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Comprehensive analysis of omics data identifies relevant gene
networks for Attention-Deficit/Hyperactivity Disorder (ADHD)
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Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction
of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci
associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a
multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral
blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed
genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for
psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the
modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In
conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene
expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides
deeper and broader insights into the biological mechanisms underlying ADHD.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a highly pre-
valent neurodevelopmental disorder that affects around 5–6% of
children and adolescents worldwide, and in 40–65% of cases
persist into adulthood [1]. It is mainly characterized by inattention
and/or hyperactivity and high levels of impulsivity.
ADHD is a complex disorder that results from the interaction of

both genetic and environmental risk factors, with an estimated
heritability of 70–80% throughout the lifespan [2]. Several studies
support the role of both common and rare genetic variants in the
development of ADHD, although its etiology and pathogenesis still
remain largely unknown [2]. The first genome-wide association
study (GWAS) meta-analysis identifying genetic risk variants for
ADHD (20,183 cases and 35,191 controls) was published in 2019
[3]. They identified 12 independent ADHD risk loci and estimated
that common variants account for 22% of the total ADHD
heritability. In addition, very recently, a larger GWAS meta-
analysis on ADHD reported 21 new loci and a reduced estimated
SNP heritability (h2SNP= 14%) [4]. These data highlight that part of
the genetic variance still needs to be explained, which may be
accounted, in part, for gene by environment interactions [5].
Epigenetic processes (i.e. histone modifications, DNA methylation
and microRNAs) are potential mechanisms by which environmen-
tal risk factors lead to changes on gene expression and long-lasting

alterations in the neuronal circuits found in psychiatric disorders
like ADHD [6]. Recently, the first epigenome-wide association study
(EWAS) in peripheral blood mononuclear cells (PBMCs) from adults
with ADHD was published, identifying four regions differentially
methylated and located in genes previously related to auto-
immune disorders, cancer, or neuroticism [7]. Additional EWAS in
saliva and whole blood have been performed both in adults and
children with ADHD diagnosis or ADHD symptoms, however,
results among studies are not consistent and further studies with
larger sample sizes are needed [8–12].
Although genetic and epigenetic factors that contribute to the

etiology of ADHD have started to be identified through GWAS and
EWAS, their biological relevance is difficult to characterize, in part,
because genetic risk loci were usually associated with the nearest
gene, which may not be necessarily the true causal one. In
contrast, the analysis of gene expression profiles provides a closer
physiological picture of the disorder that is easier to interpret, and
reduces the burden of multiple testing. Transcriptome studies in
ADHD, nevertheless, are limited by the inaccessibility of brain
samples and have been focused on whole blood or PBMCs. To
date, eight transcriptomic studies on ADHD have been performed,
highlighting alterations in genes involved in several neuronal
functions and the immune system [13–20]. However, the studies
performed so far were based on differential gene expression
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analyses between ADHD cases and controls, which assume that
every gene acts as an independent unit in the expression
landscape and select genes based on statistical significance. In
contrast, gene co-expression network analyses use an unsuper-
vised framework to identify groups of genes with similar
expression patterns (co-expressed genes) independently of any
phenotype and then correlate these gene modules with a
phenotype of interest. This approach has been widely used to
characterize patterns of co-expression in normal brain [21, 22] and
both in brain and blood samples from several psychiatric disorders
[23–28].
In the present study, we aimed to perform a multi-step analysis

to identify and characterize modules of co-expressed genes
associated with ADHD using expression data from PBMCs of ADHD
cases and controls. To further understand the biological relevance
and provide a more accurate picture of the regulatory mechan-
isms, we performed a comprehensive characterization of genes in
each module and combined genomic and transcriptomic data to
identify loci that may regulate the ADHD-associated co-
expressed genes.

MATERIALS AND METHODS
Study design
A comprehensive and multi-step approach was applied to identify and
characterize modules of co-expressed genes in PBMCs. In the first step we
ran a Weighted Gene Correlation Network Analysis (WGCNA) on the
processed transcriptomic data from 270 ADHD cases and 279 controls and
assessed the association of the resulting co-expression modules with
ADHD status. Subsequently, we disentangled the biological relevance of
the ADHD-associated co-expression modules by (i) performing enrichment
analyses in brain expression, functional pathways, druggable genes and
miRNA target genes, (ii) combining results with ADHD genetic, transcrip-
tomic, and epigenetic signatures, and (iii) running a co-expression module
eQTL analysis to identify loci regulating the ADHD-associated modules of
co-expressed genes (Fig. 1).

