
FAst In-Network GraY Failure Detection for ISPs
Edgar Costa Molero

ETH Zurich
cedgar@ethz.ch

Stefano Vissicchio
University College London
s.vissicchio@ucl.ac.uk

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

ABSTRACT

Avoiding packet loss is crucial for ISPs. Unfortunately, malfunc-
tioning hardware at ISPs can cause long-lasting packet drops, also
known as gray failures, which are undetectable by existing moni-
toring tools.

In this paper, we describe the design and implementation of
FANcY, an ISP-targeted system that detects and localizes gray fail-
ures quickly and accurately. FANcY complements previous monitor-
ing approaches, which are mainly tailored for low-delay networks
such as data center networks and do not work at ISP scale. We
experimentally confirm FANcY’s capability to accurately detect
gray failures in seconds, as long as only tiny fractions of traffic
experience losses. We also implement FANcY in an Intel Tofino
switch, demonstrating how it enables fine-grained fast rerouting.

CCS CONCEPTS

• Networks → Network measurement; Network simulations;
Programmable networks; In-network processing;

KEYWORDS

Failure detection,Measurements, NetworkHardware, Programmable
data planes
ACM Reference Format:

Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2022. FAst In-
NetworkGraY Failure Detection for ISPs. InACM SIGCOMM2022 Conference
(SIGCOMM ’22), August 22–26, 2022, Amsterdam, Netherlands. ACM, New
York, NY, USA, 16 pages. https://doi.org/

1 INTRODUCTION

Avoiding packet loss is so critical to ISPs that research and industry
efforts focus increasingly on ensuring minimal downtime upon
failures (e.g., [26, 32, 39]). A major result of past efforts is that hard
failures affecting all packets crossing a link or node are typically
detected and dealt with quickly thanks to the BFD protocol [28].

In practice, however, malfunctioning hardware often causes
packet losses only for subsets of packets sent over a link. Table 1
(further discussed in §2.2) shows representative examples of device
bugs in this category. Additional examples include misplaced line
cards and bent or dirty fibers [46].

In this paper, we call gray failure any hardware malfunction that
causes non-transient packet loss on a subset of the traffic forwarded
by any packet-forwarding device – which we generally call a switch.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.

Consistent with our definition, we do not classify congestion as a
gray failure.

As confirmed by a survey we conducted (see §2.1), ISP operators
consider gray failures amajor concern, and lack techniques to detect
and locate them. Indeed, they often become aware of gray failures
only when customers complain about the failure-induced packet
loss, which they end up troubleshooting for days or weeks.

The reason why existing techniques are ineffective is that de-
tecting and localizing gray failures requires analyzing all the traffic.
Hello protocols such as BFD do not work because most gray failures
do not impact messages from these protocols. ISP monitoring tools,
such as NetFlow [22] or sFlow [36], do not help either: since they
rely on random packet sampling for scalability, they are unable to
support fine-grained traffic analyses (as also shown in [41]), which
would be needed to spot gray failures. Finally, mechanisms internal
to switches, such as deflection on drop [44], do not capture several
failure cases, including those where the drop flag is not correctly set
on packets because of memory corruption, and link-level failures.

Of course, gray failures are not specific to ISPs, and recent con-
tributions have proposed gray failure detectors for data center
and cloud networks. Those detectors’ designs, however, do not
match the peculiarities of ISP networks: they either require con-
trol of end hosts [17, 23, 37, 40], assume low packet loss rates
and extremely high-speed interfaces between the control and data
planes (e.g., [31]), or require limited links delay and traffic volumes
(e.g., [44]). We review the unsuitability of recent related work and
simple system designs in §2.

Vision.We aim at designing an accurate and fast gray failure de-
tector for ISPs. Similar to BFD, the immediate application of such
a detector would be to support selective fast rerouting on gray fail-
ures – i.e., rerouting traffic only for the disrupted traffic, as fast as
possible. We also envision that in the future, a gray failure detector
may assist operators in finding the root cause of gray failures, and
enable new control- and data-plane applications, such as automated
failure repair through ad-hoc forward error correction mechanisms
or hardware reconfiguration (e.g., [43]).

Problem statement.We focus on the following question:
Can we build an ISP-targeted system able to detect and
localize intra-domain gray failures in seconds?

By localizing we mean identifying both the switch port suffering
from a gray failure and the affected traffic. Note that our problem
statement does not directly target root cause analysis, nor auto-
mated remedies to the detected failures.

FANcY.We present FANcY, a gray failure detector tailored to ISPs.
FANcY relies on an inter-switch protocol enabling data planes to
synchronize packet counters and detect packet losses by comparing
the values of those counters. Counters provide the minimal informa-
tion needed to localize gray failures; frequently exchanging them
provides detection speed and scalability (e.g., consumed memory).

https://doi.org/

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

Real examples of unwanted traffic drops affecting. . .

. . .some packets . . .all packets

. . .one or some
IP prefixes

Neighbor Solicitation [10]
or BGP [9] packets

Packets sent from
a specific line card [1]
Specific IP prefixes [3]

. . .all IP prefixes
With specific sizes [2] Traffic on
With IP ID field 0xE000 [4] certain ports [6, 12]
With wrong CRC [7, 8] Interface flaps [11, 13]

Table 1: Representative examples of gray failures plaguing major

routing devices (from Cisco and Juniper bug reports).

Figure 1 shows FANcY’s interface, and its role within our envi-
sioned in-network reaction approach. As input, FANcY takes the
specification of which entries the operator or the applications using
FANcY are interested in monitoring, and the memory budget per
switch. Every time FANcY detects packet drops induced by a gray
failure, it flags the entries and ports affected by the failure.

In FANcY, an entry indicates a subset of the header space de-
fined by a match rule on packets. For example, Figure 1 shows
that operators can specify destination prefixes as entries, which
would be reasonable if they aim to support selective fast rerouting
in destination-based routed networks. We however remark that
future applications can dynamically define the entries monitored
by FANcY, for example, for root cause analyses – e.g., to assess
losses per packet size or per value of specific IP fields.

Since fundamental limits constrain how many entries can be
monitored with the limited memory available on switches, FANcY
offers two levels of accuracy for entries to be monitored: high
priority, and best effort. Each high priority entry is tracked with a
dedicated counter. Best effort entries are collectively monitored with
a hash-based tree. Contrary to existing sketches, the hash-based
tree stores aggregated counters without compressing information,
and is explored in hardware, at runtime, to identify faulty entries,
in-switch and at line rate. FANcY’s interface, for example, allows
operators to monitor all destination prefixes, while also maximizing
accuracy and reactivity for the ones driving most Internet traffic,
which are typically few [38]; we assume this to be a common goal
for ISP operators. If operators want to monitor a more limited set
of entries, they can also specify all entries as high priority. The
system returns an error, if the set of high-priority entries cannot
be supported with the memory budget specified in input.

We implement FANcY in ns-3 [16], and evaluate its ability to
capture gray failures through extensive simulations. Since FANcY is
traffic-driven, we first assess the minimal traffic requirements that
allow it to quickly and accurately localize failures. Our experiments
indicate that those requirements are quite minimal for ISPs’ traffic.
We then experiment with real traffic traces, and confirm FANcY’s
potential to work well in real ISPs. Results indeed show that FANcY
is able to detect and localize gray failures unless they cause loss of
tiny amounts of traffic: as such, they confirm that FANcY would
protect the vast majority of ISPs’ traffic.

We also implement a prototype of FANcY in P4, and deploy it to
an Intel Tofino switch. We use this implementation to demonstrate
that FANcY enables sub-second selective fast rerouting. Combined
together, FANcY and the rerouting application built on top of it

high priority: 1.0/8, 2.1/16, …

best effort: 2.8/16, 5.0/8, …

FANcY

output: mismatching entries

APP 1

input: monitoring requirements

fine-grained
fast rerouting

APP N…

data-plane applications

switch memory: 1 MB

Switch

Gray failure on Wed 01:13 AM

[@switch1-eth2] 1.0/8: 10% loss

[@switch1-eth2] 5.0/8: 1% loss

high priority

best effort

to control plane

to control plane

Figure 1: High-level view of a FANcY switch.

take significantly fewer resources than reference P4 applications
such as switch.p4. The source code of our FANcY implementations
is available at https://github.com/nsg-ethz/FANcY.

2 GRAY FAILURES IN ISP NETWORKS

We now detail why detecting and localizing gray failures in ISPs is
a practically relevant, open research problem.

2.1 What do ISP network operators say?

We conducted an anonymous survey (in accordance with the di-
rectives of our university’s institutional review board) amongst
operators on the NANOG mailing list. The vast majority (80%) of
the 46 respondents operate a WAN.

ISPs suffer from gray failures operators care about. Gray fail-
ures are an actual problem for ≈90% of the operators. Among those,
13% need to diagnose gray failures every day, 46% at least once
a month, and 73% at least once every half a year. Several opera-
tors acknowledge that they typically investigate gray failures in
response to customers’ complaints. Though alarming, these figures
likely underestimate the actual number of gray failures occurring
in ISPs. Indeed, 74% of the operators indicate that they do not use
any gray failure detector, implicitly confirming that they do not
have practical tools for it. Hence, many (if not most) gray failures
likely go unnoticed even when they do affect some customer traffic.

ISP operators struggle to diagnose gray failures.Operators are
overwhelmingly clear: when discovered, gray failures are difficult,
time consuming, and frustrating to debug. Such a process takes
hours for 35% of the operators, days for 20%, and weeks for another
20% of the operators. This is partially motivated by the lack of tools
to localize gray failures. Indeed, the most common approach to
troubleshoot them consists of manually dismissing assumptions one
by one. Since gray failures tend to be hardware-specific, operators
often need to involve vendors in this process, which slows things
down evenmore.Worse yet, many gray failures are never diagnosed,
e.g., because they appear intermittently.

https://github.com/nsg-ethz/FANcY

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

2.2 What is the impact of gray failures in ISPs?

To understand how gray failures happen in practice, we analyze
hardware bug reports published by Cisco and Juniper, the two
largest routing vendors in the ISP market. We find more than 150
bugs resulting in gray failures.

We classify gray failures according to (i) the affected forwarding
entries (i.e., all or some IP prefixes); and (ii) the dropped traffic
(all or some packets per affected entry). Our classification focuses
on the effects of the gray failures (i.e., what is dropped, which is
visible to operators), rather than their causes (i.e., why packets are
dropped, which usually known by vendors only).

Table 1 lists representative examples of gray failures for each
class. It shows that gray failures come in all shapes and forms, some
leading to complete blackholes while others induce drops of very
specific packets only (i.e., affecting one or a few entries).

Our survey (§2.1) confirms that our classification is represen-
tative: operators state that they have observed at least one gray
failure of each type.

2.3 Why is prior work not applicable?

We now discuss why prior gray failure detection approaches do not
work in ISPs, and motivate the need for a new in-switch design.

