A hypothesis-driven method based on machine learning for
neuroimaging data analysis
https://doi.org/10.1016/j.neucom.2022.09.001
0925-2312/� 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: DaSCI Institute, University of Granada, Spain.
E-mail address: gorriz@ugr.es (J.M. Gorriz).
J.M. Gorriz a,b,c,⇑, R. Martín-Clemente e, C.G. Puntonet d, A. Ortiz f, J. Ramírez a, SiPBA group a, J. Suckling b

aDaSCI Institute, University of Granada, Spain
bDpt. of Psychiatry, University of Cambridge, UK
c ibs.Granada, Granada, Spain
dDpt. Computer Architecture and Technology, University of Granada, Spain
eDpt. Signal Theory and Communications, University of Seville, Spain
fDpt. Communication Engineering, University of Málaga, Spain
a r t i c l e i n f o

Article history:
Received 15 June 2022
Revised 18 July 2022
Accepted 3 September 2022
Available online 9 September 2022

Keywords:
General Linear Model
Linear Regression Model
Support Vector Regression
permutation tests
Magnetic Resonance Imaging
Random Field Theory
a b s t r a c t

There remains an open question about the usefulness and the interpretation of machine learning (ML)
approaches for discrimination of spatial patterns of brain images between samples or activation states.
In the last few decades, these approaches have limited their operation to feature extraction and linear
classification tasks for between-group inference. In this context, statistical inference is assessed by ran-
domly permuting image labels or by the use of random effect models that consider between-subject vari-
ability. These multivariate ML-based statistical pipelines, whilst potentially more effective for detecting
activations than hypotheses-driven methods, have lost their mathematical elegance, ease of interpreta-
tion, and spatial localization of the ubiquitous General linear Model (GLM). Recently, the estimation of
the conventional GLM parameters has been demonstrated to be connected to an univariate classification
task when the design matrix in the GLM is expressed as a binary indicator matrix. In this paper we
explore the complete connection between the univariate GLM and ML-based regressions. To this purpose
we derive a refined statistical test with the GLM based on the parameters obtained by a linear Support
Vector Regression (SVR) in the inverse problem (SVR-iGLM). Subsequently, random field theory (RFT) is
employed for assessing statistical significance following a conventional GLM benchmark. Experimental
results demonstrate how parameter estimations derived from each model (mainly GLM and SVR) result
in different experimental design estimates that are significantly related to the predefined functional task.
Moreover, using real data from a multisite initiative the proposed ML-based inference demonstrates sta-
tistical power and the control of false positives, outperforming the regular GLM.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Whole-brain analyses in neuroimaging (NI), comprising a large
number of independent statistical tests, have been traditionally
conducted with classical statistics, either hypothesis testing or
Bayesian inference, and the univariate General Linear Model
(GLM) [8]. These hypothesis-driven methods gained their popular-
ity due to the ease of interpretation and function localization
across experimental designs [9]. However, they usually rely on
assumptions that are frequently violated; e.g. homogeneity, Gaus-
sianity, etc. [30] and, consequentially, inflated type I error rates
have become problematic and a key contributor to the replication
crisis [8,23].

Furthermore, technological advances are increasing spatial and
temporal resolutions as well as the range of available measure-
ments of anatomy and physiology; a true exemplar of the curse
of dimensionality [1]. In this context, analyses of contemporary
large image repositories retain the difficulties associated with
small sample sizes. One of them is the inflated false-positives
observed across experiments as a consequence of the multiple
comparison problem. This problem is partly solved by over conser-
vative approaches, such as Bonferroni or Random Field Theory
(RFT) corrections [7].

One promising solution for the aforementioned problems in NI
is machine learning (ML) [11,12]. ML provides us with high-
dimensional relationships between datasets that are empirically
established based on data-driven methods [36]. Estimating depen-
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Fig. 1. NI analysis and methods. An univariate hypothesis-driven method based on the regression parameters obtained by ML (dash line) is proposed. Note the different
meaning among the activation maps prior to probability thresholding, e.g. by means of a multiple comparison correction (RFT, Bonferroni, etc.) in classical approaches or
selecting accuracies above random performance in SDM. In particular, SPM obtained by hypothesis testing indicates the likelihood of the observation given the null
hypothesis H0 (data likelihood) whilst the Bayesian framework considers the posterior probability map of the observation (effect likelihood). SDM and current multivariate
ML approaches for image classification provide the (class-membership) probability of the observation given the alternative hypothesis H1 (prevalence). MANCOVA:
Multivariate analysis of covariance, MANOVA: Multivariate analysis of variance.
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dencies in regression or classification tasks using statistical learn-
ing theory (SLT), unlike classical statistics, characterizes the actual
relationships or effects with a limited dataset. NI in particular has
embraced ML as a technology to deliver diagnostic and prognostic
classification of neurological and psychiatric disorders
[4,19,42,21,20]. Nevertheless, the mainstay of NI studies are obser-
vational and mechanistic, seeking to identify regional between-
group differences in brain structure and function.

