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Dissipative failure of adiabatic quantum transport as a dynamical phase transition
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Entanglement is the central resource in adiabatic quantum transport. Dephasing affects the availability of that
resource by biasing trajectories, driving transitions between success and failure. This depletion of entanglement
is important for the practical implementation of quantum technologies. We present an alternative perspective on
the failure of adiabatic computation by understanding the failure of adiabatic transport as a dynamical phase
transition. These ideas are demonstrated in a toy model of adiabatic quantum transport in a two-spin system.
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I. INTRODUCTION

Adiabatic transport is a powerful way to prepare quantum
states. A system in the ground state of a simple Hamiltonian
can be transformed to a more complicated state by slowly
and continuously changing its Hamiltonian to one for which
the desired state is the ground state [1]. This approach is
frequently used to prepare correlated states of cold atomic
gases [2]. By encoding the result of a computation in the final
state, it may also be used for quantum computation [3–6].

Adiabatic quantum computation (AQC) has been demon-
strated to be computationally equivalent to gate-based quan-
tum computation [7]. The question of whether a particular
problem can be solved in the absence of noise has been
thoroughly addressed in the literature [8–10] and amounts
to delimiting the boundaries of the BQP quantum compu-
tational complexity class. A practically pressing question is
how coupling to the environment causes a computation that
would succeed in a pure system to fail [11,12]. In the noisy
intermediate-scale quantum era we anticipate that the perfor-
mance of adiabatic computation will be limited by the effects
of noise rather than its ultimate limits.

Several approaches have been developed to consider these
environmental effects on AQC. Viewed in the computational
basis, one may study tunneling between computational states
[13]. An alternative (adopted here) is to determine the entan-
glement resources that can be maintained in the presence of
the environment [14,15]. Similar effects can also be captured
by environmental renormalization of the system’s gap struc-
ture [16].

Computation is a dynamical process. The transition be-
tween successful and unsuccessful computation is a transition
in those dynamics, caused by a biasing of computational
trajectories by environmental dephasing. In gate-based com-
putation, there exist threshold strengths of dephasing that
can be completely corrected for by suitable error correction
[17]. Although error correction schemes have been proposed

[18,19] and demonstrated [20] for AQC, no such thresh-
olds are known and new perspectives are evidently required.
We demonstrate that, for a simple model, the environment-
induced failure of the adiabatic process can be understood as a
dynamical phase transition using trajectory ensemble methods
developed in the field of spin glasses.

II. SIMPLE ADIABATIC PROCESS

The success of quantum adiabatic transport depends upon
the dynamics of its entanglement resources. The simplest
model of this is two coupled quantum spins 1

2 . We study a
simple adiabatic process of evolution under an antiferromag-
netic Heisenberg model with staggered time-dependent field

H = J

2
σ̂1 · σ̂2 + h(t )

(
σ̂ z

1 − σ̂ z
2

)
. (1)

The system is initialized in the state |↑↓〉 and the field swept
from h(0) = −∞ to h(T ) = ∞. Our analysis is conveniently
carried out in terms of the parametrization of the two-spin
Hilbert space

|ψ〉 = α1|l1, l2〉 + α2|−l1,−l2〉, (2)

where the |li〉 are spin coherent states and | − li〉 is the state
such that 〈li|−l〉i = 0. The dynamics with this parametriza-
tion is particularly simple: The vectors l1 = −l2 = ẑ do not
evolve and the state of the system becomes |ψ〉 = α1|↑↓〉 +
α2|↓ ↑〉 ≡ cos θ/2|↑ ↓〉 + eiφ sin θ/2|↓ ↑〉, where we have
represented the entanglement spinor (α1, α2) as a point on
a Bloch-like sphere following standard convention. In other
words, the state evolves in a reduced two-dimensional sub-
space of the entire four-dimensional Hilbert space; Fig. 1
shows the adiabatic path on this Bloch sphere. In the zero-
magnetization subspace, the Schrödinger equation reduces to
the classical equation of motion for the Bloch unit vector
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FIG. 1. Simple adiabatic quantum transport. A subset of
the entangled states of two spins forms a Bloch sphere:
cos(θ/2)eiϕ/2|↑ ↓〉 + sin(θ/2)e−iϕ/2|↓ ↑〉. The ground state of Ĥ =
J
2 σ̂1 · σ̂2 + h(t )(σ̂ z

1 − σ̂ z
2 ) as h(t ) is scanned from −∞ to ∞ follows

the path shown here (red arrow), passing through a maximally entan-
gled state. Flow fields of the t = 0 Hamiltonian are shown in blue.

