
Int j simul model 21 (2022) 3, 417-428 

 Original scientific paper 

https://doi.org/10.2507/IJSIMM21-3-607 417 

 

OPTIMIZATION OF SURFACE ROUGHNESS BASED ON 

TURNING PARAMETERS AND INSERT GEOMETRY 

Vukelic, D.*; Prica, M.*; Ivanov, V.**; Jovicic, G.***; Budak, I.* & Luzanin, O.* 
* University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, 21000 Novi Sad, 

Serbia 
** Sumy State University, Department of Manufacturing Engineering, Machines and Tools, 

Rymskogo-Korsakova 2, 40007 Sumy, Ukraine 
*** ZF Serbia DOO, Nova 7, 26000 Pancevo, Serbia 

E-Mail: vukelic@uns.ac.rs 

Abstract 

This study is focused on dry longitudinal turning of AISI steel using CVD coated cutting inserts. The 

machining was conducted at different levels of cutting speed, feed, depth of cut, corner radius, rake, 

inclination and approach angles. Surface roughness was measured after each experiment, and statistical 

analysis was used to derive an empirical, regression model for arithmetical mean surface roughness. The 

regression model was used to theoretically minimize surface roughness, followed by additional 

verification experiments. The 95 % confidence interval constructed using ten additional batteries of 

experiments, contained the theoretically predicted minimum roughness of Ra = 0.238 μm. The mean 

absolute prediction error of the optimal roughness equals 0.006 μm. The results reveal practical 

applicability of the developed model. 
(Received in March 2022, accepted in July 2022. This paper was with the authors 1 week for 1 revision.) 
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1. INTRODUCTION 

To obtain workpieces with the required configuration and characteristics, a number of various 

machining operations must be used. Machining is a complex physico-chemical process which 

has to meet various requirements such as quality, reliability, productivity, profitability, 

flexibility, etc., whereby numerous controlled and uncontrolled factors influence the 

effectiveness of the output parameters of machining [1-3]. 

      Turning is one of the most important and most widely used machining operations in 

industry. It can be performed on various machine tools, using different types of cutting tools 

and fixtures. Workpieces can undergo rough and finishing turning. There is a large number of 

workpiece geometries which can be turned to finishing dimensions. The goal of the finishing 

turning is to avoid or diminish additional machining, which allows cost reductions and time 

efficiency. The resulting surface roughness is not only one of the most relevant parameters 

regarding the quality assessment, but also influences performance of machined parts, which 

makes it one of the quality indicators that buyers most often specify. Good surface quality is 

equally important as the dimensional accuracy, geometric tolerances, and product specification. 

Surface roughness mostly depends on workpiece material properties, cutting tool properties, 

fixture characteristics, machining parameters and machining conditions. Roughness forming 

mechanism also depends on numerous factors which are difficult to control, which prohibits 

development of an all-round solution to this problem. Due to their stochastic nature, it is 

practically impossible to encompass all input variables. It is always possible to take partial 

approach to solving this problem, but advantage should be given to a comprehensive solution. 

Turning is used to machine workpieces of various materials, among which steels are prevalent. 

AISI 1045 is one of the frequently used steels. It features good machinability and high strength. 
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Its typical applications include gears, die forging, hot upsetting, shafts, axles, bolts, studs, 

pinions, casters, support plates, etc. 

      Many researchers have analysed surface roughness produced during turning of AISI 1045 

steel. For instance, Noordin et al. [4] used RMS for surface roughness prediction. Surface 

roughness increased with increasing feed and with decreasing speed. As side cutting edge angle 

increased, the roughness first decreased, followed by an increase. Bhattacharya et al. [5] used 

Taguchi design and ANOVA to determine the contribution of the cutting speed, feed, and depth 

of cut to surface roughness. The results showed a significant effect of cutting speed on the 

surface roughness. Hwang and Lee [6] presented an investigation into the MQL (minimum 

quantity lubrication) and wet turning processes in order to predict surface roughness. The effect 

of cutting speed and feed rate was dominant, while the effect of depth of cut was relatively 

small. Cutting speed and feed rate exhibited a nonlinear relationship with surface roughness. 

