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1 Introduction: Indefinites
Indefinites can occur in a nested sequence of quantificational phrases like

1. Every student read every paper that a professor recommended

and also in combination with anaphoric pronouns as in

2. A man smiles. He is happy.

The nesting, on one side, and the anaphoric link, on the other, create an inter-
pretational tension. The nesting favours a quantificational interpretation of the
indefinites according to which they behave more like any other quantificational
NP, e.g. they enter into scopal (dependency) relations with other quantifica-
tional phrases. But the presence of discourse anaphora creates some pressure
to interpret the indefinites referentially in a way which makes their semantical
behaviour resemble more that of proper names. In a seminal paper Fodor and
Sag (1982) argue against the assimilation of indefinites to existential quantifiers,
and propose instead an interpretation according to which they are ambiguous.
That is, they may have a quantificational reading as well as a referential one.
If the latter, they function as a kind of “mental pointer” within the mind of the
speaker having, semantically speaking, cross-referential relations with pronom-
inal anaphors which are not in their “local” domain.

Several approaches were developed in the 80’s and 90’s in order to provide a
unitary framework in which the two functions of indefinites could be combined.
They may be divided into two groups depending on which one of the two aspects
is emphasized. Dynamic theories (Discourse Representation Theory (DRT),
File Semantics, Dynamic Predicate Logic (DPL)) ended up in defending a so-
called extended existential analysis of indefinites. According to this analysis
an indefinite becomes an existential quantifier and the pronominal anaphor a
free variable bound by the existential quantifier accross conjunction. Thus the
logical force of (2) is that of

3. ∃x(M(x) ∧ S(x) ∧H(x)).
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In the other group, and against this tradition, several theories have emerged
which introduce a rich ontology of different types (collective, distributive, group-
denoting, arbitrary objects, etc.) to which nominal expressions refer. Hilbert’s
epsilon terms and Fine’s arbitrary objects belong to this group. In this paper I
will put Fine’s work in perspective.

2 Some problems with the dynamic account
Some of the problems with the dynamic account may be introduced though an
argument originally formulated by Strawson and extensively discussed by Geach
(1962) and Slater (1986):

4. A man has just drunk a pint of sulphuric acid.

5. Nobody who drinks a pint of sulphuric acid lives through the day.

6. Very well then, he won’t live through the day.

Geach claimed that, despite the appearances, from the two premises, one can
derive only the conclusion in which the pronoun is (implicitly) existentially quan-
tified by “A man”, and not a referential conclusion, that is, a statement having
the form ’¬L(t)’ (where ’t’ is a term and ′L’ stands for the predicate ’will live
through the day’). In response to Geach, Slater points one major problem with
the quantificational account: the conclusion is not truth-conditionally separable
from the premises. In order to preserve the structure of the argument, one has
to switch to one of the referential approaches.

3 The ’Hilbertian’ approach: epsilon terms
The reader interested in the historical developments and the role of the epsilon
calculus in Hilbert’s program is referred to Avigad and Zach (2016). Here I shall
extract from their article few basic things relevant to my concern.

The epsilon calculus is an extension of first-order logic with new terms formed
through the clause:

• If A is a formula, εxA is a term.

The variable x becomes bound in the term εxA. The intended interpretation of
’εxA′ is: some x satisfies A, if there is one.

The basic axiom governing the epsilon term is the so-called Hilbert’s trans-
finite axiom:

A(x)→ A(εxA).

The epsilon calculus includes a complete set of axioms governing the classical
propositional connectives, and the equality symbol. The usual quantifier rules
can be defined from the following definitions of the standard quantifiers:

∃xA(x)↔ A(εxA)
∀xA(x)↔ A(εx(¬A)).

2



This shows that the predicate calculus may be embedded into the epsilon cal-
culus. (It is also known that the converse is not true).

Avigad and Zach emphasize two features of epsilon terms:

• An epsilon term is nondeterministic, that is, the calculus leaves it entirely
open whether εx(x = a ∨ x = b) refers to either a or b.

• The calculus may be enriched with a schema of extensionality

∀x(A(x)↔ B(x))→ εxA = εxB.