Controller-centric approaches do not scale to ISPs. The most
straightforward controller-centric approach is to mirror traffic to
the controller, and let it compute packet differences between con-
secutive hops. However, such a naive approach is not practical in
ISPs, since it inflates the network load proportionally to the number
of links per path, and requires the centralized system to potentially
process an aggregate rate of hundreds of Tbps of traffic.

Recent work has explored more practical packet mirroring op-
tions, such as truncating copied packets [24] or mirroring specific
subsets of packets only [41, 45]. Despite these efforts, packet mir-
roring tends not to scale well with respect to traffic: either (i) a few
flows are monitored accurately and quickly; or (ii) many flows are
monitored but slowly; or (iii) most flows are monitored inaccurately.

An alternative to packet mirroring is instructing switches to store
measurements in sketches, which are compressed data structures
extracted, decompressed, and processed by a centralized controller.
For detecting and localizing gray failures, however, switches cannot
arbitrarily compress measurements, but must enable controllers to
reconstruct traffic at per-entry or per-packet granularity – which
most of the sketches proposed in previous work (e.g. [27, 29, 30,
33, 34, 42]) do not do. This need prevents the data structures main-
tained in the switches from being arbitrarily small. In turn, reading
values from relatively large sketches takes too much time for failure
detection to be fast and practical for ISPs.

As an illustration, we consider Loss Radar [31], one of the few
sketch-based systems able to detect gray failures. Loss Radar uses
in-switch Invertible Bloom Filters (IBFs) to track XORs of packets:
by comparing differences between the IBFs of consecutive switches,
the controller tries to reconstruct the headers of packets lost at each
hop. To ensure quick failure detection and limit IBFs’ sizes, IBFs
must be extracted very often (i.e., every 10 ms).

Table 2 shows the results of measurements we performed on a
state-of-the-art switch: current switches do not read memory fast
enough for Loss Radar to support average loss rates higher than

LossRadar requirements

Average loss rate
Switch Metric 0.1% 0.2% 0.3% 1%

100 Gbps
32 ports

memory size∗ × 0.21 × 0.42 × 0.63 × 2.1
read speedup† × 0.7 × 1.4 × 1.9 × 4.5

400 Gbps
64 ports

memory size∗ × 1.7 × 3.4 × 5.1 × 16.9
read speedup† × 3.7 × 6.6 × 9.5 × 29.5

∗ LossRadar req. memory / memory available per hardware stage
† LossRadar req. read speed / available hardware read speed

Table 2: Even for registers’ (64 bits) and packets’ (1500 B) sizes mini-

mizingmemory reading time, LossRadar exceeds the capabilities of

state-of-the-art switches (see red numbers).

0.15% in 100 Gbps switches with 32 ports. Loss Radar limitations
worsen for higher bandwidth.

Note that switches’ memory size and reading speed constraints
limit the options available to sketch-based approaches: extracting
measurements less frequently requires larger data structures, which
however exacerbate hardware limitations. For example, in Loss
Radar, gathering IBFs less frequently is counter-productive because
it requires increasing their sizes to deal with the higher number
of packets lost during larger intervals for the same loss rate; yet,
larger IBFs further reduce the loss rates detectable by Loss Radar.

Our results show that Loss Radar fundamentally cannot detect
gray failures efficiently within current and future ISPs, unless a
major technological breakthrough enables switches to support sig-
nificantly more memory and read it much faster than today. Other
sketches may make a more parsimonious use of switches’ memory,
but they are likely to suffer similar scalability limitations with re-
spect to the tracked traffic. In addition, a recent study [35] shows
that all sketch-based solutions have a significant accuracy drop (up
to 94×) compared to theoretical expectations due to the delays in
retrieving the data plane state. Those limitations lead us to design
an in-switch failure detection system.

Existing in-switch designs are not suitable for our goals. Two
techniques have recently been proposed to detect failures within
switches: Blink [26] and NetSeer [44].

Blink [26] focuses on failures affecting all the flows crossing a
failed link. It selects a small number of flows (e.g., 64) per prefix,
and checks if the majority of them retransmits within a 800 ms
window. Blink fundamentally cannot detect a gray failure that does
not affect the majority of the flows crossing a link: in those cases,
Blink simply does not monitor enough affected flows. For cases in
which Blink could select more than 32 affected flows, gray failures
increase the likelihood that retransmissions are spread over time,
beyond 800 ms windows, since only a subset of the packets is lost,
which would again prevent Blink from detecting the failure.

Extending Blink to detect gray failures is also challenging as (i)
monitoring more flows is impractical, given switches’ computa-
tional and memory resources; and (ii) inferring failures from the
retransmissions of fewer flows would lead to many false positives.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

NetSeer requirements

100 us 1 ms 10 ms 100 ms

Inter-Switch Link Latency (log scale)

0

100

200

300

400

500

R
eq

u
ir

ed
M

em
o
ry

(M
B

)

64-ports x 100 Gbps

64-ports x 200 Gbps

64-ports x 400 Gbps

Figure 2: Totalmemory per switch required byNetSeer to detect and

localize gray failures.

NetSeer [44] is an in-switch system designed to detect a vari-
ety of events, including gray failures, in data center networks. It
includes mechanisms to identify packet drops internal to switches
(e.g., caused by congestion), as well as an inter-switch protocol for
detecting the most general class of gray failures.

While NetSeer keeps working for internal losses correctly logged
by switches, it struggles to detect many gray failures in ISPs, be-
cause of the design of its inter-switch protocol. Indeed, in the Net-
Seer’s inter-switch protocol, each switch stores a signature of sent
packets in a buffer, and receives NACKs from neighbors whenever
any such packet is lost. Fundamentally, NetSeer’s packet buffers
have limited size, and in ISPs, they are likely to be overridden before
NACKs are received, because of ISPs’ traffic volume and link delays.
Whenever this happens, we say that NetSeer is not operational,
since it has no visibility on losses per entry and therefore cannot
localize the corresponding gray failures.

Figure 2 shows that NetSeer is not operational in the most com-
mon ISP settings, where traffic per link exceeds 100 Gbps and link
latency is on the order of milliseconds – the operator survey we con-
ducted confirms those numbers. Results in the figure are computed
analytically, and confirmed by experiments we perform in ns-3. In
contrast to the hundreds of MBs required by NetSeer to be opera-
tional on ISP links, memory available to in-switch applications tends
to be in the order of few MBs. Indeed, current switches offer about
12-15 MB of memory per pipeline, with 4-8 pipelines in total [5].
For each pipeline, however, the available memory is split across the
pipeline’s stages [19, 25], meaning that an in-switch application
is in practice constrained by the maximum per-stage memory. In
addition, per-pipeline per-stage memory is shared across all in-
switch applications, further reducing the memory available to each
application.

Note that NetSeer’s limitations also do not seem to be easy to fix
in the future. In fact, traffic forwarded by ISPs is expected to increase
over the years at a much faster pace than hardware resources (e.g.,
memory) in switches. This trend would make NetSeer less and less
suitable for future ISPs.

2.4 What about simple designs?

An outcome of §2.3 is that a gray failure detector for ISPs should
work in-switch, and neither sample flows nor keep per-packet
information. At a glance, it may seem that we can use simple designs
matching those constraints by just exploiting the ability of switches
to count packets. Unfortunately, this is not the case.

First, we cannot count traffic at per-link granularity: this simply
does not provide enough information to localize the failure. Also,
we cannot sample traffic to count; otherwise, gray failures affecting
small fractions of traffic would probabilistically take a long, possibly
indefinite time to be even detected. Similarly, we cannot count traffic
only for some entries because gray failures can impact one or a few
entries that we do not know in advance – see Table 1.

Conceptually, we instead need to count all packets for each entry.
Once again, however, simply having one counter per entry does not
work in ISPs, as it exceeds the memory available on the switches’
hardware. For example, if we consider entries to be IPv4 prefixes,
covering the Internet routing table with 32 bits per counter would
require about 512 MB on a 64-port switch.

In §3, we describe the design that we propose to scale per-entry
packet counters. Such a design also addresses practical challenges,
including how to distinguish gray failures from transient drops
(e.g., congestion-induced), and how to ensure that switches count
the same packets with the same counters.

3 FANCY OVERVIEW

Given the input entries to monitor and memory budget as shown in
Figure 1, FANcY switches allocate one dedicated entry for each high-
priority entry, while best-effort entries are collectively monitored
through one hash-based tree.

FANcY works at a per-link granularity, reporting losses sepa-
rately for each switch port. To detect and localize gray failures
affecting input entries, each upstream FANcY switch sending pack-
ets to a downstream FANcY switch establishes counting sessions
with the downstream, opening a new session as soon as the pre-
vious one is closed. During each counting session, the upstream
tags packets to be counted by the downstream with an identifier
of the counter to be increased, so that both switches consistently
count the same subset of packets with the same counters. At the
end of each session, the downstream sends back its counters to
the upstream, which compares the counters and immediately after,
starts a new session. When it detects discrepancies between its
counters and the downstream ones, the upstream switch flags the
mismatching counters by populating local registers.

FANcY counters are carefully positioned to avoid recording
packet loss due to congestion. Within any switch, congestion typ-
ically occurs at the traffic manager (TM), which implements the
actual switching logic – i.e., redirecting packets from the ingress
pipeline to the configured egress pipeline. In FANcY, packets are
therefore counted after the TM of the upstream switch and before
the TM of the downstream one.

We design FANcY’s counting protocol to be resilient to packet
loss while also using minimal memory on switches. To provide good
accuracy for best-effort entries, we rely on a zooming algorithm
that allows switches’ data planes to dynamically explore hash-based
trees at runtime. This reduces FANcY’s memory consumption on

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

sender FSM receiver FSM

Count

Wait
ACK

Check
Count

send
Stop

receive
Start ACK

send
Start

resend
Start

Wait
Count

receive
Report

Count

Send
ACK

Idle

receive
Stop

receive
tagged pkt

receive
Start

receive
Start

Wait
ToSend

send
Report

wait
timer

Figure 3: Finite state machines run on any pair of upstream (left)

and downstream (right) FANcY switches.

switches, thus allowing each switch to maintain counting sessions
with all its downstream switches. We detail the design of FANcY
internals in §4, and we delve into its accuracy, speed, and resource
consumption in §5 and §6.

4 FANCY INTERNALS

Wenow describe themost important FANcY components: the count-
ing protocol (§4.1), the hash-based tree data structure (§4.2), and
the system interface and deployment (§4.3).

4.1 Counting protocol

When designing FANcY’s counting protocol, we need to balance
accuracy (i.e., how often we count packets), reliability (i.e., how to
guarantee that counters are successfully exchanged), and scalability
(i.e., how much memory is needed on switches). We first show that
maximizing accuracy leads to high memory consumption and sub-
optimal reliability. This motivates us to trade some accuracy for
much better reliability and scalability.

Strawman: continuous counting with in-packet session IDs.

Ideally, we would like to continuously count all the packets at the
upstream and downstream switches. To do so, the upstream can tag
packets with a session ID, and start a new session by just changing
the packets’ tag. Upon receiving a packet with a different tag, the
downstream would then send its counters back to the upstream.

