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A B S T R A C T   

Non-exhaust emissions (NEEs) from brake and tyre wear cause detrimental health effects, yet their relationship 
with mobility has not been examined rigorously. We constructed an agent-based traffic simulator to illustrate the 
coupled problems of emissions, behaviour, and the estimated exposure to PM10 for groups of drivers and subway 
commuters in Seoul CBD. Having calibrated the parameters, the results regarding the air quality revealed that 
roughly 25–30% of the roadside PM10 was significantly higher than the background PM10. Additionally, 
compared to intra-urban cars, pedestrians who commuted for longer periods of time and were exposed to more 
ambient particles suffered significant health losses; however, drivers only became aware of the health risk when 
PM10 levels were consistently high for a few days. Compared to the business-as-usual scenario of vehicle entry, a 
90% vehicle restriction was able to reduce PM10 by 18–24% and cut the percentage of resident drivers who were 
at risk. However, it was not effective for subway commuters. Using an agent-based traffic simulator in a health 
context can provide insights into how exposure and health effects can vary depending on the time of exposure 
and the form of transportation.   

1. Introduction 

Over the past decades, many urban residents have encountered 
particulate matter (PM) exposure levels that exceed the limit values 
established to protect human health. Particulate matter, also referred to 
as PM10 or PM2.5, contributed to 4.2 million premature deaths world-
wide in 2016 (Wang et al., 2016). Epidemiological studies have found an 
association between PM and short-term health effects, such as eye, nose, 
throat, and lung irritation (Laumbach, Meng, & Kipen, 2015; Moreno- 
Jiménez, Cañada-Torrecilla, Vidal-Domínguez, Palacios-García, & Mar-
tínez-Suárez, 2016; Wang et al., 2016), as well as the long-term health 
effects that allow the toxic components to enter the body, causing 
oxidative stress that shrinks airways and eventually reduces lung ca-
pacity (Khajeh-Hosseini-Dalasm & Longest, 2015). 

In 2013, the World Health Organization (WHO) stated that non- 
exhaust emissions (NEEs) could have caused adverse health effects 
due to friction between tyres, the road surface, and pavement 

encrustations in the form of metallic, rubber, carbon black, and other 
organic substances (Amato, 2018; Kovochich et al., 2021; WHO, R, 
2013). This implies that NEEs sources may be to held responsible for the 
exposure associated with high PM levels in congested urban areas. 

To this end, the European Environmental Agency (EEA) is the only 
institute that assessed traffic-based NEEs based on their research 
(EMEP/EEA, 2019). The study found that four factors—road wear, brake 
wear, surface wear, and resuspension—are used to determine NEEs. The 
emission levels vary depending on the number of vehicles within the 
unit distance (g/km), their mileage, emission factor, and speed charac-
teristics. While the model is theoretically suitable for scaling the impact 
of pollution based on the adjustment of vehicle numbers and their 
journey distance, it lacks the significance of the spatial dynamics of 
traffic over time. Even though the model provides a thorough overview 
of the potential pollution that vehicles could emit, it is impossible to 
understand how the different behaviours of vehicles are likely to 
disperse more particulates into the local atmosphere which would have 
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the greatest impact on human health. Since our mobility ecosystem in 
urban areas has become increasingly complex, there is a need to build a 
decentralised tool that can offer better insights utilising autonomous 
agents to calculate how their local interactions could help a larger goal 
of pollution mitigation. The potential severity of NEEs for human health 
has been highlighted by academics and policy professionals in North 
American and European nations, but laws for NEEs have not yet been 
developed and calling for more evidence (Air Quality Expert Group, 
2019; EMEP/EEA, 2019). 

To link the challenges between NEE and the mobility of vehicles and 
humans, agent-based modelling (ABM) can help connect the problems 
between NEE and the mobility of vehicles and people at an individual 
level (Tracy, Cerdá, & Keyes, 2018). ABM is not only specialised in 
simulating the movement of heterogeneous vehicles and people, but it 
can also manage how vehicles stop and go, how traffic signals work, and 
how exposure is measured based on where an agent is located and how 
much local pollution there is in the area. A promising example is 
(Gurram, Stuart, & Pinjari, 2019)’s integrated model, which integrated 
NOx emission, dispersion, activity patterns of population, vehicle 
movement, and the exposure to the ambient NOx based on the time spent 
in each location. This had not been attempted previously. Other agent- 
based traffic models have also simulated vehicle emissions caused by 
urban car traffic using a general programming language (Hofer, Jäger, & 
Füllsack, 2018) such as SUMO (Anjum et al., 2019; Krajzewicz, Behrisch, 
Wagner, Luz, & Krumnow, 2015) or MATSim (Hülsmann, Gerike, & 
Ketzel, 2014). 

Given the limited resources available to mimic the agents’ attributes 
and their behavioural patterns, the objective of this paper is to develop 
an in silico agent-based traffic model that jointly examines the move-
ment of vehicles and individuals, the generation of NEE for vehicles, and 
estimates the exposure and health effects of individuals. This paper di-
vides the study intentions into three key goals in order to fulfil this goal:  

• To characterise the roadside air quality generated by vehicles  
• To validate the parameters based on Seoul’s Air Quality data from 

the past 10 years  
• To compare the health effects between walking commuters and 

vehicle commuters  
• To apply car-reducing scenarios and identify the characteristics of 

any improvements 

We create TRAPSim, an agent-based model with fine geographical 
and temporal scales. The reason for developing a finer-scale simulation 
is to examine the mobility dynamics of the traffic, the generation and 
dispersion of non-exhaust PM10 emissions according to the vehicle’s 
behaviours, and the acute health effects arising from the regular 
commute patterns. 