1.1. Related Works

Data-driven analysis methods based on ML [27,39,40,33,13]
have demonstrated their ability for detecting activations in fMRI
data, outperforming conventional hypothesis-driven approaches,
i.e. the standard GLM inference based on random effect models
(see Fig. 1). The core idea on these agnostic (model-free)
approaches is to perform an accurate feature extraction based on
a fixed-complexity MLE classifier, e.g. linear support vector
machine (SVM), between predefined groups. They all share the
same characteristic processing pipeline of a data-driven multivari-
ate approach that enhances detection ability within a classification
task.

Consequently, the Statistical Parametric Maps (SPM) derived
from the GLM parameters are replaced by the spatial discriminance
map (SDM) 1 obtained by ML [37,31]; or some other specific feature
extracted at the training stage, e.g. distance to the separating hyper-
plane [39], replaces the explanatory variables in the GLM, previous
to the statistical inference stage. These data-driven maps are then
deployed in conventional pipelines (hybrid approaches) for statisti-
cal inference. However, some approaches depart from the p-value-
based frequentist, Bayesian or permutation analyses, and introduce
the concept of the probability of the worst case in neuroimaging [13].

Despite the popularity of ML as a solution for a wide range of
complex problems, there remains an open question about its use-
fulness for statistical inference. Mainly, what is the statistical sig-
1 mainly based on accuracy or prevalence, that is, the proportion of a population
who have a specific characteristic or effect versus control subjects
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nificance of its performance in a classification/regression task?
Moreover, several works in NI [37,38,11] have revealed the short-
comings of predictive inference methods based on ML, e.g. cross-
validation failure results in poor estimates. Another example is
the inclusion of covariates and nuisance variables 2 in the analysis
using ML. This procedure, that is massively used in the conventional
NI analysis, is usually overlooked when using ML tools
[19,42,21,20,25]. At most, the aforementioned hybrid approaches
make use of a fitting process in the ‘‘ML space” in combination with
the classical GLM, which includes these variables [17].

Efforts with ML around these issues are increasing with contin-
uous output variables ([5], with remarks in [29]) rather than the
more typical categorical classifications. However, the classification
task is just a particular case of the regression problemwith discrete
labels, thus exploring general ML methods for linear regression,
such as SV regression (SVR), is currently relevant in addition to
its use as a simple extension of SVM [42].

Recently, a connection between both domains, that is, the stan-
dard GLM and classification tasks by ML, has been established [14]
using binary experimental design matrices. The aim was to formalize
the relationship that has been evidenced in several neuroimaging
applications in the extant literature. In this paper, we show a com-
plete and novel connection between the classical GLM, including
random effect models, and the ML framework in the estimation
of optimum regression parameters.

1.2. Aims

Overall, the main achievement of the article is the formalization
of the use of ML in the context of hypothesis-driven neuroimaging
statistical inference by deriving its formal relationship to the GLM;
the method almost ubiquitously used for mass univariate testing of
imaging datasets. Outputs from both approaches are then com-
pared in a variety of commonly encountered applications. In doing
so, we leverage one of the most commonly used packages for mass
2 they are usually referred to as confounds, i.e. variables that may blur the effect
that is being sought.



Fig. 2. Illustration example of the connection between GLM and iGLM. On the left
observations in y and the best parameters of the GLM (h1; h2) given the
experimental conditions (blue and red) are shown. On the right, given the set of
observations, we show the parameters (x1;x2) that better explain the classes (red
and blue) and the equivalent GLM parameters (ĥ1; ĥ2).
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univariate testing: SPM [8], and within it the methods for spatially
extended statistics and p-value corrections for multiple compar-
isons. In summary, in this paper:

� We formalize the use of ML within the univariate GLM pipeline
for statistical inference,

� We give an explanation on why hybrid approaches, massively
used in this context, are actually working, e.g. the main regres-
sor (experimental condition) in the design matrix could be
replaced by a data-driven property [39].

� The connection is established by selecting the SVR in the inverse
domain (SVR-iGLM) that allows us to include all the covariates
(age, sex, etc.) in the analysis at once.

Subsequent analyses based on frequentist inference and permuta-
tion testing are carried out to calculate the level of significance in
between-group testing of SPMs with a multiple comparisons
correction.

