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Abstract

This dissertation complements a family of mixture autoregressive models based on Gaussian
and Student’s t distributions by filling the gaps in the previous literature with four self contained
essays. This includes univariate models as well as reduced form and structural multivariate
models. Empirical applications to macroeconomics and finance demonstrate their usefulness. I
have also accompanied this dissertation with open source software, in the form of R packages
uGMAR and gmvarkit, which provide a comprehensive set of tools for estimation and other
numerical analysis of the models. The software is distributed through the Comprehensive R
Archive Network.

The first essay introduces a new mixture autoregressive model that combines linear Gaussian
autoregressions and linear Student’s t autoregressions as its mixture components. The model
has attractive properties analogous to the Gaussian and Student’s t mixture autoregressive mod-
els, but it is more flexible as it enables to model series which consist of both conditionally
homoskedastic Gaussian regimes and conditionally heteroskedastic Student’s t regimes. The
usefulness of the model is demonstrated in an empirical application to the monthly U.S. interest
rate spread between the 3-month Treasury bill rate and the effective federal funds rate.

The second essay describes the R package uGMAR, which provides tools for estimating
and analysing the Gaussian mixture autoregressive model, the Student’s t mixture autoregres-
sive model, and the Gaussian and Student’s t mixture autoregressive model. The model param-
eters are estimated with the method of maximum likelihood by running multiple rounds of a
two-phase estimation procedure in which a genetic algorithm is used to find starting values for
a gradient based method. For evaluating the adequacy of the estimated models, uGMAR uti-
lizes so-called quantile residuals and provides functions for graphical diagnostics as well as for
calculating formal diagnostic tests. uGMAR also facilitates simulation from the processes and
forecasting future values of the process by a simulation-based Monte Carlo method. I illustrate
the use of uGMAR with the monthly U.S. interest rate spread between the 10-year and 1-year
Treasury rates.

In the third essay, I proceed to multivariate models and introduce a structural Gaussian mix-
ture vector autoregressive model. The shocks are identified by combining simultaneous diag-
onalization of the reduced form error covariance matrices with constraints on the time-varying
impact matrix. This leads to flexible identification conditions, and some the constraints are also
testable. In an empirical application to quarterly U.S. data covering the period from 1953Q3 to
2021Q4, my model identifies two regimes: a stable inflation regime and an unstable inflation
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regime. The unstable inflation regime is characterized by high or volatile inflation, and it mainly
prevails in the 1970’s, early 1980’s, during the Financial crisis, and in the COVID-19 crisis from
2020Q3 onwards. The stable inflation regime, in turn, is characterized by moderate inflation,
and it prevails when the unstable inflation regime does not. While the effects of the monetary
policy shock are relatively symmetric in the unstable inflation regime, I find strong asymmetries
with respect to the sign and size of the shock as well as to the initial state of the economy in the
stable inflation regime. On average, the real effects of the monetary policy shock are somewhat
stronger in the stable inflation regime than in the unstable inflation regime.

The last essay introduces a new mixture vector autoregressive model based on Gaussian and
Student’s t distributions. The model incorporates conditionally homoskedastic linear Gaussian
vector autoregressions and conditionally heteroskedastic linear Student’s t vector autoregres-
sions as its mixture components. For a pth order model, the mixing weights depend on the full
distribution of the preceding p observations. The specific formulation of the mixing weights
leads to attractive practical and theoretical properties such as ergodicity and full knowledge of
the stationary distribution of p + 1 consecutive observations. The empirical application stud-
ies asymmetries in the effects of Euro area monetary policy shocks. My model identifies two
regimes: a low-growth regime and a high-growth regime. The low-growth regime is character-
ized by negative (but volatile) output gap, and it mainly prevails after the Financial crisis. The
high-growth regime is characterized by positive output gap, and it mainly dominates before the
Financial crisis. I find the real effects less enduring for an expansionary than for a contractionary
monetary policy shock. On average, the inflationary effects of the monetary policy shock are
stronger in the high-growth regime than in the low-growth regime.
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Chapter 1

Introduction

1.1 Backround
The analysis of the dynamic consequences of events over time is a major part of empirical
macroeconomics and finance. Statistical analysis of time series data dates back to Yule (1927),
and a wide range of time series models have been developed since. A major branch of time series
literature focuses on autoregressive models that assume the current observation to be a function
of the past observations, a random shock, and possibly exogenous variables. Linear autore-
gressive models, in particular, are popular workhorse models in empirical macroeconomics, and
assume the current observation to be a linear function of (often a finite number of) the preceding
observations and a random shock.

Linear autoregressive models are relatively simple and very capable of filtering autocorrela-
tion. They are not, however, able to capture all the relevant characteristics of the series when the
underlying data generating dynamics vary in time, for instance, depending on the state of the
economy. Variation in the dynamics may arise due to wars, crises, business cycle fluctuations,
or policy shifts, for example. Various types of time series models capable of capturing such fea-
tures have been proposed. One of them is the class of mixture autoregressive models introduced
by Le, Martin, and Raftery (1996) in which each observation is generated by one of the mixture
components (or regimes) that is randomly selected according to the probabilities given by the
mixing weights. Different mixture autoregressive models can be created by defining the mixture
components and mixing weights in various ways.

Wong and Li (2000), for instance, proposed using Gaussian mixture components with con-
stant mixing weights, allowing for multimodal predictive distributions, while Wong, Chan, and
Kam (2009) suggested using more heavy tailed Student’s t distributions in financial applications.
Wong and Li (2001b) extended the model of Wong and Li (2000) to accommodate autoregres-
sive conditional heteroskedasticity (ARCH) in each regime. Fong, Li, Yau, and Wong (2007), in
turn, extended the model of Wong and Li (2000) to the multivariate case, whereas Bentarzi and
Djeddou (2014) further extended the multivariate model to incorporate periodically time-varying
coefficients. Wong and Li (2001a) introduced a model with Gaussian mixture components and
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1.2. LINEAR AUTOREGRESSIVE MODELS

mixing weights that vary according to endogenous or exogenous variables through a logistic
function, and Burgard, Neuenkirch, and Nöckel (2019) proposed a similar type of model in the
multivariate setting. Lanne and Saikkonen (2003) defined the mixing weights as functions of a
lagged observation and incorporated a generalized ARCH process in each regime. The model
of Bec, Rahbek, and Shephard (2008), on the other hand, allows for epochs when the process is
seemingly nonstationary, while at the same time the process is stationary.

This dissertation considers mixture (vector) autoregressive models whose mixing weights
are constructed so that the greater the relative weighted likelihood of a regime is, the more likely
the process is to generate an observation from it. The idea of using mixing weights that are
endogenously determined through the relative weighted likelihoods of the regimes originates
from Glasbey (2001), who proposed a first order two-regime Gaussian mixture autoregressive
(GMAR) model for modelling solar radiation. Kalliovirta, Meitz, and Saikkonen (2015) then
extended this model to the general case and studied its theoretical properties extensively, which
led to further developments of that type of mixture autoregressive models.

Kalliovirta, Meitz, and Saikkonen (2016) introduced the multivariate counterpart of the
GMAR model, the Gaussian mixture vector autoregressive model. Meitz, Preve, and Saikkonen
(forthcoming) proposed utilizing a Student’s t distribution in the univariate setting and intro-
duced the Student’s t mixture autoregressive model with conditionally heteroskedastic regimes.
Together, the mixture (vector) autoregressive models with Gaussian or Student’s t mixture com-
ponents and mixing weights determined through the relative weighted likelihoods of the regimes
constitute an appealing family of mixture autoregressive models. I complement the rest of this
family in this dissertation, including structural versions of the multivariate models.

1.2 Linear autoregressive models
Linear autoregressive models are popular workhorse models of empirical macroeconomics.
They are relatively simple and effectively filter autocorrelation, and they are also the compo-
nent processes of the mixture autoregressive models considered in this dissertation. Suppose yt
(t = 1, 2, ...) is the real valued d-dimensional time series of interest with d ≥ 1, and denote by
Ft−1 the σ-algebra generated by the random vectors or scalars {ys, s < t}, i.e., Ft−1 contains the
information about the past of yt. The benchmark linear autoregressive model of order p assumes
that

yt = ϕ0 +

p∑
i=1

Aiyt−1 + Ω
1/2
t εt, (1.2.1)

where ϕ0 ∈ Rd is an intercept parameter and Ai ∈ Rd×d (i = 1, ..., p) are coefficient matrices (or
coefficients in the scalar case). The error process εt (t = 1, 2, ...) is identically and independently
distributed (IID) with zero mean and identity covariance matrix (or unit variance in the scalar
case), and εt is independent of Ft−1. The matrix Ω

1/2
t ∈ Rd×d, in turn, captures the conditional

covariance matrix (or variance) Ωt of the process yt (conditionally on the past of yt), which I
assume positive definite. Different linear autoregressions can be created by defining the error
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CHAPTER 1. INTRODUCTION

process εt and covariance matrix Ωt in various ways. It is also possible to add, for instance, trend
or seasonal components, functions of exogenous variables, or a moving average component to
the model.

The family of mixture autoregressive models studied in this dissertation involves two types
of linear autoregressions as mixture components: linear Gaussian autoregressions and linear
Student’s t autoregressions. The linear Gaussian autoregressions assume that the errors εt follow
a d-dimensional standard normal distribution and that the covariance matrix Ωt is a positive
definite constant. The linear Student’s t autoregressions assume that the errors εt follow a d-
dimensional Student’s t distribution with mean zero, identity covariance matrix, and ν + dp
degrees of freedom. The covariance matrix Ωt is a positive definite constant (d × d) matrix
multiplied by a time-varying scalar that depends on the preceding p observations through their
quadratic form and the autoregression coefficients in Ai, i = 1, ..., p (the exact definition is not
presented here for brevity). We assume that the Gaussian and Student’s t autoregressions both
satisfy the stability condition det(Id −

∑p
i=1Aiz

i) ̸= 0 for |z| ≤ 1, where the (d × d) identity
matrix Id is a scalar for d = 1. This leads to stationarity of the linear autoregressions, and as is
shown in the dissertation, also to the stationarity of the introduced mixture autoregressions.

The Student’s t autoregression is able to capture conditional heteroskedasticity and fat-
ter tailed distributions than the Gaussian autoregression, which is assumed conditionally ho-
moskedastic. However, as the conditional covariance matrix of the Student’s t autoregression
depends on the preceding p observations through the same parameters as the conditional mean,
it does not generally filter autocorrelation as well as the Gaussian autoregression. Both linear
autoregressions, nevertheless, assume that the dynamics of the process stay constant over time.
Since the dynamics of the economy may vary in time due to wars, crises, business cycle fluctu-
ations, or policy shifts, for example, it is useful to consider mixture models that allow for such
variation.

1.3 Mixture autoregressive models
Mixture autoregressive models can be described as collections of linear autoregressive models,
each of which is referred to as a mixture component, a component process, or a regime. This
dissertation considers mixture autoregressive models in which each observation is generated
by a mixture component that is randomly selected according to the probabilities given by the
mixing weights. For concreteness, I will next formalize this definition.

Proceeding with the notation introduced in Section 1.2, I consider mixture autoregressive
models with autoregressive order p and M mixture components for which we have

yt =
M∑

m=1

sm,t

(
ϕm,0 +

p∑
i=1

Am,iyt−i + Ω
1/2
m,tεm,t

)
, (1.3.1)

where sm,t, m = 1, ...,M , are unobservable regime variables such that at each t, exactly one of
them takes the value one and the others take the value zero according to the (Ft−1-measurable)
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1.3. MIXTURE AUTOREGRESSIVE MODELS

probabilities given by the mixing weights αm,t ≡ P(sm,t = 1|Ft−1) that satisfy
∑M

m=1 αm,t = 1.
The quantities ϕm,0, Am,i, and Ωm,t as well as the IID error processes εm,t, m = 1, ...,M , are
assumed to satisfy the same properties for each regime m as the linear autoregression (1.2.1)
defined in Section 1.2. That is, at each time point t, the process reduces to linear autoregression
corresponding to the regime m that is selected, while the regime is selected randomly according
to the probabilities given by the mixing weights αm,t. Different mixture autoregressive models
can be created by defining the mixture components and mixing weights in various ways.

The constant mixing weights proposed by Wong and Li (2000), Wong and Li (2001b), Fong
et al. (2007), Wong et al. (2009), and Bentarzi and Djeddou (2014), to name a few, allow for
multimodal predictive distributions but do not let the regime-switching probabilities to vary in
time. Logistic mixing weights utilized, for example, by Wong and Li (2001a) and Burgard
et al. (2019) allow the regime-switching probabilities to depend on the level of endogenous or
exogenous variables.1 The mixing weights proposed by Lanne and Saikkonen (2003), in turn,
depend the level of a lagged observation, whereas the ones introduced by Bec et al. (2008)
depend on the magnitude of lagged observations (irrespective of their signs).

This dissertation considers mixing weights that, for a pth order model, depend on the full
distribution of the preceding p observations. This allows the regime-switching probabilities to
depend on the level, variability, kurtosis, and temporal as well as contemporaneous dependence
of the past observations. Specifically, the mixing weights are constructed so that the greater
the relative weighted likelihood of a regime is, the more likely the process is to generate an
observation from it. This is an appealing feature for forecasting, and it also facilitates associat-
ing statistical characteristics and economic interpretations to the regimes. Moreover, it leads to
attractive theoretical properties such as ergodicity and full knowledge of the stationary distribu-
tion of p+1 consecutive observations, as is shown in Chapters 2 and 5 (and in Kalliovirta et al.,
2015, 2016, Meitz et al., forthcoming).

To exemplify how models identify statistical regimes in the data, Figure 1.1 presents the
quarterly percentage change of the real U.S. GDP from 1947Q2 to 2021Q4, where the shaded
areas are the NBER based U.S. recessions.2 I fitted the Gaussian and Student’s mixture autore-
gressive model (Virolainen, forthcoming, and Chapter 2 of this dissertation) to the series with
one Gaussian mixture component, one Student’s t mixture component, and autoregressive or-
der two. The diagnostic tests of Kalliovirta (2012) show that this model is adequate.3 Then, I
depicted the estimated mixing weights of the Gaussian regime to the figure with blue dashed
lines.

As the mixing weights in Figure 1.1 show, the Gaussian regime obtains a large probability
often during recessions but also after them. The Gaussian regime does not, therefore, perfectly
match the periods of recessions. But this is not a deficiency, however. On the contrary, it

1 In the model of Wong and Li (2001a), exogenous variables are, in addition to the mixing weights, allowed to enter
the linear autoregressions on the right side of (1.3.1).

2 The series were retrieved from the Federal Reserve Bank of St. Louis database.
3 The normality test as well as the autocorrelation and conditional heteroskedasticity tests taking into account
1, 2, ...., 20 lags all passed at all the conventional levels of significance without and with the simulation procedure
using a sample of length 10000.
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Figure 1.1: The quarterly percentage change of the real U.S. GDP from 1947Q2 to 2021Q4
(black solid line) together with the estimated mixing weights of the Gaussian regime of the fitted
Gaussian and Student’s t mixture autoregressive model with one Gaussian and one Student’s t
regime and autoregressive order two (blue dashed line). The shaded areas are the NBER based
U.S. recessions.

reveals that the dynamics of the series do not seem to vary particularly between recessions and
expansions only but often also in the periods following the recessions (and occasionally at other
times too).

1.4 Structural autoregressive models
The reduced form mixture autoregressive models discussed in the previous section are useful
for forecasting and studying the statistical relations of the variables. Particularly due to the en-
dogenously determined mixing weights, the models also facilitate identifying statistical regimes
from the data, which may also have economic interpretations. However, the interest is often in
the causal effects of events such as fiscal or monetary policy actions, for example. To that end,
it is useful to study the effects of exogenous shocks, as proposed by Sims (1980).

It is not very useful to study the effects of the reduced form shocks, ut ≡
∑M

m=1 sm,tΩ
1/2
m,tεm,t

in the mixture model (1.3.1) (or Ω1/2
t εt in the linear model (1.2.1)), because the economy may

react simultaneously (i.e., within the time period) to a shock when it arrives. This endogenous
response of the economy would then be present in the reduced form shock, and the effects of this
reduced form shock would not thereby isolate the causal effects of the (unexpected) movements
of the variable of interest (see, e.g., Ramey, 2016).

To elaborate with an example, consider a bivariate system of production and inflation, and
suppose that one is interested in the causal effects of unexpected movements of inflation (i.e., the
effects of a shock to inflation). If an exogenous shock arrives to production, the supply changes
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and prices start adjusting to the new level of supply. Then, the consequent (potential) simul-
taneous change in inflation enters the reduced form shock of inflation. Therefore, the reduced
form shock of inflation contains both, the exogenous shock to inflation and the simultaneous ad-
justment of inflation to the shock to production. The effects of this reduced form shock would,
hence, partially be some of the effects of the endogenous adjustment to the shock to produc-
tion. Similarly, some of the effects of the shock to inflation (potentially) enter the reduced form
shock of production and are not present in the reduced form shock of inflation. The effects of
the reduced form shock of inflation would not thereby reveal the causal effects of a shock to
inflation.

Chapters 4 and 5 introduce structural versions of the (multivariate) models, which facili-
tate tracing out the causal effects of the shocks. Structural shocks, et, are defined as orthog-
onal, serially uncorrelated exogenous shocks to the system and do not thereby suffer from the
above-described endogeneity problem of the reduced form shocks. They are recovered from the
reduced form shock ut with the transformation

et = B−1
t ut (1.4.1)

by finding a non-singular (d × d) impact matrix Bt (which may be time-varying) that orthogo-
nalizes the reduced form shocks, i.e., such that the conditional covariance matrix of et (typically
conditional on the past of yt) is a diagonal matrix. A common normalization is to assume that it
is an identity matrix, Cov(et|Ft−1) = Id. That is, the objective is to find Bt such that

B−1
t Cov(ut|Ft−1)B

′−1
t = Id. (1.4.2)

There are in general multiple solutions to Bt, as there are d2 variables and d(d + 1)/2 unique
equations in (1.4.2). To recover the structural shocks, the model should, hence, be constrained so
that the solution is unique. The identification problem is then to find the constraints that recover
the shocks of interest from the set of all possible structural shocks. Various types of solutions to
the identification problem have been proposed in the literature. Some of them are discussed in
Ramey (2016), for instance.

In Chapter 4, I adopt the solution proposed by Lanne and Lütkepohl (2010) and Lanne,
Lütkepohl, and Maciejowsla (2010) and show that the impact matrix is unique up to ordering
and signs of its columns for the structural Gaussian mixture vector autoregressive model. Then,
I derive a general set of conditions for uniquely identifying any subset of the shocks. Based
on these results, Chapter 5 establishes the same identification conditions also for the structural
Student’s t mixture vector autoregressive model and for the structural Gaussian and Student’s t
mixture vector autoregressive model. In the empirical applications, I study the effects of U.S.
monetary policy shocks in Chapter 4, whereas in Chapter 5, I study the effects of Euro area
monetary policy shocks.
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1.5 Summary of the essays
This section briefly summarizes the contents of the four self-contained essays of this disser-
tation. The aim of these essays is to fill gaps in the previous literature by complementing a
family of mixture autoregressive models and introducing the software for numerical analysis
of these models. The first essay (Chapter 2) generalizes the Gaussian mixture autoregressive
(GMAR) model (Kalliovirta et al., 2015) and the Student’s t mixture autoregressive (StMAR)
model (Meitz et al., forthcoming) to the Gaussian and Student’s t mixture autoregressive (G-
StMAR) model by combining Gaussian and Student’s t mixture components. The second essay
(Chapter 3) describes the R package uGMAR, which introduces a comprehensive set of tools
for the numerical analysis of the GMAR, StMAR, and G-StMAR models. The third and fourth
essays are concerned with the multivariate versions of these models. The third essay (Chapter 4)
introduces a structural version of the Gaussian mixture vector autoregressive model (Kalliovirta
et al., 2016) with time-varying impact matrix and statistically identified shocks. Finally, the
fourth essay (Chapter 5) introduces the multivariate counterparts of the StMAR model and the
G-StMAR model, including their structural versions. The methods put forth in these chapters
are accommodated in the R package gmvarkit, which provides a comprehensive set of tools
for numerical analysis of the multivariate models. The R package gmvarkit is not explicitly
described in any of the essays, but it works similarly to uGMAR.

1.5.1 A mixture autoregressive model based on Gaussian and Student’s
t-distributions

Mixture autoregressive models are useful for modelling series in which the data generating dy-
namics vary in time, for instance, due to wars, crises, business cycle fluctuations, or policy
shifts. Mixture autoregressive models can be described as collections of (typically linear) au-
toregressive models, which are called mixture components, components processes, or regimes.
At each time point, the process generates an observation from one of its mixture components
that is randomly selected according to the probabilities given by the mixing weights.

In the first essay, I introduce a new mixture autoregressive model that is a combination of
the Gaussian mixture autoregressive (GMAR) model (Kalliovirta et al., 2015) and the Student’s
t mixture autoregressive (StMAR) model (Meitz et al., forthcoming). This model, referred to as
the G-StMAR model, accommodates conditionally homoskedastic linear Gaussian autoregres-
sions and conditionally heteroskedastic Student’s t autoregressions as its mixture components.
The G-StMAR model is obtained from Equation (1.3.1) in Section 1.3 with d = 1 and assuming
that the first M1 ≤ M mixture components are linear Gaussian autoregressions and the rest
M −M1 mixture components are linear Student’s t autoregressions.

For a pth order model, the mixing weights are determined through the full distribution of the
previous p observations, which allows the regime-switching probabilities to depend on the level,
variability, temporal dependence, and kurtosis of the past observations. Specifically, the mixing
weights are constructed so that the greater the weighted relative likelihood of a regime is, the
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more likely the process is to generate an observation from it. This facilitates associating specific
characteristics and giving economic interpretations to the regimes. The specific formulation of
the mixing weights also leads to attractive theoretical properties, such as ergodicity and full
knowledge of the stationary distribution of p+ 1 consecutive observations.

The formulation of the mixing weights leads to attractive properties, but their complex de-
pendence on the preceding observations through the autoregressive parameters makes the esti-
mation of the model parameters challenging in practice. Considering estimation by the method
of maximum likelihood, the definition of the mixing weights particularly induces a large number
of modes to the surface of the log-likelihood function, and large areas to the parameter space,
where it is flat in multiple directions. Following Dorsey and Mayer (1995) and Meitz, Preve,
and Saikkonen (2018), Meitz et al. (forthcoming), I propose using a two-phase estimation pro-
cedure, where a genetic algorithm is used to find starting values for a gradient based variable
metric algorithm (Nash, 1990, algorithm 21, implemented by R Core Team (2022)). I also
describe the modified genetic algorithm that is implemented in the accompanying R package
uGMAR (Virolainen, 2018b).

It turns out that the G-StMAR model is a limiting case of a StMAR model with the t-
distributions of some regimes tending to normal distributions as the degrees of freedom param-
eters tend to infinity. Based in this observation, I propose a model selection procedure in which
one should first find a suitable StMAR model. Then, if the StMAR model contains large degrees
of freedom parameter estimates, one should switch the corresponding regimes to the Gaussian
type by estimating the appropriate G-StMAR model. As opposed to the limiting StMAR model,
the advantage of the G-StMAR model is that it removes the redundant degrees of freedom pa-
rameters from the model, and it is free from numerical problems induced by weak identification
of very large degrees of freedom parameters.

The usefulness of the G-StMAR model is demonstrated in an empirical application to the
monthly U.S. interest rate spread between the 3-month Treasury bill (TB) rate and the effective
federal funds (FF) rate. The G-StMAR model identifies three regimes for the spread, with a
switch from a Student’s t regime to a Gaussian regime arising from a switch in the economic
regime, namely, to a regime where the zero lower bound limits the movements of the interest
rates. The two Student’s t regimes accommodate eras of low mean and high variability and high
mean and moderate variability. The former Student’s t regime dominates often when the market
possibly anticipates decreases in the FF rate or has increased preference for safety, whereas the
latter one mostly prevails when the Fed is arguably not expected to significantly decrease the FF
rate target.

My findings are consistent with Sarno and Thornton (2003), who found that the FF rate
seems to adjust to the TB rate, supporting the hypothesis that the market anticipates movements
of the FF rate, moving the TB rate, and hence the spread, in advance. As opposed to modelling
the series with a StMAR model containing an overly large degrees of freedom parameter es-
timate, switching to the more parsimonious G-StMAR model allows to numerically compute
approximate standard errors for the estimates, and moreover, to perform Kalliovirta’s (2012)
quantile residual tests, which turned out to be useful in model selection.
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1.5.2 uGMAR: a family of mixture autoregressive models in R
Mixture autoregressive models are useful for analysing time series that exhibit nonlinear, regime-
switching features. The Gaussian mixture autoregressive (GMAR) model (Kalliovirta et al.,
2015), the Student’s t mixture autoregressive (StMAR) model (Meitz et al., forthcoming), and
the Gaussian and Student’s t mixture autoregressive (G-StMAR) model (Virolainen, forthcom-
ing) constitute a (univariate) family of such models that I refer to as the GSMAR models. A GS-
MAR process generates each observation from one of its mixture components, which are either
conditionally homoskedastic linear Gaussian autoregressions or conditionally heteroskedastic
linear Student’s t autoregressions. The mixture component that generates each observation is
randomly selected according to the probabilities determined by the mixing weights that, for a
pth order model, depend on the full distribution of the previous p observations. Consequently,
the regime-switching probabilities may depend on the level, variability, kurtosis, and tempo-
ral dependence of the past observations. The specific formulation of the mixing weights also
leads to attractive theoretical properties such as ergodicity and full knowledge of the stationary
distribution of p+ 1 consecutive observations.

The second essay describes the R package uGMAR providing a comprehensive set of easy-
to-use tools for GSMAR modelling, including unconstrained and constrained maximum likeli-
hood estimation of the model parameters, quantile residual based model diagnostics, simulation
from the processes, and forecasting. The emphasis is on estimation, as it can be rather tricky.
In particular, due to the endogenously determined mixing weights, the log-likelihood function
has a large number of modes, and in large areas of the parameter space, the log-likelihood func-
tion is flat in multiple directions. The global maximum point of the log-likelihood function is
also frequently located very near the boundary of the parameter space. It turns out, however,
that such near-the-boundary estimates often maximize the log-likelihood function for rather a
technical reason, and it might be more appropriate to prefer an alternative estimate based on the
largest local maximum point that is clearly in the interior of the parameter space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modified genetic algorithm is used to find starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on the local
ones. The estimated models can be conveniently examined with the summary and plot methods.
For evaluating their adequacy, uGMAR utilizes quantile residual diagnostics in the framework
presented in Kalliovirta (2012), including graphical diagnostics as well as Kalliovirta’s (2012)
diagnostic tests that take into account uncertainty about the true parameter value. Following
Kalliovirta et al. (2015) and Meitz et al. (forthcoming), forecasting is based on a Monte Carlo
simulation method.

I illustrate the use of uGMAR with the monthly U.S. interest rate spread between the 10-year
and 1-year Treasury rates. Illustrative examples are given for unconstrained and constrained es-
timation, examining the properties of the estimates and the estimated model, testing hypotheses
regarding the parameters, evaluating the adequacy of the model with quantile residual diagnos-
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tics, creating a GSMAR model object with specific parameter values, simulating observations
from a GSMAR process, and forecasting future values of a GSMAR process. In addition to
illustrating the use of uGMAR, I discuss the problem of model selection.

1.5.3 Structural Gaussian mixture vector autoregressive model with ap-
plication to the asymmetric effects of monetary policy shocks

Tracing out the effects of an economic shock is a major task in econometrics. A popular ap-
proach is to consider a set of key variables and utilize a structural vector autoregressive (SVAR)
or structural vector error correction (SVEC) model for the purpose. They have well established
theoretical grounds (see Kilian and Lütkepohl, 2017, and the references therein) and are accom-
modated by many popular statistical software packages. Linear SVAR and SVEC models are
not, however, suitable for modelling series in which the underlying data generating dynamics
are nonlinear or the shocks have different effects in different states of the economy. Models
capable of capturing such features include mixture models, such as the mixture vector autore-
gressive model (Fong et al., 2007), the mixture periodic vector autoregressive model (Bentarzi
and Djeddou, 2014), the Gaussian mixture vector autoregressive (GMVAR) model (Kalliovirta
et al., 2016), and the logit mixture vector autoregressive model (Burgard et al., 2019).

In the third essay, I introduce a structural version of the GMVAR model. In the structural
GMVAR (SGMVAR) model of autoregressive order p, the regime-switching dynamics are en-
dogenously determined by the full distribution of the previous p observations. At each time
point, the greater the relative weighted likelihood of a regime is, the more likely the process is to
generate an observation from it, which facilitates giving economic interpretations to the regimes.
The specific formulation of the mixing weights also leads to attractive theoretical properties,
such as ergodicity and fully known stationary distribution of p+ 1 consecutive observations.

The effects of structural shocks depend on the initial values of the included variables and
they are also allowed to vary according to the sign and size of the shock due to possible regime-
switches. Consequently, the (generalized) impulse response functions reflect the prevailing
macroeconomic conditions that are transmitted to the regime-switching probabilities through
the level, variability, and temporal as well as contemporaneous dependence of the past obser-
vations. The impact matrix of the SGMVAR model is time-varying and constructed so that it
captures the conditional heteroskedasticity of the reduced form error, thereby enabling standard-
ization of the conditional variance of each structural shock to a constant. The initial effects of
a constant-sized structural shock are, hence, amplified according to the conditional variance of
the reduced form error, also reflecting the prevailing state of the economy.

I make use of the conditional heteroskedasticity of the reduced form error and show that the
SGMVAR model generally identifies the structural shocks up to ordering and sign, but does not
reveal which column of the impact matrix is related to which shock. Specifically, I obtain a
local solution to the identification problem discussed in Section 1.4 by constraining the model
so that entries of the impact matrix are not allowed to vary relative to the other entries in the
same column but are allowed vary in magnitude and relative to the other columns. Since the
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impact matrix is also subject to estimation error, I make use of the solution proposed by Lanne
and Lütkepohl (2010) and Lanne et al. (2010) and derive general conditions for formal, global
identification of any subset of the shocks. This leads to flexible identification conditions, and
some of the constraints are also testable. For impulse response analysis, I utilize the general-
ized impulse response function (Koop, Pesaran, and Potter, 1996) and propose a Monte Carlo
algorithm for its estimation by making use of the known stationary distribution of the SGMVAR
process.

In an empirical application, I study asymmetries in the expected effects of monetary policy
shocks in the U.S. using quarterly data covering the period from 1954Q3 to 2021Q4. The data
includes four variables: cyclical component of the logarithmized real GDP (separated from the
trend with the one-sided Hodrick-Prescott filter), the log-difference of GDP implicit price defla-
tor, the log-difference of producer price index, and an interest rate variable. My policy variable
is the interest rate variable, which is the effective federal funds rate from 1954Q3 to 2008Q2
and the Wu and Xia (2016) shadow rate from 2008Q3 to 2021Q4. I identify the monetary policy
shock by assuming that it moves output and producer price inflation to the opposite direction
from the interest rate variable at impact, and that it does not move inflation at impact. The Wald
test accepts the zero constraint with the p-value 0.92. Two of the other shocks are assumed to
move inflation at impact and one of them is assumed to move output and producer price inflation
to the opposite directions.

My SGMVAR model identifies two regimes: a stable inflation regime and an unstable in-
flation regime. The unstable inflation regime is characterized by high or volatile inflation, and
it mainly prevails in the 1970’s, early 1980’s, during the Financial crisis, and in the COVID-19
crisis from 2020Q3 onwards. The stable inflation regime, in turn, is characterized by moder-
ate inflation, and it prevails when the stable inflation regime does not. I find the effects of the
monetary policy shock relatively symmetric in the unstable inflation regime, as it rarely causes
a switch to the stable inflation regime. A contractionary (expansionary) monetary policy shock
appears to first increase (decrease) inflation after which the inflation significantly decreases (in-
creases) for several years. The strong contraction (expansion) in the cyclical component of the
GDP lasts for roughly three years and is followed by a small short-term expansion (contraction)
before the response decays to zero.

In the stable inflation regime, the (generalized) impulse responses are strongly asymmetric
with respect to the sign and size of the monetary policy shock as well as to the initial state
of the economy. A contractionary shock causes, on average, roughly a three-year hump-shaped
contraction of the GDP, but it also seems to increase inflation by driving the economy towards the
unstable inflation regime. A small expansionary shock does not move prices much on average,
but a large expansionary shock often drives the economy towards the unstable inflation regime
and propagates high and persistent inflation. High inflation is followed by a significant monetary
policy tightening and persistent contraction of the GDP after the initial expansion. On average,
the real effects of the monetary policy shock are found somewhat stronger in the stable inflation
regime than in the unstable inflation regime.
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1.5.4 Gaussian and Student’s t mixture vector autoregressive model with
application to the asymmetric effects of monetary policy shocks in
the Euro area

Mixture autoregressive models are useful for modelling series in which the data generating dy-
namics vary in time. The GMAR model (Kalliovirta et al., 2015), the StMAR model (Meitz
et al., forthcoming), and the G-StMAR model (Virolainen, forthcoming, also Chapter 2 of this
dissertation) constitute an appealing family of univariate mixture autoregressive models based
on Gaussian and Student’s t distributions. Kalliovirta et al. (2016) introduced a multivariate
version of the GMAR model, while Chapter 4 of this dissertation proposes a structural ver-
sion of this multivariate model. This essay complements the rest of this family by introducing
the multivariate counterparts of the StMAR model and the G-StMAR model, including their
structural versions. The accompanying R package gmvarkit (Virolainen, 2018a) provides a
comprehensive set of tools for maximum likelihood estimation and other numerical analysis of
the introduced models.

I introduce a new mixture vector autoregressive model that accommodates conditionally
homoskedastic linear Gaussian vector autoregressions (VAR) and conditionally heteroskedastic
linear Student’s t VARs as its mixture components. The model, referred to as the G-StMVAR
model, is obtained from definition (1.3.1) in Section 1.3 with d ≥ 2 and by assuming that the first
M1 ≤ M mixture components are Gaussian VARs and the rest M − M1 mixture components
are Student’s t VARs. If there are only Gaussian regimes, the GMVAR model of Kalliovirta
et al. (2016) is obtained. If there are only Student’s t regimes, the multivariate counterpart of
the StMAR model of Meitz et al. (forthcoming) is obtained, which I refer to as the StMVAR
model. In the presence of Gaussian and Student’s t regimes, the multivariate counterpart of the
G-StMAR model of Virolainen (forthcoming) is obtained.

Both types of mixture components have the same form for the conditional mean, a linear
function of the preceding p observations, ϕm,0 +

∑p
i=1 Am,iyt−i for the regime m in Equa-

tion (1.3.1). But the conditional covariance matrices Ωm,t in (1.3.1) are different. The lin-
ear Gaussian VARs have constant conditional covariance matrices, i.e., Ωm,t = Ωm for m =
1, ...,M1. The conditional covariance matrices of the linear Student’s t VARs, in turn, consist
of a constant covariance matrix that is multiplied by a time-varying scalar that depends on the
quadratic form of the previous p observations. That is, Ωm,t = ωm,tΩm for m = M1 + 1, ...,M ,
where ωm,t is a time-varying scalar. In this sense, the conditional covariance matrix is of ARCH
type. But since it is just a time-varying scalar multiplying the constant covariance matrix, it is
not as general as the conventional multivariate ARCH process that allows the entries of the con-
ditional covariance matrix to vary relative to each other (e.g., Lütkepohl, 2005, Section 16.3).
The specific formulation of the conditional covariance matrix is, nonetheless, convenient for
establishing stationary properties similar to the linear Gaussian VARs. My specification of the
conditional covariance matrix is also parsimonious, as it only depends on the degrees of free-
dom and the autoregressive parameters (in addition to the parameters in the constant covariance
matrix). This is particularly advantegeous in the context of mixture VARs, as the large number
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of parameters may often be problem even without an ARCH component.
For a pth order model, the mixing weights depend on the full distribution of the previous

p observations, and they are constructed so that the greater the relative weighted likelihood of
a regime is, the more likely the process is to generate an observation from it. Similarly to the
other models in the family, this facilitates associating statistical characteristics and giving eco-
nomic interpretations to the regimes. The specific formulation of the mixing weights also leads
to attractive practical and theoretical properties such as ergodicity and full knowledge of the
stationary distribution of p + 1 consecutive observations. By making use of stationarity and
ergodicity, I show that the maximum likelihood estimator of a stationary G-StMVAR model is
strongly consistent, and therefore, it has the conventional limiting distribution under the con-
ventional high level conditions. In contrast to the GMVAR model, my model is able to capture
excess kurtosis and conditional heteroskedasticity within the regimes.

It turns out that the G-StMVAR model is a limiting case of the StMVAR model with the
degrees of freedom parameters of some of the regimes tending to infinity. The GMVAR model
is obtained if the degrees of freedom parameters of all the regimes tend to infinity. Hence, if
a StMVAR model is fitted to a series generated by a process in which some of the regimes are
linear Gaussian VARs, the degrees of freedom parameters of these regimes are (asymptotically)
expected to get large estimates. In empirical applications, the numbers of Gaussian and Student’s
t regimes can, therefore, be selected by first finding a suitable StMVAR model. Then, if some of
the regimes obtain a large degrees of freedom parameter estimate, they should be accommodated
by switching to the appropriate G-StMVAR model. As opposed to a StMVAR model with
very large degrees of freedom parameter estimates, the G-StMVAR model avoids the numerical
problems caused by their weak identification. These results are analogous to the univariate
models discussed in Chapter 2.

In addition to the reduced form model, I propose a structural version of the G-StMVAR
model that generalizes the SGMVAR model introduced in Chapter 4 to accommodate condition-
ally heteroskedastic Student’s t regimes. The SG-StMVAR model incorporates a time-varying
impact matrix that varies according to the conditional variance of the reduced form error. As a
consequence of a single (time-varying) impact matrix, identification of the shocks requires that
the error term covariance matrices are simultaneously diagonalized in all regimes. Together with
a constant normalization of the structural error’s conditional covariance matrix, this condition
generally leads to uniquely identified shocks up to ordering and sign. Hence, as long as one is
willing to assume a single (time-varying) impact matrix, its columns characterize the estimated
impact effects of the shocks, but it is not revealed which column is related to which shock. Be-
cause the impact matrix is also subject to estimation error, further constraints may be needed
for labelling the shocks. The identification conditions are the same as for the SGMVAR model,
however.

The empirical application in the fourth essay studies asymmetries in the expected effects of
the monetary policy shock in the Euro area and considers a monthly data covering the period
from January 1999 to December 2021. The data includes four variables: cyclical component of
the logarithmized industrial production index (separated from the trend with the linear projection
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filter proposed by Hamilton, 2018, and referred to as the output gap hereafter), the log-difference
of the harmonized consumer price index, the log-difference of Brent crude oil price, and an
interest rate variable. My policy variable is the interest rate variable, which is the Euro overnight
index average from January 1999 to October 2008 and the Wu and Xia (2016) shadow rate from
November 2008 to December 2021.

I fit a two-regime StMVAR model to the series, but because none of the degrees of freedom
parameter estimates is large, I do not consider incorporating Gaussian regimes. The StMVAR
model identifies two regimes: a low-growth regime and a high-growth regime. The low-growth
regime is characterized by negative (but volatile) output gap, and it mainly prevails after the
collapse of Lehman Brothers in the Financial crisis but obtains large mixing weights also during
and before the early 2000’s recession. The high-growth regime is characterized by positive
output gap and it mainly dominates before the Financial crisis. I identify the monetary policy
shock by assuming that it moves the output gap and the interest rate variable to the opposite
directions at impact, and that it does not move inflation nor oil price inflation at impact. The
Wald test accepts the zero constraints individually and jointly at all the conventional levels of
significance. Two of the other three shocks are assumed to move inflation at impact and one of
them is assumed to move oil price inflation at impact.

I find strong asymmetries with respect to the initial state of the economy and the sign of the
shock, but asymmetries with respect to the size of the shock are weak. The real effects are less
enduring for an expansionary shock than for a contractionary shock. Particularly in the high-
growth regime, a contractionary shock persistently drives the economy towards the low-growth
regime, which translates to a very persistent decrease in the output gap. The inflationary effects
of the monetary policy shock are stronger in the high-growth regime than in the low-growth
regime, and in the latter the price level does not move much on average.
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Chapter 2

A mixture autoregressive model based on
Gaussian and Student’s t-distributions1

2.1 Introduction
Recently, Kalliovirta, Meitz, and Saikkonen (2015) introduced a mixture autoregressive model
based on Gaussian distribution with very attractive features. The Gaussian mixture autoregres-
sive (GMAR) model has linear Gaussian autoregressions as its component models and mixing
weights that, for a pth order model, depend on the full distribution of the p past observations.
The specific formulation of the mixing weights leads to ergodicity and full knowledge of the
stationary distribution of p + 1 consecutive observations. Moreover, it allows regime switches
to depend on the level, variability, and temporal dependence of the past observations.

Meitz, Preve, and Saikkonen (forthcoming) proposed a mixture autoregressive model closely
related to the GMAR model but based on Student’s t-distribution. The Student’s t mixture au-
toregressive (StMAR) model has linear Student’s t autoregressions as its component models and
mixing weights constructed analogously to the GMAR model, leading to similar theoretical and
practical properties. The linear Student’s t autoregressions have the same form for the condi-
tional mean as the linear Gaussian autoregressions (a linear function of the past observations)
but different conditional variance. In particular, the conditional variances of the linear Student’s
t autoregressions depend on quadratic forms of past observations, whereas in the Gaussian case
the conditional variances of the component models are constants. Utilization of the t-distribution
does hence not only allow the StMAR model to account for larger kurtosis than the GMAR
model but also stronger forms of conditional heteroskedasticity.

In this essay, I propose a generalization of the GMAR and StMAR models. The G-StMAR
model accommodates both linear Gaussian autoregressions and linear Student’s t autoregres-
sions as its component models, and its mixing weights are constructed analogously to the GMAR
and StMAR models, leading to similar attractive features. It thus enables to model series which

1 This essay has been accepted to the journal Studies in Nonlinear Dynamics & Econometrics (Virolainen, forth-
coming).
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consist of regimes with time varying conditional variance and excess kurtosis as well as regimes
with constant conditional variance and zero excess kurtosis. It turns out that the G-StMAR
model is a limiting case of a StMAR model with the t-distributions of some regimes tending to
normal distributions as the degrees of freedom parameters tend to infinity. As opposed to the
limiting StMAR model, the advantage of the G-StMAR model is that it removes the redundant
degrees of freedom parameters from the model and is free from numerical problems induced by
weak identification of very large degrees of freedom parameters.

I demonstrate the usefulness of the G-StMAR model in an empirical application to the
monthly U.S. interest rate spread between the 3-month Treasury bill (TB) rate and the effec-
tive federal funds (FF) rate. My G-StMAR model identifies three regimes for the spread, with
a GMAR type regime mainly appearing after the Financial crisis in 2008 when the zero lower
bound limits movements of the spread. The remaining regimes are of the StMAR type, one
accommodating eras of low mean and high variability and the other high mean and moderate
variability. The former StMAR type regime dominates often when the market possibly antic-
ipates decreases in the FF rate or has increased preference for safety, whereas the latter one
mostly prevails when the Fed is arguably not expected to significantly decrease the FF rate tar-
get. My findings are consistent with Sarno and Thornton (2003) who found that the FF rate
seems to adjust to the TB rate, supporting the hypothesis that the market anticipates movements
of the FF rate, moving the TB rate, and hence the spread, in advance.

The rest of this chapter is organized as follows. Section 2.2 first introduces the component
processes of the G-StMAR model and then proceeds to define the G-StMAR model and dis-
cusses its theoretical properties. Section 2.3 discusses maximum likelihood (ML) estimation of
the model parameters and establishes the asymptotic properties of the ML estimator. It is, in par-
ticular, discussed how the accompanying R package uGMAR (Virolainen, 2018) estimates the
model parameters in practice with a two-phase procedure. Section 2.4 describes a simple model
selection procedure and discusses numerical consequences of very large degrees of freedom pa-
rameter estimates. Section 2.5 presents the empirical application to the interest rate spread and
Section 2.6 concludes. Appendix 2.A gives details on the estimation procedure employed by
uGMAR, Appendix 2.B gives the density functions and some properties of multivariate Gaus-
sian and Student’s t-distributions, and Appendix 2.C provides proofs for the stated theorems.

Throughout this chapter, I use the following notation. I write x = (x1, ..., xn) for the column
vector x where the components xi may be either scalars or (column) vectors. The notation
x ∼ nd(µ,Γ) signifies that the random vector x has a d-dimensional Gaussian distribution with
mean µ and (positive definite) covariance matrix Γ. Similarly, x ∼ td(µ,Γ, ν) signifies that
x has a d-dimensional t-distribution with mean µ, (positive definite) covariance matrix Γ, and
degrees of freedom ν (assumed to satisfy ν > 2). The vectorization operator vec stacks columns
of a matrix on top of each other and, ιd is the d dimensional vector (1, 0, ..., 0), Id signifies the
identity matrix of dimension d, and ⊗ denotes the Kronecker product. Moreover, 1d and 0d

denote d dimensional vectors of ones and zeros, respectively.
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2.2 Models
I consider mixture autoregressive models in which each observation is generated by a mixture
component that is randomly selected according to the probabilities given by the mixing weights.
The mixture components are either (linear) conditionally homoskedastic Gaussian autoregres-
sions as in the GMAR model (Kalliovirta et al., 2015) or conditionally heteroskedastic Student’s
t autoregressions as in the StMAR model (Meitz et al., forthcoming). The mixing weights are
functions of the past observations constructed in a way that, for a pth order model, leads to
ergodicity and full knowledge of the stationary distribution p + 1 consecutive observations.
Moreover, as the mixing weights depend on the full distribution of the past p observations, they
allow regime switches to depend on the level, variability, kurtosis, and temporal dependence of
the past observations. In this section, I first introduce the component processes of the G-StMAR
model and then proceed to define of the G-StMAR model and discuss its properties.

2.2.1 Linear Gaussian and Student’s t autoregressions
To develop theory and notation, consider first the component processes of the G-StMAR model.
For a linear pth order Gaussian or Student t autoregression zt, we have

zt = φ0 +

p∑
i=1

φizt−i + σtεt, εt ∼ IID(0, 1), (2.2.1)

where σt > 0, φ0 ∈ R, and the autoregressive (AR) parameter φ = (φ1, ..., φp) satisfies the
stationarity condition φ ∈ Sp where

Sp = {(φ1, ..., φp) ∈ Rp : 1−
p∑

i=1

φiz
i ̸= 0 for |z| ≤ 1}. (2.2.2)

In the case of Gaussian autoregression, the distribution of the error term εt is standard normal
and σt is a constant σ for all t. Denoting zt = (zt, ..., zt−p+1) and µ = E[zt], γj = Cov(zt, zt−j),
and γp = (γ1, ..., γp), it is well know that the stationary solution to (2.2.1) for the Gaussian
autoregression satisfies

zt ∼ np(µ1p,Γp), (2.2.3)
(zt, zt−1) ∼ np+1(µ1p+1,Γp+1), (2.2.4)

zt | zt−1 ∼ n1(µ+ γ ′
pΓ

−1
p (zt−1 − µ1p), γ0 − γ ′

pΓ
−1
p γp) = n1(φ0 +φ

′zt−1, σ
2), (2.2.5)

where µ = φ0/(1 − φ′1p) γp = Γpφ, and the covariance matrices Γp and Γp+1 are Toeplitz
matrices given as (see, e.g., Lütkepohl, 2005, Equation (2.1.39))

vec(Γp) = (Ip2 − (Φ⊗ Φ))−1ιp2σ
2, Φ =

[
φ1 · · ·φp−1 φp

Ip−1 0p−1

]
, Γp+1 =

[
γ0 γ ′

p

γp Γp

]
. (2.2.6)
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Using the same notation as in (2.2.3)-(2.2.5) for zt−1, µ, and Γp, the Student’s t autoregres-
sions utilized by Meitz et al. (forthcoming) (which have also appeared at least in Spanos, 1994,
and Heracleous and Spanos, 2006) are obtained by letting εt ∼ t1(0, 1, ν + p) with ν > 2 in
(2.2.1) and defining

σ2
t =

ν − 2 + (zt−1 − µ1p)
′Γ−1

p (zt−1 − µ1p)

ν − 2 + p
σ2. (2.2.7)

This definition (which requires the stationarity condition of the AR parameter) guarantees sta-
tionarity of the Student’s t autoregressions. Distributional properties of such stationary Student’s
t autoregressions are similar to the Gaussian case, in particular (Meitz et al., forthcoming, The-
orem 1),

zt ∼ tp(µ1p,Γp, ν), (2.2.8)
(zt, zt−1) ∼ tp+1(µ1p+1,Γp+1, ν), (2.2.9)
zt | zt−1 ∼ t1(φ0 +φ

′zt−1, σ
2
t , ν + p). (2.2.10)

The aforementioned properties of the component processes are essential in the following discus-
sions and will be exploited implicitly. Gaussian component processes of the G-StMAR model
are referred to as GMAR type and Student’s t component processes as StMAR type since they
are identical to the component processes of the GMAR model (Kalliovirta et al., 2015) and the
StMAR model (Meitz et al., forthcoming), respectively.

2.2.2 Gaussian and Student’s t mixture autoregressive model
Let yt (t = 1, 2, ...) be the real valued time series of interest, and let Ft−1 denote the σ-algebra
generated by the random variables {yt−j, j > 0}. For a G-StMAR model with M mixture com-
ponents and autoregressive order p, we have

yt =
M∑

m=1

sm,t(µm,t + σm,tεm,t), εm,t ∼ IID(0, 1), (2.2.11)

µm,t = φm,0 +

p∑
i=1

φm,iyt−i, m = 1, ...,M, (2.2.12)

where σm,t > 0 are Ft−1-measurable, εm,t are independent of Ft−1, φm,0 ∈ R, φm ∈ Sp

(the set Sp is defined in (2.2.2)), and s1,t, ..., sM,t are unobservable regime variables such that
for each t, exactly one of them takes the value one and the others take the value zero. Given
the past of yt, (s1,t, ..., sM,t) and εm,t are assumed to be conditionally independent, and the
conditional probability for regime m occurring at the time t is expressed in terms of the mixing
weights αm,t ≡ Pr (sm,t = 1| Ft−1) that satisfy

∑M
m=1 αm,t = 1 (for all t = 1, 2, ...). Each

observation is thus generated by a linear autoregression corresponding to some (unobserved)
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CHAPTER 2. THE G-STMAR MODEL

mixture component m, which is selected randomly according to the probabilities determined by
the mixing weights.