2. Related works 

2.1. Non-exhaust emissions and air quality 

The increasing levels of NEEs are mainly caused by the following 
features. First, the ‘stop-and-go’ patterns of the traffic allow for more 
frequent brake pad wear, which increases ambient particle levels (Air 
Quality Expert Group, 2019). Brake wear emissions are also spatially 
heterogeneous because the vehicles are expected to slow down when 
reaching a junction or going downhill (Air Quality Expert Group, 2019; 
Smit, Ntziachristos, & Boulter, 2010). Second, because aggressive 
drivers are more likely to accelerate and decelerate more frequently, 
more particles from their tyres, brake discs, and linings eventually 
contribute to pollution. Transport for London has mentioned that the 
Central Business District (CBD) of London is more polluted than the 
outer areas. Since the average speed of the vehicles does not exceed 
20mph, the PM10 can vary according to driving behaviour (TfL, 2018). 
Finally, seasonal impacts are discovered to be necessary for NEEs. In 

northern Europe, where the roads are regularly icy, studded tyres pro-
duce hazardous particles as the metal hits the surface of the road, 
increasing the amount of dust that is resuspended with the sand (rock 
salt) that was previously dispersed (Air Quality Expert Group, 2019; 
Amato et al., 2014; Weinbruch et al., 2014). In arid areas, dust resus-
pension is in tandem with tyre and brake wear in terms of contributing 
harmful particulates to the atmosphere (Al-Thani, Koç, Fountoukis, & 
Isaifan, 2020). 

While there have been efforts to reduce the particulate matter from 
vehicle exhausts, few improvements have been made for non-exhaust 
particles from tyre and brake wear and dust resuspension. Ferm and 
Sjöberg (2015) applied an equation of particle emissions based on 
roadside PM10 and NOx in two Swedish cities to associate ambient PM10 
(both road and background) with the volume of vehicles. However, they 
found that it had little relevance. The problem for this study was that the 
modelled PM10 emissions were highly dependent on NOx because the 
observed NOx, which was assumed to have been generated by traffic, 
had an hourly level variability not seen in PM10 observations. The 
experiment was also site-specific and conducted on a 500 m road. This 
can either over or underestimate the effects of the road especially when 
the study domain is small. 

Panko, Chu, Kreider, and Unice (2013) discovered a small contri-
bution from non-exhaust particles in French, the US, and Japanese cities 
(<0.7 μg/m3 of PM10). Despite being one of the early works on NEE, the 
selection of locations was biased toward parks, residential areas, or 
places of worship, which underestimated the effect of NEEs. This is 
because these areas are mostly far from the road and NEEs are known to 
be strongly decreased by 150 m (WHO, 2021). Electric vehicles are 
increasingly seen as an alternative to petrol vehicles, but the findings 
demonstrated that they emitted more non-exhaust particles due to their 
heavier weight (Timmers & Achten, 2018). 

Perricone et al. (2018) reported that brake wear emissions resulted in 
8–27% of the total traffic-related PM10 emissions. The airborne particles 
generated from the friction of brake discs can lead to adverse health 
effects. The REBRAKE project introduced a concept paper to reduce 
PM10 emissions for car brakes by 50%, leading to a 4–14% reduction in 
PM10. Other studies are still conducting experiments on the impact of 
NEE in a restricted environment, such as in a laboratory (Kwak, Kim, 
Lee, & Lee, 2013) or in tunnels (Kovochich et al., 2021; Lawrence et al., 
2013). However, in a laboratory environment, it is easy to measure the 
emissions due to brake or tyre wear. More importantly, the tests can be 
time-consuming and may not represent the actual driving conditions 
well where weather conditions and other compounding factors affect 
emissions. 

From a health perspective, Amato (2018) found that exposure to 
NEEs is associated with a hospitalisation risk, where the excess risks rose 
by 4.5% for every extra 1.71 μg/m3 and 2.1% for cardiovascular 
admission in the US. Similar risk rates were found in Hong Kong. Signs of 
oxidate stress resulting from NEEs have been reported in those who have 
continuously walked near roadsides (Atkinson et al., 2016; Borm, Kelly, 
Künzli, Schins, & Donaldson, 2007). The consequences of inhaling toxic 
particles can reduce the size of the airways and eventually impair lung 
capacity (Khajeh-Hosseini-Dalasm & Longest, 2015). 

2.2. Applications of traffic microsimulation 

Four research were found to have quantified the population exposure 
to air pollution based on traffic simulation out of the 30 studies of traffic 
simulation that were reviewed (Gurram et al., 2019; Hofer et al., 2018; 
Rech & Timpf, 2021; Yang et al., 2018). The chosen studies are divided 
into two categories based on whether they involve small- or large-scale 
simulations in which the agents represent a sample of the population 
and whether the research area is utilised throughout (see summary at 
Table 1). 

For the small-scale simulation, Yang et al. (2018) used an ABM 
simulation to look at the cumulative exposure to environmental 
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stressors, such as temperature and NO2, in the West of Hamburg. The 
results showed that the agents’ total exposure to NO2 during the winter 
was 10–12 times higher than it was in the summer, but that individual 
temporal at-risk patterns varied depending on the mode of trans-
portation. The Hamburg study only had 8 agents, so switching modes of 
transportation was extremely unlikely. As a result, once an agent chose a 
mode of transportation, exposure levels were maintained throughout the 
entire year. The heatwave parameter, which was thought to enhance 
stress, had no negative effects on the exposure levels because Hamburg’s 
average temperature did not reach 30 ◦C regularly. 

Rech and Timpf (2021) investigated whether a new bus route pro-
motes satisfaction by comparing the waiting and actual trip times of 200 
public transportation passengers with those of private car users. The 
Augsburg study randomised the agents’ points of origin and destination 
to give the model what appeared to be stochasticity. Although there was 
a chance that 10–20% of the 200 agents might switch to a new bus lane, 
this did not significantly alter the output. As with Yang et al. (2018), 
there were not enough agents to sufficiently reduce the stochasticity of 
behavioural variability (Miller & Page, 2007). 

For the large-scale simulations, Hofer et al. (2018) simulated real- 
time CO2 emissions for each road in Graz, Austria, while Gurram et al. 
(2019) simulated the citizen’s potential exposure to NO2 in Tampa, 
Florida using MATSim (Multi-Agent Transport Simulation). It took a 
long time to run the simulation in both investigations since the agents 
were formed at a 1:1 scale (i.e., one agent was created for each popu-
lation member). According to the findings of Hofer et al. (2018), the 
research region released around 1187 t of CO2 per day, which was only 
2% different from the calibration data. A considerable 15–20% reduc-
tion in CO2 emissions was found in the scenario that examined the 
impact of removing obsolete cars manufactured before 1995 and 
introducing EVs. However, the scenario that promoted telecommuting 
and public transportation did not indicate a noticeably lower level of 
CO2 emissions. It turned out that this scenario is only effective when the 
commute is >3 km. 