Unfortunately, this simple approach requires the upstream switch
to allocate memory for two sets of counters, respectively for the
current and previous sessions. The upstream indeed has to wait for
the counters from the downstream switch before it can check for
packet drops in the previous session. In addition, the above protocol
does not achieve reliability. If a counter sent by the downstream is
lost, all the measurements for that session are also lost – i.e., a link
cannot be monitored if a failure affects the reverse direction of the
traffic. To ensure reliability across k sessions, both the upstream and
the downstream must then keep k − 1 historical counters’ values,
and consume k times the memory required for a single session.

FANcY protocol. To achieve reliability with minimal memory,
FANcY adopts a protocol akin to stop-and-wait. In FANcY, every
counting session is opened by the upstream switch through a Start
control message, and closed after a Stop message. After sending a
Start (resp. Stop) message, the upstream switch waits for a Start
ACK (resp. Report, including the downstream counters) response

count

sender receiver

start
wait
ACK send

ACK

start ACK

count

tagged packet

tagged packet

…

stop

report

wait
report

wait
timer

idlecheck

Figure 4: Time sequence diagram showing the implementation of a

counting session with FANcY state machines.

from the downstream switch, and it keeps retransmitting Start (resp.
Stop) messages if it does not receive responses before a timeout.

At any time, FANcY’s counting protocol requires storing a single
set of counters, for the current session, at both the upstream and
downstream switches. Its downside is that counting is stopped
when control messages are exchanged.Wemake this choice because
FANcY focuses on systematic packet drops (e.g., see Table 1), and
hence stopping counting for short times may affect detection speed,
but does not prevent us from detecting gray failures, as §5 confirms.

An important parameter of FANcY’s counting protocol is the
frequency of counters’ exchanges. This parameter influences the
accuracy, the detection speed and the overhead in terms of addi-
tional traffic generated by FANcY. We discuss reasonable counters’
exchange frequency values in §5.

FANcY Finite State Machines (FSMs). FANcY switches imple-
ment its counting protocol by running FSMs directly in the switches’
hardware. We now detail FANcY’s FSMs. We further describe the
implementation and evaluation of those FSMswithin an Intel Tofino
switch in §6 and Appendix B.

Let A be an upstream switch, and B be the downstream one.
To detect losses of packets sent by A to B, A implements FANcY’s
sender FSM, while B runs the receiver FSM. Figure 3 displays both
FSMs, and Figure 4 illustrates how the FSMs transition from one
state to another during a typical counting session.

To start a new counting session, A resets all its counters for the
A → B link, and sends a Start message to B. Since it is critical that
A and B start counting from the same packet, A then enters the
WaitACK state where it doesn’t increase any counter but waits for
an acknowledgement from B. When it receives a Start message, B
indeed resets its counters, and replies with a Start ACK message. If
after a given timeTr tx , A does not receive a Start ACK, it sends the

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

width

5

9

9 3

65 8

3 1 4

0

0

00

w

00 0

00 0

00 00 000 0

0 w 0 w 0 w 0 w

0 w 0 w

0

depth

split

counter

packet

H1(pkt)=0

H2(pkt)=2

H3(pkt)=0

Figure 5: Example hash-based tree implemented within FANcY

switches: each node is an array of counters, and packets aremapped

to counters at each level through a level-specific hash function.

Start message to B again. If A does not receive responses from B
after X attempts (with X=5 by default), A reports a link failure.

After receiving a Start ACK, the sender FSM transitions to the
Counting state, where A counts and tags each packet it sends over
the A → B link. The first tagged packet received after the Start
message makes B transition to its own Counting state.

Packets are tagged by A and counted by B until A sends a Stop
message to B. At that point,Amoves to the WaitCounter state until
it receives a Report message from B, with B’s counters.

A stop-and-wait approach, similar to the one implemented for
the session setup, is used to work around possible losses of Stop and
Report messages. In contrast to session opening, however, the down-
stream switch does not send the Response message immediately
after receiving the Stop one. Upon receiving such a message, the
receiver FSM indeed transitions to the WaitToSendCounter state,
where it can keep counting tagged packets for a short time interval
Twait . This timeout accounts for delayed or reordered packets. In
theory, it should not be possible for packets to be reordered if they
follow the exact same path from the sender FSM to the receiver one
– e.g., if A and B are neighbors. We keep the WaitToSendCounter
state in the receiver FSM to avoid making assumptions on the path
from A to B.

We note that our FSMs can be easily extended to synchronize
and exchange arbitrary state across switches. Indeed, exchanging
information other than packet counters only requires to tweak the
semantics that switches associate to packet tags, and adjust the
content of the Report messages.

4.2 Hash-based trees

FANcY hash-based trees are a generalization of Bloom filters. Each
tree level stores counters associated with a subset of best-effort
entries. Counters at higher levels of the tree map to larger sets of
entries, while the tree’s leaves map to one or few entries. A Bloom
filter can then be seen as a hash-based tree with only one level.

We use this generalization in order to achieve both accuracy and
scalability, at the cost of reducing the detection speed by a factor
proportional to the number of levels in the tree. For a large number
of entries, Bloom filters either have a large memory footprint, or are
subject to collisions and hence false positives. We sidestep from this
memory-accuracy tradeoff by instructing the switches to explore
hash-based trees at runtime, zooming in counters at lower levels
when a failure is detected for counters at higher levels.

Hash-based trees’ data structure. Figure 5 pictures a small hash-
based tree as implemented in FANcY switches. Its nodes are fixed-
size arrays of counters. Each counter is mapped to a specific set
of packets through hash functions. To better define which packets
increment which counters, we first introduce some terminology.

Any FANcY hash-based tree is a balanced k-ary tree, character-
ized by three parameters: width, depth, and split. For a given tree,
its width w is the number of counters per node, its depth d is the
length of any path from the tree’s root to a leaf, and its split k is the
number of children per node. For example,w = 4, d = 3, and k = 2
for the tree in Figure 5.

Every packet belonging to a best-effort entrymaps to one counter
per tree’s level through a distinct hash function per level, as also
shown in Figure 5. Consider a counter ci . A packet p is mapped to
ci if and only if Hj (p) = i , where Hj is the hash function applied at
the level j to which ci belongs, and Hj (p) is a value between 0 and
w − 1 obtained by applying Hj to the fields of p used in p’s entry
(e.g., the destination address in destination-based routing).

We define the hash path of a packet as the list of counter IDs
the packet maps to, ordered from the root to the leaf. For instance,
[0, 2, 0] is the hash path of the packet shown in Figure 5.

Note that any sequence of counters at consecutive levels forms a
partial hash path, and corresponds to a number of entries inversely
proportional to the length of the sequence: the shorter the sequence,
the bigger the number of associated entries.

FANcY zooming algorithm. To detect best-effort entries affected
by a failure, this algorithm incrementally builds partial hash paths
of increasing length for counters affected by a failure. At every
iteration, the algorithm indeed increases by one the length of the
partial hash path affected by packet loss, and hence it reduces the
set of candidate failed entries.

Consider a pair of FANcY switches. Assume for now that the
switches maintain trees of split 1, as shown in Figure 6.

In the absence of losses, the two switches only update root-level
counters. During each counting session, the upstream switch tags
every packet with the index of the counter to which the packet
maps according to the root-level hash function, and the root-level
counters are consistently updated on both switches, as displayed
in Figure 6a. At the end of the session, if no drops have happened,
the upstream switch detects the congruence of its counters with
the downstream ones, and starts a new session.

Suppose now that a gray failure occurs. At the end of the session,
the upstream switch checks its counters against the downstream
ones. If it detects mismatches for more than half of the counters, it
flags the failure as a uniform random one – i.e., “localizing” it to all
entries. Otherwise, the switch computes the root-level counter ci
with the maximal difference between the local and the downstream
values.1 In the following session, the upstream switch then tags
packets if and only if they hash to ci , effectively zooming in the set
of entries with the highest drop rate.

Packet tags carry information about the hash path of the counters
packets map to. This way, the downstream switch knows which

1Selecting the counter with maximum losses is instrumental to prioritize failure detec-
tion for most traffic. We however envision that future FANcY implementations can
take operators’ policies into account at this step.

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

unused
tree levels9 61 1

upstream

H1(.)

packet with
tag [1]

5 60 0

downstream

[1
]

[0
]

[2
]

(a) before any counter mismatch

upstream downstream

2 10 02 14 1

8 32 3 3 22 3

[1
,2
]

[3
]

[1
,0
]

packet with
tag [1,0]

(b) counting session after first zoom

01

upstream downstream

2 10 02 15 1

8 42 2 3 42 1

[1
,0
,2
]

[2
]

[1
,0
,0
]

mismatching
leaf counter

4 0 01 00

(c) successful zooming completion

Figure 6: Illustration of the zooming algorithm on hash-based trees of width 4, depth 3 and split 1.

packets to count and which counters to increase without having to
hash packets consistently with the upstream. In our example, after
detecting a mismatch on counter ci , the upstream would therefore
tag every packet that maps to ci with the path [i,m], where i is the
index of ci in the root-level node andm is the index of the second-
level counter cm to which the packet is mapped – see Figure 6b.

The above procedure is repeated until a leaf node is reached.
At that point, FANcY reports a failure for every mismatching leaf
counter (see Figure 6c). This, for example, enables the upstream
switch to immediately start rerouting packets whose hash path
corresponds to any of those counters.

Note that FANcY technically detects a failure when it starts
zooming in any root-level counter, but reports the failure only after
reaching the tree’s leaves in order to increase accuracy.

For multi-entry failures, FANcY adopts a pipelining approach
that increases failure detection speed. To achieve that, it simultane-
ously zooms in counters at different levels of the tree. Consider, for
example, a failure that affects two root-level counters c1 and c2. At
the end of the first counting session after the failure, the upstream
switch observes packet losses on both c1 and c2, and selects the
one with the maximum packet difference, say c1. In the following
session, the upstream then instructs the downstream to populate
counters at the second level of the tree for packets hashing to c1 in
addition to increasing root-level counters. At the end of this second
session, the upstream observes again packet loss for both c1 and c2.
Since it is already zooming in c1, it starts zooming in c2 this time.
So, in the third session, the upstream and downstream increase
root-level counters for all the packets, second-level counters for
packets hashing to c2, and third-level counters for packets hashing
to c1 and the second-level counter with the maximum mismatch in
the previous session.

A generalized version of the above algorithm is used in trees with
split k > 1. At the end of every counting session, the generalized
algorithm zooms in k mismatching counters rather than only one.
In the presence of multi-entry failures, the algorithm therefore
can explore in parallel up to k hash paths per counting session,
and hence supports the simultaneous exploration of kd−1 different
paths in d counting sessions.

Additional properties and analyses of the tree’s parameters when
used in combinationwith the above zooming algorithm are reported
in Appendix A.

4.3 Practical considerations

We now describe how FANcY design is instantiated.

Input translation. FANcY switches first allocate one dedicated
counter for each input high-priority entry. Each of those coun-
ters occupies 80 bits in total (both at upstream and downstream),
including the required state for the counting protocol.