Participants
Analysis of co-expression modules was performed in an in-house sample of
270 ADHD cases (59.3% male, mean age = 34.2 years, s.d= 11.7) and 279
controls (56.9% male, mean age = 36.6 years, s.d= 9.9). All subjects were
of European ancestry. Clinical assessment was conducted by structured
interviews and self-reported questionnaires as previously described [19].
Detailed information is available in Supplementary Information. The study
was approved by the Clinical Research Ethics Committee (CREC) of Hospital
Universitari Vall d’Hebron, methods were performed in accordance with
the relevant guidelines and regulations and written informed consent was
obtained from all subjects before inclusion in the study.

Transcriptome profiling and weighted gene correlation
network analysis (WGCNA)
RNA from PBMCs was isolated, hybridized to GeneChip Human Gene 1.1 ST
96-Array plate (Affymetrix) and data were analyzed as previously described
[19] (Supplementary Information). Modules of co-expressed genes were
identified from processed transcriptomic data by the WGCNA R-package
[29]. A soft-thresholding power of 4 was selected (Fig. S1) and one-step
network construction and module detection was performed considering
an unsigned network type with default values (additional details in
Supplementary Information). Gene expression for each module was
represented by a module eigengene, derived from its first principal
component and treated as a quantitative trait in the downstream analyses.
The association between the module eigengenes and ADHD status or
potential confounding factors (age, sex, RNA integrity number (RIN), and
batch) was tested using regression analyses. Bonferroni correction was
applied to correct for multiple testing considering the overall number of
co-expression modules constructed (P < 0.05/27 modules <1E-03).
Within each module we examined the correlation between module

membership (an indicator of the intramodular connectivity of a gene
based on the association between its expression and the module
eigengene) and gene significance (effect size of the association between
each gene and ADHD) using Pearson correlation (Fig. S2).

Enrichment analyses in the ADHD-associated co-expression
modules
We assessed whether genes in each ADHD-associated co-expression
module were expressed in specific brain regions at different develop-
mental stages using data from the Allen Human Brain Atlas with
ABAEnrichment R-package [30] (additional details in Supplementary
Information). Then, enrichment analyses with the webtool WebGestAlt
(WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/) [31]
were performed on: (i) Gene Ontology non-redundant Biological Process
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome, (ii)
target genes of pharmacological drugs based on the information from
PharmGKB and (iii) miRNA target genes. False discovery rate P-value
(PFDR) < 0.05 was set as the significance threshold.
In addition, the correlation between the identified miRNA and its

corresponding module eigengene was tested using the non-parametric
Spearman rank correlation test in a subset of 310 individuals included in
the WGCNA (60% overlap; 150 ADHD cases and 160 controls) from whom
miRNA expression profile data from PBMC were available as described in
Sanchez-Mora et al. [16]. Expression was available and retrieved from a
total of 27 mature miRNAs and Bonferroni correction was used to adjust for
multiple testing (P < 0.05/27 tests <1.85E−03).

Integrative analysis of ADHD-associated co-expression
modules and ADHD omics data
ADHD transcriptomic signatures. After quality control and sample proces-
sing, differential gene expression profiles between the 270 ADHD cases
and 279 controls used in the WGCNA analysis were obtained with Limma
R-package [32]. Only genes with PFDR < 0.05 and fold change (FC) > |1.15|
were considered differentially expressed and were used to test for
enrichment in the ADHD-associated co-expression modules using a
F-Fisher test and Bonferroni correction across all modules (P < 0.05/7
modules <7.1E−03).