That is, the epsilon operator assigns the same witness to extensionally equivalent
formulae.

Avigad and Zach give two nice examples to illustrate the usefulness of the
epsilon terms. We can express

7. The least value satisfying A, if there is one

by
A(x)→ A(εxA(x)) ∧ εxA(x) ≤ x.

We can also express

8. If there is a witness satisfying A(y), the epsilon term returns a value
whose predecessor does not have this property

by
A(y)→ A(εxA(x)) ∧ εxA(x) 6= y + 1.

I propose an alternative way to read (8), which is:

9. If there is a witness satisfying A(y), then an individual satisfies A
and that individual is distinct from y + 1.

Under this reading the example shows that epsilon terms can be used to express
co-referential relations between pronominal anaphors and the indefinites which
are their heads. In fact, Slater (1986), p. 29) exploits this property of epsilon
terms to represent the Geach-Strawson’s argument in a way which yields a
“referential” conclusion that preserves:

10. D(εxD(x))

11. ∀x(D(x)→ ¬L(x))

12. D(εxD(x))→ ¬L(εxD(x))

Hence

13. ¬L(εxD(x)).
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It is known that essential to the Hilbert’s program was the division between
the “real” and the “ideal” part of a mathematical theory. It is only the former
which carries ontological commitments, whereas the latter has only a heuristic
function. For instance, one could take primite recursive arithmetic to be the real
part of a mathematical theory to which Cantorian set theory is added as an ideal
part. The lack of ontological import of the ideal part of a theory was supposed to
be garanteed through conservativity arguments: the ideal part does not prove
new real statements. Hilbert’s division is of great relevance to the present
case. The epsilon terms belong to the “ideal” part of a mathematical theory,
i.e. that part which has only a heuristic value. The ontological burden of the
theory is carried by the “real” part of the theory, e.g. the quantifier free axioms.
There are two conservativity results (see e.g. Avigad and Zach 2016). The first
epsilon theorem implies that any detour through first-order predicate logic used
to derive a quantifier-free theorem from quantifier-free axioms can ultimately be
avoided. The second epsilon theorem shows that any detour through the epsilon
calculus used to derive a theorem in the language of the predicate calculus from
axioms in the language of the predicate calculus can also be avoided. The two
results show in my opinion that the question of the reference of epsilon terms in
the context of proof does not arise, or, if it does, it is of a very mild “deflationist”
kind.

4 Choice functions
Even if epsilon terms can be dispensed with in proofs, they have been used for
the semantic analysis of contingent sentences in natural language, like

14. A man smiles

15. A man smiles. He is happy.

In this context the interpretation of epsilon terms becomes more pressing. Slater
(1986) suggests a semantics for epsilon terms in terms of choice functions with
restricted domain. Linguists have picked up on this idea. The idea to treat
indefinites as choice functions has been explored in Reinhart’s work (see e.g.
Reinhart 1997) and subsequently developed by the Konstanz school. A choice
function f assigns to any non-empty set of individuals a member of this set
. That is, every model is enlarged with a choice function f which obeys the
condition:

• f is a choice function if and only for any non-empty set P , P (f(P )).

When choice functions are used directly in the object language, they become a
notational variant of Hilbert’s epsilon terms. For instance (14) and (15) may be
represented as

16. ch(f) ∧ S(f(M))

and
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17. ch(f) ∧ S(f(M)) ∧H(f(M))

respectively. (16) is true in a model if the choice function of the model picks up
from the set of men an individual who smiles.

Things, however, get more complicated when indefinites occur in “the scope”
of other quantified NP’s. Winter (1997) discusses the following problematic
case:

18. Every professor has invited a colleague from his university.

The Hilbertian analyis renders (18) as

19. ∀x(P (x)→ I(x, εy(C(x, y)))

(here we use choice functions and epsilon terms interchangably in the syntax)
where ’C(x, y)’ stands for ’y is the colleague of x’.