2. Theory

2.1. The General Linear Model and its statistical framework

The GLM [9] is defined for a single observation level, e.g. in a
between-subject comparison, as:

y ¼ Xhþ � ð1Þ
where y is the N � 1 observation vector with units of time, signal
change, volume, etc., � is the N � 1 vector of errors that is assumed
to be Gaussian distributed, X is the N �M matrix containing the
explanatory variables or constraints, and h is the M � 1 vector of
parameters explaining the observations y. Note that: i) for a hierar-
chical observation model each level requires prior estimation at the
previous levels; and ii) in terms of ML, X are the multidimensional
labels or regressors acting on the observations y. In the classic GLM,
h is usually estimated by a maximum likelihood criterion based on
the Gaussianity assumption and is given by:

ĥ ¼ ðXtC�1
� XÞ�1

XtC�1
� y ð2Þ

where C� is the covariance matrix of errors. Inferences on this esti-
mate3 determine the components of h, and the relationship between
classical GLM and ML-based prevalence inferences can be obtained
using a linear compound specified by a contrast weight vector c,
and writing a T statistic as:

T ¼ ct ĥffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctCovðĥÞc

q ð3Þ

where CovðĥÞ ¼ ðXtC�1
� XÞ�1

. This T statistic gives us the probability
of observing the ML estimation under H0, and when it is small
enough, e.g. p < 0:05, the linear compound is considered signifi-
cantly different from zero. As an example, given a set of two param-
eters in h ¼ ½h1; h2�t , if we select c ¼ ½1� 1� we are assessing how
large is the first parameter with respect to the second; i.e. the dif-
ference h1 � h2. Thus, if the T statistic suggests a small probability,
the contrast is statistically significant with observations generated
from different sources.

A similar procedure could be established based on a Bayesian
estimation and inference to handle complex hierarchical observa-
tional models. This framework would be based on the Expectation
Maximization (EM) algorithm for parameter estimation, along with
3 Here, we refer to voxelwise inference since we use a threshold u to classify voxels
i as ‘‘active” if Ti P u. Clusterwise inference uses a cluster-forming threshold to define
contiguous suprathreshold regions [28].
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known priors and a priori probability models, with the aim of eval-
uating the posterior probability (ppm). By thresholding the ppm,
relationships between this and the frequentist approach can be
established for both their similarities (statistical power) and differ-
ences (specificity) [9].

2.2. Machine learning and the inverse GLM

The GLM can be interpreted as the inverse problem of regress-
ing the observations onto the conditions (see Fig. 2). Instead of
assuming the model in Eq. 1, the inverse GLM is defined as:

X ¼ yxþ �̂ ð4Þ
wherex is a set of (1�M) parameters that best explains the design
matrix given the observations, and �̂ is noise with unknown pdf. We
can readily see that:

ðX� �̂ÞxtðxxtÞ�1 ¼ y ð5Þ

where we assume that the inverse of the norm ðxxtÞ�1 exists. After
some manipulations we finally get:

y ¼ X~hþ ~� ð6Þ
where we define:

~h ¼ xtðxxtÞ�1
; ~� ¼ ��̂xtðxxtÞ�1 ð7Þ

Therefore, solving the multiple regression problem in equation 4,
e.g. using a ML approach, is equivalent to estimating the parameters
of the GLM. If we carefully examine Eq. 7, each column c of the
design matrix (c ¼ 1; . . . ;M including covariates and nuisance vari-
ables) can be described by:

x1;c

..

.

xN;c

2
664

3
775 ¼ yxc þ �̂c ð8Þ

The set of parameters x could be determined by a classical
approach such as Parametric Empirical Bayes (PEB), assuming a
Gaussian model for the noise �̂. However, we prefer to use the ML
approach based on the regularized risk minimization and linear



Fig. 3. Simulated data with noisy observations example with h ¼ ½1 0 1�t , CNR¼ 1 and N ¼ 1000. We evaluated the GLM in Eq. 1 given the experimental conditions (main
regressors) with a covariate and the Gaussian noise assumption.
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regressors. For the reader’s convenience, further mathematical dis-
cussion is available on 7.

Thus, given the set of observations y and the experimental con-
ditions and covariates in X, we regress M independent linear equa-
tions as:

X ¼ ywþ B ¼ ŷŵ ð9Þ

where ŵ ¼ x
B

� �
, the N �M matrix B ¼ ½bt

. . .bt�t and b is the 1�M

vector of biases. In view of Eq. 8, we realistically assume under this
approach that the bias does not depend on the experimental condi-
tion or covariate realization.