ADHD genetic signatures. The identified ADHD-associated co-expression
modules were used as gene sets to test for enrichment in ADHD genetic

Fig. 1 Flowchart of the study. Modules of co-expressed genes were
identified from peripheral blood mononuclear cells (PBMCs) of
processed transcriptomic data from 270 ADHD cases and 279
controls by using Weighted Gene Correlation Network Analysis
(WGCNA). Then, we assessed the association of the resulting
modules with the ADHD status and investigated their biologically
relevance by (i) performing enrichment analyses in brain expression
(ABAenrichment R package), functional pathways, druggable genes
and miRNA target genes using WebGestAlt webtool; (ii) integrating
ADHD transcriptomic, genetic and epigenetic data from GWAS
meta-analysis [3] and EWAS [7] on ADHD; and (iii) running a co-
expression module eQTL analysis to identify loci regulating the
ADHD-associated modules of co-expressed genes.
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signatures, considering the European ancestry GWAS summary statistics on
ADHD described by Demontis et al. [3]. Gene-based analyses were run in
MAGMA_v1.08 [33] using the SNP-wise mean model, and SNPs were
assigned to genes based on a positional-approach and eMAGMA [34, 35].
Competitive gene-set analysis was performed using P-values obtained
from each gene-based analysis. Bonferroni correction was applied to
correct for multiple testing (P < 7.1E-03; Supplementary Information)

ADHD methylation signatures. To test for enrichment in ADHD epigenetic
marks in modules of co-expressed genes we used the summary statistics of
an EWAS on PBMCs from 103 ADHD patients and 100 controls [7] (90%
sample overlap with the in-house sample used in WGCNA), setting the
unadjusted P-value < 0.01 to select differentially methylated proves
(n= 3967 CpG sites). We considered enrichment in epigenetic signatures
in a co-expression module when the three approaches used (methylglm,
methylRRA and gsameth [36]) were significant after applying the Bonferroni
correction for multiple comparison corrections (P < 7.1E−03; Supplemen-
tary Information).

Gene-module eQTL analysis and functional annotation
Genetic information was available from a subset of 231 ADHD subjects and
264 controls included in the WGCNA. A GWAS with each module
eigengene as the dependent variable were performed to identify genetic
variants associated with each co-expression module. After ascertain
normality of module eigengene (Table S1), seven gene-module eQTL
analyses were run under an additive linear regression model using
PLINK_1.09, adding as covariates the first 10 principal components, sex,
age, and the genotyping wave. Lead SNPs were identified in each eQTL
analysis considering a P-value < 1E−06 and functionally annotated using
the FUMA protocol (Functional Mapping and Annotation of Genome-Wide
Association Studies, https://fuma.ctglab.nl/) [37] (Supplementary
Information).
Raw data from this article are not publicly available because of

limitations in ethical approvals and the summary data will be available
upon request.

RESULTS
The WGCNA identified a total of 27 modules of co-expressed
genes with size ranging from 33 to 2191 genes (Fig. S1). 42.7% of
genes (N= 8114) were not assigned to any module and remained
in the module M0. Seven co-expression modules were associated
with ADHD after multiple testing correction (modules M1–M7,
Table S2). No association between module eigengenes and
potential confounders, including age, sex, RIN, or batch, was
detected for any module (Table S2). All modules were consistent
across samples and have characteristic band structures suggestive
of well-defined modules (Fig. S2). Interestingly, modules M1, M3,
and M6 showed high module membership—gene significance
correlation (r2 > 0.4), suggesting that the higher the connectivity
of a gene within the module, the stronger the association with
ADHD (Fig. S3).
Different patterns of gene expression in the brain at different

developmental stages were found across ADHD-associated co-
expression modules. M2 genes are broadly expressed in the whole
brain during the lifespan, while genes in M7 are expressed in a
specific brain area, the M1C_primary motor cortex, only during the
prenatal stage. Besides, genes in modules M1 and M4 show
broader expression in different areas from the telencephalon
during the prenatal period and are mainly expressed in the
cerebellar cortex after birth (Table 1 and S3).
To explore the biological relevance of ADHD-associated co-

expression modules further, we performed a functional enrich-
ment analysis in genes in each module and found that several of
them were enriched in genes involved in pathways previously
related to psychiatric disorders [38], including the posttranscrip-
tional regulation of gene expression and epigenetics (M1 and M7),
covalent chromatin remodeling (M4) or immune system and
inflammatory response (M5), among others (Table 1 and S4-6).
We also performed an enrichment analysis in druggable genes in

the ADHD-associated co-expression modules. For six out of the
seven modules we identified enrichment in target genes of at
least one drug, being Antiinfective for systemic use and Anti-
neoplastic and immunomodulating agents the most common
Anatomical Therapeutic Chemical classification categories across
all modules (Table 1 and S7-8). Interestingly, module M5, enriched
in genes involved in the immune system and inflammatory
response, showed enrichment in drugs from all Anatomical
Therapeutic Chemical categories, especially those related to the
immune response, as expected.
Enrichment in miRNA target genes was identified in modules