Gurram et al. (2019) found that Tampa city (Florida) was emitting 
about 20.4 t of NOx per day, with exposures ranging from 0.2 to 145 μg/ 
m3 and a 99th percentile exposure concentration of 39.9 μg/m3. The 
agent-based model was able to capture the immediate rise of NOx with a 
high-resolution activity-based exposure, in contrast to the CALPUFF 
dispersion model that was used in their prior study (Gurram, Stuart, & 
Pinjari, 2015). The results of this study showed that exposure levels 
varied depending on socioeconomic status: higher exposure was 
discovered for lower-to-middle income households, people of colour, 
people of working ages (19–65), and those who lived in urban areas with 
longer commute times. Overall, integrating the four phases of various 
simulation platforms is a first for simulation-health research, especially 
for capturing immediate exposure (hourly intervals) as opposed to 
aggregate exposure, which hasn’t been studied in short-term exposure 
studies. 

Despite the novel construction of a large traffic simulation coupled 
with the activity and emission models, some points remain problematic. 
First, the simulation’s 24-h time frame was insufficient for determining 
the longer-term effects of pollution reduction and for capturing the 
negative effects of various exposures based on people’s activity. As 
gaseous pollutants are variable depending on the weather conditions 
and the days of the week, a long-term simulation can provide a more 
accurate estimate of the total negative health impact. Second, the data 
from the ground truth seemed to match the pollution levels near major 
thoroughfares or urban centres. Finally, although both research pro-
duced pollutions and calibrated them on an aggregated level, the out-
comes either neglected or restricted the agent’s behaviours. The model 
developed by Gurram et al. (2019) mobilised all of the population’s 
resident vehicles in accordance with their daily schedules, but as every 
activity was pre-scheduled, there was no space to evaluate the exposure 
of trucks or non-resident vehicles. These can also be regarded as 
particularly troublesome polluters in the city because they caused a 23% 
discrepancy in NOx emissions compared to the state estimate. 

In summary, it appears that although research into the relationship 
between vehicle emissions and human exposure is still in its infancy, 
these studies have sparked the emergence of a brand-new field that in-
tegrates individual movements, emissions, and exposure to better 
comprehend the reality of human exposure. According to evidence from 
Seoul, commuter vehicles made >6 million trips to and from Seoul. This 
comprised one-third of all traffic in 2010. Neglecting the quantity of 
pollutants produced by this group might have led to the omission of a 
large portion of local emissions that significantly increased ambient 
pollution. Other types of transportation could seem reasonable to 
include, but this will largely depend on the simulation capacity. 

3. Methods 

TRAPSim is simulated on a two-dimensional, continuous space of the 
CBD of Seoul (16.7km2). The model has a spatial resolution of 30 m ×
30 m and is composed of 155 horizontal and 192 vertical patches (also 
known as grid-cells). Patches represent the grids of the study area, with 
each patch attribute comprising the name, code, and PM10 concentra-
tions of the subdistrict as well as a Boolean indicator of whether it is 
indoors or outdoors. Nodes and links are used to represent the streets of 
the city, with the road links containing road names, speed restrictions, 
and length and road nodes representing intersections and traffic lights. 
The only colour changes on the traffic lights are from red to green. Each 
traffic light changes as the countdown from 10 to 0 progresses, but 
because each light’s starting counter is unique, the signals do not all 
change at once. 

TRAPSim includes the following entities of three mobile agents: (1) 

Table 1 
Literature of the agent-based traffic simulation.  

Type Characteristics Yang et al. (2018) Rech and Timpf (2021) Hofer et al. (2018) Gurram et al. (2019) 

Scale Large/Small Small Small Large Large 
Tool Programming 

Language 
NetLogo NetLogo Python MATSim 

Pollution Pollution-related Yes No Yes Yes 
Source NO2 – CO2 NO2 

Space Spatial Area West Hamburg, Germany South Augsburg, Germany Graz, Austria Tampa, FL, USA 
Spatial Resolution 250 m Not mentioned Not mentioned 500 m 

Time Simulation Period 3–4 days 30,000 ticks (8.5 h) 24 h 24 h 
Temporal Resolution 1 min 1 s 1 h 5 s 
Execution time 40 mins 15 mins 3 h 5.2 days 

Agents Type of Agents Public Transport, Cars, 
Pedestrians 

Bus, Trams, Cars, Pedestrians Synthetic 
Population 

Synthetic Population dwelling within 
Tampa 

Number of Agents 8 200 people, 4 cars, 100 cars, 2 
buses 

Approx. 320,000 2.3 million  
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399 resident cars with drivers, (2) non-resident cars,3 and (3) 1932 
subway commuters; and two types of fixed agents: (1) traffic signals, and 
(2) entry points where the vehicles are fed into the study area. The 
resident cars accounted for 1% of the total vehicles registered in each 
sub-district, subway commuters represent 1% of the daily subway pas-
sengers, and the number of non-resident cars represent 5% of the traffic. 
The repository includes a list of the state variables and characteristics 
that define these entities (Shin, 2021). 

The model operates on a discrete timestep (a minute-by-minute) 
between January 2nd to March 31st, 2018 (127,740 time-steps). In 
every time step, our model updates the particulates on roads and 
background areas, the trajectory of subway commuters and resident 
drivers, and the exposure and health loss in response to the PM10 levels 
exceeding 100 μg/m3 where the individual is situated. We used a built-in 
diffusion function in the software for the NEE generation and dispersion 
that diffuses the particles roughly in line with a Gaussian distribution. 
The NEE then calculates the roadside PM10 using the background PM10. 

The execution time spent for a single run on a desktop machine took 
around 50 min. The model was iterated 20 times to estimate stochastic 
variability. The parameter space was explored using runs on the Cam-
bridge University HPC cluster. We ran NetLogo (Wilensky, 1999) and R 
(R Core Team, 2021) because both software are compatible with the 
Slurm workload manager. However, the main reason is that the local 
workstations had trouble cleaning the Java caches at each run, which 
delayed our local PCs after a few iterations. 