Once the set of parameters and biases fw;bg are estimated by a
suitable procedure (see Appendix), such as least squares (LS) or
SVR, we can calculate the observation y by simply inverting Eq. 9
as:

yest ¼ ðX� BÞwtðwwtÞ�1 ¼ ~X~h ð10Þ

where ~h is the ML estimated vector of parameters that combines the
weight of multiple predictors to explain the observation, and
~X ¼ ðX� BÞ is the adjusted design matrix. Instabilities that could
arise from the scalar inversion in Eq. 10, that depend on the selected
ML algorithm, are easily solved by bounding its value between �1
and 1.

It is worth mentioning here that our model does not use any
data reduction techniques, e.g. principal component analysis
(PCA), preserving the function localization of the univariate GLM.
However, a similar description of the method can be given in terms
of the difference of signed distances by replacing the main refer-
ence function in the GLM by yw

jjwjj2. In this way we a give an explana-

tion of the multivariate approach proposed in [39] in terms of the
solution in the iGLM.
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2.3. Support Vector Regression

In general, the core idea of SVR [32] is to do (non-) linear regres-
sion in a feature space F:

f ðyÞ ¼ w �UðyÞ þ b; U : Rn ! F; w 2 F ð11Þ
where �denotes dot product and, in the case of the linear regression,
U is simply the identity function. We determine w from the data by
minimizing the sum of the empirical risk, e.g. �-insensitive loss
function [2], and a complexity term proportional to its norm:

Rregðf Þ ¼ 1
2
jjwjj2 þ C

XN
i¼1

jxi � f ðyiÞj� ð12Þ

This minimization can be transformed into a uniquely solvable
quadratic programming problem [34] that provides the vector of
parameters w in terms of the samples or support vectors:

w ¼
XN
i¼1

ðai � a�
i ÞUðyiÞ ð13Þ

where ai;a�
i are Lagrange multipliers; that is, the solutions of the

quadratic programming problem. Finally, the bias term b can be
computed by determining the prediction error on the margin
di ¼ f ðyiÞ � xi ¼ �signðai � a�

i Þ and taking the average of differences
as b ¼< f ðyiÞ �w �UðyiÞ >.

2.4. Model Equivalence

After performing the regression in the iGLM domain by SVR and
assuming that the explanatory matrix X contains two experimental
conditions, i.e. indicator variables that refer to class membership,
and a set of continuous covariates or nuisance variables, then we
have X ¼ ½XbXc� and the observations can be estimated, following
Eq. 10, by:
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yest ¼ Xb
~hb þ Xc

~hc � B~h ð14Þ

where ~h ¼ ½~htb~htc�
t
. Eq. 14 can be used to approximate a set of param-

eters that best explain the observation vector with maximum and
minimum influence of covariates and nuisance variables ranged in
the interval ½0;1� as (see an example in Fig. 2)

~hest ¼ ~hb þ ½0;1� � ~hc � B~h ð15Þ
3. Materials and Methods

3.1. Synthetic data

We generated synthetic data with the aim of modeling different
scenarios in an fMRI time-series analysis with inserted activations
using a block-design (baseline and task) paradigm [39]. For this
purpose, we simulated one dimensional observation vectors y
(Eq. 1) with different contrast to noise ratios (CNR:
0:25;0:5;0:75;1) and sample sizes (N:100–1000).

The design matrix X was the canonical HRF convolved boxcar
function for fMRI simulated data. This matrix contained an expo-

nentially decaying function f ðtÞ ¼ ð1� t
NÞ

0:5 representing habitua-
tion during the fMRI task, or a covariate to simulate the effect of
age when spatially testing brain activations, and as shown in
Fig. 3. An N-dimensional Gaussian noise vector v was randomly
drawn with zero mean and controlled variance (r2

X=CNR). Finally,
a vector of observations was constructed by adding the noise to
the design matrix with ideal parameters h ¼ ½1 0 cv �t , where
cv is a constant that modulates the exponentially decreasing
covariate in the time-series.

The use of synthetic data allowed us to estimated the noise
covariance matrix by averaging a set of 100 noise realizations as
an ideal comparison with the GLM benchmark. This is useful to
simulate different performances of the ReML estimation that
depends upon the observation vector y and some parametrization
of the covariance components. The latter is the procedure in
SPM12 that obtains the noise covariance matrix C� in Eq. 3.