Suppose now that every x has the same colleagues (i.e. the colleagues come
from one and the same university). In this case, in the interpretation of (19) the
relevant model’s choice function f which interprets the epsilon term will have to
select for each x, one of x′s colleagues. But given that the sets of colleagues are
identical, then the principle of extensionality will constrain the choice function
to select the same individual. As a result of all this, the truth of (19) will
amount to all professors inviting one and the same person. This, however, is
not what (18) is intended to say, but rather

20. ∀x(P (x)→ ∃y(C(x, y) ∧ I(x, y))).

Thus we are forced back to the quantificational account of indefinites, something
that we wanted to give up.

1

We have reached the following conclusion. Choice functions, like epsilon
terms, are adequate to express coreferential mechanisms arising between in-
definites and anaphoric pronoun in simple sentences like (15). But when the
coreferential and dependence (co-variation) mechanisms are juxtaposed, we run
into trouble. One way out is to use Skolem functions (terms) to keep track of
the dependence mechanisms. On this proposal (18) has the logical force of

(21) ∀x(P (x)→ C(x, f(x)) ∧ I(x, f(x))))

which is the Skolem form of (20). This is the right moment to introduce the
arbitrary objects framework.

1Arancha Sanchez pointed out in conversation that if we take

∀x [P (x) → C(x, εy(C(x, y) ∧ I(x, y))) ∧ I((x, εy(C(x, y) ∧ I(x, y)))]

as the representation of (18) we avoid the objection raised by Winter. I find this proposal
unnatural, for the following reason. I think that if a term has a referential function, then it
should refer to the entity it putports to refer at some point of discourse, once and for all, after
which the entity in question eventually receive new attributes. On the scheme proposed here
one has to wait for the whole discourse to reach an end, and only then introduce a referent
which subsumes all the properties mentioned so far.
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5 Arbitrary Objects
I will introduce the referential approach to arbitrary objects through an argu-
ment in Kleene (1952, pp. 149-150) discussed by Tichý (1988). Kleene’s argu-
ment shows that “nothing is a P ” follows from the assumptions that nothing is
a Q and all P ’s are Q’s. It goes like this.

Suppose that

i) Nothing is a Q

and

(ii) All P ’s are Q’s.

Let

(iii) x be a P ;

by (ii),

(iv) if x is a P then x is a Q,

which together with (iii) entails

(v) x is a Q;

by (i), on the other hand,

(vi) x is not a Q;

Consequently,

(vii) x is not a P ;

Thus,

(viii) Nothing is a P .

In commenting this argument, Tichý (1988) remarks that ’x’ is introduced in (iii)
as a name for an object which stands for “all P ”. It is thus the representative
of a class, which, as Tichy points out, cannot be the name of any particular
object, for then the last step of the argument would not be warranted: from
the assumption that x is not a P one cannot infer that nothing is a P . Tichy
concludes:

Kleene can only be right if, over and above particular objects, there
also are arbitrary ones. Kleene shrinks from saying that and resorts
instead to a formal mode of speech. The ’x’ he suggests, might be
called an ’arbitrary’ constant. (Tichý 1988, pp. 258-259).
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The referential approaches to arbitrary objects do not rest content with Kleene’s
formal mode of speech. Before discussing Fine’s views, let me mention another,
more recent aproach to arbitrary objects.

Breckenridge and Magidor (2012) take an “arbitrary” constant to refer arbi-
trarily to an ordinary object, that is, the constant “receives its ordinary kind of
semantic-value, though we do not and cannot know which value in particular it
receives.” (Breckenridge and Magidor 2012, p. 377). This interpretation is very
closed to Slater’s interpretation of an epsilon term as being an epistemically
indeterminate object. In fact Breckenridge and Magidor acknowledge in a foot-
note that “Our account is in some ways very close to that involved in systems of
Hilbert’s Epsilon Calculus though as far as we know Hilbert was not particularly
concerned with the metaphysically underpinnings of the epsilon operator” (p.
393). There is a difference, however. Slater is concerned with contingent nat-
ural language examples whereas Breckenridge and Magidor are concerned with
proofs. In this case, as pointed out earlier, Hilbert’s conservativity program be-
comes relevant: the question of the “metaphysical underpinnings” of the epsilon
terms does not arise, for they belong to the ideal part of the theory and the two
conservativity theorems quoted in section 3 show that they are dispensable.