Cutting speed and depth of cut showed opposite effects on surface roughness. MQL turning 

yielded better surface roughness compared with wet turning. Esteves Correia and Paulo Davim 

[7] compared the influence of inserts geometry on surface roughness. Surface roughness values 

increased a lot with the feed rate while somewhat decreasing with the cutting speed. At higher 

feeds, turning with conventional inserts yielded higher values of surface roughness in 

comparison with wiper inserts. Kohli et al. [8] developed a fuzzy model to predict surface 

roughness. Surface roughness improved with decreasing feed, decreasing depth of cut and 

increasing cutting speed. Using Taguchi method, Senthilkumar and Tamizharasan [9] analysed 

the effects of geometrical parameters of cutting insert (cutting insert shape, corner radius, relief 

angle) on surface roughness. They reported high level of interaction between the geometrical 

parameters of a particular cutting tool insert, noting a pronounced interaction effect between 

cutting insert shape and corner radius. ANOVA showed that cutting insert shape was the most 

significant parameter, followed by corner radius, while the effect of relief angle was negligible. 

Senthilkumar et al. [10] investigated the influence of the machining parameters and approach 

angle on surface roughness. They coupled grey relational analysis and fuzzy logic technique 

for the purpose of evaluation. They found that surface roughness improved with decreasing 

feed, depth of cut, and approach angle. The increase of cutting speed improved surface 

roughness to a point, after which it started to deteriorate. Xiao et al. [11] studied the effect of 

spindle speed, feed and depth of cut towards surface roughness. According to their results, 

surface roughness increased with increasing feed. The increase of spindle speed resulted in 

initial increase of surface roughness, followed by its decrease, while the increase of the depth 

of cut resulted in initial decrease of surface roughness, followed by its increase. Analysis of 

variance suggested that feed had great effect on surface roughness. Abbas et al. [12] evaluated 

the effect of cutting speed, depth of cut, feed and corner radius on surface roughness using 

Taguchi method, ANOVA and RSM. They noted that the increase of feed and depth of cut 

diminished the surface quality, while higher cutting speed and corner radius contributed to its 

improvement. Kimakh et al. [13] analysed the effect of the cutting speed, feed and the corner 

radius on the surface roughness, finding that surface roughness improves with the increase of 

cutting speed, while being negatively impacted by feed rate. Although corner radius had little 

influence on surface roughness, it strongly affected the influence of feed and cutting speed on 

the surface roughness. Masoudi et al. [14] investigated the effects of nozzle position, workpiece 

hardness, and tool type on the surface quality. The results demonstrated that lubrication systems 

have a significant impact on the surface topography. The MQL system strongly reduced the 

roughness compared to the dry and wet machining. Montilla-Montaña et al. [15] compared the 

machinability under conventional machining and pulsed-current-assisted machining. Surface 

roughness was lowest for the smallest displacement, high velocity and low rake angle, while 

using electro pulses. Raja et al. [16] analysed the effect of untreated and deep cryogenically 

treated tools on surface roughness, using the fuzzy inference logic and the Taguchi method. 
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The results showed that surface roughness decreased at a higher level of speed and depth of cut, 

as well as a lower level of feed. Camposeco-Negrete and Calderón-Nájera [17] optimized a 

turning process using the response surface methodology and the desirability analysis. Surface 

roughness was lower for the reduced feed, cutting speed and depth of cut. Abbas et al. [18, 19] 

optimized machining parameters and cooling conditions (dry, wet, MQL) for minimum surface 

roughness. They reported that surface roughness improved with reduced feed, depth of cut, and 

cutting speed, with the application of MQL cooling strategy. Jiang et al. [20] presented a method 

to optimize cutting parameters, considering the trade-off among carbon emissions, surface 

roughness, and processing time. The amount of carbon emissions and surface roughness were 

found to be inversely proportional. The same relationship was also seen between the surface 

roughness and the processing time. Equeter et al. [21] presented the results of an exploratory 

study on the influence of tool flank wear on surface roughness. Significant correlation was 

found between surface roughness and cutting tool flank wear. Abidi [22] performed Taguchi 

method and ANOVA analysis to determine the influence of turning parameters on surface 

roughness. The results showed that increased feed results in increased surface roughness, while 