ṅ = [Jx̂ + h(t )ẑ] × n. We can also identify a vector of opera-
tors

τ̂ =
⎛
⎝τ̂x

τ̂y

τ̂z

⎞
⎠ =

⎛
⎝ (σ̂+

1 σ̂−
2 + σ̂−

1 σ̂+
2 )

−i(σ̂+
1 σ̂−

2 − σ̂−
1 σ̂+

2 )(
σ̂ z

2 − σ̂ z
1

)
2

⎞
⎠ (3)

that obey su(2) commutation relations, in terms of which Ĥ =
J (τ̂x − τ̂ 2

z + 1
2 ) − 2h(t )τ̂z. In our model of adiabatic trans-

port, the ability to sustain entanglement at the instant when
h = 0 determines whether the trajectory is connected and so
whether the process is successful. We therefore investigate the
dynamics directly at h = 0, i.e., Ĥ = J τ̂x (for pseudospin 1

2 )
henceforth.

III. INTRODUCING DISSIPATION

We model the environment using harmonic baths coupled
locally to each spin. This assumption of locality, as well as the
corollary that the number of dissipation channels is propor-
tional only to the number of spins, is physically reasonable
and underpins the possibility of performing quantum error
correction. We consider random fields only in the ẑ direction,
motivated by systems in which different components of the
qubit are of different physical origin, e.g., a flux qubit with
noise arising from inductive coupling to circulating currents.
If treated in a Keldysh formalism, the environment can be
modeled by a random noise and a corresponding friction,
resulting in a modified Schrödinger equation (for full details
of the derivation of this equation and its interpretation, see
Refs. [21–23] )

i∂t |ψ (t )〉 =
[

Ĥ +
∑
i=1,2

(
ηz

i (t )σ̂ z
i

+
∫ t

0
dt ′�(t − t ′) ˙〈

σ z
i

〉
t ′ σ̂

z
i

)]
|ψ (t )〉.

FIG. 2. Flow fields and trajectories in the presence of dissipation.
Blue lines show a cut through the flow fields for Eq. (5) on a cut
through the z-y plane for different dissipation strengths. Red curves
indicate the fate of trajectories starting at |↑ ↓〉. Initial |↑ ↓〉 and
final |↓ ↑〉 states of the adiabatic trajectory are indicated with a red
and a black star, respectively. The γ /J < 2 trajectories explore both
hemispheres; γ /J > 2 trajectories remain in the bottom hemisphere.

This equation implies stochastic unitary evolution for the state
vector, and a noise average over pure-state projectors results
in an effective dissipative equation of motion for the density
matrix, in which the influence of the environment is manifest.
Correlations in the noise fields ηz

i (t ) are related to the dissi-
pation kernel �(t − t ′) by the fluctuation-dissipation relation.
We study the Markovian limit �(t − t ′) = �δ(t − t ′). Starting
from |↑ ↓〉, the li fields do not change even when coupled to
the environment. The resulting Markovian Schrödinger equa-
tion for the entanglement field implies the following dynamics
for the expectation n = 〈τ 〉:

ṅ = {Jx̂ + [h(t ) + η̃(t )]ẑ − 2�ṅ} × n. (4)

The effective noise field η̃ = η1 − η2 has twice the variance
of the local noises. Here all stochastic differential equations
(SDEs) should be understood as Stratonovich SDEs.