Fine’s approach (Fine and Tennant 1983, Fine 1985a, Fine 1985b) takes “ar-
bitrary” constants to refer to refer to new kind of objects, arbitrary objects.
Although his main concern is with proofs and arguments in logic and mathe-
matics, he also thinks that arbitrary objects are useful for the semantic analyis
of both mathematical and ordinary language. For the mathematical language he
takes the theory of arbitrary objects to explain the role of variables in ordinary
mathematical discourse. In a nuttshell his view is like this: universal quantifier
phrases introduce unrestricted arbitrary objects; existential quantifiers intro-
duce dependent arbitrary objects, and the scopal relations between them has a
counterpart in the relation of dependence between arbitrary objects (Fine and
Tennant 1983, pp. 74-75)

Although arbitrary objects belong to a domain disjoint from that of ordi-
nary, individual objects, the two domains are related. An arbitrary object a is
associated with a set of individual objects which is the set of values a can take.
To take just one example, the set of values of an arbitrary natural number is
the set of (individual) natural numbers.

Fine’s machinary of arbitrary objects has two components. The first com-
ponent defines the truth-conditions of formulas containing (names of) arbitrary
objects. Roughly:

(G4) If ϕ(x1, ..., xn) is a first-order formula containing no name of arbitrary
objects, then ϕ(a1, ..., an) is true if and only it is true for all admissible
assignments of individuals i1, ..., in to the objects a1, ..., an.

(We suppose that the arbitrary objects a1, ..., an name themselves; in addition,
we must think of the principle (G4) as applying to the arbitrary objects simul-
taneously.)

(G4) presupposes a way to determine the class of admissible assignments of
individual objects i1, ..., in to the arbitrary objects a1, ..., an. This is done by
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the second component of the framework. Arbitrary objects stand in a relation
of object dependence, which, we are told, correspond, roughly, to the relation
between dependent and independent variables in mathematics. Any relation
of dependence at the level of values (individual objects) must be sustained,
in one way or another, by a relation of object dependence. That is, when b
is an arbitrary object that depends only upon the arbitrary objects a1, a2, ...,
then the values assigned to b must be determined upon the values assigned to
a1, a2, .... Thus arbitrary objects are divided into independent and dependent
ones. An independent arbitrary object is one which does not depend on any
other arbitrary object. Otherwise it is dependent. Identity criteria are provided
for both kinds, but this issue will not concern us here.

6 Arbitrary objects and natural language
Although Fine’s main concerns is with proofs in predicate logic, he and others
inspired by him (e.g. Steedman) have observed that terms that are generated
by rules of instantiation in logic proofs have a counterpart in natural language
discourse: quantificational NP’s and embedded indefinites create a similar jux-
taposition of referential and dependence mechanisms that are better handled if
one develops a referential view of indefinites and other quantificational NP’s.
Fine’s work on arbitrary objects found an echo among the logically minded
linguists and AI people who were looking for alternative frameworks to cope
with the problems mentioned in the Introduction of this paper. I will briefly
comment on some of Steedman’s ideas who draws on the work of Fine (1985b).
I prefer, however, to start anachronistically with Steedman (1999) for reasons
which will become apparent later on.

Steedman discusses one of the examples due to Geach’s 1962 which has
populated the philosophical literature ad nauseaum:

22. Every farmer who owns a donkeyi beats iti.

One way to account for the possibility of anaphora would be to treat the indefi-
nite “a donkeyi” as an existential quantifier that binds the pronominal anaphor
“iti”. The problem with this kind of solution (the quantificational account), al-
luded to in the Introduction, is that there is no syntactic theory on the market,
which allows the existential quantifier to remain both within the scope of the
universal quantifier, and to c-command the anaphoric pronoun. As Steedman
points out, a different route to go would be to take the anaphoric pronoun to be
a non-bound variable, and its relation to the indefinite to be a cross-referential
relation, more on the scheme at work in the sentence