increasing the cutting speed slightly improves the surface quality. Paese et al. [23] performed 

an experimental investigation based on ANOVA and RSM techniques to determine how the 

factors such as cutting speed, feed, depth of cut, corner radius, substrate and coating method 

influence surface quality. The PVD-coated inserts in combination with lower feed and higher 

corner radius generated the lowest surface roughness. Vijaya Ganesa Velan et al. [24] studied 

the effect of turning parameters and high-pressure coolant on surface roughness. The results 

showed lower surface roughness when the cutting speed is increased, whereas higher feeds 

resulted in increased surface roughness. Application of coolant at a higher pressure substantially 

reduces surface roughness. Abdulateef and Taha [25] reported utilization of computer vision 

and backlight techniques to determine the surface roughness of a workpiece under a variety of 

process parameters. The comparison revealed that the vision method provided precise and 

consistent results in comparison with the traditional stylus method. Szczotkarz et al. [26] 

compared three types of coatings deposited with the PVD method on a sintered carbide insert 

(TiN, TiAlN and TiC). They showed that for the TiAlN coated insert, lower surface roughness 

was observed at lower cutting speeds and higher feeds, while for the TiC coated insert, higher 

cutting speeds lead to lower surface roughness. Vukelic et al. [27] modelled turning process 

with a constant cutting force using ANN. They reported that the surface roughness first 

improves and then worsens with the increase in cutting force, cutting time and number of 

revolutions. Su et al. [28] developed prediction models for surface roughness considering tool 

wear evolution. They used cutting depth, feed, spindle speed, and tool flank wear as input 

variables, while orthogonal experimental results were employed as training points to establish 

the prediction models based on support vector regression algorithm. Their results showed that 

the models based on cutting parameters and tool wear have higher prediction accuracy than the 

prediction models solely based on the cutting parameters. 

      This review shows that various methods and techniques have been employed for the 

investigation of surface roughness problem. As the basis of scientific research, experimental 

approach is increasingly being augmented by modelling and optimization. Design of 

experiment, ANOVA, RMS, Taguchi, SVR, and artificial intelligence are widely used to reduce 

costs and time of experimental research while allowing accurate prediction of surface 

roughness. In addition, development of predictive models for surface roughness represents the 

basis of optimization based on various criteria. For the turning process specifically methods and 

techniques of AI are most frequently used. These methodologies have their comparative 

advantages and disadvantages. On the other side, most of them suffer from limitations and 

idealizations which contribute to errors, which emphasizes the importance of experimental 

verification of the obtained results. 
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      Analysis of previous investigations indicates that there are numerous complex, interacting 

factors which impact the final surface quality obtained by turning. It is possible to identify 

certain factors which are generally most vital to reducing surface roughness. A combination of 

small feed [29] and corner radius [30], and efficient cooling and lubrication [31], generally 

leads to good surface quality. Moreover, the use of wiper turning inserts instead of their 

conventional counterparts, also yields good finished surface [32]. Vibration minimization will 

also improve surface roughness [33]. In spite of the previous investigations, phenomena which 

are responsible for the formation of surface roughness are still insufficiently understood due to 

their highly complex and interrelated nature, while the remaining factors can affect surface 

quality both ways, thus still holding us away from an all-round solution of the problem. 

Integration of a larger number of input factors into the models has the potential to increase their 

accuracy, especially in the case of finishing turning, where the influence of the sum of variables 

is especially crucial. 

      The goal of this investigation is to generate a model for prediction and optimization of 

surface roughness which would be applicable on a wider scale, while reducing the costs of 

experimentation. Development of a sufficiently accurate empirical model shall be an important 

step towards efficient production planning, selection of processing regime parameters and 

cutting tools. Furthermore, in a real industrial application, such empirical model shall minimize 

errors, i.e. defect and reworking, while avoiding unnecessary costs due to producing surface 

quality above the required level. For the purpose of investigation, modelling, and optimization 

of finishing turning of AISI 1045 steel, the authors considered a comprehensive set of input 

factors, including not only the machining parameters, but also the cutting tool geometry. A total 

of seven independent variables were selected for this study, of which three pertain to machining 

(cutting speed, feed, depth of cut), while the remaining four describe cutting tool geometry 

(corner radius, rake angle, inclination angle, approach angle). The results obtained based on a 

statistically organized experiment, shall be used to construct empirical model which best allows 

process modelling, with the goal to minimize surface roughness as the result of finishing 

turning. 