The first M1 mixture components are (linear) Gaussian autoregressions and the rest M2 ≡
M −M1 are (linear) Student’s t autoregressions. Regarding Equation (2.2.11), this means that
for m = 1, ...,M1, the terms εm,t have standard normal distributions and the variances σ2

m,t are
constants σ2

m. For m = M1 + 1, ...,M , the terms εm,t follow the t-distribution t1 (0, 1, νm + p)
and the variances σ2

m,t are as in Equation (2.2.7) except that zt−1 is replaced with yt−1 =
(yt−1, ..., yt−p) and the regime specific parameters φm,0,φm, σ

2
m, νm are used to define µ and

Γp therein. The component specific conditional means µm,t are defined by Equation (2.2.12) for
all the components.

Based on the above specifications, the conditional density function of a G-StMAR model
with autoregressive order p is given as

f (yt|Ft−1) =

M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

)
, (2.2.13)

where the conditional densities n1(yt;µm,t, σ
2
m) and t1

(
yt;µm,t, σ

2
m,t, νm + p

)
are obtained from

the properties of the component processes (using the regime specific parameters). The form of
the Student’s t density function in (2.2.13) is given in Appendix 2.B. The G-StMAR model
adds to the class of mixture models introduced by Le, Martin, and Raftery (1996) and further
developed by Wong and Li (2000, 2001a,b), Glasbey (2001), Lanne and Saikkonen (2003), and
Wong, Chan, and Kam (2009), to name a few.

In order to specify the mixing weights αm,t in (2.2.13), I first define the following function
for notational convenience. Let

dm(y;µm1p,Γm, νm) =

{
np(y;µm1p,Γm), when m ≤ M1,
tp(y;µm1p,Γm, νm), when m > M1,

(2.2.14)

where the p-dimensional densities np(y;µm1p,Γm) and tp(y;µm1p,Γm, νm) correspond to the
stationary distribution of the mth component process (given in Equations (2.2.3) and (2.2.8)).
Denoting yt−1 = (yt−1, ..., yt−p), the mixing weights of the G-StMAR model are defined as

αm,t =
αmdm(yt−1;µm1p,Γm, νm)∑M
n=1 αndn(yt−1;µn1p,Γn, νn)

, (2.2.15)

where the parameters α1, ..., αM satisfy
∑M

m=1 αm = 1. The mixing weights are thus weighted
ratios of the stationary densities of the component processes corresponding to the p previous
observations. This specific definition of the mixing weights is appealing, as it states that the
higher the relative weighted likelihood of a regime is, the more likely the process is to generate
an observation from it. Moreover, it allows the regime-switching probabilities to depend on
the level, variability, kurtosis, and temporal dependence of the past observations. This is a
convenient feature for forecasting, and it also facilitates associating statistical characteristics
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and economic interpretations to the regimes. It turns out that this formulation of the mixing
weights also leads to attractive theoretical properties such as fully known stationary distribution
of realizations (yt, ..., yt−h), h = 0, 1, ..., p, and ergodicity of the process. These theoretical
properties are formally stated in Theorem 2.1 below.

Before stating the theorem, a few notational conventions are provided. I collect the pa-
rameters of the G-StMAR model to a (M(p + 3) + M2 − 1) × 1 vector θ ≡ (θ−,ν) where
θ− = (ϑ1, ...,ϑM , α1, ..., αM−1), ϑm = (φm,0,φm, σ

2
m), φm = (φm,1, ..., φm,p), m = 1, ...,M ,

and ν = (νM1+1, ..., νM). The parameter αM is omitted because it is obtained from the restric-
tion

∑M
m=1 αm = 1. The parameter space for the G-StMAR model is

Θ =
{
θ ∈ RM(2+p) × (0, 1)M−1 × (2,∞)M2 : φm ∈ Sp, σ2

m > 0, for all m = 1, ...,M
}

(2.2.16)

where the restriction νm > 2 (m = M1 + 1, ...,M ) is made to ensure existence of finite second
moments and the set Sp is as in (2.2.2). A G-StMAR model with autoregressive order p, M1

GMAR type regimes, and M2 StMAR type regimes is referred to as the G-StMAR(p,M1,M2)
model, whenever clarity of the presentation requires.

Theorem 2.1. Consider the G-StMAR process yt generated by (2.2.13) and (2.2.15) with θ ∈ Θ.
Then yt = (yt, ..., yt−p+1) (t = 1, 2, ...) is a Markov chain on Rp with a stationary distribution
characterized by the density

f(y;θ) =

M1∑
m=1

αmnp(y;µm1p,Γm) +
M∑

m=M1+1

αmtp(y;µm1p,Γm, νm). (2.2.17)

Moreover, yt is ergodic.

The stationary distribution of yt is a mixture of p-dimensional normal and t-distributions
with constant mixing weights αm. By the well known properties of the normal and the t-
distribution, all its moments lower than min{νM1+1, ..., νM} exist and are finite. Moreover, as
shown in the proof of Theorem 2.1, for any h = 0, 1, ..., p, the marginal stationary distribution of
the vector (yt, .., yt−h) is also a mixture of normal and t-distributions. This gives the parameters
αm an interpretation as the unconditional probabilities for the observation yt being generated
from the mth component process. Similarly to the GMAR and the StMAR process, the mean,
variance, and first p autocovariances of yt are thus

E[yt] ≡ µy =
M∑

m=1

αmµm, γj ≡
M∑

m=1

αmγm,j +
M∑

m=1

αm(µm − µy)
2, j = 0, 1, ..., p, (2.2.18)

where γm,j is the jth autocovariance of the mth component process.

24



CHAPTER 2. THE G-STMAR MODEL

The conditional mean and variance of the G-StMAR process are obtained from the definition
of the model as E[yt|Ft−1] =

∑M
m=1 αm,tµm,t and

Var(yt|Ft−1) =

M1∑
m=1

αm,tσ
2
m +

M∑
m=M1+1

αm,tσ
2
m,t +

M∑
m=1

αm,t

(
µm,t −

M∑
n=1

αn,tµn,t

)2

. (2.2.19)

The conditional mean shares a common form with the GMAR model and StMAR model but
differs from them in the definition of the mixing weights. The conditional variance includes
three components; the first one is related to the conditional variances of the GMAR type compo-
nents and the second one to the StMAR type components, whereas the third term encapsulates
heteroskedasticity caused by variations in the conditional mean.

Notice that the GMAR model (Kalliovirta et al., 2015) can be obtained as a special of the
G-StMAR model by setting M1 = M and M2 = 0, and similarly the StMAR model (Meitz
et al., forthcoming) is obtained by setting M1 = 0 and M2 = M . One simply needs to drop
the corresponding terms from the formulas, and all the definitions and results stated in this and
in the next section also hold for to the GMAR and StMAR models individually. However,
some theory developed for the GMAR model, such as geometric ergodicity (Kalliovirta et al.,
2015, Theorem A.1), has not been established for the StMAR and G-StMAR models. The
GMAR model also requires less (currently) unverified assumptions than the StMAR and G-
StMAR models for concluding asymptotic normality of the maximum likelihood estimator (see
Kalliovirta et al., 2015, Section 2, Meitz et al., forthcoming, Theorem 3, and Theorem 2.2 of
this essay).

2.3 Estimation
Parameters of the G-StMAR model can be estimated with the method of maximum likelihood
(ML). Because the stationary distribution of the process is known, the exact log-likelihood func-
tion can be used. Suppose the observed time series is y−p+1, ..., y0, y1, ..., yT and that the initial
values are stationary. Then the log-likelihood function of the G-StMAR model takes the form

L(θ) = log

(
M1∑
m=1

αmnp(y0;µm1p,Γm) +
M∑

m=M1+1

αmtp(y0;µm1p,Γm, νm)

)
+

T∑
t=1

lt(θ),

(2.3.1)
where

lt(θ) = log

(
M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

))
, (2.3.2)

and the density functions nd(·; ·) and td (·; ·) follow the notation described in Section 2.2.2. If
stationarity of the initial values seems unreasonable, one can condition on the initial values

25



2.3. ESTIMATION

by dropping the first term on the right side of (2.3.1) and base the estimation on the resulting
conditional log-likelihood function.

In what follows, I assume estimation based on the conditional log-likelihood function L
(c)
T (θ) =

T−1
∑T

t=1 lt(θ), i.e., that the ML estimator θ̂T maximizes L(c)
T (θ). I have scaled the conditional

log-likelihood function with the sample size T so that the notation is consistent with the referred
literature.

To investigate the asymptotic properties of the ML estimator θ̂T , the parameter space Θ
given in (2.2.16) needs to be restricted in a way that guarantees identification of the parameters.
This amounts to requiring that components of the G-StMAR model cannot be ”relabelled” so
that one ends up with the same model with different parameter vector; that is,

α1 > · · · > αM1 > 0, αM1+1 > · · · > αM > 0, and ϑi = ϑj only if at least one of the
conditions (1) 1 ≤ i = j ≤ M, (2) i ≤ M1 < j, (3) i, j > M1 and νi ̸= νj is satisfied.

(2.3.3)

The restrictions required to establish asymptotic properties of the ML estimator are summarized
in the following assumption.

Assumption 2.1. The true parameter value θ0 is an interior point of Θ̄ which is a compact
subset of {θ ∈ Θ : (2.3.3) holds}.

Asymptotic properties of the ML estimator under the conventional high-level conditions are
stated in the following theorem (which is similar to Theorem 3 in Meitz et al., forthcoming, on
the ML estimator of the StMAR model). Denote I(θ) = E

[∂lt(θ)
∂θ

∂lt(θ)
∂θ′

]
and J (θ) = E

[∂2lt(θ)
∂θ∂θ′

]
.

Theorem 2.2. Suppose that yt are generated by the stationary and ergodic G-StMAR process of
Theorem 2.1 and that Assumption 2.1 holds. Then θ̂T is strongly consistent, i.e., θ̂T → θ0 almost
surely. Suppose further that (i) T 1/2 ∂

∂θ
L
(c)
T (θ0)

d→ N(0, I(θ0)) with I(θ0) finite and positive
definite, (ii) J (θ0) = −I(θ0), and (iii) E

[
supθ∈Θ̄0

∣∣∂2lt(θ)
∂θ∂θ′

∣∣] < ∞ for some Θ̄0, compact convex

set contained in the interior of Θ̄ that has θ0 as an interior point. Then T 1/2(θ̂T − θ0)
d→

N(0,−J (θ0)
−1).

If one is willing to assume validity of the conditions (i)-(iii) of Theorem 2.2, the ML esti-
mator θ̂T has the conventional limiting distribution, implying that approximative standard errors
for the estimates are obtained as usual. Moreover, standard likelihood based tests are applicable
as long as the orders M1 and M2 are correctly specified. If M1 or M2 is chosen too large, some
of the parameters are not identified causing the result of Theorem 2.2 to break down. This par-
ticularly happens when one tests for the number of regimes as the null hypothesis would imply
that some regime is reduced from the model2 (see the related discussion in Kalliovirta et al.,
2015, Section 3.3.2). Similar caution also applies for testing whether a regime is of the GMAR
2 Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian

conditional densities.
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type against the alternative that it is of the StMAR type, as under the null hypothesis νm = ∞
for the StMAR type regime m being tested, violating Assumption 2.1. Numerical consequences
of the weak identification of very large degrees of freedom parameters are briefly discussed in
Section 2.4.

2.3.1 Two-phase maximum likelihood estimation
Finding the ML estimates amounts to maximizing the log-likelihood function (2.3.1) over the
high dimensional parameter space (2.2.16) satisfying several constraints. Due to the complexity
of the log-likelihood function, finding an analytical solution is infeasible, so numerical optimiza-
tion methods are required. The EM algorithm (Redner and Walker, 1984) has been a popular
choice for estimating mixture models (e.g. Wong and Li, 2000, 2001a,b, and Wong et al., 2009),
as it is suitable for problems where all the data relevant to estimation is not observed (for mix-
ture models that is the origin of each observation; in this case, the random variables s1,t, ..., sM,t

in (2.2.11)). For the G-StMAR model the EM algorithm is not, however, particularly useful be-
cause in each maximization step one faces a new optimization problem that is not much simpler
than the original one. This is because in the G-StMAR model the mixing weights also depend
on the AR parameters (in a complex way). Conventional gradient based algorithms, on the other
hand, tend to converge to some local maximum near the starting point, making them generally
insufficient for maximizing multimodal objective functions such as (2.3.1) that require thorough
exploration of the parameter space.

Several optimization algorithms capable of escaping from local maxima have been proposed
for maximization of complicated multimodal objective functions. Such robust methods, which
include simulated annealing and the genetic algorithm (see, e.g., Goffe, Ferrier, and Rogers,
1994 and Dorsey and Mayer, 1995), often perform well but they are computationally heavy and
tend to converge slowly when near the global maximum point (see the discussion in Dorsey
and Mayer, 1995, Section 3). Following Dorsey and Mayer (1995) (and Meitz, Preve, and
Saikkonen, 2018, Meitz et al., forthcoming), I hence suggest employing a hybrid estimation
procedure where a genetic algorithm is used to find starting values for a gradient based method,
which then often converges to a nearby local maximum or saddle point.

Even with the two-phase estimation procedure, parameters of the G-StMAR model can be
challenging to estimate. I have therefore accompanied this essay with the CRAN distributed R
package uGMAR (Virolainen, 2018) in which the genetic algorithm has been modified to im-
prove its performance.3 Brief descriptions of the employed genetic algorithm and its modifica-
tions are given in Appendix 2.A. After running the genetic algorithm, the estimation is finalized
with a variable metric algorithm (Nash, 1990, Algorithm 21, implemented by R Core Team,
2022) using central difference approximation for the gradient of the log-likelihood function.
Because of the presence of multiple local maxima, a (sometimes large) number of estimation
rounds should be performed to obtain reliable results, for which uGMAR makes use of parallel
computing to shorten the estimation time.

3 In addition to the G-StMAR model, uGMAR also accommodates the GMAR and StMAR models.
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2.4 Building a G-StMAR Model
In empirical applications, building a G-StMAR model amounts to finding a suitable autoregres-
sive order p, the number of GMAR type regimes M1, and the number of StMAR type regimes
M2. Different strategies for choosing the number of each type of regimes may be considered de-
pending on the application. I propose a simple model selection procedure which takes advantage
of the observation that the G-StMAR model is a limiting case of the StMAR model.4

It is easy to see that the linear Gaussian autoregression defined in Section 2.2.1 is obtained
as a limiting case of the Student’s t autoregression with the degrees of freedom parameter tend-
ing to infinity. As the mixing weights (2.2.15) are weighted ratios of the component process
densities, it then follows that the G-StMAR(p,M1,M2) model is obtained as a limiting case of
a StMAR(p,M ) model with the parameters ν1, ..., νM1 limiting to infinity. Consequently, if a
StMAR(p,M ) model is fitted to data generated by a G-StMAR(p,M1,M − M1) process, then
asymptotically, the M1 regimes of the fitted StMAR model are expected to get large degrees
of freedom parameter estimates. I therefore suggest building a G-StMAR model by first find-
ing a suitable StMAR model, and then estimating the appropriate G-StMAR model if the fitted
StMAR model contains large degrees of freedom parameter estimates. A StMAR model can be
specified, for example, by using information criteria together with quantile residual diagnostics
(see, e.g., Kalliovirta, 2012).

Overly large degrees of freedom parameter estimates in a StMAR model are redundant, and
their weak identification also causes several inconveniences in numerical analysis of the model.
They lead to nearly numerically singular Hessian matrix of the log-likelihood function when
evaluated at the estimate, making the approximate standard errors often unavailable. Weakly
identified degrees of freedom parameters also cause inconvenience in quantile residual based
model diagnostics. In particular, the quantile residual tests proposed by Kalliovirta (2012) re-
quire a positive definite approximation of the Hessian matrix (evaluated the ML estimate). The
tests are thus not applicable for StMAR models with too large degrees of freedom parameter esti-
mates, whereas they are for the corresponding G-StMAR models. Applicability of Kalliovirta’s
(2012) tests, which take into account the uncertainty caused by estimation of the parameters,
might have consequences in model selection when sheer graphical analysis of the quantile resid-
uals fails to reveal inadequacies. I demonstrate such a case in the empirical application.

2.5 Empirical application
I consider the monthly U.S. interest rate spread between the 3-month Treasury bill (TB) sec-
ondary market rate and the effective federal funds (FF) rate, covering the period from 1954VII
to 2019VII (781 observations). The series is plotted in Figure 2.1 (top left) along with the 3-
month TB and FF rates, and with the shaded areas indicating the periods of (NBER based) U.S.
recessions. All the data were taken from the Federal Reserve Bank of St. Louis database.
4 The definition of the StMAR(p,M ) model is technically the same as of the G-StMAR(p, 0,M ) model.
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Treasury bills are short-term pure discount bonds which are backed by the U.S. government
and therefore generally considered to be almost free from default-risk. The effective federal
funds rate is the averaged rate at which depository institutes loan federal funds to each other
overnight. The overnight FF lending agreements are one of the most liquid financial asset, but
unlike TBs, they are subject to a notable default-risk. The relationship between TB and FF rates
has been studied, among others, by Simon (1990) and Sarno and Thornton (2003), while Kishor
and Marfatia (2013) examine the relationship between TB and FF futures rate.

According to term structure theory, a long-term interest rate should reflect the current and
expected future short-term rates, and also perceptions of risk and liquidity in the form of (pos-
sibly time-varying) premium. Simon (1990) studied the predictive power of the weekly spread
between the 3-month TB and FF rates on the future levels of the FF rate in 1972-1987. He
argued that the current and expected future FF rates affect the spread between the TB and FF
rates through the repurchase agreement (repo) market5 because repos are closely linked to the
FF rate, and corporations with funds to invest can buy TBs alternatively to investing in consec-
utive overnight repos. TB rates are linked to the FF rates also because security dealers finance
the bulk of their TB inventories in the repo market, which is closely tied to the FF market. Fur-
thermore, when trust in solidity of the banking system weakens, the increased demand for safety
lowers TB rates relatively to FF rates. Simon (1990) accounted for this by employing the spread
between the 3-month Eurodollar time deposit6 and TB rates as a risk premium for bank safety.
He found that the spread between the 3-month TB and FF rate had significant predictive power
on future levels of the FF rate in the volatile nonborrowed reserves operating period (late 1979 -
late 1982) but less or none in the other subperiods.

Sarno and Thornton (2003) identified an error correction model (ECM) between the daily
3-month TB and effective FF rate (covering the period from 1974 to 1999) and showed that their
ECM, which allows for asymmetries and nonlinearities, outperforms the alternative of a linear
ECM. One of their main findings was that the FF rate (which is controlled by the Fed) seems to
adjust to the TB rate and not vice versa, supporting the hypothesis that the market anticipates
changes in the FF rate, moving the TB rate in advance. Moreover, it appears that the adjustment
speed depends on the sign and size of the deviation from the long-run equilibrium. Sarno and
Thornton (2003) argued that although there has been a number of procedural changes affecting
predictability of the FF rate, their results implicate that the changes have been statistically unim-
portant. Furthermore, their robustness checks indicate that their findings on the adjustments
from disequilibria also hold for monthly data. Variations and asymmetries in the adjustment
speed, on the other hand, indicate that the dynamics of the spread between the TB and FF rates
might fluctuate along with the level of the spread. This suggests that a mixture model, such as
the G-StMAR model, which is able encapsulate such behaviour could be an appropriate choice
of model.
5 In a repo, the borrower sells a security to the lender and agrees to repurchase it in the future (often in the next

day). Effectively, repos function similarly to collateralized loans. See Baklanova, Copeland, and McCaughrin
(2015) for an overview of the U.S. repo market.

6 Eurodollar time deposit is a U.S. dollar-denominated deposit at a bank outside the U.S. with a fixed maturity.
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Figure 2.1: On top left, monthly U.S. 3-month Treasury bill secondary market rate minus ef-
fective federal funds rate (black solid line), the 3-month Treasury bill secondary market rate
(orange dotted line), and the effective federal funds rate (violet dotted line). On bottom left, the
mixing weights implied by the G-StMAR(5, 1, 2) model fitted to the interest rate spread series.
The shaded areas indicate the periods of (NBER based) U.S. recessions. On right, a Gaussian
kernel density estimate of the interest rate spread (black solid line), the mixture density implied
by the fitted G-StMAR(5, 1, 2) model (grey dashed line), and the regime densities (blue, green,
and red dotted lines).

Kishor and Marfatia (2013) argued that the results in Sarno and Thornton (2003) are not
very surprising since the effective FF rate always tends to revert back to the FF target rate, and
it does not incorporate markets expectations of the changes in the future FF rate. To get around
that, they studied the relationship between the 3-month TB rate and the 1-month FF futures rate
which does incorporate information about market’s anticipations on the future FF rate. They
fitted a linear ECM to a daily series from 1989 to 2008, and found that the TB rate and the FF
futures rate both seem to move to correct a short-run disequilibrium.

Interestingly, the spread between the 3-month TB rate and the effective FF rate is most of
the time (covered in my sample period) negative. Sarno and Thornton (2003) made a similar ob-
servation for their daily series and suggested that only a small fraction of the negative difference
could be attributed to the low default-risk of TBs, but that a more plausible explanation is that
the interest on TBs is exempt from some local and state taxes. As the smaller taxes have larger
effect on paid net interest (relative to interest paid on federal funds) when the interest rates are
higher, some movements of the spread could be partially caused by the differences in taxation.
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2.5.1 Estimation and model selection
I employ the method of maximum likelihood based on the exact log-likelihood function for es-
timating the parameters of the considered models. Adequacy of the estimated models is exam-
ined using quantile residual diagnostics in the framework presented in Kalliovirta (2012). The
quantile residuals of a correctly specified G-StMAR model are asymptotically independent with
standard normal distributions (Kalliovirta, 2012, Lemma 2.1), so they can be used for graphical
analysis in a similar fashion to conventional Pearson’s residuals. In addition to graphical anal-
ysis of the quantile residuals, I perform Kalliovirta’s (2012) asymptotic tests (which take into
account the uncertainty caused by estimation of the parameters) for testing normality, autocor-
relation, and conditional heteroskedasticity of the quantile residuals. The estimation, quantile
residual diagnostics, and other numerical analysis of the models is conducted using the R pack-
age uGMAR (Virolainen, 2018) which is available through the CRAN repository.7 uGMAR
estimates the model parameters using the two-phase procedure described in Section 2.3.1.

Following the model selection procedure described in Section 2.4, I started by finding a
suitable StMAR model. First, I estimated the StMAR(p,M ) model with one mixture compo-
nent, M = 1, and autoregressive orders p = 1, ..., 24 and found that the order p = 6 yields
the largest likelihood. Adequacy of the StMAR(6, 1) model was clearly rejected by the quantile
residual tests (see Table 2), so I estimated the StMAR(p,M ) models with orders p = 1, ..., 6 and
M = 2, 3. The order (p,M) = (5, 2) minimized the Schwarz-Bayesian (BIC) and the Hannan-
Quinn (HQIC) information criteria, whereas the Akaike’s information criterion (AIC) was min-
imized by the order (p,M) = (5, 3). Inappropriate estimates extremely near the border of the
stationarity region were discarded as they are not solutions of interest (but maximize the likeli-
hood for rather a technical reason, see Chapter 3), so in such cases the next-largest local max-
imum of the log-likelihood function was considered instead. In both the StMAR(5, 2) and the
StMAR(5, 3) model, a very large degrees of freedom estimate for one regime was obtained (ap-
proximately 99000 and 95000, respectively), so I estimated the corresponding G-StMAR(5, 1, 1)
and G-StMAR(5, 1, 2) models. Removing the weakly identified degrees of freedom parameters
by switching to the G-StMAR models enabled me to compute approximate standard errors of
the estimates and to calculate Kalliovirta’s (2012) test statistics (see Section 2.4). The values of
the information criteria are reported in Table 2.2 and the parameter estimates of the G-StMAR
models are reported in Table 2.1 with the approximate standard errors for the estimates in paren-
theses.

Estimates regarding the GMAR type regime are quite similar for the two G-StMAR models,
and their standard errors are relatively large. This is because for both of the models the GMAR
type regime mainly occurs in the period of near-zero interest rates after 2008 and there are hence
only a few observations from that regime (regime 1 in Figure 2.1, bottom left, which displays
the mixing weights of the G-StMAR(5, 1, 2) model; the mixing weights of the G-StMAR(5, 1, 1)
model are not shown). The three zeros in the variance parameter estimates (and in their standard

7 There is also MATLAB code available for the StMAR model in the form of StMAR Toolbox by Meitz et al.
(2018).
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errors) signify that the estimates (and their standard errors) round to zero in three digits ac-
curacy8, implying that the GMAR type regime exhibits very low variability (conditionally and
unconditionally). The small mixing weight parameter estimates, interpreted as the unconditional
probability for the GMAR type regime occurring, reflect the observation that eras of such a low
variability have been rare in the sample period. Also, a remarkably large standard error for the
second regime’s variance parameter sticks out for both of the models. Examination of the profile
log-likelihood functions (not shown) does not, however, reveal anything notable.

Since the AR parameter estimates for the G-StMAR(5, 1, 2) model are somewhat similar in
all regimes, I estimated a StMAR(5, 3) model with the AR parameters restricted to be the same
in all regimes, allowing for changes in the level, variability, and kurtosis only. The degrees
of freedom estimate for one regime was very large (approximately 97000), so I estimated the
corresponding restricted G-StMAR model which I refer to as the G-StMAR(5, 1, 2)r model.
The parameter estimates of this model are also presented in Table 2.1 with the related statistics,
and the values of the information criteria in Table 2.2. The standard errors of the AR parameters
are notably smaller than in the non-restricted models because the AR parameters are common
for all the regimes.

Figure 2.2 presents the time series, normal quantile-quantile plot, the sample autocorrelation
function of the quantile residuals, and the sample autocorrelation function of the squared quan-
tile residuals for the G-StMAR models presented in Table 2.1. Graphical analysis of the quantile
residuals does not show significant signs of inadequacy for any of the models. A slightly too fat
lower tail in the quantile residuals’ distributions and somewhat large, approximately 0.1, sample
autocorrelation coefficient at lag 12 sticks out for each of the three models, however.

In order to further study adequacy of the models, I employed Kalliovirta’s (2012) tests, and
tested for normality, autocorrelation, and conditional heteroskedasticity of the quantile residuals,
taking into account 1, 3, 6, and 12 lags in the autocorrelation and heteroskedasticity tests. The
p-values obtained from the tests are reported in Table 2.2. The normality test rejects for all the
three models at 1% level of significance, possibly because of the fat lower tails in the quantile
residuals’ distributions. More interestingly, despite the similarities in the graphical analysis, the
autocorrelation tests unambiguously reject adequacy of the G-StMAR(5, 1, 1) model, whereas
the p-values are reasonable for the G-StMAR(5, 1, 2) model which also passes the heteroskedas-
ticity tests. The p-values for the autocorrelation tests are rather small also for the restricted
G-StMAR(5, 1, 2)r model, which is preferred by the information criteria, showing some evi-
dence of inadequacy. I therefore prefer the unrestricted G-StMAR(5, 1, 2) model whose overall
adequacy seems quite satisfactory. The fact that the restricted model has information criteria
values superior to the unrestricted models, however, suggests that imposing the autocorrelation
structure to be the same for all regimes would also be a reasonable modelling choice.9

8 More accurate values for the ML estimate of σ2
1 and its standard error are 3.237× 10−4 and 6.884× 10−5 for the

G-StMAR(5, 1, 1) model, 3.070 × 10−4 and 6.092 × 10−5 for the G-StMAR(5, 1, 2) model, and 3.593 × 10−4

and 5.552× 10−5 for the G-StMAR(5, 1, 2)r model, respectively.
9 For comparison, I also estimated the GMAR(p,M ) model with orders p = 1, ..., 6 and M = 1, ..., 4. The values

of the information criteria were, however, found inferior to my G-StMAR models, with the GMAR(3, 4) model
minimizing BIC (−432) and the GMAR(5, 4) model minimizing HQIC (−517) and AIC (−572).
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G-StMAR(5, 1, 1) G-StMAR(5, 1, 2) G-StMAR(5, 1, 2)r
φ1,0 −0.011 (0.010) −0.013 (0.009) −0.007 (0.002)
φ1,1 0.587 (0.129) 0.580 (0.124) 0.782 (0.037)
φ1,2 −0.049 (0.168) −0.079 (0.163) −0.058 (0.050)
φ1,3 0.041 (0.140) 0.042 (0.136) 0.134 (0.050)
φ1,4 0.006 (0.142) 0.006 (0.141) −0.040 (0.052)
φ1,5 0.224 (0.128) 0.209 (0.132) 0.036 (0.042)
σ2
1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

α1 0.029 (0.021) 0.043 (0.035) 0.035 (0.025)
µ1 −0.056 −0.055 −0.048
γ1,0 0.001 0.001 0.001

φ2,0 −0.009 (0.005) −0.066 (0.025) −0.079 (0.025)
φ2,1 0.821 (0.040) 0.845 (0.055)
φ2,2 −0.051 (0.053) −0.038 (0.076)
φ2,3 0.153 (0.053) 0.127 (0.075)
φ2,4 −0.052 (0.055) −0.134 (0.077)
φ2,5 0.045 (0.042) 0.073 (0.058)
σ2
2 4.806 (18.779) 0.541 (2.052) 0.256 (0.374)

ν2 2.007 (0.026) 2.196 (0.801) 2.499 (0.872)
α2 0.592 (0.132) 0.600 (0.141)
µ2 −0.110 −0.519 −0.541
γ2,0 24.449 2.109 0.802

φ3,0 −0.011 (0.005) −0.011 (0.005)
φ3,1 0.720 (0.069)
φ3,2 −0.082 (0.090)
φ3,3 0.151 (0.090)
φ3,4 0.087 (0.098)
φ3,5 −0.062 (0.085)
σ2
3 0.015 (0.011) 0.015 (0.013)

ν3 4.320 (2.951) 4.778 (4.511)
µ3 −0.059 −0.074
γ3,0 0.038 0.048

µy −0.108 −0.331 −0.353
γ0 23.744 1.313 0.552

L(θ̂) 309.165 322.121 314.016

Table 2.1: Maximum likelihood estimates of the G-StMAR(5, 1, 1), the G-StMAR(5, 1, 2), and
the restricted G-StMAR(5, 1, 2)r model based on the exact log-likelihood function, with ap-
proximate standard errors for the estimates presented in the brackets. The statistics µm and γm,0,
m = 1, 2, 3, are the stationary mean and variance of each regime, respectively. Likewise, the
statistics µy and γ0 are the stationary mean and variance of the process. The maximized log-
likelihoods for each model are presented in the bottom row of the table.
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Normality Autocorrelation Cond. h.skedasticity AIC HQIC BIC
Number of lags 1 3 6 12 1 3 6 12

StMAR(6,1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −538 −521 −496
G-StMAR(5, 1, 1) 0.00 0.01 0.01 0.01 0.00 0.46 0.38 0.23 0.00 −586 −558 −512
G-StMAR(5, 1, 2) 0.00 0.18 0.40 0.57 0.16 0.82 0.07 0.18 0.02 −594 −549 −478
G-StMAR(5, 1, 2)r 0.00 0.02 0.07 0.13 0.03 0.68 0.07 0.24 0.03 −598 −571 −528

Table 2.2: The p-values obtained from the Kalliovirta’s (2012) quantile residual tests, testing for
normality, autocorrelation, and conditional heteroskedasticity of the quantile residuals. The p-
values smaller than 0.01 are bolded. In order to improve size properties of the tests, I employed
the simulation procedure proposed by Kalliovirta (2012) using samples of length 500000.

Figure 2.2: Graphical quantile residual diagnostics for the models presented in Table 2.1. The
top row is for the G-StMAR(5, 1, 1) model, the middle row is for the G-StMAR(5, 1, 2) model,
and the bottom row is for the G-StMAR(5, 1, 2)r model. The first column presents the time
series, the second column the normal quantile-quantile plot, and third column the autocorrelation
function of the quantile residuals. The fourth column presents the autocorrelation function of
the squared quantile residuals. The blue solid line in the quantile-quantile plots displays the
theoretical quantiles, and the blue dashed lines in the autocorrelation function plots are the 95%
bounds ±1.96/

√
T (T = 776 as the first p values are the initial values) for autocorrelations of

an IID sequence, which are presented to give an approximate perception of the magnitude of the
sample autocorrelations.
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2.5.2 Discussion
My model selection procedure led to the (unrestricted) G-StMAR(5, 1, 2) model which identifies
three statistical regimes for the spread between the 3-month TB secondary market rate and the
effective FF rate. The mixing weights of the model are presented in Figure 2.1 (bottom left)
along with the interest rate spread series (top left). The GMAR type regime (red) dominates
the period of near-zero interest rates occurring after 2008, where also the spread stays close
to zero and exhibits very low variability. The second regime (green) identifies periods of high
variability and low mean, spanning through most of the recessions, whereas the third regime
(blue) often occurs10 after the recessions when the spread moderately varies around zero. These
characteristics of the regimes are also highlighted in Figure 2.1 (right) where a kernel density
estimate of the spread (black solid line) is presented with the model implied density (grey dashed
line) and the regime densities (red, green, and blue dotted lines; regime densities are multiplied
by the mixing weight parameter estimates αm, m = 1, 2, 3). The model implied density matches
fairly well to the skewed distribution of the observations, but peakiness of the distribution seems
a bit exaggerated and the lower tail is not fat enough.

Based on my G-StMAR(5, 1, 2) model, the regime specific unconditional mean of the spread
varies from the −0.06 %-units of the first (GMAR type) and third regime to the −0.52 %-units
of the second regime, with each regime regularly occurring for several consecutive months. As
the second regime dominates during most of the recessions, and also often occurs before the
recessions when the interest rates are relatively high, it seems plausible that part of the larger
negative mean is explained by expectations of a decrease in the near-future FF rate. The third
regime, on the other hand, mostly occurs after the recessions when the interest rates seem rela-
tively low, possibly indicating that the larger mean of the regime could be related to the lack of
expected decreases in the FF rate. These findings are consistent with Sarno and Thornton (2003)
who found that the FF rate corrects disequilibriums from the long-run relationship, supporting
the hypothesis that market’s anticipations in the future movements of the FF rate are reflected in
the TB rate.

Sarno and Thornton (2003) also found that the adjustment speed of FF rate towards the long-
run equilibrium depends on the sign and size of the deviation. Specifically, FF rate below the
long-run trend or larger deviation implies faster adjustment, suggesting that too high values of
the spread would be corrected faster than too low values. This might partially explain why the
low mean second regime usually occurs when the interest rates are declining, but a rise in the
FF rate is not always accompanied with a switch to the higher mean third regime. Another
possibility is that market’s predictions on the future movements of the FF rate are sometimes
rather poor or a premium has an increased effect on the opposite direction. During the savings
and loan crisis in 1980’s and 1990’s, increased preference for the safety of TBs would seem
like a plausible partial explanation for the moderately negative spread despite of the mainly
increasing FF rate from late 1986 to early 1989.

10By a regime occurring at a point of time, I mean that according to the estimated mixing weights, the process
generated an observation from that regime with a probability close to one.
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Overall, the three statistical regimes of my G-StMAR model identify three economic regimes,
with the first regime dominating the period in which the movements of the interest rates are
limited by the zero lower bound. The second regime arguably occurs often when the market
anticipates decreases in the FF rate or possibly has increased preferences for the safety of the
almost default-risk free TBs. The third regime seems to mostly occur at times when the Fed
is arguably not expected to significantly decrease the FF rate target (because the recession has
already passed and the interest rates are relatively low).

2.6 Summary
This essay introduced a mixture autoregressive model which is a combination of the Gaussian
mixture autoregressive (GMAR) model (Kalliovirta et al., 2015) and the Student’s t mixture
autoregressive (StMAR) model (Meitz et al., forthcoming). This model, referred to as the G-
StMAR model, has several attractive theoretical and practical properties that are analogous to
those of the GMAR and StMAR model. In addition to discussing the properties, it was noted
that estimating the parameters of the G-StMAR model can be challenging in practice. Following
Dorsey and Mayer (1995) (and Meitz et al., 2018, forthcoming), I proposed using a two-phase
estimation procedure where a genetic algorithm is used to find starting values for a gradient
based method and accompanied this essay with the R package uGMAR (Virolainen, 2018),
which implements the two-phase estimation procedure with a modified version of a genetic
algorithm.

I stated that the G-StMAR model is a limiting case of a StMAR model with some degrees
of freedom parameters tending to infinity, and found that large degrees of freedom estimates
in a StMAR model are not only redundant but also cause several inconveniences in numerical
analysis of the model. In particular, weak identification of large degrees of freedom parameters
was found to lead to numerically nearly singular approximation of the observed information
matrix when evaluated at the estimate, making the approximate standard errors for the estimates
and Kalliovirta’s (2012) diagnostic tests often unavailable. Removing the redundant degrees of
freedom parameters by switching to a G-StMAR model was concluded to obviate the problems.

As an empirical application, I considered the monthly U.S. interest rate spread between the
3-month Treasury bill rate and the effective federal funds rate. My G-StMAR model identified
three regimes for the spread, with a switch from a StMAR type regime to a GMAR type regime
arising from a switch in the economic regime, namely, to a regime where the zero lower bound
limits the movements of the interest rates. The two StMAR type regimes accommodate eras of
low mean and high variability and high mean and moderate variability. The first StMAR type
regime arguably occurs often when the market anticipates decreases in the FF rate or possibly
has increased preferences for safety, whereas the second one mostly occurs when the Fed is
arguably not expected to significantly decrease the FF rate target. As opposed to modelling the
series with a StMAR model containing an overly large degrees of freedom estimate, switching
to the more parsimonious G-StMAR model allowed me to numerically compute approximate
standard errors for the estimates, and moreover, to perform the Kalliovirta’s (2012) quantile
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residual tests, which turned out to be useful in the model selection.
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Appendix 2.A Modified genetic algorithm
As discussed in Section 2.3.1, the accompanying R package uGMAR (Virolainen, 2018) em-
ploys a two-phase procedure for estimating the parameters of the G-StMAR model (and also of
the GMAR model Kalliovirta et al., 2015, and the StMAR model Meitz et al., forthcoming). In
the first phase, a genetic algorithm is used to find starting values for a gradient based variable
metric algorithm (Nash, 1990, Algorithm 21) which then, in the second phase, often converges
to a nearby local maximum or saddle point. In this appendix, it is first briefly described how my
version of the genetic algorithm functions in general, and then the specific modifications made
to enhance estimation of the G-StMAR model are discussed (for more detailed description of a
genetic algorithm, see, e.g., Dorsey and Mayer, 1995).

In a genetic algorithm, an initial population that consists of different parameter vectors (that
are often drawn at random) is first constructed. Then, the genetic algorithm operates iteratively
so that in each iteration, referred to as generation, the current population consisting of candi-
date solutions goes through the phases of selection, crossover, and mutation. In the selection
phase, parameter vectors are sampled with replacement from the current population to the re-
production pool according to probabilities that are based on their fitness, that is, on the related
log-likelihoods. In the crossover phase, some of the parameter vectors in the reproduction pool
are crossed over with each other, with the probabilities of experiencing crossover given by the
crossover rate. Finally, some of the parameter vectors are mutated in the mutation phase, with
the mutation probabilities given by the mutation rate. In my version of the genetic algorithm,
mutation means that the mutating parameter vector is fully replaced with another parameter
vector that is drawn at random (in Dorsey and Mayer, 1995, mutations are drawn for each
scalar component of parameter vectors individually). The reproduction pool that has experi-
enced crossovers and mutations is the new population, and the algorithm proceeds to the next
generation, evolving towards the global maximum a generation after another.

Because the G-StMAR model can be challenging to estimate even with a robust estimation
algorithm such as the genetic algorithm, I have made modifications to improve its performance.
In particular, a slightly modified version of the individually adaptive crossover rate and mutation
rate introduced by Patnaik and Srinivas (1994) is employed in order to force the subaverage so-
lutions to disrupt while protecting the better ones.11 The fitness inheritance proposed by Smith,
Dike, and Stegmann (1995) is deployed to shorten the estimation time by cutting down the
number computationally costly evaluations of the log-likelihood function. In order to enhance
thorough exploration of the parameter space, the algorithm proposed by Monahan (1984) is used
in some random mutations to generate parameter vectors near the boundary of the stationarity
region. In the case of a premature convergence, most of the population is mutated so that ex-
ploration of the parameter space continues. Moreover, after a large number generations have
been run, for faster convergence the random mutations will be targeted to a neighbourhood of
the best-so-far parameter vector; I call these smart mutations.

11I modified the individually adaptive crossover rate to enforce a 40% minimum crossover rate for all individuals in
the population
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In addition to the modifications described above, I have made further adjustments to care
for the special structure of the log-likelihood function. Specifically, the definition of the mixing
weights (2.2.15) implies that if a regime has parameter values that fit poorly relative to the other
regimes, the mixing weights drop to near zero. The surface of the log-likelihood function thus
flattens in the related directions, meaning that the algorithm is unable to converge properly if
the proposed parameter vectors do not pose a reasonable fit for all regimes. This problem of
unidentified (or redundant) regimes often occurs when the number of mixture components is
chosen too large, but it can be present even when the number of mixture components is chosen
correctly. In uGMAR, I try to resolve this problem by penalizing parameter vectors containing
redundant regimes with smaller probabilities to get chosen to the reproduction pool. Moreover,
smart mutations are targeted only to the neighbourhood of parameter values that identify all the
regimes. If such parameter vectors have not been found (after a large number of generations
have been run), combining regimes from different parameter vectors is attempted along with
random search.

Appendix 2.B Properties of multivariate Gaussian and Stu-
dent’s t-distribution

Denote a d-dimensional real valued vector by y. It is well known that the density function of
the d-dimensional multivariate Gaussian distribution with mean µ and covariance matrix Γ is

nd(y;µ,Γ) = (2π)−d/2 det(Γ)−1/2 exp

{
−1

2
(y − µ)′Γ−1(y − µ)

}
. (2.B.1)

Similarly to Meitz et al. (forthcoming) but differing from the standard form, I parametrize
the Student’s t-distribution using its covariance matrix as a parameter together with the mean
and degrees of freedom. The density function of such a d-dimensional t-distribution with mean
µ, covariance matrix Γ, and ν > 2 degrees of freedom is

td (y;µ,Γ, ν) = Cd(ν)det(Γ)−1/2

(
1 +

(y − µ)′Γ−1(y − µ)
ν − 2

)−(d+ν)/2

, (2.B.2)

where

Cd(ν) =
Γ
(
d+ν
2

)√
πd(ν − 2)dΓ

(
ν
2

) , (2.B.3)

and Γ (·) is the gamma function. I assume that the covariance matrix Γ is positive definite for
both distributions.

Consider a partition X = (X1,X2) of either a normally or t-distributed (with ν degrees
of freedom) random vector X such that X1 has dimension (d1 × 1) and X2 has dimension
(d2 × 1). Consider also a corresponding partition of the mean vector µ = (µ1,µ2) and the
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covariance matrix

Γ =

[
Γ11 Γ12

Γ′
12 Γ22

]
, (2.B.4)

where, for example, the dimension of Γ11 is (d1 × d1). Then in the case of normally dis-
tributed X , X1 has the marginal distribution nd1(µ1,Γ11) and X2 has the marginal distribu-
tion nd2(µ2,Γ22). In the t-distributed case, the marginal distributions are td1(µ1,Γ11, ν) and
td2(µ2,Γ22, ν), respectively (see, e.g. Ding, 2016, also in what follows).

In the normally distributed case, the conditional distribution of the random vectorX1 given
X2 = x2 is

X1 | (X2 = x2) ∼ nd1(µ1|2(x2),Γ1|2(x2)) (2.B.5)

where

µ1|2(x2) = µ1 + Γ12Γ
−1
22 (x2 − µ2) and (2.B.6)

Γ1|2(x2) = Γ11 − Γ12Γ
−1
22 Γ

′
12. (2.B.7)

In the t-distributed case, the analogous conditional distribution is

X1 | (X2 = x2) ∼ td1(µ1|2(x2),Γ1|2(x2), ν + d2), (2.B.8)

where

µ1|2(x2) = µ1 + Γ12Γ
−1
22 (x2 − µ2) and

Γ1|2(x2) =
ν − 2 + (x2 − µ2)

′Γ−1
22 (x2 − µ2)

ν − 2 + d2
(Γ11 − Γ12Γ

−1
22 Γ

′
12).

In particular, we have

nd(x;µ,Γ) = nd1(x1;µ1|2(x2),Γ1|2(x2))nd2(x2;µ2,Γ22) and (2.B.9)

td(x;µ,Γ, ν) = td1(x1;µ1|2(x2),Γ1|2(x2), ν + d2)td2(x2;µ2,Γ22, ν). (2.B.10)

Appendix 2.C Proofs

2.C.1 Proof of Theorem 2.1
Suppose {yt}∞t=1 is a G-StMAR process. Then, the process yt = (yt, ..., yt−p+1) is clearly
a Markov chain on Rp. Let y0 = (y0, ..., y−p+1) be a random vector whose distribution is
characterized by the density function

f(y0;θ) =

M1∑
m=1

αmnp(y0;µm1p,Γm,p) +
M∑

m=M1+1

αmtp(y0;µm1p,Γm,p, νm). (2.C.1)
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According to Equations (2.2.3)-(2.2.5), (2.2.8)-(2.2.10), (2.2.13), and (2.2.15), the density of the
conditional distribution of y1 given y0 is

f(y1 | y0;θ) =

M1∑
m=1

αmnp(y0;µm1p,Γm,p)

f(y0;θ)
n1(y1;µm,1, σ

2
m)

+
M∑

m=M1+1

αmtp(y0;µm1p,Γm,p, νm)

f(y0;θ)
t1(y1;µm,1, σ

2
m,1, νm + p)

(2.C.2)

=

M1∑
m=1

αm

f(y0;θ)
np+1((y1,y0);µm1p+1,Γm,p+1)

+
M∑

m=M1+1

αm

f(y0;θ)
tp+1((y1,y0);µm1p+1,Γm,p+1, νm).

(2.C.3)

The random vector (y1,y0) therefore has the density function

f((y1,y0);θ) =

M1∑
m=1

αmnp+1((y1,y0);µm1p+1,Γm,p+1)

+
M∑

m=M1+1

αmtp+1((y1,y0);µm1p+1,Γm,p+1, νm).

(2.C.4)

Using the properties of marginal densities of multivariate normal and t-distributions, by inte-
grating y−p+1 out, the density of y1 is obtained as12

f(y1;θ) =

M1∑
m=1

αmnp(y1;µm1p,Γm,p) +
M∑

m=M1+1

αmtp(y1;µm1p,Γm,p, νm). (2.C.5)

Thus, the random vectors y0 and y1 are identically distributed. As the process {yt}∞t=1 is a
(time homogeneous) Markov chain, it follows that {yt}∞t=1 has a stationary distribution πy(·)
characterized by the density (Meyn and Tweedie, 2009, pp. 230-231)

f(·;θ) =
M1∑
m=1

αmnp(·;µm1p,Γm,p) +
M∑

m=M1+1

αmtp(·;µm1p,Γm,p, νm). (2.C.6)

For ergodicity, let P p
y(y, ·) = P(yp ∈ ·|y0 = y) signify the p-step transition probability

measure of the process yt. Using the pth order Markov property of yt, it is easy to check that

12Because the covariance matrices Γm,p+1 (m = 1, ...,M ) have the Toepliz form and µm1p = (µm, ..., µm), the
marginal densities for random vectors shorter than p are obtained by integrating the desired random variables out,
and their distributions are mixtures of normal and t-distributions.
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P p
y(y, ·) has the density

f(yp|y0;θ) =

p∏
t=1

(
M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1(yt;µm,t, σ
2
m,t, νm + p)

)
.

(2.C.7)
Clearly f(yp|y0;θ) > 0 for all yp ∈ Rp and all y0 ∈ Rp, so it can be concluded that yt is
ergodic in the sense of Meyn and Tweedie (2009, Ch. 13) by using arguments identical to those
used in the proof of Theorem 1 in Kalliovirta et al. (2015). ■

2.C.2 Proof of Theorem 2.2
First note that L(c)

T (θ) is continuous, and that together with Assumption 2.1, it implies existence
of a measurable maximizer θ̂T . In order to conclude strong consistency of θ̂T , it needs to be
shown that (see, e.g., Newey and McFadden, 1994, Theorem 2.1 and the discussion on page
2122)

(i) the uniform strong law of large numbers holds for the log-likelihood function; that is,

sup
θ∈Θ

∣∣∣L(c)
T (θ)− E

[
L
(c)
T (θ)

]∣∣∣→ 0 almost surely as T → ∞,

(ii) and that the limit of L(c)
T (θ) is uniquely maximized at θ = θ0.

Proof of (i). Because the initial values are assumed to be from the stationary distribution,
the process yt = (yt, ..., yt−p+1), and hence also yt, is stationary and ergodic, and E[L(c)

T (θ)] =
E[lt(θ)]. To conclude (i), it thus suffices to show that E [supθ∈Θ |lt(θ)|] < ∞ (see Ranga Rao,
1962). This is done by using compactness of the parameter space to derive finite lower and
upper bounds for lt(θ) which is given by

lt(θ) = log

(
M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

))
. (2.C.8)

It follows from the structure of the parameter space that c1 ≤ σ2
m ≤ c2 and c1 ≤ αm ≤ 1−c1 for

all m = 1, ...,M , and c3 ≤ νm ≤ c2 for all m = M1 + 1, ...,M , for some 0 < c1 < 1, c2 < ∞
and c3 > 2. Because the exponential function is bounded from above by one on the non-positive
real axis, and in addition c1 ≤ σ2

m, there exists a constant U1 < ∞ such that

n1(yt;µm,t, σ
2
m) =

(
2πσ2

m

)−1/2 exp
(
−(yt − µm,t)

2

2σ2
m

)
≤ U1 (2.C.9)

for all m = 1, ...,M1.
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We also have c3 ≤ νm + p ≤ c2 + p for all m = M1 + 1, ...,M . Combined with the fact that
the gamma function is continuous on the positive real axis, this implies that there exist constants
c4 > 0 and c5 < ∞ such that

c4 ≤ C1(νm + p) =
Γ
(
1+νm+p

2

)√
π(νm + p− 2)Γ

(
νm+p

2

) ≤ c5 (2.C.10)

for all m = M1 + 1, ...,M . Because Γm and hence Γ−1
m is positive definite, σ2

m ≥ c1 and
c3 ≤ νm ≤ c2, we can find some c6 > 0 such that

σ2
m,t =

νm − 2 + (yt−1 − µm1p)
′Γ−1

m (yt−1 − µm1p)

νm − 2 + p
σ2
m ≥ c6 (2.C.11)

for all m = M1 + 1, ...,M . Combined with (2.C.10) and (2.C.11), the inequality −(1 + νm +
p)/2 < 0 implies that there exists a constant U2 < ∞ for which

t1
(
yt;µm,t, σ

2
m,t, νm + p

)
=

C1(νm + p)

σm,t

(
1 +

(yt − µm,t)
2

(νm + p− 2)σ2
m,t

)−(1+νm+p)/2

≤ U2.