M1 and M7. Genes in M1 were targeted by 24 families of miRNAs,
resulting on 40 mature miRNAs, and genes in M7 were targeted by
five mature miRNAs (Table 1 and S9). Consistently, a significant
correlation between the eigengene profile of module M1 and the
expression of four out of 27 of these miRNAs (hsa-miR-142–5p,
hsa-miR-181a-5p, hsa-miR-192–5p, and hsa-miR-215–5p) was
found in a subset of 310 individuals (150 ADHD cases and 160
controls) from which miRNA and gene expression from PBMCs
was available (Fig. S4 and Table S10).
Then, we further explored the ADHD-associated co-expression

modules by integrating transcriptomics with genetic and epige-
netic data on ADHD. We explored whether genes differentially
expressed between ADHD cases and controls were grouped in any
of the identified ADHD-associated modules of co-expressed genes,
and found a significant enrichment in module M5 (P < 2.2E−16),
which also remained significant when considering only highly
connected genes (module membership > 0.8; Table 1). In addition,
we found module M4 significantly enriched in genetics (PMAGMA=
1.8E−03; PeMAGMA= 4.2E−03) and epigenetics (Pgsameth= 1.6E
−04; PmethylRRA= 1.1E−03; Pmethylglm= 8.1E−05) signatures for
ADHD, using data from GWAS meta-analysis [3] and EWAS [7] on
ADHD (Table 1 and S11).
We performed a co-expression module eQTL analysis to identify

loci regulating ADHD-associated modules in a subset of 495
individuals included in the WGCNA (91.3%) from whom genomic
and gene expression profiles were available. After strict quality
control criteria, we ran a GWAS on module eigengenes of each of
the seven ADHD-associated co-expression modules independently
(M1–M7; Fig. S5). QQ plots indicate minimal effects of genomic
inflation, and consequently population substructure, on the
analyses (Fig. S6). No SNP overcame the genome-wide significance
threshold, but 12 independent genomic loci showed suggestive
evidence of association (P < 1E−06) with different module
eigengenes (Table 2 and Fig. S7). Functional annotations revealed
that these loci lay on regions of open chromatin and that most of
the signals were intergenic or intronic (Fig. 2). Several SNPs in
these genomic risk loci were likely to affect the binding of
transcription factors (RBD score= 2b; rs73866266, rs59928606,
rs10830974 and rs36098630), had CADD scores > 12.37, suggest-
ing high deleteriousness (rs73170573, rs13408514, rs1508617,
rs9565360, and rs10830974; Fig. 2, Table 2 and S12) or were
located in regulatory regions of the brain (rs73170578,
rs62096513, and rs12583109), according to the information of
enhancer and promotor histone marks from the HaploReg
webtool [39] (Table 2). In addition, four SNPs, rs62096513,
rs6707596, rs66506812 and rs2462337, lay in nearby genes
encoding transcription factors (ZSCAN30, SP3, CSRNP3 and CUX1,
respectively; Table 2). Of them, rs6707596 nearby SP3 and
rs62096513 located in intron 1 of ZSCAN30 were cis-eQTL of
these genes in PBMCs in our sample (Fig. 3). Interestingly, the co-
expression module M1, which showed suggestive evidence of
association with rs62096513 that lies in blood and brain regulatory
regions of ZSCAN30 and is cis-eQTL in PBMCs, is enriched in target
genes for this specific transcription factor (P= 1.27E-07), which
suggest that ZSCAN30 may be upstream regulator of the M1
module of co-expressed genes.
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DISCUSSION
In the present study, we used a network-based approach to
identify novel ADHD-associated modules of co-expressed genes in
PBMCs. To further investigate the biological significance of the
ADHD-associated networks identified, we performed a compre-
hensive characterization of each module by performing enrich-
ment analysis in biological pathways and drug or miRNA target
genes. We also performed an integrative analysis by combining
transcriptomic, genetic and epigenetic data on ADHD and run an
eQTL analysis to identify genetic variants that could regulate the
ADHD-associated modules of co-expressed genes. Our results
identified seven ADHD-associated modules of co-expressed genes
and support that the study of gene correlation networks may
improve our understanding of the complex molecular systems
underling ADHD.
Two of the ADHD-associated co-expression modules identified