2. MATERIALS AND METHODS 

Research methodology is schematically shown in Fig. 1. 

 

Figure 1: Research methodology. 
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      Experiments were conducted with workpieces dimensioned Ø 40 × 400 mm, made of AISI 

1045 steel. Chemical composition of AISI 1045 steel is outlined in Table I, while mechanical 

and physical properties are tabulated in Table II. 

      Finishing longitudinal turning was performed on a CNC lathe (Dmg Mori Seiki CTX 510 

Ecoline), which features cost-efficient power consumption, excellent rigidity and vibration 

absorption, high accuracy and precision. Vital technical data of this CNC lathe are: main spindle 

power 33 kW, maximum torque 630 Nm, maximum speed range 3250 rpm, maximum tailstock 

force 1250 daN, maximum turning diameter Ø 465 mm and maximum turning length 1050 mm. 

Table I: Chemical composition of AISI 1045 

 carbon steel. 

Table II: Mechanical and physical properties   

of AISI 1045 carbon steel. 

Element Content (%) 

Carbon, C 0.43-0.50 

Manganese, Mn 0.60-0.90 

Sulfur, S 0.05 (max) 

Phosphorous, P 0.04 (max) 

Iron, Fe Balance 
 

Properties Value 

Tensile strength 585 MPa 

Yield strength 450 MPa 

Modulus of elasticity 200 GPa 

Poisson’s ratio 0.29 

Brinell hardness 163 

Density 7.87 g/cm3 
 

      Workpiece locating and clamping was performed using three-jaw chuck (main spindle) and 

rotary centre (tailstock). This combination of fixtures allowed sufficient stiffness and minimal 

compliance of the fixture-workpiece assembly. 

      Seven parameters were varied, three numerical-kinematic factors, i.e., cutting speed, feed, 

depth of cut, and four categorical-geometrical factors (corner radius, rake, inclination, and 

approach angle). Continuous parameters were varied on two levels, while the categorical ones 

were varied at three levels. The design of experiment was based on A-optimal design which 

allowed us to minimize the number of required runs while being able to efficiently and reliably 

identify active subset of the factors. Besides minimizing the average variance of the parameter 

estimates, an A-optimal design significantly reduces the worst prediction variance compared 

with D-optimal designs, as discussed by Jones et al. [34]. Each of the 27 unique experiments 

from the design table was performed using a brand new, CVD-coated cutting insert. The 

common characteristics of the cutting inserts used in this experiment are: insert shape code T, 

cutting edge count 3, insert included angle 60°, clearance angle 7°, insert thickness 4 mm, fixing 

hole diameter 4.5 mm, inscribed circle diameter 9.53 mm, theoretical cutting edge length 16.5 

mm, and cutting edge effective length 14.5 mm. Machining parameters and cutting tools were 

selected according to recommendations of cutting inserts manufacturer, and were based on 

workpiece material, workpiece geometry, equipment characteristics, stability, etc. 

      The output variable in this experiment, arithmetical mean surface roughness, was measured 

and recorded for all 27 experiments. Surface roughness measurements were performed on a 

Talysurf measuring device with the following basic characteristics: radius accuracy 0.006 %, 

roughness noise less than 10 nm Rz, and gauge resolution down to 0.3 nm. The column and the 

base of the measuring device are made of composite granite to provide high vibration 

dampening, thermal inertia and stiffness throughout the measuring cycle. In addition, the 

measuring instrument has passive air mounts in the anti-vibration system function. Ra values 

were evaluated within the evaluation length, which consisted of five sampling lengths, i.e., the 

five cut-off wavelengths of the profile filter. Gaussian filters were used to separate roughness 

and waviness characteristics. The measurement was conducted with the cut-off length of 

0.8 mm, sampling length of 0.8 mm, and evaluation length of 4 mm. Measurements were taken 

along the contour lines on the workpiece, in ten radial directions oriented at 36° relative to the 

axis of the workpiece. Surface roughness values were calculated as mean values derived from 

the ten repeated measurements. 
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      Shown in Table III are the factors in this design of experiment, with their corresponding 

levels. While the continuous factors are varied at their high and low levels, the categorical 

factors are varied at three levels which correspond to real values of parameters in the 

commercially available cutting tool inserts. 