Switches then dimension the hash-based tree based on the input
memory minus the amount consumed by dedicated counters. Each
node of the tree requires at each side of the session 32 bits times
the width of the tree, plus 88 bits to support the counting protocol
and the zooming algorithm. Appendix B provides more details.

The question then is how to decide the width, depth, and split of
the tree, which also influences the number of nodes. We analyze the
impact of those parameters on the system performance performing
a sensitivity analysis based on CAIDA traffic traces (see Appen-
dix D). Our analysis indicates that setting split to 2 and depth to 3
provides a good tradeoff between memory consumption, accuracy,
and detection speed. Hence, our FANcY implementation uses those
values, and adjusts the tree’s width on the basis of the available
memory. ISP operators can customize FANcY’s trees by applying a
similar analysis on their networks’ traffic traces.

FANcY returns an error if the memory needed for dedicated
counters and hash-based tree with the above parameters’ values
exceeds the input memory.

Output. FANcY uses two additional data structures to flag the en-
tries affected by packet loss: a 1-bit register array with one register
for each dedicated counter, and a 2-register Bloom filter associated
with the hash-based tree. When mismatching values are detected
for a dedicated counter, the corresponding register in the 1-bit array
is updated. When a counter in the hash-based tree reports a failure,
the hash path for that counter is stored in the Bloom filter.

Deployment. FANcY is designed to be deployed at every switch,
so that it can monitor all links, one by one; this maximizes accuracy
of failure detection and localization.

We however note that FANcY keeps working when deployed at
remote switches. In this case, FANcY is able to detect gray failures
on the path between the two switches2, although losing the abil-
ity to precisely pinpoint the failure location along the path. This
enables practical use cases in partial and incremental FANcY deploy-
ments. For example, if deployed at the border switches exchanging
high volumes of traffic, FANcY provides support for near real-time

2Note that systematic failures can be distinguished from congestion even in partial
deployments of FANcY by monitoring queue sizes on all devices, and discarding all
measurements collected during periods where queue sizes were excessively long.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

detection of gray failures along the internal paths carrying most
traffic: no tool currently available to ISPs offers a similar capability.

5 EVALUATION

We evaluate FANcY against its goal of detecting and localizing
gray failures accurately, quickly and scalably. Since FANcY is a
data-driven solution, its accuracy and detection speed depend on
the amount of traffic it receives for the entries affected by gray
failures. We therefore assess FANcY’s performance depending on
the packet loss rate per disrupted entry. We do not compare against
gray failure detectors proposed in previous work because they are
incompatible with the network characteristics of ISPs, as already
detailed in §2.3.

To evaluate FANcY, we simulate different gray failures and mea-
sure FANcY’s accuracy and speed to localize each of them. We use
synthetic traffic to quantify the minimal requirements for FANcY
to properly work (§5.1), and CAIDA traces [21] to evaluate the
system-wide performance on real traffic (§5.2). Finally, we analyti-
cally assess FANcY’s scalability in terms of traffic overhead (§5.3).

In our evaluation, we consider a 64-port FANcY switch which
is given the following input: high-priority entries covering the
500 prefixes driving the most traffic, best-effort entries for all the
remaining traffic, and memory of 1.25 MB (i.e., 20KB per port).
Accordingly, FANcY uses 500 dedicated counters and a hash-based
tree of depth 3, split 2, and width 190.

When evaluating FANcY’s accuracy, we mainly refer to its true
positive rate (TPR), which is defined as the fraction of the correctly
identified failed entries. Hence, the TPR measures FANcY’s ability
to detect and localize failures. We focus on the TPR because the true
negatives are the complement of the true positives in our case, and
the false positives (i.e., entries detected as failed despite they are
not) do not depend on traffic conditions. Indeed, the false positive
rate (FPR) is always zero for any dedicated counter. Also, for the
hash-based tree, the FPR depends on the probability that multiple
entries are stored in the same leaf node, and one of them experiences
losses, otherwise is zero too. This probability is a function of the
tree’s width and depth (as detailed in Appendix A), and is very low
for reasonably dimensioned trees. In fact, for traffic extracted from
CAIDA traces, the average number of FANcY’s false positives is 1.1
(resp., 0.59) for 100% (resp., 1%) packet loss in the challenging case
of 100 entries failing at the same time.

We measure FANcY’s detection speed as the difference between
the time a gray failure is introduced in an experiment and the time
FANcY localizes it. Note that this is slightly unfair to FANcY as it
may have to wait some time before a packet affected by the failure
is received, especially if the corresponding entry drives little traffic,
or the gray failure has a low packet drop rate per entry.

To show that FANcY works in large ISPs, we set the inter-switch
delay to 10 ms in all the experiments. We also experiment with
lower link delays, for which FANcY’s accuracy slightly increases for
low-drop scenarios, and failure localization speeds up. For example,
for 1 ms links, detection speed doubles for dedicated counters, and
increases by ≈ 15% for hash-based trees.

Experiments in this section are packet-level simulations per-
formed with ns-3 [16]. Simulated networks are composed by nodes
running our software implementation of FANcY– i.e., ≈ 8,000 lines

100.0 75.0 50.0 10.0 1.0 0.1

Loss Rate (%)

500Mbps/250

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

E
n
tr

y
S

iz
e

(t
ot

al
th

ro
u

gh
p

u
t

an
d

fl
ow

s/
s)

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.8

1 1 1 1 1 0.5

1 1 1 1 1 0.2

1 1 1 1 1 0.2

1 1 1 1 0.8 0

1 1 1 1 1 0.1

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 0.8 0

1 1 1 1 0.6 0

Avg TPR

100.0 75.0 50.0 10.0 1.0 0.1

Loss Rate (%)

0.07 0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07 0.17

0.07 0.07 0.07 0.07 0.07 0.25

0.07 0.07 0.07 0.07 0.1 1.5

0.07 0.07 0.07 0.07 0.09 1.4

0.07 0.07 0.07 0.07 0.35 7.2

0.07 0.07 0.07 0.1 0.38 8.6

0.07 0.07 0.07 0.1 0.51 11

0.07 0.08 0.08 0.1 0.43 14

0.1 0.1 0.1 0.21 3.7 17

0.13 0.15 0.16 0.46 1.4 18

0.23 0.22 0.26 0.43 1.6 23

0.19 0.24 0.28 0.52 3.5 30

0.36 0.38 0.41 0.62 4.5 8

0.85 0.65 0.61 1.4 8.2 30

0.85 0.65 0.61 1.4 8.2 30

0.58 0.73 0.87 2.7 7.5 30

1 0.98 0.93 3.7 7.5 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

25

30

Figure 7: Accuracy and detection speed of dedicated counters for

different gray failures and traffic volumes.

of C++ code implementing a custom ns-3 switch that closely mimics
all the data-plane components (parsers, ingress, egress, metadata
fields, etc.) of a P4 switch.

5.1 Benchmarking FANcY

First, we experimentally show that FANcY requires an amount of
traffic per entry which is realistic to assume in ISP networks.

We are especially interested in the minimum amount of traffic
needed for FANcY to detect different types of failures. We, therefore,
evaluate FANcY’s accuracy and speed for synthetically generated
traffic of increasing size: in separate experiments, we generate
traffic with a different number of TCP flows per second and bitrate
per flow. All simulated flows have a duration of ≈1 second in the
absence of losses, and a retransmission timeout of 200 ms. Of course,
failures can significantly increase the duration of flows.

Within the first two seconds of each experiment, we simulate
a failure by instructing a switch to drop a certain percentage of
packets for some or all entries. We then run each experiment for 30
seconds.Whenwe do not detect any failure across all the repetitions
of an experiment, we report a TPR of 0 and a detection time of 30
seconds. We repeat every experiment 10 times, randomly changing
flows’ starting and failure times.

In the following, we first consider gray failures affecting a subset
of entries monitored by FANcY, such as in the cases shown in the
first row of Table 1. We do so separately for the dedicated counters
(§5.1.1) and the hash-based tree (§5.1.2). We then evaluate FANcY’s
performance upon failures affecting all entries (§5.1.3), such as link-
level problems or bugs exemplified in the second row of Table 1.

5.1.1 Dedicated counters. We assess performance of dedicated
counters by simulating single-entry failures only, because those
counters work independently from each other.

We first evaluate the impact of the exchange frequency of coun-
ters. In principle, such a frequency may affect FANcY’s accuracy
because packet losses are not detected when counting sessions
are opened and closed. Our simulations, however, indicate that
FANcY’s accuracy is not significantly impacted unless counters

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

are exchanged extremely often. Accuracy results are indeed very
similar whenever counters’ exchange frequency ranges between 50
and 100 ms. This also means that the counters’ exchange frequency
just affects overhead and detection speed: increasing the exchange
frequency speeds up failure detection but increases the overhead.
Hereafter, we report results for a frequency value of 50 ms.

We now focus on the FANcY’s performance for different traffic
volumes and loss rates, mostly referring to Figure 7.

Accuracy. As displayed in the left part of Figure 7, FANcY’s ded-
icated counters detect almost all gray failures whenever the in-
duced packet drop rate is ≥1%, or the affected entries drive at least
500 Kbps of traffic.

Accuracy decreases for very low drop rates (e.g., 0.1%) of entries
attracting little traffic (≈100 Kbps or less). However, this is not
an intrinsic limitation of FANcY, but mostly an artifact of our
experiments. Indeed, very few packets are generated during these
experiments, and chances are low that any packet is dropped if the
loss rate is ≤0.1%. For example, in 80% of those experiments, no
packet is actually dropped during the 30 seconds of the experiment.
Only in the remaining 20% of the cases at least one packet is dropped.
In those latter cases, FANcY fails to detect simulated failures because
packets are droppedwhile FANcY closes a counting session or opens
a new one. In real deployments, operators can reduce those cases by
decreasing the counters’ exchange frequency, which would trade
detection speed for higher accuracy in very low drop-rate scenarios.

Detection speed. For dedicated counters, we expect a failure to
be detected just after the first post-failure counters’ exchange. The
right part of Figure 7 shows that this is the case as long as the failed
entries drive enough traffic (e.g., at least 500 Kbps). In fact, the
top-left part of the right heatmap shows that the average detection
time is ≈70 ms, which is approximately the counters’ exchange
frequency (50 ms) plus counting sessions’ opening and closing.

Results may look less intuitive in the bottom part of the heatmap,
where the average detection time increases to ≈600-1000 ms for
blackholes, and to several seconds for lower packet-drop rates.
Again, this does not directly depend on FANcY. Instead, packets
affected by a failure tend to appear some time after the failure is
introduced for low-traffic entries and low drop rates. For example, if
an entry drives one packet per second, on average the first packet for
that entry is received FANcY 500 ms after the failure is introduced.

5.1.2 Hash-based tree. Contrary to dedicated counters, the per-
formance of hash-based trees generally depends on the number of
entries failing simultaneously. In fact, the detection of one failed en-
try may be delayed or even overlooked when FANcY zooms in the
counters for another entry. We therefore evaluate both single-entry
and multi-entry failure scenarios.