(M1 and M7), were enriched in genes involved in posttranscrip-
tional regulation of gene expression and epigenetic modifications,
two relevant pathways in the pathogenesis of ADHD [6]. In the
same line, we found enrichment in target genes for several
miRNAs in these two modules. In particular, the expression of four
of them (hsa-miR-142–5p, hsa-miR-181a-5p, hsa-miR-192–5p and
hsa-miR-215–5p) also correlates with the eigengene profile of
module M1, pointing them as potential upstream regulatory
mechanisms underlying the M1 co-expression network. Some of
these miRNAs have been previously related to ADHD, like miR-
192–5p upregulated in PBMCs of ADHD patients [16], and
comorbid psychiatric disorders, such as miR-192–5p and miR-
215–5p that were differentially expressed in the dorsolateral
prefrontal cortex of major depression patients [40] or miR-181a-5p
extensively related to drug addiction both in mice and human
studies [41–45]. Interestingly, these miRNAs share many target
genes, suggesting a complex and redundant regulatory system,
particularly in the case of miR-291–5p and miR-215–5p which
recognize the same seed sequence. Several of these miRNAs may
regulate a number of central genes (those with high intramodular
connectivity) from module M1, such as CPSF6 encoding a subunit
of a cleavage factor required for the RNA cleavage and
polyadenylation processing, which was previously related to
externalizing behaviors including ADHD [46], and RICTOR, which
plays an essential role during the neurodevelopment and has
been associated with hyperactivity and reduced anxiety-like
behavior in conditional knock-out mice in the dorsal neural
progenitor cells [47].
Module M1, as well as M2 and M6, were also enriched in genes

that encode proteins involved in the processing of messenger RNA
(mRNA), which includes any process related to the conversion of a
primary mRNA transcript into one or more mature mRNAs. mRNA
processing and alternative splicing are key processes for both the
diversification of protein isoforms and the spatio-temporal control
of transcripts, essential for the neuronal development, maturation,

and synaptic function [48], and genetic variants in genes encoding
these proteins have been related to rare neurodevelopmental
disorders [49], as well as common psychiatric disorders like
schizophrenia [50].
Module M5 was enriched in genes involved in immune system

and inflammatory response, pathways known to play an important
role in the development of neuropsychiatric disorders [38, 51, 52],
particularly in ADHD [53]. Moreover, genes in module M5, and to a
less extent in module M2, are targeted by a great variety of known
therapeutic drugs, especially by those that target the immune
system (including the Anatomical Therapeutic Chemical categories
Antiinfective for systemic use and Antineoplastic and immunomo-
dulating agents), pointing to genes in these co-expression
networks as potential therapeutic targets. Importantly, a recent
study that explored the druggable genome in ADHD also pointed
to drugs to treat autoimmune disorders and malignancies as a
potential novel path for the treatment of ADHD [54]. Besides, in
module M5 we also found an enrichment in genes differentially
expressed in ADHD patients compared with controls, suggesting
that differentially expressed genes in ADHD cases are co-
expressed and participate in the same biologic pathways.
Furthermore, this enrichment was also significant when consider-
ing only highly connected genes, highlighting that the genes
differentially expressed are central nodes highly connected in this
network, reinforcing their relevance in the pathophysiology
of ADHD.
The integrative analysis of transcriptomics, genomics, and