3.2. A structural MRI dataset including covariates: ADNI

Data were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI database
contains T1-weighted structural MRI scans acquired at 1.5 T and
3.0 T from patients with Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI), and cognitively normal controls (NC) at multi-
ple time points. Here we only included structural MRI collected
at 1.5T. The original database contains more than 1000 T1-
weighted MRI images in total, although for this study only the first
MRI examination of each participant was included, resulting in 417
structural images in the sample. Demographic data is summarized
in Table 1.

The dataset was processed using the standard neuroimaging
methods and protocols implemented in the SPM software (www.-
fil.ion.ucl.ac.uk/spm/), including registration to MNI space by spa-
tial normalization and segmentation, to generate maps of grey
matter (GM) volume [8].

Following the recommendation of the National Institute on
Aging and the Alzheimer’s Association for the use of imaging
Table 1
Demographic details of the MRI ADNI dataset, with group means and their standard devia

Status N Age

NC 229 75.9�5.0
AD 188 75.3�7.5
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biomarkers [22], we considered the group comparison NC vs. AD
for establishing a clear framework for comparing statistical para-
digms. Age, sex and intracraneal volume (ICV) were included as
covariates in between-group modelling as representing the most
common set in the extant literature [17]. All the covariates were
standardized with zero mean and standard deviation equal to one.

We selected two regions of interest using the 116-area auto-
mated anatomical labeling template [35]: one relevant area in
AD, the bilateral hippocampus (denoted HippocampusL and
HippocampusR for left and right hemispheres, respectively) with
2559 voxels; and the cerebellum (Cerebelum9L and Cerebelum9R

of the atlas), which is considered not relevant to AD pathology,
with 3027 voxels.

3.3. Statistical Analyses

To assess the performance of the methods presented in this
paper, we used the benchmark proposed in SPM12 for statistical
inference; that is, the GLM and RFT with FWE correction and
p ¼ 0:05 for second-level statistical inference.

First, we estimated the best set of parameters by regressing the
design matrix, or the observations, using several configurations: i)
the ideal ML method with synthetic data, where C� is estimated
from noise realizations, ii) Restricted (Re) ML, iii) LS, and iv) SVR.
Then, we connected the ML-based estimates (LS and SVR) with
the corresponding set of parameters in the GLM space, as shown
in Eq. 15. To compare the inferences of each regression method,
we assumed the same noise model and evaluated the T statistic
in Eq. 3 on the set of parameters. Finally, we thresholded the
resulting T-maps, e.g. derived from the SVR-iGLM method, by a
detection threshold based on RFT.

A permutation analysis was also adopted to provide an alterna-
tive statistical inference based on a non-parametric approach [27].
By randomly permuting the experimental conditions 1000 times,
we calculated the non-parametric T statistic based on the contrast
of the estimates, thus avoiding the estimation of the denominator
of Eq. 3).The probability of observed contrast was then calculated
relative to the distribution of permuted contrasts representing
the null distribution. If this value was less than a selected thresh-
old, e.g. p ¼ 0:05, then we rejected the null hypothesis.
4. Experimental results

4.1. Synthetic data: Estimating functional tasks

With the synthetic data we estimated the parameters by all the
methods followed by permutation inference. We additionally plot-
ted the non-normalized statistic (contrast) and evaluated the set of

parameters, as a classifier, in the label domain, w � y>
<
0.

The observations were artificially drawn from the same Gaus-
sian sample distribution (Fig. 3) with varying sample size (i.e. time
points) and CNR. We regressed both explanatory variables and
observations to obtain the experimental parameters for each
model h;w given the simulated covariate. All these estimations
were employed to calculate the regressed observed variables using
Eqs. 1 and 10, given the explanatory matrix and the estimated
parameters, and illustrated in Figs. 4 and 5. Only for extremely
tions

Sex (M/F) ICV(�105Þ MMSE

119/110 15.3� 1.6 29.1�1.0
99/89 15.5� 1.8 23.2�2.2



Fig. 4. Top: Example estimation with N ¼ 1000, CNR¼ 1. Bottom: Averaged mean
squared error (MSE) with different activation CNR and sample sizes (CNR:
0:25;0:5;0:75;1 and N:100,200,. . .1000).

Fig. 5. Distribution of observations (in grey) separated by condition and estima-
tions h (symbols in blue and red) for all the analysed methods including the
covariate effect as shown in Eq. 15.
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noisy observations (CNR< 0:5) and considerably high sample sizes
did the ReML (and the ideal ML) outperform ML approaches in
MSE, even under the Gaussian assumption (Fig. 4). However, in
the label domain, the set of parameters derived from the ML
approaches provided the highest classification accuracy in the
associated classification task, recapitulating prior findings [13]. In
summary, the ML parameter fitting in the GLM does not imply
an accurate regression in the iGLM.