Table III: Process window. 

Parameter Low level Middle level High level 

Cutting speed, vc (mm/min) 400 / 600 

Feed, f (mm/rev) 0.1 / 0.2 

Depth of cut, ap (mm) 1.5 / 2.5 

Corner radius, r (mm) 0.4 0.8 1.2 

Rake angle, γ (°) 3 6 9 

Inclination angle, λ (°) 0 3 6 

Approach angle, κ (°) 60 75 90 

3. RESULTS 

Based on the table of experiment generated for the A-optimal design with 27 runs, all 

experiments were performed using the levels defined in Table III. The results of measurements 

are reported in Table IV. 

Table IV: The results of measurements. 
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1 400 0.2 2.5 1.2 3 0 90 1.69 1.72 1.69 1.67 1.68 1.73 1.68 1.68 1.67 1.69 

2 400 0.2 1.5 0.4 9 3 90 4.20 4.22 4.10 4.12 4.16 4.23 4.13 4.15 4.12 4.10 

3 600 0.1 1.5 0.8 9 0 60 0.52 0.51 0.50 0.50 0.52 0.50 0.51 0.52 0.50 0.51 

4 600 0.2 2.5 0.8 9 6 60 2.25 2.27 2.19 2.21 2.23 2.25 2.22 2.24 2.21 2.19 

5 600 0.2 1.5 1.2 3 0 75 1.61 1.66 1.60 1.63 1.65 1.64 1.62 1.66 1.60 1.61 

6 400 0.2 1.5 0.8 6 3 90 2.38 2.43 2.33 2.36 2.40 2.41 2.36 2.41 2.33 2.38 

7 600 0.2 1.5 0.4 3 0 75 4.81 4.96 4.89 4.85 4.94 4.97 4.85 4.93 4.89 4.81 

8 600 0.1 2.5 1.2 6 6 75 0.42 0.43 0.41 0.42 0.42 0.42 0.41 0.43 0.43 0.41 

9 400 0.1 2.5 0.4 3 3 60 1.32 1.35 1.29 1.31 1.33 1.34 1.33 1.33 1.35 1.29 

10 400 0.1 1.5 0.8 3 6 90 0.67 0.67 0.65 0.65 0.66 0.67 0.65 0.64 0.66 0.65 

11 400 0.2 2.5 0.4 6 0 60 4.95 4.97 4.83 4.85 4.90 4.98 4.86 4.89 4.90 4.85 

12 400 0.1 1.5 1.2 9 0 60 0.35 0.36 0.34 0.35 0.35 0.36 0.34 0.35 0.35 0.35 

13 400 0.2 1.5 0.4 9 6 75 4.45 4.50 4.32 4.37 4.41 4.49 4.37 4.43 4.41 4.37 

14 600 0.1 1.5 0.4 6 0 90 1.01 1.03 0.99 1.00 1.02 1.03 1.01 1.03 1.02 1.00 

15 600 0.2 1.5 1.2 6 3 60 1.55 1.61 1.58 1.56 1.60 1.61 1.57 1.61 1.60 1.56 

16 600 0.2 2.5 0.8 6 0 90 2.32 2.37 2.27 2.30 2.34 2.37 2.30 2.33 2.34 2.30 

17 400 0.2 1.5 1.2 3 6 60 1.77 1.83 1.75 1.79 1.81 1.83 1.79 1.81 1.79 1.75 

18 600 0.1 1.5 0.8 3 3 75 0.61 0.63 0.61 0.62 0.63 0.62 0.62 0.61 0.62 0.61 

19 600 0.2 2.5 1.2 9 6 90 1.42 1.48 1.45 1.44 1.46 1.47 1.44 1.41 1.44 1.45 

20 600 0.1 1.5 0.4 6 6 60 1.24 1.30 1.27 1.26 1.28 1.29 1.27 1.27 1.24 1.26 

21 400 0.2 1.5 0.8 6 6 75 2.51 2.55 2.45 2.47 2.53 2.55 2.46 2.51 2.51 2.47 

22 400 0.1 2.5 0.8 9 0 75 0.54 0.53 0.52 0.54 0.52 0.53 0.54 0.51 0.53 0.54 

23 600 0.2 2.5 0.8 3 3 60 2.55 2.63 2.53 2.58 2.61 2.63 2.56 2.61 2.63 2.55 

24 400 0.1 2.5 1.2 6 3 75 0.40 0.42 0.41 0.41 0.41 0.41 0.40 0.41 0.42 0.41 

25 600 0.2 2.5 0.4 9 3 75 4.17 4.13 4.29 4.21 4.25 4.13 4.21 4.22 4.29 4.21 

26 600 0.1 2.5 0.4 3 6 90 1.34 1.31 1.28 1.30 1.32 1.33 1.30 1.29 1.28 1.30 

27 600 0.1 1.5 1.2 9 3 90 0.35 0.34 0.33 0.34 0.34 0.34 0.33 0.36 0.33 0.34 

      Statistical analysis was performed in SAS JMP 14. The regression model was selected 

according to three parameters: Akaike information criterion (AIC), Bayesian information 
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criterion (BIC) and coefficient of determination (R2). To facilitate the adoption of the final 