The detail of the processes is explained in the three modules, 
Mobility, Pollution generation, and Health (see Fig. 1 for details). The 
mobility module replicates the agents’ daily routines, including where 
they live and go, which algorithm they are allocated, and which places 
they will occupy on weekdays and weekends. After the mobility module 
has started working, three sub-modules of the pollution generation 
module simultaneously produce ambient PM10, NEE from moving ve-
hicles, and their dispersion and dilution. 

3.1. Mobility 

3.1.1. Resident vehicles 
The pathfinding algorithm is a key function to assign the resident 

vehicles’ origins and destinations. In doing so, we first employed an 
Origin-Destination matrix to select a portion of the resident vehicles 
from their sources and distribute it to their destinations (see Shin (2022) 
for the full matrix). Residents living beyond the study region were not 
taken into account for additional measurement. The following step is to 
ask each agent to specify the route once the resident cars’ origins and 
destinations have been assigned in their attributes (see Table 2). 

To connect the origin and the destination nodes, we used an A* al-
gorithm (Zeng & Church, 2009). Fig. 2 is an example of an A* algorithm 
applied to the GIS road network. The network extension nw was used. A 
detailed explanation regarding the A* algorithm and the proof-of- 
concept example is included (Shin, 2022). 

On weekdays, vehicles will travel across road networks to their 
destination node, halt during business hours, and then travel back to the 
origin (node) using the same route. However, on weekends, vehicles will 
travel away from the study area for non-work-related activities, such as 
shopping, getaways, and places of worship. Every vehicle will halt its 
travel on weekdays if it approaches its destination node. Following its 
arrival, the state variable named timer starts counting down from 
≥480mins, and as soon as the timer reaches zero, the car will start 
driving back to its original location. All agents are granted an additional 
0 to 59 min of fuzziness to departure time, presuming they will be 

walking to parking lots or needing more time to finish their duties. Each 
vehicle has a driver whose health will decline if the PM10 inside the 
vehicle is over 100 μg/m3. 

3.1.2. Non-resident vehicles 
Contrary to resident cars, non-resident vehicles contribute to pollu-

tion inside the study domain rather than having any distinct naviga-
tional goals. The vehicles will follow traffic signals and keep their 
distance from the vehicles in front but will be removed completely when 
they reach the end of the domain boundary. The randomness of travel 
directions is to simulate general movement during the vehicle’s time in 
the CBD, in the absence of more detailed data. These vehicles are not 
initialised but are added when the model is executed. 

Vehicles are assumed to have come from the outside. These incoming 
vehicles make trips to any areas inside the CBD, generating vehicles 
from the hourly traffic data measured at monitoring stations. Since the 
spatial extent is restricted to the CBD zone, outbound cars disappear at 
any endpoint of the road network. Due to the model’s low vehicle ca-
pacity (up to 2500 vehicle agents), the sample of non-resident vehicles 
each minute was 5% of the initial volume. 

It should be noted that both resident and non-resident vehicles 
maintain a safety distance of one patch (about 30 m) from the car in 
front of them. Regardless of the fuel type, vehicles will emit and spread 
non-exhaust PM10 during the voyage. Vehicles are asked to stop in front 
of the red traffic signal. 

3.1.3. Subway commuters 
We use a Local Search Algorithm (LSA) for pathfinding for subway 

commuters (see Fig. 3). LSA is a memory-efficient approach that asks the 
agent to rewrite the path to reduce additional errors after learning the 
objective state and the error of distance (also termed error of distance). 
A* was replaced with LSA because the algorithm that was asked to find 
the lowest pollution patch between the current step and the final goal 
kept changing every step, which led to repetitive recalculation on every 
step, slowing the execution speed. 

This study employs a “random-walk” or “hill-climbing search,” one 
of LSA’s searching features, in which the agent repeatedly searches the 
largest value (or smallest value) within the boundary until it finds the 
goal. The function, however, has a major drawback in that the searching 
ends either when it reaches the local maximum rather than the global 
maximum or when there is a vast plateau without a higher surrounding 
number. 

When the simulation commences, the subway commuters are 
brought to the subway entrances at the hour and minute specified in 
their state variables. Once the agents arrive at their subway entrances, 
they walk to their destination buildings using the shortest route. 

3.2. Generating non-exhaust emission 

Tyre, brake, and road surface wear are the primary causes of non- 
exhaust emissions (Air Quality Expert Group, 2019; EMEP/EEA, 2019; 
Kovochich et al., 2021). In order to create tyre wear, brake wear, and 
road abrasion based on travels, we employed the equation of EMEP/EEA 
(2019) that generated tyre wear, brake wear, and road abrasion based 
on trips. The abstract equation is stated as follows: 

NEETotal = NEETyre + NEEBrake + NEERoad (1) 

The complete equations and definitions are shown in Shin (2022). 
One major change from the set of equations is that the emission 

parameters which were based on g/km were converted to μg/30 m. This 
alteration was made since the 30-m grid fits the range of the diffusion 
from tyre and brake wear and it is anticipated that each vehicle com-
mutes along a different path. For instance, when a car drives over a 
patch, 10 μg of tyre wear, 7 g of brake wear, 10 μg of surface wear, and 3 
μg of resuspension are released. At 5 μg, it will likewise be diluted. 
Therefore, the background PM10 concentration plus 25 μg (Tyre + Brake 

3 We clarify that non-resident vehicles are those for which the origin is 
outside the model domain. Non-resident vehicles enter the study domain ac-
cording to the hourly vehicle observation data at 10 observation points (the 
detailed information is included in Shin (2022)). 

H. Shin and M. Bithell                                                                                                                                                                                                                         



Computers, Environment and Urban Systems 99 (2023) 101894

5

+ Surface + Dispersion + Dilution) would be the total PM10 concen-
tration for that minute. This study also takes into account testing the 
parameters for dilution and dispersion (see further details in Shin (2022) 
and Section 4). 