(2.C.12)
for all m = M1 + 1, ...,M . According to (2.C.9), (2.C.12) and the restriction 0 ≤ αm,t ≤ 1,
there exists a constant U3 < ∞ such that

lt(θ) = log

(
M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

))
≤ U3.

(2.C.13)
It follows from the compactness of the parameter space that

(yt − µm,t)
2

2σ2
m

≤ c7(1 + y2t + y
′
t−1yt−1), (2.C.14)

implying

exp

{
−(yt − µm,t)

2

2σ2
m

}
≥ exp

{
−c7(1 + y2t + y

′
t−1yt−1)

}
, (2.C.15)

for all m = 1, ...,M1, and for some finite constant c7. By σ2
m ≤ c2 it also holds that (2πσ2

m)
−1/2 ≥

(2πc2)
−1/2, so

n1(yt;µm,t, σ
2
m) ≥ (2πc2)

−1/2 exp
{
−c7(1 + y2t + y

′
t−1yt−1)

}
(2.C.16)

for all m = 1, ...,M1.
Accordingly, since σ2

m,t ≥ c6 and νm ≥ c3, it holds for some c8 < ∞ that

1 +
(yt − µm,t)

2

(νm + p− 2)σ2
m,t

≤ c8(1 + y2t + y
′
t−1yt−1), m = M1 + 1, ...,M. (2.C.17)
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Thus, because νm ≤ c2 and the inner functions below take values larger than one, we have(
1 +

(yt − µm,t)
2

(νm + p− 2)σ2
m,t

)−(1+νm+p)/2

≥
(
c8(1 + y2t + y

′
t−1yt−1)

)−(1+c2+p)/2
. (2.C.18)

As Meitz et al. (forthcoming) state in the proof of Theorem 3, the quadratic form on the right
side of (2.C.11) satisfies

(yt−1 − µm1p)
′Γ−1

m (yt−1 − µm1p) ≤ c9(1 + y
′
t−1yt−1) (2.C.19)

for all m = M1 +1, ...,M , and for some c9 < ∞. Since also 0 < νm − 2 ≤ c2 and σ2
m ≤ c2, we

have σ2
m,t ≤ c10(1 + y′

t−1yt−1) for some finite constant c10. Combining the former inequality
with (2.C.10) and (2.C.18) yields a lower bound

t1
(
yt;µm,t, σ

2
m,t, νm + p

)
≥ c4

(c10(1 + y′
t−1yt−1))

1/2

(
c8(1 + y2t + y

′
t−1yt−1)

)−(1+c2+p)/2
.

(2.C.20)
Finally, the restriction

∑M
m=1 αm,t = 1 together with (2.C.16) and (2.C.20) implies

lt(θ) ≥ min

{
−1

2
log(2π)− 1

2
log(c2)− c7(1 + y2t + y

′
t−1yt−1),

log(c4)−
1

2
log(c10(1 + y2t + y

′
t−1yt−1))−

1 + c2 + p

2
log
(
c8(1 + y2t + y

′
t−1yt−1)

)}
.

(2.C.21)

As E
[
y2t + y

′
t−1yt−1)

]
< ∞ (because yt is stationary and has finite second moments), it follows

from Jensen’s inequality that

E
[
log
(
c8(1 + y2t + y

′
t−1yt−1)

)]
< ∞ and E

[
log
(
c10(1 + y

′
t−1yt−1)

)]
< ∞. (2.C.22)

The upper bound (2.C.13) together with (2.C.21) and finiteness of the aforementioned expecta-
tions shows that E

[
sup(θ,ν)∈Θ |lt(θ)|

]
< ∞. ■

Proof of (ii). Given that condition (2.3.3) sets a unique order for the mixture compo-
nents, proving that this identification condition is satisfied amounts to showing that E [lt(θ)] ≤
E [lt(θ0)], and that the equality E [lt(θ)] = E [lt(θ0)] implies

ϑm = ϑτ1(m),0 and αm = ατ1(m),0 when m = 1, ...,M1, and
(ϑm, νm) = (ϑτ2(m),0, ντ2(m),0) and αm = ατ2(m),0 when m = M1 + 1, ...,M,

(2.C.23)

for some permutations {τ1(1), ..., τ1(M1)} and {τ2(M1 + 1), ..., τ2(M)}. For notational clarity,
I omit the subscripts from yt and yt−1, and write µm,t = µ(y;ϑm), σ2

m = σ2
m(ϑm), σ2

m,t =
σ2
m,t(y;ϑm, νm) for the expressions in (2.C.8) making clear their dependence on the parameter
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value. I leave the dependence of αm,t on θ and y unmarked and denote by αm,0,t mixing weights
based on the true parameter value.

Making use of the fact that the density function of (yt,yt−1) has the form (see proof of
Theorem 2.1)

f((yt,yt−1);θ) =

M1∑
m=1

αmnp+1((yt,yt−1));µm1p+1,Γm,p+1)

+
M∑

m=M1+1

αmtp+1((yt,yt−1));µm1p+1,Γm,p+1, νm)

(2.C.24)

and reasoning based on Kullback-Leibler divergence, arguments analogous to those in Kalliovirta
et al. (2015, p. 265) can be used to conclude E [lt(θ)]− E [lt(θ0)] ≤ 0 with equality if and only
if for almost all (y,y) ∈ Rp+1

M1∑
m=1

αm,tn1(y;µ(y;ϑm), σ
2
m(ϑm)) +

M∑
m=M1+1

αm,tt1(y;µ(y;ϑm), σ
2
m,t(y;ϑm, νm)), νm + p)

=

M1∑
m=1

αm,0,tn1(y;µ(y;ϑm,0), σ
2
m(ϑm,0))

+
M∑

m=M1+1

αm,0,tt1(y;µ(y;ϑm,0), σ
2
m,t(y;ϑm,0, νm,0)), νm,0 + p).

(2.C.25)

For each fixed y at a time, the mixing weights, conditional means and variances in (2.C.25)
are constants, so the result on identification of finite mixtures of normal and t-distributions in
Holzmann, Munk, and Gneiting (2006, Example 1) can be applied (their parametrization of
the t-distribution slightly differs from ours, but identification with their parametrization im-
plies identification with my parametrization). For each fixed y, there thus exists a permutation
{τ1(1), ..., τ1(M1)} (that may depend on y) of the index set {1, ...,M1} such that

αm,t = ατ1(m),0,t, µ(y;ϑm) = µ(y;ϑτ1(m),0) and σ2
m(ϑm) = σ2

m(ϑτ1(m),0) (2.C.26)

for almost all y ∈ R (m = 1, ...,M1). Analogously, for each fixed y there exists a permutation
{τ2(M1 + 1), ..., τ2(M)} (that may depend on y) of the index set {M1 + 1, ...,M} such that

νm = ντ2(m),0, αm,t = ατ2(m),0,t, µ(y;ϑm) = µ(y;ϑτ2(m),0) and
σ2
m,t(y;ϑm, νm) = σ2

m,t(y;ϑτ2(m),0, ντ2(m),0),
(2.C.27)

for almost all y ∈ R (m = M1 + 1, ...,M ).
As argued by Kalliovirta et al. (2015, pp. 265-266) for the GMAR type components, it

follows from (2.C.26) that ϑm = ϑτ1(m),0 and αm = ατ1(m),0 for m = 1, ...,M1. Accordingly,
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Meitz et al. (forthcoming) showed that (2.C.27) implies ϑm = ϑτ2(m),0, νm = ντ2(m),0 and
αm = ατ2(m),0 for m = M1 + 1, ...,M , completing the proof of strong consistency.

Given consistency and assumptions of the theorem, asymptotic normality of the ML esti-
mator can now be concluded using standard arguments. The required steps can be found, for
example, in Kalliovirta, Meitz, and Saikkonen (2016, proof of Theorem 3). I omit the details for
brevity. ■
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Chapter 3

uGMAR: a family of mixture
autoregressive models in R

3.1 Introduction
A popular method for modelling univariate time series is to employ a linear autoregressive (AR)
model that assumes the process to be generated by a weighted sum of the preceding p ob-
servations, an intercept term, and a random error. The error process is often assumed to be
serially uncorrelated with zero mean and constant variance. This encompasses conditionally ho-
moskedastic processes, such as independent and identically distributed (IID) processes, as well
as conditionally heteroskedastic processes, such as autoregressive conditional heteroskedasticity
(ARCH) processes (Engle, 1982) and generalized autoregressive conditional heteroskedasticity
(GARCH) processes (Bollerslev, 1986).

Several R packages accommodate linear AR modelling with various types of error processes.
The R package forecast (Hyndman, Athanasopoulos, Bergmeir, Caceres, Chhay, O’Hara-Wild,
Petropoulos, Razbash, Wang, and Yasmeen, 2021), for instance, accommodates estimation of
AR models with seasonal components. The R package fGarch (Wuertz, Setz, Chalabi, Boudt,
Chausse, and Miklovac, 2020), on the other hand, facilitates estimation of AR models with
ARCH and GARCH errors following various distributions, including normal, Student’s t-, and
generalized error distributions and their skewed versions. A more comprehensive set of error
processes are provided in the popular R package rugarch (Ghalanos, 2020). It accommodates
a rich set of different GARCH processes with several error distributions, including the regular
and skewed versions of normal, t-, and generalized error distributions, as well as generalized
hyperbolic normal and inverse Gaussian distributions, to name a few.

A linear AR model with potentially skewed GARCH errors can often filter the autocorrela-
tion and conditional heteroskedasticity from the series very well. But in some cases, it cannot
adequately capture all the relevant characteristics of the series, including shifts in the mean or
volatility, and changes in the dynamics of the process. Such nonlinear features frequently oc-
cur in economic time series when the underlying data generating dynamics vary in time, for
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example, depending on the specific state of the economy.
Various types of time series models capable of capturing such regime-switching behavior

have been proposed, one of them being the class of mixture models introduced by Le, Mar-
tin, and Raftery (1996) and further developed by, among others, Wong and Li (2000, 2001a,b),
Glasbey (2001), Lanne and Saikkonen (2003), Kalliovirta, Meitz, and Saikkonen (2015), Meitz,
Preve, and Saikkonen (forthcoming), and Virolainen (forthcoming, also Chapter 2 of this disser-
tation). Following the recent developments by Kalliovirta et al. (2015), Meitz et al. (forthcom-
ing), and Virolainen (forthcoming), I consider the Gaussian mixture autoregressive (GMAR)
model, the Student’s t mixture autoregressive (StMAR) model, and the Gaussian and Student’s
t mixture autoregressive (G-StMAR) model. These three models constitute an appealing family
of (univariate) mixture autoregressive models that I call the GSMAR models.

A GSMAR process generates each observation from one of its mixture components, which
are either conditionally homoskedastic linear Gaussian autoregressions or conditionally het-
eroskedastic linear Student’s t autoregressions. The mixture component that generates each ob-
servation is randomly selected according to the probabilities determined by the mixing weights
that, for a pth order model, depend on the full distribution of the previous p observations. Con-
sequently, the regime-switching probabilities may depend on the level, variability, kurtosis, and
temporal dependence of the past observations. The specific formulation of the mixing weights
also leads to attractive theoretical properties such as ergodicity and full knowledge of the sta-
tionary distribution of p+ 1 consecutive observations.

This essay describes the R package uGMAR providing a comprehensive set of easy-to-
use tools for GSMAR modelling, including unconstrained and constrained maximum likelihood
(ML) estimation of the model parameters, quantile residual based model diagnostics, simulation
from the processes, and forecasting. The emphasis is on estimation, as it can, in my experience,
be rather tricky. In particular, due to the endogenously determined mixing weights, the log-
likelihood function has a large number of modes, and in large areas of the parameter space,
the log-likelihood function is flat in multiple directions. The log-likelihood function’s global
maximum point is also frequently located very near the boundary of the parameter space. It
turns out, however, that such near-the-boundary estimates often maximize the log-likelihood
function for rather a technical reason, and it might be more appropriate to prefer an alternative
estimate based on the largest local maximum point that is clearly in the interior of the parameter
space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modified genetic algorithm is used to find starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on the local
ones. The estimated models can be conveniently examined with the summary and plot methods.
For evaluating their adequacy, uGMAR utilizes quantile residual diagnostics in the framework
presented in Kalliovirta (2012), including graphical diagnostics as well as Kalliovirta’s (2012)
diagnostic tests that take into account uncertainty about the true parameter value. Following
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Kalliovirta et al. (2015) and Meitz et al. (forthcoming), forecasting is based on a Monte Carlo
simulation method.

Other statistical software implementing the GSMAR models include the StMAR Toolbox
for MATLAB (Meitz, Preve, and Saikkonen, 2018). It currently (version 1.0.0) covers the
StMAR model of autoregressive orders p = 1, 2, 3, 4 and M = 1, 2, 3 mixture components,
and it contains tools for maximum likelihood estimation, calculation of quantile residuals, sim-
ulation, and forecasting. Also the StMAR Toolbox estimates the model parameters by using
a genetic algorithm to find starting values for a gradient based method, but uGMAR takes the
procedure of Meitz et al. (2018, forthcoming) further by modifying a genetic algorithm for more
efficient estimation. uGMAR also has the advantage that it does not impose restrictions on the
order of the model and it provides a wider variety of tools for analyzing the estimated models;
for instance, functions for calculating quantile residual diagnostic tests (Kalliovirta, 2012) and
plotting the graphs of the profile log-likelihood functions about the estimate.

The R package gmvarkit (Virolainen, 2018) functions similarly to uGMAR and accommo-
dates multivariate versions of the GSMAR models, including structural models with statistically
identified shocks. These models include the (structural) Gaussian mixture vector autoregres-
sive model (Kalliovirta, Meitz, and Saikkonen, 2016, and Chapter 4 of this dissertation), the
(structural) Student’s t mixture vector autoregressive model (see Chapter 5), and the (structural)
Gaussian and Student’s t mixture vector autoregressive model (see Chapter 5). The R package
mixAR (Boshnakov and Ravagli, 2021), in turn, allows frequentist and Bayesian estimation of
mixture (vector) autoregressive models with constant mixing weights (e.g., Fong, Li, Yau, and
Wong, 2007, Wong and Li, 2000) and various error distributions.

The remainder of this chapter is organized as follows. Section 3.2 introduces the GSMAR
models and discusses some of their properties. Section 3.3 discusses estimation of the model
parameters and model selection. It also illustrates how the GSMAR models can be estimated
and examined with uGMAR, and how parameter constraints can be tested. In Section 3.4, I
describe quantile residuals and demonstrate how they can be utilized to evaluate model adequacy
in uGMAR. Section 3.5 shows how the GSMAR models can be built with given parameter
values. In Section 3.6, I first show how to simulate observations from a GSMAR process, and
then I illustrate how to forecast future values of a GSMAR process with a simulation-based
Monte Carlo method. Section 3.7 concludes and collects some useful functions in uGMAR to a
single table for convenience. Appendix 3.A explains why some maximum likelihood estimates,
that are very near the boundary of the parameter space, might be inappropriate and demonstrates
that a local maximum point that is clearly in the interior of the parameter space can often be
a more reasonable estimate. Finally, Appendix 3.B derives closed form expressions for the
quantile residuals of the GSMAR models.

Throughout this paper, I use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury rates for the empirical illustrations. I deploy the notation nd(µ,Γ) for the
d-dimensional normal distribution with mean µ and (positive definite) covariance matrix Γ,
and td(µ,Γ, ν) for the d-dimensional t-distribution with mean µ, (positive definite) covariance
matrix Γ, and ν > 2 degrees of freedom. The corresponding density functions are denoted as
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nd(·;µ,Γ) and td(·;µ,Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1), I denote p-dimensional
vector of ones.

3.2 Models
This section introduces the GMAR model (Kalliovirta et al., 2015), the StMAR model (Meitz
et al., forthcoming), and the G-StMAR model (Virolainen, forthcoming, also Chapter 2), a fam-
ily of mixture autoregressive models that I call the GSMAR models. First, I consider the models
in a general framework and then proceed to their specific definitions. For brevity, I only give the
definition of the more general G-StMAR model but explain how the GMAR and StMAR models
are obtained as special cases of it, namely, by taking all the component models to be of either
Gaussian or Student’s t type.

3.2.1 Mixture autoregressive models
Let yt, t = 1, 2, ..., be the real valued time series of interest, and let Ft−1 denote the σ-algebra
generated by the random variables {yt−j, j > 0}. For a GSMAR model with autoregressive
order p and M mixture components, we have

yt =
M∑

m=1

sm,t(µm,t + σm,tεm,t), εm,t ∼ IID(0, 1), (3.2.1)

µm,t = φm,0 +

p∑
i=1

φm,iyt−i, m = 1, ...,M, (3.2.2)

where σm,t > 0 are Ft−1-measurable, εm,t are independent of Ft−1, φm,0 ∈ R, and s1,t, ..., sM,t

are unobservable regime variables such that for each t, exactly one of them takes the value one
and the others take the value zero. Given the past of yt, (s1,t, ..., sM,t) and εm,t are assumed to
be conditionally independent, and the conditional probability for an observation to be generated
from the mth regime at time t is expressed in terms of (Ft−1-measurable) mixing weights αm,t ≡
P (sm,t = 1| Ft−1) that satisfy

∑M
m=1 αm,t = 1. Furthermore, for each component model, the

autoregressive parameters satisfy the usual stationarity condition, 1 −
∑p

i=1 φm,iz
i ̸= 0 for

|z| ≤ 1, which guarantees stationarity of the GSMAR models (Theorem 2.1 in Chapter 2).
The definition (3.2.1) and (3.2.2) implies that at each t, the observation is generated by a

linear autoregression corresponding to some randomly selected (unobserved) mixture compo-
nent m, and that µm,t and σ2

m,t can be interpreted as the conditional mean and variance of this
component process. In the GMAR model (Kalliovirta et al., 2015), the mixture components are
conditionally homoskedastic Gaussian autoregressions, whereas in the StMAR model (Meitz
et al., forthcoming), they are conditionally heteroskedastic Students t autoregressions, while the
G-StMAR model (Chapter 2) combines both types of mixture components. The mixing weights
are functions of the preceding p observations.
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3.2.2 The Gaussian and Student’s t mixture autoregressive model
In the G-StMAR model, for m = 1, ...,M1 in (3.2.1), the terms εm,t have standard normal
distributions and the conditional variances σ2

m,t are constants σ2
m. For m = M1 + 1, ...,M , the

terms εm,t follow the t-distribution t1(0, 1, νm+p) and the conditional variances σ2
m,t are defined

as

σ2
m,t =

νm − 2 + (yt−1 − µm1p)
′Γ−1

m (yt−1 − µm1p)

νm − 2 + p
σ2
m, (3.2.3)

where yt−1 = (yt−1, ..., yt−p) (p × 1), νm > 2 is a degrees of freedom parameter, σ2
m > 0 is a

variance parameter, µm = φ0/(1−
∑p

i=1 φm,i) is the stationary mean, and Γm is the stationary
(p× p) covariance matrix of the mth component process (see Section 2.2.1 in Chapter 2).

This specification leads to a model in which the conditional density function of yt given its
past, f (·| Ft−1), is

f (yt|Ft−1) =

M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

)
. (3.2.4)

That is, the first M1 component processes of the G-StMAR model are homoskedastic Gaussian
autoregressions, and the remaining M2 ≡ M − M1 component processes are heteroskedastic
Student’s t autoregressions.

In the GMAR model (Kalliovirta et al., 2015), all M component processes are Gaussian au-
toregressions, so its conditional density function is obtained by setting M1 = M and dropping
the second sum in (3.2.4). In the StMAR model (Meitz et al., forthcoming), all M component
processes are Student’s t autoregressions, so its conditional density function is obtained by set-
ting M1 = 0 and dropping the first sum in (3.2.4). As the component processes of the G-StMAR
model coincide with those of the GMAR model and the StMAR model, I often refer to them as
GMAR type or StMAR type, accordingly.

In order to specify the mixing weights, I first define the following function for notational
convenience. Let

dm(y;µm1p,Γm, νm) =

{
np(y;µm1p,Γm), when m ≤ M1,
tp(y;µm1p,Γm, νm), when m > M1,

(3.2.5)

where the p-dimensional densities np(y;µm1p,Γm) and tp(y;µm1p,Γm, νm) correspond to the
stationary distribution of the mth component process (given in Equations (2.2.3) and (2.2.8) in
Chapter 2). The mixing weights of the G-StMAR model are defined as

αm,t =
αmdm(yt−1;µm1p,Γm, νm)∑M
n=1 αndn(yt−1;µn1p,Γn, νn)

, (3.2.6)

where the parameters α1, ..., αM satisfy
∑M

m=1 αm = 1. The mixing weights of the GMAR
model are obtained from (3.2.5) and (3.2.6) by setting M1 = M , whereas the mixing weights of
the StMAR model are obtained by setting M1 = 0.
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Because the mixing weights are weighted ratios of the stationary densities corresponding to
the previous p observations, the greater the relative weighted likelihood of a regime is, the more
likely the process is to generate an observation from it. Moreover, as the mixing weights de-
pend on the full distribution of the previous p observations, the regime-switching probabilities
may depend on the level, variability, kurtosis, and temporal dependence of the past observa-
tions. This is a convenient property for forecasting, and it also facilitates associating statistical
characteristics and economic interpretations to the regimes.

The specific formulation of the mixing weights also leads to attractive theoretical properties.
Specifically, the G-StMAR process yt = (yt, ..., yt−p+1) (p × 1), t = 1, 2, ..., is ergodic, and
it has fully known marginal stationary distribution that is characterized by the density (Theo-
rem 2.1 in Chapter 2; see the proof of this theorem for the stationary distribution of 1, ..., p + 1
consecutive observations)

f(y) =

M1∑
m=1

αmnp(y;µm1p,Γm) +

M2∑
m=M1+1

αmtp(y;µm1p,Γm, νm). (3.2.7)

That is, the stationary distribution is a mixture of M1 p-dimensional Gaussian distributions and
M2 p-dimensional Student’s t-distributions with constant mixing weights αm, m = 1, ...,M . For
h = 0, ..., p, the marginal stationary distribution of (yt, ..., yt−h) is also a mixture of Gaussian
and Student’s t distributions with constant mixing weights αm, so the mixing weights parameters
αm can be interpreted as the unconditional probabilities of an observation being generated from
the mth component process.

In uGMAR, the parameters of the GSMAR models are collected to a (M(p+3)+M2−1×1)
vector θ ≡ (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (φm,0,φm, σ

2
m), φm = (φm,1, ..., φm,p),

m = 1, ...,M , and ν = (νM1+1, ..., νM). The parameter αM is omitted because it is obtained
from the restriction

∑M
m=1 αm = 1, and in the GMAR model, the vector ν is omitted, as the

model does not contain degrees of freedom parameters. The knowledge of the parameter vector
is particularly required for building models with given parameter values, which is discussed in
Section 3.5.

3.3 Estimation and model selection

3.3.1 Log-likelihood function
uGMAR employs the method of maximum likelihood (ML) for estimating the parameters of
the GSMAR models. Suppose the observed time series is y−p+1, ..., y0, y1, ..., yT and that the
initial values are stationary. Then, the log-likelihood function of the G-StMAR model takes the
form

L(θ) = log

(
M∑

m=1

αmdm(y0;µm1p,Γm, νm)

)
+

T∑
t=1

lt(θ), (3.3.1)
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where dm(·;µm1p,Γm, νm) is defined in (3.2.5),

lt(θ) = log

(
M1∑
m=1

αm,tn1(yt;µm,t, σ
2
m) +

M∑
m=M1+1

αm,tt1
(
yt;µm,t, σ

2
m,t, νm + p

))
, (3.3.2)

and the density functions nd(·; ·) and td (·; ·) follow the notation described in Section 3.2.2. Log-
likelihood functions of the GMAR model and the StMAR model can be obtained as special cases
by setting M1 = M or M1 = 0, respectively, and dropping the redundant sums.

If stationarity of the initial values seems unreasonable, one can condition on the initial values
by dropping the first term on the right side of (3.3.1) and base the estimation on the resulting con-
ditional log-likelihood function. The ML estimator of a stationary GSMAR model is strongly
consistent and has the conventional limiting distribution under the conventional high level con-
ditions as is given in Kalliovirta et al. (2015, pp.254-255), Meitz et al. (forthcoming, Theorem
3), and Theorem 2.2 in Chapter 2.

3.3.2 Two-phase estimation procedure
Finding the ML estimate amounts to maximizing the log-likelihood function (3.3.1) over a high
dimensional parameter space satisfying several constraints. Due to the complexity of the log-
likelihood function, finding an analytical solution is infeasible, so numerical optimization meth-
ods are required. Following Dorsey and Mayer (1995) and Meitz et al. (2018, forthcoming),
uGMAR employs a two-phase estimation procedure in which a genetic algorithm is used to
find starting values for a gradient based method, which then often converges to a nearby local
maximum or saddle point. Because of the presence of multiple local maxima, a (sometimes
large) number of estimation rounds should be performed to obtain reliable results, for which
uGMAR makes use of parallel computing to shorten the estimation time.

The genetic algorithm in uGMAR is, at core, mostly based on the description by Dorsey
and Mayer (1995) but several modifications have been deployed to improve its performance.
The modifications include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike,
and Stegmann (1995) as well as further adjustments that take into account model specific issues
related to the mixing weights’ dependence on the preceding observations. For a more detailed
description of the genetic algorithm and its modifications, see Appendix 2.A in Chapter 2. After
running the genetic algorithm, the estimation is finalized with a variable metric algorithm (Nash,
1990, Algorithm 21, implemented by R Core Team, 2022) using central difference approxima-
tion for the gradient of the log-likelihood function.

3.3.3 Model selection
Before illustrating with examples how the GSMAR models can be estimated with uGMAR, it
is helpful to first briefly discuss the problem of model selection. Finding a suitable GSMAR
model involves several selections: one needs to choose the type of the model (GMAR, StMAR,
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or G-StMAR), the autoregressive order p, and the number of mixture components M (in the G-
StMAR model, the number of GMAR type regimes M1 and the number of StMAR type regimes
M2). Following Kalliovirta et al. (2015, Section 3.1), I suggest starting the model selection by
first considering linear AR models, and then building up to the more complex regime-switching
models if the linear models are found inadequate. After finding a suitable GSMAR model,
simplifications obtained by parameter restrictions can be considered (constrained estimation is
discussed in Section 3.3.6, testing the constraints in Section 3.3.7, and diagnostics checks for
evaluating the adequacy of the model in Section 3.4).

When selecting the type of the GSMAR model, it is useful to take into account the features
of the different types of models. The GMAR model incorporates linear Gaussian AR processes
as its mixture components and can flexibly model changes in the conditional mean. But as its
component processes are conditionally homoskedastic, it can capture changes in the conditional
variance only through the regime-switching dynamics. The StMAR model, on the other hand,
incorporates ARCH type conditional heteroskedasticity within each regime with the conditional
variance (3.2.3), and can thereby account for stronger forms of conditional heteroskedasticity.

In the StMAR model, the autoregressive order p is also the lag order of the ARCH type
conditional variance. The conditional variance depends on the past observations through the
same parameters as the conditional mean (3.2.2), which can be restrictive when the regime-
specific conditional mean is strong but conditional variance is weak1 (or vice versa). It may
therefore be worthwhile to first try whether the simpler GMAR model can adequately capture
the characteristics of the series.

If the conditional variance is constant in some regimes but time-varying in other regimes,
the G-StMAR model can be employed, as it contains both conditionally homoskedastic GMAR
type regimes and conditionally heteroskedastic StMAR type regimes. For choosing the number
of GMAR and StMAR type regimes in the G-StMAR model, I propose following the strat-
egy described in Section 2.4 in Chapter 2 and first finding a suitable StMAR model. If the
estimated StMAR model contains overly large degrees of freedom parameter estimates, those
regimes should be switched to GMAR type by estimating the appropriate G-StMAR model (this
is discussed in more detail Section 3.3.4).

For the illustrations, I use the monthly U.S. interest rate spread between the 10-year and
1-year Treasury constant maturity rates, covering the period from 1982 January to 2020 Decem-
ber (468 observations). The series was retrieved from the Federal Reserve Bank of St. Louis
database. After installing uGMAR, the data can be loaded with the following lines of code:

R> library("uGMAR")
R> data("M10Y1Y", package = "uGMAR")

For finding the suitable type and order of the model, it is often useful to plot several figures
illustrating the statistical properties of the series. A time series plot can be examined to obtain
an overall perception of series, and to investigate whether there seem to be apparent changes in

1 By strong (weak) conditional variance or mean, I mean strong (weak) dependence on the preceding observations.
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the dynamics of series, or shifts in the mean or volatility that would indicate a possible presence
of multiple regimes.

The time series plot of the interest rate spread M10Y1Y is shown in the top left panel of
Figure 3.2 (in Section 3.3.5). It shows that the process consistently produces consecutive obser-
vations of the same magnitude, which are then followed by a transition to another magnitude.
There thus appears to be shifts in the mean of the process and the changes are occasionally rapid.

A non-parametric estimate of the density function, such as a kernel density estimate, can be
examined to evaluate whether the marginal density of a linear AR model can adequately describe
it, and if not, what might be the correct number of regimes. Multiple modes in the marginal
distribution can be accounted for by accommodating each one of them with a regime in the
GSMAR model. Skewness and many other forms of non-Gaussianity can also be accommodated
with a mixture of normal or t-distributions, but it is less straightforward to determine the correct
number of regimes. One should, nevertheless, be conservative with the choice of M , because
with too many regimes in the model, some of the parameters are not identified (see Kalliovirta
et al., 2015, Sections 3.1 and 3.2.2 and the references therein).

A kernel density estimate of the interest rate spread is depicted in the right panel of Figure 3.2
(black solid line). There are two visible modes in the density function, so a linear model (with
unimodal error distribution) is clearly inadequate to describe it, while a two-regime mixture
model could be appropriate. Even a three-regime model could be considered in order to explain
the hump shape in the right tail of the distribution.

Examining the sample partial autocorrelation function (PACF) of the series can help in se-
lecting the correct autoregresive order p, as for a pth order AR process, there should be a visible
break in the PACF after the lag p. If the series is not autocorrelated, the sample partial auto-
correlation function of the squared series may similarly help to detect the order of ARCH type
conditional heteroskedasticity. In the case of an autocorrelated series, it might be useful to first
fit an AR model with a suitable autoregressive order, and then examine the PACF of the squared
residuals. The sample partial autocorrelation function of the series M10Y1Y (calculated using
the function pacf from the package stats, R Core Team, 2022) is presented in the left panel of
Figure 3.1.

Figure 3.1 shows that the PACF of the series has very large partial autocorrelation coefficient
(PACC) at the first lag, relatively large PACCs at the second and fourth lags, and visibly smaller
PACCs after the fourth lag. The autoregressive order p = 4 thereby seems a reasonable candi-
date for a parsimonious AR model.2 Hence, I fitted a Gaussian AR(4) model to the series and
examined the PACF of its residuals and squared residuals, which are depicted in the middle and
right panels of Figure 3.1, respectively.

The PACF of the AR(4) model’s residuals shows that there is not much autocorrelation left in
the residuals, so the autoregressive order p = 4 seems sufficient for capturing the autocorrelation
structure of the series. The PACF of the AR(4) model’s squared residuals shows PACCs outside
the 95% critical bounds at lags 1, 3, and 8. Thereby the order 4 could be somewhat sufficient

2 It turns out that the order p = 4 also minimizes the Akaike information criterion among the Gaussian AR(p)
models, p = 1, ..., 24, based on the exact log-likelihood function (not shown).
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Figure 3.1: The sample partial autocorrelation function of the series M10Y1Y for the lags 1, ..., 25
(on the right). The sample partial autocorrelation function of the Pearson residuals of a Gaussian
AR(4) model (on the middle) and of the squared residuals (on the right) for the lags 1, ..., 25.
The blue dashed lines are the 95% critical bounds for partial autocorrelation coefficients of an
IID process.

for modelling the (potentially present) ARCH type conditional heteroskedasticity, but the order
9 could also be considered for a less parsimonious model.3 However, as the lag 8 PACC of the
residuals is moderate, the lag 8 PACC of the squared residuals could be related to the unmodelled
autocorrelation rather than conditional heteroskedasticity.4 A StMAR model might, therefore, be
appropriate with the autoregressive order p = 4, although it may not be sufficient for modelling
the conditional heteroskedasticity at larger lags. As discussed above, the two modes in the kernel
density estimate of the series, in turn, indicate that two regimes seems like a good starting point
for building the model.

If the candidate model is found inadequate, one may try to use a different autoregressive
order p or to add a regime to the model (or switch to the StMAR model, if a GMAR model is
found inadequate). Note that while with linear AR models increasing the autoregressive order
typically improves the fit, this is not necessarily the case with GSMAR models, as the autore-
gressive order affects the regime-switching dynamics. In particular, because the mixing weights
(3.2.6) are calculated using the whole joint distribution of the previous p observations, with a
small p, the regime-switching probabilities react more sensitively to individual observations than
with a large p. It may hence be useful to also try to decrease the autoregressive order rather than
just increase it.

In addition to comparing model adequacy (or forecasting accuracy, for example), informa-

3 Since the residuals are calculated from the difference between the current observation and a linear function of the
preceding p observations, unmodelled autocorrelation (or ARCH type conditional heteroskedasticity) at lag q may
show up at the lag q − 1 PACC of the (squared) residuals.

4 For completeness, I fitted a Gaussian AR(9) model to the series and studied the PACF of its residuals and squared
residuals. I found the lag 8 PACC of the residuals small but the lag 8 PACC of the squared residuals large,
suggesting the possible presence of ARCH type conditional heteroskedasticity at the lag 8.
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tion criteria can be utilized in the selection of the GSMAR model. uGMAR calculates the
Akaike (AIC), Hannan-Quinn (HQIC), and Schwarz-Bayesian (BIC) information criteria. The
values of the information criteria are not directly comparable for models with different autore-
gressive orders if estimation is based on the conditional log-likelihood function, as the numbers
of observations used in estimation are different due to the different number of initial values. With
the conditional log-likelihood function, the values of the information criteria can be divided by
the number of observations used in the estimation (that is, the length of the series minus p) to
obtain more comparable statistics. However, as the conditional estimation with each order p is
based on slightly different observations, the comparison should be done with caution. The ex-
act log-likelihood function, in contrast, employs the full series in estimation and thereby yields
comparable values of information criteria for models with different orders p.

3.3.4 Examples of unconstrained estimation
In this section, I demonstrate how to estimate GSMAR models with uGMAR and provide sev-
eral examples in order to illustrate various frequently occurring situations. In addition to the
ordinary estimation, I particularly show how a GSMAR model can be built based on a local-
only maximum point when the ML estimate seems unreasonable (see Appendix 3.A). I also
consider the estimation of the appropriate G-StMAR model when the estimated StMAR model
contains overly large degrees of freedom estimates (see Virolainen, forthcoming, Section 4).

In uGMAR, the GSMAR models are defined as class gsmar S3 objects, which can be created
with given parameter values using the constructor function GSMAR (see Section 3.5) or by using
the estimation function fitGSMAR, which estimates the parameters and then builds the model.
For estimation, fitGSMAR needs to be supplied with a univariate time series and the arguments
specifying the model. The necessary arguments for specifying the model include the autoregres-
sive order p, the number of mixture components M, and model, which should be either "GMAR",
"StMAR", or "G-StMAR". For GMAR and StMAR models, the argument M is a positive integer,
whereas for the G-StMAR model it is a length two numeric vector specifying the number of
GMAR type regimes in the first element and the number of StMAR type regimes in the second.

Additional arguments may be supplied to fitGSMAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
whether the model should be parametrized with the intercepts φm,0 or the regimewise uncon-
ditional means µm (parametrization), how many estimation rounds should be performed
(ncalls), and how many central processing unit (CPU) cores should be used in the estimation
(ncores). Some of the estimation rounds may end up in local-only maximum points or saddle
points, but reliability of the estimation results can be improved by increasing the number of
estimation rounds. A large number of estimation rounds may be required particularly when the
number of mixture components is large, as the surface of the log-likelihood function becomes
increasingly more challenging. It is also possible to adjust the settings of the genetic algorithm
that is used to find the starting values. The available options are listed in the documentation of
the function GAfit to which the arguments adjusting the settings will be passed.
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Section 3.3.3 concluded that a StMAR model with autoregressive order p = 4 and M =
2 mixture components seems like a reasonable candidate for modelling the monthly interest
rate spread M10Y1Y. The following code fits this model to the series using the conditional log-
likelihood function and performing 12 estimation rounds with eight CPU cores. The argument
seeds supplies the seeds that initialize the random number generator at the beginning of each
call to the genetic algorithm, thereby yielding reproducible results.

R> fit42t <- fitGSMAR(M10Y1Y, p = 4, M = 2, model = "StMAR",
+ conditional = TRUE, ncalls = 12, ncores = 8, seeds = 4:15)

Using 8 cores for 12 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=11s
Results from the genetic algorithm:
The lowest loglik: 143.403
The mean loglik: 159.237
The largest loglik: 172.344
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Results from the variable metric algorithm:
The lowest loglik: 167.572
The mean loglik: 179.117
The largest loglik: 182.353
Finished!
Warning message:
In warn_dfs(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameter values.
Consider switching to a G-StMAR model by setting the corresponding regimes
to be GMAR type with the function ’stmar_to_gstmar’.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with the
package pbapply (Solymos and Zawadzki, 2020).

The function throws a warning in the above example, because the model contains at least one
very large degrees of freedom parameter estimate. Such estimates are warned about, because
very large degrees of freedom parameters are redundant in the model and their weak identifi-
cation might lead to numerical problems (see Section 2.4 in Chapter 2). Specifically, overly
large degrees of freedom parameter estimates may induce a nearly numerically singular Hessian
matrix of the log-likelihood function when evaluated at the estimate, making the approximate
standard errors and Kalliovirta’s (2012) quantile residual tests often unavailable.

The estimates can be examined with the print method:

R> fit42t

Model:
StMAR, p = 4, M = 2, #parameters = 15, #observations = 468,
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conditional, intercept parametrization, not restricted, no constraints.

Regime 1
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04
Df param: 9.75

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps

Regime 2
Mix weight: 0.19
Reg mean: 0.55
Var param: 0.01
Df param: 9348.94

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + [sigma_mt]eps

The parameter estimates are reported for each mixture component separately so that the esti-
mates can be easily interpreted. Each regime’s autoregressive formula is presented in the form

yt = φm,0 + φm,1yt−1 + ...+ φm,pyt−p + σm,tεm,t. (3.3.3)

The other statistics are listed above the formula, including the mixing weight parameter αm,
the unconditional mean µm, the variance parameter σ2

m, and the degrees freedom parameter νm.
For GMAR type regimes (if any), σm,t = σm so the estimate of the variance parameter σ2

m is
reported directly in the autoregressive formula.

The above printout shows that the second regime’s degrees of freedom parameter estimate is
very large, which might induce numerical problems. However, since a StMAR model with some
degrees of freedom parameters tending to infinity coincides with the G-StMAR model with the
corresponding regimes switched to GMAR type, one may avoid the problems by switching to
the appropriate G-StMAR model (see Section 2.4 in Chapter 2). Switching to the appropriate
G-StMAR model is recommended also because it removes the redundant degrees of freedom
parameters from the model, thereby reducing its complexity. The function stmar to gstmar

does this switch automatically by first removing the large degrees of freedom parameters and
then estimating the G-StMAR model with a variable metric algorithm (Nash, 1990, Algorithm
21) using the induced parameter vector as the initial value.

To exemplify, the following code switches all the regimes of the StMAR model fit42t with
a degrees of freedom parameter estimate larger than 100 to GMAR type, and then estimates the
corresponding G-StMAR model.

R> fit42gs <- stmar_to_gstmar(fit42t, maxdf = 100)

The summary method can be used to obtain a more detailed printout of the estimated the G-
StMAR model:

R> summary(fit42gs, digits = 2)
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Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16
Mix weight: 0.19 (0.09)
Reg mean: 0.55
Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps
(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04 (0.01)
Df param: 9.75 (4.17)
Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps
(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62
Process var: 1.11
First p autocors: 0.98 0.96 0.93 0.89

In the G-StMAR model, estimates for GMAR type regimes are reported before StMAR
type regimes, in a decreasing order according to the mixing weight parameter estimates. As
shown above, the model fit42gs incorporates one GMAR type regime and one StMAR type
regime. The mixing weight parameter estimate 0.19 of the GMAR type regime indicates that
in the long run, roughly 19% of the observations are generated from this regime. Estimates
of the unconditional mean and variance (0.55 and 0.14, respectively) are visibly smaller in the
GMAR type regime than in the StMAR type regime (1.87 and 1.01, respectively). Hence, the
GMAR type seems to mostly account for the periods when the series takes smaller values and
is less volatile, while the StMAR type regime covers the more volatile periods of larger values.
Interestingly, the AR parameters are somewhat similar in both regimes, implying that it could
be appropriate to restrict them to be identical (this will be tested in Section 3.3.7).

Approximate standard errors are given in parentheses under or next to the related estimates.
Note that the last mixing weight parameter estimate does not have an approximate standard
error because it is not parametrized. Likewise, there is no standard error for the intercepts
if mean parametrization is used (by setting parametrization = "mean" in fitGSMAR) and
vice versa. In order to obtain standard errors for the regimewise unconditional means or in-
tercepts, one can easily swap between the mean and intercept parametrizations with the function
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swap parametrization.
Missing values are reported when uGMAR is not able to calculate the standard error. This

typically happens either because there is an overly large degrees of freedom parameter estimate
in the model (as discussed above) or because the estimation algorithm did not stop a local max-
imum. In the latter case, the observed information matrix is not necessarily positive definite,
implying that the diagonal entries of its inverse might not all be positive. Consequently, when
extracting the approximate standard errors by taking the square roots of the diagonal entries
from the inverse of the observed information matrix, the possibly present negative entries will
lead to missing values.

Section 3.3.5 discusses how to use the tools in uGMAR to evaluate whether the estimate is
a local maximum (and how to improve the reliability of it being the global maximum). If the
estimate is not a local maximum, one may try running more iterations of the variable metric
algorithm with the function iterate more. However, often when the algorithm does not stop
a local maximum, it stopped to an unreasonable point very near the boundary of the parameter
space. As will be discussed next, in such a case it might be more appropriate to consider an
alternative estimate that is clearly in the interior of the parameter space.

Other statistics reported in the summary printout include the log-likelihood and values of
the information criteria, the first and second moments of the process, as well as regime-specific
unconditional means, unconditional variances, and moduli of the roots of the AR polynomials
1−
∑p

i=1 φm,iz
i, m = 1, ...,M . If some of the moduli are very close to one, the related estimates

are near the boundary of the stationarity region. I demonstrate in Appendix 3.A that when such
solutions are accompanied with a very small variance parameter estimate, they might not be
reasonable estimates and possibly maximize the log-likelihood function for a technical reason
only. Consequently, the estimate related to the next-largest local maximum could be considered.

This is possible in uGMAR, because the estimation function fitGSMAR stores the estimates
from all the estimation rounds so that a GSMAR model can be built based on any one of them,
most conveniently with the function alt gsmar. The desired estimation round can be specified
either with the argument which round or which largest. The former specifies the round in the
estimation order, whereas the latter specifies it in a decreasing order of the log-likelihoods.

To give an example of a case where the estimates are very close the boundary of the station-
arity region, I estimate the G-StMAR model directly with the following code.

R> fit42gs2 <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",
+ conditional = TRUE, ncalls = 16, ncores = 8, seeds = 72:87)

Using 8 cores for 16 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=12s
Results from the genetic algorithm:
The lowest loglik: 140.441
The mean loglik: 155.421
The largest loglik: 167.858
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
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Results from the variable metric algorithm:
The lowest loglik: 152.034
The mean loglik: 174.794
The largest loglik: 192.43
Finished!
Warning message:
In warn_ar_roots(ret) :

Regime 1 has near-unit-roots! Consider building a model from the next-
largest local maximum with the function ’alt_gsmar’ by adjusting its
argument ’which_largest’.

The function throws a warning, because the largest found maximum point incorporates a regime
that is very close to the boundary of the stationarity region, indicating that the estimate might be
inappropriate. The summary method produces the following printout for the model:

R> summary(fit42gs2, digits = 2)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 192.43, AIC: -356.86, HQIC: -334.05, BIC: -298.90

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.00, 1.00, 1.00, 1.00
Mix weight: 0.02 (0.03)
Reg mean: 2.65
Reg var: 0.13

y = [3.77] + [1.19]y.1 + [-1.81]y.2 + [1.19]y.3 + [-1.00]y.4 + sqrt[0.00]eps
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.04, 1.93, 1.93, 1.48
Mix weight: 0.98
Reg mean: 0.89
Var param: 0.04 (0.01)
Df param: 4.98 (1.67)
Reg var: 1.75

y = [0.02] + [1.30]y.1 + [-0.36]y.2 + [0.21]y.3 + [-0.17]y.4 + [sigma_mt]eps
(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 0.92
Process var: 1.78
First p autocors: 0.99 0.97 0.95 0.93

The summary statistics reveal that there are four near-unit-roots in the GMAR type regime and
the variance parameter estimate is very small. Such estimates often occur when there are several
regimes in the model and the estimation algorithm is ran a large number of times.
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If the estimate is deemed inappropriate, it is easy to build a model based on the second-
largest maximum point that was found in the estimation procedure. Below, the first line of the
code builds the model based on the second-largest maximum point, and the second line calls the
summary method to produce a detailed printout of the model.
R> fit42gs3 <- alt_gsmar(fit42gs2, which_largest = 2)
R> summary(fit42gs3, digits = 2)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 14, #observations = 468,
conditional, intercept parametrization, not restricted, no constraints.

log-likelihood: 182.35, AIC: -336.71, HQIC: -313.89, BIC: -278.75

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.16, 1.45, 1.45, 1.16
Mix weight: 0.19 (0.09)
Reg mean: 0.55
Reg var: 0.14

y = [0.04] + [1.34]y.1 + [-0.59]y.2 + [0.54]y.3 + [-0.36]y.4 + sqrt[0.01]eps
(0.01) (0.10) (0.20) (0.19) (0.12) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.07, 2.02, 2.02, 1.51
Mix weight: 0.81
Reg mean: 1.87
Var param: 0.04 (0.01)
Df param: 9.75 (4.14)
Reg var: 1.01

y = [0.06] + [1.28]y.1 + [-0.36]y.2 + [0.20]y.3 + [-0.15]y.4 + [sigma_mt]eps
(0.02) (0.05) (0.09) (0.09) (0.06)

Process mean: 1.62
Process var: 1.11
First p autocors: 0.98 0.96 0.93 0.89

The above printout shows that the estimates related to the second-largest local maximum are the
same as of the model fit42gs (which was estimated based on a StMAR model with a very large
degrees of freedom parameter estimate) and that they are clearly inside the stationarity region for
all regimes. If also the second-largest maximum point seems unreasonable, a GSMAR model
can be built based on the next-largest maximum point by adjusting the argument which largest

in the function alt gsmar accordingly.

3.3.5 Further examination of the estimates
In addition to examining the summary printout, it is often useful to visualize the model by
plotting the mixing weights together with the time series and the model’s (marginal) stationary
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density together with a kernel density estimate of the time series. That is exactly what the plot
method for GSMAR models does. For instance, the following command creates Figure 3.2:

R> plot(fit42gs)

As Figure 3.2 (the top and bottom left panels) shows, the first regime prevails when the spread
takes small values, while the second regime mainly dominates when the spread takes large val-
ues. The graph of the model’s marginal stationary density (the right panel), on the other hand,
shows that the two regimes capture the two modes in the marginal distribution of the spread.
The hump shape in the right tail of the kernel density estimate is not captured by the mixture of
the two distributions, but a third regime could be added for the purpose (the three regime model
is not studied for brevity).

It is also sometimes interesting to examine the time series of (one-step) conditional means
and variances of the process along with the time series the model was fitted to. This can be done
conveniently with the function cond moment plot, where the argument which moment should
be specified with "mean" or "variance" accordingly. In addition to the conditional moment of
the process, cond moment plot also displays the conditional means or variances of the regimes
multiplied by the mixing weights. Note, however, that the conditional variance of the process is
not generally the same as the weighted sum of regimewise conditional variances, as it includes
a component that encapsulates heteroskedasticity caused by variation in the conditional mean
(see Equation (2.2.19) in Chapter 2).

The variable metric algorithm employed in the final estimation does not necessarily stop at a
local maximum point. The algorithm might also stop at a saddle point or near a local maximum,
when the algorithm is not able to increase the log-likelihood, or at any point, when the maxi-
mum number of iterations has been reached. In the latter case, the estimation function throws a
warning, but saddle points and inaccurate estimates need to be detected by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function
is zero, and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the
eigenvalues of the Hessian matrix are all positive, whereas in a saddle point, some of them
are positive and some negative. Nearly numerically singular Hessian matrices occur when the
surface of the log-likelihood function is very flat about the estimate in some directions. This
particularly happens when the model contains overly large degrees of freedom parameter esti-
mates or the mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some regime
m.

uGMAR provides several functions for evaluating whether the estimate is a local maxi-
mum point. The function get foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get soc returns eigenvalues of
the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at the
estimate. The numerical derivatives are calculated using the central difference approximation

∂L(θ)

∂θi
≈ f(θ + h(i))− f(θ − h(i))

2h
, h > 0, (3.3.4)
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Figure 3.2: The figure produced by the command plot(fit42gs). On the top left, the monthly
spread between the 10-year and 1-year Treasury constant maturity rates, covering the period
from 1982 January to 2020 December. On the bottom left, the estimated mixing weights of
the G-StMAR model (fit42gs) fitted to the interest rate spread (blue dashed line for the first
regime and red dashed line for the second regime). On the right, the one-dimensional marginal
stationary density of the estimated G-StMAR model (grey dashed line) along with a kernel
density estimate of the spread (black solid line) and marginal stationary densities of the regimes
multiplied by the mixing weight parameter estimates (blue and red dotted lines).