The p-value of the estimated contrast (difference between
parameters h1 � h2) was less than p ¼ 0:05 for all methods. The
probability of observation was p ¼ 1=1001 in all cases when test-
ing the null hypothesis. Thus, no false positive were detected dur-
ing the simulated task, although the SVR estimation based
inference provided results closest to the nominal false positive
rate, whilst the remainder were over-conservative (Fig. 6).
4.2. Empirical data: a case-control design with the ADNI Dataset

In this section we show the inference derived from the two
methodologies in each domain. We regressed on the observations
and on the design matrix including covariates for age, sex and
ICV (Table 1). Then, we constructed the spatially extended statisti-
cal processes, generating maps of significance, using GM estimated
from the MRI ADNI dataset[13]. We compared the SPM (a two-
sample T-statistic similar to Eq. 3), where significance is first indi-
vidually assessed at each voxel, and then on clusters with p ¼ 0:05
FWE corrected based on RFT. The univariate test based on the
inverse GLM in Section 2.2 was also conducted.

In short, we will assess the detection ability (true positive
detection) and the control of type I error (false positives) of the
methods in a semi-controlled environment. To this purpose we
selected two baseline regions in late AD, the hippocampus, that
is primarily and generally affected in early AD; and the cerebellum,
that remains unaffected. Finally, we will explore the detection abil-
ity within an Omnibus test (whole-brain analysis) using the multi-
ple comparison correction provided by RFT and the optimum
threshold derived from the baseline regions.
Fig. 6. Shadeplots (average and standard deviation) showing contrast estimations
(h1 � h2) for each method under the null hypothesis. They were calculated from
1000 random permutations and CNR¼ 1.



Fig. 7. Contrasts and T-statistics in the hippocampus with RFT FWE-corrected threshold at p ¼ 0:05 and varying sample sizes. Note that the ML approaches are upper
bounded for visualization purposes and the threshold plotted Tthres ¼ 5:2758 is that obtained for N ¼ 350.
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Fig. 8. Group-level statistical analysis results in the hippocampus of the ADNI MRI
data. The univariate analysis was conducted using the standard GLM (top) and SVR-
RFT approach (bottom). Note T-maps scales for comparison. The T-maps were
thresholded at u > 5:5704 (equivalent to an uncorrected p < 1:1802e�7) with
sample size N ¼ 100.
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4.2.1. Hippocampal analysis to assess statistical power
First, we performed the univariate statistical analysis on GM in

the left and right hippocamppal ROIs, which are typically the ear-
liest sites of atrophy associated with AD [18]. Thus, the group com-
parison (advanced stage of the disease) AD vs. NC can be
considered as a true positive (TP) region. We compared the GLM
contrast with that obtained by the ML-based approach using the
same parametrization of the noise covariance in Eq. 3, the standard
approach in SPM12. SPMs were collected voxelwise and the infer-
ence method, based on a two-sample T-test with the linear com-
pound c ¼ ½1;�1;0;0;0�, was thresholded by means of the RFT
FWE rate correction at p ¼ 0:05, as previously.
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Figs. 7 and 8 show the contrasts (shadeplots with increasing
sample size) derived after model estimation, and the T-statistics
obtained by the use of the same normalization term in Eq. 3. In this
simulation, we employed the T-scores obtained by the standard
SPM approach to bound the values obtained by our method. We
readily see the higher statistical power (T > Tthres ¼ 5:2758 for
N ¼ 350) of the ML methods and the strong dependence of the
standard SPM on the sample size. Both methods converged as sam-
ple size increased. The LS approach was more unstable with fewer
significant voxels than the SVR-based procedure (N ¼
100;2314vs2341;N¼150;2300vs:2324;N¼200;2300vs:2329; N¼
250;2334vs:2355;N¼300;2355vs:2372); N¼350;2344vs:2360).

4.2.2. Type I error control in a putatively-null cerebellar region
We repeated the experiments in cerebellar ROIs (Cerebellum 9

left and right [35]) to evaluate the ability of the ML-based inference
methods to control false positive rates using the same inference
strategy used for thresholding the T-maps; i.e. FWE correction
based on RFT in the standard GLM. Fig. 9 illustrates the over-
conservative voxelwise inference with FWE correction based on
RFT, although the proposed methods based on ML provided a sig-
nificant number of tests closer to the expected value, i.e.
p ¼ 0:05. In other words, by chance the number of FPs should be
around 5% of the total number of voxels. Parametric voxelwise
inference is known to be valid but conservative, often falling below
the nominal rate [6].