regression model, two common information criteria were used, AIC and BIC. Both criteria 

essentially penalize inadequate fitting, smaller values indicating models with better prediction 

abilities. The adopted model has 15 terms and meets both criteria in that they reach their 

minimal values. For more complex models, the BIC continues to diminish, while the AIC grows. 

The adopted regression model is linear and explains over 99 percent of process variability. Its 

root mean square error (RMSE) is small compared to mean value of response, thus yielding 

narrow confidence interval. Summary of fit and analysis of variance are given in Tables V and 

VI, respectively. 

Table V: Summary of fit. Table VI: Analysis of variance. 

Element Value 
R2 0.999756 

R2
adj 0.999471 

RMSE 0.03332 

Mean of Response 1.906222 

Observations 27 
 

Source DF 
Sum of 

squares 

Mean 

square 
F ratio 

Model 14 54.542912 3.89592 3509.075 

Error 12 0.013323 0.00111 Prob > F 

Total 26 54.556235  <.0001* 
 

      Shown in Table VII are estimated regression coefficients sorted by ascending order of p-

values. It is evident that the most influential factor is feed, followed by the corner radius and 

the remaining factors. Among the interactions, the most impactful to the surface quality is the 

two-way interaction between feed and corner radius. Although depth of cut is not statistically 

significant per se, it is a part of the statistically significant interaction with the inclination angle. 

As can be seen from Table VII, the cutting speed and approach angle do not figure in the 

adopted model. 

Table VII: Estimated regression coefficients (* statistical significance). 

Term Estimate Std error t ratio Prob>|t| 
Intercept 2.0335718 0.009382 216.75 <.0001* 

f (0.1, 0.2) 1.1134142 0.00861 129.32 <.0001* 

r {1.2&0.8-0.4} -0.839439 0.00999 -84.03 <.0001* 

f × (r {1.2&0.8-0.4} - 0.33333) -0.54846 0.009049 -60.61 <.0001* 

r {1.2-0.8} -0.224897 0.008628 -26.07 <.0001* 

γ {3&6-9} 0.1447973 0.008194 17.67 <.0001* 

f × r {1.2-0.8} -0.16767 0.010016 -16.74 <.0001* 

(r {1.2&0.8-0.4} - 0.33333) × (γ {3&6-9} - 0.33333) -0.11126 0.01283 -8.67 <.0001* 

γ {3-6} 0.0574647 0.009028 6.37 <.0001* 

λ {6-3&0} 0.0540529 0.009508 5.68 0.0001* 

f × (γ {3&6-9} - 0.33333) 0.0663919 0.013749 4.83 0.0004* 

(γ {3&6-9} - 0.33333) × λ {3-0} 0.0426176 0.011096 3.84 0.0023* 

ap × (λ {6-3&0} + 0.33333) -0.029261 0.008876 -3.30 0.0064* 

λ {3-0} 0.0291962 0.010412 2.80 0.0159* 

ap (1.5, 2.5) 0.0134771 0.007735 1.74 0.1070 

      The main effects of the terms which qualified for the adopted regression model, are shown 

in Fig. 2. The profiler plot shows factor settings which are the result of maximization of 

desirability function, which, in the case of this study, minimizes mean arithmetical surface 

roughness. As shown in Fig. 2, the adopted model predicts mean value of Ra = 0.238 µm. 