epigenomics data on ADHD revealed that genes in module M4,
also involved in the regulation of gene expression and epigenetic
mechanisms, were enriched in both genetic and epigenetic
signatures previously described for ADHD [3, 7]. We used two
complementary approaches to assign ADHD-associated SNPs to
genes, based on position or eQTL results, and found consistent
results. PNPLA2 and IQSEC1 were the central genes in the module
more significantly associated with ADHD using both methods.
PNPLA2 encodes an enzyme involved in the hydrolysis of
triglycerides in adipose tissue, and has been related to obesity
[55], a highly comorbid disorder in ADHD [56]. In addition, a recent
study pointed PNPLA2 as one of the most high-confidence causal
genes for ADHD, after combining GWAS, eQTL and gene
expression data [57]. IQSEC1 encodes a guanine nucleotide
exchange factor, essential for the maintenance of glutamatergic
synapses [58], one of the key neurotransmitter systems involved in
the pathophysiology of ADHD in combination with dopamine
[59, 60].
The eQTL analysis did not reveal any genetic variant that

overcame the genome-wide significance threshold, but we found
12 independent genomic loci that showed suggestive evidence of
association (P < 1e−06) with the different module eigengenes. We
identified a genetic variant associated with the co-expression
module M1, rs62096513, which is located in a blood and brain

Fig. 2 Functional categories, Regulome DB scores, and minimum chromatin states for independent risk loci associated to any module
eigengene. Regulome DB score predicts likelihood of regulatory functionality, lower scores indicate higher likelihood. Further information can
be found in Boyle et al. [68]. Minimum Chromatin State across 127 tissue and cell types, lower scores indicate higher accessibility, with states
1–7 referring to open chromatin states.
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regulatory region of a transcription factor, ZSCAN30, and regulates
its expression in PBMCs. Interestingly, module M1 was enriched in
target genes for ZSCAN30 that is also included in the same
module, suggesting that this transcription factor is an upstream
regulator of the co-expressed genes in the module. Besides, we
identified another genetic variant associated with the M1 module
eigengene, rs73170578, located in CNTNAP2, which encodes a
neuronal transmembrane protein member of the neurexin super-
family that function as cell adhesion molecules and receptors.
Both rare and common genetic variants in CNTNAP2 have been
associated with neurodevelopmental disorders [61, 62], with a
special relevance in ADHD and autism [63, 64]. In addition, module
M4 was associated with rs6707596, that is an eQTL of the SP3 gene
in PBMCs, a transcription factor involved in synaptic plasticity [65].
Finally, we identified four genetic variants associated with M6
module, among them, rs2462337 is located in a blood regulatory
region upstream the CUX1 gene, a transcription factor involved in
the control of neuronal differentiation and the regulation of
dendritic branching, spine development, and synapse formation
in cortical neurons [66].
Gene networks analyses reduce the dimensionality of genome-

wide gene expression data without losing important biological
information and alleviate the multiple testing burden associated
with the traditional gene-based methods. Similar network-based
studies have been performed using gene expression data in both
brain and blood in several psychiatric disorders like autism,
schizophrenia and bipolar disorder [23–28]. These studies were
usually performed in small sample sizes (n < 100 individuals),
limiting their statistical power. In contrast, we improved the
resolution and robustness of gene networks by considering more
than 500 subjects, which allowed the identification of seven
ADHD-associated modules enriched in relevant and highly
significant biological pathways. However, although our transcrip-
tomic analyses were performed mainly in medication-naive ADHD
patients without comorbid disorders (93.7% of all ADHD cases), we

cannot discard that these conditions may have influenced the
results of the present study. So, further studies in the same cell
type are required to confirm our results. Additionally, the
identified modules were based on expression data from PBMCs,
a non-invasive peripheral tissue whose expression profile has
been proposed as a surrogate for expression profiling in the
central nervous system [67], and further evidence in the brain is
required to confirm their role in the pathophysiology of the
disorder.
In summary, we conducted a multi-step analysis to identify and

characterize modules of co-expressed genes associated with
ADHD using expression data from PBMCs in ADHD cases and
controls. We identified seven ADHD-associated modules of co-
expressed genes, some of them being enriched in both genetic
and epigenetic signatures for ADHD and on biological pathways
relevant for psychiatric disorders, such as the regulation of gene
expression, epigenetic mechanisms and immune signaling. We
also found preliminary evidence for some potential regulatory
mechanisms, including microRNAs and genetic variants, for some
of the ADHD-associated modules of co-expressed genes identified.
These results pinpoint promising genes and pathways for ADHD,
support the use of peripheral blood to assess gene expression
signatures for the disorder and highlight that the combination of
multi-omics signals provides deeper and broader insights into the
biological mechanisms underlying the disorder.
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