As the first step, we need to decide the duration of the counting
sessions, which we denote as zooming speed for brevity. To do
so, we measure the minimum prefix size required to get a TPR
of at least 95% when we vary the loss rate and zooming speed.
Results are plotted in Figure 8. All zooming speeds between 10
and 200 ms reach high TPR values, even for low loss rates (up to
0.1%), as long as the prefixes drive a reasonable amount of traffic.
Additionally, requirements on the traffic per entry are very similar
across zooming speeds higher than 50 ms.

100 75 50 10 0.1

Loss Rate (%)

5

10

15

E
n
tr

y
S
iz

e
R

a
n
k

Zooming 10 ms

Zooming 50 ms

Zooming 100 ms

Zooming 200 ms

Figure 8: Minimum entry size for which FANcY has a TPR ≥95% for

different zooming speeds. The y axis ranks entries according to the

traffic they drive: lower ranks correspond to smaller traffic.

We conclude that FANcY’s accuracy is not very sensitive to the
tree’s zooming speed between 50 ms and 200 ms. In the following,
we show the results obtained using 200 ms as zooming speed, as it
matches the typical value of TCP flows’ retransmission timeout. We
note that operators can fine-tune FANcY’s zooming speed according
to their specific requirements, as faster zooming speeds tend to
decrease detection time but also increase overhead.

We now focus on FANcY’s performance, comparing failures
affecting only one entry with those impacting 100 entries at the
same time. We refer to Figure 9.

Accuracy. For single-entry failures, FANcY always identifies the
failed entry as long as the packet loss rate is higher than 10%. For
lower loss rates, FANcY’s accuracy worsens for low-traffic entries.
This is a direct consequence of our design: FANcY fully detects a
failure after observing packet loss in three consecutive counting
sessions, which becomes unlikely if it receives few failure-affected
packets. Indeed, in 97.5% of the experiments where FANcY fails to
detect simulated failures, at no time are packets dropped during
three consecutive counting sessions. We expect entries with those
characteristics to collectively account for a limited percentage of
real ISPs’ traffic (see also §5.2), which makes this limitation not
critical in real deployments.

For multi-entry failures, TPR values are consistent with those
for single-entry failures, as evident when comparing the left part
of Figure 9b with the left part of Figure 9a. TPR decreases only for
very low-traffic entries (e.g., 4-8 Kbps). For 80% of the runs in which
FANcY fails to detect failures, no packets are dropped during three
consecutive counting sessions – with packets lost while FANcY
zooms in another entry in the remaining 20% of the experiments.
Again, we expect entries attracting so little traffic to be not critical
for ISPs. Those results thus suggest that FANcY’s trees should be
able to cover the practically relevant entries in ISPs’ switches, even
for failures simultaneously affecting a hundred entries.

Detection speed. FANcY is fast to detect failures of single entries
with a reasonable amount of traffic and high loss rates: as shown
by the right part of Figure 9a, single-entry failures are typically
detected in 680ms, which roughly matches the lower bound of three
times the selected zooming speed (i.e., 200 ms). FANcY detection
slows down lower-traffic entries and low loss rates: for example,
it changes from sub-second to a few seconds for single entries
attracting ≤50 Kbps of traffic.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

100.0
75.0

50.0
10.0 1.0 0.1

Loss Rate (%)

500Mbps/250

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

E
n
tr

y
S

iz
e

(t
ot

al
th

ro
u

gh
p

u
t

an
d

fl
ow

s/
s)

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.2

1 1 1 1 1 0.1

1 1 1 1 1 0.1

1 1 1 1 1 0.1

1 1 1 1 0.4 0

1 1 1 1 0.2 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 0.9 0 0

1 1 1 0.2 0 0

1 1 1 0.2 0 0

1 1 1 0.1 0 0

1 1 1 0 0 0

Avg TPR

100.0
75.0

50.0
10.0 1.0 0.1

Loss Rate (%)

0.68 0.68 0.68 0.68 0.68 0.68

0.68 0.68 0.68 0.68 0.68 0.68

0.68 0.68 0.68 0.68 0.68 0.75

0.68 0.68 0.68 0.68 0.68 4.8

0.68 0.68 0.68 0.68 0.68 5

0.68 0.68 0.68 0.68 1.4 14

0.68 0.68 0.68 0.68 2.3 1.9

0.68 0.68 0.68 0.68 2.4 2.8

0.68 0.68 0.68 0.73 7.3 3.8

0.68 0.68 0.68 0.9 17 30

0.68 0.68 0.73 1.4 14 30

1 0.97 1.1 3.3 30 30

0.68 0.87 0.94 7.4 30 30

1.4 1.3 1.3 8.5 30 30

2.4 2.2 2.5 15 30 30

2.4 2.2 2.5 15 30 30

5.5 3.8 5.4 15 30 30

7.1 5.4 7.6 30 30 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

25

30

(a) Single-entry failures

100.0 75.0 50.0 10.0 1.0 0.1

Loss Rate (%)

200Mbps/200

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.45

1 1 1 1 1 0.46

1 1 1 1 0.98 0.02

1 1 1 1 0.73 0.02

1 1 1 1 0.4 0.01

1 1 1 1 0.25 0

1 1 1 1 0.08 0

1 1 1 1 0.03 0

1 1 1 0.89 0.02 0

1 1 1 0.46 0.01 0

1 1 1 0.32 0 0

1 1 0.97 0.05 0 0

1 1 0.97 0.05 0 0

0.84 1 0.62 0.03 0 0

0.8 0.81 0.37 0.01 0 0

Avg TPR

100.0 75.0 50.0 10.0 1.0 0.1

Loss Rate (%)

5.3 5.7 5.7 5.7 5.7 5.6

5.2 5.7 5.7 5.7 5.7 5.7

5.2 5.7 5.6 5.6 5.7 6.8

5.3 5.7 5.7 5.6 5.7 15

5.3 5.7 5.6 5.6 5.7 15

5.3 5.7 5.7 5.7 14 15

5.3 5.7 5.7 5.7 15 17

5.2 5.7 5.7 5.7 15 22

5.2 5.7 5.7 5.8 15 19

5.3 5.7 5.7 7.2 16 30

5.2 5.8 5.8 13 13 30

5.5 5.8 6 15 19 30

5.9 6 6.5 15 18 30

6.4 6.3 7.2 14 17 30

11 10 15 13 12 30

11 10 15 14 12 30

17 15 16 15 30 30

18 17 15 14 20 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

10

15

20

25

30

(b) 100-entry failures

Figure 9: Accuracy and detection speed of FANcY’s hash-based tree for different gray failures and traffic volumes.

Increasing the number of failed entries has a more significant
impact than the entry size. For 100-entry failures, the average de-
tection time increases from 600 ms to about 5.3-5.7 seconds for
high-loss high-traffic entries. This increase is motivated by the fact
that FANcY zooms in a limited number of counters in each count-
ing session – e.g., one root-level counter per session. This choice
enables FANcY to scale, but intrinsically degrades detection speed
for many-entry failures, which we believe are relatively uncom-
mon. We also stress that for all the scenarios where FANcY has
high accuracy, the detection speed remains around 5-10 seconds,
which is significantly much faster than the days or weeks currently
needed by most operators.

5.1.3 Uniform failures. We finally simulate failures affecting
all entries simultaneously, such as random packet losses over a
link, or bugs affecting all IP prefixes in Table 1. To be realistic, we
simulate a network with 100 Gbps links, and assign traffic to entries
mimicking a Zipf distribution. We experiment with packet loss rates
per entry between 100% and 0.1%.

In all our experiments, FANcY detects the introduced failures
and correctly identifies them as uniform random drops. Its average
detection time matches one zooming interval (200 ms). This is con-
sistent with the procedure used in FANcY to detect uniform failures,
which is based on checking if the majority of root-level counters in
the hash-based tree have mismatching values (as detailed in §4).

5.2 FANcY on real traffic traces

We now evaluate FANcY on the CAIDA traces detailed in Appen-
dix C. The goal is to assess the traffic coverage provided by the
whole system, combining the dedicated counters and hash-based
tree, when traffic per entry follows a realistic distribution.

We stress that CAIDA traces constitute a challenging test for
FANcY that we do not expect to be matched in real ISPs, for two
reasons. First, the overall traffic rate (4-6 Gbps) in CAIDA traces
is two orders of magnitude lower than typical rates in ISPs’ links.

Second, we assume that FANcY switches hold one forwarding en-
try for each /24 prefix observed in the trace (on average ≈250K),
because IP addresses in the traces are anonymized at the /24 prefix
granularity [14]. However, this assumption artificially inflates the
number of entries with little traffic, which are exactly the ones more
challenging for FANcY (see §5.1). As a reference, ≈ 60% (versus the
100% in our experiments) of the prefixes currently advertised in the
Internet are /24s, according to public BGP data [15].

We rely on CAIDA traces because we are not aware of better
publicly available ISP traffic traces. We however expect that in cur-
rent ISPs and even more in future ones, FANcY’s performance be
better than the already good results it achieves in the below ex-
periments because FANcY’s accuracy and speed generally improve
with higher traffic per entry – see also §5.1.

Methodology. For eachCAIDA trace, we assign a dedicated counter
to each of the 500 prefixes with the most bytes during the entire
trace (1h), mimicking an allocation based on historical data. Then,
we randomly select a 30-second slice from each trace. Note that the
prefixes carrying more traffic during each slice do not generally
coincide with those covered by dedicated counters.

We then implement a traffic generator that closely reproduces
any input slice. In the absence of failures, the generator re-injects
all the packets of each flow exactly when they appear in the slice,
preserving the bit rate, packet rate, and RTT of flows. The generator
relies on ns-3’s TCP implementation, enabling us to run closed-loop
experiments, with TCP sources reacting to packet losses.

We use each slice to perform experiments simulating the failure
of the top 10,000 prefixes (which carry ≥ 95% amount of the total
traffic in the entire trace), one by one, at a random time. For each
prefix and loss rate, we repeat the experiment 3 times, with the time
of the failure changing in each repetition. As for the simulations
in §5.1, there is no guarantee that packets for the failed entries are
actually dropped within the duration of the experiment, especially
for low drop rates.

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Loss TPR TPR Prefixes Detection
Rate Bytes Total Dedicated Hash-Tree time

100% 91.3% 84.5% 100% 83.6% 2.03s
75% 96.0% 90.9% 100% 90.3% 2.59s
50% 98.7% 93.1% 100% 92.6% 2.65s
10% 96.5% 72.8% 100% 71% 4.96s
1% 77.5% 19.5% 98.9% 14.7% 8.91s
0.1% 56.6% 5% 86.7% 0.1% 6.29s

Table 3: Average accuracy and detection speed of FANcY over four

CAIDA traces (see Appendix C).

FANcY’s performance. As shown in Table 3, FANcY detects be-
tween 91.3% and 98.7% of affected bytes in 2-5 seconds when the
loss rate is ≥10%. For the same failure scenarios, the TPR in terms
of detected entries is 72.8%-93.1%, a bit lower than the TPR in terms
of bytes: this happens because traffic per prefix is very skewed in
CAIDA traces.