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision of
the float point presentation induces artificially rugged surfaces to the their profile log-likelihood
functions, and the increased differences diminish the related numerical error. On the other hand,
as the surface of the profile log-likelihood function is very flat about a large degrees of freedom
parameter estimate, large differences work well for the approximation.

For example, the following code calculates the first order condition for the G-StMAR model
fit42gs:

R> get_foc(fit42gs)

[1] 0.0576396128 -0.0364233988 -0.0242331476 -0.0144442609 -0.0161249574
[6] 0.0411603528 -0.0171471584 -0.0490156277 -0.0659635759 -0.0587742714

[11] -0.0635655297 0.0686981920 -0.0374653647 0.0002778317

and the following code calculates the second order condition:

69



3.3. ESTIMATION AND MODEL SELECTION

Figure 3.3: The figure produced by the command profile logliks(fit42gs). Graphs of the
profile log-likelihood functions of the estimated G-StMAR model fit42gs with the red vertical
lines pointing the estimates.

R> get_soc(fit42gs)

[1] -5.753554e-02 -1.354508e+01 -4.394382e+01 -6.467642e+01 -1.204519e+02
[6] -1.672692e+02 -2.619181e+02 -8.869383e+02 -2.045380e+03 -4.862797e+03

[11] -4.355348e+04 -5.455077e+04 -2.727695e+05 -5.564824e+05

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient might
be inaccurate, because it is based on a numerical approximation. It is also possible that the esti-
mate is inaccurate, because it is based on approximative numerical estimation, and the estimates
are therefore not expected to be exactly accurate. Whether the estimate is a local maximum
point with accuracy that is reasonable enough, can be evaluated by plotting the graphs of the
profile log-likelihood functions about the estimate. In uGMAR, this can be done conveniently
with the function profile logliks.

The exemplify, the following command plots the graphs of profile log-likelihood functions
of the estimated G-StMAR model fit42gs:

R> profile_logliks(fit42gs, scale = 0.02, precision = 200)

The output is displayed in Figure 3.3, showing that the estimate’s accuracy is reasonable, as
changing any individual parameter value marginally would not visibly increase the log-likelihood.
The argument scale can be adjusted to shorten or lengthen the interval shown in the horizontal
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axis. If one zooms in enough by setting scale to a very small number, it can be seen that the
estimate is not exactly at the local maximum, but it is so close that moving there would not
increase the log-likelihood notably. The argument precision can be adjusted to increase the
number of points the graph is based on. For faster plotting, it can be decreased, and for more
precision, it can be increased.

I have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the estimate
is the global maximum. With uGMAR, the best way to increase the reliability that the found
estimate is the global maximum, is to run more estimation rounds by adjusting the argument
ncalls of the estimation function fitGSMAR. When a large number of estimation rounds is run
(and M > 1), fitGSMAR often finds peculiar near-the-boundary estimates that have extremely
spiky profile log-likelihood functions for some parameters and are thus difficult to find (see
Appendix 3.A). Therefore, it seems plausible that fitGSMAR also finds a reasonable ML estimate
with a good reliability.

3.3.6 Examples of constrained estimation
Alternatively to the unconstrained estimation, linear constraints can be imposed on the autore-
gressive (AR) parameters of the model; that is, on φm,1, ..., φm,p, m = 1, ...,M . uGMAR de-
ploys two types of constraints: the AR parameters can be restricted to be identical in all regimes
and linear constraints can be applied to each regime separately. In order to impose the for-
mer type of constraints, the estimation function simply needs to be supplied with the argument
restricted = TRUE.

For instance, the G-StMAR, p = 4, M1 = 1, M2 = 1 model (fit42gs) estimated in
Section 3.3.4 obtained somewhat similar estimates for the AR parameters in both regimes. The
following code estimates a version of this model such that the AR parameters are restricted to be
identical in both regimes. Note that this model still allows for shifts in the mean, as the intercept
parameters can vary across the regimes. The argument print res = FALSE tells fitGSMAR not
to the print the spread of the log-likelihoods obtained from each phase of estimation.

R> fit42gsr <- fitGSMAR(M10Y1Y, p = 4, M = c(1, 1), model = "G-StMAR",
+ restricted = TRUE, ncalls = 12, ncores = 8, seeds = 1:12,
+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=07s
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
Finished!

The summary printout of the model shows the AR parameter estimates are the same in both
regimes:
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R> summary(fit42gsr)

Model:
G-StMAR, p = 4, M1 = 1, M2 = 1, #parameters = 10, #observations = 468,
conditional, intercept parametrization, AR parameters restricted, no
constraints.

log-likelihood: 180.02, AIC: -340.04, HQIC: -323.74, BIC: -298.64

Regime 1 (GMAR type)
Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21
Mix weight: 0.51 (0.17)
Reg mean: 2.13
Reg var: 0.46

y = [0.13] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + sqrt[0.03]eps
(0.03) (0.05) (0.08) (0.08) (0.05) (0.00)

Regime 2 (StMAR type)
Moduli of AR poly roots: 1.21, 1.83, 1.83, 1.21
Mix weight: 0.49
Reg mean: 0.54
Var param: 0.05 (0.06)
Df param: 2.76 (1.18)
Reg var: 0.83

y = [0.03] + [1.29]y.1 + [-0.40]y.2 + [0.25]y.3 + [-0.20]y.4 + [sigma_mt]eps
(0.01) (0.05) (0.08) (0.08) (0.05)

Process mean: 1.35
Process var: 1.27
First p autocors: 0.98 0.95 0.91 0.87

In constrast to the unrestricted model, this model has larger regimewise unconditonal mean in the
GMAR type regime than in the StMAR type regime. According to the unconditional regimewise
variances, the StMAR type regime is the more volatilite regime in this model as well.

Whether imposing the constraints is reasonable, can be evaluated by employing a statistical
test, comparing values of the information criteria, or examining the model adequacy, for exam-
ple. As the summary printout shows, the information criteria values all decreased as opposed to
the unrestricted model, implying that the constraints could be appropriate. Discussion on test-
ing the constraints is postponed to Section 3.3.7, whereas diagnostics checks for evaluating the
model adequacy are covered in Section 3.4.

The other type of constraints in uGMAR are of the form

φm = Cmψm, m = 1, ...,M, (3.3.5)

where Cm is a known (p × qm) constraint matrix with full column rank, ψm is a (qm × 1)
parameter vector, and φm = (φm,1, ..., φm,p) contains the AR coefficients of the mth regime.
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In order to apply the constraints, the estimation function should be supplied with the argument
constraints containing a list of the constraint matrices Cm, m = 1, ...,M .

To exemplify, consider a GMAR model with autoregressive order p = 3 and M = 2 mixture
components. To constrain the third AR coefficient of the second regime (φ2,3) to zero but leaving
the first regime unconstrained, I deploy the following list of constraint matrices:

R> C_list <- list(diag(3), matrix(c(1, 0, 0, 0, 1, 0), nrow = 3))
R> C_list

[[1]]
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

[[2]]
[,1] [,2]

[1,] 1 0
[2,] 0 1
[3,] 0 0

After setting up the constraints, the constrained model can be estimated as follows:

R> fit32c <- fitGSMAR(M10Y1Y, p = 3, M = 2, model = "GMAR",
+ constraints = C_list, ncalls = 12, ncores = 8, seeds = 1:12,
+ print_res = FALSE)

Using 8 cores for 12 estimation rounds...
Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s
Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
Finished!

Printout of the model shows that the third AR parameter estimate of the second regime is zero:

R> fit32c

Model:
GMAR, p = 3, M = 2, #parameters = 10, #observations = 468,
conditional, intercept parametrization, not restricted, linear constraints
imposed.

Regime 1
Mix weight: 0.56
Reg mean: 1.26

y = [0.02] + [1.25]y.1 + [-0.19]y.2 + [-0.07]y.3 + sqrt[0.01]eps
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Regime 2
Mix weight: 0.44
Reg mean: 1.72

y = [0.07] + [1.27]y.1 + [-0.32]y.2 + [0.00]y.3 + sqrt[0.05]eps

Notice that even when the pth AR coefficient is restricted to zero, the pth lag of that regime is
accounted for in the mixing weights (3.2.6) and in the case of a StMAR type regime also in the
conditional variance (3.2.3).

If both types of constraints are applied at the same time, only a single constraint matrix
should be supplied (not in a list). Consider a GSMAR model with p = 2 and M = 2, for
example, and suppose the AR coefficients should be restricted to be identical in both regimes
and the second AR coefficient (φm,2) should be constrained to be the negative of the first coeffi-
cient (φm,1). Then, the estimation function should be supplied with the arguments restricted
= TRUE and constraints = matrix(c(1, -1), nrow = 2). As demonstrated above, uG-
MAR’s implementation for applying linear constraints is not the most general one, but it makes
applying some of the most typical constraints convenient, as the constraint matrices remain
small.

3.3.7 Testing parameter constraints
One way to asses the validity of the imposed constraints is to compare the values of informa-
tion criteria of the constrained and unconstrained models. uGMAR, nonetheless, also provides
functions for testing the constraints with the likelihood ratio test and the Wald test, which are
applicable as the ML estimator of a GSMAR model has the conventional asymptotic distribu-
tion (as long as the model is correctly specified and one is willing to assume the validity of the
required unverified assumptions, see Kalliovirta et al., 2015, pp. 254-255, Meitz et al., forth-
coming, Theorem 3, and Chapter 2, Theorem 2.2). For a discussion on the likelihood ratio and
Wald tests, see Buse (1982) and the references therein, for example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0 sat-
isfies some constraints imposed on these parameters (such that the constrained parameter space
is a subset of the parameter space, which is presented in Equation (2.2.16) in Chapter 2 for
the GSMAR models). Denoting by L̂U and L̂C the (maximized) log-likelihoods based on the
unconstrained and constrained ML estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (3.3.6)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter spaces.

With uGMAR, the likelihood ratio test can be calculated with the function LR test, which
takes the unconstrained model (a class gsmar object) as its first argument and the constrained
model as the second argument. For instance, in Section 3.3.6, I estimated a G-StMAR, p = 4,
M1 = 1, M2 = 1 model such that the AR parameters are restricted to be identical in both
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regimes (the model fit42gsr), i.e.,φ1 = φ2. The following code tests those constraints against
the unconstrained model fit42gs with the likelihood ratio test and prints the results.
R> LR_test(fit42gs, fit42gsr)

Likelihood ratio test

data: fit42gs and fit42gsr
LR = 4.6695, df = 4, p-value = 0.3229
alternative hypothesis: the true parameter does not satisfy the constraints
imposed in fit42gsr

The large p-value indicates that I cannot reject the constraints at any conventional level of sig-
nificance, and it might thereby be reasonable to consider the constrained model if it is found
adequate.

uGMAR implements the Wald test of the null hypothesis

Aθ0 = c, (3.3.7)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The Wald
test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (3.3.8)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is the
difference in the dimensions of the constrained and unconstrained parameter spaces).

With uGMAR, the Wald test can be calculated with function Wald test, which takes the
estimated unconstrained model (as a class gsmar object) as the first argument, the matrix A as
the second argument, and the vector c as the third argument. To exemplify, I test whether the
AR parameters and intercepts are identical in both regimes of the G-StMAR, p = 4, M1 = 1,
M2 = 1 model, i.e., the null hypothesis (φ1,0,φ1) = (φ2,0,φ2). The (d × 1) parameter vector
θ (which is presented at the end of Section 3.2.2 and again in Section 3.5) contains the intercept
and AR parameters of the first regime in the entries 1, ..., 5 and the intercept and AR parameters
of the second regime in the entries 7, ..., 11. The appropriate matrix A and vector c that state the
hypothesis are set in the first two lines of the following code, and the third line calculates the
test.
R> c <- rep(0, times = 5)
R> A <- cbind(diag(5), c, -diag(5), c, c, c)
Wald_test(fit42gs, A = A, c = c)

Wald test

data: fit42gs, A, c
W = 15.107, df = 5, p-value = 0.009916
alternative hypothesis: the true parameter theta does not satisfy
A%*%theta = c
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As the above printout shows, the p-value is small enough to reject the null at the 1% level of
significance, even though the null hypothesis that the AR parameters are equal in both regimes
could not be rejected by the likelihood ratio test. Using the model fit42gsr to calculate a Wald
test, that tests equality of the intercepts conditional on the constraint that the AR parameters
are identical in both regimes, produces the p-value 0.00025 (not shown for brevity). Thus, the
intercepts are not likely equal if the AR parameters are identical in both regimes.5 As is demon-
strated above, the Wald test has the benefit that it does not require estimation of the constrained
model, and it is, therefore, not limited to the type of constraints uGMAR accommodates. The
likelihood ratio test, on the other hand, is more conveniently calculated once the constrained
model has been estimated.

Note that the standard tests are not applicable if the number of GMAR or StMAR type
regimes is chosen too large, as then some of the parameters are not identified, causing the result
of the asymptotic normality of the ML estimator to break down. This particularly happens when
one tests for the number of regimes in the model, as under the null some of the regimes are
reduced from the model6 (see the related discussion in Kalliovirta et al., 2015, Section 3.3.2).
Similar caution applies for testing whether a regime is of the GMAR type against the alternative
that it is of the StMAR type. Then νm = ∞ under the null for the regime m to be tested, which
violates the assumption that the parameter value is in the interior of a compact subset of the
parameter space (see Theorem 2.2 and Assumption 2.1 in Chapter 2)

3.4 Quantile residual based model diagnostics
In the GSMAR models, the empirical counterparts of the error terms εm,t in (3.2.1) cannot be
calculated, because the regime that generated each observation is unknown, making the conven-
tional residual based diagnostics unavailable. Therefore, uGMAR utilizes so called quantile
residuals, which are suitable for evaluating adequacy of the GSMAR models. Deploying the
framework presented in Kalliovirta (2012), quantile residuals are defined as

Rt = Φ−1(F (yt|Ft−1)), t = 1, 2, ..., T, (3.4.1)

where Φ−1(·) is the standard normal quantile function and F (·|Ft−1) is the conditional cumu-
lative distribution function of the considered GSMAR process (conditional on the previous ob-
servations). Closed form expressions for the quantile residuals of the GSMAR processes are
derived in Appendix 3.B.
5 The test results do not, however, allow to infer that the process is likely bimodal, because GSMAR processes incor-

porating component processes with distinct means can have unimodal skewed marginal distributions. Moreover,
one cannot infer about the (in)equality of the means of the component processes based on the (in)equality of the
intercepts if the AR parameters are allowed vary freely. In particular, our null hypothesis (φ1,0,φ1) = (φ2,0,φ2)
does not test whether the component processes have identical means, as identical means can be obtained also with
various other constraints. Identicality of the means can, however, be tested directly by switching to the mean
parametrization (with the function swap parametrization) and calculating the appropriate Wald test.

6 Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian
conditional densities.
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The empirical counterparts of the quantile residuals are calculated by using the parameter
estimate and the observed data in (3.4.1). For a correctly specified GSMAR model, the empirical
counterparts of the quantile residuals based on the ML estimator are asymptotically independent
with standard normal distributions (Kalliovirta, 2012, Lemma 2.1). Hence, quantile residuals
can be used for graphical analysis similarly to the conventional Pearson residuals.

In uGMAR, quantile residuals can be analyzed graphically with the function diagnostic plot,
which plots the quantile residual time series, normal quantile-quantile plot, and sample au-
tocorrelation functions of the quantile residuals and squared quantile residuals. If one sets
plot indstats = TRUE in the function arguments, diagnostic plot also plots the standard-
ized individual statistics discussed in Kalliovirta (2012, pp. 369-370) with their approximate
95% critical bounds.

The individual statistics, which test for remaining autocorrelation or heteroskedasticity in
specific lags, can be calculated either based on the observed data or based on the simulation
procedure proposed by Kalliovirta (2012). In the simulation procedure, the individual statistics’
approximate standard errors are based on a sample simulated from the estimated process. Ac-
cording to Kalliovirta’s (2012) Monte Carlo study, the simulation procedure may improve size
properties of the related tests, but it makes calculation of the statistics computationally more
demanding - particularly if the simulated sample is very large.

The likelihood ratio test calculated in Section 3.3.7 accepted hypothesis that the AR coeffi-
cients of the G-StMAR p = 4, M1 = 1, M2 = 1 model are identical in both regimes. In order to
evaluate whether this constrained model (fit42gsr) can adequately capture the autocorrelation
structure, conditional heteroskedasticity, and distribution of the series, I create a diagnostic plot
with the following code. I include Kalliovirta’s (2012) individual statistic to the figure based on
the observed data and calculated for the first 20 lags.

R> diagnostic_plot(fit42gsr, nlags = 20, plot_indstats = TRUE)

The resulting plot is presented in Figure 3.4. The quantile residual time series (the top left
panel) has a period when it takes several consecutive negative values (roughly the observations
260, ..., 300 with also some positive observations in between), but other than that it seems to
somewhat resemble an IID standard normal process. The normal quantile-quantile plot (the top
right panel) shows that the quantile residuals’ distribution has too fat right tail. This is possibly
due to the inability to explain the hump shape in the right tail of the series’ distribution with a
mixture of one normal and one t-distribution, when the two modes are accounted for.

The quantile residuals’ sample autocorrelation function (the middle left panel) shows that
there are no particularly large autocorrelation coefficients in the lags 1, ..., 20. Moreover, as
all Kalliovirta’s (2012) autocorrelation statistics fall inside the asymptotic 95% critical bounds,
the model seems to adequately describe the autocorrelation structure of the series. The sample
autocorrelation function of the squared quantile residuals (the middle right panel), on the other
hand, has a relatively large coefficient at the lag eight. Kalliovirta’s (2012) conditional het-
eroskedasticity statistics (the bottom right panel) fall outside the asymptotic 95% critical bounds
at the lags four and six, but at the lag eight the statistic is inside the bounds. Overall, it ap-
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Figure 3.4: Diagnostic plot for the fitted model fit42gsr created using the function
diagnostic plot. The quantile residual time series (top left), normal quantile-quantile plot (top
right), sample autocorrelation functions of the quantile residuals (middle left) and squared quan-
tile residuals (middle right), and the individual autocorrelation (bottom left) and heteroskedas-
ticity (bottom right) statistics discussed in Kalliovirta (2012, pp. 369-370). The blue dashed
lines in the sample autocorrelation figures are the 1.96T−1/2 lines denoting 95% critical bounds
for IID-observations, whereas for Kalliovirta’s (2012) individual statistics they are the approxi-
mate 95% critical bounds.

pears that in addition to the distribution, the model might not adequately explain the conditional
heteroskedasticity of the series.

In order to employ the simulation procedure for calculating the individual statistics, one
needs to set the length of the simulated sample with the argument nsimu. If nsimu is not larger
than the length of the observed data, the statistics will be based on the observed data. In ad-
dition to diagnostic plot, quantile residuals can be graphically examined with the function
quantile residual plot, which plots the quantile residual time series and a histogram.

Analyzing quantile residuals graphically gives an overview of the model’s adequacy, but
it is often appealing to also carry out a formal testing procedure. Kalliovirta (2012) proposes
three specific tests for testing normality, autocorrelation, and conditional heteroskedasticity of
the quantile residuals. Kalliovirta’s (2012) tests take into account the uncertainty caused by esti-
mation of the parameters and they are shown to perform well in a simulation study (Kalliovirta,
2012, Section 4).

In uGMAR, the quantile residual tests can be calculated with the function quantile residual tests,
whose arguments include the model and the numbers of lags to be included in the autocorrelation
(lags ac) and heteroskedasticity (lags ch) tests. Similarly to the individual statistics discussed
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in the context of the diagnostic plot, the tests can be based either on the observed data or on the
simulation procedure. The simulation procedure can be deployed by setting the argument nsimu
to be larger than the number of observations.

The following code calculates the quantile residual tests for the restricted G-StMAR model
fit42gsr by deploying the simulation procedure based on a simulated sample of length 10000
and taking into account 1, 3, 6, and 12 lags in the autocorrelation and heteroskedasticity tests.
By default, the lags for the heteroskedasticity tests are the same as for the autocorrelation tests,
so it is enough to set the autocorrelation test lags with the argument lags ac.

R> set.seed(1)
R> qrtr <- quantile_residual_tests(fit42gsr, lags_ac = c(1, 3, 6, 12),
+ nsimu = 10000)

Normality test p-value: 0.018

Autocorrelation tests:
lags | p-value

1 | 0.849
3 | 0.084
6 | 0.488
12 | 0.213

Conditional heteroskedasticity tests:
lags | p-value

1 | 0.713
3 | 0.299
6 | 0.017
12 | 0.000

The test results reveal that the model does not seem to adequately capture the conditional het-
eroskedasticity in the series when taking into account 12 lags. Also, the normality test and the
heteroskedasticity test with six lags pass only at 1% level of significance. The rest of the tests,
including all the autocorrelation tests, pass at 5% level of significance, confirming the findings
from examining the diagnostic plot: the model seem to adequately explain the autocorrelation
structure of the series but struggles in capturing the distribution and conditional heteroskedas-
ticity. Nevertheless, the inadequacies do not seem particularly serious.

Because the restricted model was found somewhat inadequate, I run the quantile residual
tests for the unrestricted model as well in order to evaluate whether it captures the statistical
properties of the series more adequately. The following code runs the same diagnostics tests for
the unrestricted model fit42gs.

R> set.seed(1)
R> qrt <- quantile_residual_tests(fit42gs, lags_ac = c(1, 3, 6, 12),
+ nsimu = 10000)

Normality test p-value: 0.087
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Autocorrelation tests:
lags | p-value

1 | 0.475
3 | 0.020
6 | 0.289
12 | 0.077

Conditional heteroskedasticity tests:
lags | p-value

1 | 0.579
3 | 0.137
6 | 0.002
12 | 0.000

As the p-values show, relaxing the restrictions improved the model’s capability to capture the
distribution of the series, but according to the test results, the unrestricted model does not explain
conditional heteroskedasticity as well as the restricted one when taking into account six lags
(since the test now rejects at 1% level of significance). Also, the autocorrelation test with three
lags only passes at 1% level of significance. It thereby appears that the more parsimonious
restricted model could be more appropriate. Adding a third regime to the model or trying a
different autoregressive order could also be considered for potentially improving the adequacy.

uGMAR often fails to calculate the quantile residual tests for GSMAR models with very
large degrees of freedom parameter estimates, but the problem can be avoided by switching
to the appropriate G-StMAR model with the function stmar to gstmar, which removes the
redundant degrees of freedom parameters (see Section 3.3.4 of this essay and Section 2.4 in
Chapter 2). Calculation of the tests may also fail when the estimate is very close to the bound-
ary of the parameter space in which case it might be appropriate to consider an estimate from
the next-largest local maximum point of the log-likelihood function. To that end, the function
alt gsmar can be used as demonstrated in Section 3.3.4 and in Appendix 3.A.

3.5 Building a GSMAR model with specific parameter values
The function GSMAR facilitates building GSMAR models without estimation, for instance, in
order to simulate observations from a GSMAR process with specific parameter values. The
parameter vector (of length M(p + 3) + M2 − 1 for unconstrained models) has the form θ =
(ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (φm,0, φm,1, ..., φm,p, σ
2
m), m = 1, ...,M, and (3.5.1)

ν = (νM1+1, ..., νM). (3.5.2)

In the GMAR model (when M1 = M ), the vector ν is omitted, as the GMAR model does
not contain degrees of freedom parameters. For models with constraints on the autoregressive
parameters, the parameter vectors are expressed in a different way. For brevity, they are only
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presented in the package documentation, because the hand-specified parameter values can be set
to satisfy any constraints as is.

In addition to the parameter vector, GSMAR should be supplied with arguments p and M spec-
ifying the order of the model similarly to the estimation function fitGSMAR discussed in Sec-
tions 3.3.4 and 3.3.6. If one wishes to parametrize the model with the regimewise unconditional
means (µm) instead of the intercepts (φm,0), the argument parametrization should be set to
"mean" in which case the intercept parameters φm,0 are replaced with µm in the parameter vec-
tor. By default, uGMAR uses intercept parametrization.

To exemplify, I build the GMAR p = 2, M = 2 model that is used in the simulation
experiment in Appendix 3.A. The model has intercept parametrization and parameter values
ϑ1 = (0.9, 0.4, 0.2, 0.5), ϑ2 = (0.7, 0.5,−0.2, 0.7), and α1 = 0.7. After building the model, I
use the print method to examine it:
R> params22 <- c(0.9, 0.4, 0.2, 0.5, 0.7, 0.5, -0.2, 0.7, 0.7)
R> mod22 <- GSMAR(p = 2, M = 2, params = params22, model = "GMAR")
R> mod22

Model:
GMAR, p = 2, M = 2, #parameters = 9,
conditional, intercept parametrization, not restricted, no constraints.

Regime 1
Mix weight: 0.70
Reg mean: 2.25

y = [0.90] + [0.40]y.1 + [0.20]y.2 + sqrt[0.50]eps

Regime 2
Mix weight: 0.30
Reg mean: 1.00

y = [0.70] + [0.50]y.1 + [-0.20]y.2 + sqrt[0.70]eps

It is possible to include data in the models built with GSMAR by either providing the data in
the argument data when creating the model or by adding the data afterwards with the function
add data. When the model is supplied with data, the mixing weights, one-step conditional
means and variances, and quantile residuals can be calculated and included in the model. The
function add data can also be used to update data to an estimated GSMAR model without re-
estimating the model.

3.6 Simulation and forecasting

3.6.1 Simulation
uGMAR implements the S3 method simulate for simulating observations from GSMAR pro-
cesses. The method requires the process to be given as a class gsmar object, which are typically

81



3.6. SIMULATION AND FORECASTING

created either by estimating a model with the function fitGSMAR or by specifying the param-
eter values by hand and building the model with the constructor function GSMAR. The initial
values required to simulate the first p observations can be either set by hand (with the argu-
ment init values) or drawn from the stationary distribution of the process (by default). The
argument nsim sets the length of the sample path to be simulated.

To give an example, the following code sets the random number generator seed to one and
simulates the 500 observations long sample path that is used in the simulation experiment in
Appendix 3.A from the GMAR process built in Section 3.5:

R> mysim <- simulate(mod22, nsim = 500, seed = 1)

Our implementation of simulate returns a list containing the simulated sample path in $sample,
the mixture component that generated each observation in $component, and the mixing weights
in $mixing weights.

3.6.2 Simulation based forecasting
Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the GS-
MAR models is very complicated, so uGMAR employs the following simulation-based method.
By using the last p observations of the data up to the date of forecasting as initial values, a
large number of sample paths for the future values of the process are simulated. Then, sample
quantiles from the simulated sample paths are calculated to obtain prediction intervals, and the
median or mean is used for point predictions. A similar procedure is also applied to forecast
future values of the mixing weights, which might be of interest because the researcher can often
associate specific characteristics to different regimes.

Forecasting is most conveniently done with the predict method. The available arguments
include the number of steps ahead to be predicted (n ahead), the number sample paths the fore-
cast is based on (nsimu), possibly multiple confidence levels for prediction intervals (pi), predic-
tion type (pred type), and prediction interval type (pi type). The prediction type can be either
median, mean, or for one-step-ahead forecasts also the exact conditional mean, cond mean. The
prediction interval type can be any of "two-sided", "upper", "lower", or "none".

As an example, I use the unrestricted G-StMAR p = 4,M1 = 1,M2 = 1 model fitted to the
monthly interest rate spread in Section 3.3.4 to forecast the spread 12 months ahead, i.e., for the
year 2021. The point prediction is based on median and 10000 simulated future sample paths,
and the two-sided prediction intervals are calculated for the confidence levels 0.95 and 0.80.

R> set.seed(1)
R> mypred <- predict(fit42gs, n_ahead = 12, nsimu = 10000,
+ pi = c(0.95, 0.8), pred_type = "median", pi_type = "two-sided")
R> mypred

Prediction by median, two-sided prediction intervals with levels 0.95, 0.8.
Forecast 12 steps ahead, based on 10000 simulations.
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Figure 3.5: The figure created by the predict method for the G-StMAR model fit42gs.
Twelve-months-ahead point prediction for the monthly interest rate spread (top) and the model’s
mixing weights (bottom) together with several preceding observations and prediction intervals
with confidence levels 0.95 (outer interval) and 0.80 (inner interval).

0.025 0.1 median 0.9 0.975
1 0.66 0.74 0.87 1.00 1.11
2 0.55 0.66 0.89 1.13 1.32
3 0.46 0.62 0.90 1.23 1.49
4 0.36 0.56 0.91 1.33 1.65
5 0.26 0.49 0.91 1.45 1.83
6 0.17 0.44 0.91 1.55 2.01
7 0.09 0.38 0.91 1.65 2.15
8 0.02 0.34 0.91 1.73 2.26
9 -0.02 0.30 0.92 1.82 2.36
10 -0.05 0.27 0.92 1.89 2.47
11 -0.08 0.25 0.93 1.95 2.58
12 -0.10 0.23 0.93 2.02 2.65

Point forecasts and prediction intervals for mixing weights can be obtained
with $mix_pred and $mix_pred_ints, respectively.

The predict method plots the results by default but this can be also avoided by setting
plot res = FALSE in the arguments. The results can be plotted afterwards by using the plot

method for the class gsmarpred objects that the predict method returns.
The figure created by the above example is presented in Figure 3.5. The point forecast does

not predict any significant movements for the spread, but the prediction intervals appear to be
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skewed to the right. A possible explanation to the skewed prediction intervals is that at the time
of forecasting, the spread takes a value that is closer to the mean of the low-mean first regime
than to the mean of the high-mean second regime. Hence, even if the process proceeds in the first
regime, it does not (on average) move much lower, but switching to the second regime would (on
average) lead to notably larger observations. Also, the forecast for the mixing weights reveals
that after a few months, the high-mean second regime is predicted to become more probable
than than the low-mean first regime, thus, explaining the skewed prediction intervals.

3.7 Summary
Mixture autoregressive models are useful for analyzing time series that exhibit nonlinear, regime-
switching features. The GMAR model, the StMAR model, and the G-StMAR model constitute
an appealing family of such models, the GSMAR models, with attractive theoretical and prac-
tical properties. This essay introduced the R package uGMAR providing a comprehensive set
of easy-to-use tools for GSMAR modelling, including unconstrained and constrained maxi-
mum likelihood estimation of the model parameters, quantile residual based model diagnostics,
simulation, forecasting, and more. For convenience, I have collected some useful functions in
uGMAR to Table 3.1.

The model parameters are estimated with the method of maximum likelihood by employing
a two-phase procedure, which uses a genetic algorithm to find starting values for a variable
metric algorithm. Notably, due to the endogenously determined mixing weights, the maximum
likelihood estimate is often found very close to the boundary of the stationarity region of some
regimes. I explained in Appendix 3.A why such estimates might be inappropriate and showed
how a GSMAR model can be built based on an alternative estimate related to the next-largest
local maximum point.

Computational details
The results in this essay were obtained using R 4.1.2 and uGMAR 3.4.1 package running on
MacBook Pro 14”, 2021, with Apple M1 Pro processor, 16 Gt of unified RAM, and macOS
Monterey 12.1 operating system.

uGMAR takes use of the R package Brobdingnag (Hankin, 2007) to handle values ex-
tremely close to zero in the evaluation of the first term of the exact log-likelihood function
(3.3.1). The package gsl (Hankin, 2006) is utilized to calculate some of the quantile residuals
(3.4.1) with a hypergeometric function. In order to improve computational efficiency in the nu-
merical estimation procedure, the formula proposed by Galbraith and Galbraith (1974) is utilized
to directly compute the inverses of the covariance matrices Γm, m = 1, ...,M , (which appear
in (3.2.3), (3.2.5), (3.2.6), and in the first term of (3.3.1)), as only the inverses are required
for calculating the quantities in the log-likelihood function. Finally, the algorithm proposed by
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Related to Name Description
Estimation fitGSMAR Estimate a GSMAR model.

alt gsmar Build a GSMAR model based on re-
sults from any estimation round.

stmar to gstmar Estimate a G-StMAR model based on
a StMAR (or G-StMAR) model with
large degrees of freedom parameters.

iterate more Run more iterations of the variable
metric algorithm for a preliminary es-
timated GSMAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mix-

ing weights and a kernel density esti-
mate of the series with the stationary
density of the model.

get foc Calculate numerically approximated
gradient of the log-likelihood function
evaluated at the estimate.

get soc Calculate eigenvalues of numerically
approximated Hessian of the log-
likelihood function evaluated at the
estimate.

profile logliks Plot the graphs of the profile log-
likelihood functions.

cond moment plot Plot the model implied one-step con-
ditional means or variances.

Diagnostics quantile residual tests Calculate quantile residual tests.
diagnostic plot Plot quantile residual diagnostics.
quantile residual plot Plot quantile residual time series and

histogram.
Forecasting predict (method) Forecast future observations and mix-

ing weights of the process.
Simulation simulate (method) Simulate from a GSMAR process.
Create model GSMAR Construct a GSMAR model based on

specific parameter values.
Hypothesis testing LR test Calculate likelihood ratio test.

Wald test Calculate Wald test.
Other add data Add data to a GSMAR model.

swap parametrization Swap between mean and intercept
parametrizations.

Table 3.1: Some useful functions in uGMAR sorted according to their usage. The note
”method” in parentheses after the name of a function signifies that it is an S3 method for a
class gsmar object. 85



3.7. SUMMARY

Monahan (1984) is employed to generate random stationary autoregressive coefficients in the
genetic algorithm.

Some of the estimation results (and thereby everything that is calculated based on the esti-
mates) may vary slightly when running the code on different computers. This is due to a small
numerical error in the gradient of the log-likelihood function caused by the limited precision of
the floating-point representation. The negligible numerical error accumulates in each iteration
of the variable metric algorithm, which hence advances in slightly different paths on different
computers (with given initial values). After a large number of iterations, the algorithm might
therefore end up in slightly different points. This particularly occurs when there are StMAR
type regimes in the model, possibly because there are often many different pairs of degrees of
freedom and variance parameter values that are relatively close to each other and yield almost
the same log-likelihoods.
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Appendix 3.A Simulation experiment
This simulation experiment demonstrates why the log-likelihood function’s global maximum
point, that is found very near the boundary of the parameter space, might not be a reasonable
estimate and why it might be more appropriate to consider a local-only maximum point that is
clearly in the interior of the parameter space. I generated 500 observations from a GMAR p = 2,
M = 2 process with the parameter values given in the first row of Table 3.2 (θ) and initial values
generated from the stationary distribution of the process. This model is built with uGMAR as
an example in Section 3.5, and the sample path is generated as an example in Section 3.6.1.

I estimated a GMAR p = 2, M = 2 model to the generated sample based on the exact
log-likelihood function by performing 100 estimation round using the following code (output is
omitted for brevity):

R> fit22 <- fitGSMAR(mysim$sample, p = 2, M = 2, model = "GMAR",
+ conditional = FALSE, ncalls = 100, ncores = 8, seeds = 1:100)

The obtained estimates are reported on the second row of Table 3.2 (θ̂1) together with the moduli
of each regime’s AR polynomial’s (1 −

∑p
i=1 φm,iz

i) roots. The modulus of the ith root in the
mth regime is denoted by the symbol ξm,i. The stationarity condition requires that all the moduli
are strictly greater than one, so the second regime is very close to the boundary of the stationarity
region (both roots are approximately 1.000011). Also the variance parameter σ2

2 is close to its
lower bound zero (it is approximately 9 · 10−6).

These estimates produce a large log-likelihood, because the second regime’s very small con-
ditional variance makes the related density function in the term lt(θ) (3.3.2) to take large values
near its mean, and the strong conditional mean targets individual observations there. This is
illustrated in Figure 3.6 (bottom panel), where the terms lt(θ) are presented (green solid line)
together with the second regime’s related weighted densities α2,tn1(yt;µ2,t, σ

2
2) (red dotted line).

The black ”X”-symbols denote the points where the second regime’s conditional mean deviates
from the corresponding observation by less than 0.005. Evidently, the second regime contributes
to the log-likelihood function only in the individual points where both, the terms lt(θ) and the
scaled densities α2,tn1(yt;µ2,t, σ

2
2), take large values due to the observation being close to the

mean of the second regime’s spikelike conditional density function. Because the scaled densities
take large enough values in those individual points, the log-likelihood is larger for this kind of
estimate than for a reasonable estimate.

The top panel of Figure 3.6 presents the true mixing weights of the GMAR process’s second
regime (black solid line) together with the mixing weights based on the estimate θ̂1 (red dashed
line). As the figure shows, the estimated mixing weights are spiky and have no resemblance to
the true mixing weights. Although the true mixing weights can be spiky for some GSMAR pro-
cesses, spiking mixing weights are also typical for potentially inappropriate near-the-boundary
estimates.

This kind of near-the-boundary estimates are often found when a subset of the regimes ex-
plains the variation in the series reasonably well, leaving some of the regimes available for tar-
geting individual observations with very small conditional variance and very strong conditional
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φ1,0 φ1,1 φ1,2 σ2
1 φ2,0 φ2,1 φ2,2 σ2

2 α1 ξ1,1 ξ1,2 ξ2,1 ξ2,2
θ 0.90 0.40 0.20 0.50 0.70 0.50 −0.20 0.70 0.70 1.45 3.45 2.24 2.24

θ̂1 0.58 0.56 0.10 0.61 7.85 −1.67 −1.00 0.00 0.99 1.42 6.86 1.00 1.00

θ̂2 1.16 0.39 0.08 0.54 0.77 0.35 −0.17 0.53 0.63 1.86 6.90 2.42 2.42

Table 3.2: On the first row, the true parameter values of the GMAR p = 2, M = 2 process that
generated the sample path used in the simulation experiment. On the second row, the estimates
that maximized the log-likelihood function based 100 estimation rounds. On the third row, the
estimates from the largest such log-likelihood function’s maximum point that is not very near
the boundary of the stationarity region. In each row after the estimates or parameter values, the
moduli of the related AR polynomial’s roots are presented.

Figure 3.6: On the top, the GMAR p = 2, M = 2 process’s second regime’s true mixing weights
(black solid line), the mixing weights based on the estimate θ̂1 in the second row of Table 3.2
(red dashed line), and the mixing weights based on the estimate θ̂2 in the third row of Table 3.2
(blue dashed line). On the bottom, the terms (3.3.2) from the second term of the log-likelihood
function (3.3.1) (green solid line) and the second regime’s densities in the terms (3.3.2) mul-
tiplied by the estimated mixing weights (blue dotted line), i.e., α2,tn1(yt;µ2,t, σ

2
2), both based

on the estimate θ̂1. The ”X”-symbols denote the points where the second regime’s conditional
mean for the model based on estimate θ̂1 deviates from the corresponding observation by less
than 0.005.
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mean. As such estimates seem to maximize the log-likelihood function for a technical reason,
and not necessarily because they represent a good guess for the true parameter value, it might be
appropriate to consider an alternative estimate related to the next-largest local maximum point.
To exemplify, I build a model based on the largest local maximum point that is clearly in the
interior of the parameter space. In my estimation based on 100 rounds of the two-phase proce-
dure, such an estimate is found at the point that induced the third largest log-likelihood, and it is
obtained as follows:

R> fit22_alt <- alt_gsmar(fit22, which_largest = 3)

The corresponding estimate is presented on the third row of Table 3.2 (θ̂2). This local maximum
point is substantially closer to the true parameter value in the second regime. The resemblance to
the true parameter value is also highlighted in Figure 3.6 (top panel), where the second regime’s
estimated mixing weights (blue dashed line) are presented together with the true mixing weights
(black solid line).

Finally, observe that the estimate θ̂1 presented in Table 3.2 is not the accurate maximum like-
lihood estimate, which can be noticed by examining graphs of the related profile log-likelihood
functions with the command profile logliks(fit22) (not shown). The numerical estimation
using numerical approximation for the gradient of the log-likelihood function can be inaccurate
near the boundary of a multidimensional parameter space subject to several constraints. Conse-
quently, other similar near-the-boundary points that induce larger log-likelihood than θ̂1 can be
found by running more estimation rounds. It should also be noted that sometimes the estimate is
near the boundary of the stationarity region because the series is very persistent, and being near
the boundary does not hence necessarily imply that the MLE is inappropriate.

Appendix 3.B Closed form expressions of quantile residuals
This section derives closed form expressions for the quantile residuals utilized by uGMAR and
discussed in Section 3.4. For the GSMAR models, the quantile residuals are defined as

Rt = Φ−1(F (yt|Ft−1)), t = 1, 2, ..., T, (3.B.1)

where Φ−1(·) is the standard normal quantile function,

F (yt|Ft−1) =
M∑

m=1

αm,t

∫ yt

−∞
fm(ut|Ft−1)dut (3.B.2)

is the conditional cumulative distribution function of the considered GSMAR process (con-
ditional on the previous observations), and fm(·|Ft−1) is the conditional density function of
the mth component process. To find a closed form expression for the quantile residuals de-
fined in (3.B.1) and (3.B.2), it therefore suffices to solve the integrals

∫ yt
−∞ fm(ut|Ft−1)dut,

m = 1, ...,M , for GMAR type and StMAR type mixture components.
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In the case of a GMAR type component, the conditional density function is the Gaussian
density function with mean µm,t and variance σ2

m. For m ≤ M1 in (3.B.2), I therefore have∫ yt

−∞
fm(ut|Ft−1)dut =

∫ yt

−∞
n1(ut;µm,t, σ

2
m)dut = Φ

(
ut − µm,t

σm

)
, (3.B.3)

where Φ(·) is the standard normal cumulative distribution function.
In the case of a StMAR type component, the conditional density function is the Student’s t

density function with mean µm,t, variance σ2
m,t, and νm + p degrees of freedom given as (Meitz

et al., forthcoming, Appendix A)

t1(ut;µm,t, σ
2
m,t, νm+p) =

Γ
(
1+νm+p

2

)√
π(νm + p− 2)Γ

(
νm+p

2

)σ−1
m,t

(
1 +

(ut − µm,t)
2

(νm + p− 2)σ2
m,t

)−(1+νm+p)/2

(3.B.4)
where Γ (·) is the gamma function. Taking use of the symmetry of the Student’s t distribution
about its mean µm,t, I obtain∫ yt

−∞
fm(ut|Ft−1)dut =

1

2
+

∫ yt

µm,t

t1(ut;µm,t, σ
2
m,t, νm + p)dut. (3.B.5)

By applying the change of variables ũm,t ≡ ut−µm,t in the integral, the right side of (3.B.5)
can be expressed as

1

2
+

Γ
(
1+νm+p

2

)√
π(νm + p− 2)Γ

(
νm+p

2

)σ−1
m,t

∫ ỹm,t

0

(
1 +

ũ2
m,t

am,t

)−bm

dũm,t, (3.B.6)

where ỹm,t ≡ yt − µm,t, am,t ≡ (νm + p− 2)σ2
m,t, and bm ≡ (1 + νm + p)/2. Then, by applying

the change of variables zm,t ≡ ũ2
m,t/ỹm,t, the integral in the expression (3.B.6) can be expressed

as ∫ ỹm,t

0

(
1 +

ũ2
m,t

am,t

)−bm

dũm,t =
1

2

∫ ỹm,t

0

(
ỹm,t

zm,t

)1/2(
1 +

zm,tỹm,t

am,t

)−bm

dzm,t. (3.B.7)

By applying the third change of variables xm,t ≡ zm,t/ỹm,t and using the properties of the
gamma function, the right side of (3.B.7) can be expressed using a hypergeometric function as

ỹm,t

2

∫ 1

0

x
−1/2
m,t

(
1− xm,t

(
−
ỹ2m,t

am,t

))−bm

dxm,t = ỹm,t × 2F1

(
1

2
, bm,

3

2
;−

ỹ2m,t

am,t

)
, (3.B.8)

where the hypergeometric function is defined as (Aomoto and Kita, 2011, Section 1.3.1)

2F1 (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

sa−1(1− s)c−a−1(1− sx)−bds, (3.B.9)
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when |x| < 1, a > 0, and c− a > 0 (when a, c ∈ R).
Using the above result, we have∫ yt

−∞
fm(ut|Ft−1) =

1

2
+

Γ
(
1+νm+p

2

)√
π(νm + p− 2)Γ

(
νm+p

2

)σ−1
m,tỹm,t × 2F1

(
1

2
, bm,

3

2
;−

ỹ2m,t

am,t

)
(3.B.10)

for m > M1, whenever
∣∣∣− ỹ2m,t

am,t

∣∣∣ < 1. That is, the closed form expression (3.B.10) exists when

|yt − µm,t| <
√

(νm + p− 2)σ2
m,t. (3.B.11)

If this condition does not hold, uGMAR calculates the quantile residual by numerically inte-
grating the conditional density function fm(·|Ft−1).
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Chapter 4

Structural Gaussian mixture vector
autoregressive model with application to
the asymmetric effects of monetary policy
shocks

4.1 Introduction
Tracing out the effects of an economic shock is a major task in econometrics. A popular ap-
proach is to consider a set of key variables and utilize a structural vector autoregressive (SVAR)
or structural error correction (SVEC) model for the purpose. They have well established theoret-
ical grounds (see Kilian and Lütkepohl, 2017, and the references therein) and are accommodated
by many of the popular statistical software packages. Linear SVAR and SVEC models are not,
however, suitable for modelling series in which the underlying data generating dynamics are
nonlinear or the shocks have asymmetric effects in different states of the economy. Models
capable of capturing such features include mixture models, such as the mixture vector autore-
gressive model (Fong, Li, Yau, and Wong, 2007), the mixture periodic vector autoregressive
model (Bentarzi and Djeddou, 2014), the Gaussian mixture vector autoregressive (GMVAR)
model (Kalliovirta, Meitz, and Saikkonen, 2016), and the logit mixture vector autoregressive
model (Burgard, Neuenkirch, and Nöckel, 2019).

This essay introduces a structural version of the GMVAR model. In the structural GMVAR
(SGMVAR) model of autoregressive order p, the regime-switching dynamics are endogenously
determined by the full distribution of the previous p observations. Specifically, the greater the
relative weighted likelihood of a regime is, the more likely the process is to generate an observa-
tion from it. This facilitates associating statistical characteristics and economic interpretations
to the regimes. The specific formulation of the mixing weights also leads to attractive theoret-
ical properties, such as ergodicity and fully known stationary distribution of p + 1 consecutive
observations.

95



4.1. INTRODUCTION

The effects of the structural shocks depend on the initial values of the included variables,
and they are also allowed to vary according to the sign and size of the shock due to possibly re-
sulting regime-switches. Consequently, the (generalized) impulse response functions reflect the
prevailing macroeconomic conditions that are transmitted to the regime-switching probabilities
through the level, variability, and temporal as well as contemporaneous dependence of the past
observations. Because the shocks may have asymmetric effects with respect to their size, the
conditional heteroskedasticity of the reduced form error needs to be controlled for. Therefore,
the impact matrix of the SGMVAR model is time-varying and constructed so that it captures
the conditional heteroskedasticity of the reduced form error, thereby enabling to standardize the
conditional variance of each structural shock to a constant. The initial effects of a constant-sized
structural shock are, hence, amplified according to the conditional variance of the reduced form
error, also reflecting the prevailing state of the economy.

Identification of the shocks requires that they are simultaneously orthogonalized in all regimes.
I show that together with any constant standardization of the structural shock’s conditional vari-
ance, this condition generally leads to a unique identification of the impact matrix up to ordering
of its columns and changing all signs in a column. Thus, as long as one is willing to impose
the assumption of a single (time-varying) impact matrix, the columns of the impact matrix un-
ambiguously characterize the estimated impact effects of the shocks without further constraints.
The identification does not, however, reveal which column of the impact matrix is related to
which shock. Since the impact matrix is also subject to estimation error, further constraints may
be needed for labelling the shocks. The constraints are testable, as they are overidentifying.

In order to formulate the impact matrix and the identification conditions, it is convenient
to utilize the well known matrix decomposition (Muirhead, 1982, Theorem A9.9) proposed by
Lanne and Lütkepohl (2010) and Lanne, Lütkepohl, and Maciejowsla (2010) for a similar iden-
tification problem. Lanne and Lütkepohl (2010) assume that the reduced form error covariance
matrices admit this decomposition, then show that the shocks are statistically identified, and
finally test conventional zero constraints that lead to economically interpretable shocks. Lanne
et al. (2010), in turn, note that the shocks are readily identified when the matrix decomposition
is imposed to the reduced form error covariance matrices. My approach differs from them in
that I obtain locally identified structural shocks by directly investigating the properties of the
impact matrix. I also provide a general set of conditions for identifying any subset of the shocks
that allows for using sign constraints alone or together with zero constraints. Moreover, I (par-
tially) relax a technical condition required for statistical identification of the model and allow
identification of a subset of the shocks when the model is only partially identified.

My empirical application studies asymmetries in the expected effects of monetary policy
shocks in the U.S. using a quarterly series covering the period from 1954Q3 to 2021Q4. My
SGMVAR model identifies two regimes: a stable inflation regime and an unstable inflation
regime. The unstable inflation regime is characterized by high or volatile inflation, and it mainly
prevails in the 1970’s, early 1980’s, during the Financial crisis, and in the COVID-19 crisis from
2020Q3 onwards. The stable inflation regime, in turn, is characterized by moderate inflation,
and it prevails when the unstable inflation regime does not. I find the effects of the monetary
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policy shock relatively symmetric in the unstable inflation regime, as it rarely causes a switch to
the stable inflation regime. A contractionary (expansionary) monetary policy shock appears to
first increase (decrease) inflation after which the inflation significantly decreases (increases) for
several years. The strong contraction (expansion) in the cyclical component of the GDP lasts
for roughly three years and is followed by a small short-term expansion (contraction) before the
response decays to zero.

In the stable inflation regime, the (generalized) impulse responses are strongly asymmetric
with the respect to the sign and size of the monetary policy shock as well as to the initial state
of the economy. A contractionary shock causes, on average, roughly a three-year hump-shaped
contraction of the GDP, but it also seems to increase inflation by driving the economy towards the
unstable inflation regime. A small expansionary shock does not move prices much on average,
but a large expansionary shock often drives the economy towards the unstable inflation regime
and propagates high and persistent inflation. The high inflation is followed by a significant
monetary policy tightening and persistent contraction of the GDP after the initial expansion. On
average, the real effects of the monetary policy shock are found somewhat stronger in the stable
inflation regime than in the unstable inflation regime.