Fundamentally, it is dephasing that limits the availability of
quantum resources. Friction can be systematically corrected
for by applying appropriate drives or other compensating con-
trol to counter its effects. Dephasing cannot be corrected for
in this way. Therefore, we will ignore the effect of friction.
This amounts to a high-temperature limit � → 0, T → ∞,
and �T → γ finite.

IV. EFFECT OF LOCAL DISSIPATION

A. Averaged dynamics

The average over noise can be performed after converting
Eq. (4) to an Itô SDE and allowing the state vector (now
denoted by n̄) to explore the interior of the Bloch sphere,
resulting in

˙̄n = Jx̂ × n̄ − γ ẑ × (n̄ × ẑ). (5)

This equation is equivalent to the Heisenberg picture Lind-
blad equation for the operators τ̂ of Eq. (3) [24]. It has a
single fixed point at the origin that is stable for all values of
the coupling. This linear problem exhibits an underdamped
to overdamped spectral transition in the dynamics near the
fixed point at γ /J = 2, as illustrated in Fig. 2. Overdamped
dynamics is confined to the lower hemisphere.
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B. Mapping to pure state dynamics

Remarkably, Eq. (5) decouples completely into radial (d)
and angular components (|n| = 1), with n̄ = dn and corre-
sponding density matrix evolution

ṅ = Jx̂ × n − γ nzn × (ẑ × n)

= Jx̂ × n + γ nz(ẑ − nzn), (6)

ḋ = −γ
(
1 − n2

z

)
, (7)

ρ̂(t ) = 1̂
√

1 − d2 + dn · τ̂ . (8)

While the radial component of the dynamics quantifies the de-
gree of thermalization of the pseudospin τ̂ , angular dynamics
may be thought of as describing a (nonlinear) deterministic
evolution of a pure state that encodes the structure of re-
maining entanglement in the dimer. The spectral transition in
the linear representation of the problem [Fig. 2 and Eq. (5)]
manifests itself in a more dramatic transition of the fixed-point
structure of the angular dynamics of n, whose properties and
physical interpretation we focus on in the remainder of this
paper.

For the case considered thus far [see Figs. 3(c) and 3(d)]
there are only two unstable (repulsive) fixed points on the
underdamped side (0 < γ < 2J) at n = ±x̂. Here the trajec-
tory of interest (see Fig. 1) is the late-time limiting orbit that
connects infinity (|↓ ↑〉) to the origin (|↑ ↓〉). There are six
fixed points on the overdamped side (γ > 2J): In addition to
the (still unstable) two at ±x̂, there are two that are stable (at-
tractive) and two are saddles, possessing one unstable and one
stable direction each. The latter four new fixed points appear
in the y-z plane at polar angle θ = 1/2 arcsin −2J/γ ; near
2J/γ = 1, they emerge at φ = π and θ = π/4 ± (1 − 2J/γ )
and at φ = 0 and θ = 3π/4 ± (1 − 2J/γ ). Importantly, sep-
aratrices passing from unstable points (±x) to saddles form
a circular phase boundary demarcating two mutually discon-
nected regions of phase space as shown in Fig. 3. Hence, the
trajectory starting at |↑ ↓〉 never crosses this phase boundary
and rather ends up in its own attractive fixed point, i.e., it
becomes disconnected from |↓ ↑〉 at γ � 2J . Figures 3(a)
and 3(b) show another such disconnection transition pre-
dicted as suggested by the statistical formalism we develop
next.

V. FAILURE OF ADIABATIC TRANSPORT
AS A DYNAMICAL PHASE TRANSITION

A. Biased trajectory ensembles

In classical glasses, transitions associated with dynami-
cal properties have been analyzed in terms of ensembles of
trajectories. When extended to open [25] and closed quan-
tum systems [26], it amounts to an interpretation of the
full counting statistics. The dynamical phase transition oc-
curs as a nonanalyticity in the generating function of some
time-extensive order parameter. We now provide a general
self-contained derivation of the large-deviation formulation
for our problem and demonstrate that the failure of this adi-
abatic process can be understood as such a transition. As a

(a) (b)