For loss rates ≤1%, FANcY’s accuracy is significantly impacted
(5%-19.5%), mainly because the hash-based tree’s TPR decreases
sharply, in line with the results presented in §5.1. The main reason
for those low TPR rates is the lack of packet drops during three
consecutive counting sessions, which directly prevents FANcY’s
failure detection in ≈80% (resp., >99.8%) of the experiments with
a loss rate of 1% (resp., 0.1%). Those results further stress the im-
portance of the hash-based tree in our design: FANcY covers only
56.6% of the bytes affected by failures when the tree’s TPR is close
to zero versus ≈ 99% when the tree’s TPR is high.

It may seem surprising that FANcY does not perform at best
when traffic is blackholed (100% loss rate). This is because FANcY
measures packet loss on the observed traffic, and a hard failure im-
mediately slows down all the TCP flows, reducing all affected traffic
to just retransmissions. Namely, for each flow, FANcY receives the
first retransmission after the expiration of the TCP retransmission
timeout (typically 200 ms), and further retransmissions at expo-
nentially increasing times. In other words, TCP congestion control
makes it more likely for FANcY not to receive packets for the failed
entries in three consecutive counting sessions, thus reducing the
tree’s TPR. In contrast, FANcY performs very well when the loss
rate is around 50%, where TCP reduces the flow rate much less
significantly and less abruptly.

Comparison to baselines.We compare FANcY’s results with the
simpler designs outlined in §2.4: a single counter per link, and one
dedicated counter for each prefix.

Both designs achieve a slightly higher accuracy than FANcY:
their TPR for prefixes is ≈97-99.6% for a loss rate ≥10%, ≈84% for a
loss rate of 1%, and≈35% for a loss rate of 0.1%. Their accuracy is not
100% because switches may not receive traffic for the failed entries
before our experiments terminate, and may not detect packet losses
when exchanging counters.

However, a single counter cannot localize any failure; the number
of false positives in each experiment is the total number of prefixes
minus the failed ones – i.e.,≈250K. In contrast, the solutionwith one
dedicated counter per entry has zero false positives, but it requires
320MB (including support for the counting protocol) versus the 1.25
MB consumed by FANcY in total. Note that the memory required

by one dedicated counter per entry is expected to be ≈4 times in
real ISPs holding the full BGP table (i.e., ≈900K prefixes).

We then consider two additional alternatives compatible with
FANcY’s memory usage. The first alternative is to allocate only
dedicated counters but without exceeding FANcY’s memory budget.
With 1.25 MB, we can allocate a maximum of 1,024 dedicated entries
per port. This approach is accurate and fast for the covered prefixes,
but detects no failure for any of the remaining ≈249K ones, which
carry ≈40% of the traffic in the considered CAIDA traces. As the
second alternative, we consider allocating all the memory to a
counting Bloom filter. The TPR of such a Bloom filter is largely
consistent with the single-counter approach. However, for each
detected single-entry failure, the Bloom filter reports ≈100 false
positives versus the ≈0.03 of FANcY. Once again, we expect that
the number of false positives for the Bloom filter solution be much
higher in real ISPs, where switches typically hold significantly
bigger routing tables.

Takeaways.Our results confirm FANcY’s ability to detect different
types of gray failures, covering the vast majority of the real-world
traffic, while also achieving a much better tradeoff between accu-
racy, speed, and scalability than simple designs.

We expect FANcY to perform significantly better when deployed
in actual ISPs. Indeed, CAIDA traces contain unrealistically low
traffic per entry with respect to current and future ISP settings – a
condition unfavorable to FANcY as already demonstrated in §5.1.

Results in this section are consistent with those for synthetic,
non-bursty traffic, described in §5.1. They also provide consistent
indications on the limits of FANcY: tiny failures of entries driving
little traffic tend to be very hard to detect with hash-based trees. If
operators want to protect specific entries from low loss rates, one
option within FANcY’s design is to specify them as high-priority
entries in the FANcY’s input.

5.3 Overhead analysis

We now show that FANcY’s overhead is very limited on ISP-scale
links. In FANcY, we have two overhead components: control packets
(including counters) and packet tags added by FANcY switches.

We first consider the overhead of control packets. For dedicated
counters, FANcY sends five minimum-size packets (e.g., 64 B Eth-
ernet frames) for each link and each counting session. With 500
dedicated counters exchanged every 50 ms on a 10 ms delay link,
FANcY uses ≈0.014% of a 100 Gbps link’s capacity. For hash-based
trees, FANcY also exchanges five control packets, including the
hash-tree counter that carries 5320 B in the pipelined version of
the zooming algorithm. The resulting traffic overhead is ≈0.00017%
on 100 Gbps links for a zooming speed of 200 ms.

To tag packets, FANcY needs 2 bytes to specify the counter ID
on each packet matched by a dedicated counter. The same amount
of bytes are added to packets counted in the hash-based tree, where
one byte encodes the hash path of the tree’s node, and the other
byte identifies the counter within the node. The tagging overhead
is therefore 0.13% on a 1,500 B packet. Note that tags can also be
encoded in unused header fields, which would lead to zero overhead.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

Dedicated Full FANcY +
Resource Counters FANcY Rerouting switch.p4

SRAM 4.80% 6.65% 8.1% 29.58%
Statefu ALU 16.66% 27.08% 33.33% 14.58%
VLIW Actions 9.4% 14.1% 15.6% 36.72%
TCAM 1.4% 2.1% 2.1% 32.29%
Hash bits 5.8% 11.8% 13.1% 34.74%
Ternary Xbar 1.8% 3.10% 3.10% 43.18%
Exact Xbar 5.1% 10.8% 12.3% 29.36%

Table 4: Hardware resource usage of FANcY compared to the base-

line switch.p4 on a 32-port Intel Tofino switch.

6 TOFINO MADE FANCY

We implement FANcY in ≈3200 lines of P4 code running on an Intel
Tofino switch [18] with 32 ports. Our implementation is detailed in
Appendix B.

Hardware resource usage. Table 4 summarizes the resource us-
age of FANcY, using switch.p4 as a baseline. Overall, FANcY uses
a modest amount of hardware resources, including only 6.65%
of SRAM (8.1% with rerouting). Stateful ALUs are the only re-
source that FANcY uses more than switch.p4: this is because FANcY
performs several stateful operations to support counters and the
counter exchange protocol. For more details about SALUs usage, see
Appendix B.2. Note that SRAM is the only resource that increases
when FANcY is given a higher memory budget and then uses more
dedicated counters or larger trees.

6.1 Case study: fine-grained fast rerouting

As a case study, we build an application on top of FANcY that
reroutes packets as soon as the corresponding counters are flagged
as mismatching by FANcY (see §4.3). Note that simply rerouting
might not be enough to fix some of the problems shown in Table 1.
However, it might be enough for inter-switch gray failures caused
by faulty links. We now detail our experiments with this application.

Setup.We use two servers, a sender and a receiver, and two Wedge
100BF-32X [18] Intel Tofino switches. The servers are equipped
with Intel Xeon E5-2670 v3 2.30GHz CPUs, 256 GB of RAM, and a
Mellanox ConnectX-5 100 Gbps NIC.

We connect each server to the Tofino switch that runs FANcY.
The sender server generates TCP flows for a total of 50 Gbps of
traffic, and 50 Mbps of UDP traffic. For each port, the FANcY switch
maintains 500 dedicated counters, and implements a hash-based tree
of depth 3, split 1, and width 190. Dedicated counters are exchanged
every 200 ms, and the zooming speed for the tree is set to ≈200
ms. We run separate experiments for prefixes mapped to dedicated
counters, and for those covered by the hash-based tree.

We use the second Tofino switch as a link switch connecting two
ports of the FANcY switch. After 2 seconds from the start of each
experiment, we instruct the link switch to drop 1%, 10%, or 100%
of the packets (in different experiments). We also deploy a third
link between the FANcY switch and the link switch, to provide the
former with a backup next-hop.

Experimental results. Figure 10 shows the traffic throughput
as measured in our experiments. In each experiment, the FANcY
switch always detects the failure event less than one second after it

0 1 2 3 4 5
0

25

50

Dedicated entry
Loss 100%

Loss 10%

Loss 1%

0 1 2 3 4 5
0

25

50

Hash-based entry
Loss 100%

Loss 10%

Loss 1%

Time (s)

B
an

d
w

id
th

(G
b

it
s/

se
c)

Figure 10: Case study using our FANcY implementation on a Tofino

switch: FANcY detects gray failures even affecting only 1% of the

packets per entry, and reroutes the traffic only for the affected en-

tries in less than one second.

is introduced, even when the drop rate is only 1%, and the affected
traffic is monitored by the hash-based tree. As expected, the detec-
tion time is proportional to three times the zooming speed (here, 3
× 200 ms) when failures affect entries covered by the hash-based
tree. On the other hand, dedicated counters ensure a predictable de-
tection time which only depends on the counting session duration
(here, 250 ms). Note that we have used a relatively higher counting
session duration than the one used during the evaluation (50 ms)
so that impact of the failure is noticeable in the plot.

7 CONCLUSIONS

We introduced FANcY, a data-plane system designed to detect intra-
domain gray failures in ISPs. FANcY enables switches to synchro-
nize counters in a reliable and scalable way. Its counter-based ar-
chitecture complements pre-existing failure detection approaches,
which are effective in data centers but do not scale to high traffic
volumes and link delays.

Although FANcY focuses on detecting and reporting (but not
directly fixing) failures, its interface enables future applications such
as selective fast rerouting or root cause analyses. As a feasibility
proof, we implemented a prototype of FANcY in a commercial
Tofino switch, and demonstrated how our implementation enables
sub-second fast rerouting around gray failures.

Our evaluation shows that FANcY can detect and localize gray
failures quickly and accurately in ISP settings, except those that
induce few, sporadic packet losses per entry – as expected, since
FANcY is a data-driven system. For the very same reason, we stress
that FANcY performance improves at higher traffic volumes, which
makes its design future-proof.

Ethical issues. This work does not raise any ethical issues.

ACKNOWLEDGEMENTS

We would like to thank our shepherd Henning Schulzrinne and the
anonymous reviewers for their insightful comments. We also thank
Rüdiger Birkner and Romain Jacob for their comments on earlier
versions of the paper.

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES

[1] Cisco Bug: CSCea91692 - PSA has a corrupted cef entry, affecting IP:IP traffic.
https://quickview.cloudapps.cisco.com/quickview/bug/CSCea91692.

[2] Cisco Bug: CSCtc33158 - 7600-ES+40G3CXL drops random sized L2TPv3 packets
with cookies enabled. https://quickview.cloudapps.cisco.com/quickview/bug/
CSCtc33158.

[3] Cisco Bug: CSCti14290 - VPN Aggregate Label dmac corruption in hard-
ware forwarding entry. https://quickview.cloudapps.cisco.com/quickview/bug/
CSCti14290.

[4] Cisco Bug: CSCuv31196 - Random MPLS Packet Drops With IP Multicast Over
L3 Ring on ASR901. https://quickview.cloudapps.cisco.com/quickview/bug/
CSCuv31196.