The GMVAR model has been previously applied in impulse response analysis by Kalliovirta
and Malinen (2020), who identify the shocks by constraining the reduced form error covariance
matrices, and allow the impact responses of the variables to vary relative to each other across
the regimes. My assumption of a common (time-varying) impact matrix for all the regimes
constraints the relative magnitudes of the impact responses of the variables to be time-invariant
(for each shock), but it leads to flexible identification conditions and enables to test the validity
of the identifying constraints. Kalliovirta and Malinen (2020) estimate the impulse response
functions for each regime of the GMVAR model separately as if each of them was a linear VAR.
In contrast, I allow the regime to switch as a result of a shock and estimate the true (generalized)
impulse response functions of the non-linear VAR.

Structural mixture VARs, in general, have been previously applied for studying to the effects
of monetary policy shocks at least by Burgard et al. (2019), who proposed a mixture VAR with
logistic mixing weights and Cholesky identified shocks. As opposed to Burgard et al. (2019), my
identification scheme is more flexible in the sense that it does not require many (or necessarily
any) zero constraints on the impact effects of the shocks. Moreover, in my model the regime-
switching probabilities depend on the full distribution of the preceding p observations instead of
just on the level of the switching-variables.

The rest of this chapter is organized as follows. Section 4.2 defines the reduced form GM-
VAR model. In Section 4.3, the structural GMVAR model is first introduced. Then, iden-
tification of the shocks and estimation of the model parameters are discussed. Section 4.4
discusses impulse response analysis and describes the generalized impulse response function
(GIRF) (Koop, Pesaran, and Potter, 1996). Section 4.5 presents the empirical application and
Section 4.6 summarizes. Appendices provide proofs for the stated lemma and propositions, a
Monte Carlo algorithm for estimating the GIRF, and details on the empirical application. Finally,
I have accompanied this essay with the CRAN distributed R package gmvarkit (Virolainen,
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2018a), which is comprehensively documented and provides a comprehensive set of tools for
numerical analysis of the model.

4.2 Reduced form GMVAR model
To build theory and notation, consider first the reduced form GMVAR model introduced by
Kalliovirta et al. (2016). Let yt (t = 1, 2, ...) be the d-dimensional time series of interest and
Ft−1 denote the σ-algebra generated by the random vectors {yt−j, j > 0}. For a GMVAR model
with M mixture components and autoregressive order p, we have

yt =
M∑

m=1

sm,t(µm,t + um,t), um,t ∼ NID(0,Ωm) (4.2.1)

µm,t = ϕm,0 +

p∑
i=1

Am,iyt−i, m = 1, ...,M, (4.2.2)

where ϕm,0 ∈ Rd are intercept parameters, Ωm are positive definite covariance matrices, and
for each m, the coefficient matrices Am,i, i = 1, ..., p, are assumed to satisfy the usual stability
condition

det

(
Id −

p∑
i=1

Am,iz
i

)
̸= 0 for |z| ≤ 1, m = 1, ...,M, (4.2.3)

which guarantees stationarity of the component processes. The unobservable regime variables
s1,t, ..., sM,t are such that at each t, exactly one of them takes the value one and the others take
the value zero according to the conditional probabilities P(sm,1 = 1|Ft−1) ≡ αm,t that satisfy∑M

m=1 αm,t = 1. The normally and independently distributed (NID) errors um,t are assumed
independent of Ft−1, and conditional on Ft−1, (s1,t, ..., sM,t) and um,t are independent.

The definition (4.2.1)-(4.2.2) implies that at each t, the process generates an observation
from one of its mixture components, a linear VAR process, that is randomly selected according
to the probabilities given by the mixing weights αm,t. Denoting yt−1 = (yt−1, ..., yt−p), the
mixing weights are defined as (Kalliovirta et al., 2016, Equation (7))

αm,t =
αmndp(yt−1;1p ⊗ µm,Σm)∑M
n=1 αnndp(yt−1;1p ⊗ µn,Σn)

, m = 1, ...,M, (4.2.4)

where α1, ..., αM are mixing weight parameters that satisfy
∑M

m=1 αm = 1 and ndp(·;1p ⊗
µm,Σm) is the density function of the dp-dimensional normal distribution with mean 1p ⊗
µm and covariance matrix Σm. The symbol 1p denotes a p-dimensional vector of ones, ⊗ is
Kronecker product, µm = (Id −

∑p
i=1 Am,i)

−1ϕm,0, and the covariance matrix Σm is given in
Lütkepohl (2005, Equation (2.1.39)) but using the parameters of the mth component process.
That is, ndp(·;1p ⊗µm,Σm) corresponds to the density function of the stationary distribution of
the mth component process.
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The mixing weights are thus weighted ratios of the the component process stationary den-
sities corresponding to the previous p observations. Consequently, the researcher can associate
specific characteristics or give economic interpretations to the regimes. In addition to the (gen-
eralized) impulse response functions of the observable variables, the responses of the mixing
weights may therefore be of interest. The definition of the mixing weights also leads to attrac-
tive theoretical properties such as ergodicity and knowledge of the stationary distribution of p+1
consecutive observations (Kalliovirta et al., 2016, Theorem 1, see the proof of Theorem 1 for
the stationary distribution of p+ 1 consecutive observations). Specifically, the stationary distri-
bution of the process yt = (yt, ..., yt−p+1) is a mixture of dp-dimensional normal distributions
that is characterized by the density

f(y) =
M∑

m=1

αmndp(y;1p ⊗ µm,Σm). (4.2.5)

The knowledge of the stationary distribution is taken advantage of in the impulse response anal-
ysis in Section 4.4.

4.3 Structural GMVAR model

4.3.1 The model setup
Consider the GMVAR model defined in (4.2.1)-(4.2.2). I focus on the ”B-model” setup and
write the structural GMVAR model as

yt =
M∑

m=1

sm,t

(
ϕm,0 +

p∑
i=1

Am,iyt−i

)
+Btet, (4.3.1)

and

ut ≡ Btet =


u1,t ∼ N(0,Ω1) if s1,t = 1 (with probability α1,t)
u2,t ∼ N(0,Ω2) if s2,t = 1 (with probability α2,t)

...
uM,t ∼ N(0,ΩM) if sM,t = 1 (with probability αM,t)

(4.3.2)

where the probabilities are expressed conditionally on Ft−1 and et is an orthogonal structural
error. Unlike in the conventional SVAR analysis, the invertible (d × d) ”B-matrix” (or impact
matrix) Bt, which governs the contemporaneous relations of the shocks, is time-varying and a
function of yt−1, ..., yt−p. This enables to amplify a constant-sized structural shock according to
the conditional variance of the reduced form error, which varies according to the mixing weights.
Appropriate modelling of conditional heteroskedasticity in the B-matrix is of interest, because
the (generalized) impulse response functions may be asymmetric with respect to the size of the
shock.
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We have Ωu,t ≡ Cov(ut|Ft−1) =
∑M

m=1 αm,tΩm, while the conditional covariance matrix of
the structural errors et = B−1

t ut (which have a mixture normal distribution and are not IID but
martingale differences and therefore uncorrelated) is obtained as

Cov(et|Ft−1) =
M∑

m=1

αm,tB
−1
t ΩmB

′−1
t . (4.3.3)

The B-matrix Bt should therefore be chosen so that the structural shocks are orthogonal regard-
less of which regime they come from. I will next discuss the properties of any such B-matrix
that solves the diagonalization problem. Then, I present a locally unique solution under a con-
stant normalization of the structural error’s conditional variance. After that, in the following
two subsections, I will discuss global identification of the shocks, allowing also only partial
identification of the model.

Specifically, I show that my model readily identifies the B-matrix up to ordering of its
columns and changing all signs in a column, but it is not revealed which column of the B-
matrix is related to which shock. The identification follows from the assumption et = B−1

t ut

(and Assumption 4.1 below), which (as I show in this section) implies that for each shock the
relative magnitudes of the impact responses of the variables stay constant over time.1 This is
different to the conventional SVAR setup, where the identification of the B-matrix requires fur-
ther constraints to be imposed on the model. Conventionally, the shocks are often identified,
for instance, by placing economically motivated zero constraints on the impact or the long-run
effects of the shocks (e.g., Kilian and Lütkepohl, 2017, Chapters 8 and 10). Sign constraints, in
turn, are commonly used to obtain a set identification with less restrictive or economically more
plausible constraints (e.g., Kilian and Lütkepohl, 2017, Chapter 13).

In Section 4.3.2, also I make use of zero and sign constraints, but I do it in order to for-
mally label the already locally identified columns of the B-matrix by the shocks of interest.
The required conditions are, nevertheless, flexible, and allow for using sign constraints alone or
together with zero constraints. Some of the constraints are also testable, as they are overiden-
tifying. Section 4.3.3 additionally takes advantage of zero constraints to identify the shock of
interest when the condition for identification through conditional heteroskedasticity fails.

It turns out that any invertible B-matrix that simultaneously diagonalizes the covariance ma-
trices has linearly independent eigenvectors of the matrix ΩmΩ

−1
1 as its columns. If M > 2,

the matrices ΩmΩ
−1
1 , m = 2, ...,M , thus need to share the common eigenvectors in Bt, which

restricts the parameter space for the covariance matrices. In this case, the existence of such
B-matrix can be tested with a likelihood ratio test, for example. Denoting the eigenvalues of
ΩmΩ

−1
1 as λmi, the B-matrix is also unique up to scalar multiples and ordering of its columns

if none of the pairs of λmi, i = 1, ..., d, is identical for all m = 2, ...,M . These results are
formalized in the following assumption and lemma.

1 See Kilian and Lütkepohl (2017, Chapter 14) for a discussion on identification by heteroskedasticity in a linear
VAR model.
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Assumption 4.1. Consider M positive definite (d× d) covariance matrices Ωm, m = 1, ...,M ,
and denote the strictly positive eigenvalues of the matrices ΩmΩ

−1
1 as λmi, i = 1, ..., d, m =

2, ...,M . Suppose that for all i ̸= j ∈ {1, ..., d}, there exists an m ∈ {2, ...,M} such that
λmi ̸= λmj .

Lemma 4.1. Consider M positive definite (d× d) covariance matrices Ωm, m = 1, ...,M , and
an invertible (d×d) matrix Bt such that B−1

t ΩmB
′−1
t are diagonal matrices with strictly positive

diagonal elements. Then, Bt has eigenvectors of ΩmΩ
−1
1 as its columns. Moreover, Bt is unique

up to scalar multiples and ordering of its columns if Assumption 4.1 holds.

Under Assumption 4.1, the columns of Bt are unique up to scalar multiples and ordering,
implying that the shocks are identified up to sign, size, and ordering. Normalizing the condi-
tional covariance matrix of the structural error to a constant diagonal matrix then identifies the
B-matrix up to sign and ordering of the shocks. This is formalized in the following proposition.

Proposition 4.1. Consider M positive definite (d× d) covariance matrices, Ωm, m = 1, ...,M ,
and an invertible (d × d) matrix Bt such that B−1

t ΩmB
′−1
t are diagonal matrices with strictly

positive diagonal elements. Suppose that Assumption 4.1 holds. Then, if the conditional covari-
ance matrix of the structural error, Cov(et|Ft−1) =

∑M
m=1 αm,tB

−1
t ΩmB

′−1
t , is normalized to a

constant diagonal matrix with strictly positive diagonal entries, the B-matrix Bt is unique up to
ordering of its columns and changing all signs in a column.

That is, by fixing an ordering and signs for the columns of the B-matrix, the solution to the
diagonalization problem is unique for any given (constant) normalization of the structural error’s
conditional covariance matrix, say, an identity matrix. In order to find the related B-matrix, it
is then convenient to utilize the following matrix decomposition for the reduced form error
covariance matrices, which was also employed by Lanne and Lütkepohl (2010) and Lanne et al.
(2010) to solve a similar identification problem. My specification of the B-matrix differs from
Lanne et al. (2010) who assume that the instantaneous effects of the shocks are time-invariant,
but it extends the one in Lanne and Lütkepohl (2010) to accommodate time-varying mixing
weights.

I decompose the reduced form error covariance matrices as

Ω1 = WW ′ and Ωm = WΛmW
′, m = 2, ...,M, (4.3.4)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ

−1
1 and the columns of the nonsingular W are the related eigenvectors (that

are the same for all m by construction). When M = 2, the decomposition (4.3.4) always
exists (Muirhead, 1982, Theorem A9.9), but for M > 2 its existence requires that the matrices
ΩmΩ

−1
1 share the common eigenvectors in W . This is, however, testable and relates to the

earlier discussion on the existence of a B-matrix that simultaneously diagonalizes the reduced
form error covariance matrices.

Any scalar multiples of linearly independent eigenvectors of ΩmΩ
−1
1 comprise an appropriate

B-matrix, but only specific scalar multiples comprise the locally unique B-matrix associated
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with a given normalization of structural error’s conditional covariance matrix. Direct calculation
shows that the B-matrix associated with the normalization Cov(et|Ft−1) = Id is obtained as

Bt = W (α1,tId +
M∑

m=2

αm,tΛm)
1/2, (4.3.5)

where BtB
′
t = Ωu,t. Since B−1

t ΩmB
′−1
t = Λm(

∑M
n=1 αn,tΛn)

−1 where Λ1 ≡ Id, the B-
matrix (4.3.5) simultaneously diagonalizes Ω1, ...,ΩM , and Ωu,t for each t so that the structural
error’s conditional covariance matrix is normalized to an identity matrix:

Cov(et|Ft−1) =
M∑

m=1

αm,tΛm

(
M∑
n=1

αn,tΛn

)−1

= Id. (4.3.6)

The SGMVAR model assumes a single B-matrix that varies continuously in time according
to the conditional covariance matrix of the reduced form error, which in turn varies according
to the mixing weights. I established that under Assumption 4.1 and a normalization of the
structural error’s conditional variance, the B-matrix is unique up to ordering of its columns and
switching all signs in a column. Hence, as long as one is willing to impose the assumption of
a single (time-varying) B-matrix, the columns of the B-matrix unambiguously characterize the
estimated impact effects of the shocks, but they do not reveal which column is related to which
shock. Since the impact matrix is also subject to estimation error, further constraints may be
needed for labelling the shocks.2

4.3.2 Identification of the shocks
I derived a locally unique solution for the B-matrix (4.3.5) under Assumption 4.1. However,
global identification requires fixing the signs and the ordering of its the columns. The signs
can be fixed by placing a single strict sign constraint in each of the columns of W , whereas
the ordering of the columns can be fixed by fixing an ordering for the eigenvalues λmi in the
diagonals of Λm. This leads to statistical identification of the model with any arbitrary ordering,
but it does not reveal which column of the B-matrix is related to which shock.

A structural shock relates to an economic shock through the specific constraints in the cor-
responding column of W (or equally of the B-matrix) that only the shock of interest satisfies.
If such constraints are readily satisfied in the (unrestricted) estimate of W , the identification
amounts to labelling the structural shocks by the appropriate economic shocks, as long as the
constraints are strong enough to pin down a unique ordering for the columns of W (this argu-
ment will be formalized in Proposition 4.2 below). If the unrestricted estimate of W is such
2 As opposed to my single B-matrix, an alternative specification of the structural model would incorporate a separate

B-matrix for each of the regimes. My B-matrix allows the magnitude of the impact effects of a constant sized
shock to vary according to the mixing weights, but unlike my model, the alternative specification would allow
variation in the impact effects also relative to the other variables. The alternative specification would, however,
require other identification constraints, which may also restrict variation of the impact effects.
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that the shocks of interest cannot be uniquely associated to it, the appropriate constraints can be
placed for their identification.3

As in practice the interest is often in identifying only some specific shock or shocks, it is of
interest to consider only partial identification of the B-matrix as well. Specifically, the jth struc-
tural shock is uniquely identified if the jth column of the B-matrix (4.3.5) is unique for given
mixing weights α1,t, ..., αM,t. This requires that the jth columns of W and Λm, m = 2, ..,M ,
are unique. The following proposition gives sufficient conditions for global identification of the
last d1 shocks when the related pairs of λmi are distinct for some m (which is always the case
under Assumption 4.1 but does not require Assumption 4.1 if d1 < d).

Proposition 4.2. Suppose Ω1 = WW ′ and Ωm = WΛmW
′, m = 2, ...,M, where Λm =

diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues of ΩmΩ
−1
1 in the diagonal

and the columns of the nonsingular W are the related eigenvectors. Then, the last d1 structural
shocks are uniquely identified if

(1) for all j > d− d1 and i ̸= j there exists an m ∈ {2, ...,M} such that λmi ̸= λmj ,

(2) the columns of W are constrained in a way that for all i ̸= j > d − d1, the ith column
cannot satisfy the constraints of the jth column as is nor after changing all signs in the
ith column, and

(3) there is at least one (strict) sign constraint in each of the last d1 columns of W .

Condition (3) of Proposition 4.2 fixes the signs in the last d1 columns of W and therefore
the signs of the instantaneous effects of the corresponding shocks. Changing the signs of the
columns is effectively the same as changing the signs of the corresponding shocks, so Condi-
tion (3) is not restrictive, however (as the structural shock has a distribution that is symmetric
about zero). The assumption that the identified shocks are the last d1 shocks is neither restrictive
as one may always reorder the structural shocks accordingly.

For example, if d = 3, λm1 ̸= λm3 for some m, and λm2 ̸= λm3 for some m, the third
structural shock can be identified with the following constraints:

Bt =

∗ ∗ ∗
+ + −
+ + +

 or

− ∗ +
− + −
∗ + +

 or

+ + 0
∗ ∗ ∗
∗ ∗ +

 (4.3.7)

and so on, where ”∗” signifies that the element is not constrained, ”+” denotes a strict positive
and ”−” a strict negative sign constraint, and ”0” means that the element is constrained to zero.
In the first example, Condition (2) is satisfied because the last shock is assumed to move the last
two variables to the opposite directions when the first two shocks are assumed to move them to
the same direction, implying that the first two shocks cannot satisfy the constraint imposed on

3 For a more thorough discussion on economic shocks and their identification, see Ramey (2016) and Uhlig (2017),
for example.
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the last shock (as is nor after changing all signs of the impact responses). Similarly in the second
example, the last shock moves to opposite directions the variables that the first two shocks move
to the same direction. The last example imposes a zero constraint for the impact response of the
first variable to the last shock, while the first two shocks impose strict sign constraints. Since the
non-zero impact responses of the first two shocks cannot satisfy the zero constraint of the last
shock, Condition (2) is satisfied. By using sign and zero constraints in this manner, it is easy to
produce further examples that lead to the identification of the last shock.

Imposing sign or zero constraints on W equals to placing them on Bt, so they can be justified
economically. Under Assumption 4.1, the model is statistically identified prior to imposing
the constraints, making the parameter constraints required in Condition (2) also testable. This
different to the conventional SVAR setup in which the identifying constraints cannot be validated
statistically (e.g., Kilian and Lütkepohl, 2017, Chapters 8 and 10). Similarly to the conventional
SVAR model, labelling the shocks formally with the economic shocks of interest, however,
requires the identification constraints to be economically motivated. As Proposition 4.2 shows
and the examples in (4.3.7) demonstrate, my method facilitates finding economically plausible
identification constraints by flexibly using sign constraints alone or in combination with zero
constraints. A point identification can be obtained even with only sign constraints, while in the
conventional SVAR setup, sign constraints alone lead to a set identification only (e.g., Kilian
and Lütkepohl, 2017, Chapter 13). If Assumption 4.1 fails, the structural GMVAR model is not
fully identified and the problem of testing the parameter constraints is non-standard, which is
briefly addressed in the next section.

4.3.3 Identification of the shocks under partial identification of the model
If Assumption 4.1 is violated and the structural GMVAR model is thus not statistically identi-
fied, the shocks of interest can still be identified with Proposition 4.2 if Condition (1) is satisfied.
When the shocks of interest do not satisfy Condition (1), their identification requires stronger
constraints than in Proposition 4.2. Therefore, I present the following proposition that provides
sufficient criteria for global identification of the last d1 shocks when Condition (1) fails; specifi-
cally, when exactly one of the eigenvalues λmi with i ̸= j > d− d1 is identical to λmj for all m.
For simplicity, I assume that only one of the shocks with identical eigenvalues is to be identified,
i.e., i ≤ d− d1 above.

Proposition 4.3. Let d1 < d. Consider the matrix decomposition of Proposition 4.2 and further
suppose that for j = d− d1 + 1 and some i ≤ d− d1, we have λmi = λmj for all m, but for all
l ̸∈ {i, j}, λml ̸= λmj for some m. Then, the last d1 structural shocks are uniquely identified if
Conditions (1)-(3) of Proposition 4.2 are otherwise satisfied, and in addition

(4) the column i ≤ d − d1 of W such that λmi = λmj for all m has at least one (strict) sign
constraint and the jth column has a zero constraint where the ith column has the (strict)
sign constraint.
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Note that the assumption j = d − d1 + 1 is made without loss of generality because the
structural shocks can always be reordered accordingly by also reordering the columns of W
(including the constraints) and the eigenvalues λmi correspondingly.

To exemplify, if d = 4, λm1 ̸= λm4 for some m, λm2 ̸= λm4 for some m, and λm3 = λm4 for
all m, the following constraints lead to global identification of last shock:

Bt =


∗ ∗ ∗ ∗
∗ ∗ + 0
+ + ∗ −
+ + ∗ +

 or


∗ ∗ − 0
∗ ∗ ∗ ∗
+ − ∗ +
− + ∗ +

 or


+ − − 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ +

 (4.3.8)

and so on. Condition (4) is satisfied in each of the above examples, because the third shock has
a strict sign constraint for the variable that the last shock imposes a strict zero constraint. As is
demonstrated above, the structural shocks can often be identified with flexible constraints even
when some of the eigenvalues are identical for all regimes.

Under Conditions (1) and (3) of Proposition 4.2, the additional constraints on W were stated
testable because they are overidentifying and statistical identification of the model can always
be achieved by fixing the order of the eigenvalues λmi, as long as none of the pairs of λmi,
i = 1, ..., d, is identical for all m = 2, ...,M . In the setup of Proposition 4.3, however, when
λmi = λmj for all m and some i ̸= j, the model is not generally identified even when one fixes
a unique ordering for the eigenvalues and the columns of W . Also, even if Condition (4) of
Proposition 4.3 is satisfied, only partial identification of the B-matrix is obtained since nothing
guarantees unique identification of the ith column of W , which would require stronger condi-
tions. Consequently, the model is not identified under the null nor the alternative hypothesis
when testing for the constraints in Conditions (2) and (4), making the testing problem nonstan-
dard and the conventional asymptotic distributions of the likelihood ratio and Wald test statistics
unreliable. The same applies when one tests the equality of the eigenvalues in order to asses
the validity of Condition (1) of Proposition 4.2, as the model is not identified under the null.
Deriving formal tests under no identification is, however, a major task and beyond the scope of
this essay.4

If more than two eigenvalues are identical for all m = 2, ...,M but they are not all identical,
it may still be possible to find flexible conditions for identification of the shocks. Specifically,
the idea utilized in the proof of Proposition 4.3 (presented in Appendix 4.A) can be applied to
larger numbers of identical eigenvalues. If all the eigenvalues are identical for all covariance
matrices, then Ωm = λm1Ω1 and the identification condition is the same as for the conventional
4 Lütkepohl, Meitz, Netšunajev, and Saikkonen (2021) discussed a related testing problem under no identification

and developed an asymptotic Wald type test for testing equality of the λmi parameters in the context of a linear
SVAR model incorporating two volatility regimes with a known change point and (reduced form) shocks arriving
from a class of elliptical distributions. Meitz and Saikkonen (2021), on the other hand, studied the asymptotic
properties of a likelihood ratio test statistic under no identification when testing for the number of regimes in
mixture models with Gaussian conditional densities. One of the studied models is the GMAR model (Kalliovirta,
Meitz, and Saikkonen, 2015), which is the univariate counterpart of the GMVAR model (Kalliovirta et al., 2016).
See Lewis (2022) for a discussion on weak identification in models identified by heteroskedasticity.
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SVAR model (which is given, for example, in Lütkepohl, 2005, Section 9.1.2 for the B-model).
As a general remark, observe that constraining an element of Bt to be any constant other than
zero is infeasible, because all elements on the right side of (4.3.5) are either zero or time-varying
due to the time-varying mixing weights.5

4.3.4 Maximum likelihood estimation
The parameters of the reduced form GMVAR model are collected to the vector θ = (ϑ1, ...,ϑM ,
α1, ..., αM−1) ((M(d2p+d+d(d+1)/2)+1)×1), where ϑm = (ϕm,0, vec(Am,1), ..., vec(Am,p),
vech(Ωm)), vec is a vectorization operator that stacks the columns of a matrix on top of each
other, and vech stacks the columns of a matrix from the main diagonal downwards (including
the main diagonal). The last mixing weight parameter αM is omitted because it is obtained from
the constraint

∑M
m=1 αm = 1.

Using the notation described in Section 4.2, indexing the observed data as y−p+1, ..., y0, y1, ..., yT ,
and assuming that the initial values y0 = (y−p+1, ..., y0) are stationary, the exact log-likelihood
function of the reduced form GMVAR model takes the form (Kalliovirta et al., 2016, Equa-
tions (9) and (10))

Lt(θ) = log

(
M∑

m=1

αmndp(y0;1p ⊗ µm,Σm)

)
+

T∑
t=1

lt(θ), (4.3.9)

where

lt(θ) = log

(
M∑

m=1

αm,t(2π)
−d/2 det(Ωm)

−1/2 exp

{
−1

2
(yt − µm,t)

′Ω−1
m (yt − µm,t)

})
.

(4.3.10)
If it does not seem reasonable to assume that the initial values are stationary, one may condition
on them and base the estimation on the conditional log-likelihood function, which is obtained
by dropping the first term on the right side of (4.3.9).

The reduced form GMVAR model can be estimated by maximizing the exact or conditional
likelihood function in (4.3.9) and (4.3.10) with respect to the parameter θ. To ensure identifica-
5 I have focused on the B-model, where the structure is imposed on the contemporaneous relations of the shocks.

Alternatively, one may consider the ”A-model” setup in which the structure is placed on the contemporaneous
relations of the observable variables governed by the ”A-matrix” (see, e.g., Lütkepohl, 2005, Section 9.1.1). The
A-model is obtained implicitly from the B-model (4.3.1) and (4.3.2) by defining the A-matrix as At ≡ B−1

t ,
where Bt is given by (4.3.5). In this case, the structural model Equation (4.3.1) becomes

Atyt =

M∑
m=1

(Atϕm,0 +

p∑
i=1

AtAm,iyt−i) + et,

thereby incorporating continuously varying intercepts and coefficient matrices due to the constant covariance
normalization of the structural shocks. In practice, however, one needs to carefully derive how any specific
constraint on At can be imposed by restricting W .
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tion, the parameter space should be constrained so that the mixture components cannot be ’rela-
belled’, for instance, by assuming that the mixing weight parameters are in a decreasing order,
αM > · · ·α1 > 0, and ϑi = ϑj only if i = j (Kalliovirta et al., 2016, Equation (11)). If M = 2,
the structural GMVAR model is then obtained by simultaneously diagonalizing the reduced form
error covariance matrices as discussed Section 4.3.1. However, should overidentifying restric-
tions be imposed on Bt through W or if M ≥ 3, it is more convenient to reparametrize the
model with W and Λm, m = 2, ...,M , instead of Ω1, ...,ΩM and maximize the log-likelihood
function subject to the new set of parameters and constraints. In this case, the decomposition
(4.3.4) is plugged in to the log-likelihood function and the vech(Ω1), ..., vech(ΩM) are replaced
with vec(W ), λ2, ..., λM , where λm = (λm1, ..., λmd), in the parameter vector θ.

Maximizing the complex and highly multimodal log-likelihood function can be challeng-
ing in practice, particularly if there are more than two regimes. Following Dorsey and Mayer
(1995), Meitz, Preve, and Saikkonen (2018, forthcoming), and Virolainen (2018b, forthcoming),
I employ a two-phase estimation procedure where, in the first phase, a genetic algorithm is used
to find starting values for a gradient based method which then, in the second phase, often con-
verges to a nearby local maximum or saddle point. The genetic algorithm in the accompanying
R package gmvarkit (Virolainen, 2018a) has been modified to improve its performance signif-
icantly, and it functions similarly to the one described in Chapter 2 for the univariate GMAR
(Kalliovirta et al., 2015), StMAR (Meitz et al., forthcoming), and G-StMAR (Virolainen, forth-
coming, also Chapter 2) models. In order to obtain reliable results, a (sometimes very large)
number of estimation rounds should be performed, for which gmvarkit makes use of parallel
computing.

4.4 Impulse response analysis
The expected effects of the structural shocks in the SGMVAR model generally depend on the
initial values as well as on the sign and size of the shock, which makes the conventional way of
calculating impulse responses unsuitable (see, e.g., Kilian and Lütkepohl, 2017, Chapter 4). Fol-
lowing Koop et al. (1996) and Kilian and Lütkepohl (2017, Section 18.2.2), I therefore consider
the generalized impulse response function (GIRF) defined as

GIRF(h, δj,Ft−1) = E[yt+h|δj,Ft−1]− E[yt+h|Ft−1], (4.4.1)

where h is the chosen horizon and Ft−1 = σ{yt−j, j > 0} as before. The first term on the
right side is the expected realization of the process at time t + h conditionally on a structural
shock of size δj ∈ R in the jth element at time t and the previous observations. The latter
term on the right side is the expected realization of the process conditionally on the previous
observations only. The GIRF thus expresses the expected difference in the future outcomes
when the structural shock of size δj in the jth element hits the system at time t as opposed to all
shocks being random.

It is easy to see that the SGMVAR model has a p-step Markov property, so conditioning on
(the σ-algebra generated by) the p previous observations yt−1 = (yt−1, ..., yt−p) is effectively the
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same as conditioning on Ft−1 at time t and later. The history yt−1 can be either fixed or random,
but with random history the GIRF becomes a random vector, however. Using fixed yt−1 makes
sense when one is interested in the effects of the shock at a particular point of time, whereas
more general results are obtained by assuming that yt−1 follows the stationary distribution of
the process. If one is, on the other hand, interested in a specific regime, yt−1 can be assumed to
follow the stationary distribution of the corresponding component model.

The GIRF and its distributional properties can be approximated with a Monte Carlo algo-
rithm that generates (partial) realizations of the process and then takes the sample mean for point
estimate. If yt−1 is random and follows the distribution G, the GIRF should be estimated for
different values of yt−1 generated from G, and then the sample mean and sample quantiles can
be taken to obtain the point estimate and confidence intervals that reflect the uncertainty about
the initial value. Such an algorithm, adapted from Koop et al. (1996, pp. 135-136) and Kilian
and Lütkepohl (2017, pp. 601-602), is given in Appendix 4.B.

Because the SGMVAR model facilitates associating statistical characteristics and economic
interpretations to the regimes, and because asymmetries in the GIRFs are caused by regime-
switches, it may be of interest to also examine the effects of a structural shock to the mixing
weights αm,t, m = 1, ...,M . We then consider the related GIRFs

GIRFαm(h, δj,Ft−1) = E[αm,t+h|δj,Ft−1]− E[αm,t+h|Ft−1] (4.4.2)

for which point estimates and confidence intervals can be constructed similarly to (4.4.1).

4.5 Empirical application
My empirical application studies asymmetries in the effects of U.S. monetary policy shocks.
Asymmetric effects of U.S. monetary policy shocks have been studied, among others, by Weise
(1999), Garcia and Schaller (2002), Lo and Piger (2005), and Höppner, Melzer, and Neumann
(2008), who all found the effects of monetary policy shocks to production stronger during re-
cessions (or low growth periods) than booms (or high growth periods). Weise (1999) also found
evidence in favor of large and small shocks having different effects, and large positive and neg-
ative monetary shocks having different effects. Höppner et al. (2008) concluded that the real
effects of monetary policy shocks have decreased over their sample period from 1962 to 2002.
Tenreyro and Thwaites (2016), on the other hand, found the effects of U.S. monetary policy
shocks less powerful in recessions. Primiceri (2005) found evidence of time-variation in the
U.S. monetary policy.

I consider the quarterly U.S. data covering the period from 1954Q3 to 2021Q4 (270 obser-
vations) and consisting of four variables: real GDP, GDP implicit price deflator, producer price
index (all commodities), and an interest rate variable. My policy variable is the interest rate
variable, which is the effective federal funds (FF) rate from 1954Q3 to 2008Q2. After that I
replaced it with the Wu and Xia (2016) shadow rate, which is not constrained by the zero lower
bound and also quantifies unconventional monetary policy measures. The Wu and Xia (2016)
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shadow rate series was retrieved from the Federal Reserve Bank of Atlanta’s website and the
rest of the data were retrieved from the Federal Reserve Bank of St. Louis database.

The logarithms of real GDP, GDP deflator, and producer price index are clearly nonstation-
ary (the series are not shown) and hence need to be detrended before fitting a GMVAR model
to the series. I detrended the logarithm of the real GDP by separating its cyclical component
from the trend with the one-sided Hodrick-Prescott (HP) filter and then considering the cyclical
component.6 I thereby implicitly assume that the monetary policy shock does not have perma-
nent effects on real output. I detrended the logarithms of the price variables by taking the first
difference and multiplying it by hundred, so that the resulting series approximate the percentage
growth rates. The interest rate variable is treated as stationary.

The series are presented in the first four top panels of Figure 4.1 with the shaded areas
indicating the periods of NBER based U.S. recessions. Throughout, I refer to the variables as
GDP (output), GDPDEF (prices), PPI (commodity prices), and RATE (interest rate) without
making it explicit that some of them are detrended. The (S)GMVAR model of autoregressive
order p and M mixture components is referred to as (S)GMVAR(p,M ) model.

I select the order of my GMVAR model by first finding a suitable autoregressive order for
a linear Gaussian VAR; that is, a GMVAR(p, 1) model. The AIC is minimized by the order
p = 3, suggesting that this might be the appropriate lag order for modelling autocorrelation. So
I estimate a GMVAR(3, 2) model, which I find superior to the linear VAR. Graphical quantile
residual diagnostics reveal that my GMVAR(3, 2) model adequately captures the autocorrelation
structure of the series, but some of the conditional heteroskedasticity and excess kurtosis is not
captured. In my view, the overall adequacy of the model is, nevertheless, reasonable enough for
further analysis. Details on the model selection and quantile residual diagnostics are given in
Appendix 4.C.

The estimated mixing weights of the two regimes are presented in the bottom panel of Fig-
ure 4.1. The second regime (red) mainly dominates during periods of high inflation and interest
rate in the 1970’s and 1980’s, after the collapse of Lehman Brothers in the Financial crisis until
the end of 2009, and finally during the COVID-19 crisis from the third quarter of 2020 onwards.
I refer to this regime as the unstable inflation regime, as it generally exhibits high or volatile
inflation. The first regime (blue) prevails when the second one does not: before 1970’s, short
periods during 1970’s, and from the mid 1980’s onwards but excluding the Financial crisis and
the COVID-19 crisis (but including the first two quarters of 2020). I refer to this regime as the
stable inflation regime, as it is characterized by moderate inflation. Details about the character-
istics of the regimes are provided in Appendix 4.C.

6 The one-sided HP filter was obtained from the two-sided HP filter by applying the filter up to horizon t, taking
the last observation, and repeating this procedure for the full sample t = 1, ..., T . In order to allow the series
to start from any phase of the cycle, I applied the one-sided filter to the full available sample from 1947Q1 to
2021Q4 before extracting my sample period from it. I computed the two-sided HP filter with the R package lpirfs
(Adämmer, 2021) by using the standard smoothing parameter value of 1600. For robustness, I also considered
the first differences and the linear projection filter proposed by Hamilton (2018). But they led to generalized
impulse response functions where supposedly contractionary monetary policy shocks seemed to have significant,
persistent expansionary effects on real GDP (not shown). Hence, I preferred the HP filter.
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Figure 4.1: Quarterly U.S. series covering the period from 1954Q3 to 2021Q4. The top panel
presents the cyclical component of real GDP (GDP) which I separated from the trend using the
one-sided Hodrick-Prescott filter. The second and third panels present the log-differences of
GDP implicit price deflator (GDPDEF) and producer price index (PPI) multiplied by hundred.
The fourth panel presents an interest rate variable, which is the effective federal funds from
1954Q3 to 2008Q2 and the Wu and Xia (2016) shadow rate from 2008Q3 to 2021Q4. The
bottom panel shows the estimated mixing weights of the fitted GMVAR(3, 2) model. The shaded
areas indicate the NBER based U.S. recessions.

4.5.1 Identification of the monetary policy shock
Decomposing the covariance matrices of the reduced form GMVAR(3, 2) model as in (4.3.4)
gives the following estimates for the structural parameters:

Ŵ =


0.14 (0.054) 0.22 (0.065) 0.44 (0.053) −0.13 (0.136)

−0.20 (0.014) −0.05 (0.028) 0.07 (0.012) −0.00 (0.022)
0.00 (0.168) −1.03 (0.078) 0.47 (0.110) −0.06 (0.158)
0.03 (0.029) 0.03 (0.041) 0.18 (0.100) 0.30 (0.055)

 , λ̂2 =


1.08 (0.227)
3.02 (0.636)

11.05 (2.473)
18.20 (3.601)

 ,

(4.5.1)
where the ordering of the variables is yt = (GDPt,GDPDEFt,PPIt,RATEt), the estimates λ̂2i

are in an increasing order (which fixes an arbitrary ordering for the columns of Ŵ ), and approx-
imate standard errors are given in parentheses next to the estimates. The estimates that deviate
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from zero by more than two times their approximate standard error are bolded. I proceed by
assuming that all the λ2i, i = 1, ..., 4, are different to each other, i.e., that Assumption 4.1
holds, which leads to statistical identification of the model. After identifying the monetary
policy shock, the robustness of my identification with respect to this unjustified assumption is
discussed.7

Based on the estimates and their standard errors in (4.5.1), the first shock moves GDP and
inflation to the opposite directions, whereas the second shock moves GDP and commodity price
inflation to the opposite directions. Since the instantaneous movements of the interest rate vari-
able are insignificant, these two shocks do not seem plausible candidates for the monetary policy
shock. The third shock moves the interest rate variable on impact more significantly than the
first two shocks, but since production and both prices move significantly to the same direction,
its characteristics appear similar to an aggregate demand shock and not a monetary policy shock.
The last shock moves the interest rate variable significantly, while it also moves GDP, inflation,
and commodity price inflation to the opposite direction, which is consistent with many of the
standard the economic theories (e.g., Galı́, 2015). The impact effects of GDP, inflation, and
commodity price inflation are, however, statistically insignificant and the response of inflation
is very weak. Nevertheless, among the four structural shocks obtained for the model, the char-
acteristics of the last shock mostly resemble those of a monetary policy shock, so I deem it as
the monetary policy shock.

Identifying the monetary policy shock formally by Proposition 4.2 requires such constraints
to be imposed on W that it can be unambiguously distinguished from the other shocks. I assume
that the monetary policy shock moves the GDP and commodity price inflation to the opposite
direction from the interest rate variable. In addition, I impose a zero constraint on the instanta-
neous movement of inflation, as the unrestricted estimated is very close to zero compared to the
approximate standard error, and it allows to avoid making restrictive assumptions about the first
and third shocks. The Wald test produces the p-value 0.92 for the zero constraint, so it is not
rejected.

To distinguish the monetary policy shock from the other shocks, I assume that the first and
third shocks move inflation at impact. This is not economically restrictive (since the responses
can be very small), but it is a statistically reasonable assumption, as the Wald test rejects the
hypotheses that the impact responses are zero (jointly or individually) with p-values less than
10−7. The Wald test produces the p-value 0.056 for the hypothesis that the second shock does
not move inflation at impact, so it is not rejected. Therefore, I assume that the second shock
moves the GDP and commodity price inflation to the opposite directions, as the correspond-
ing estimates are large compared to their approximate standard errors making the constraints
statistically sensible.

The above-described identification produced the following estimates for the GMVAR(3, 2)

7 The approximate standard errors cannot be used to infer about the (in)equality of λ2i, i = 1, ..., 4, without
considerably complex examinations, as they are (asymptotically) valid only if the λ2i are different to each other
in the first place (see Lütkepohl et al., 2021, for a related discussion).
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model:

Ŵ2 =


0.14 (0.054) 0.22 (0.065) 0.45 (0.037) −0.12 (0.065)

−0.20 (0.014) −0.05 (0.028) 0.07 (0.012) 0
0.00 (0.168) −1.03 (0.078) 0.47 (0.109) −0.05 (0.068)
0.03 (0.028) 0.03 (0.041) 0.17 (0.044) 0.30 (0.026)

 , λ̂2 =


1.08 (0.227)
3.02 (0.640)

11.05 (2.583)
18.20 (4.398)


(4.5.2)

The estimates changed only slightly from the unrestricted ones in (4.5.1), and the negative im-
pact responses of output and commodity prices in the fourth column remain statistically insignif-
icant. The estimates for λ23 and λ24 are somewhat close to each other relative to their standard
errors, but due to my zero constraint on the inflation, Proposition 4.3 identifies the monetary
policy shock even if λ23 = λ24 (or λ21 = λ24). The monetary policy shock is identified also
if additionally λ2i = λ2j for any i, j = 1, 2, 3, so my identification is not particularly sensitive
to the validity of the unjustified Assumption 4.1 (while the approximate standard errors and the
Wald test results are invalid if the assumption fails).

4.5.2 Generalized impulse response functions
Due to the endogenously determined regime-switching probabilities and the fact that I allow the
regime to switch as a result of a shock, there are multiple types of possible asymmetries: the
impulse responses can vary depending on the initial value as well as on the sign and size of the
shock. I study the state-dependence of the (generalized) impulse response functions by drawing
initial values from the stationary distribution of each regime separately. Then, I calculate the
90% confidence intervals that reflect uncertainty about the initial value within the given regime
as is described in Section 4.4 and Appendix 4.B. Asymmetries related to the sign and size of
the shock are studied by estimating the GIRFs for positive (contractionary) and negative (expan-
sionary) one-standard-error (small) and two-standard-error (large) shocks. After estimating the
GIRFs, they are scaled so that the peak effect of the interest variable is 25 basis points within
the first four quarters, making the responses to shocks of different sign and size comparable.8

Figure 4.2 presents the GIRFs h = 0, 1, ..., 32 quarters ahead estimated for the identified
monetary policy shock.9 The GIRFs of inflation rate and commodity price inflation rate are
not accumulated to levels. From top to bottom, the responses of GDP, inflation rate, commod-
ity price inflation rate, interest rate, and the first regime’s mixing weights are depicted in each
row, respectively. The first [third] column shows the responses to small contractionary (blue
solid line) and expansionary (red dashed line) shocks with the initial values generated from the
stationary distribution of the first [second] regime. The second [fourth] column shows the re-
sponses to large contractionary and expansionary shocks with the initial values generated from
8 The GIRFs are scaled based on the peak response instead of the initial response, because the peak response is

much higher compared to the initial response in the first regime than in the second regime. Scaling the GIRFs
based on the initial response would then shift the response of the interest rate variable significantly higher in the
first regime than in the second regime.

9 I use R1 = R2 = 2500 in the Monte Carlo algorithm, i.e., for each regime, size, and sign of the shock I draw 2500
initial values, and for each of those initial values the GIRF is estimated based on 2500 different sample paths.
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the first [second] regime. The shaded areas are the 90% confidence intervals that reflect un-
certainty about the initial value within the given regime. The responses of the second regime’s
mixing weights are not depicted because they are the negative of those of the first regime.

In the first regime (the stable inflation regime; the first and second columns of Figure 4.2),
contractionary (expansionary) monetary policy shock causes a significant contraction (expan-
sion) in the GDP, with the peak effect occurring after three to four quarters. On average, the
response is hump-shaped and decays to zero roughly after three years from impact.10 As the
confidence bounds show, the response switches sign from some of the starting values, while
some of the starting values display a persistent contraction. Particularly large shocks seem to
cause a delayed expansion (contraction) from many of the starting values - shortly after the
impact when the shock is contractionary and later when the shock is expansionary.

The prices seem to mostly rise in response to a contractionary monetary policy shock, al-
though one would often expect contractionary monetary policy shocks to decrease inflation due
to the decreased demand. This is often referred to as the price puzzle, and it has been discussed
recently, for instance, in Ramey (2016, Section 3.3.2, and the references therein).11 As is ex-
plained in Appendix 4.C.3, the prices rise because the shock drives the economy towards the
unstable inflation regime, which has higher long-run inflation.

On average, inflation does not move much in response to a small expansionary monetary
policy shock, while the interest rate stays low relatively persistently and is accompanied with a
roughly three years long expansion of the GDP. A large expansionary shock drives the economy
towards the unstable inflation regime relatively more than a small expansionary shock, as the re-
sponses of the first regime’s mixing weights show. Consequently, the inflation mostly increases
and the interest rate variable increases relatively fast towards zero, and as the confidence bounds
show, from many of the starting values the interest rate variable overshoots significantly. It is
shown in Appendix 4.C.3 that these GIRFs are the ones that also display particularly high peak
inflation, and that the significant monetary policy tightening is accompanied with a persistent
contraction of the GDP after the initial expansion.

In the second regime (the unstable inflation regime; the third and fourth columns of Fig-

10By zero, I mean the expected observation if all the shocks were random. Accordingly, by positive I mean expected
observations larger than that and by negative expected observations smaller than that.

11A popular explanation is that the Fed uses more information in predicting the future inflation than the autoregres-
sive system of the variables included in the model (Sims, 1992). Consequently, the identified monetary policy
shock also contains a component that incorporates the Fed’s endogenous response to the prediction of the future
inflation that is not captured by the autoregressive system of the included variables. If the endogenous response is
not strong enough to offset the predicted inflation, the impulse responses may then display a rise in the inflation.
Another explanation proposes that the prices increase due to the cost-push effect of the monetary policy shock:
an increase in the nominal interest rate increases the marginal cost of production of the firms who operate on bor-
rowed money, and thereby decreases the aggregate supply and increases the price level (e.g., Barth and Ramey,
2001, Ravenna and Walsh, 2006). Several authors have, however, argued that the cost-channel is not likely strong
enough to cause a price puzzle even in the short-run (e.g., Castelnuovo, 2012, Kaufmann and Scharler, 2009,
Rabanal, 2007). Nonetheless, I find my empirical results interesting, as the long-run price puzzle arises only from
some of the starting values, while its occurrence is also sensitive to the sign and size of the shock. Moreover, as is
discussed in Appendix 4.C.1, enforcing linearity to the autoregressive dynamics makes the price puzzle worse.
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Figure 4.2: Generalized impulse response functions h = 0, 1, ...., 32 quarters ahead estimated
for the monetary policy shock identified in Section 4.5.1 using R1 = R2 = 2500 in the Monte
Carlo algorithm presented in Appendix 4.B. From the top to bottom, the responses of production,
prices, commodity prices, the interest rate variable, and the first regime’s mixing weights are
depicted in each row, respectively. The GIRFs are not accumulated for the prices variables, i.e.,
to responses are for inflation rates. The first [third] column shows the responses to a positive
(blue solid line) and negative (red dashed line) one-standard-error shocks with the initial values
generated from the stationary distribution of the first [second] regime. The second [fourth]
column shows the responses to a positive and negative two-standard-error shocks with the initial
values generated from the first [second] regime. All GIRFs have been scaled so that peak effect
of the interest rate variable is 25 basis points during the first four quarters. The shaded areas
represent the 90% confidence intervals that reflect uncertainty about the initial state within the
given regime. Responses of the second regime’s mixing weights are omitted because they are
the negative of the first regime’s mixing weights’ responses.
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ure 4.2), contractionary (expansionary) monetary policy shock causes a strong contraction (ex-
pansion) of the GDP, with the peak effect occurring after two quarters. After roughly three years,
from most of the starting values the response overshoots and becomes expansionary (contrac-
tionary) before decaying to zero. Inflation rate and commodity price inflation rate rise after the
impact and then decrease significantly for several years before the price levels stabilize.

The interest rate decays towards zero for roughly two years after which, on average, it de-
creases (increases) slightly below (above) zero before returning to zero. The response of the
interest rate switches its sign less significantly when the shock is contractionary, when also the
inflationary effects of the shock are slightly weaker. The scaled GIRFs are almost identical for
small and large shocks, so there does not appear to be much asymmetries with respect to the
size of the shock. The asymmetries are weak, because the monetary policy shock has relatively
weak effect on the regime-switching probabilities, as the scaled responses of the first regime’s
mixing weights show (the third and fourth bottom panels of Figure 4.2).

Overall, expansionary and contractionary monetary policy shocks seem to both mostly in-
crease the probability of the unstable inflation regime, significantly more so if the economy is
in the stable inflation regime when the shock arrives (the bottom panels in Figure 4.2). In the
stable inflation regime, a large shock increases the probability of entering the unstable inflation
regime relatively more than a small shock, and often propagates high and persistent inflation,
which is followed by a significant monetary policy tightening and a persistent contraction of the
GDP. On average, the real effects of monetary monetary policy shocks are somewhat stronger in
the stable inflation regime than in the unstable inflation regime, but the (average) effects die out
equally fast.

4.6 Summary
I introduced a structural version of the Gaussian mixture vector autoregressive model (Kalliovirta
et al., 2016) that incorporates endogenously determined mixing weights and a time-varying B-
matrix. I showed that my model generally identifies the structural shocks up to ordering and
sign, but does not reveal which column of the B-matrix is related to which shock. Since the
B-matrix is also subject to an estimation error, I made use of the matrix decomposition pro-
posed by Lanne and Lütkepohl (2010) and Lanne et al. (2010) and derived general conditions
for formally identifying any subset of the shocks. This led to flexible identification conditions,
and some of the constraints are also testable. For impulse response analysis, I utilized the gen-
eralized impulse response function (Koop et al., 1996) and proposed a Monte Carlo algorithm
for its estimation by making use of the known stationary distribution of the SGMVAR process.
This essay is accompanied with the CRAN distributed R package gmvarkit (Virolainen, 2018a),
which provides a comprehensive set of tools for numerical analysis of the model.

My empirical application studied asymmetries in the expected effects of monetary policy
shocks in the U.S. using a quarterly series covering the period from 1954Q3 to 2021Q4. My
SGMVAR model identified two regimes: a stable inflation regime and an unstable inflation
regime. The unstable inflation regime is characterized by high or volatile inflation, and it mainly
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prevails in the 1970’s, early 1980’s, during the Financial crisis, and in the COVID-19 crisis from
2020Q3 onwards. The stable inflation regime, in turn, is characterized by moderate inflation,
and it prevails when the stable inflation regime does not. I found the effects of the monetary
policy shock relatively symmetric in the unstable inflation regime, as it rarely causes a switch
to the stable inflation regime. A contractionary (expansionary) monetary policy shock appears
to first increase (decrease) inflation after which the inflation significantly decreases (increases)
for several years. The strong contraction (expansion) in the cyclical component of GDP lasts for
roughly three years and is followed by a relatively mild expansion (contraction) along with the
interest rate variable overshooting to the negative (positive) side.

