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A B S T R A C T   

Background: Proteomics can reveal molecular pathways of disease and provide translational perspectives to 
inform clinical decision making. Although several studies have previously reported the cystic fibrosis airway 
proteome, the relationship with severity of lung disease has not been characterised. The objectives of this 
observational study were to investigate differences in the CF sputum proteome associated with disease severity 
and identify potential markers of disease with translational potential. 
Methods: Sputum samples from healthy volunteers and cystic fibrosis subjects (some prescribed modulator 
therapies) were analysed using liquid-chromatography tandem mass spectrometry. Severity of lung disease was 
based on baseline spirometry (percentage predicted forced expiratory volume in 1 s, FEV1%). 
Results: Multiple sputum proteins (108 increased; 202 decreased) were differentially expressed in CF (n = 38) and 
healthy volunteers (n = 32). Using principal component analysis and hierarchical clustering, differences in 
sputum proteome were observed associated with progressive lung function impairment. In CF subjects, baseline 
FEV1% correlated with 87 proteins (positive correlation n = 20, negative n = 67); most were either neutrophil 
derived, or opposed neutrophil-driven oxidant and protease activity. 
Conclusion: Predictable and quantifiable changes in the CF sputum proteome occurred associated with pro
gressive lung function impairment, some of which might have value as markers of disease severity in CF sputum. 
Further work validating these markers in other patient cohorts and exploring their clinical utility is needed.   

1. Introduction 

The destructive bronchiectasis seen in cystic fibrosis (CF) lung dis
ease leads to progressive respiratory failure and premature death [1]. 
Dysfunction of the cystic fibrosis transmembrane conductance regulator 
(CFTR) protein results in impaired mucociliary clearance, that coupled 
with disturbed immune and epithelial cell behaviour predisposes to 
chronic bacterial infection and persistent inflammation in the CF airway 
[2]. An important advance over the past decade has been the develop
ment of CFTR modulators that address the underlying defect in CFTR 
function, but not everyone with CF can take these new medications and 

they are not universally available. Improved understanding of the pro
cesses underlying CF lung disease could aid the discovery of new targets 
for both novel therapeutics and disease monitoring. 

Proteomics, the study of large-scale changes in protein expression 
within biological systems, can reveal molecular pathways of disease and 
provide translational perspectives to inform clinical decision making 
[3]. In CF, proteomics has defined protein abundance changes in 
epithelial cells cultured in vitro or from animal models [4,5]. Proteomic 
analysis of CF sputum and bronchoalveolar lavage fluid samples has 
established that the CF respiratory tract proteome is distinct from 
healthy controls, with the differences largely driven by upregulation of 
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neutrophil-related immune and inflammatory responses, as well as dif
ferences in a number of pathways including those related to protease 
activity, oxidative stress and actin cytoskeleton rearrangement [6–9]. 
Individual proteins relate to severity of lung disease as determined by 
baseline percentage predicted forced expiratory volume in 1 s (FEV1%) 
[7,10–17]. However, the relationship between severity of lung disease 
and the global proteome is less clear. 

We hypothesised that there will be differences in sputum proteome 
that associate with severity of CF lung disease. Sputum samples from 
adults and healthy controls were compared using quantitative compar
ative proteomics. The proteome differences that aligned with increased 
severity of disease were defined. 

2. Materials and methods 

2.1. Subjects and study design 

This cross-sectional observational single-centre study was delivered 
at a large UK specialist CF centre and conducted in line with ethical 
approval granted by The Greater Manchester West Research Ethics 
Committee (15/NW/0655). All subjects provided written informed 
consent. 

CF subjects were aged over 18 years, had a confirmed diagnosis using 
genetic testing and/or sweat testing with typical phenotypic features, 
and were deemed clinically stable by the medical team when samples 
were collected. Exclusion criteria were pregnancy and lung trans
plantation. Baseline lung function was obtained on the same day sam
ples were collected. Disease severity in CF subjects was based on 
baseline FEV1, such that mild disease was defined as FEV1>70%; 
moderate 40-70%; and severe <40%. The control group comprised adult 
non-smokers with no significant respiratory or gastro-intestinal past 
medical history and no evidence of airway obstruction (FEV1% pre
dicted ≥80% and FEV1/FVC ratio ≥0.7). 