4.2.3. Global analysis in contrast images with limited sample size
Fig. 10 shows the vector of parameters in the selected axial slice

Z = 47 derived from ReML and SVR in the analysis of the whole
brain. The ML approach implemented in SPM finds very few signif-
icant relationships between the covariate effects (age, sex and ICV)
and the observations, compared with the experimental conditions.
On the contrary, the SVR yields stronger connections, mainly for
the sex covariate. From these parameter images, contrast images
are then derived and, subsequently, inference on their size relative
to the estimate of their standard error is made in large target
regions, as depicted in Figs. 7 and 9.

Selecting the aforementioned target regions and plotting the t-
score histograms we can approximately compute the optimum
threshold at a given level of significance a using the Neyman-
Pearson lemma, e.g. at a ¼ 0:05, SVR: tthresh ¼ 10:03 and SPM:
Tthresh ¼ 2:03. By comparing the latter value with the one used in
previous sections (RFT correction) we can readily see the over-
conservative nature of the standard voxelwise inference (Fig. 11).
Extending these thresholds to the whole volume we obtain the
activation maps for the SVR and standard SPM approaches as
shown in Fig. 12. (See Fig. 13).
5. Discussion

In the context of neuroimaging statistical inference, there is an
increasing trend to incorporate exploratory methods into well-
established GLM-based data analysis. Not only data preprocessing
techniques, such as independent or principal component analysis
(PCA) [26], but also multivariate ML approaches have been widely
used in classification tasks to replace the predefined design matrix
in the regular GLM pipeline [39] or to provide novel statistical
maps of prevalence [27,13]. Existing multivariate approaches
based on ML, including stages for smoothing or orthogonal decom-
positions, such as PCA [27,39,40,13], have provided promising
results in (f) MRI-data analysis where there is a trade-off between
sensitivity and computational cost.

In this paper we present a novel univariate methodology for (f)
MRI image analysis based on the optimum performance in limited



Fig. 9. Contrasts and T-statistics for the cerebellum with FWE-corrected threshold tthres ¼ 5:2758 at p ¼ 0:05.
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Fig. 10. Parameter images (axial slice Z = 47) derived from ReML (SPM) and SVR
estimations for N ¼ 100. Note that Cond 0 and Cond 1 denote NC and AD,
respectively.
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sample sizes of SVR over classical approaches. It departs from the
use of the typical GLM frameworks based on classical estimations,
or hybrid approaches that combine GLM with ML, and proposes a
complete voxelwise inference method based on SVR. This method-
ology was demonstrated to provide optimum generalization ability
Fig. 11. Power analysis using the optimum Neyman-Pearson threshold. We selected a le
RFT correction.
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in the case of regression estimation by the construction of regular-
izing functions in ill-posed problems [36].

The inverse GLM-based method (SVR-iGLM) is an univariate
approach that preserves the function localization and better inter-
pretation of classical approaches and incorporates the aforemen-
tioned advantages. We explored its performance and compared it
with the regular GLM inference. As shown in previous approaches
we demonstrated its higher detection ability where its regional
sensitivity was controlled with a common p-value correction. In
the whole volume analysis we employed the optimum Neyman-
Pearson threshold obtained from baseline regions.
5.1. Covarying in neuroimaging

Although covarying for data variables in neuroimaging is rou-
tine when adjusting the model for confounding or nuisance factors
[17], data-driven approaches have limited their operation to
extracting whole brain SDMs as a description of the different
responses to experimental conditions. Nevertheless, SDM extrac-
tion is not possible for multiple conditions/states in fMRI data
due to the strictly use of data-driven properties [39] in a classifica-
tion task.

Additional covariates could be partly avoided by the selection of
balanced groups, sometimes a complex task, with the aim of reduc-
ing the impact of predictors that are not relevant to the research
question at hand [24]. Moreover, group-balanced selection proce-
dures further decrease sample sizes. The proposed ML approach,
linked to the regular GLM, processes all the covariates at once,
and combines their effect when estimating the observation or
response variable. This effect is quantitatively determined by the
definition of the equivalent vector of parameters ~h.