The effects of the monetary policy shock were found strongly asymmetric in the stable in-
flation regime with respect to the initial state of the economy as well as to the sign and size
of the shock. A large shock often causes relatively stronger inflationary effects than a small
shock, while both contractionary and expansionary shocks seem to increase inflation by driv-
ing the economy towards the unstable inflation regime. A small expansionary shock does not
move prices much on average, but a large expansionary shock often drives the economy towards
the unstable inflation regime and propagates high and persistent inflation. The high inflation is
followed by a significant monetary policy tightening and a persistent contraction of the GDP
after the initial expansion. On average, the real effects of the monetary policy shock were found
somewhat stronger in the stable inflation regime than in the unstable inflation regime.
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Appendix

Appendix 4.A Proofs

4.A.1 Proof of Lemma 4.1
Consider M positive definite (d × d) covariance matrices Ωm, m = 1, ...,M and suppose B is
any invertible (d × d) matrix such that B−1ΩmB

′−1 are diagonal matrices with strictly positive
diagonal entries. It follows that B−1Ω1B

′−1 = Λ−1
m B−1ΩmB

′−1 for some (d × d) diagonal
matrices Λ−1

m , m = 2, ...,M , that have strictly positive diagonal entries. Elementary matrix
algebra then shows that these identities are equivalent to BΛm = ΩmΩ

−1
1 B, m = 2, ...,M .

Thus, the matrices B and Λm solve the eigenvalue problem of ΩmΩ
−1
1 with the diagonal of

Λm = diag(λm1, ..., λmd) containing the strictly positive eigenvalues and the columns of B being
the related eigenvectors. Since this holds for any invertible (d×d) matrix B that simultaneously
diagonalizes the covariance matrices, it is also a necessary property of a time-varying B-matrix
Bt.

Suppose also BA solves the eigenvalue problems of ΩmΩ
−1
1 , m = 2, ...,M , for some in-

vertible (d × d) matrix A. That is, BAΛm = ΩmΩ
−1
1 BA which is equivalent to AΛmA

−1 =
B−1ΩmΩ

−1
1 B. But since B−1ΩmΩ

−1
1 B = Λm, this implies that AΛmA

−1 = Λm, which is equiv-
alent to AΛm = ΛmA. Thus, λmiaij = λmjaij where aij is the ijth element of A. It follows that
aij = 0 if λmi ̸= λmj for some m, implying that A is diagonal matrix under Assumption 4.1,
and BA multiplies each of the columns of B by a scalar. It is well known that eigenvalues of a
matrix are unique (up to order), but since the diagonal elements of Λm can be in any order, so
can the related eigenvectors that are the columns of B. That is, B is unique up to scalar multiples
and ordering of its columns. Since the above holds for any appropriate B-matrices B and BA,
it holds also for a time-varying B-matrix Bt at each t.■

4.A.2 Proof of Proposition 4.1
Lemma 4.1 shows that the B-matrix Bt is unique up to scalar multiples and reordering of
its columns. Suppose that the conditional covariance matrix of the structural error is nor-
malized to a constant diagonal matrix with strictly positive diagonal entries, say C. That is,∑M

m=1 αm,tB
−1
t ΩmB

′−1
t = C, which is equivalent to

∑M
m=1 αm,tΩm = BtCB′

t. Suppose that
this identity also holds with another B-matrix, BtEt, where Et is a possibly time-varying, in-
vertible (d × d) matrix. We have

∑M
m=1 αm,t(BtEt)

−1Ωm(BtEt)
′−1 = C, which is equivalent

to
∑M

m=1 αm,tΩm = (BtEt)C(BtEt)
′. Thus, BtCB′

t = (BtEt)C(BtEt)
′. By Lemma 4.1, the

B-matrix is unique up to scalar multiples and reordering of its columns, so with a given ordering
of the columns, Et is a diagonal matrix. It then follows from BtCB′

t = (BtEt)C(BtEt)
′ that

C = EtCEt, which in turn implies ci = e2t,ici, where ci and et,i are the ith diagonal elements
of C and Et, respectively. Therefore, et,i = ±1, implying that with a given ordering of the
columns, (for each t) Bt is unique up to changing all signs in a column. Therefore, Bt is unique
up ordering of its columns and changing all signs in a column.■
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4.A.3 Proof of Proposition 4.2
Let Ω1, ...,ΩM be positive definite covariance matrices and consider the decomposition Ω1 =
WW ′ and Ωm = WΛmW

′, m = 2, ...,M,, where Λm = diag(λm1, ..., λmd), λmi > 0 (i =
1, .., d), contains the eigenvalues of ΩmΩ

−1
1 in the diagonal and the columns of the nonsingular

W are the related eigenvectors. The decomposition always exists when M = 2 (see, e.g.,
Muirhead, 1982, Theorem A9.9) but not necessarily when M ≥ 3. In the following, I assume
the covariance matrices satisfy the decomposition.

Repeating some of the proof in Lanne et al. (2010, p. 130, see also the proof of Theorem
A9.9 in Muirhead, 1982) for convenience, suppose that we also have Ω1 = DD′ and Ωm =
DΛmD

′, m = 2, ...,M , for some nonsingular (d × d) matrix D. Because D−1WW ′D′−1 =
D−1Ω1D

′−1 = Id, the matrix Q′ ≡ D−1W is orthogonal, and hence, D = WQ and ΛmQ =
QΛm. It follows that λmiqij = λmjqij where qij is the ijth element of Q. Thus, qij = 0 if
λmi ̸= λmj for some m. Assuming that this (Condition (1) of Proposition 4.2) is satisfied by the
last d1 ∈ {1, ..., d} eigenvalues, it follows that Q is a block-diagonal matrix with two blocks in
the diagonal. Denoting d0 ≡ d − d1, the first block is a (d0 × d0) matrix and the second one is
a (d1 × d1) diagonal matrix with qd0+1,d0+1, ..., qd,d in the diagonal (if d1 = d, Q simply reduces
to a diagonal matrix).

As the blocks in the diagonal of an orthogonal block-diagonal matrix are orthogonal and the
real eigenvalues of a diagonal orthogonal matrix are ±1, it follows that the real eigenvalues of
the second block in the diagonal of Q are ±1. Then, because the eigenvalues of a block-diagonal
matrix are the eigenvalues of the blocks in the diagonal, and eigenvalues of a diagonal matrix
are its diagonal elements (and Q is real), it must be that qd0+1,d0+1, ..., qd,d are ±1.

Thus, because D = WQ, the last d1 columns of W are unique up to changing all signs in
a column for given Λm, m = 2, ...,M . Since Λm are unique up to ordering of the diagonal
elements and Condition (2) fixes a unique ordering for the last d1 columns of W and hence
also for the related eigenvalues λmi, i > d0, the last d1 columns of the B-matrix (4.3.5) are
uniquely identified up to changing all signs in a column. Finally, Condition (3) fixes the signs
in the last d1 columns of W and consequently of Bt, implying that the last d1 columns of the
B-matrix are (globally) unique for given mixing weights α1,t, ..., αM,t. Moreover, if d1 = d, the
decomposition (4.3.4) of Ω1, ...,ΩM is (globally) unique.■

4.A.4 Proof of Proposition 4.3
Consider the matrix decomposition of Ωm, m = 1, ...,M , of Proposition 4.2. It is shown in the
proof of Proposition 4.2 that any (d × d) matrix D that also satisfies Ω1 = DD′ and Ωm =
DΛmD

′, m = 2, ...,M , can be presented as D = WQ where Q is orthogonal and qij = 0 when
λmi ̸= λmj for some m. Then observe that the jth column of WQ is a linear combination of
the columns of W , with the multiplier of the ith column given by qij . Denoting d0 ≡ d− d1, it
follows that if λmi = λmj for i ̸= j > d0 and all m, but for all l ̸∈ {i, j}, λml ̸= λmj for some
m, the jth column of WQ is a linear combination of the ith and jth columns of W . But if the
jth column (of W and WQ) obeys a zero constraint where the ith column obeys a strict sign
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constraint (Condition (4) of Proposition 4.3), the multiplier qij must be zero. That is, under the
conditions of Proposition 4.3, with j = d0 + 1 and i < j, we have ql,d0+1 = 0 for all l ̸= d0 + 1
and qlk = 0 for all l, k = d0 + 2, .., d such that l ̸= k.

By the above discussion, when d1 > 1, Q is a block-diagonal matrix with two blocks in the
diagonal: the first one being a (d0 + 1× d0 + 1) matrix

Q̃ ≡


q1,1 · · · q1,d0 0

... . . . ...
...

qd0,1 · · · qd0,d0 0
qd0+1,1 · · · qd0+1,d0 qd0+1,d0+1

 (4.A.1)

and the second one a (d1 − 1× d1 − 1) diagonal matrix with qd0+2,d0+2, ..., qd,d in the diagonal.
When d1 = 1, we simply have Q = Q̃ where Q̃ is as in (4.A.1). Consequently, for k > d0 the
kth column of WQ equals to the kth column of W multiplied by qk,k. It then remains to show
that qk,k = ±1 for all k = d0 + 1, ..., d, after which one may conclude global uniqueness of the
last d1 columns of the B-matrix (4.3.5) with arguments similar to the proof of Proposition 4.2.

Because only the last element of the last column of Q̃ is nonzero, the minors of the elements
qd0+1,1, ...., qd0+1,d0 are singular. Therefore, it follows from the cofactor presentation of the in-
verse of Q̃ (e.g., Muirhead, 1982, Appendices A4 and A5) that only the last element in the last
column of the inverse of Q̃ is nonzero. Since Q̃ is orthogonal, as it is the upper-left block of
the block-diagonal orthogonal matrix Q, its transpose is also its inverse. Hence, only the last
element in the last column of the transpose of Q̃ is nonzero. Also, by the definition of Q̃, only
the last element in last row of the transpose of Q̃ is nonzero. That is, the transpose is of the form

Q̃′ =


q1,1 · · · qd0,1 0

... . . . ...
...

q1,d0 · · · qd0,d0 0
0 · · · 0 qd0+1,d0+1

 , (4.A.2)

implying that

Q̃ =


q1,1 · · · q1,d0 0

... . . . ...
...

qd0,1 · · · qd0,d0 0
0 · · · 0 qd0+1,d0+1

 . (4.A.3)

The matrix Q is therefore an orthogonal block-diagonal matrix with two blocks in the diagonal.
The first block is the upper-left (d0 × d0) submatrix of Q̃ and the second block is the (d1 × d1)
diagonal matrix with qd0+1,d0+1, ..., qd,d in the diagonal. Now reasoning similar to the proof of
Proposition 4.2 shows that qk,k = ±1 for k = d0 + 1, ..., d.■
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Appendix 4.B Monte Carlo algorithm
I present a Monte Carlo algorithm that produces point estimates and with random initial value
yt−1 = (yt−1, ..., yt−p) also confidence intervals for the generalized impulse response function
defined in (4.4.1). My algorithm is adapted from Koop et al. (1996, pp. 135-136) and Kilian
and Lütkepohl (2017, pp. 601-602). I assume that the history yt−1 follows a known distribution
G, which may be such that it produces a single outcome with probability one (corresponding to
a fixed yt−1), or it can be the stationary distribution of the process or of a specific regime. In
the following, y(i)t+h(δj,yt−1) denotes a realization of the process at time t + h conditional on
the structural shock of magnitude δj in the jth element of et hitting the system at time t and on
the p observations yt−1 = (yt−1, ..., yt−p) preceding the time t, whereas y(i)t+h(yt−1) denotes an
alternative realization conditional on the history yt−1 only.

The algorithm proceeds with the following steps.

0. Decide the horizon H , the numbers of repetitions R1 and R2, and the size δj for the jth
structural shock that is of interest.

1. Draw an initial value yt−1 from G.

2. Draw H + 1 independent realizations of a shock εt from N(0, Id). Also, draw an ini-
tial regime m ∈ {1, ...,M} according to the probabilities given by the mixing weights
α1,t, ..., αM,t and compute the reduced form shock ut = WΛ

1/2
m εt, where Λ1 = Id. Then,

compute the structural shock et = B−1
t ut and impose the size δj on its jth element to

obtain e∗t . Finally, calculate the modified reduced form shock u∗
t = Bte

∗
t .12

3. Use the modified reduced form shock u∗
t and the rest H standard normal shocks εt ob-

tained from Step 2 to compute realizations y
(i)
t+h(δj,yt−1) for h = 0, 1, ..., H , iterating

forward so that in each iteration the regime m that generates the observation is first drawn
according to the probabilities given by the mixing weights. At h = 0, the initial regime
and the modified reduced form shock u∗

t calculated from the structural shock in Step 2 is
used, and from h = 1 onwards the h + 1th shock εt is used to calculate the reduced form
shock ut+h = WΛ

1/2
m εt+h, where Λ1 = Id and m is the selected regime.

4. Use the reduced form shock ut and the rest H standard normal shocks εt obtained from
Step 2 to compute realizations y

(i)
t+h(yt−1) for h = 0, 1, ..., H , so that the reduced form

shock ut (calculated in Step 2) is used to compute the time h = 0 realization. Otherwise
proceed similarly to the previous step.

5. Calculate y
(i)
t+h(δj,yt−1)− y

(i)
t+h(yt−1).

12The independent standard normal shocks εt are introduced here to control random variation across the two sample
paths y(i)t+n(δj ,yt−1) and y

(i)
t+n(yt−1).
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6. Repeat Steps 2-5 R1 times and calculate the sample mean of y(i)t+h(δj,yt−1)− y
(i)
t+n(yt−1)

for h = 0, 1, ..., H to obtain an estimate of the GIRF(h, δj,yt−1).

7. Repeat Steps 1-6 R2 times to obtain estimates of GIRF(h, δj,yt−1) with different starting
values yt−1 generated from the distribution G. Then take the sample mean and sample
quantiles over the estimates to obtain point estimate and confidence intervals for the GIRF
with random initial value.

Notice that if a fixed initial value yt−1 is used, Step 7 is redundant.

Appendix 4.C Details on the empirical application

4.C.1 Model selection
The maximum likelihood (ML) estimation of the models, quantile residual diagnostics, estima-
tion of generalized impulse response functions, and other numerical analysis are carried out with
the CRAN distributed R package gmvarkit (Virolainen, 2018a) that accompanies this essay. The
R package gmvarkit also contains the dataset studied in the empirical application, thus facili-
tating reproduction of my results. The estimation is based on the exact log-likelihood function.
For evaluating the adequacy of the models, I employ quantile residual diagnostics in the frame-
work of Kalliovirta and Saikkonen (2010) (see also the related paper by Kalliovirta, 2012, for
discussion on quantile residual based model diagnostics in a univariate setting). For a correctly
specified GMVAR model, the empirical counterparts of the quantile residuals are asymptotically
independent with multivariate standard normal distributions and can hence be used for graphical
analysis in a similar manner to the conventional Pearson residuals (Kalliovirta and Saikkonen,
2010, Lemma 3).13

I started by estimating linear Gaussian VARs with the autoregressive orders p = 1, ..., 12, i.e.,
GMVAR(p, 1) models. BIC was minimized by the order p = 1, HQIC by the order p = 2, and
AIC by the order p = 3, suggesting that the appropriate autoregressive order is likely relatively
small. Hence, I then estimated the two-regime GMVAR(p, 2) models with p = 1, ..., 4. BIC
was minimized by the order p = 1 and HQIC and AIC by the order p = 2. Graphical quantile
residual diagnostics revealed the p = 1 was clearly inadequate to capture the autocorrelation
structure of the series, while also the p = 2 was somewhat inadequate (not shown). I therefore
considered the order p = 3, which I found adequate to capture the autocorrelation structure of

13Kalliovirta and Saikkonen (2010) also propose formal diagnostic tests for testing normality, autocorrelation, and
conditional heteroskedasticity of the quantile residuals. The tests take into account the uncertainty about the true
parameter value and can be calculated based on the observed data or by employing a simulation procedure for
better size properties. I found these tests very forgiving without the simulation procedure and quite conservative
without it. For instance, when taking into account the first four lags in the autocorrelation test, without the
simulation procedure my GMVAR(3, 2) model obtains the p-value 0.999, while with the simulation procedure,
using sample of length 10000, the p-value is 0.000. I therefore rather employ graphical diagnostics and compare
the statistical properties of the quantile residuals to the ones of four-variate IID standard normal process.
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Model Log-lik BIC HQIC AIC

GMVAR(1, 1) −4.404 9.430 9.191 9.030
GMVAR(2, 1) −4.245 9.444 9.077 8.831
GMVAR(3, 1) −4.160 9.606 9.112 8.780
GMVAR(1, 2) −3.558 8.381 7.894 7.568
GMVAR(2, 2) −3.276 8.481 7.740 7.242
GMVAR(3, 2) −3.183 8.958 7.961 7.292
GMVAR(4, 2) −3.113 9.482 8.230 7.390

Table 4.1: The log-likelihoods and values of the information criteria divided by the number of
observations for the discussed GMVAR(p,M ) models.

the series (see Section 4.C.2). I also considered the order p = 4, but since it increased AIC
from p = 3, which was already found adequate to explain the autocorrelation structure, and the
order p = 3 was found suitable for the linear VAR as well, I preferred the more parsimonious
GMVAR(3, 2) model. The log-likelihoods and values of the information criteria are presented
in Table 4.1 for the discussed models.

Table 4.1 shows that the GMVAR(3, 2) model has significantly smaller BIC, HQIC, and
AIC than all of the linear VARs. According to graphical quantile residual diagnostics, the
GMVAR(3, 2) model also explains the statistical characteristics of the data more adequately
than the linear VARs (see Section 4.C.2; graphical diagnostics of the linear VARs are not shown
for brevity). Hence, I find my GMVAR(3, 2) model superior to the linear VARs.

It is possible that the superior fitness is due to the accommodation of time-varying covariance
matrix or intercepts and cannot be attributed to the time-varying autoregression (AR) matrices.
To test whether this is the case, I estimated two additional GMVAR(3, 2) models. In the first
one, I constrained the AR matrices and intercept parameters to be identical in both regimes,
thereby allowing for time-varying covariance matrix only. In the second one, I constrained the
AR matrices to be identical in both regimes, thereby allowing for time-varying intercepts and
covariance matrix only. Because the constrained models are nested to the GMVAR(3, 2) model
and the maximum likelihood estimator has the conventional asymptotic distribution under the
conventional assumptions (Kalliovirta et al., 2016, Theorem 3), the validity of the constraints
can be tested with the likelihood ratio test. The likelihood ratio test produces the p-value 0.011
for the former type of constraint and the p-value 0.007 for the latter type of constraints, thus,
rejecting both constraints the 5% level of significance and the latter type of constraints with the
1% level of significance.14

14For robustness, I also estimated the constrained models with autoregressive orders p = 1, 2, 4 (and M = 2) and
tested the validity of the constraints in these models with the likelihood ratio test. Both types of constraints were
rejected for the p = 2, 4 models with p-values less than 0.0008, but the GMVAR(1, 2) model accepted constraining
the AR matrices to be identical in both regimes with the p-value 0.3 and rejected constraining both AR matrices
and intercepts with the p-value 0.005. The rejection of the constraints does not, hence, seem particularly sensitive
to the choice of p. Notably, the validity of the likelihood ratio test requires that the unrestricted model is correctly
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According to the small p-values, it seems likely that also the AR matrices vary in time.
But since the p-values were not particularly small, I studied the generalized impulse response
functions of the constrained GMVAR(3, 2) models as well. I found that if the AR matrices and
intercepts are constrained identical in both regimes (a linear VAR with two volatility regimes),
small and large as well as contractionary and expansionary monetary policy shocks induce a
long-run price puzzle in both regimes. If only the AR matrices are constrained to be identical in
both regimes, small and large contractionary monetary policy shocks induce a medium- to long-
run price puzzle and expansionary shocks medium-run price puzzle in the unstable inflation
regime. But the GIRFs did not change much in the stable inflation regime (and thus display
a long-run price puzzle for contractionary shocks in this regime as well). The GIRFs of the
constrained models are not shown for brevity.15

For comparison, I also considered a Cholesky identified Gaussian SVAR model with the
autoregressive order p = 3 (as suggested by AIC) and the interest rate variable ordered last.
This model did not only display a long-run price puzzle but it also displayed a short-run output
puzzle, i.e., the response of GDP was positive (in the point estimate) before it became negative
as a response to a contractionary monetary policy shock. A Cholesky SVAR with the order
p = 4 shows permanent decrease in the price level after roughly 9 years from the impact but the
response of GDP still has the wrong sign in the period after the impact (not shown).

4.C.2 Adequacy and characteristics of the selected model
In order to study the adequacy of my GMVAR(3, 2) model, I examine the quantile residual
time series, sample auto- and crosscorrelation functions of the quantile residuals and squared
quantile residuals, and normal quantile-to-quantile plots. The sample auto- and crosscorrela-
tion functions (presented in Figure 4.3) show that there is not much auto- or crosscorrelation in
the quantile residuals. The GDP deflator has some moderate sized autocorrelation coefficients
(ACC) at small lags, but they are not very large. There are also moderate sized coefficients at
larger lags in the crosscorrelation function of GDP and PPI as well as in the autocorrelation
function of the interest rate variable. Nonetheless, given that in total of 316 correlation coef-
ficients are presented, some of them are expected to be moderate sized for an IID process as
well.16

The sample auto- and crosscorrelation functions of the squared quantile residuals are pre-

specified, so the tests that do not use the correct autoregressive order p do not produce reliable result. If one of the
orders M = 2 and p = 2, 3, 4 is correct, then the constraints are, nevertheless, rejected.

15For the constrained models, the monetary policy shock was identified with the constraints discussed in Sec-
tion 4.5.1 similarly to the unconstrained model, as the unrestricted impact effects were similar in sign and mag-
nitude to the unconstrained model. Also the estimated mixing weights were quite similar: one of the regimes
prevailed in the 1970’s, 1980’s, the Financial crisis, and COVID-19 crisis, but also short periods during other
times. For the ease of communication, I hence refer to them as stable inflation regime and unstable inflation
regime similarly to the unconstrained model.

16Increasing the autoregressive order to p = 4 reduces some of the ACCs of the GDP deflator’s quantile residuals,
but it does not help with the price puzzle.
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sented in Figure 4.3. GDP, GDP deflator, and PPI each have at least one exceedingly large ACC
in their autocorrelation functions, but ACCs of the interest rate variable are reasonable. There
are also two exceedingly large coefficients at large lags in the crosscorrelation function of the
interest rate variable and GDP deflator. My GMVAR(3, 2) model is therefore clearly inadequate
to capture the conditional heteroskedasticity in the series.

The quantile residual time series (the top panels of Figure 4.5) also show some heteroskedas-
ticity and several outliers in the quantile residuals. There is a particularly large (marginal) quan-
tile residual of the GDP in the beginning of the COVID-19 crisis, when the COVID-19 lockdown
caused a fast and vast drop in the cycle. I do not view this large negative quantile residual of the
GDP as an inadequacy, however, as the COVID-19 drop is known to be caused by an exception-
ally large exogenous shock, and therefore a large (quantile) residual is expected for a correctly
specified model. The normal quantile-quantile-plots (the bottom panels of Figure 4.5) show that
the marginal quantile residual distributions have excess kurtosis but are quite symmetric. The
quantile residuals of GDP deflator seem slightly skewed to the right and GDP slightly to the left,
however.

In my view, the overall adequacy of the model is decent enough for further analysis, par-
ticularly since autocorrelation structure of the data is captured reasonably well. Some of the
conditional heteroskedasticity in the data remains unmodelled, which is not completely inno-
cent because the mixing weights may depend on the volatility of the series. The unmodelled
conditionally heteroskedasticy is not very extreme though: there is a single ACC of roughly the
size 0.3 in the autocorrelation functions of the squared quantile residuals of GDP, GDPDEF,
and PPI, while almost all of the crosscrorrelation coefficients are of reasonable size. The excess
kurtosis in the marginal distribution of the quantile residuals, in turn, does not seem particularly
severe. Accommodating stronger forms of conditional heteroskedasticity and excess kurtosis
by utilizing Student’s t distributed error terms similarly to Meitz et al. (2018) in the univariate
setting is beyond the scope of this essay and addressed in Chapter 5.17

The estimated mixing weights of the two regimes are presented in the bottom panel of Fig-
ure 4.1. The second regime (red) mainly dominates during the periods of high inflation and
interest rate in the 1970’s and 1980’s, after the collapse of Lehman Brothers in the Financial
crisis until the end of 2009, and finally during the COVID-19 crisis from the third quarter of
2020 onwards. The first regime (blue) prevails when the second one does not: before 1970’s,
short periods during 1970’s, and from the mid 1980’s onwards but excluding the Financial crisis
and the COVID-19 crisis (but including the first two quarters of 2020). Therefore, it appears
that the second regime is mainly dominant when inflation has been high or volatile, while the
first regime is dominant in more stable times.

17The GMVAR model’s capability to capture the conditional heteroskedasticity and marginal distribution of the
series can be improved by adding a third regime. With p = 3, however, the number of parameters in each regime
is rather high: 62 plus a mixing weight parameter for all but the last regime. In the most rare regime, this may
be too much compared to the number of observations from that regime for any meaningful inference based on the
estimates to take place. With smaller p, on the other hand, the model’s capability to capture the autocorrelation
structure of the series at larger lags might not be adequate. Because the three regime models are also tedious to
estimate in practice, I focus on the two regime models.
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GDP GDPDEF PPI RATE
α̂m µ̂m,1 σ̂2

m,1 µ̂m,2 σ̂2
m,2 µ̂m,3 σ̂2

m,3 µ̂m,4 σ̂2
m,4

Regime 1 0.56 −0.20 1.92 0.71 0.20 0.72 1.87 4.44 12.12
Regime 2 0.44 −0.07 7.83 1.45 0.95 1.75 10.96 7.57 34.28

Table 4.2: Mixing weight parameter estimates (α̂m) and marginal stationary means (µ̂m,i) and
variances (σ̂2

m,i) of the component series implied by the fitted GMVAR(3, 2) model for each of
the regimes.

The mixing weight parameters have the interpretation of being the unconditional probabili-
ties for an observation being generated from each regime. For a correctly specified model, they
should hence approximately reflect the proportions of observations generated from each regime.
The first regime has a mixing weight parameter estimate 0.56 (shown in Table 4.2), and it covers
approximately 81% of the series (approximated as the mean of the estimated mixing weights),
whereas the second regime has the implied mixing weight parameter estimate 0.44 and it covers
approximately 19% of the series. The mixing weight parameter estimates are therefore some-
what disproportionate to the relative number of observations from each regime. This can be at-
tributed to estimation error (rather than misspecification), however, as the approximate standard
error for the first regime’s mixing weight parameter estimate is as high as 0.213. Nonetheless,
the mixing weight parameter estimates seem reasonable enough not to distort the generalized
impulse response functions too much.

Based on the model implied marginal stationary means and variances presented in Table 4.2,
neither of the regimes is particularly recessionary or expansionary, but the first regime has lower
unconditional mean for the GDP, while the second one has much higher unconditional variance.
Both regimes also prevail during recessions and expansions (see Figure 4.1). In the first regime,
the GDP deflator has the (estimated) unconditional mean 0.71, which implies long-run yearly in-
flation of approximately 2.9%, and unconditional variance 0.20. In the second regime, the GDP
deflator has the (estimated) unconditional mean 1.45, which implies long-run yearly inflation of
approximately 5.9%, and unconditional variance 0.95. That is, the estimated long-run inflation
is quite reasonable in the first regime, while it is excessive and volatile in the second regime.
Also the commodity price inflation and the interest rate variable have much higher unconditional
mean and variance the second regime than in the first regime. Based on the significantly higher
unconditional means and variances of the inflation, commodity price inflation, and the interest
rate variable, as well as on the timing of the dominance of the regimes (see Figure 4.1 and the
discussion above), I refer to the second regime as an unstable inflation regime. Accordingly, I
refer to the first regime as the stable inflation regime.
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Figure 4.3: Auto- and crosscorrelation functions of the quantile residuals of the fitted
GMVAR(3, 2) model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are omit-
ted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 267 as the first p = 3 observations were used as the initial values) for autocorrelations of
IID observations, whereas the red dashed lines are the corresponding 99% bounds ±2.58/

√
T .

These bounds are presented to give an approximate perception on the magnitude of the correla-
tion coefficients.
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Figure 4.4: Auto- and crosscorrelation functions of the squared quantile residuals of the fit-
ted GMVAR(3, 2) model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are
omitted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 267 as the first p = 3 observations were used as the initial values) for autocorrelations of
IID observations, whereas the red dashed lines are the corresponding 99% bounds ±2.58/

√
T .

These bounds are presented to give an approximate perception on the magnitude of the correla-
tion coefficients.

131



4.C. DETAILS ON THE EMPIRICAL APPLICATION

Figure 4.5: Quantile residual time series and normal quantile-quantile-plots of the fitted
GMVAR(3, 2) model.

4.C.3 Individual GIRFs in the stable inflation regime
The confidence bounds of the GIRFs are relatively wide in the stable inflation regime (the first
and second columns of Figure 4.2), and they display some unexpected results such as prices
rising in response to a contractionary monetary policy shock, the interest variable overshooting
significantly as a response to an expansionary monetary policy shock, and counterproductive
response of the GDP after the initial expansion (or contraction). In order to investigate how
these results appear in the model dynamics, and to what extend they might be economically
sensible, I have depicted 500 individual GIRFs (each estimated based on 2500 Monte Carlo rep-
etitions) in each column of Figure 4.6 with the starting values generated from the stable inflation
regime. The first (third) column presents the GIRFs to a one-standard-error contractionary (ex-
pansionary) monetary policy shock and the second (fourth) column presents the GIRFs to a
two-standard-error contractionary (expansionary) monetary policy shock. After estimating the
GIRFs, they were scaled to correspond to a 25 basis point increase (decrease) of the interest
rate variable. The GIRFs that display (scaled) peak inflation greater than 5 basis points for one-
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standard-error shocks and 10 basis points for two-standard-error shocks are colored red and the
rest blue.

One of the unexpected observations in Section 4.5.2 is that (in the stable inflation regime) the
prices seem to often rise in response to both contractionary and expansionary monetary policy
shocks, particularly if the shock is large. From the perspective of the model dynamics, the reason
is that from many of the starting values the monetary policy shock drives the economy towards
the unstable inflation regime, as I next explain. The bottom row of Figure 4.6 shows that in
the high inflation red GIRFs, the probability of the unstable inflation regime increases sharply
in the period after the impact (while at impact the mixing weights are predetermined). This
implies that the impact responses of the observable variables induce a greater probability of the
unstable inflation regime, which then moves the observable variables in the following periods
accordingly. Thus, the monetary policy shock drives the economy towards the unstable inflation
regime (that has high long-run inflation), which in part causes an increase in inflation (and not
the vice versa).

The red GIRFs in each column of Figure 4.6 show that the GIRFs exhibiting particularly
high increase in inflation (and commodity price inflation) also display a persistent increase in
the interest rate variable. Given the movements of the prices, the response of the interest rate
variable is economically sensible when the Fed’s endogenous response to high inflation is tight
monetary policy. When the interest rate rises, inflation starts to finally decrease after several
years from impact but so does the GDP.

If the shock is contractionary (the first and second columns of Figure 4.6), the GDP tem-
porarily recovers in the red GIRFs relatively fast before persistently decreasing along with the
rising interest rate. The temporary recovery of the GDP might be related to the higher uncondi-
tional mean of the GDP in the unstable inflation regime. Since there are only approximately 49
observations from the unstable inflation regime (estimated as the sum of the mixing weights), the
temporary recovery can possibly be attributed to estimation error. Also, particularly when the
contractionary shock is large, from some of the initial values the GDP’s response overshoots sig-
nificantly to the positive side without the delayed contraction that the red GIRFs display. Further
investigation revealed that these GIRFs are mostly the ones that display positive peak deflation
and a response of the interest rate variable that overshoots to the negative side, and therefore, the
expansion has an economic explanation through the expansionary monetary policy (not shown).

If the shock is expansionary (the third and fourth columns of Figure 4.6), both high inflation
red GIRFs and low inflation blue GIRFs display roughly same length expansions of the GDP.
The high inflation red GIRFs in which the interest rate significantly overshoots to the positive
side, however, display a delayed contraction of the GDP after the initial expansion. That is,
particularly a large expansionary (but also a contractionary) shock drives the economy towards
the unstable inflation regime, in part causing the high inflation. This results in a significant
monetary policy tightening, which is accompanied with a persistent contraction of the GDP.
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Figure 4.6: Generalized impulse response functions of the identified monetary policy shock
of the fitted GMVAR(3, 2) model. Each column presents 500 GIRFs, each based on a ran-
dom starting value drawn from the stationary distribution of the first regime and 2500 Monte
Carlo repetitions. The first (third) column present GIRFs to one-standard-error contractionary
(expansionary) shocks and the second (fourth) column to two-standard-error contractionary (ex-
pansionary) shocks. From the top, the first panels show the response of the cyclical component
of GDP, the second panels show the response of log-differenced implicit GDP deflator, the third
panels show the response of log-differenced producer price index (all commodities), the fourth
panels show the response of the interest rate variable, and the bottom panels show the response
of the first regime’s mixing weights. The GIRFs are scaled to correspond to a 25 basis point
instantaneous increase (decrease) of the interest rate variable. The GIRFs that display (scaled)
peak inflation greater than 5 basis points for one-standard-error shocks and 10 basis for two-
standard-error shocks are colored red and the rest blue.
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Chapter 5

Gaussian and Student’s t mixture vector
autoregressive model with application to
the asymmetric effects of monetary policy
shocks in the Euro area

5.1 Introduction
Mixture autoregressive models are useful for modelling series in which the data generating dy-
namics vary in time. Such variation may arise due to wars, crises, business cycle fluctuations,
or policy shifts, for example. Mixture autoregressive models can be described as collections
of (typically linear) autoregressive models, which are called mixture components, components
processes, or regimes. At each time point, the process generates an observation from one of its
mixture components that is randomly selected according to the probabilities given by the mixing
weights.

Several new mixture autoregressive models have been introduced recently. Kalliovirta,
Meitz, and Saikkonen (2015) introduced the Gaussian mixture autoregressive (GMAR) model,
which incorporates linear Gaussian autoregressions as its mixture components and mixing weights
that, for a pth order model, depend on the full distribution of the previous p observations. The
specific definition of the mixing weights leads to attractive theoretical and practical properties,
such as ergodicity and full knowledge of the stationary distribution of p+1 consecutive observa-
tions. Kalliovirta, Meitz, and Saikkonen (2016) introduced a multivariate version of this model,
the Gaussian mixture vector autoregressive (GMVAR) model, which employs linear Gaussian
vector autoregressions (VAR) as its mixture components and has analogous properties to the
GMAR model. Burgard, Neuenkirch, and Nöckel (2019), on the other hand, proposed a model
with linear Gaussian VARs as mixture components, and mixing weights that depend on switch-
ing variables through a logistic function. Meitz, Preve, and Saikkonen (forthcoming) introduced
the Student’s t mixture autoregressive (StMAR) model with analogous properties to the GMAR
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model, but incorporating conditionally heteroskedastic mixture components based on Student’s
t-distribution. Chapter 2 (also Virolainen, forthcoming) introduced the Gaussian and Student’s
t mixture autoregressive (G-StMAR) model, where some of the mixture components are based
on a Gaussian distribution and some on a t-distribution.

This essay introduces a multivariate version of the G-StMAR model, and as a special case
also a multivariate version of the StMAR model. The Gaussian and Student’s t mixture vector
autoregressive (G-StMVAR) model accommodates conditionally homoskedastic linear Gaus-
sian VARs and conditionally heteroskedastic linear Student’s t VARs as its mixture components.
Both types of mixture components have the same form for the conditional mean, a linear function
of the preceding p observations, but the conditional covariance matrices are different. The linear
Gaussian VARs have constant conditional covariance matrices. The conditional covariance ma-
trices of the linear Student’s t VARs, in turn, consist of a constant covariance matrix multiplied
by a time-varying scalar that depends on the quadratic form of the previous p observations. In
this sense, the conditional covariance is of ARCH (autoregressive conditional heteroskedastic-
ity) type. But since it is just a time-varying scalar multiplying the constant covariance matrix,
it is not as general as the conventional multivariate ARCH process that allows the entries of
the conditional covariance matrix to vary relative to each other (e.g., Lütkepohl, 2005, Section
16.3). The specific formulation of the conditional covariance matrix is, nonetheless, convenient
for establishing stationary properties similar to the linear Gaussian VARs. My specification of
the conditional covariance is also parsimonious, as it only depends on the degrees of freedom
and the autoregressive parameters (in addition to the parameters in the constant covariance ma-
trix). This is particularly advantegeous in the context of mixture VARs, as the large number of
parameters may often be a problem even without an ARCH component.

For a pth order G-StMVAR model, the mixing weights are defined as weighted ratios of the
components process stationary densities corresponding to the previous p observations. This for-
mulation is appealing, as it states that the greater the relative weighted likelihood of a regime is,
the more likely the process is to generate an observation from it. Moreover, it facilitates associ-
ating statistical characteristics and economic interpretations to the regimes. It turns out that the
specific formulation of the mixing weights also leads to attractive theoretical properties, such as
ergodicity and full knowledge of the stationary distribution of p + 1 consecutive observations.
In contrast to the GMVAR model, my model is able to capture excess kurtosis and conditional
heteroskedasticity within the regimes. If all of the regimes are assumed to be linear Student’s t
VARs, a multivariate version of the StMAR model is obtained as a special case. I refer to this
model as the StMVAR model.

It turns out that the G-StMVAR model is a limiting case of the StMVAR model with the
degrees of freedom parameters of some of the regimes tending to infinity. The GMVAR model
is obtained if the degrees of freedom parameters of all the regimes tend to infinity. Hence, if
a StMVAR model is fitted to a series generated by a process in which some of the regimes are
linear Gaussian VARs, the degrees of freedom parameters of these regimes are (asymptotically)
expected to get large estimates. In empirical applications, the numbers of Gaussian and Student’s
t regimes can, therefore, be selected by first finding a suitable StMVAR model. Then, if some of
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the regimes obtain a large degrees of freedom parameter estimate, they should be accommodated
by switching to the appropriate G-StMVAR model. As opposed to a StMVAR model with
very large degrees of freedom parameter estimates, the G-StMVAR model avoids the numerical
problems caused by weak identification of these parameters.

In addition to the reduced form model, I propose a structural version of the G-StMVAR
model that generalizes the SGMVAR model introduced in Chapter 4 to accommodate condition-
ally heteroskedastic Student’s t regimes. The SG-StMVAR model incorporates a time-varying
impact matrix that varies according to the conditional variance of the reduced form error. As a
consequence of a single impact matrix, identification of the shocks requires that the error term
covariance matrices are simultaneously diagonalized in all regimes. Together with a constant
normalization of the structural error’s conditional covariance matrix, this condition generally
leads to uniquely identified shocks up to ordering and sign. Hence, as long as one is willing
to assume a single (time-varying) impact matrix, its columns characterize the estimated impact
effects of the shocks, but it is not revealed which column is related to which shock. Because the
impact matrix is also subject to estimation error, further constraints may be needed for labelling
the shocks. The identification conditions are the same as in Chapter 4, however, and I repeat
some of them for convenience.

The empirical application studies asymmetries in the expected effects of the monetary policy
shock in the Euro area and considers a monthly data covering the period from January 1999 to
December 2021. My StMVAR model identifies two regimes: a low-growth regime and a high-
growth regime. The low-growth regime is characterized by a negative (but volatile) output gap,
and it mainly prevails after the collapse of Lehman Brothers in the Financial crisis but obtains
large mixing weights also during and before the early 2000’s recession. The high-growth regime
is characterized by a positive output gap and it mainly dominates before the Financial crisis.

I find strong asymmetries with respect to the initial state of the economy and sign of the
shock, but asymmetries with respect to the size of the shock are weak. The real effects are less
enduring for an expansionary shock than for a contractionary shock. Particularly in the high-
growth regime, a contractionary shock persistently drives the economy towards the low-growth
regime, which translates to a very persistent decrease in the output gap. The inflationary effects
of the monetary policy shock are stronger in the high-growth regime than in the low-growth
regime, and in the latter the price level does not move much on average.

The rest of this chapter is organized as follows. Section 5.2 introduces the linear Student’s
t VAR and establishes its stationary properties. Section 5.3 introduces the G-StMVAR model
and discusses its properties. Section 5.4 introduces the structural G-StMVAR model and briefly
discusses identification of the shocks. Section 5.5 discusses estimation of the model parameters
by the method of maximum likelihood (ML) and establishes the asymptotic properties of the
ML estimator. Section 5.6 discusses a strategy for building a G-StMVAR model, and Section 5.7
presents the empirical application to the asymmetric effects of the Euro area monetary policy
shock. Appendix 5.A provides the density functions and some properties of the Gaussian and
Student’s t distributions, Appendix 5.B gives proofs for the stated theorems, Appendix 5.C
provides details on the empirical application, and Appendix 5.D derives a closed form expression
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for the quantile residual of the G-StMVAR model. Finally, this essay is accompanied with the
CRAN distributed R package gmvarkit (Virolainen, 2018) that provides tools for estimation
and other numerical analysis of the models.

Throughout this chapter, I use the following notation. I write x = (x1, ..., xn) for the column
vector x where the components xi may be either scalars or (column) vectors. The notation
x ∼ nd(µ,Σ) signifies that the random vector x has a d-dimensional Gaussian distribution with
mean µ and (positive definite) covariance matrix Σ, and nd(·;µ,Σ) denotes the corresponding
density function. Similarly, x ∼ td(µ,Σ, ν) signifies that x has a d-dimensional t-distribution
with mean µ, (positive definite) covariance matrix Σ, and degrees of freedom ν (assumed to
satisfy ν > 2), and td(·;µ,Σ, ν) denotes the corresponding density function. The vectorization
operator vec stacks columns of a matrix on top of each other and vech stacks them from the main
diagonal downwards (including the main diagonal). Id signifies the identity matrix of dimension
d, ⊗ denotes the Kronecker product, and 1d denotes a d-dimensional vectors of ones.

5.2 Linear Gaussian and Student’s t vector autoregressions
The G-StMVAR model accommodates two types of mixture components: conditionally ho-
moskedastic linear Gaussian vector autoregressions and conditionally heteroskedastic linear Stu-
dent’s t vector autoregressions. In this section, I define these linear autoregressions and establish
their stationary properties. Consider the d-dimensional linear VAR model defined as

zt = ϕ0 +

p∑
i=1

Aizt−1 + Ω
1/2
t εt, (5.2.1)

where the error process εt identically and independently distributed (IID), Ω1/2
t is a symmetric

square root matrix of the positive definite (d × d) covariance matrix Ωt for all t, and ϕ0 ∈ Rd.
The (d× d) autoregression matrices are assumed to satisfyAp ≡ [A1 : ... : Ap] ∈ Sd×dp, where

Sd×dp = {[A1 : ... : Ap] ∈ Rd×dp : det(Id −
p∑

i=1

Aiz
i) ̸= 0 for |z| ≤ 1} (5.2.2)

defines the usual stability condition of a linear VAR. The linear Gaussian VAR is obtained from
(5.2.1) by assuming that εt follows the d-dimensional standard normal distribution and that the
conditional covariance matrix is a constant, Ωt = Ω. I will first establish the stationary properties
of the linear Gaussian VAR, and by making use of the introduced notation, I then introduce the
linear Student’s t VAR.

Under the stability condition, the linear Gaussian VAR is stationary, and the following prop-
erties are obtained. Denoting zt = (zt, ..., zt−p+1) and z+t = (zt, zt−1), it is well known that the

138



CHAPTER 5. THE G-STMVAR MODEL

stationary solution to (5.2.1) satisfies

zt ∼ ndp(1p ⊗ µ,Σp)

z+t ∼ nd(p+1)(1p+1 ⊗ µ,Σp+1)

zt|zt−1 ∼ nd(µ+ Σ1pΣ
−1
p (zt−1 − 1p ⊗ µ),Σ1 − Σ1pΣ

−1
p Σ′

1p) = nd(ϕ0 +Apzt−1,Ω),

(5.2.3)

where the last line defines the conditional distribution of zt given zt−1. Denoting by Σ(h),
h = 0,±1,±2, ..., the lag h autocovariance matrix of zt, the quantities µ,Σp,Σ1,Σ1p,Σp+1 are
given as (see, e.g., Lütkepohl, 2005, pp. 23, 28-29)

µ =(Id −
p∑

i=1

Ai)
−1ϕ0 (d× 1)

vec(Σp) =(I(dp)2 −A⊗A)−1vec(Ω) ((dp)2 × 1)

Σ1 =Σ(0) (d× d)

Σ(p) =A1Σ(p− 1) + · · ·+ ApΣ(0) (d× d)

Σ1p =[Σ(1) : ... : Σ(p− 1) : Σ(p)] = ApΣp (d× dp)

Σp+1 =

[
Σ1 Σ1p

Σ′
1p Σp

]
(d(p+ 1)× d(p+ 1))

(5.2.4)

where

Σp =


Σ(0) Σ(1) · · · Σ(p− 1)
Σ(−1) Σ(0) · · · Σ(p− 2)

...
... . . . ...

Σ(−p+ 1) Σ(−p+ 2) · · · Σ(0)


(dp×dp)

,

A =


A1 A2 · · · Ap−1 Ap

Id 0 · · · 0 0
0 Id 0 0
... . . . ...

...
0 0 . . . Id 0


(dp×dp)

, and Ω =


Ω 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 . . . 0


(dp×dp)

.

(5.2.5)

In order to construct a linear Student’s t VAR with stationary properties analogous to (5.2.3),
the appropriate marginal distribution of p + 1 consecutive observations is considered. Then, a
connection to the VAR (5.2.1) is made through the conditional distribution, and finally this
process and its stationary properties are formally established. Suppose that for a random vector
in Rd(p+1) it holds that (z, z) ∼ td(p+1)(1p+1 ⊗ µ,Σp+1, ν), where ν > 2. By the properties of
a multivariate Student’s t-distribution (given in Appendix 5.A), the conditional distribution of z
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given z is z|z ∼ td(µ(z),Ω(z), ν + dp), where

µ(z) =ϕ0 +Apz (5.2.6)

Ω(z) =
ν − 2 + (z − 1p ⊗ µ)′Σ−1

p (z − 1p ⊗ µ)

ν − 2 + dp
Ω. (5.2.7)

It is easy to see that a VAR of the form (5.2.1) that has the above-described conditional Stu-
dent’s t-distribution is obtained by assuming that εt ∼ td(0, Id, ν + dp) and that the conditional
covariance matrix Ωt is of the form (5.2.7). The following theorem then formally establishes
this Student’s t VAR and its stationary properties (which is analogous to Theorem 1 in Meitz
et al., forthcoming, considering a univariate version of the Student’s t autoregression).

Theorem 5.1. Suppose ϕ0 ∈ Rd, [A1 : ... : Ap] ∈ Sd×dp,Ω ∈ Rd×d is positive definite, and
that ν > 2. Then, there exists a process zt = (zt, ..., zt−p+1) (t = 0, 1, 2, ...) with the following
properties.

(i) The process zt is a Markov chain on Rdp with a stationary distribution characterized
by the density function tdp(1p ⊗ µ,Σp, ν). When z0 ∼ tdp(1p ⊗ µ,Σp, ν), we have, for
t = 1, 2, ..., that z+t ∼ td(p+1)(1p+1 ⊗ µ,Σp+1, ν) and the conditional distribution of zt
given zt−1 is

zt|zt−1 ∼ td(µ(zt−1),Ω(zt−1), ν + dp). (5.2.8)

(ii) Furthermore, for t = 1, 2, ..., the process zt has the representation

zt = ϕ0 +

p∑
i=1

Aizt−i + Ω
1/2
t εt (5.2.9)

where Ωt = Ω(zt−1) is the conditional covariance matrix (see (5.2.7)), εt ∼ IID td(0, Id, ν+
dp), and εt are independent of {zt−j, j > 0} for all t.

Analogously to the univariate linear Student’s t autoregression discussed in Meitz et al.
(forthcoming), the results (i) and (ii) in Theorem 5.1 are comparable to properties (5.2.3) and
(5.2.1) of the Gaussian counterpart. Part (i) shows that both the stationary and conditional
distributions of zt are t–distributions, whereas part (ii) clarifies the connection to the standard
VAR model.

My Student’s t VAR has a conditional mean identical to the Gaussian VAR, but unlike the
Gaussian VAR, it is conditionally heteroskedastic. Specifically, the conditional variance (5.2.7)
consists of a constant covariance matrix that is multiplied by a time-varying scalar that depends
on the quadratic form of the preceding p observations through the autoregressive parameters. In
this sense, the model has a ‘VAR(p)–ARCH(p)’ representation, but the ARCH type conditional
variance is not as general as in the conventional multivariate ARCH process (e.g., Lütkepohl,
2005, Section 16.3) that allows the entries of the conditional covariance matrix to vary relative
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to each other. My model is, however, more parsimonious than the conventional VAR-ARCH
model, as the conditional covariance depends only on the degrees of freedom and autoregressive
parameters (in addition to the parameters in the constant covariance matrix). Student’s t VARs
similar to mine have previously appeared at least in Heracleous (2003) and Poudyal (2012).

5.3 The Gaussian and Student’s t mixture vector autoregres-
sive model

The G-StMVAR model can be described as a collection of linear autoregressive models that are
the linear Gaussian VARs or the linear Student’s t VARs defined in Section 5.2. At each time
point, the process generates an observation from one of its mixture components that is randomly
selected according to the probabilities given by the mixing weights. This definition is formalized
next.

Let yt (t = 1, 2, ...) be the real valued d-dimensional time series of interest, and let Ft−1

denote σ-algebra generated by the random vectors {ys, s < t}. In a G-StMVAR model with
autoregressive order p and M mixture components (or regimes), the observations yt are assumed
to be generated by

yt =
M∑

m=1

sm,t(µm,t + Ω
1/2
m,tεm,t), (5.3.1)

µm,t =ϕm,0 +

p∑
i=1

Am,iyt−i, (5.3.2)

where the following conditions hold (which are similar to Condition 1 in Kalliovirta et al., 2016).