2.2. Sputum collection and processing 

Spontaneous sputum samples were collected and stored from CF 
subjects. Induced sputum samples were collected from healthy control 
subjects using 7% hypertonic saline [18]. The sputum plugs were 
manually separated from the salivary component of samples and then 
stored at − 30 ◦C prior to analysis. They were then thawed and dithio
threitol added. Following three periods of agitation on a vortex mixer 
and straining to remove large particulates, samples were centrifuged. 
The recovered supernatant fraction was aliquoted and stored at − 80 ◦C. 

2.3. Proteomic analysis 

Details of the proteomic analysis are provided in the supplementary 
material. After thawing, supernatant fractions were treated with Rap
iGestTM SF Surfactant (Waters, Wilmslow, UK), reduced with dithio
threitol, and alkylated with iodoacetamide. Proteins were digested 
overnight with trypsin at 37 ◦C. Digestion was stopped by addition of 
trifluoroacetic acid. The samples were centrifuged to remove particu
lates. Tryptic peptides within samples were analysed by liquid chro
matography mass spectrometry using an Ultimate 3000 nano system 
coupled to QExactive-HF mass (Thermo Fisher Scientific, Hemel 
Hempstead, UK). 

2.4. Protein identification 

Run alignment and peak picking was carried out using Progenesis QI 
for proteomics v4 (Waters, Wilmslow, UK), while database searching 
used the MASCOT search engine version 2.6 (Matrix Science, London, 
UK). Samples were searched against a database comprising all human 
sequences in the UniProt UniHumanReviewed database (updated 12/ 
08/2020; 20,356 sequences; 11,357,197 residues) using trypsin as the 

specified enzyme, carbamidomethylation of cysteine as fixed modifica
tion, methionine oxidation as variable modification and one trypsin 
missed cleavage, precursor and fragment ion error tolerances were set to 
10 ppm and 0.01 Da, respectively. The false discovery rate (FDR) was 
calculated using the decoy database tool in MASCOT. Only proteins 
identified with an FDR <1% were accepted. 

2.5. Statistical analysis 

All statistical analyses were undertaken within the R environment 
(v.1.2.5033). Mann-Whitney U tests compared protein abundance of in 
CF and healthy control subjects, with correction for multiple compari
sons [19]. Proteomic data were further analysed by hierarchical clus
tering and principal component analysis (PCA), which are two 
commonly used unsupervised statistical techniques for investigation of 
study populations with biological datasets. Hierarchical clustering 
analysis attempts to group subjects based on similarity of their datasets 
into clusters, which are then displayed using dendrograms and heat 
maps [20]. Principal component analysis is a different approach that 
allows interpretation of the dataset by reducing the number of variables 
whilst retaining as much of the variance as possible. To do so existing 
variables undergo linear transform to form new variables called prin
cipal components. The first principle component captures the largest 
amount of variance, with each subsequent principal component 
responsible for progressively less variance [21]. The relationship be
tween the first two principal components and FEV1% was examined 
using Spearman’s rank analysis. 

Correlations between protein abundance and FEV1% were examined 
using Spearman’s rank analysis. Gene set enrichment analysis was per
formed on the proteins relating to lung disease severity, as determined 
by those correlating with FEV1% (p < 0.05). This approach was origi
nally designed for genomic experiments but has been adapted to identify 
overrepresented protein sets. It involves calculating an enrichment score 
which then determines a statistical significance, which is then adjusted 
for multiple hypothesis testing [22]. Using the ShinyGO server impor
tant molecular pathways and biological functions were identified that 
related to lung disease severity [23]. 

3. Results 

3.1. Clinical and demographic characteristics 

Table 1 shows the clinical and demographic characteristics for 
healthy control and CF subjects, the latter grouped based on severity of 
lung disease. Baseline characteristics were generally well-balanced be
tween CF and healthy controls with some differences in sex between 
groups, although these do not appear significant (Figure E1 in online 
data supplement). Individual characteristics are shown in the supple
mentary material (Table E1 in online data supplement). 

3.2. Differences in the proteome between CF and healthy controls 

The total protein concentration of sputum was increased in CF (mean 
± SD, 4.78 ± 2.56 mg/mL) compared to healthy controls (1.72 ± 0.98 
mg/mL). Protein identification was based on at least two unique pep
tides. This resulted in 440 proteins being detected and of these, 415 were 
common to all 70 subjects. Of these 415 proteins, 310 differed in 
abundance between CF patients and healthy controls (adjusted p-value 
≤ 0.05); 108 proteins were increased in CF samples and 202 were 
decreased (Fig. 1). 