23. Everybody who knows Gilberti likes himi.

But in order to be able to make this sort of move, one has to construe the
indefinite as some sort of referential expression. Steedman’s proposal is to
take the indefinite to be a dependent arbitrary object whose values are gen-
erated by a Skolem term. More exactly, he takes "a donkey" to translate as
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arb′donkey′, where arb′ yields a Skolem term–Skdonkey(x) with the variable
x bound by the universal quantifier in whose scope arb′donkey′ falls (“Every
farmer” in this case). For every individual farmer which is an instantiation of
x, Skdonkeyproduces an individual which is a donkey. The pronominal anaphor
is now construed as coreferential with the Skolem term. Of course for this solu-
tion to work, the anaphor has to occur in the scope of the universal quantifier,
otherwise it will fail to refer. Finally we are told that

However, by making the pronoun refer instead to a Skolem term or
arbitrary object, we free our hands to make the inferences we draw
on the basis of such sentences sensitive to world knowledge. For
example, if we hear the stan-dard donkey sentence and know that
farmers may own more than one donkey, we will probably infer on
the basis of knowledge about what makes people beat an arbitrary
donkey that she beats all of them. (Idem, p. 304)

The analysis is then extended to other supposed quantifiers such as some, a few,
which may be “better analyzed as referential categories”.

Fine’s proposal is more radical. I take it that this is partly due to the
fact that he considers examples which involves not only cross-referential rela-
tions between anaphors and indefinites, but also examples involving pronominal
anaphors and universal quantifiers. In addition, Fine voices objections to the
use of Skolem functions. I will discuss them in the next section. For the moment
let me quickly discuss one of Fine’s examples (actually the only one, to the best
of my knowledge):

24. Every farmer owns a donkey. He beats it. He feeds it rarely...

Fine points out that on a referential view of the pronominal anaphors there is
no individual farmer or individual donkey to which the pronouns can be taken
to refer. But, he goes on, once we allow for arbitrary objects, we can take ’He’
to refer to the arbitrary farmer introduced by “Every farmer”, and ’it’ to the
arbitrary donkey that he owns introduced by “a donkey”. The dependence of
the arbitrary donkey on the arbitrary farmer means that for a given individual
farmer as the value of the arbitrary farmer, the arbitrary donkey can only take
as a value an individual donkey that the farmer owns. Thus the statement ’He
beats it’ is true if and only if for all values i and j simultaneously assumed by
the arbitrary farmer and donkey, it is true that i beats j. (Fine 1983). We get
the desired truth-conditions of (24).

7 Skolem functions and multidependencies
Fine (1983) mentions a couple of applications of arbitrary objects to the seman-
tic analysis of mathematical languages. One of them is the analysis of so-called
Henkin quantifiers. A Henkin quantifier (Henkin, 1961) is a prefix of four quan-
tifiers, two universal, ∀x and ∀z, and two existential, ∃y and ∃z, such that:
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(i) ∃y depends on ∀x but is independent of ∀z and ∃w.

(ii) ∃w depends on ∀z but is independent of ∀x and ∃y

The partial order of the dependence relation cannot be expressed in the linear
notation of first-order logic. Henkin (1961) uses the branching form{

∀x ∃y
∀z ∃w

}
to convey the dependencies in (i) and (ii), and Skolem functions to express the
truth-conditions of formulas with Henkin quantifiers:{

∀x ∃y
∀z ∃w

}
R(x, y, z, w)⇔ ∃f∃g∀x∀zR(x, f(x), z, g(z)).

The functions f and g are generalizations of the Skolem functions we encoun-
tered in our earlier examples. It is well known that for certain choices of the

formula R(x, y, z, w), the sentence
{
∀x ∃y
∀z ∃w

}
R(x, y, z, w) has no equivalent

in ordinary first-order logic.
Fine does not enter into details, but it is clear that his arbitrary objects

framework provides an alternative analysis of the Henkin prefix. The four quan-
tifiers in the Henkin prefix introduce four arbitrary objects, say a, b, c and d,
such that c depends on a and d depends on b. Any set of assignments which
satisfy R(a, c, b, d) (we let a, b, c, and d to name themselves) must obey these
dependencies making the values of c correlate in the appropriate way with the
values of a; and the values of d correlate in the appropriate way with the values
of b. If we take the correlations to be functional, we obtain the right side of the
equivalence above.