Condition 5.1.
(a) For m = 1, ...,M1 ≤ M , the random vectors εm,t are IID nd(0, Id) distributed, and for

m = M1 + 1, ...,M , they are IID td(0, Id, νm + dp) distributed. For all m, εm,t are
independent of Ft−1.

(b) For each m = 1, ...,M ’ ϕm,0 ∈ Rd,Am,p ≡ [Am,1 : ... : Am,p] ∈ Sd×dp (the set Sd×dp is de-
fined in (5.2.2)), and Ωm is positive definite. For m = 1, ...,M1, the conditional covariance
matrices are constants, Ωm,t = Ωm. For m = M1 + 1, ...,M , the conditional covariance
matrices Ωm,t are as in (5.2.7), except that z is replaced with yt−1 = (yt−1, ..., yt−p) and
the regime specific parameters ϕm,0,Am,p,Ωm,νm are used to define the quantities therein.
For m = M1 + 1, ...,M , also νm > 2.

(c) The unobservable regime variables s1,t, ..., sM,t are such that at each t, exactly one of
them takes the value one and the others take the value zero according to the conditional
probabilities expressed in terms of the (Ft−1-measurable) mixing weights αm,t ≡ P(sm,t =

1|Ft−1) that satisfy
∑M

m=1 αm,t = 1.
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(d) Conditionally on Ft−1, (s1,t, ..., sM,t) and εm,t are assumed independent.

The conditions νm > 2 in (b) are made to ensure the existence of second moments. This
definition implies that the G-StMVAR model generates each observation from one of its mixture
components, a linear Gaussian or Student’s t vector autoregression discussed in Section 5.2,
and that the mixture component is selected randomly according to the probabilities given by the
mixing weights αm,t.

The first M1 mixture components are assumed to be linear Gaussian VARs, and the last
M2 ≡ M − M1 mixture components are assumed to be linear Student’s t VARs. If all the
component processes are Gaussian VARs (M1 = M ), the G-StMVAR model reduces to the
GMVAR model of Kalliovirta et al. (2016). If all the component processes are Student’s t VARs
(M1 = 0), I refer to the model as the StMVAR model.

Equations (5.3.1) and (5.3.2) and Condition 5.1 lead to a model in which the conditional
density function of yt conditional on its past, Ft−1, is given as

f(yt|Ft−1) =

M1∑
m=1

αm,tnd(yt;µm,t,Ωm) +
M∑

m=M1+1

αm,ttd(yt;µm,t,Ωm,t, νm + dp). (5.3.3)

The conditional densities nd(yt;µm,t,Ωm,t) are obtained from (5.2.3), whereas td(yt;µm,t,Ωm,t, νm+
dp) are obtained from Theorem 5.1. The explicit expressions of the density functions are given
in Appendix 5.A. To fully define the G-StMVAR model it is then left to specify the mixing
weights αm,t.

Analogously to Kalliovirta et al. (2015), Kalliovirta et al. (2016), Meitz et al. (forthcom-
ing), and Chapter 2, I define the mixing weights as weighted ratios of the component process
stationary densities corresponding to the previous p observations. In order to formally specify
the mixing weights, the following function is first defined for notational convenience. Let

dm,dp(y;1p ⊗ µm,Σm,p, νm) =

{
ndp(y;1p ⊗ µm,Σm,p), when m ≤ M1,
tdp(y;1p ⊗ µm,Σm,p, νm), when m > M1,

(5.3.4)

where the dp-dimensional densities ndp(y;1p ⊗ µm,Σm,p) and tdp(y;1p ⊗ µm,Σm,p, νm) cor-
respond to the stationary distribution of the mth component process (given in Equation (5.2.3)
for the Gaussian regimes and in Theorem 5.1 for the Student’s t regimes). Denoting yt−1 =
(yt−1, ..., yt−p), the mixing weights of the G-StMVAR model are defined as

αm,t =
αmdm,dp(yt−1;1p ⊗ µm,Σm,p, νm)∑M
n=1 αndn,dp(yt−1;1p ⊗ µn,Σn,p, νn)

, (5.3.5)

where αm ∈ (0, 1), m = 1, ...,M , are mixing weights parameters assumed to satisfy
∑M

m=1 αm =
1, µm = (Id −

∑p
i=1Am,i)

−1ϕm,0, and covariance matrix Σm,p is given in (5.2.4) and (5.2.5) but
using the regime specific parameters to define the quantities therein.

Because the mixing weights are weighted ratios of the component process stationary densi-
ties corresponding to the previous p observations, the greater the relative weighted likelihood of
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a regime is, the more likely the process generates an observation from it. This is a convenient
feature for forecasting, and it also facilitates associating statistical characteristics and economic
interpretations to the regimes. Moreover, it turns out that this specific formulation of the mixing
weights leads to attractive theoretical properties such as full knowledge of the stationary dis-
tribution of p + 1 consecutive observations and ergodicity of the process. These properties are
summarized in the following theorem.

Before stating the theorem, a few notational conventions are provided. The parameters of
a G-StMVAR model are collected to the ((M(d + d2p + d(d + 1)/2 + 2) − M1 − 1) × 1)
vector θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (ϕm,0, vec(Am,p), vech(Ωm)) and ν =
(νM1+1, ..., νM). The last mixing weight parameter αM is not parametrized because it is obtained
from the restriction

∑M
m=1 αm = 1. The G-StMVAR model with autoregressive order p, and M1

Gaussian and M2 Student’s t mixture components is referred to as the G-StMVAR(p,M1,M2)
model, whenever the order of the model needs to be emphasized.

Theorem 5.2. Consider the G-StMVAR process yt generated by (5.3.1), (5.3.2), and (5.3.5) with
Condition 5.1 satisfied. Then, yt = (yt, ..., yt−p+1) is a Markov chain on Rdp with stationary
distribution characterized by the density

f(y;θ) =

M1∑
m=1

αmndp(y;1p ⊗ µm,Σm,p) +
M∑

m=M1+1

αmtdp(y;1p ⊗ µm,Σm,p, νm). (5.3.6)

Moreover, yt is ergodic.

The stationary distribution is a mixture of M1 dp-dimensional Gaussian distributions and
M2 dp-dimensional t-distributions with constant mixing weights αm. The proof of Theorem 5.2
in Appendix 5.B shows that the marginal stationary distributions of 1, ..., p + 1 consecutive
observations are likewise mixtures of Gaussian and t-distributions. This gives the mixing weight
parameters αm’ m = 1, ..,M , interpretation as the unconditional probabilities of an observation
being generated from the mth component process. The unconditional mean, covariance, and
first p autocovariances are hence obtained as E[yt] =

∑M
m=1 αmµm and

Cov(yt, yt−j) =
M∑

m=1

αmΣm(j) +
M∑

m=1

αm (µm − E[yt]) (µm − E[yt])
′ , (5.3.7)

where j = 0, 1, ..., p and Σm(j) is the jth autocovariance matrix of the mth component process.
The conditional mean of the G-StMVAR process can be expressed as E[yt|Ft−1] =

∑M
m=1 αm,tµm,t

and the conditional covariance matrix as

Cov(yt|Ft−1) =

M1∑
m=1

αm,tΩm +
M∑

m=M1+1

αm,tΩm,t

+
M∑

m=1

αm,t (µm,t − E[yt|Ft−1]) (µm,t − E[yt|Ft−1])
′ .

(5.3.8)
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That is, the conditional mean is a weighted sum of the component processes’ conditional means
with the weights given by the time-varying mixing weights αm,t. The conditional variance con-
sists of three terms. The first term is a weighted sum of the Gaussian component processes’
conditional covariance matrices, and the second term is a weighted sum of the Student’s t com-
ponent processes’ conditional covariance matrices with the weights given by the time-varying
mixing weights, while the third term captures conditional heteroskedasticity caused by varia-
tions in the conditional mean.

By construction, the StMVAR model does not generally filter out autocorrelation as well as
its Gaussian counterpart, the GMVAR model (Kalliovirta et al., 2016), because the autoregres-
sive parameters are also the coefficients for ARCH type conditional heteroskedasticity. This
property arises from the utilization of the multivariate Student’s t-distribution as the stationary
distribution of the component processes. The utilization of the t-distribution allows for parsi-
monious modelling of series that display fat tails and conditional heteroskedasticity within the
regimes. This is particularly advantegeous in the context of mixture VARs, as the large number
of parameters may often be a problem even without an ARCH component. Appropriate mod-
elling of kurtosis and conditional heteroskedasticity is important, since they may affect the en-
dogenously determined regime-switching probabilities. Ignoring the modelling of kurtosis and
conditional heteroskedasticity would leave out potentially important dynamics that may affect
the outcome of an empirical investigation. If some of the regimes have a constant conditional
covariance matrix and zero excess kurtosis, they are allowed to be conditionally homoskedastic
linear Gaussian VARs, which leads to the G-StMVAR model.

5.4 Structural G-StMVAR model

5.4.1 The model setup
The G-StMVAR model can be extended to a structural version similarly to the structural GM-
VAR model discussed in Chapter 4.1 Consider the G-StMVAR model defined by (5.3.1), (5.3.2),
and (5.3.5) with Condition 5.1 satisfied. I write the structural G-StMVAR model as

yt =
M∑

m=1

sm,t(ϕm,0 +

p∑
i=1

Am,iyt−i) +Btet (5.4.1)

1 The structural GMVAR model introduced in Chapter 4 is obtained as special case of my model by selecting
M1 = M , i.e., that all the regimes are of the GMVAR type.
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and

ut ≡ Btet =



u1,t ∼ nd(0,Ω1,t) if s1,t = 1 (with probability α1,t)
...

uM1,t ∼ nd(0,ΩM1,t) if sM1,t = 1 (with probability αM1,t)
uM1+1,t ∼ td(0,ΩM1+1,t, νM1+1 + dp) if sM1+1,t = 1 (with probability αM1+1,t)

...
uM,t ∼ td(0,ΩM,t, νM + dp) if sM,t = 1 (with probability αM,t)

(5.4.2)
where the probabilities are expressed conditionally on Ft−1 and et (d × 1) is an orthogonal
structural error. This definition is similar to Equations (4.3.1) and (4.3.2) in Chapter 4 but with
Student’s t regimes in addition to the Gaussian ones.

For the Gaussian regimes (m = 1, ...,M1)’ Ωm,t = Ωm. For the Student’s t regimes (m =
M1 + 1, ...,M ), Ωm,t = ωm,tΩm, where

ωm,t =
νm − 2 + (yt−1 − 1p ⊗ µm)

′Σ−1
m,p(yt−1 − 1p ⊗ µm)

νm − 2 + dp
. (5.4.3)

The invertible (d × d) ”B-matrix” Bt, which governs the contemporaneous relationships of
the shocks, is time-varying and a function of yt−1, ..., yt−p. I will define the B-matrix so that
it captures the conditional heteroskedasticity of the reduced form error, and thereby amplifies a
constant-sized structural shock accordingly. Appropriate modelling of conditional heteroskedas-
ticity in the B-matrix is of interest because the (generalized) impulse response functions may be
asymmetric with respect to the size of the shock.

We have Ωu,t ≡ Cov(ut|Ft−1) =
∑M1

m=1 αm,tΩm +
∑M

m=M1+1 αm,tωm,tΩm, while the con-
ditional covariance matrix of the structural error et = B−1

t ut (which are not IID but martingale
differences and thereby uncorrelated) is obtained as

Cov(et|Ft−1) =

M1∑
m=1

αm,tB
−1
t ΩmB

′−1
t +

M∑
m=M1+1

αm,tωm,tB
−1
t ΩmB

′−1
t . (5.4.4)

Therefore, the B-matrix should be chosen so that the structural shocks are orthogonal regardless
of which regime they come from. Chapter 4 shows that any such B-matrix has (linearly inde-
pendent) eigenvectors of the matrix ΩmΩ

−1
1 as its columns. Moreover, it is shown that under the

following assumption and a constant normalization of the structural error’s conditional variance,
say, Ωu,t = Id, the B-matrix is unique up to ordering of its columns and changing all signs in a
column.2

Assumption 5.1. Consider M positive definite (d× d) covariance matrices Ωm, m = 1, ...,M ,
and denote the strictly positive eigenvalues of the matrices ΩmΩ

−1
1 as λmi, i = 1, ..., d, m =

2 Chapter 4 shows the uniqueness of the B-matrix for the structural GMVAR model, but the results apply to my
structural G-StMVAR model as well.

145



5.4. STRUCTURAL G-STMVAR MODEL

2, ...,M . Suppose that for all i ̸= j ∈ {1, ..., d}, there exists an m ∈ {2, ...,M} such that
λmi ̸= λmj .

Thus, as long as one is willing to assume a single (time-varying) B-matrix, its columns
generally characterize the estimated impact effects of the shocks, but it is not revealed which
column is related to which shock. Since the B-matrix is also subject to estimation error, further
constraints may be needed for labelling the shocks.

Following Chapter 4 (and Lanne and Lütkepohl (2010) and Lanne, Lütkepohl, and Ma-
ciejowsla (2010)), I utilize the following matrix decomposition that is convenient for specifying
the B-matrix and deriving the identification conditions. I decompose the error term covariance
matrices as

Ω1 = WW ′ and Ωm = WΛmW
′, m = 2, ...,M, (5.4.5)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ

−1
1 and the columns of the nonsingular W are the related eigenvectors (that

are the same for all m by construction). When M = 2, decomposition (5.4.5) always exists
(Muirhead, 1982, Theorem A9.9), but for M ≥ 3 its existence requires that the matrices ΩmΩ

−1
1

share the common eigenvectors in W . If this is not the case, the B-matrix does not exist (see
Section 4.3.1 in Chapter 4), but its existence is, however, testable.

Similarly to Chapter 4, any scalar multiples of W ’s columns comprise an appropriate B-
matrix, but only specific scalar multiples comprise the locally unique B-matrix associated with
a given normalization of the structural error’s conditional covariance matrix. Direct calculation
shows that the B-matrix associated with the normalization Cov(et|Ft−1) = Id is obtained as

Bt = W (

M1∑
m=1

αm,tΛm +
M∑

m=M1+1

αm,tωm,tΛm)
1/2, (5.4.6)

where BtB
′
t = Ωu,t. Since B−1

t ΩmB
′−1
t = Λm(

∑M1

n=1 αn,tΛn +
∑M

n=M1+1 αn,tωn,tΛn)
−1, the B-

matrix (5.4.6) simultaneously diagonalizes Ω1, ...,ΩM , and Ωu,t (and thereby also Ω1,t, ...,ΩM,t)
for each t so that Cov(et|Ft−1) = Id.

5.4.2 Identification of the shocks
I have established that in the model defined by Equations (5.4.1) and (5.4.2) with the normal-
ization Cov(et|Ft−1) = Id, the structural shocks are identified up ordering and sign under As-
sumption 5.1. Global statistical identification of the shocks is therefore obtained by fixing the
signs and ordering of the columns of Bt. The ordering of the columns can be fixed by fixing an
arbitrary ordering for the eigenvalues in the diagonals of Λm, m = 2, ..,M . The signs, in turn,
can be normalized by placing a single strict sign constraint in each column of Bt.

However, the interest is often in identifying some specific shock (or shocks). To that end, the
correct structural shock needs to be uniquely related to the shock of interest through constraints
on the B-matrix (or equally W ) that only the shock of interest satisfies. Proposition 4.2 in
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Chapter 4 gives formal conditions for global identification of any subset of the shocks when the
relevant pairs eigenvalues λmi are distinct in some regime. Chapter 4 also derives conditions
for globally identifying some of the shocks when one of the relevant pairs of the eigenvalues is
identical in all regimes (Proposition 4.3). For convenience, the conditions are repeated in the
former case below, but in the latter case (as well as for the proof of the proposition below), I
refer to Chapter 4.

Proposition 5.1. Suppose Ω1 = WW ′ and Ωm = WΛmW
′, m = 2, ...,M, where Λm =

diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues of ΩmΩ
−1
1 in the diagonal

and the columns of the nonsingular W are the related eigenvectors. Then, the last d1 structural
shocks are uniquely identified if

(1) for all j > d− d1 and i ̸= j there exists an m ∈ {2, ...,M} such that λmi ̸= λmj ,
(2) the columns of W are constrained in a way that for all i ̸= j > d − d1, the ith column

cannot satisfy the constraints of the jth column as is nor after changing all signs in the ith
column, and

(3) there is at least one (strict) sign constraint in each of the last d1 columns of W .

Condition (3) fixes the signs in the last d1 columns of W , and therefore the signs of the
instantaneous effects of the corresponding shocks. However, since changing the signs of the
columns is effectively the same as changing the signs of the corresponding shocks, and the
structural shock has a distribution that is symmetric about zero, this condition is not restrictive.
The assumption that the last d1 shocks are identified is not restrictive either, as one may always
reorder the structural shocks accordingly. See Chapter 4 for examples on identifying shocks with
this proposition. Finally, note that Assumption 5.1 is not required for identification, when only
some of the shocks are to be identified. In that case, it is replaced with the weaker Condition (1)
(that is always satisfied under Assumption 5.1).

If Condition (1) is strengthened to Assumption 5.1, the model is statistically identified. Con-
sequently, the constraints imposed in Condition (2) become testable. If Assumption 5.1 is not
satisfied, the testing problem is nonstandard and the conventional asymptotic distributions of
likelihood ratio and Wald test statistics are unreliable (see the related discussion in Chapter 4,
Section 4.3.3).

5.5 Estimation
The parameters of the G-StMVAR model can be estimated by the method of maximum like-
lihood (ML). Even the exact log-likelihood function is available, as I have established the
stationary distribution of the process in Theorem 5.2. Suppose the observed time series is
y−p+1, ..., y0, y1, ..., yT and that the initial values are stationary. Then, the log-likelihood function
of the G-StMVAR model takes the form

L(θ) = log

(
M∑

m=1

αmdm,dp(y0;1p ⊗ µm,Σm,p, νm)

)
+

M∑
m=1

lt(θ), (5.5.1)
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where dm,dp(·;1p ⊗ µm,Σm,p, νm) is defined in (5.3.4) and

lt(θ) = log

(
M1∑
m=1

αm,tnd(yt;µm,t,Ωm) +
M∑

m=M1+1

αm,ttd(yt;µm,t,Ωm,t, νm + dp)

)
. (5.5.2)

If stationarity of the initial values seems unreasonable, one can condition on the initial values and
base the estimation on the conditional log-likelihood function, which is obtained by dropping
the first term on the right side of (5.5.1).

If there are two regimes in the model (M = 2), the structural G-StMVAR model is obtained
from the estimated reduced form model by decomposing the covariance matrices Ω1, ...,ΩM as
in (5.4.5). If M ≥ 3 or overidentifying constraints are imposed on Bt through W , the model can
be reparametrized with W and Λm (m = 2, ...,M ) instead of Ω1, ...,ΩM , and the log-likelihood
function can be maximized subject to the new set of parameters and constraints. In this case, the
decomposition (5.4.5) is plugged in to the log-likelihood function and vech(Ω1), ..., vech(ΩM)
are replaced with vec(W ) and λ2, ...,λM in the parameter vector θ, where λm = (λm1, ..., λmd).
Instead of constraining vech(Ω1), ..., vech(ΩM) so that Ω1, ...,ΩM are positive definite, the con-
straints λmi > 0 are imposed for all m = 2, ...,M and i = 1, ..., d.

In the rest of this section, we assume that estimation is based on the conditional log-likelihood
function L

(c)
T (θ) = T−1

∑M
m=1 lt(θ), i.e., the ML estimator θ̂T maximizes L(c)

T (θ). I have scaled
the conditional log-likelihood function with the sample size T so that the notation is consistent
with the literature cited.

Establishing the asymptotic properties of the ML estimator requires that it is uniquely iden-
tified. In order to achieve unique identification, the parameters need to be constrained so that the
mixture components cannot be ’relabelled’ to produce the same model with a different parameter
vector. The required assumption is

α1 > · · · > αM1 > 0, αM1+1 > · · · > αM > 0, and ϑi = ϑj only if any of the conditions
(1) 1 ≤ i = j ≤ M, (2) i ≤ M1 < j, (3) i, j > M1 and νi ̸= νj, is satisfied.

(5.5.3)

In the case of the structural G-StMVAR model, identification also requires that Assumption 5.1
is satisfied (see Section 5.4).3 Then, identification of the structural model follows from the
identification of the reduced form model.

The constraints imposed on the parameter space are summarized in the following assump-
tion.

Assumption 5.2. The true parameter value θ0 is an interior point of Θ, which is a compact
subset of {θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν) ∈ RM(d+d2p+d(d+1)/2) × (0, 1)M−1 × (2,∞)M2 :
Am,p ∈ Sd×dp,Ωm is positive definite, for all m = 1, ...,M , and (5.5.3) holds}.

3 With the appropriate zero constraints on W , this condition can be relaxed, however (see the related discussion in
Chapter 4).
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Asymptotic properties of the ML estimator under the conventional high-level conditions are
stated in the following theorem. Denote I(θ) = E

[
∂lt(θ)
∂θ

∂lt(θ)
∂θ′

]
and J (θ) = E

[
∂2lt(θ)
∂θ∂θ′

]
.

Theorem 5.3. Suppose that yt are generated by the stationary and ergodic G-StMVAR process
of Theorem 5.2 and that Assumption 5.2 holds. Then, θ̂T is strongly consistent, i.e., θ̂T → θ0

almost surely. Suppose further that (i) T 1/2 ∂
∂θ0

L
(c)
T (θ0)

d→ N(0, I(θ0)) with I(θ0) finite and

positive definite, (ii) J (θ0) = −I(θ0), and (iii) E[supθ∈Θ0
|∂

2lt(θ)
∂θ∂θ′ |] < ∞ for some Θ0, compact

convex set contained in the interior of Θ that has θ0 as an interior point. Then, T 1/2(θ̂T−θ0)
d→

N(0,−J (θ0)
−1).

Given consistency, conditions (i)-(iii) of Theorem 5.3 are standard for establishing asymp-
totic normality of the ML estimator, but their verification can be tedious. If one is willing to
assume the validity of these conditions, the ML estimator has the conventional limiting distri-
bution, implying that the approximate standard errors for the estimates are obtained as usual.
Furthermore, the standard likelihood based tests are applicable as long as the number of mixture
components is correctly specified. This condition is important, because if the number of Gaus-
sian or Student’s t type mixture components is chosen too large, some of the parameters are not
identified causing the result of Theorem 5.3 to break down. This particularly happens when one
tests for the number of regimes, as under the null some of the regimes are removed from the
model.4 Likewise, when testing whether a regime is a Gaussian VAR against the alternative that
it is a Student’s t VAR, under the null, νm = ∞ for the Student’s t regime m to be tested, which
violates Assumption 5.2.

Finding the ML estimate amounts to maximizing the log-likelihood function defined in
(5.5.1) and (5.5.2) over a high dimensional parameter space satisfying the constraints sum-
marized in Assumption 5.2. Due to the complexity of the log-likelihood function, numerical
optimization methods are required. The maximization problem can be challenging in practice.
This is particularly due to the mixing weights’ complex dependence on the preceding observa-
tions, which induces a large number of modes to the surface of the log-likelihood function, and
large areas to the parameter space, where it is flat in multiple directions. Also, the popular EM
algorithm (Redner and Walker, 1984) is virtually useless here, as at each maximization step one
faces a new optimization problem that is not much simpler than the original one. Following
Meitz, Preve, and Saikkonen (2018), Meitz et al. (forthcoming), and Chapters 2, 3, and 4, I
therefore employ a two-phase estimation procedure in which a genetic algorithm is used to find
starting values for a gradient based method. The R package gmvarkit (Virolainen, 2018) that
accompanies this essay employs a modified genetic algorithm that works similarly to the one
described in the univariate context in Chapter 2, Section 2.3.1, and Appendix 2.A.

4 Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture autoregressive models with
Gaussian conditional densities. Developing a test for the number of a regimes in the G-StMVAR model is a major
task and beyond the scope of this paper.
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5.6 Building a G-StMVAR model
Building a G-StMVAR model amounts to finding a suitable autoregressive order p, the number
of Gaussian regimes M1, and the number of Student’s t regimes M2. I propose a model selection
strategy that takes advantage of the observation that the G-StMVAR model is a limiting case of
the StMVAR model (in which all the mixture components are linear Student’s t VARs).

It is easy to check that the linear Gaussian vector autoregression defined in Section 5.2 is
a limiting case of the linear Student’s t vector autoregression when the degrees of freedom
parameter tends to infinity. As the mixing weights (5.3.5) are weighted ratios of the component
process stationary densities, it then follows that a G-StMVAR(p,M1,M2) model is obtained as
a limiting case of the StMVAR(p,M ) model (or equivalently the G-StMVAR(p, 0,M ) model)
with the degrees of freedom parameters of the first M1 regimes tending to infinity. Since a
StMVAR(p,M ) model that is fitted to data generated by a G-StMVAR(p,M1,M2) process is,
therefore, asymptotically expected to get large estimates for the degrees of freedom parameters
of the first M1 regimes, I propose starting model selection by finding a suitable StMVAR model.
If the StMVAR model contains overly large degrees of freedom parameter estimates, one should
switch the corresponding regimes to Gaussian VARs by estimating the appropriate G-StMVAR
model.

For a strategy to find a suitable StMVAR model, I follow Kalliovirta et al. (2015), and sug-
gest first considering the linear version of the model, that is, a StMVAR model with one mixture
component. Partial autocorrelation functions, information criteria, and (quantile) residual diag-
nostics may be made use of as usual for selecting the appropriate autoregressive order p. If the
linear model is found inadequate, mixture versions of the model can be examined. One should,
however, be conservative with the choice of M , because if the number of regimes is chosen too
large, some of the parameters are not identified. Adding new regimes to the model also vastly
increases the number of parameters, and moreover, due to the increased complexity, it might be
difficult to obtain the ML estimate in practice if there are many regimes in the model.

Overly large degrees of freedom parameters are redundant in the model, but their weak
identification also causes numerical problems. Specifically, they induce a numerically nearly
singular Hessian matrix of the log-likelihood function when evaluated at the estimate, which
makes the approximate standard errors and the quantile residual diagnostic tests of Kalliovirta
and Saikkonen (2010) often unavailable. Since removal of overly large degrees of freedom
parameters by switching to the appropriate G-StMVAR model has little effect on the model’s
fit, the switch is advisable whenever overly large degrees of freedom parameter estimates are
obtained.

5.7 Empirical application
As an empirical application, I study asymmetries in the expected effects of the monetary policy
shock in the Euro area. Asymmetric effects of the Euro area monetary policy shock have been
studied, among others, by Peersman and Smets (2002) and Dolado and Marı́a-Dolores (2006),
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who found that monetary policy shock has larger effects on production during recessions than
expansions. Pellegrino (2018) found real effects of the monetary policy shock weaker during
uncertain times than tranquil times, whereas Burgard et al. (2019) found the effects of contrac-
tionary monetary policy shocks stronger but less enduring during ”crisis” than during ”normal
times”.

I consider a monthly Euro area data covering the period from January 1999 to December
2021 (276 observations) and consisting of four variables: industrial production index (IPI), har-
monized consumer price index (HCPI), Brent crude oil price (Europe, OIL), and an interest rate
variable (RATE). My policy variable is the interest rate variable, which is the Euro overnight
index average (EONIA) from January 1999 to October 2008 and the Wu and Xia (2016) shadow
rate from November 2008 to December 2021. The Wu and Xia (2016) shadow rate is a shadow
interest rate that is not bounded by the zero-lower-bound and also quantifies unconventional
monetary policy measures.5 Overall, my empirical application closely resembles that in Chap-
ter 4, where asymmetries in the expected effects of the U.S. monetary policy shock were studied
in a structural GMVAR model.

I detrend the IPI by first separating its cyclical component from the trend with the linear
projection filter proposed by Hamilton (2018) and then considering the cyclical component.6 I
thereby implicitly assume that the monetary policy shock does not have permanent effects on
real industrial production. Hereafter, I often refer to the IPI’s deviation from the trend as the
output gap. The logs of HCPI and the oil price are detrended by taking first differences, whereas
the interest rate variable is assumed stationary. For numerical reasons, the cyclical component
of the IPI and the log-difference of HCPI are multiplied by 100 and the log-difference of OIL by
10. The series are presented in Figure 5.1, where the shaded areas indicate the periods of Euro
area recessions defined by the OECD.7

For selecting the order my G-StMVAR model, I started by estimating one-regime StMVAR
models with autoregressive orders p = 1, ..., 12 and found that AIC was minimized by the order
p = 1. Then, I estimated a two-regime StMVAR model with p = 1 but found this model
somewhat inadequate. Therefore, I increased the autoregressive order to p = 2, which increased
the AIC. The overall adequacy of the StMVAR(2, 2) model, i.e., G-StMVAR(p = 2, M1 = 0,
M2 = 2) model, was found reasonable, so I employ it for the further analysis. Because the model
does not contain large degrees of freedom parameter estimates, I do not consider incorporating

5 The IPI, HCPI, and EONIA were obtained from the European Central Bank Statistical Data Warehouse; the Brent
crude oil prices were retrieved from the Federal Reserve Bank of St. Louis database; and the Wu and Xia (2016)
shadow rate was obtained from the first author’s website.

6 Denoting the univariate, non-stationary time series as yt, the filter defines its transient component at the time t+h
(h > 0) as the ordinary least squares residuals from regressing yt+h on a constant and yt, ..., yt−s+1. When s is
chosen larger than the order of integration, the residual process is stationary. I used the parameter values h = 24
and s = 12, as suggested by Hamilton (2018) for monthly data.

7 OECD Composite Leading Indicators, ”Composite Leading Indicators: Reference Turning
Points and Component Series”, http://www.oecd.org/std/leading-indicators/
oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm
(2.2.2022). At the time of accessing the series, the publicly available data ended at August 2021. I assume that
the rest of the year 2021 did not contain recessions.
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Figure 5.1: Monthly Euro area series covering the period from January 1999 to December 2021.
The top panel presents the cyclical component of the industrial production index (IPI), which
I separated from the trend using the linear projection filter proposed by Hamilton (2018). The
second and third panels the log-differences of the harmonized consumer price index (HCPI) and
Brent crude oil prices (Europe, OIL) multiplied by hundred and ten, respectively. The fourth
panel presents an interest rate variable which is the EONIA from January 1999 to October 2008
and the Wu and Xia (2016) shadow rate from November 2008 to December 2021. The bottom
panel shows the estimated mixing weights of the fitted StMVAR(2, 2) model. The shaded areas
indicate the periods of OECD based Euroa area recessions.

Gaussian mixture components by switching to a G-StMVAR model with M1 > 0. Details on
model selection and the adequacy of the selected model are provided in Appendix 5.C.1.

The estimated mixing weights of the StMVAR(2, 2) model are presented in the bottom panel
of Figure 5.1. The first regime (blue) mainly prevails after the Financial crisis in 2008, but it ob-
tains large mixing weights also before and during the early 2000’s recession. The second regime
(red) dominates when the first one does not, that is, mainly before the Financial crisis. After the
Financial crisis, its mixing weights stay close to zero, excluding a short period before the early
2010’s recession, however. Since the prevailing regime starts switching sharply from the second
to the first in October 2008, my model is consistent with the evidence that the ECB changed
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its reaction function after the bankruptcy of Lehman Brothers in September 2008 (Gerlach and
Lewis, 2014).8

Based on unconditional means (and marginal variances) of the regimes (presented in Ta-
ble 5.2 in Appendix 5.C.2), the post-Financial crisis regime is characterized by negative (but
volatile) output gap as well as lower inflation, oil price inflation, and interest rate variable
than the pre-Financial crisis regime, which is characterized by positive output gap. The post-
Financial crisis regime also exhibits higher kurtosis and overall volatility than the pre-Financial
crisis regime. Details on the characteristics of the regimes are discussed in Appendix 5.C.2.
For the ease of communication, I will refer to the first regime as the low-growth post-Financial
crisis regime and the second regime as the high-growth pre-Financial crisis regime without ex-
plicitly reminding that the classification is not a strict one: both regimes obtain large mixing
weights before and after the Financial crisis, while both regimes also prevail during expansions
and recessions.

5.7.1 Identification of a monetary policy shock
Decomposing the covariance matrices of the reduced form StMVAR(2, 2) model as in (5.4.5)
gives the following estimates for the structural parameters:

Ŵ =


0.77 (0.512) −0.94 (0.618) 1.82 (0.771) −0.13 (0.271)

−0.12 (0.069) 0.12 (0.077) 0.17 (0.079) 0.03 (0.026)
−1.05 (0.447) −0.39 (0.482) 0.56 (0.306) 0.21 (0.143)
0.01 (0.016) −0.02 (0.022) 0.02 (0.030) 0.50 (0.199)

 , λ̂2 =


0.50 (0.397)
0.36 (0.291)
0.19 (0.155)
0.03 (0.021)

 ,

(5.7.1)
where the ordering of the variables is yt = (IPIt,HCPIt,OILt,RATEt), the estimates λ̂2i are
in decreasing order (which fixes an arbitrary ordering for the columns of Ŵ ), and approximate
standard errors are given in parentheses next to the estimates. The estimates that deviate from
zero by more than two times their approximate standard error are bolded. I assume that the λ2i

are all distinct, i.e., Assumption 5.1.
The estimates and approximate standard errors in (5.7.1) show that the fourth shock is the

only shock that moves the interest variable (also statistically) significantly at impact, while it
is also the only shock that moves production to the opposite direction. Therefore, I deem it as
the monetary policy shock. The fourth shock, however, appears to move inflation and oil price
inflation to the same direction as the interest rate variable, which is contrary to many of the
standard economic theories stating that an increase in the nominal interest rate should decrease
inflation by decreasing aggregate demand (e.g., Galı́, 2015, and the references therein).

The monetary policy shock is identified with Proposition 5.1 (Proposition 4.2 in Chapter 4)
by placing such constraints on W (or equivalently the B-matrix) that it is unambiguously distin-
8 Gerlach and Lewis (2014) found that the ECB was cutting the interest rates faster at the time of the crisis, and

that the ECB started a policy shift back in the late 2010. According my StMVAR model, however, the dominating
regime never switches back to the pre-Financial crisis regime (in my sample period), although the second regime
obtains mixing weights clearly larger than zero in the late 2010 and several relatively large mixing weights in the
early 2011.
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guished from the other shocks. I assume that the monetary policy shock moves the interest rate
and production in opposite directions and that it does not move inflation nor oil price inflation
at impact. The zero constraints on inflation and oil price inflation obtained the p-values 0.22
and 0.15 in a Wald test individually and the p-value 0.34 jointly, so they are not rejected. These
zero constraints are useful for distinguishing the monetary policy shock from the other shocks,
but they also dampen the arguably implausible instantaneous increase in prices in response to a
contractionary monetary policy shock.9

I distinguish the monetary policy shock from the other shocks by assuming that first shock
moves oil price inflation at impact and that the second and third shocks move inflation at impact.
This is not economically restrictive, as the responses can be very small. The above-described
identification produced the following estimates:

Ŵ =


0.88 (0.692) −1.16 (0.812) 2.00 (1.164) −0.40 (0.351)

−0.13 (0.091) 0.14 (0.099) 0.20 (0.122) 0
−1.20 (0.686) −0.42 (0.561) 0.65 (0.435) 0
0.01 (0.021) −0.03 (0.029) 0.06 (0.045) 0.56 (0.313)

 , λ̂2 =


0.37 (0.423)
0.27 (0.303)
0.14 (0.161)
0.02 (0.027)

 ,

(5.7.2)
where the identified monetary policy shock is ordered last.10

5.7.2 Impulse response analysis
Following Chapter 4 (and others), I employ the generalized impulse response function (GIRF)
(Koop, Pesaran, and Potter, 1996) for estimating the expected of effects of the monetary policy
shock. The GIRF is defined as

GIRF(h, δj,Ft−1) = E[yt+h|δj,Ft−1]− E[yt+h|Ft−1], (5.7.3)

where h ∈ {0, 1, 2, ...} is the horizon and Ft−1 = σ{yt−j, j > 0} as before. The first term
on the right side is the expected realization of the process at time t + h conditionally on a
structural shock of size δj ∈ R in the jth element of et at time t and the previous observations.
The second term on the right side is the expected realization of the process conditionally on
the previous observations only. The GIRF thus expresses the expected difference in the future
outcomes when the structural shock of size δj in the jth element of et hits the system at time t as
opposed to all shocks being random. Since the regimes of my StMVAR model have economic

9 My results are, hence, contrary to Castelnuovo (2016) who argued that muted response of inflation in the Euro
area could be caused by misspecified zero constraints in the impact matrix. My model suggests that the zero
constraints instead dampen the price puzzle (see Sims, 1992).

10The parameters λ2i’ i = 1, ..., 4, were assumed distinct without a formal justification, which led to statistical
identification of the model. However, by Proposition 4.3 in Chapter 4, the monetary policy shock is still identified
if λ2i = λ2j for any i, j = 1, 2, 3 and additionally λ2i = λ24 for any one of i = 1, 2, 3. But the approximate
standard errors and the Wald test results are valid only if λ2i are all distinct. In particular, the approximate
standard errors cannot be used to infer about the (in)equality of λ2i, i = 1, ..., 4, without considerably complex
examinations, as they are (asymptotically) valid only if the λ2i are different to each other in the first place (see
Lütkepohl, Meitz, Netšunajev, and Saikkonen, 2021, for a related discussion).
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interpretations, it is interesting to also study the effects of the monetary policy shock to the
mixing weights αm,t. The related GIRFs are obtained by replacing yt+h with αm,t+h on the right
side of (5.7.3).

The G-StMVAR model has a p-step Markov property, so the GIRF can be calculated con-
ditionally on the (σ-algebra generated by the) p previous observations yt−1 = (yt−1, ..., yt−p).
I make use of this property by generating histories yt−1 = (yt−1, ..., yt−p) from the stationary
distribution of each regime separately, and thereby obtain GIRFs conditional on the starting val-
ues being from this regime. The GIRFs and confidence intervals that reflect uncertainty about
the initial value within the given regime are estimated using the Monte Carlo algorithm pre-
sented in Appendix 4.B in Chapter 4, where the point estimate is the mean over the Monte Carlo
replications and the confidence intervals are obtained from the empirical quantiles.

The StMVAR model accommodates asymmetries in the GIRFs with respect the initial state
of the economy as well as to the sign and size of the shock. I study these three types of asym-
metries by generating starting values from each regime separately and then estimating GIRFs
for positive (contractionary) and negative (expansionary) one-standard-error (small) and two-
standard-error (large) shocks. After estimating the GIRFs, I scale them so that they correspond
to a 25 basis point instantaneous increase of the interest rate variable, making any asymmetries
easy to detect.

Figure 5.2 presents the GIRFs h = 0, 1, ..., 96 months ahead estimated for the identified mon-
etary policy shock.11 The GIRFs of inflation and oil price inflation are accumulated to (scaled)
log-levels. From the top to bottom, the responses of IPI, HCPI, oil price, interest rate, and the
first regime’s mixing weights are depicted in each row, respectively. The first [third] column
shows the responses to small contractionary (blue solid line) and expansionary (red dashed line)
shocks with the initial values generated from the stationary distribution of the low-growth post-
Financial crisis [high-growth pre-Financial crisis] regime. The second [fourth] column shows
the responses to large contractionary and expansionary shocks with the initial values generated
from the low-growth post-Financial crisis [high-growth pre-Financial crisis] regime. The shaded
areas are the 90% confidence intervals that reflect the uncertainty about the initial value within
the given regime. Responses of the second regime’s mixing weights are not depicted because
they are the negative of those of the first regime.

In the low-growth post-Financial crisis regime (the first and second columns of Figure 5.2),
the IPI decreases (increases) strongly at impact in response to a contractionary (expansionary)
monetary policy shock. On average, the peak response is in the first period, and then the average
response starts to slowly decay towards zero.12 The confidence intervals show that with some of
the starting values the peak effect occurs later, however. The effects seem to die out faster for an
expansionary than a contractionary shock.

11I used R1 = R2 = 2500 in the Monte Carlo algorithm (Chapter 4, Appendix 4.B). That is, for each regime as
well as sign and size of the shock, I generated 2500 initial values, and for each of those initial values the GIRF is
estimated based on 2500 Monte Carlo repetitions.

12By zero, I mean the expected observation if all the shocks were random. Accordingly, by positive, I mean expected
observations larger than that and by negative expected observations smaller than that.
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Figure 5.2: Generalized impulse response functions h = 0, 1, ...., 96 months ahead estimated for
the monetary policy shock identified in Section 5.7.1 using R1 = R2 = 2500 in the Monte Carlo
algorithm presented in Chapter 4, Appendix 4.B. From top to bottom, the responses of produc-
tion, HCPI, oil price, the interest rate variable, and the first regime’s mixing weights are depicted
in each row, respectively. The GIRFs of the HCPI and oil price are accumulated to (scaled) log-
levels. The first [third] column shows the responses to one-standard-error contractionary (blue
solid line) and expansionary (red dashed line) shocks with the initial values generated from the
stationary distribution of the low-growth post-Financial crisis [high-growth pre-Financial crisis]
regime. The second [fourth] column shows the responses to two-standard error contractionary
and expansionary shocks with the initial values generated from the low-growth post-Financial
crisis [high-growth pre-Financial crisis] regime. After estimation, all GIRFs were scaled so that
the instantaneous movement of the interest rate variable is 25 basis points. The shaded areas
are the 90% confidence intervals that reflect uncertainty about the initial state within the given
regime. Responses of the second regime’s mixing weights are not depicted because they are the
negative of those of the first regime.
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In response to a contractionary shock, the price level stays roughly at zero for several years
but decreases slowly and persistently. In response to an expansionary shock, the price level
barely moves on average in the horizon of eight years, but confidence bounds show that with
some of the starting values it decreases and from some increases.13 The oil price seems to in-
crease (decrease) slightly for roughly fifteen months before it decreases (increases) persistently.
The confidence bounds, however, show that with some starting values the expansionary shock
may decrease the oil price. The interest rate variable stays high (low) very persistently, and the
GIRFs seem quite symmetric with respect to the size of the shock.

In the high-growth pre-Financial crisis regime (the third and fourth columns of Figure 5.2),
the IPI decreases (increases) strongly at impact in response to a contractionary (expansionary)
monetary policy shock. On average, the response then decreases (increases) and peaks roughly
after two and a half years for an expansionary shock, but stays low very persistently without a
particular peak effect for a contractionary shock. The IPI stays low very persistently, because
the probability of entering the low-growth post-Financial crisis regime stays above zero very
persistently, as the responses of first regime’s mixing weights show (the bottom panels of the
third and fourth columns in Figure 5.2).

The price level starts to steadily decrease (increase) after the impact period. The average
price level somewhat stabilizes roughly after two years when the shock is expansionary, but
keeps decreasing over the horizon of eight years when the shock is contractionary. The confi-
dence bounds show that with some of the initial values, the price level decays towards zero after
several years when the shock is small and expansionary. The oil price moves similarly to the
consumer prices, whereas the interest rate variable stays high (low) persistently, more so if the
shock is expansionary. Interestingly, an expansionary shock significantly increases the proba-
bility of the low-growth regime in the first period, but in the following periods it significantly
increases the probability of the high-growth regime.

Overall, I find strong asymmetries with respect to the initial state of the economy and the
sign of the shock, but the asymmetries are weak with respect to the size of the shock. The real
effects are less enduring for an expansionary shock than for a contractionary shock. Particu-
larly in the high-growth pre-Financial crisis regime, a contractionary shock persistently drives
the economy towards the low-growth post-Financial crisis regime, which translates to a very
persistent decrease in the output gap. The inflationary effects of the monetary policy shock are

13The observation of prices rising in response to a contractionary monetary policy shock (or decreasing in response
to an expansionary monetary policy shock) is often referred to as the price puzzle. Sims (1992) suggested that the
price puzzle may appear if the monetary policy maker uses more information in predicting the future inflation than
the autoregressive system of the variables included in the model. Consequently, the identified monetary policy
shock would also contain a component that incorporates some of the policy maker’s endogenous response to the
prediction of the future inflation, which may then make it appear as if the prices increase (or decrease) in response
to the shock. Another explanation proposes that the prices increase due to the cost-push effect of the monetary
policy shock: an increase in the nominal interest rate increases the marginal cost of production of the firms who
operate on borrowed money, and thereby decreases the aggregate supply and increases the price level (e.g., Barth
and Ramey, 2001, Ravenna and Walsh, 2006). Several authors have, however, argued that the cost-channel is not
likely strong enough to cause a price puzzle (e.g., Castelnuovo, 2012, Kaufmann and Scharler, 2009, Rabanal,
2007).
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stronger in the high-growth regime, while they are on average weak in the low-growth regime.
In the low-growth regime, however, monetary policy is mainly measured with the Wu and Xia
(2016) shadow rate instead of EONIA, which is mostly close to zero after the Financial crisis (in
my sample period). Thus, the outcome might differ in the two regimes also due to the different
measures of monetary policy.

5.8 Summary
I introduced a new mixture vector autoregressive model, which has attractive theoretical and
practical properties. The G-StMVAR model accommodates both, conditionally homoskedastic
Gaussian VARs and conditionally heteroskedastic Student’s t VARs as its mixture components.
The mixing weights are defined as weighted ratios of the component process stationary densities
corresponding to p previous observations. Therefore, the greater the relative weighted likelihood
of a regime is, the more likely the process is to generate an observation from it. This facilitates
associating statistical characteristic and economic interpretations to the regimes. The specific
formulation of the mixing weights also leads to attractive theoretical properties such as ergodic-
ity and full knowledge of the stationary distribution of p+1 consecutive observations. Moreover,
the maximum likelihood estimator of a stationary G-StMVAR model is strongly consistent, and
therefore, it has the conventional limiting distribution under conventional high level conditions.

The G-StMVAR model is a multivariate version of the G-StMAR model of Virolainen (forth-
coming). As special case, by assuming that all the mixture components are of the Student’s t
type, a multivariate version of the StMAR model of Meitz et al. (forthcoming) is obtained, which
I call the StMVAR model. In addition to the reduced form model, I introduced a structural ver-
sion of the G-StMVAR model with a time-varying impact matrix and statistically identified
shocks. Referring to Chapter 4, I discussed the problem identifying the structural shocks and
presented a general set of conditions for identifying any subset of the shocks. I then employed
the structural model in the empirical application. The accompanying CRAN distributed R pack-
age gmvarkit (Virolainen, 2018) provides a comprehensive set of tools for maximum likelihood
estimation and other numerical analysis of the introduced models.

The empirical application studied asymmetries in the expected effects of the monetary policy
shock in the Euro area and considered a monthly data covering the period from January 1999 to
December 2021. My StMVAR model identified two regimes: a low-growth regime and a high-
growth regime. The low-growth regime is characterized by a negative (but volatile) output gap,
and it mainly prevails after the collapse of Lehman Brothers in the Financial crisis but obtains
large mixing weights also during and before the early 2000’s recession. The high-growth regime
is characterized by a positive output gap and it mainly dominates before the Financial crisis.

I found strong asymmetries with respect to the initial state of the economy and the sign of
the shock, but asymmetries with respect to the size of the shock were weak. The real effects
are less enduring for an expansionary shock than for a contractionary shock. Particularly in the
high-growth pre-Financial crisis regime, a contractionary shock persistently drives the economy
towards the low-growth post-Financial crisis regime, which translates to a very persistent de-
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crease in the output gap. The inflationary effects of the monetary policy shock are stronger in
the high-growth regime than in the low-growth regime, and in the latter the price level did not
move much on average. In the low-growth regime, however, monetary policy is mainly mea-
sured with the Wu and Xia (2016) shadow rate instead of EONIA, which is mostly close to zero
after the Financial crisis (in my sample period).
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Appendix 5.A Properties of multivariate Gaussian and Stu-
dent’s t distribution

Denote a d-dimensional real valued vector by y. It is well known that the density function of a
d-dimensional Gaussian distribution with mean µ and covariance matrix Σ is

nd(y;µ,Σ) = (2π)−d/2det(Σ)−1/2 exp

{
−1

2
(y − µ)′Σ−1(y − µ)

}
. (5.A.1)

Similarly to Meitz et al. (forthcoming) but differing from the standard form, I parametrize the
Student’s t-distribution using its covariance matrix as a parameter together with the mean and
the degrees of freedom. The density function of such a d-dimensional t-distribution with mean
µ, covariance matrix Σ, and ν > 2 degrees of freedom is (see, e.g., Appendix A in Meitz et al.,
forthcoming)

td(y;µ,Σ, ν) = Cd(ν)det(Σ)−1/2

(
1 +

(y − µ)′Σ−1(y − µ)

ν − 2

)−(d+ν)/2

, (5.A.2)

where

Cd(ν) =
Γ
(
d+ν
2

)√
πd(ν − 2)dΓ

(
ν
2

) , (5.A.3)

and Γ (·) is the gamma function. I assume that the covariance matrix Σ is positive definite for
both distributions.

Consider a partition X = (X1, X2) of either Gaussian or t-distributed (with ν degrees of
freedom) random vector X such that X1 has dimension (d1×1) and X2 has dimension (d2×1).
Consider also a corresponding partition of the mean vector µ = (µ1, µ2) and the covariance
matrix

Σ =

[
Σ11 Σ12

Σ′
12 Σ22

]
, (5.A.4)

where, for example, the dimension of Σ11 is (d1 × d1). In the Gaussian case, X1 then has
the marginal distribution nd1(µ1,Σ11) and X2 has the marginal distribution nd2(µ2,Σ22). In
the Student’s t case, X1 has the marginal distribution td1(µ1,Σ11, ν) and X2 has the marginal
distribution td2(µ2,Σ22, ν) (see, e.g., Ding, 2016, also in what follows).