      The adopted regression model was verified experimentally, through ten additional 

confirmation experiments. Confirmation experiments were performed with the optimized 

settings shown in the prediction profiler (Fig. 2). Measured Ra values were subsequently used 

to construct the experimental 95 % confidence intervals which should contain the predicted Ra 

mean. 
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Figure 2: Prediction profiler. 

      Although the cutting speed and approach angle were left out of the adopted regression 

model, the diagrams shown in Fig. 3 were consulted to decide on their levels for the purpose of 

conducting the confirmation experiments. Ra residuals were plotted against cutting speed and 

approach angle, and the resulting dispersions were observed. Considering the low and high 

levels on both plots, one concludes that keeping the cutting speed at its high level (600 mm/min) 

contributes to reduction of dispersion, i.e., the dispersion equals 0.064, as opposed to 0.080 at 

the low level (400 mm/min). Similarly, the approach angle of 90° is favoured due to yielding 

lowest dispersion compared to the remaining two levels. 

      With that in mind, confirmation experiments were conducted with the following factor 

values: cutting speed vc = 600 mm/min, feed f = 0.1 mm/rev, depth of cut ap = 1.5 mm, corner 

radius r = 1.2 mm, rake angle γ = 6°, inclination angle λ= 6° and approach angle κ = 90°. 

  

Figure 3: Residuals of surface roughness Ra versus Figure 4: Results of confirmation runs. 

cutting speed vc (mm/min) and approach  

angle κ (°). 

      Each of the ten confirmation experimental batteries consisted of ten measurements. The 

measurements were used to generate ten 95 % confidence intervals. The intervals are shown in 

Fig. 4, where the red reference line marks the mean Ra predicted by the regression model. As 

can be seen, only one of the experimentally constructed CI’s does not contain the predicted 

mean value. Also, the 95 % CI = [0.240, 0.248] constructed based on the total of 100 

measurements, although very narrow, misses the predicted mean Ra by 0.002 µm. 

4. DISCUSSION 

The quality of machined surface largely depends on the values and relative magnitudes of 

corner radius and feed. At constant feed, smaller corner radii yielded worse surface quality. 

This can be attributed to varying rake angle alongside the cutting edge, as well as the uneven 

distribution of pressure within the cutting zone. As the corner radius increases, the generated 

heat is dispersed over the larger contact area between the tool tip and workpiece material, thus 
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lowering the thermal load and tool wear. Larger corner radius can also cause an increase in 

chatter and vibrations, which was not recorded during this study. The use of chip breakers 

contributed to generation of broken chip during the experiment. In addition, larger radii 

contribute to a more balanced distribution of generated heat. 

      Surface roughness increases at higher feeds, i.e., peaks and valleys generated by the tool tip 

on workpiece surface become ever wider and deeper. Theoretically, geometrical surface 

roughness is a function of feed for a given corner radius, which explains better surface quality 

at smaller feeds. 

      The increase of rake angle contributes to surface quality improvement. Larger rake angle 

diminishes the cutting tool wedge angle, which results in a sharper tool. Up to a point, this 

contributes to reduction of surface roughness. However, as the rake angle continues to increase, 

cutting tool wedge gets weaker, i.e., there is a loss in cutting edge stability, which leads to a 

mild deterioration of surface quality. Moreover, smaller rake angles can contribute to better 

chip breaking, due to less cohesion between the neighbouring layers during the chip creation. 

      The inclination angle directly impacts the direction in which the chip flows during the 

cutting process. At zero inclination angle, the chip flows orthogonally to the cutting edge 

direction. As the approach angle increases, the chip flows in the direction opposite to feed, 

towards the workpiece. During this experiment, a slight damage to machined surface was 

observed due to chip impact. 