Although Fine does not explicitly compare his interpretation to Henkin’s
interpretation of the Henkin quantifier, he raises, in a different context, an
objection to the use of Skolem functions. The objection is that Skolem functions,
unlike arbitrary objects, cannot handle multi-dependencies. He illustrates what
he has in mind with three arbitrary objects a, b and c such that c depends on b
in a particular way, say c = 2b, and b depends on a in another way, say b = a2.

I take Fine’s claim of the impossibility of representing multi-dependencies by
Skolem functions to be an oversight. Skolem functions provides already a handy
way to handle multi-dependencies in connection with the Henkin quantifier.
They also do the job in the present example:

25. ∀x
[
f(g(x)) = 2g(x) ∧ g(x) = x2

]
Heref and g are unary Skolem functions.

If we try to express the dependencies in Fine’s example with quantifiers, we
need three of them, ∀x, ∃y and ∃z such that

(i) ∃y depends on ∀x (in a particular way)
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(ii) ∃z depends on ∃y but is independent of ∀x (in another way)

We shall call a prefix of quantifiers ∀x, ∃y and ∃z which obey the constraints (i)
and (ii) a signaling prefix. There is no way to arrange the quantifiers ∀x, ∃y and
∃z in a linear sequence such that (i) and (ii) are satisfied. For no matter how
we do it, we end up with one of the two existential quantifiers depending on the
other. We need, again, an alternative notation to express the partial order of
the dependence relation. We shall tackle this question in the next section.

Let me point out that there is a first-order sentence which expresses the
particular dependencies Fine has in mind, namely

26. ∀x∃y∃z(y = x2 ∧ z = 2y)

But notice that (26) says that∃y depends on ∀x and ∃z depends on both ∃y and
∀x such that y = x2 ∧ z = 2y is true. The Skolem form of (26)

27. ∀x
[
h(x, g(x)) = 2g(x) ∧ g(x) = x2

]
is distinct from (25). Nevertheless (27) may be shown to be equivalent to (25).

But this is not true in the general case. What we mean by this will become
clearer in the next section. For the moment it is enough to conclude, against
Fine, that a generalization of the Skolem function approach handles quite nicely
multi-dependencies. But Fine deserves credit for pointing out an interesting ex-
ample of multi-dependencies of arbitrary objects, which, when expressed with
quantifiers, leads, like the Henkin prefix, to greater expressive power than ordi-
nary first-order logic. In the fnal section we will also see that this pattern may
be found in natural language examples.

8 Independence-friendly languages
Several logical systems, in addition to Henkin quantifiers, have been introduced
to deal with arbitrary patterns of dependence and independence between quan-
tifiers. They include:

• Independence-Friendly Logic (Hintikka and Sandu 1989)

• Dependence Logic (Väänänen 2007)

• Independence Logic (Grädel and Väänänen 2013).

Independence-Friendly logic is an extension of ordinary FOL with quantifiers of
the form (Qx/W ), where Q ∈ {∃,∀} and W is a finite set of variables. In this
extension, we have formulas like

ϕMP : ∀x(∃y/ {x}) x = y
ϕsig : ∀x∃y(∃z/ {x})(z = 2y ∧ y = x2)
ϕH : ∀x∀z(∃y/ {z})(∃w/ {x, y})D(x, y, z, w)
ϕ∞ : ∀x∃y(∃z/ {x})(y 6= c ∧ z = x)
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The quantifier (Qx/W ) expresses the fact that Qx depends on all the quantifiers
in whose syntactical scope it occurs, except for the quantifiers that bind the
variables in the slash set W of which Qx is independent. Thus

• ϕMP expresses the statement: For all x there is a y which does not depend
on (is independent of) x such that x is identical with y

• ϕsig expresses Fine’s example of multi-dependencies

• ϕH expresses the Henkin quantifier discussed in the previous section

• ϕ∞ is identical to ϕsig except for the quantifier-free part.