3.3. Health loss 

The agent’s health will decline on the assumption that it encounters 
over 100 μg/m3 at which they are currently located. 

If PM10 ≥ 100, dH/dT = − α(Hmax–H(t) )+Hrecov (2) 

In Eq. 2, which we developed in an earlier study (Shin & Bithell, 
2019), denotes Hmax as an agent’s health status at the beginning of the 
simulation. H(t) is the current value at the current timestamp, and Hrecov 
is the recovery rate. If the agent is on the patch that exceeds the PM10 
threshold of 100, its health values would decrease exponentially away 

from their initial value H(0). α determines the rate of change per unit of 
time during the time when the health impact is relevant. This factor is 
chosen from a random uniform distribution between zero and a 
maximum on each tick to account for the reality that individual expo-
sure levels will vary greatly, even within a patch. The term ‘at-risk’ is 
defined as the health status of an agent whose health is below 100 (Shin 
& Bithell, 2019). 

While the aforementioned equation is identical to that of Shin and 
Bithell (2019), there are several measurements in which this study dif-
fers. First, the infiltration ratio, often termed the I/O ratio, is used to 

Fig. 1. The overall structure of the simulation in three sections: mobility, pollution generation, and health.  

Table 2 
Summary of the number of agents and their pathfinding algorithm and used 
features.  

Variables Vehicles: 
Resident 

Vehicles: 
Random 

Subway 

Number of 
Agents 399 

Variable by 
traffic data 1932 

Sample 
1% of the total 
resident vehicles 
dwelling in CBD 

5% of the Traffic 
monitoring data 

Total diurnal population 
in study area ×
Proportion of subway 
commuters in the OD 
matrix 

Algorithm A* algorithm 
Come-in- 
randomly die- 
out-randomly 

Local search algorithm 

Type of space 
used for 
trajectory 

Road-networks 
(links) 

Road-networks 
(links) 

Patch 

Memory of 
trajectory 

Yes No No  

Fig. 2. A is a proof-of-concept model built to test an agent finding the shortest 
path from the origin (red patch) to its destination (light green patch), and B is 
the application of the shortest distance on link data. 
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estimate the indoor exposure of individual agents. The infiltration ratio 
is applied to studies when only one has information about outdoor air 
pollution but less about indoor air pollution. The ratio, despite the fact 
that the statistics appear to be rather straightforward, is the result of 
taking into account the air exchange rate, windows opening, and 
different types of microenvironments (classroom, home, workplace), as 
well as seasonality. We simplify the I/O ratio computation procedure by 
setting the outdoor PM10 at 1, changing the in-vehicle status to 0.7, and 
converting the indoor PM10 to 0.2–0.7 because our model pays greater 
attention to exposure during one’s commute routine (Kreider, Unice, & 
Panko, 2020; Leung, 2015). 

The health loss for all agents is applied under the same conditions, 
yet each agent’s means of transportation is different. For subway com-
muters, everyone has an equal probability of being exposed to the PM10 
threshold when walking, but the severity of the health damage will 
depend on how long it takes to get from the subway entrance to the 
agent’s office and how much time is spent outside when the PM10 is 
above 100. Additionally, those working in offices next to roadways may 
experience worse health problems since roadside pollution can affect 
inside pollution, such as when windows are opened and closed (Kreider 
et al., 2020). 

All commuters are exposed to 0.2 times the ambient PM10 of the 
provided area if the commuters stay at home between 11 pm and 6 am. 
Residents are more often exposed to 0.7 times the patch’s ambient PM10 
during transit and 0.2 to 0.7 times that amount when parking their cars 
at their homes or places of business. Due to the significant load of PM10 
created by road traffic, it is anticipated that the cars will regularly be 
exposed to high levels of PM10. 

3.4. Policy scenario: Banning vehicles in the CBD 

We conduct a ‘what-if’ scenario to test the effect of vehicle re-
strictions on air quality improvement. This hypothetical scenario is 
based on Seoul’s “Green Transport Scheme Seoul,” which was 

implemented in December 2019 and attempts to improve air quality by 
prohibiting high-emission automobiles from entering the central busi-
ness district. Between 06:00 and 21:00, “Grade 5 vehicles,” mainly 
diesel cars, are prohibited by the local authorities. Violators are subject 
to an 85 USD fine. This study examined the consequences of preventing 
car entry on non-exhaust emissions and showed how the situation can 
benefit people’s health. 

Second, we test whether maintaining current services or limiting 
50% or 90% of the incoming traffic can lower background and roadside 
PM10 levels within the research area. For further context, the model’s 
100% restriction on incoming traffic means that it only allows resident 
vehicles to move and generate pollution. 

4. Sensitivity test and calibration 

Since the fixed monitoring stations provide temporally rich but 
spatially sparse information, it is essential to examine the uncertainty of 
vehicle-related parameters that can affect the difference in air quality 
and health effects. We selected five parameters including non-exhaust 
emission (NEE), dispersion and dilution (the two are treated as one), 
the fraction of vehicles, health loss, and walking speed (see Table 3). 

We examined each parameter’s sensitivity using the one-factor-at-a- 
time (OFAT) method. The main reason was that there was a memory 
ceiling that was not sufficient to consider five parameters over 120,000 
ticks. 

First, we parameterised PM10 levels by NEE factors of 1, 5 (baseline), 
10, and 20, each of which displayed the N of vehicles that generate non- 
exhaust PM10 emissions (N is the parameter shown in the NEE equa-
tions). As the variables increased, the mean PM10 levels rose linearly. 
For example, the mean PM10 of Jongno for NEE factors 1, 5, 10, and 20 
was 43.4 μg/m3, 60 μg/m3, 81.4 μg/m3, and 123 μg/m3 respectively. 
The PM10 levels ranged by 12 g/m3 at the highest parameter, NEE 20, 
with the lowest reading being 122.6 μg/m3 and the highest reading 
being 134.1 μg/m3. The high parameter value can indicate the fluctu-
ation of PM10 by road in proportion to the volume of traffic, even though 
the number of road lanes was not provided. 