To our knowledge, this is the first work that formally extends
the use of ML from classification to regression permitting the intro-
duction of covariates, where they naturally weight the estimated
parameters for statistical inference. Most importantly, the equa-
tions given in the theoretical section clearly and simply demon-
vel of significance of a ¼ 0:05 that resulted in a threshold less conservative than the



Fig. 12. Global T-scores and activation maps of the whole image volume, obtained
by the Neyman-Pearson threshold at a ¼ 0:05 and the standard SPM FWE p ¼ 0:05
correction.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Fig. 13. Absolute error committed in the approximation of the optimal value
w ¼ 1=ðh1 � h2Þ, as a function of re , by using the L1-approach (in red) and the MSE
approach (in blue).
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strate how these weighted parameters obtained by the ML are con-
nected to the parameters from GLM, and thus how statistical infer-
ence can be introduced. A main conclusion is that inference in the
GLM is equivalent to a set of independent multiple regressions in
the inverse space.
5.2. Regression techniques in ML

We tested the SVR estimation within a permutation inference
and the regular GLM framework with FWE correction based on
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RFT. With synthetic data, the SVR approach resulted in a similar
mean squared error as the GLM based on ReML estimations for
CNR> 0:5, whilst with real data the ML contrasts showed greater
variability between conditions. The univariate SVR approach had
improved discrimination compared to the GLM based inference,
aligning with previous results in the extant literature that
employed multivariate ML approaches to classify experimental
conditions under the GLM. The proposed approach provides: i)
inference results closer to the nominal values, i.e. p ¼ 0:05,
although over-conservative behaviour prevails; and ii) robust per-
formance with increasing sample size.

Several limitations are known using LS linear regression models
(LRM) for estimating the vector of parameters [13,15] due to insta-
bilities of the algorithm, including effects of outliers, heteroskedas-
ticity, etc. However, as shown in the experimental section, there
was a strong correspondence between GLM and LS-LRM in the syn-
thetic data analysis. Unfortunately, univariate ML approaches
increase the computational burden of the analysis since they per-
form multiple LRMs independently at each voxel in the image. This
is a drawback for fMRI analyses where the number of scans and
voxels is inflated relative to structural images. Nevertheless, this
issue is usually solved by the use of spatial dimension reduction
and data representation techniques, such as Partial Least Squares
(PLS) or PCA [10,40] in multivariate frameworks.

Another common caveat of the univariate ML approaches in this
scenario is overfitting [32], a well-known problem in pattern
recognition. Here, the regressor, once fitted, conforms to the speci-
fic samples in the training data with the consequence that its gen-
eralization ability or sensitivity to unseen data is reduced. The
selected SVR employs the concept of maximizing the margin with
a regularized term and a low-complexity model to reduce the risk
of overfitting. Nevertheless, the fitting process could be affected by
misregistration [30] or spatially incoherent activations [40]. The
use of smoothing kernels in univariate approaches, such as SVR-
iGLM, could potentially reduce this effect by taking spatial correla-
tions into account, but could conversely worsen sensitivity in inco-
herent signals in multivariate approaches.
5.3. Data-driven approaches vs models

Most hypothesis-driven neuroimaging analyses depend on
specified models when proposing a statistic and fitting parameters
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of the GLM. This is a major advantage when data (nature’s mecha-
nism) is drawn assuming a Gaussian distribution (model’s mecha-
nism), and the inference drawn from the experiment may be
misleading [3]. In the synthetic example, we assumed a known
covariance matrix and a set of noise realizations for the formula-
tion of the GLM. This experimental setup is imperfect in neu-
roimaging applications and the statistics following on from the
best guess can fluctuate around the ideal value [13]. Frequentist
and Bayesian analyses are strongly grounded on model selection
and parameter fitting stages where, in complex scenarios with a
limited sample size, heuristics are the common solution [41].

Finally, limited samples sizes and the selection/estimation of
any specific model remains an issue in neuroimaging. This problem
potentially deteriorates if the model, and the interaction between
model parameters, becomes too complex for an accurate posterior
probability estimation or a feasible numerical computation of Bayes
rule. Given the relationship between the GLM andML-based regres-
sion, we propose a conventional statistical inference based on the
optimum estimations derived from ML from limited amounts of
data [36,16]. The SVR-iGLM is not limited to linear regression since
the main regressor in the design matrix could be replaced by
another non-linear function; a common approach in fMRI data
modelling. Moreover, SVR-iGLM could be incorporated in novel sta-
tistical tests, e.g. the P-tests [29], to highlight between-group differ-
ences in patterns of imaging-derived measures.
6. Conclusions

We addressed the open question on the usefulness and the inter-
pretation of ML approaches for obtaining spatial patterns from brain
imaging data that can discriminate between samples or brain states.
We followed the natural path for using theML framework by regress-
ing observations onto conditions in a supervised learning manner,
including a set of covariates.We thus explored the complete connec-
tion between the univariate GLM and ML regressions by deriving a
refined statistical test based on the parameters obtained by a SVR in
the inverse problem. Experimental results demonstrated howparam-
eter estimations derived from ML and common statistical inference
procedures provide a novel technique with good statistical power
and control of false positives to obtain activation maps.
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