When X has Gaussian distribution, the conditional distribution of the random vector X1

given X2 = x2 is
X1 | (X2 = x2) ∼ nd1(µ1|2(x2),Σ1|2(x2)), (5.A.5)

where

µ(x2) ≡ µ1|2(x2) = µ1 + Σ12Σ
−1
22 (x2 − µ2) and (5.A.6)

Ω ≡ Σ1|2(x2) = Σ11 − Σ12Σ
−1
22 Σ

′
12. (5.A.7)
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When X has t-distribution, the conditional distribution of the random vector X1 given X2 =
x2 is

X1 | (X2 = x2) ∼ td1(µ1|2(x2),Σ1|2(x2), ν + d2), (5.A.8)

where

µ(x2) = µ1|2(x2) = µ1 + Σ12Σ
−1
22 (x2 − µ2) and (5.A.9)

Ω(x2) ≡ Σ1|2(x2) =
ν − 2 + (x2 − µ2)

′Σ−1
22 (x2 − µ2)

ν − 2 + d2
(Σ11 − Σ12Σ

−1
22 Σ

′
12). (5.A.10)

In particular, we have

nd(x;µ,Σ) = nd1(x1;µ1|2(x2),Σ1|2(x2))nd2(x2;µ2,Σ22) and (5.A.11)
td(x;µ,Σ, ν) = td1(x1;µ1|2(x2),Σ1|2(x2), ν + d2)td2(x2;µ2,Σ22, ν). (5.A.12)

Appendix 5.B Proofs

5.B.1 Proof of Theorem 5.1
Corresponding to ϕ0 ∈ Rd, Ap ∈ Sd×dp, Ω ∈ Rd×d positive definite, and ν > 2, define the
notation µ, Σp, Σ1(h) (h = 0, 1, ..., p), Σ1p, and Σp+1 as in (5.2.4). Note that, by construction
and the assumptionAp ∈ Sd×dp, Σp and Σp+1 are symmetric positive definite block Toeplitz ma-
trices with the (d× d) blocks Σ1(h), h = 0, 1, ..., p. Analogously to Meitz et al. (forthcoming),
I prove (i) by constructing a dp-dimensional Markov chain zt = (zt, ..., zt−p+1) (t = 1, 2, ...)
with the desired properties. Then, I make use of the theory of Markov chains to establish its
stationary distribution. To that end, an appropriate transition probability measure and an initial
distribution needs to be specified. For the former, assume that the transition probability of zt is
determined by the density function td(zt;µ(zt−1),Ω(zt−1), ν+dp), where µ(zt−1) and Ω(zt−1)
are obtained from (5.A.9) and (5.A.10), respectively, by replacing x2 with zt−1. Because the
distribution of the current observation depends only on the previous one, zt is a Markov chain
on Rdp.

Suppose the initial value z0 follows the t-distribution tdp(1p ⊗ µ,Σp, ν). The properties of
t-distribution (given in Appendix 5.A) then imply that if z+t = (zt, zt−1), the density function
of z+1 is given by

td(p+1)(z
+
1 ;1p+1 ⊗ µ,Σp+1, ν) = td(z1;µ(z0),Ω(z0), ν + dp)tdp(z0;1p ⊗ µ,Σp, ν). (5.B.1)

Thus, z+1 ∼ td(p+1)(1p+1 ⊗ µ,Σp+1, ν), and from the block Toeplitz structure of Σp+1 it follows
that the marginal distribution of z1 is the same as that of z0, i.e., z1 ∼ tdp(1p ⊗ µ,Σp, ν).
Hence, as zt is a Markov chain, it has a stationary distribution characterized by the density
tdp(1p ⊗ µ,Σp, ν) (Meyn and Tweedie, 2009, pp. 230-231), completing the proof of (i).
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Denote by F z
t−1 the σ-algebra generated by the random vectors {zs, s < t}. To prove (ii),

note that due to the Markov property, zt|F z
t−1 ∼ td(µ(z0),Ω(z0), ν + dp). Therefore, the con-

ditional expectation and conditional variance of zt given F z
t−1 can be written as

E[zt|F z
t−1] =E[zt|zt−1] = µ+ Σ1pΣ

−1
p (zt−1 − 1p ⊗ µ) = ϕ0 +Apzt−1, (5.B.2)

V ar[zt|F z
t−1] =V ar[zt|zt−1] =

ν − 2 + (zt−1 − 1p ⊗ µ)′Σ−1
p (zt−1 − 1p ⊗ µ)

ν − 2 + dp
Ω, (5.B.3)

where Ω = Σ1 − Σ1pΣ
−1
p Σ′

1p. I denote this conditional variance by Ωt ≡ Ω(zt−1), which is
positive definite due to the assumptions ν > 2 and that Σp and Ω are both positive definite.
Define the (d× 1) random vectors εt as

εt ≡ Ω
−1/2
t (zt − ϕ0 −Apzt−1), (5.B.4)

where Ω
−1/2
t is a symmetric square root matrix of Ω−1

t . Conditionally on F z
t−1, εt now follow

the td(0, Id, ν + dp) distribution, and therefore the ’VAR(p)-ARCH(p)’ representation (5.2.9)
is obtained. Because this conditional distribution does not depend on F z

t−1, it follows that the
unconditional distribution of εt is also td(0, Id, ν + dp). Hence, εt is independent of F z

t−1 (or
of {zs, s < t}), and as the random vectors {εs, s < t} are functions of {zs, s < t}, εt is also
independent of {εs, s < t}. Thus, the proof of (ii) is completed by concluding that the random
vectors εt are IID td(0, Id, ν + dp) distributed.■

5.B.2 Proof of Theorem 5.2
The G-StMVAR process yt is clearly a Markov chain on Rdp. Let y0 = (y0, ..., y−p+1) be ran-
dom vector whose distribution is characterized by the density f(y0;θ) =

∑M1

m=1 αmndp(y0;1p⊗
µm,Σm,p)+

∑M
m=M1+1 αmtdp(y0;1p⊗µm,Σm,p, νm). According to (5.2.3), (5.3.1), (5.3.5), and

(5.B.1), the conditional density of y1 given y0 is

f(y1|y0;θ) =

M1∑
m=1

αmndp(y0;1p ⊗ µm,Σm,p)

f(y0;θ)
nd(y1;µm,1(y0),Ωm,1)

+
M∑

m=M1+1

αmtdp(y0;1p ⊗ µm,Σm,p, νm)

f(y0;θ)
td(y1;µm,1(y0),Ωm,1(y0), νm + dp)

(5.B.5)

=

M1∑
m=1

αm

f(y0;θ)
nd(p+1)((yt,y0);1p+1 ⊗ µm,Σm,p+1)

+
M∑

m=M1+1

αm

f(y0;θ)
td(p+1)((yt,y0);1p+1 ⊗ µm,Σm,p+1, νm). (5.B.6)
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The random vector (y1,y0) therefore has the density

f(y1,y0) =

M1∑
m=1

αmnd(p+1)((y1,y0);1p+1 ⊗ µm; Σm,p+1)

+
M∑

m=M1+1

αmtd(p+1)((y1,y0);1p+1 ⊗ µm; Σm,p+1, νm).

(5.B.7)

Integrating y−p+1 out, and using the properties of marginal distributions of a multivariate Gaus-
sian and t-distributions (see Appendix 5.A) together with the block Toeplitz form of Σm,p+1,
shows that the density of y1 is f(y1;θ) =

∑M1

m=1 αmndp(y1;1p⊗µm,Σm,p)+
∑M

m=M1+1 αmtdp(y1;1p⊗
µm,Σm,p, νm). Thus, y0 and y1 are identically distributed. As {yt}∞t=1 is a (time-homogeneous)
Markov chain, it follows that {yt}∞t=1 has a stationary distribution, say πy(·), characterized by
the density f(·;θ) =

∑M1

m=1 αmndp(·;1p ⊗ µm,Σm,p) +
∑M

m=M1+1 αmtdp(·;1p ⊗ µm,Σm,p, νm)
(Meyn and Tweedie, 2009, pp. 230-231).

For ergodicity, let Py(y, ·) = P(yp ∈ ·|y0 = y) signify the p-step transition probability
measure of the process yt. Using the pth order Markov property of yt, it is straightforward to
check that Py(y, ·) has the density

f(yp|y0;θ) =

p∏
t=1

f(yt|yt−1;θ) =

p∏
t=1

(
M1∑
m=1

αmnd(y1;µm,t(yt−1),Ωm) +
M∑

m=M1+1

αmtd(y1;µm,t(yt−1),Ωm,t(yt−1), νm + dp)

)
.

(5.B.8)

Clearly, f(yp|y0;θ) > 0 for all y0 ∈ Rdp and yp ∈ Rdp, so it can be concluded that yt is ergodic
in the sense of Meyn and Tweedie (2009, Chapter 13) by using arguments identical to those used
in the proof of Theorem 1 in Kalliovirta et al. (2015).■

5.B.3 Proof of Theorem 5.3
First note that L(c)

T (θ) is continuous and that together with Assumption 5.2 it implies existence
of a measurable maximizer θ̂T . To conclude that θ̂T is strongly consistent, it needs to be shown
that (see, e.g., Newey and McFadden, 1994, Theorem 2.1 and the discussion on page 2122)

(i) the uniform strong law of large numbers holds for the log-likelihood function; that is,

sup
θ∈Θ

∣∣∣L(c)
T (θ)− E[L

(c)
T (θ)]

∣∣∣→ 0 almost surely as T → ∞,

(ii) and that the limit of L(c)
T (θ) is uniquely maximized at θ = θ0.
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Proof of (i). By Theorem 5.2, the process yt−1 = (yt, ..., yt−p+1), and hence also yt, is
stationary and ergodic, and E[L

(c)
T (θ)] = E[lt(θ)]. To conclude (i), it therefore suffices to

show that E[supθ∈Θ |lt(θ)|] < ∞ (see Ranga Rao, 1962). I will do that by taking use of the
compactness of the parameter space to derive finite lower and upper bounds for lt(θ), which is
given as

lt(θ) = log

(
M1∑
m=1

αm,tnd(yt;µm,t,Ωm) +
M∑

m=M1+1

αm,ttd(yt;µm,t,Ωm,t, νm + dp)

)
. (5.B.9)

Determinant of the positive definite conditional covariance matrix Ωm is a continuous func-
tion of the parameters vech(Ωm), and hence, compactness of the parameter space implies that
the determinant is bounded from below by some constant that is strictly larger than zero and
from above by some finite constant. Thus,

0 < c1 ≤ det(Ωm)
−1/2 ≤ c2 < ∞, (5.B.10)

for some constants c1 and c2. Because Ω−1
m is positive definite and the exponential function is

bounded from above by one in the non-positive real axis, we obtain the upper bound

nd(yt;µm,t,Ωm) = (2π)−d/2det(Ωm)
−1/2 exp

{
−1

2
(yt − µm)

′Ω−1
m (yt − µm)

}
≤ (2π)−d/2c2.

(5.B.11)
Next, I derive an upper bound for the t-distribution densities

td(yt;µm,t,Ωm,t, νm + dp) =
Γ
(

νm+(1+p)d
2

)
√
πd(νm + dp− 2)dΓ

(
νm+dp

2

) det(Ωm,t)
−1/2

×

(
1 +

(yt − µm,t)
′Ω−1

m,t(yt − µm,t)

νm + dp− 2

)−(νm+d(1+p))/2

.

(5.B.12)

Since νm > 2 and the parameter space is compact, 2 < c3 ≤ νm ≤ c4 < ∞ for some constants
c3 and c4. Because the gamma function is continuous on the positive real axis, it then follows
that

0 < c5 ≤
Γ
(

νm+(1+p)d
2

)
√

πd(νm + dp− 2)dΓ
(
νm+dp

2

) ≤ c6 (5.B.13)

for some finite constants c5 and c6.
Using the bounds 2 < c3 ≤ νm ≤ c4 < ∞ and (5.B.10) together with the fact that Σ−1

m,p is
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positive definite gives

det(Ωm,t)
−1/2 =

(
νm − 2 + (yt−1 − 1p ⊗ µm)

′Σ−1
m,p(yt−1 − 1p ⊗ µm)

νm − 2 + dp

)−d/2

det(Ωm)
−1/2

≤
(

c3 − 2

c4 + dp− 2

)−d/2

c2 < ∞.

(5.B.14)

For a lower bound, note that Σ−1
m,p is a continuous function of the parameters and thereby its

eigenvalues are as well. It then follows from the compactness of the parameter space that its
largest eigenvalue, λmax

1 , is bounded from above by some finite constant, say c7. The compact-
ness of the parameter space also implies that there exist finite constant c8 such that µim ≤ c8
for all i = 1, .., d (where µim is the ith element of µm). By using the orthonormal spectral
decomposition of Σ−1

m,p, we then obtain

(yt−1 − 1p ⊗ µm)
′Σ−1

m,p(yt−1 − 1p ⊗ µm) ≤ λmax
1 (yt−1 − 1p ⊗ µm)

′(yt−1 − 1p ⊗ µm)

≤ c7(y
′
t−1yt−1 − 2c8y

′
t−11dp + dpc28).

(5.B.15)

Thus,

det(Ωm,t)
−1/2 ≥

(
c4 − 2 + c7(y

′
t−1yt−1 − 2c8y

′
t−11dp + dpc28)

c3 − 2 + dp

)−d/2

c1. (5.B.16)

As −(νm + (1 + p)d)/2 < 0 and Ω−1
m,t is positive definite, we have that(

1 +
(yt − µm,t)

′Ω−1
m,t(yt − µm,t)

νm + dp− 2

)−(νm+(1+p)d)/2

≤ 1. (5.B.17)

Hence, td(yt;µm,t,Ωm,t, νm + dp) ≤
(

c3−2
c4+dp−2

)−d/2

c2c6. It then follows from the identity∑M
m=1 αm,t = 1 that

lt(θ) ≤ log

(
max

{
(2π)−d/2c2,

(
c3 − 2

c4 + dp− 2

)−d/2

c2c6

})
< ∞. (5.B.18)

That is, lt(θ) is bounded from above by a finite constant.
Next, I proceed by bounding lt(θ) from below. Since the eigenvalues of Ω−1

m are contin-
uous functions of the parameters bounded by compactness of the parameter space, the largest
eigenvalue, λmax

2 , is bounded from above by some finite constant, say c9. Taking use of the
orthonormal spectral decomposition of Ω−1

m , we then obtain

(yt − µm,t)
′Ω−1

m (yt − µm,t) ≤ λmax
2 (yt −Am,pyt−1)

′(yt −Am,pyt−1)

≤ c9(y
′
tyt − 2y′tAm,pyt−1 + y

′
t−1A

′
m,pAm,pyt−1).

(5.B.19)
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The compactness of the parameter space implies that

y′
t−1A

′
m,pAm,pyt−1 ≤ c10

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1| (5.B.20)

for some finite constant c10, where yi,t−1 is the ith element of yt−1. Denoting by am,i(k, j) the
kjth element of the autoregression matrix Am,i and ykt the kth element of yt, we have

y′tAm,pyt−1 =
d∑

k=1

p∑
i=1

d∑
j=1

am,i(k, j)yktyjt−i ≤
d∑

k=1

p∑
i=1

d∑
j=1

c11|yktyjt−i|, (5.B.21)

where c11 is a finite constant that bounds the absolute values of the autoregression coefficients
from above (which exists due to compactness of the parameter space). Combining the above
two bounds with (5.B.19) gives the upper bound

(yt − µm,t)
′Ω−1

m (yt − µm,t) ≤ c12

(
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

)
.

(5.B.22)
where c12 is a finite constant.

Using the fact that Σ−1
m,p is positive definite together with the bounds 2 < c3 ≤ νm ≤ c4 < ∞

shows that

Ω−1
m,t =

νm − 2 + dp

νm − 2 + (yt−1 − 1p ⊗ µm)′Σ−1
m,p(yt−1 − 1p ⊗ µm)

Ω−1
m ≤ c4 − 2 + dp

c3 − 2
Ω−1

m

(5.B.23)

Using the above inequality together with 2 < c3 ≤ νm and (5.B.22) then gives

(yt − µm,t)
′Ω−1

m,t(yt − µm,t)

vm + pd− 2
≤ c13

(
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

)
,

(5.B.24)
where c13 = ((c3 − 2)(c3 + pd− 2))−1(c4 − 2 + dp)c12 is a finite constant.

From
∑M

m=1 αm,t = 1, (5.B.10), (5.B.13), (5.B.16), (5.B.22), (5.B.24), and νm ≤ c4, we
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then obtain a lower bound for lt(θ) as

lt(θ) ≥ min

{
−d

2
log(2π) + log(c1)

− 1

2
c12

(
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

)
,

c15 −
d

2
log(c4 − 2 + c7(y

′
t−1yt−1 − 2c8y

′
t−11dp + dpc28))

−c14 log

(
1 + c13

(
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

))}
,

(5.B.25)

where c14 = (c4+(1+p)d)/2 and c15 = log(c5)+log(c1)+
d
2
(c3−2+dp). Since yt is stationary

with finite second moments, it holds that

E

[
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

]
< ∞ and

E[y′
t−1yt−1 − 2c8y

′
t−11dp] < ∞,

(5.B.26)

and thereby we obtain from Jensen’s inequality that also

E

[
log

(
1 + c13

(
y′tyt +

dp∑
i=1

dp∑
j=1

|yj,t−1yi,t−1|+
d∑

k=1

p∑
i=1

d∑
j=1

|yktyjt−i|

))]
< ∞ and

E[log(c4 − 2 + c7(y
′
t−1yt−1 − 2c8y

′
t−11dp + dpc28))] < ∞.

(5.B.27)

The upper bound in Equation (5.B.18) together with (5.B.25), (5.B.26), and (5.B.27) shows that
E[supθ∈Θ |lt(θ)|] < ∞. ■

Proof of (ii). To prove that E[lt(θ)] is uniquely maximized at θ = θ0, it needs to be shown
that E[lt(θ)] ≤ E[lt(θ0)], and that E[lt(θ)] = E[lt(θ0)] implies

ϑm = ϑτ(m),0 and αm = ατ(m),0 when m = 1, ....,M1, and
(ϑm, νm) = (ϑτ(m),0, ντ(m),0) and αm = ατ(m),0 when m = M1 + 1, ....,M,

(5.B.28)

for some permutations {τ1(1), ..., τ1(M1)} and {τ2(M1 + 1), ..., τ2(M)}. For notational clarity,
I write µm,t = µ(y;ϑm), Ωm = Ω(ϑm), Ωm,t = Ω(y;ϑm, νm), and αm,t = αm(y;θ), making
clear their dependence on the parameter value.
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The density of (yt,yt−1) can be written as

f((yt,yt−1);θ0) =
M∑
n=1

αn,0dn,dp(yt−1;1p ⊗ µn,0,Σn,p,0, νn,0)×(
M1∑
m=1

αm(y;θ0)nd(yt;µ(y;ϑm,0),Ω(ϑm,0)) +

M∑
m=M1+1

αm(y;θ0)td(yt;µ(y;ϑm,0),Ω(y;ϑm,0, νm,0), νm,0 + dp)

)
,

(5.B.29)

where dn,dp(·;1p ⊗ µn,0,Σn,p,0, νn,0) is defined in (5.3.4). By using this together with reasoning
based on Kullback-Leibler divergence, arguments analogous to those in Kalliovirta et al. (2016,
pp. 494-495) can be used to conclude that E[lt(θ)]−E[lt(θ0)] ≤ 0, with equality if and only if
for almost all (y,y) ∈ Rd(p+1),

M1∑
m=1

αm(y;θ)nd(yt;µ(y;ϑm),Ω(ϑm))+

M∑
m=M1+1

αm(y;θ)td(yt;µ(y;ϑm),Ω(y;ϑm, νm), νm + dp)

=

M1∑
m=1

αm(y;θ0)nd(yt;µ(y;ϑm,0),Ω(ϑm,0))+

M∑
m=M1+1

αm(y;θ0)td(yt;µ(y;ϑm,0),Ω(y;ϑm,0, νm,0), νm,0 + dp).

(5.B.30)

For each fixed y at a time, the mixing weights, conditional means, and conditional covariances
in (5.B.30) are constants, so the result on identification of finite mixtures of multivariate Gaus-
sian and t-distributions in Holzmann, Munk, and Gneiting (2006, Example 1) can be applied
(their parametrization of the t-distribution slightly differs from mine, but identification with
their parametrization implies identification with my parametrization). For each fixed y, there
thus exists a permutations {τ1(1), ..., τ1(M1)} and {τ2(M1+1), ..., τ2(M)} (that may depend on
y) of the index sets {1, ...,M1} and {M1 + 1, ...,M} such that

αm(y;θ) = ατ1(m)(y;θ0), µ(y;ϑm) = µ(y;ϑτ1(m),0), and Ω(ϑm) = Ω(ϑτ1(m),0),
(5.B.31)

for m = 1, ...,M1 and almost all y ∈ Rd, and

αm(y;θ) = ατ2(m)(y;θ0), µ(y;ϑm) = µ(y;ϑτ2(m),0),Ω(y;ϑm) = Ω(y;ϑτ2(m),0),

and νm = ντ2(m),0

(5.B.32)
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for m = M1 + 1, ...,M and almost all y ∈ Rd. Note that from (5.B.31) we readily obtain
vech(Ωm) = vech(Ωτ1(m),0).

Arguments analogous to those in Kalliovirta et al. (2016, p. 495) can then be used to con-
clude from (5.B.31) and (5.B.32) that αm = ατ1(m),0, ϕm,0 = ϕτ1(m),0,0’ and Am,p = Aτ1(m),p,0

for m = 1, ...,M1, and αm = ατ2(m),0, ϕm,0 = ϕτ2(m),0,0’ and Am,p = Aτ2(m),p,0 for m = M1 +
1, ...,M . Given these identities and νm = ντ2(m),0, we obtain from Ω(y;ϑm) = Ω(y;ϑτ2(m),0)
in (5.B.32) that

(y − 1p ⊗ µτ2(m),0)
′Σp(ϑm)

−1(y − 1p ⊗ µτ2(m),0)Ωm−
(y − 1p ⊗ µτ2(m),0)

′Σp(ϑτ2(m),0)
−1(y − 1p ⊗ µτ2(m),0)Ωτ2(m),0 = (ντ2(m),0 − 2)(Ωτ2(m),0 − Ωm).

(5.B.33)

The condition Ω(y;ϑm) = Ω(y;ϑτ2(m),0) implies that Ωm is proportional to Ωτ2(m),0, say Ωm =
c(ϑ+

m,τ2(m))Ωτ2(m),0, where the strictly positive scalar c(ϑ+
m,τ2(m)) may depend on the parameter

ϑ+
m,τ2(m) ≡ (ϑm,ϑτ2(m),0, ντ2(m),0). It is then easy to see from the vectorized structure of Σp(·),

given in (5.2.4), that Σp(ϑm)
−1 = c(ϑ+

m,τ2(m))
−1Σp(ϑτ2(m),0)

−1. By using this together with the
identity Ωm = c(ϑ+

m,τ2(m))Ωτ2(m),0, the left side of (5.B.33) reduces to

(y − 1p ⊗ µτ2(m),0)
′(c(ϑ+

m,τ2(m))Σp(ϑm)
−1 − Σp(ϑτ2(m),0)

−1)(y − 1p ⊗ µτ2(m),0)Ωτ2(m),0

= (y − 1p ⊗ µτ2(m),0)
′

(
c(ϑ+

m,τ2(m))

c(ϑ+
m,τ2(m))

Σp(ϑτ2(m),0)
−1 − Σp(ϑτ2(m),0)

−1

)
(y − 1p ⊗ µτ2(m),0)

× Ωτ2(m),0 = 0.

(5.B.34)

Thereby (5.B.33) reduces to (ντ2(m),0 − 2)(Ωτ2(m),0 − Ωm) = 0, which implies Ωm = Ωτ2(m),0,
as ντ2(m),0 > 2. Since Condition (5.5.3) sets a unique ordering for the mixture components, it
can be concluded that θ = θ0’ completing the proof of consistency.

Given consistency and assumptions of the theorem, asymptotic normality of the ML esti-
mator can be concluded using the standard arguments. The required steps can be found, for
example, in Kalliovirta et al. (2016, proof of Theorem 3). I omit the details for brevity.■

Appendix 5.C Details on the empirical application

5.C.1 Model selection and adequacy of the selected model
I estimated the models based on the exact log-likelihood function.14 The estimation and other
numerical analysis is carried out with the CRAN distributed R package gmvarkit Virolainen
14I disregarded estimates that incorporated a near-singular error term covariance matrix or only a few observations

from one of the regimes, and considered the largest local maximum of the log-likelihood function that incorporates
clearly non-singular error term covariance matrices and a reasonable amount of observations from both regimes.
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(2018) that accompanies this essay. The R package gmvarkit also contains the data studied
in the empirical application to facilitate reproduction of my results. For evaluating adequacy
of the estimated models, I employ quantile residuals diagnostics in the framework proposed by
Kalliovirta and Saikkonen (2010). For a correctly specified G-StMVAR model, the multivariate
quantile residuals are asymptotically standard normally distributed and can thereby be used for
graphical diagnostics similarly to the conventional Pearson residuals (Kalliovirta and Saikkonen,
2010, Lemma 3).15 A closed form expression for the quantile residual of the G-StMVAR model
is derived in Appendix 5.D. For brevity, I show the diagnostic figures for the selected model
only.

I started by estimating one-regime StMVAR models with autoregressive orders p = 1, ..., 12
and found that BIC, HQIC, and AIC were all minimized by the order p = 1. Graphical quantile
residual diagnostics revealed that the StMVAR(1, 1) model is somewhat inadequate particularly
in capturing conditional heteroskedasticity of the series and movements of the interest rate vari-
able, whose quantile residuals’ time series displays a shift in volatility and marginal distribution
significant excess kurtosis. Increasing the autoregressive order to 2 or 3 did not help much. In-
creasing p from 2 to 3 decreased the log-likelihood, suggesting that the order p = 3 might not
be suitable for a StMVAR model. The log-likelihoods and values of the information criteria are
presented in Table 5.1 for the discussed models.

Therefore, I estimated a two-regime StMVAR model with p = 1, i.e., a G-StMVAR(p =
1,M1 = 0,M2 = 2) model. Compared to the one-regime models, particularly the time series
plot and marginal distribution of the interest variable’s quantile residuals became significantly
more reasonable. However, I found that this model has several moderately sized correlation
coefficients (CC) at small lags in the autocorrelation function (ACF) of its quantile residuals and
squared quantile residuals. To improve the fitness, I increased the autoregressive order to p = 2,
which decreased many of the moderately sized CCs but increased AIC (see Table 5.1). The AIC
is, nevertheless, smaller than for any of the one-regime models (while the one-regime StMVAR
p = 1, 2 models have smaller BIC and the p = 1 model also smaller HQIC). As is discussed
next, I find the overall adequacy of this model reasonable.16

While my procedure is open for discussion, note that the disregarded estimates are useless for statistical inference,
as the number of observations from the more rare regime is very small compared to the number of parameters.
Such estimates arise due to the complex endogeneity of the mixing weights that makes the surface of the log-
likelihood function extremely complex. Similar puzzle in the estimation is discussed in univariate context in more
detail in Chapter 3.

15Kalliovirta and Saikkonen (2010) also propose formal diagnostic tests for testing normality, autocorrelation, and
conditional heteroskedasticity of the quantile residuals. The tests take into account the uncertainty about the
true parameter value and can be calculated based on the observed data or by employing a simulation procedure
for better size properties. However, I found these tests quite forgiving without the simulation procedure, while
with the simulation procedure using a sample of length 10000, all the tests rejected the adequacy my StMVAR
model at all the conventional levels of significance. I therefore rather employ graphical diagnostics to examine to
what extend the statistical properties of the quantile residuals plausibly resemble those on an IID standard normal
process.

16It is possible that superior fitness of the two-regime models is due to the accommodation of regime-switching error
covariance matrices or kurtosis and cannot be attributed to the time-varying AR matrices or intercepts. To test
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Model Log-lik BIC HQIC AIC

StMVAR(1, 1) −2.486 5.604 5.360 5.197
StMVAR(2, 1) −2.447 5.851 5.482 5.235
StMVAR(3, 1) −2.471 6.224 5.729 5.398
StMVAR(1, 2) −2.211 5.705 5.210 4.878
StMVAR(2, 2) −2.138 6.210 5.464 4.964

Table 5.1: The log-likelihoods and values of the information criteria divided by the number of
observations for the discussed StMVAR(p,M ) models.

Figure 5.3 presents the ACF and crosscorrelation function (CCF) of the quantile residuals of
the StMVAR(2, 2) model for the first 20 lags. As the figure shows, there is not much autocor-
relation in the residuals, but CCs of almost 0.2 in absolute value stick out in the ACF of IPI’s
quantile residuals at the lag 10, in the CCF of OIL and HCPI at the lag 6, and in the CCF of
HCPI and RATE at the lag 15. There are also a moderately sized CCs at small lags in the ACF of
the IPI’s quantile residuals at the lag 3 and in the RATE’s quantile residuals at the lag 2. These
CCs are not, however, very large, and as 316 CCs are presented, some of them are expected to
be moderate for a correctly specified model. Therefore, my model appears to capture the auto-
correlation structure of the series reasonably well, although some of the CCs are slightly larger
than what one would expect for an IID process.17

whether this is the case, I estimated two constrained StMVAR(2, 2) models. In the first one, I constrained the AR
matrices to identical in both regimes, whereas in the second one, I constrained AR matrices and intercepts to be
identical in both regimes. Because these models are nested to the unconstrained StMVAR model, the constraints
can be tested with a likelihood ratio test (assuming the validity of the unverified assumption made in Theorem 5.3).
The former type constraints obtained the p-value 0.022 and the latter type constraints the p-value 2 · 10−4. I then
repeated the exercise for the StMVAR(1, 2) model, which minimized AIC, and obtained the p-values 0.003 and
2 · 10−7 for the constraints, respectively. As the constraints are rejected at the 5% level of significance or less, it
seems plausible that AR matrices and intercepts vary in time.

17It does not show up in the figure but there is a large negative CC at the lag 24 in autocorrelation function the
IPI’s quantile residuals. I suspect that this might be related to the employed detrending method (Hamilton, 2018),
where the cyclical component of IPIt at the time t+h is defined as the OLS residual from regressing IPIt+h on
a constant and IPIt, ..., IPIt−s+1, where I used h = 24 and s = 12. So I experimented with the univariate log
industrial production series and detrended it with the filter using h = 5, 6, 7, 10, 12, 18, 19, 24 and s = 12. First,
I examined the partial autocorrelation functions (PACF) of the cyclical component and found that with each h,
there is a large or moderate positive partial autocorrelation coefficient (PACC) at the lags h+1 and 2h+1 with the
latter one being smaller. Except that for h = 24 both of the PACCs were quite small, however, and for h = 19 the
PACC at the lag 2h + 1 was relatively small. Then, I fitted one-regime GMAR and StMAR models (Kalliovirta
et al., 2015, Meitz et al., forthcoming) to the cyclical component using the autoregressive orders p = 2, 3, 11, 12
and examined the autocorrelation functions of the quantile residuals (which equal to the Pearson residuals in the
linear Gaussian case, see Kalliovirta, 2012, for details). In each of the cases, there was a large negative CC in
the quantile residuals’ ACF at the lag h when p ≤ h but not when p > h (in which case there was often a large
negative CC at some lag larger than p). Hence, the large negative CC seems to be related the detrending method.
Nonetheless, since accommodating the large negative CC with the autoregressive order p = 25 seems excessive
even for a linear VAR (given my sample of 276 observations), I will only note its existence. The details of this
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The ACF and CCF of the squared quantile residual are presented in Figure 5.4 for the first
20 lags. The figure shows that there is a moderately large CC at the first lag in the ACF of the
IPI’s squared quantile residuals and a slightly larger one (roughly 0.2) at the fourth lag in the
ACF of RATE’s squared quantile residuals. There is a particularly large CC at the lag 10 in
the CCF of HCPI’s and IPI’s squared quantile residuals, and a somewhat large CC at the lag
16 in the CCF of IPI’s and RATE’s squared quantile residuals, at the lag 9 in the CCF of OIL’s
and IPI’s squared quantile residuals, and at the lag 10 in the OIL’s and HCPI’s squared quantile
residuals. Nonetheless, the model seems to capture the conditional heteroskedasticity of the
series moderately well, as the inadequacies do not seem very severe, with the exception of the
single large CC at the lag 10 in the CCF between squared quantile residuals of HCPI and IPI.

The marginal quantile residual time series are presented in the top panels of Figure 5.5. The
time series seem reasonable, as the are no apparent shifts in the mean, volatility, or dynamics.
The COVID-19 lockdown shows as a large negative (marginal) quantile residual of IPI, but I
do not view this as an inadequacy, as the fast drop in the cycle is know to be caused by an
exceptionally large exogenous shock, and a correctly specified model should thereby produce
a large negative residual. Also, the high inflation rates during the COVID-19 crisis show as
consecutive positive (marginal) quantile residuals of HCPI. The normal quantile-quantile plots
(the bottom panels of Figure 5.5) show that the marginal distribution of the series appears to be
captured relatively well. Overall, I find the adequacy of my model reasonable enough for further
analysis.

investigation are not shown for brevity.
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Figure 5.3: Auto- and crosscorrelation functions of the quantile residuals of the fitted
StMVAR(2, 2) model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are omit-
ted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 274 as the first p = 2 observations were used as the initial values) for autocorrelations of
IID observations, whereas the red dashed lines are the corresponding 99% bounds ±2.58/

√
T .

These bounds are presented to give an approximate perception on the magnitude of the correla-
tion coefficients.
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Figure 5.4: Auto- and crosscorrelation functions of the squared quantile residuals of the fit-
ted StMVAR(2, 2) model for the lags 0, 1, ..., 20. The lag zero autocorrelation coefficients are
omitted, as they are one by convention. The blue dashed lines are the 95% bounds ±1.96/

√
T

(T = 274 as the first p = 2 observations were used as the initial values) for autocorrelations of
IID observations, whereas the red dashed lines are the corresponding 99% bounds ±2.58/

√
T .

These bounds are presented to give an approximate perception on the magnitude of the correla-
tion coefficients.
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Figure 5.5: Quantile residual time series and normal quantile-quantile-plots of the fitted
StMVAR(2, 2) model.

5.C.2 Characteristics of the selected model
Table 5.2 presents the estimates for the mixing weight parameters, degrees of freedom parame-
ters, and the estimated unconditional means and variances of each marginal series. The mixing
weight parameters have the interpretation of being the unconditional probabilities for an obser-
vation being generated from each regime. For a correctly specified model, they should hence
approximately reflect the proportions of observations generated from each regime. The first
regime has a mixing weight parameter estimate 0.77, and it covers approximately 63% of the
series (approximated as the mean of the estimated mixing weights), whereas the second regime
has the implied mixing weight parameter estimate 0.23 and it covers approximately 37% of the
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series. Therefore, they are somewhat disproportionate, but seem reasonable enough not to distort
the generalized impulse response functions too much.

IPI HCPI OIL RATE
α̂m ν̂m µ̂m,1 σ̂2

m,1 µ̂m,2 σ̂2
m,2 µ̂m,3 σ̂2

m,3 µ̂m,4 σ̂2
m,4

Regime 1 0.77 3.40 −2.89 111.22 0.12 0.08 0.02 1.79 0.24 78.96
Regime 2 0.23 12.89 2.79 10.25 0.19 0.02 0.33 0.77 2.71 0.47

Table 5.2: Mixing weight parameter estimates (α̂m), degrees of freedom parameter estimates
(ν̂m), and marginal stationary means (µ̂m,i) and variances (σ̂2

m,i) of the component series implied
by the fitted StMVAR(2, 2) model for each of the regimes.

The degrees of freedom parameter estimates in Table 5.2 show that the first regime has fatter
tailed distribution than the second one. The first regime also has negative and volatile long-run
output gap, while the second regime has positive and less volatile long-run output gap. Long-run
inflation, is low in the first regime (roughly 1.4% yearly), whereas it is moderate in the second
regime (roughly 2.3% yearly). Also oil price inflation is relatively low in first regime, whereas
it is high in the second one.18 The interest rate variable has low mean in first regime, but the
variance is high, which reflects wandering movements of the shadow rate (Wu and Xia, 2016)
after the early 2010’s recession. In the second regime, the interest rate variable has moderate
mean and low variance. According to the unconditional variances of the observable variables in
Table 5.2, the first regime appears overall more volatile than the second.

According to the estimated mixing weights presented in Figure 5.1, the first regime (blue)
mainly prevails after the collapse of Lehman Brothers in the Financial crisis in September 2008.
The first regime also obtains large mixing weights during and before the early 2000’s recession,
however. The second regime (red) dominates when the first one does not; that is, mainly before
the Financial crisis, but excluding the aforementioned periods when the first regime obtains
large mixing weights. After the Financial crisis, the second regime’s mixing weights stay close
to zero, excluding a short period before the early 2010’s recession. Because the first regime is
characterized by negative output gap and it mainly prevails after the Financial crisis, I refer to
it as the low-growth post-Financial crisis regime. Accordingly, because the second regime is
characterized by positive output gap and it mainly prevails before the Financial crisis, I refer to
it as the high-growth pre-Financial crisis regime.

Appendix 5.D Quantile residual of the G-StMVAR model
This Appendix derives a closed form formula for the quantile residual of the G-StMVAR model
that was employed in the model diagnostics in Appendix 5.C.1.
18The log-difference of oil price was multiplied by 10 and not 100 for numerical reasons, so the unconditional

means should be multiplied 10 to obtain estimates for the (approximate) monthly long-run oil price inflation in
percentage units.
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5.D.1 The definition of quantile residual
Denote by yt, t = 1, 2, ..., the time series of interest and Ft−1 the σ-algebra generated by the
random variables or vectors {yt−j, j > 0}. Moreover, let θ denote the relevant parameter vector.
Kalliovirta (2012) defines univariate quantile residuals as

Rt,θ = Φ−1(F (yt;θ | Ft−1)), (5.D.1)

where Φ(·)−1 is the standard normal quantile function and F (· | Ft−1) is the conditional distri-
bution function of the considered model.

Kalliovirta and Saikkonen (2010) define multivariate quantile residuals analogously to the
univariate ones but by taking into account the dependence of the component time series from
each other. Denote Aj−1 = σ(y1,t, ..., yj−1,t) and by f(·|σ(Ft−1,Aj−1)) = fj−1,t−1(·) the con-
ditional density function conditional on the σ-algebra σ(Ft−1,Aj−1)

The conditional density function of the random vector yt can be expressed in a product form
by conditioning to the components yt in addition to the history Ft−1 as

f(yt; θ|Ft−1) =
d∏

j=1

fj−1,t−1(yj,t;θ), (5.D.2)

where yj,t is the jth component of yt and f0,t−1(y1,t;θ) = ft−1(y1,t;θ) is the marginal condi-
tional density function of y1,t conditional on Ft−1.

The conditional distribution functions corresponding to the density functions fj−1,t−1(·;θ)
in (5.D.2) are of the form

Fj−1,t−1(yj,t;θ) =

∫ yj,t

−∞
fj−1,t−1(u;θ)du. (5.D.3)

The multivariate quantile residuals are then defined as

Rt,θ =


R1t,θ

R2t,θ
...

Rdt,θ

 =


Φ−1(F0,t−1(y1,t;θ))
Φ−1(F1,t−1(y2,t;θ))

...
Φ−1(Fd−1,t−1(yd,t;θ))

 , (5.D.4)

and its empirical counterpart, rt,θ̂, is obtained by replacing the parameter θ with its maximum
likelihood (ML) estimate θ̂.

5.D.2 Quantile residual of the G-StMVAR model
The conditional density function of the d-dimensional G-StMVAR process yt conditional on
Ft−1 is

ft−1(yt;θ) =

M1∑
m=1

αm,tnd(yt;µm,t,Ωm) +
M∑

m=M1+1

αm,ttd(yt;µm,t,Ωm,t, νm + dp), (5.D.5)

181



5.D. QUANTILE RESIDUAL OF THE G-STMVAR MODEL

where nd(·;µm,t,Ωm, νm+dp) is the density function of d-dimensional normal distribution with
mean µm,t and covariance matrix Ωm; and td(·;µm,t,Ωm, νm + dp) is the density function of
d-dimensional t-distribution with mean µm,t, covariance matrix Ωm,t, and νm + dp degrees of
freedom.

Denote y
(k)
t = (y1,t, ..., yk,t) (k × 1), k ≤ d, µ(k)

m,t = (µ1,m,,t, ..., µk,m,t) (k × 1), k ≤ d,
and by Ω

(k)
m,t (Ω(k)

m ) the upper left (k × k) block matrix of Ωm,t (Ωm). Then, the properties
of the marginal distributions of multivariate Gaussian and t-distributions (see Appendix 5.A)
show that conditional on Ft−1, the random vectors y(j)t , j = 1, .., d, follow the distribution that
is a mixture M1 j-dimensional normal distributions (with means µ

(j)
m,t and covariance matrices

Ω
(j)
m ) and M2 ≡ M − M1 j-dimensional t-distributions (with means µ(j)

m,t, covariance matrices
Ω

(j)
m,t, and νm + dp degrees of freedom). The mixing weights αm,t are not affected, as they are

Ft−1-measurable. Therefore, the marginal density function of y(j)t is

ft−1(y
(j)
t ;θ) =

M1∑
m=1

αm,tnj(y
(j)
t ;µ

(j)
m,t,Ω

(j)
m )+

M∑
m=M1+1

αm,ttj(y
(j)
t ;µ

(j)
m,t,Ω

(j)
m,t, νm+dp), (5.D.6)

The conditional density function f0,t−1(y1,t;θ) in (5.D.2) is obtained from (5.D.6) by choos-
ing j = 1. For j = 2, ..., d, the conditional density functions fj−1,t−1(yj,t;θ) are obtained by
substituting Equation (5.D.6) to the formula of conditional density function:

fj−1,t−1 (yj,t;θ) =
ft−1(y

(j)
t ;θ)

ft−1(y
(j−1)
t ;θ)

=∑M1

m=1 αm,tnj(y
(j)
t ;µ

(j)
m,t,Ω

(j)
m ) +

∑M
m=M1+1 αm,ttj(y

(j)
t ;µ

(j)
m,t,Ω

(j)
m,t, νm + dp)∑M1

n=1 αn,tnj−1(y
(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n , νm + dp)

.

(5.D.7)

It follows from the properties of the conditional distributions of multivariate normal distri-
bution that the density of the j-dimensional normal distributions can be expressed as

nj(y
(j)
t ;µ

(j)
m,t,Ω

(j)
m ) = n1(yj,t;µm,t,j|j−1,Ωm,j|j−1)nj−1(y

(j−1)
t ;µ

(j−1)
m,t ,Ω(j−1)

m ), (5.D.8)

where µm,t,j|j−1 and Ωm,j|j−1 are the conditional mean and covariance matrix of yj,t conditional
on σ(Aj−1,Ft−1). Likewise, it follows from the properties of the conditional distributions of
multivariate t-distribution that the density of the j-dimensional t-distributions can be expressed
as

tj(y
(j)
t ;µ

(j)
m,t,Ω

(j)
m,t, νm + dp) =t1(yj,t;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)

× tj−1(y
(j−1)
t ;µ

(j−1)
m,t ,Ω

(j−1)
m,t , νm + dp),

(5.D.9)

where µm,t,j|j−1 and Ωm,t,j|j−1 are the conditional mean and covariance matrix of yj,t conditional
on σ(Aj−1,Ft−1).
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By denoting

βm,t,j ≡
αm,tnj−1(y

(j−1)
t ;µ

(j−1)
m,t ,Ω

(j−1)
m )∑M1

n=1 αn,tnj−1(y
(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n,t , νn + dp)

(5.D.10)
for m = 1, ..,M1, j = 2, ..., d, and

βm,t,j ≡
αm,ttj−1(y

(j−1)
t ;µ

(j−1)
m,t ,Ω

(j−1)
m,t , νm + dp)∑M1

n=1 αn,tnj−1(y
(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ;µ

(j−1)
n,t ,Ω

(j−1)
n,t , νn + dp)

(5.D.11)
for m = M1 + 1, ...,M , j = 2, ..., d, and using the expressions (5.D.8) and (5.D.9), the condi-
tional density function (5.D.7) can be expressed as

fj−1,t−1 (yj,t;θ) =

M1∑
m=1

βm,t,jn1(yj,t;µm,t,j|j−1,Ωm,j|j−1)

+
M∑

m=M1+1

βm,t,jt1(yj,t;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1), j = 2, .., d.

(5.D.12)

For m = 1, ...,M1, the conditional means µm,t,j|j−1 and covariance matrices Ωm,j|j−1 are as
in (5.A.6) and (5.A.7) when for each j = 2, ..., d and m = 1, ...,M , we consider the partition
y
(j)
t = (y

(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω(j)
m =

[
Ω

(j−1)
m Ω(j−1),j,m

Ω′
(j−1),j,m Ωm(j, j)

]
, (5.D.13)

where Ωm(j, j) is the jjth elementh of Ωm and Ω(j−1),j,m ((j − 1) × 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm. In particular, we have

µm,t,j|j−1 = µj,m,t + Ω′
(j−1),j,m(Ω

(j−1)
m )−1(y

(j−1)
t − µ

(j−1)
m,t ), (5.D.14)

Ωm,j|j−1 = Ωm(j, j)− Ω′
(j−1),j,m(Ω

(j−1)
m )−1Ω(j−1),j,m. (5.D.15)

For m = M1 + 1, ..,M , the conditional means µm,t,j|j−1 and covariance matrices Ωm,t,j|j−1

are as in (5.A.9) and (5.A.10) when for each j = 2, ..., d and m = 1, ...,M , we consider the
partition y

(j)
t = (y

(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω
(j)
m,t =

[
Ω

(j−1)
m,t Ω(j−1),j,m,t

Ω′
(j−1),j,m,t Ωm,t(j, j)

]
, (5.D.16)

183



5.D. QUANTILE RESIDUAL OF THE G-STMVAR MODEL

where Ωm,t(j, j) is the jjth elementh of Ωm,t and Ω(j−1),j,m,t ((j − 1)× 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm,t. In particular, taking use of the relation Ωm,t = ωm,tΩm

(where ωm,t is scalar), we have

µm,t,j|j−1 = µj,m,t + Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

= µj,m,t + Ω′
(j−1),j,m(Ω

(j−1)
m )−1(y

(j−1)
t − µ

(j−1)
m,t ),

(5.D.17)

and

Ωm,t,j|j−1 =
νm + dp+ (y

(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp+ j − 3
Ω̃m,t,j|j−1

=
νm + dp+ ω−1

m,t(y
(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp+ j − 3
Ω̃m,t,j|j−1,

(5.D.18)

where

Ω̃m,t,j|j−1 ≡ Ωm,t(j, j)− Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1Ω(j−1),j,m,t

= ωm,t(Ωm(j, j)− Ω′
(j−1),j,m(Ω

(j−1)
m )−1Ω(j−1),j,m).

(5.D.19)

It then remains to find expressions for the conditional distribution functions Fj−1,t−1(yj,t;θ),
j = 1, ..., d, in (5.D.4). For notational convenience, I write

fj−1,t−1(yj,tθ) =

M1∑
m=1

βm,t,jn1(yj,t;µm,t,j|j−1,Ωm,j|j−1)

+
M∑

m=M1+1

βm,t,jt1(yj,t;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)

(5.D.20)

for all j = 1, ..., d by defining βm,t,1 ≡ αm,t, µm,t,1|0 ≡ µ
(1)
m,t, Ωm,1|0 ≡ Ω

(1)
m , and Ωm,t,1|0 ≡ Ω

(1)
m,t.

For j = 2, ..., d, these quantities are defined in (5.D.10), (5.D.11), (5.D.14), (5.D.15), (5.D.17),
and (5.D.18). Then,

Fj−1,t−1(yj,t;θ) =

M1∑
m=1

βm,t,j

∫ yj,t

−∞
n1(u;µm,t,j|j−1,Ωm,j|j−1)du

+
M∑

m=M1+1

βm,t,j

∫ yj,t

−∞
t1(u;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)du,

(5.D.21)

where I seek to solve the integrals inside the sums.
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Regarding the first sum, for m = 1, ...,M1, it is easy to see that the integrals can be expressed
using the standard normal distribution function Φ(·) as∫ yj,t

−∞
n1(u;µm,t,j|j−1,Ωm,j|j−1)du = Φ

(
yj,t − µm,t,j|j−1√

Ωm,j|j−1

)
. (5.D.22)

Next, consider the second sum, m = M1 + 1, ...,M . By taking use of the symmetry of the
t-distribution about its mean, we obtain∫ yj,t

−∞
t1(u;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)du

=
1

2
+

∫ yj,t

µm,t,j|j−1

t1(u;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)du.
(5.D.23)

By applying the change of variables ũm,t,j = u − µm,t,j|j−1 in the integral, the right side of
(5.D.23) can be expressed as

1

2
+

Γ
(
νm+dp+j

2

)√
π(νm + dp+ j − 3)Γ

(
νm+dp+j−1

2

)Ω−1/2
m,t,j|j−1

∫ ỹm,t,j

0

(
1 +

ũ2
m,t,j

am,t,j

)−bm,j

dũm,t,j,

(5.D.24)
where ỹm,t,j ≡ yj,t−µm,t,j|j−1, am,t,j ≡ (νm+dp+j−3)Ωm,t,j|j−1, and bm,j ≡ (νm+dp+j)/2.

Then, by applying the change of variables zm,t,j = ũ2
m,t,j/ỹm,t,j , the integral in (5.D.24) can

be expressed as∫ ỹm,t,j

0

(
1 +

ũ2
m,t,j

am,t,j

)−bm,j

dũm,t,j =
1

2

∫ ỹm,t,j

0

(
ỹm,t,j

zm,t,j

)1/2(
1 +

zm,t,j ỹm,t,j

am,t,j

)−bm,j

dzm,t,j.

(5.D.25)
By applying the third change of variables xm,t,j = zm,t,j/ỹm,t,j and using the properties of the
gamma function, the right side of (5.D.25) can be expressed as

ỹm,t,j

2

∫ 1

0

x
−1/2
m,t,j

(
1− xm,t,j

(
−
ỹ2m,t,j

am,t,j

))−bm,j

dxm,t,j = ỹm,t,j × 2F1

(
1

2
, bm,j,

3

2
;−

ỹ2m,t,j

am,t,j

)
,

(5.D.26)
where the hypergeometric function is defined as (Aomoto and Kita, 2011, Section 1.3.1)

2F1(a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

sa−1(1− s)c−a−1(1− sx)−bds, (5.D.27)

when |x| < 1, a > 0, and c− a > 0 (when a, c ∈ R).
Using the above result, we have∫ yj,t

−∞
t1(u;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1)du

=
1

2
+

Γ
(
νm+dp+j

2

)√
π(νm + dp+ j − 3)Γ

(
νm+dp+j−1

2

)Ω−1/2
m,t,j|j−1ỹm,t,j × 2F1

(
1

2
, bm,j,

3

2
;−

ỹ2m,t,j

am,t,j

)
(5.D.28)
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whenever
∣∣∣− ỹ2m,t,j

am,t,j

∣∣∣ < 1. That is, the closed form expression (5.D.28) exists when

|yj,t − µm,t,j|j−1| <
√

(vm + dp+ j − 3)Ωm,t,j,|j−1. (5.D.29)

If this condition does not hold, the quantile residual can be obtained by numerically integrating
the conditional density function t1(u;µm,t,j|j−1,Ωm,t,j|j−1, νm + dp+ j − 1).
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