Hierarchical clustering analysis was undertaken using the 20 pro
teins that discriminated most between CF and healthy control samples 
based on the lowest adjusted p-values (Fig. 2). Generally, proteins more 
abundant in CF samples were neutrophil derived, such as elastase and 
myeloperoxidase, whereas those less abundant had immunomodulatory 
properties, antiprotease or antioxidant activity, or were acute phase 
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proteins. There was clear resolution of CF and healthy controls with the 
exception of one CF subject (CF021), who had mild lung disease 
(baseline FEV1% 96%) and clustered with the healthy control subjects. 

One healthy control (HV903) sample was flagged as an extreme outlier 
by PCA and upon inspection derived from a low abundant LC-MS/MS 
trace, requiring a normalisation gain factor of 12.3 (median normal
isation gain factor 1.1) and was therefore removed from the dataset. 
Separation of CF samples from healthy controls was evident by principal 
component analysis and largely driven by differences in the first prin
cipal component (PC1, Fig. 3a), which explained 22% of the total vari
ance. Unsurprisingly the 20 proteins making the largest contribution to 
PC1 included 13 proteins previously flagged as having the most statis
tically significant expression profile (see Fig. 4). The seven additional 
proteins related to immune function and inflammation. Neither the first 
nor the second principal component appear to relate to sex of subject 
(see Figure E1 in the online data supplement). 

3.3. Relationship between sputum proteome and severity of lung disease 

Both hierarchical clustering and PCA demonstrated a continuum 
from healthy control, through mild, to moderate and severe lung disease 
based on baseline FEV1 (Figs. 2 and 3b). Most CF subjects with mild lung 
disease had proteomes closely resembling healthy controls (the one CF 
subject who co-localised with those with severe disease suffered a res
piratory exacerbation within a month of the sputum sample being 
taken). CF subjects with mild disease overlapped with those with mod
erate disease who in turn overlapped with those with severe disease 
(Figs. 2 and 3b). Analysing FEV1% as a continuous variable revealed a 
moderate correlation with PC1 (Spearman’s rank, P = 0.005, R = 0.444) 
(Fig. 3c), but not PC2 (P = 0.291, R = 0.076) (Fig. 3d). The nature of the 
proteins contributing to PC1 from the PCA and hierarchical clustering 
suggest that predictable and quantifiable increases in immune function 
and inflammation occur as lung function worsens. The shifts in prote
ome are again heavily influenced by neutrophil-derived proteins. 

Table 1 
Clinical and demographic characteristics of healthy control and CF subjects.   

Healthy 
control (n =
32) 

Mild CF 
(n = 4) 

Moderate CF 
(n = 25) 

Severe CF 
(n = 9) 

Age, mean (SD), yr 36 (10) 30 (8) 31 (8) 32 (9) 
Baseline FEV1%, mean 

(SD) 
99 (36) 87 (7) 52 (9) 30 (7) 

Body mass index, mean 
(SD), kg/m2 

24.7 (4.6) 24.3 
(5.2) 

22.3 (2.5) 21.0 (3.3) 

Sex, Male, n (%) 8 (25) 4 (100) 18 (68) 5 (56) 
Homozygote 

Phe508del, n (%) 
NA 2 (50) 15 (60) 7 (78) 

CF related diabetes n 
(%) 

NA 1 (25) 14 (56) 4 (44) 

CFTR modulation 
Any, n (%) NA 1(25) 2 (8) 3 (33) 
Ivacaftor, n (%) NA 1 (25) 1 (4) 1 (11) 
Ivacaftor/ 
lumacaftor, n (%) 

NA 0 (0) 1 (4) 2 (22) 

Prednisolone NA 1 (25) 4 (16) 1 (11) 
Long-term macrolide n 

(%) 
NA 4 (100) 22 (88) 9 (100) 

Chronic Pseudomonas 
aeruginosa, n (%) 

NA 1 (25) 19 (76) 7 (78) 

Chronic Burkholderia 
cepacia complex n 
(%) 

NA 1 (25) 2 (8) 3 (33) 

Chronic Non- 
tuberculous 
mycobacterium n(%) 

NA 0 (0) 1 (4) 0 (0)  