[5] Intel tofino 3 brief. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-3-brief.html.

[6] Juniper Bug: PR1296089 – Traffic received from core are not sent to locally
attached circuit due to QSN timeout. https://www.juniper.net/documentation/
en_US/junos/information-products/topic-collections/release-notes/18.1/
jd0e17997.html.

[7] Juniper Bug: PR1309613 – Traffic loss may be seen if sending traffic via
the 40G interface. https://www.juniper.net/documentation/en_US/junos/
information-products/topic-collections/release-notes/17.4/jd0e19328.html.

[8] Juniper Bug: PR1313977 – Traffic drop occurs on sending traffic over “et” inter-
faces due to CRC errors. https://www.juniper.net/documentation/en_US/junos/
information-products/topic-collections/release-notes/17.4/jd0e19328.html.

[9] Juniper Bug: PR1398407 – On SRX4600 and SRX5000 line of devices, BGP packets
might be dropped under high CPU usage.. (Open Registration Required). https:
//prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1398407.

[10] Juniper Bug: PR1434567 – IPv6 neighbor solicitation packets getting dropped
on PTX. (Open Registration Required). https://prsearch.juniper.net/InfoCenter/
index?page=prcontent&id=PR1434567.

[11] Juniper Bug: PR1441816 – Egress stream flush failure and traffic blackhole might
occur (Open Registration Required). https://prsearch.juniper.net/InfoCenter/
index?page=prcontent&id=PR1441816.

[12] Juniper Bug: PR1450545 – Traffic loss might occur when there are around
80,000 routes in FIB (Open Registration Required). https://prsearch.juniper.net/
InfoCenter/index?page=prcontent&id=PR1450545.

[13] Juniper Bug: PR1459698 – Silent dropping of traffic upon interface flapping after
DRD auto-recovery (Open Registration Required). https://prsearch.juniper.net/
InfoCenter/index?page=prcontent&id=PR1459698.

[14] Summary of anonymization best practice techniques. hhttps://www.caida.org/
projects/predict/anonymization/.

[15] Visibility of ipv4 and ipv6 prefix lengths in 2019. https://labs.ripe.net/Members/
stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6.

[16] Network Simulator 3., 2018. https://www.nsnam.org/.
[17] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu,

Jitu Padhye, Boon Thau Loo, and Geoff Outhred. 007: Democratically finding
the cause of packet drops. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), pages 419–435, 2018.

[18] Barefoot. Barefoot Tofino, World’s fastest P4-programmable Ethernet switch
ASICs. https://barefootnetworks.com/products/brief-tofino/.

[19] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Efficient mea-
surement on programmable switches using probabilistic recirculation. In 2018
IEEE 26th International Conference on Network Protocols, ICNP 2018, Cambridge,
UK, September 25-27, 2018, pages 313–323. IEEE Computer Society, 2018.

[20] Andrei Broder and Michael Mitzenmacher. Network Applications of Bloom
Filters: A Survey. In Internet Mathematics, volume 1, pages 636–646, 2002.

[21] CAIDA. The CAIDA UCSD Anonymized 2013/2014/2015/2016/2018 Internet
Traces. http://www.caida.org/data/passive/passive_2013_dataset.xml.

[22] Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational), October 2004. http://www.ietf.org/rfc/rfc3954.txt.

[23] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, David
a Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and
Varugis Kurien. Pingmesh: A Large-Scale System for Data Center Network
Latency Measurement and Analysis. 45:139–152, 2015.

[24] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. I Know What Your Packet Did Last Hop: Using Packet Histories
to Troubleshoot Networks. 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2014), pages 71–85, 2014.

[25] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,
David Walker, and Rob Harrison. Elastic switch programming with p4all. In
Proceedings of the 19th ACM Workshop on Hot Topics in Networks, HotNets ’20,
page 168–174, New York, NY, USA, 2020. Association for Computing Machinery.

[26] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. Blink: Fast Connectivity Recovery
Entirely in the Data Plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), 2019.

[27] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. Qpipe: Quantiles
sketch fully in the data plane. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, pages 285–291, 2019.

[28] D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880, 2010.
[29] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-

based change detection: Methods, evaluation, and applications. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet measurement, pages 234–247, 2003.

[30] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data
streaming algorithms for estimating entropy of network traffic. ACMSIGMETRICS
Performance Evaluation Review, 34(1):145–156, 2006.

[31] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast detection
of lost packets in data center networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies, pages 481–495.
ACM, 2016.

[32] Stephane Litkowski, Ahmed Bashandy, Clarence Filsfils, Pierre Francois, Bruno
Decraene, and Daniel Voyer. Topology Independent Fast Reroute using Seg-
ment Routing. Internet-Draft draft-ietf-rtgwg-segment-routing-ti-lfa-08, Internet
Engineering Task Force, January 2022. Work in Progress.

[33] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
101–114, 2016.

[34] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Scream:
Sketch resource allocation for software-defined measurement. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies,
pages 1–13, 2015.

[35] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas SekaR, and Peter Steenkiste.
Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recom-
mendations, page 176–182. Association for Computing Machinery, New York,
NY, USA, 2021.

[36] Peter Phaal, Sonia Panchen, and Neil McKee. InMon Corporation’s sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks. RFC 3176
(Informational), September 2001. http://www.ietf.org/rfc/rfc3176.txt.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. Passive Realtime
Datacenter Fault Detection and Localization. Nsdi, pages 25–30, 2017.

[38] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang. Lever-
aging zipf’s law for traffic offloading. ACM SIGCOMM Computer Communication
Review, 42(1):16–22, 2012.

[39] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya
Akella. D2R: policy-compliant fast reroute. In SOSR, pages 148–161. ACM, 2021.

[40] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. Netbouncer: Active device and link failure
localization in data center networks. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages 599–614, 2019.

[41] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. Stroboscope: Declarative network monitoring on a budget. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
Renton, WA, 2018. USENIX Association.

[42] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement
with opensketch. In 10th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13), pages 29–42, 2013.

[43] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and
Ying Zhang. ARROW: Restoration-Aware Traffic Engineering. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 560–579, 2021.

[44] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. Flow event telemetry on
programmable data plane. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 76–89, 2020.

[45] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
Level Telemetry in Large Datacenter Networks. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15, page
479–491, New York, NY, USA, 2015. Association for Computing Machinery.

[46] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind
Krishnamurthy, and Thomas Anderson. Understanding and mitigating packet
corruption in data center networks. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’17, page 362–375,
New York, NY, USA, 2017. Association for Computing Machinery.

https://quickview.cloudapps.cisco.com/quickview/bug/CSCea91692
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtc33158
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtc33158
https://quickview.cloudapps.cisco.com/quickview/bug/CSCti14290
https://quickview.cloudapps.cisco.com/quickview/bug/CSCti14290
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuv31196
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuv31196
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1398407
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1398407
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1434567
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1434567
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1441816
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1441816
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1450545
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1450545
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1459698
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1459698
hhttps://www.caida.org/projects/predict/anonymization/
hhttps://www.caida.org/projects/predict/anonymization/
https://labs.ripe.net/Members/stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6
https://labs.ripe.net/Members/stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6
https://www.nsnam.org/
https://barefootnetworks.com/products/brief-tofino/
http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.ietf.org/rfc/rfc3954.txt
http://www.ietf.org/rfc/rfc3176.txt

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A PROPERTIES OF HASH-BASED TREES

In this section, we provide an analysis on the impact on accuracy
and detection speed for different hash-based tree parameters. Fur-
ther, we provide formulas to compute collision probability and
memory requirements for generic hash-based trees, depending on
their width, depth and split.

A.1 Parameters analysis

Since hash paths identify entries affected by failures, the total num-
ber and length of hash paths influence the number of entries per
counter. Both factors directly depend on the tree’s depth and width,
as the number of hash paths is equal to wd , and their length is
bounded by d . Increasing width and depth therefore increases ac-
curacy, by making it more likely that leaf counters map to a single
entry (see Appendix A.2 for details). Increasing depth and width,
however, comes at the cost of higher memory occupation (see A.3
for details). Additionally, higher depths increase the number of
counting sessions needed slowing down failure detection and mak-
ing the failure harder to detect, thus decreasing accuracy. As such,
width and depth regulate the tradeoff between accuracy on one
side and memory and detection speed on the other. In Appendix D,
we show this effect with a simulation with real traces.

In general, the detection speed for entries mapped to the tree
depends on the performance of the zooming algorithm. As described
in Section 4.2, the algorithm explores up to kd−1 paths ind counting
sessions. Thus, the detection speed also depends on the split value
k : higher split values speed up the detection of multi-entry failures
(by a factor proportional to k), but it also requires more memory
(i.e., to store a bigger tree).

The duration of counting sessions, which we also denote as
zooming speed, affects detection speed, too: it is quite intuitive that
shorter counting sessions tend to make detection faster. However,
decreasing the zooming speed can also impact FANcY’s accuracy,
as it reduces the probability of observing packet losses during d
consecutive counting sessions. In §5, figure 8 shows that a very
small zooming speed might negatively affect detection accuracy
(more traffic is needed).

A.2 Collision probability

Hash-based tree counters provide a scalable way of monitoring
many traffic entries for reasonable amounts of memory. However,
it comes at the price of possible collisions, which manifest as false
positives. Therefore, faulty entries monitored by the hash-based
tree can share hash path with other entries.

To know the probability of collisions in our system we can use
Bloom filters with a single hash function theory [20]. The number
of possible hash paths would be the size of our Bloom filter. We
compute the number of hash paths (m) as:m = wd . Since we only
care about collisions on cells with faulty entries, the probability of
a collision depends on the number of cells and faulty entries, as is
computed below, where n is the number of faulty entries at a given
time.

p = (1 − e−1/(
m
n)) (1)

The expected number of collisions (or false positives) depends on
the number of different traffic entries (x) that cross the hash-based
tree, and it can be computed as:

E(x) = p · x (2)

A.3 Tree nodes and memory

The amount of memory required for the hash-based tree depends on
its width, split, depth, and whether it runs in pipelined mode. The
number of tree nodes we need to save in memory can be computed
as:

(1) With pipelining:

nodes(k,d) =

{
kd−1
k−1 if k > 1
d otherwise

(3)

(2) Without pipelining: nodes(k,d) = kd−1.
(3) Without pipelining and split 1: nodes(1,d) = 1.
Finally, the total amount of memory needed for a hash-based tree

(without counting state machine resources) with 32-bit counters,
node width w , split k , and depth d is computed as: 2 · 32 · w ·

nodes(k,d).

B FANCY IMPLEMENTATION IN AN INTEL

TOFINO SWITCH

We now provide more details on our FANcY implementation and
consumed resources.

B.1 Implementation

We first describe our implementation of the state machines and
then we focus on how we support for hash-based trees.

State machines. While implementing each state is relatively sim-
ple (i.e., storing a state ID and possible counters in registers), sup-
porting state transitions is not. In particular, we did not find a way
to read a state, do relatively complex operations and then update the
state in a single step. We therefore implement each state transition
in two steps.