(c) (d)

FIG. 3. Environmentally induced phase-space transitions: Phase
flows in the complex stereographic plane w = (nx + iny )/(1 + nz ).
The initial state |↓ ↑〉 of the adiabatic trajectory is indicated with
a red star, while the final state |↓ ↑〉 is located at infinity. (c) and
(d) Flow fields of Eq. (6) [equivalently Eq. (15) with γ ′ = 0] are
shown in stereographic projection. For γ /J < 2 there are two re-
pulsive fixed points of this flow at n = ±x̂ (marked with R and
blue color). For γ /J > 2, four new fixed points emerge, two saddles
(marked with S and red color) and two attractors (marked with A
and green color, the bottom one being out of the field of view).
The great circle through the R and S fixed points splits the Bloch
sphere of Fig. 1 into two mutually inaccessible hemispheres; hence
the trajectory connecting the two poles is disconnected. (a) and
(b) Another disconnection transition, predicted from Eq. (15) with
γ = 0 (see the discussion in the text for the physical realization of
this transition). Formally, the similarities are due to the presence or
absence of the trajectory connecting the poles of the Bloch sphere
on either side of the critical coupling γ ′ = 1. There are however
differences in the details. In particular, instead of repulsive fixed
points we find a family of periodic orbits and a pair of nondynamical
limit points (marked with L) in the small γ ′ < 1 regime and only a
single attractive-repulsive pair of fixed points for γ ′ > 1.

by-product of this derivation we will also be able to identify
different types of such dynamical transitions.

Consider a general initial pure state |0〉 evolving under a
Hamiltonian Ĥ and a biasing perturbation Ô of strength s,

∂t |ψ〉 = [Ĥ − isÔ]|ψ〉. (9)

We will return to explain (below) how Ô (which may be
generally state dependent, i.e., nonlinear) is determined by
postselection of external measurements. Importantly, such
evolution induces the loss of norm, with certain trajectories
playing an amplified role compared to pure unitary evolution,
hence the term biasing. One natural object to quantify this
process is the conventional partition function associated with
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the time-evolved density matrix

Zs(t ) ≡ Tr|t〉〈t | (10)

= 〈0|T exp

[
i
∫ t

0

(
Ĥ + i

s

2
Ô

)
dt ′

]

× T exp

[
−i

∫ t

0

(
Ĥ − i

s

2
Ô

)
dt ′

]
|0〉. (11)

From here it is relatively straightforward to see that

ln Zs(t ) = −s
∫ t

0

〈t ′|Ô|t ′〉
〈t ′|t ′〉 → −st〈∞|Ô|∞〉, (12)

where the notation |t̄〉 is used to denote a properly normalized
counterpart to time-evolved state |t〉, |t̄〉 ≡ |t〉/√〈t |t〉, with
the corresponding (in general nonlinear) Schrödinger equation
i∂t |t̄〉 = [Ĥ − is(0̂ − 〈Ô〉)]|t̄〉. We may define the dynamic
quasi-free-energy functional as

ϕ(s) = lim
t→∞

1

t
ln〈Zz(t )〉 → −s〈Ô〉. (13)

Note that we tacitly assume the existence of the (unique)
steady state dominating late-time averaging in both Eqs. (12)
and (13) (more on this below). The dynamics of observables
can be obtained straightforwardly

ṅ = i〈[Ĥ0, τ̂ ]〉 − s

2
〈{Ô, τ̂ }〉 + s〈Ô〉〈τ̂ 〉. (14)

B. Dephasing as entanglement bias

Motivated by the observed dissipation-induced suppres-
sion of entanglement above, we now consider candidate
biasing operators Ô that may encode such an effect. Al-
though in general the entanglement is not related to simple
observables, here the pseudospin τ̂z is related to two stan-
dard measures of entanglement: (i) The expectation nz =
〈τ̂z〉 = |α1|2 − |α2|2 = λ2

1 − λ2
2 is the difference between the

two Schmidt coefficients for the cut across the dimer and
(ii) the variance 〈δτ̂ 2

z 〉 ≡ 〈(τ̂z − 〈τz〉)2〉 = 1 − n2
z = 2(1 −

trρ2
A) = 4λ2

1λ
2
2 is the concurrence [27]: a lower bound to the

von Neumann entanglement entropy and an entanglement
monotone (ρA is the reduced density for one spin in a dimer).