      The increase of depth of cut contributes to reduced tool life. The volume of unbroken chip 

inflates, thus increasing the force which contributes to cutting edge deformation, which is why 

the smaller depth of cut contributes to better surface quality. 

      Although previous studies report the importance of cutting speed on the activation of tool 

wear mechanisms, its diminished impact on surface roughness in this study indicates that during 

the cutting process the critical tool wear was not reached. As the cutting speed increases, surface 

quality gets better due to lesser cutting force, which ultimately leads to minimization of 

vibrations. 

      Approach angle impacts the length of cutting edge in contact with the workpiece, and 

influences the cutting force distribution, i.e., the load forces on the workpiece. At lower 

inclination angles cutting force is distributed over a longer cutting edge portion, thinner chip is 

generated at the equal tool feed, while the concentrated tool insert wear is reduced. As the 

inclination angle increases, feed resistance goes up while the penetration force goes down, thus 

reducing the risk of vibrations. 

      Finally, the cutting inserts with the positive basic geometry, used in this study, contributed 

to smaller cutting forces, while at the same time reducing the risk of vibrations. Smaller cutting 

forces induce less vibration which positively impacts the surface quality. High temperatures 

which are present within the machining zone, can soften the material, while the stimulated 

shearing overtakes the ploughing. In combination with smaller cutting forces, higher shearing 

and lower ploughing positively impact tool stability which also favours the surface quality. By 

reducing the friction, the CVD coating also reduces the heat generated in the machining zone. 

As the result, one observes smaller thermal loads on the cutting tool inserts, which, in turn, 

leads to absence of additional tool wear mechanisms which are the result of high temperatures, 

such as the thermal cracks, built-up edges, etc. All this contributed to increased tool life and 

higher surface quality after the finishing turning. It should also be noted that the chip breakers 

used in the experiment increased the efficiency of chip breaking, which allowed broken chip to 

be the dominant form of chip in the process. 

      As mentioned before, the confirmation experiments were conducted with the theoretically 

optimized settings which allowed generation of minimum surface roughness. Mean percent 

error of the confirmation experiment equals 2.58 %, while the mean absolute error is 0.006 μm. 

The small percent and mean absolute errors additionally emphasize the practical application 
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potential of the proposed model. In fact, the absolute error on the 10-3 μm order of magnitude 

have practically no impact on the surface roughness. Moreover, this error is also practically 

beyond the accuracy of the conventional measuring instrumentation used in surface roughness 

experiments. 

5. CONCLUSION 

Numerous complex phenomena are present during the turning process. In interaction with a 

large number of process input variables, these phenomena have a significant impact on surface 

roughness. In order to overcome the discussed problems, this experimental study suggests the 

empirical model which is based on three process- and four tool geometry parameters which are 

vital to the process of finishing turning. 

      Based on the results from this study, following conclusions emerge: 

• The 27 runs in the A-optimal design of experiment, performed by finishing turning with the 

three numerical and four categorical factors, yielded mean arithmetic surface roughness 

within the 0.33 μm do 4.98 μm range. The obtained values of Ra are lower than the range 

characteristic for typical turning processes Ra = 0.8-6.3 μm [35]. The minimal value of Ra 

shows it is possible to obtain extremely high surface quality and eliminate the need for 

subsequent machining operations, which, in turn, reduces machining time and costs. 

• In this experiment, surface roughness improves with the reduction of feed, depth of cut and 

cutting insert inclination angle, while the cutting speed, corner radius, rake and approach 

angle should be kept at their high levels. Although feed and corner radius had a dominant 

impact on the surface roughness, the contribution of the remaining parameters could not be 

neglected. 

• The empirical model proposed in this study allows modelling and optimization of the 

finishing turning process, through the selection of the proper levels of seven input variables. 

This yields a minimized mean surface roughness, Ra = 0.238 μm, within a narrow 95 % 

confidence interval which results in small prediction errors. 

      Future investigations shall be directed towards evaluation, modelling, and optimization of 

other operations, and shall include additional input variables (clearance angle, insert size, insert 

shape, chip breaker type, coating type), as well as the prediction and optimization of several 

output variables (dimensions, tool wear, energy consumption). 
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