The most intuitive interpretation of IF sentences is through Skolemization. In
the Skolemized form of an IF formula (in negation normal form), every ex-
istential quantifier (∃y/W ) is replaced with a new function symbol f whose
arguments are all the variables quantified by quantifers in whose syntactical
scope (∃y/W ) occurs, minus the variables in W . Thus the Skolem form of an
IF formula expresses the notion of functional dependence. Here are the Skolem
forms of the sentences listed above:

Sk(ϕMP ) = ∀x(x = c)
Sk(ϕsig) = ∀x

[
f(g(x)) = 2g(x) ∧ g(x) = x2

]
Sk(ϕH) = ∀x∀zD(x, f(x), z, g(z))
Sk(ϕ∞) = ∀x [f(x) 6= c ∧ g(f(x)) = x]

(c is a 0-place function symbol, i.e., an individual constant).
Let us denote the Skolem form of an IF formula ϕ by Sk(ϕ). It is worth noting

that Sk(ϕ) is an ordinary first-order formula in a vocabulary which extends that
of ϕ with new function symbols.

Satisfaction of an IF formula ϕ in a model M with respect to a partial
assignment s whose domain includes the free variables of ϕ is then defined as:

• M, s |= ϕ if and only if there are functions f1, ..., fn in M to be the
interpretations of the new function symbols of Sk(ϕ) such that

M, s, f1, ..., fn |= Sk(ϕ).

For ϕ a sentence, we stipulate:

• ϕ is true in M if and only if M,∅ |= ϕ,

where ∅ is the empty assignment.
Let M be a set, say M is the set of natural numbers. It may be checked that

ϕsig is true in M if and only if there are unary functions f and g such that such
that for every a in the universe of M, g(a) = a2and f(g(a)) = 2g(a). We thus
recover the interpretation (25).

The case of Sk(ϕ∞) is more subtle. For any model M, ϕ∞ is true in M
if and only if there are two unary functions f and g such that the range of
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f is distinct from c and for every a in the universe of M: g(f(a) = a. The
last condition says that f is injective and the conjunction of the two conditions
expresses (Dedekind) infinity. Thus ϕ∞ is true in M if and only if M is infinite.
It is well known that infinity is a property which is not definable in ordinary
first-order logic.

We are now in a position to substantiate the claim made at the end of the
preceding section. The pattern of dependencies expressed by (i) and (ii) in the
preceding section leads to properties which are not first-order definable.

A sensible question to ask is which patterns of dependencies and indepen-
dencies of quantifiers lead to greater expressive power than ordinary FOL. The
answer turns out to be: exactly the patterns discussed in the preceding section,
the Henkin prefix and the signaling prefix. Let me quickly review the results.

First a bit of terminology. We say that a quantifier (Qx/X) depends on
another quantifier (Qy/Y ) (Q ∈ {∃,∀}) whenever (Qx/X) in the syntactical
scope of(Qy/Y )

...(Qy/Y )...(Qx/X)...

and, in addition, y /∈ X. If (Qx/X) does not depend on (Qy/Y ), then we say
that it is independent of (Qy/Y ).

Thus(Qx/X) is independent of (Qy/Y ) either when (Qx/X) is not in the
scope of (Qy/Y ), or, alternatively, (Qx/X) is in the scope of (Qy/Y ) but y ∈ X.

Sevenster (2014) shows that there are two prefixes of IF quantifiers which
lead to greater expressive (and computational) power than FOL: Henkin and
signaling prefixes.

A Henkin prefix contains at least 4 quantifiers

...∀x...∀y...(∃u/U)...(∃v/V )...

in any order such that:

• (∃u/U) depends on ∀x and is independent of ∀y and (∃v/V )

• (∃v/V ) depends on ∀y and is independent of ∀x and (∃u/U).

A signaling prefix contains at least three quantifiers

...(∀u/U)...(∃v/V )...(∃w/W )...

such that:

• (∃v/V ) depends on (∀u/U)

• (∃w/W ) depends on (∃v/V ) but is independent of (∀u/U).