Dilution, or the time that passes before NEE disappears, was quite 
sensitive to the settings. The overall PM10 grew dramatically by a 
maximum of 11 μg/m3 on the parameter 20 as the dilution parameter 
increased (i.e. the longer the PM10 lingers in the atmosphere). This was 
because the PM10 patch (grid) on the road only vanishes when there are 
no vehicles for 10 min or more, which is impossible other than between 
2 and 5 in the morning. On the other hand, the range of dispersion did 
not appear to have the same impact as dilution. The difference in PM10 
between 45◦ and 90◦ in the baseline scenario was <1 g/m3, even though 
broader dispersion can increase PM10 to neighbouring pavements. 

Investigating how PM10 varies may change by the rate of car sam-
pling, different sample sizes merely showed a small difference. A 10% 
sample in Jongno only contributed 1.8 μg/m3 more than that of 2.5%. 
Surprisingly, all routes in the 20% sample exhibited less pollution since a 
significant number of vehicles were prevented from entering the 
research area due to traffic queues. 

Fig. 3. The person standing next to the starting point (green) moves in a 
straight line toward the goal point (yellow). In this case, the agent chooses to go 
toward the target destination, but the route will be created at each stage. In real 
life, the agents would travel the red route. The difference in arrival time from 
our experiment comparing the red and black routes was insignificant, but the 
computational power significantly increased. This led us to select the black line. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 3 
Summary table of parameters used for sensitivity analysis.  

Parameter Description Baseline Min Max 

Non-exhuast 
Emission (NEE) 

Non-emission levels per 
vehicle 

5 1 20 

Dispersion Range of emission 60◦ 45◦ 90◦

Dilution Time until the non- 
emission dilutes 

3 3 20 

Car sampling Rate of incoming cars 5% 2.5% 20% 
Health loss Parameter (ɑ) from the 

health loss equation 
0.1 0.03 0.2 

Walking speed Walking speed of subway 
commuters 

0.6–1.0 0.2–0.4 1.6–1.8  
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The health loss parameter α, an exponential parameter in Eq. 3, was 
highly sensitive for the at-risk population. Several fluctuations were 
seen among subway commuters during major pollution episodes, but 
looking at the peaks of the at-risk population, there was a noticeable 
increase between α = 0.1 and α = 0.15 as it resulted in 30% and 100% 
respectively. Since the rate equation leads to an exponential change in H 
with α, a small difference between values can change the outcome 
excessively, despite the support of health recovery. However, the results 
did not indicate a significant difference when the scenarios with zero 
vehicles are initialised. This was mostly due to the fact that people 
avoided heavily polluted areas by walking through quieter areas rather 
than those close to roads (European Lung Foundation, 2020). Drivers 
observed a significant shift in the risk population over time, going from 
5% to 50% in the range of 0.1–0.15; however, there was also a striking 
decline (15%) when non-resident vehicles were not present. Even 
though studies that look at indoor-outdoor pollution ratios have shown 
that opening a window can contaminate indoor air pollution and can 
also be a beneficial guideline for vehicles (Kreider et al., 2020), they 
have not identified any evidence of a high risk connected to particle 
exposure inside cars. 

Slower walking speed resulted in a significant rise in the risk rate, but 
fast walking only made a small difference. Slow walking (0.2–0.4 patch/ 
min) resulted in a 10% higher risk population in extreme pollution ep-
isodes as compared to the standard walking pace of 0.6–1.0 patch/min. 
Contrarily, over 1.5 patch/min made little change from the baseline 
speed, indicating that even rapid walking cannot help in avoiding 
instantaneous exposure to a sudden rise of PM10. The conclusion is 
necessarily significant because in this case, where exposure to an abrupt 
rise in pollution is crucial for pedestrians, it may not be assumed that 
“faster walking and breathing at a greater rate over a shorter time of 
exposure can greatly minimise the absorption of pollutants.” 

5. Results 

5.1. Comparing air quality between scenarios 

Based on different restriction scenarios of traffic entry, it turns out 
that vehicle restriction improved air quality (see Fig. 4). Compared to 
Business-as-Usual, restricting 50% of the inbound traffic only reduced 
PM10 by 1.2–2.7 μg/m3 (2–4%) for the selected roads, while a 90% re-
striction scenario significantly reduced PM10 by 11.4–15.7 μg/m3 

(18–24%). This endorses the study’s finding that halving brake disc 
emissions can reduce ambient PM10 by 4–14% (Perricone et al., 2018). 
This also suggests that a prohibition on driving has enhanced air quality 
by lowering the total PM10 concentration from 60 μg/m3 to 47 μg/m3, 
but more significantly, the reduction was brought about by the elimi-
nation of severe levels, which may have prevented immediate harm to 
human health. The PM10 levels did not differ significantly among roads 
since the model did not account for non-resident vehicles’ travel di-
rections or the number of lanes that can influence their trips. 

5.2. The spatial distribution of PM10 in Seoul CBD 

We also compared the spatial distribution of PM10 in Seoul CBD. The 
second of January was chosen as the test date. Overall, the average 
roadside PM10 was at least 25–30% higher than the background PM10, 
while the maximum PM10 levels on the roadways were more than twice 
as high as those in the background area (see Table 4). The ratio of the 
roadside to the background, for instance, is 0.75 at Jongno and 0.69 at 

Fig. 4. Overall average of PM10 on five roads by car restriction scenarios.  

Table 4 
Summary Statistics of the Modelled PM10 in Seoul CBD on 2nd January 2018 
(Unit: μg/m3).  

Station Mean Median Min Max sd CI 

Jongno 45.8 45.9 19 103 16.6 0.859 
Sejong-ro 49.6 50.2 19 93.9 16.5 0.855 
Background 31.2 29 19 47.4 8.41 0.435  
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Sejong-ro (see Table 5). This ratio tended to be consistent with the full 
simulation results. 

The daily trend of PM10 and its spatial distribution are shown on the 
hourly averaged map (see Fig. 5A). We discovered that the PM10 levels 
varied from 20 to 90 μg/m3 when aggregated on an hourly to minutely 
basis, but that increased traffic to and from offices was associated with 
higher levels of PM10 along the roadsides. Even though there was less 
congestion in the evening in the upper east part of the CBD, morning and 
evening rush hours experienced increasing levels of traffic going to and 
from offices. PM10 levels in the upper east and centre road networks 
declined around 13:00 due to a relatively lower volume. This may be 
due to the decreased number of inbound vehicles. 