We may now introduce both into Eq. (14) and find

ṅ = Jx̂ × n − γ nzn × (ẑ × n) − γ ′nzẑ × (ẑ × n), (15)

which is identical to Eq. (6) if γ ′ is set to 0, and we have made
the identification s = γ (γ ′) to match our earlier notation. We
may also consider the other case of finite γ ′ and γ = 0 which
is equivalent to the much-studied non-Hermitian quantum me-
chanics problem [26]. Both of these cases can be analyzed
along the same lines of fixed-point structure (as was already
done above for the variance biased case) and dynamical free
energy computed, as shown in Figs. 3 and 4. One should note
that the behavior observed here is decidedly unconventional,
e.g., we observe a zeroth-order transition in the variance
biased case. Importantly, late-time averages necessary to com-
pute ϕ are not straightforward. The underdamped regime does
not possess an attractive fixed point, so nz = 0 results from
integrating over a persistent oscillation. In the overdamped
regime of the variance biased case, there are two attractors.
We chose the one of interest here, i.e., reached from the south

(a) (b)

FIG. 4. Dynamical free energy with entanglement bias. The dy-
namical free energy for the Heisenberg model biased by either the
field n̂z or its variance δn2

z displays a dynamical phase transition. This
signifies the failure of the adiabatic process.

pole of Fig. 1, located below the displayed field of view in
Fig. 3(d).

VI. CONCLUSION

Dephasing biases quantum trajectories and restricts the
accessible regions of Hilbert space to those with low entan-
glement. This can induce the failure of adiabatic quantum
computation, where intermediate states in the computation are
typically highly entangled, and of quantum control. It is mir-
rored in recent studies of restriction of entanglement growth in
random circuits with weak or projective measurement [28–30]
We have given a concrete demonstration that, for a simple adi-
abatic process in a system of two quantum spins, this failure
of adiabatic transport is a dynamical phase transition. Within
a trajectory ensemble treatment, the transition is accompanied
by a discontinuity in the scaled cumulant generating func-
tion associated with a time-extensive order parameter. The
order parameter is related to the entanglement structure of the
system.

Our model can be realized directly in coupled flux qubits.
The environmental noise in such a system is often dominated
by flux noise that corresponds to effective noise fields in the
z direction only [21]. An intriguing alternative is to realize
the nonlinear Schrödinger evolution of Eq. (9) using a post-
selection scheme [31]. The situation that we have described
effectively biases the qubit dynamics with the variance of an
operator rather than simply an operator as in the usual linear
bias cases. This necessitates a greater degree of postselection
corresponding to the additional tomography required to find
the variance of the operator at each time step or the image of
this in measurements carried out on the bath [26].

Can this analysis can be extended to many spins and to
true adiabatic quantum computation? Quantum advantage re-
quires as many as 50 coherent spins, and a useful paradigm
for understanding computational failure must generalize to
such systems. There are some hints that the ideas presented
here can be extended successfully. Recent analysis of sweeps
through a topological phase transition in the presence of an
external bath reveals the same equations as Eq. (6), albeit in
a system of noninteracting particles [32]. It is also possible
to extend the Langevin approach used here to study more
profoundly entangled many-body systems [23] within a ma-
trix product state Langevin description. A typical adiabatic
computation undergoes several avoided crossings of low-lying
levels. The states at the avoided crossings are often highly
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entangled. Environmental depletion of entanglement can thus
prevent the avoided crossing and cause a failure of the com-
putation. Thresholds for error correction in gate-based models
of quantum computation do not currently have an analog in
adiabatic computation. Our hope is that mapping the failure of
adiabatic transport to a dynamical phase transition will prove
useful in this search.
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