The first step only triggers the state transition and is based on a
match-action table, called next_state table. This table defines all the
possible state transitions. When a FANcY switch receives a packet,
it reads the current state from a register and matches the packet
against the next_state table, if a transition needs to be made, The
switch logic will (i) write in the state_lock register, in order to avoid
additional transitions while the state is being updated, (ii) store all
the information needed to update the state in the current packet’s
metadata, and (iii) force the packet to cross the pipeline again to
perform the state update.3

The second step actually performs the transition. The recircu-
lated packet updates the stored state ID, resets the state coun-
ters (e.g., timers), and releases the state_lock. Based on prior and
next states information in its metadata, the packet also triggers a

3For technical reason, we resubmit packets in ingress FSMs and clone packets in egress
FSMs (making sure we remove unneeded clones)

FAst In-Network GraY Failure Detection for ISPs SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

transition-specific action: either drops the packet, performs a com-
putation, or transforms it into a control message (ACK, STOP, etc.) to
send out. A final note concerns time-based transitions (e.g., timers).
Since time-based events are not supported by current switches, we
approximate them using traffic and packet counts. In the absence
of traffic, the internal traffic generator can be used.

Hash-based tree and zooming algorithm. We implement the
hash-based tree (depth 3 and split 1) by using four register arrays.
One register array, which we call node register, stores actual nodes
of all the trees kept by the switch (i.e., one per port). The other three
register arrays store metadata to support the zooming algorithm: for
each tree, the zooming stage register array keeps information on the
depth we are currently zooming in, the max0 register indicates the
counter at layer zerowe are zooming in, and themax1 register stores
the same information but for the counter at layer one. The procedure
to update counters in any tree T of width w is implemented as
follows. Each incoming packet is hashed according to one hash
function per tree’s level. We then decide if the node register has to
be updated by checking whether the zooming stage register forT is
0 (i.e., we always update counters when not zooming), or comparing
the result of the packet’sH0 withmax0 (if the zooming stage register
forT is 1) and packet’s H0,H1 with max0 and max1 (if the zooming
stage register for T is 2). If the node register has to be updated, we
increase the counter at the address (Hi mod w + o), where i is the
value stored in the zooming stage register for T and o is the port
offset that identifies T within the node register.

In addition to increasing packet counters, we also support two
other operations. First, the downstream switch sends to the up-
stream allT ’s counters in the node register at the end of each count-
ing session. Since register register arrays can be accessed only once
per packet, we recirculate packetsw times to read all such counters
from the node register.

Second, the upstream switch compares local counters in T with
those reported from downstream switches. Again, since only one
register can be read for each packet, we recirculate packetsw times
to compare the counters one by one. If the zooming stage register
forT is 2, we simply report (to our reroute app or externally) all the
counters with mismatching values. Otherwise, if the zooming stage
register for T is 0 or 1, we need to compute the counter in T ’s node
register with the biggest difference of values between upstream and
downstream. We do so by storing the current maximum difference
and counter index in a custom header of the packet that we recir-
culate. After all the counters in T ’s node register are compared, we
finally copy the counter index in the recirculated packet’s metadata
to either max0 or max1 (depending on the current value in the
zooming stage register) and increase the zooming stage register by
one modulo three.

B.2 Hardware memory consumption

FANcY scales and fits very well in current hardware switches. Rhis
section details the resources needed for each component in a 32-
port Tofino switch. Note that the software and hardware imple-
mentations use the same data structures, however the hardware

implementation runs non-pipelined hash-based trees, which heav-
ily reduced the memory consumption. For more details on memory
utilization for any type of hash-based tree see Sec A.3.

Statemachines. Each state machine uses three registers (at ingress
and egress): State counter (or timer), current state, and state lock,
32, 8, and 8 bits, respectively. We need one array cell in each of
those registers for each sub-state machine used by either dedicated
counters or a hash-tree. For each state machine pair, FANcY needs
(32 + 8 + 8) · 2 = 96 bits. If we want to have 512 state machines per
port in a 32-port switch, we need 96 · 512 · 32 = 192 KB.

Dedicated counters. Each entry covered by dedicated counters
requires one pair of 32-bit registers to count packets in each di-
rection, 32 · 2 = 64 bits per entry per switch. Our implementation
of FANcY includes 512 dedicated counters per port. The memory
consumption of those counters in a 32-port switch is therefore
64 · 512 · 32 = 128 KB.

Hash-based tree and zooming algorithm. Supporting any hash-
based tree requires five registers in total. First, we need the two
32-bit registers where we will store tree’s nodes. Then, at the egress
pipe, we have three registers used by the zooming algorithm; zoom-
ing stage, max0 and max1, 8, 16, and 16 bits, respectively. Since
we implement a hash-tree zooming algorithm without split and
pipelining, we can reuse the same memory cells for each tree layer,
considerably reducing the memory needed. The hash-based trees
in our implementation have width w = 190. Each of them there-
fore needs 32 · 2 · 190 = 12160 bits per port for the counters, and
8 + 16 + 16 = 40 bits to keep zooming state. In total, for a 32-port
switch we need (12160 + 40) · 32 = 47.6 KB.

Rerouting. Supporting the rerouting logic also needs some switch
memory. We use 3 registers (all at the ingress) for that, one for
dedicated counter entries and one for failures detected with the
hash-based tree. For dedicated counter entries, we use a 1-bit wide
array, thus we need 1 bit per entry and port. For 512 entries and
32 ports, we need 2 KB. For failures detected via the hash-based
tree, we additionally need to use a Bloom filter implemented as two
1-bit registers of 100K cells. The memory used for the rerouting is
26.4 KB.

Total memory. For a 32 port switch, with 512 dedicated counter
entries, one hash-based tree of width 190 per port and depth 3 is
367.6 KB (394 KB with rerouting).

C CAIDA TRACES USED IN FANCY

EVALUATION

Table 5 lists the real-world traces in our evaluation, detailing some
of their characteristics.

D SENSITIVITY ANALYSIS OF FANCY’S

PARAMETERS

In this section, we perform experiments to show the impact of
changing the values of tree’s parameters. For that, we compare a
set of system designs using Internet traces.

Methodology.We compare different FANcY hash-based tree con-
figurations by running it using the trace with most prefixes (≈ 560K ,

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever

Trace ID Link Date Bit Rate Packet rate Flow rate Trace Size Duration

1 caida-equinix-chicago.dirB 19-06-2014 6.25 Gbps 759.1 Kpps 28.3 Kfps 163 GB 3719 s

2 caida-equinix-nyc.dirA 19-04-2018 3.86 Gbps 557 Kpps 26.4 Kfps 125 GB 3719 s

3 caida-equinix-nyc.dirB 16-08-2018 5.79 Gbps 2.03 Mpps 104.5 Kfps 465 GB 3719 s

4 caida-equinix-nyc.dirB 17-01-2019 4.72 Gbps 1.56 Mpps 90.7 Kfps 345 GB 3720 s

Total 1.1 TB 4.1 h

Table 5: List of CAIDA traces [21] that we use to evaluate FANcY.

0.92 0.95 0.975 1

True Positive Rate

1.5

2.0

2.5

M
ed

ia
n

D
et

ec
ti

on

0.0 2.5 4.5 6.5

False Positives

0.980

0.985

0.990

0.995

1.000

D
et

ec
te

d
B

y
te

s

3/3/205 (1MB)

3/2/190 (500KB)

3/3/100 (500KB)

4/3/32 (500KB)

3/2/100 (250KB)

4/2/44 (250KB)

3/1/110 (125KB)

4/2/28 (125KB)

(a) Speed vs TPR & Bytes vs FP for 10 failures

0.6 0.7 0.8 0.9 1.0

True Positive Rate

3

4

5

M
ed

ia
n

D
et

ec
ti

on
1 10 20 30

False Positives

0.994

0.996

0.998

D
et

ec
te

d
B

y
te

s

3/3/205 (1MB)

3/2/190 (500KB)

3/3/100 (500KB)

4/3/32 (500KB)

3/2/100 (250KB)

4/2/44 (250KB)

3/1/110 (125KB)

4/2/28 (125KB)

(b) Speed vs TPR & Bytes vs FP for 50 failures

Figure 11: Left: comparison of eight different hash-based tree performances when 10 failures happen at the same time. Right: same with a

burst of 50 failures. Hash-based trees can detect the vast majority of affected prefixes (specially the ones carrying most of the traffic) at scale.

Memory usage can be considerably reduced at the price of detection speed and false positives. The size of the failure burst has a negative

impact on all the metrics. Trees with a bigger split perform better in such cases.

ID 4 C) such that we can see how does that impact the number
of false positives. During the simulation, we fail (100% loss) either
10 or 50 prefixes at the same time. This process is averaged over
10 runs with different randomly selected prefixes. Note that we
only fail prefixes that can be detected at the zooming speed and
depth used by the system under test(≈ 120k prefixes). To make
the comparison insightful, we selected designs with different mem-
ory sizes (from 125 KB to 1 MB). We use the pipelined version of
FANcY, thus, we need to reserve memory space for all nodes in the
tree. Systems are defined as follows: depth/split/width(Memory),
as you can see in Figure 11 legend. For this experiment, we do not
use dedicated counter entries, thus we allocate 100% of the memory
to the hash-based tree.

Split increases TPR and reduces detection speed.Designs with
big split have the best true positive rates and lowest median detec-
tion speeds for failures affecting many entries. Figure 11b, left side,
shows that the fastest and more accurate designs have a split of 3.
The gray design, with a split of 1, has the worst detection speed
and TPR.

Depth increases detection time with a slight decrese in TPR.

Designs with a depth of 4 have the biggest detection times, which
is expected since they require more zooming stages. We can also

see, that although it has an impact, increasing the depth does not
drastically decrease the TPR.

Memory can be traded by speedwithout sacrificing toomuch

TPR.We can find relatively cheap designs like 4/2/44, which have
a decent good TPR, and small FP being one of the cheapest designs.
However, it has some of the worst median detection times.

	Abstract
	1 Introduction
	2 Gray failures in ISP Networks
	2.1 What do ISP network operators say?
	2.2 What is the impact of gray failures in ISPs?
	2.3 Why is prior work not applicable?
	2.4 What about simple designs?

	3 FANcY overview
	4 FANcY internals
	4.1 Counting protocol
	4.2 Hash-based trees
	4.3 Practical considerations

	5 Evaluation
	5.1 Benchmarking FANcY
	5.2 FANcY on real traffic traces
	5.3 Overhead analysis

	6 Tofino made FANcY
	6.1 Case study: fine-grained fast rerouting

	7 Conclusions
	References
	A Properties of hash-based trees
	A.1 Parameters analysis
	A.2 Collision probability
	A.3 Tree nodes and memory

	B FANcY implementation in an Intel Tofino switch
	B.1 Implementation
	B.2 Hardware memory consumption

	C CAIDA traces used in FANcY evaluation
	D Sensitivity analysis of FANcY's parameters