Looking at the maximum levels, we discovered that roadways, 
particularly junctions, experienced over 80 μg/m3, which was notice-
ably higher than the background level (see Fig. 5B). This map reveals 
that junctions in bigger roadways regularly have pollution levels above 
100 μg/m3, even if the upper east was shown to have less pollution in the 
average figure. It is speculated that the junctions produce more PM10 
from the driver’s stop-and-go behaviour. This is similar to the previous 
findings that brake emissions vary spatially and tend to escalate when 
one approaches a junction or a downhill (Air Quality Expert Group, 
2019; Timmers & Achten, 2018). Additionally, regions with more traffic 
signals installed or near the CBD entry points, where many vehicles are 
trying to enter simultaneously, showed considerably higher PM10 levels. 
This could imply that even on the same day, persons who commute 
nearby by foot or car have a higher likelihood of being exposed to 
polluted air. Walking close to intersections where vehicles are more 
likely to produce particles from their tyres and brake wear requires 
greater caution. 

5.3. Health risk between Subway commuters and drivers 

Comparing the temporal at-risk rate between subway commuters and 
drivers, over 10% of drivers were put at risk on January 23rd 2018. 
However, when the number of incoming non-resident vehicles was 
reduced by 90%, the number of resident drivers at risk decreased by 5%, 
which appeared to be effective (see Fig. 6A). Only a few onsets were seen 
over the course of the study, except for the extreme pollution occur-
rences on January 23 and March 26 that had a serious negative impact 
on the health of the local drivers. By contrast, 10–30% of subway pas-
sengers were identified as at-risk groups for each pollution incident, and 
limits on the entry of vehicles into the CBD did not appear to be suc-
cessful in reducing the exposure levels (see Fig. 6B). This happened as a 
result of the model not taking into account the exposure throughout 
their train ride and most pedestrians walking in the background areas. 

6. Discussion and conclusion 

This paper constructed a traffic simulation for central Seoul to 
investigate the coupled problem of NEE and exposure to PM10 in groups 
of pedestrians and resident drivers. Overall, significant extra particu-
lates were found to exist along roadways. Although longer exposure 
times for pedestrians led to a larger accumulated exposure overall, the 
majority of drivers were exposed to the highest levels of pollution 
(>150 μg/m3), which was largely due to the time spent in congested 
areas. The health effects, however, depended strongly on how the 
impact and recovery from exposure were parameterised. 

6.1. The contribution of NEE to ambient PM10 

Around 25–30% of the average roadside PM10 concentrations were 
found to be caused by vehicles, with substantially larger contributions 
on a finer time scale. The volume of traffic that released NEE on road-
ways was the main cause of the increase in PM10, regardless of the fuel 
type and mode of power (Air Quality Expert Group, 2019). These results 
are in line with a case study by Weinbruch et al. (2014), which found 
that particulate emissions contributed to about 40% of the roadside 
PM10 in the Ruhr. However, because the study combined exhaust and 
non-exhaust emissions from traffic sources, the rate of roadside PM10 
may be closer to the results of this study. 

6.2. Differences in health effects between pedestrians and drivers 

The chief difference between the two groups is the exposure- 
response to a sudden PM10 rise. Even on a highly polluted day, on 
January 23rd for example, only 7% of resident drivers faced an acute 
health risk, but practically every subway passenger faced a chance of 
being ill but quickly recovered once they reached their workplaces. In 
contrast, when high PM10 concentrations persisted for a few days, as 
they did on March 24 and 25, 88% of drivers experienced a nominal 
decline in health while 15–30% of pedestrians experienced health haz-
ards as a result of high PM10 exposure. This evidence suggests that some 
susceptible individuals may have severe health hazards from long-term 
exposure to ambient air pollution, but prolonged exposure to extremely 
high levels of air pollution caused by vehicle emissions may also result in 
serious health problems (Laumbach et al., 2015). 

Travel time was also an important element that differentiated the 
exposure patterns. Subway commuters were assumed to travel simul-
taneously at 6 a.m. from a temporary location and arrive at their final 
station at various times. The simultaneous effect was modelled by 
applying a different fraction of PM10 to the unknown location, for 
example, applying 25% of ambient PM10 between 10 p.m.–6 a.m., but 
applying 75% after 6 a.m. The fluctuations in the risk population for 
subway commuters occurred due to the variation and duration of the 
commute time. This can add to the research of Gurram et al. (2019) that 
associated long commute times with higher exposure levels: rural 
commuters who had long commute times (> 60 min.) experienced 8% 
greater NOx exposure than those whose daily travel times were 30 min. 

The model parameters showed that drivers just travelling indoors to 
indoors (for example, from home to car to office) had a different air 
filtering ratio, which led to the identification of reduced danger for 
drivers. Cars can operate as a semi-sealed environment to prevent 
dangerous substances from getting in, which can sometimes be safer 
than the environment for walkers, even when severe PM10 was discov-
ered (Briggs, De Hoogh, Morris, & Gulliver, 2008; Gulliver & Briggs, 
2007). However, this argument needs to be carefully examined because 
some studies insist that professional drivers, including drivers of buses 
and taxis, face the highest risks related to black carbon and particulates 
(Moreno-Jiménez et al., 2016; Yamada, Hayashi, & Tonokura, 2016). 
However, as the current simulation only took indoor activities into ac-
count, a more sophisticated behavioural model is required. Neverthe-
less, the findings can support the benefits of staying inside rather than 
going outside while the PM10 levels are alarmingly high (Laumbach 
et al., 2015). 

6.3. How effective were the scenarios? 

In the vehicle restriction scenario, roadside PM10 showed a 20% 
decrease when the majority of cars (90%) were prohibited from the city 
centre, which is consistent with other estimates of the contribution of 
NEEs. Despite the fact that less extreme values, primarily due to traffic, 
were detected, it was nonetheless startling to see an overall drop in all 
the roads of 10 g/m3. Similar findings were made in Munich, where 
PM10 within the great ring road was decreased by 2–10% after the Low 

Table 5 
Ratio between Background and Roadside 
Stations.  