The idea in a signaling prefix is that the second existential quantifier does not
“see” the universal quantifier, but it sees another existential quantifier which,
in turn, sees the universal quantifier. We also notice that whereas in Henkin
prefixes the existential quantifiers are independent of each other, in signaling
prefixes, one of the existential quantifier is dependent on the other, which in
turn depends on the universal quantifier.
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We saw that our earlier sentence ϕ∞ expresses a property, (Dedekind) infin-
ity, which is not first-order definable. In a similar way one can show that there
is an IF sentenceϕHenkin which contains a Henkin prefix such that ϕHenkin ex-
presses properties which are not first-order definable. Sevenster (2014) shows
that every sentential IF prefix which is neither Henkin nor signaling is equiva-
lent to a sentential FOL prefix. This is another way of saying that Henkin and
signaling prefixes are the only prefixes which lead to greater expressive (and
computational) power than ordinary first-order logic.

9 Signaling sequences in natural language
Fine’s example of multi-dependencies is intriguing, for we found out it illustrates
a pattern of dependencies of arbitrary objects, which, when expressed in terms of
quantifiers, is not first-order definable (in the general case). Signaling sequences
can also be found in natural language. King (1991) gives the following example
to illustrate the application of arbitrary objects to natural language:

28. Every professor at the university of San Clement1 teaches a large
lecture class2. The professor1 does all the grading of the class2. The
class2 has a final exam3. The final3 is comprehensive. It3 need not
be long, however....

The numerical subscripts indicate the anaphoric relations. We notice that:

(i) “a large lecture class” depends on “Every professor at the university
of San Clement”,

(ii) “a final exam” depends on “a large lecture class” but is independent
of “Every professor at the university of San Clement”, etc.

In the symbolism of IF logic we render (28) by

29. ∀x(P (x)→ ∃y(C(y)∧T (x, y)∧Gr(x, y)∧(∃z/ {x})(E(z)∧H(y, z)∧
...)))

where the predicate symbols have a self-explanatory meaning. The Skolem form
of (28) eliminates the indefinites (existential quantifiers) by Skolem terms

30. ∀x(P (x)→ C(f(x))∧T (x, f(x))∧Gr(x, f(x))∧(E(g(f(x)))∧H(f(x), g(f(x)))∧
...

We can still go one level up, get rid of the universal quantifiers and the Skolem
terms, and reach the stratosphere of arbitrary objects with their dependence
relations inhereted from the argument structures of the Skolem terms:

31. P (a)→ C(b) ∧ T (a, b) ∧Gr(a, b) ∧ E(c) ∧H(b, c) . . .

where b depends on a, and c depends on b. If we were to represent the de-
pendence relation in the object language (I take Fine to accept this move), we
would end up with
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32. P (a) → C(b) ∧ T (a, b) ∧ Gr(a, b) ∧ E(c) ∧ H(b, c)) ∧ Dep(a, b) ∧
Dep(b, c) . . .

We recall the problem that was our starting point at the beginning of the article:
The nesting favours a quantificational interpretation of the indefinites according
to which they behave more like any other quantificational NP, e.g. they enter
into scopal relations with other quantificational phrases. On the other side,
pronominal anaphors create a pressure to interpret the indefinites referentially.
In trying to solve this predicament, we notice the benefits of the “ontological
ascent”.

The introduction of the Skolem functions made possible the elimination of
the existential quantifiers in favour of Skolem terms. (30) is adequate, as far
as I am concerned, as the representation of (28): it contains only universal
quantifiers, which means that we do not need dependency relations (priority
scope) between quantifiers to get the truth-conditions of (30) right. But (30)
achieves only a quasi-referential interpretation of indefinites: we still need bind-
ing scope to get the interpretation of the Skolem terms right. I take it that this
is what Steedman had in mind when he pointed out that “unless the pronoun
is in the scope of the quantifiers that bind any variables in the Skolem term, it
will include a variable that is outside the scope of its binder, and fail to refer.”
(Steedman 1999, p. 303). To get a full-fledged referential interpretation, we still
have to get rid of the binding scope. This is what Fine’s framework of arbitrary
objects accomplishes. I consider them useful fictions: they have a systematic
role to play if and to the extend to which the notion of reference is needed
in our best linguistic theories. Independently of this, Fine’s work provides in
my opinion an alternative and exciting framework for the study of Henkin and
signaling prefixes in logic.
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