Station Back: Road 

Jongno 0.75 
Sejong-ro 0.69  
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Emission Zone was put into place (Cyrys, Peters, Soentgen, & Wich-
mann, 2014), while London had a significant decline in NO2 but not in 
particles PM10 or PM2.5 (Mudway et al., 2019; Wood et al., 2015). 

A significant reduction in exposure did not appear to be possible due 
to changes in pedestrian behaviour (e.g. a smartphone app indicating 

areas of high PM10). Because the concentration in the background areas 
was comparable, it was less likely to make a meaningful difference in the 
outcome for pedestrians who travelled on a day with high pollution 
levels—unless they stayed at home. Pedestrians who travelled on such a 
day suffered considerable health damage. While some might argue that 

Fig. 5. The modelled results of hourly mean PM10 (A) and an hourly maximum of PM10 (B) in Seoul CBD on January 2nd 2018 at 08:00, 13:00, and 18:00.  

Fig. 6. Health risk of resident vehicle drivers (A) and subway commuters (B).  
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exercising outweighs the risks of pollution exposure compared to staying 
indoors (Tainio et al., 2016), another study disagreed and suggested that 
when pollution levels are particularly high, people with chronic car-
diovascular or pulmonary diseases should avoid pollution exposure 
(Laumbach et al., 2015). Even though diverse findings lead to unending 
debates the study’s design (long- or short-term, average exposure over 
time or instantaneous exposure) and the demographics of its subjects 
need to be carefully considered. 

6.4. Strengths and limitations of this study 

This study was the first to explore the role of NEEs in conjunction 
with the detrimental health consequences on a sample of commuters 
using a microscopic perspective. The creation of brake and tyre wear and 
the ensuing dispersion that can occur in real life were sufficiently 
recreated by the application of NEEs on a patch level. Although the 
equation was cited from studies that used distance-driven indicators 
(Breuer, Samsun, Peters, & Stolten, 2020; EMEP/EEA, 2019), this study 
simulates a real-time method of emissions and dispersion from each 
vehicle to more clearly articulate the causal relationship between the 
polluters (vehicle emissions) and the susceptible people (drivers and 
pedestrians). 

This study does, however, have some shortcomings. First, this 
simulation is subject to limitations in terms of the geographic border of 
Central Seoul and the temporal restriction of January to March. Despite 
having the highest population disparities between day and night and 
being known for its excessive traffic, the study region only comprises 
2.5% of Seoul. The highest PM10 incidents, which happen often, are also 
known to occur in Seoul during the winter. Hence, this simulation is 
calibrated to the winter season when the temperature is below 0 ◦C with 
less humidity and more heating, thus vehicle’s non-exhaust emissions 
are expected. 

Second, the study attempted to simulate the flow of traffic within the 
spatial domain by using a collective sample of inbound cars, however, 
due to the coarseness of traffic signal settings and the interactions be-
tween vehicles in front of the signal, the traffic could not be properly 
controlled. The model was given a stop in front of traffic signals and a 
slow-down function to vehicles ahead of their directions, but because 
many lanes in the segment were not taken into consideration, more 
vehicles queued up outside the spatial boundaries. 

Third, NEE was dispersed to the neighbouring patches and diluted 
after a few minutes. However, the current model makes the unrealistic 
assumption that the airflow is completely steady, stable, and without 
any breeze. The direction and speed of the wind are taken into consid-
eration as key indicators in the dispersion of pollution in fluid dynamics 
modelling and atmospheric modelling, such as the ADMS model 
(Beevers et al., 2013). This is because the wind can influence the pat-
terns and trends of local air movement. 

Fourth, even though health loss was parameterised, there is no evi-
dence to imply that the parameter values are justified until they have 
been calibrated and referenced by other known parameters. The current 
model evaluated five health loss factors ranging from 0.03 to 0.2 and 
found that when the values were over 0.15, the acute health risks in 
every pollution incident were always 100%. This seems unrealistic. Even 
if the model is merely illustrative, the lack of precise health loss pa-
rameters may prevent it from accurately expressing the acute health 
risks from short-term exposure. 

Lastly, the generation of the background PM10 values from the study 
area’s two urban background stations. This study only added non-road 
patches to the simulation from two background monitoring sites, 
despite the substantial fluctuation in pollution that is predicted in 
metropolitan areas, particularly where heavy traffic and high-rise 
buildings trap the airflow. It’s likely that this disregarded the 
geographic variation that personal monitors frequently pick up on 
(Norton, 2015). 

6.5. Future works 

Perceiving the severity of NEE to ambient PM10, future research 
should examine more sophisticated methods of how brake and tyre wear 
particles are generated and dispersed on roads, as well as whether 
travelling the shortest distance possible on major roads is preferable to 
travelling a longer distance but the less congested route in order to lower 
exposure levels. Immediate improvements can be made in terms of 
domain expansion to stop cars from idling outside the study area, which 
will also give a greater possibility for the pollution levels to vary 
geographically as a result of traffic volume. 

There has been a lot of discussion in recent years about whether 
electric vehicles (EVs), which are heavier than vehicles powered by in-
ternal combustion engines (ICEVs), tend to emit more particulate matter 
on roads (Air Quality Expert Group, 2019; Amato, 2018) or less (OECD, 
2020; Timmers & Achten, 2016). Hence, it would be interesting to 
simulate a ‘what-if’ model where all cars are electric. This simulation 
can shed light on how a combination of higher NEE and decreased 
exhaust emission can alter the quality of the air near roads. 

From a health perspective, other working groups in the CBD area 
may serve as valuable models from the standpoint of health. Taxi 
drivers, for instance, can be a useful occupation to research because they 
frequently spend up to 12 h per day driving in Seoul, but little is known 
about their exposure levels, medical histories, ages, or vastly different 
work schedules. To better understand if the negative health effects can 
vary depending on commuting habits and life stages, this study can also 
look further into travel behaviours by demographic groups. 

Data and code availability 

The data, codes, and figures are available on our GitHub repository: 
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