Fig. 1. Quantitative profiling of cystic fibrosis 
and healthy volunteer sputum proteomes. A total 
of 69 samples (38 CF and 31 healthy control) were 
analysed by proteomics. Protein abundances, assessed 
by label-free quantitative proteomics are displayed as 
a volcano plot. Symbols corresponding to proteins 
with the greatest statistical confidence and highest 
fold change are labelled. The symbol size maps to the 
number of peptides used for quantification with the 
smallest being two unique peptides.   
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Of the 87 proteins that correlated with baseline FEV1% (p < 0.05), 
67 increased with worsening lung function, and a further 20 showed the 
inverse relationship (see Table E2 in the online data supplement). Many 
of the proteins that increased with severity were also those that showed 
the greatest discrimination between CF and healthy control samples (10 
from the top 20 in Fig. 2) and contributed strongly to PC1 in the PCA 
(nine from the top 20 in Figure E1 in the online data supplement). Of the 
proteins that increased with severity (Fig. 6) neutrophil elastase, his
tones H2A and H2B, catalase and glucose-6-phosphate isomerase are 
components of neutrophil extracellular traps (NETs) [24]. Triose phos
phate isomerase, peptidoglycan recognition protein 1 and 
phospholipase-B-like-1 are also neutrophil-derived and implicated in the 
innate immune response [25–27]. Levels of alpha-amylase 1 were lower 
in patients with severe lung disease, which likely reflects their ability to 
expectorate sputum samples with minimal salivary contamination. The 
molecular functions and biological processes associated with all 87 
proteins that correlated with baseline lung function were mapped using 
Gene Ontology Resource, and were in keeping with progressively 
increasing neutrophil activity and greater disturbance of imbalances in 
protease/anti-protease and oxidant/antioxidant states (see Fig. 5). 

3.4. CFTR modulation and the sputum proteome 

Hierarchical clustering analysis using all 440 proteins revealed that 
five CF subjects co-locate with the healthy controls (see Figure E2 in the 
online data supplement). Two had mild disease (CF014, CF021), and 
three were prescribed Ivacaftor (Kalydeco) (mild disease [CF032], 
moderate [CF045] and severe [CF055]). The genotypes of those 

prescribed ivacaftor were heterozygote for Gly551asp (CF032 and 
CF045) and Arg117His (CF055). All CF subjects taking ivacaftor co- 
located with healthy controls irrespective of underlying lung function 
impairment. PCA of CF subjects prescribed ivacaftor positioned away 
from those with similar lung disease severity and closer to healthy 
controls (Fig. 3). These findings were not replicated for CF subjects 
taking ivacaftor/lumacaftor (Orkambi) (CF029, CF052 and CF056). 

4. Discussion 

We describe, for the first time, differences across the sputum prote
ome that become more pronounced with worsening CF lung disease. 
These large-scale differences in protein expression relate to increased 
neutrophil activity and imbalances in protease/anti-protease and 
oxidant/antioxidant states, leading to a grossly abnormal environment 
within CF airways with significant potential for injury. These findings 
build upon previous work using mass spectrometry in the analysis of 
sputum and bronchoalveolar lavage from CF subjects [7–9]. In using 
what is a uniquely large dataset for sputum proteomic studies in CF, we 
have demonstrated utility of this approach as a technique capable of 
providing insights into disease mechanisms, and identifying potential 
biomarkers capable of classifying disease severity and activity. 

In CF, microbial dysbiosis and hyperinflammatory responses within 
immune and epithelial cells cause an influx of neutrophils in the airway. 
In accord with previous studies, we have shown differences in the 
sputum proteome between CF and control samples consistent with 
heightened neutrophil activity (Fig. 1) [6–8]. Of note, we also show that 
the sputum proteome becomes increasingly laden with 

Fig. 2. Hierarchical clustering using the proteins 
with the greatest discrimination between CF and 
healthy control samples. The 20 proteins that 
discriminated most between CF and healthy control 
samples were determined based on the lowest 
adjusted p-values. Specific characteristics of the sub
jects are mapped at the head of the heatmap. Defini
tion of abbreviations: NUCB2 = nucleobindin-2 
precursor; TGM1 = transglutaminase 1; GC = gc 
globulin (vitamin D-binding protein): SLPI = secre
tory leukocyte peptidase inhibitor; SELENBP1 = se
lenium-binding protein 1 (methanethiol oxidase); 
SCGB1A1 = secretoglobin family 1A member 1 (ute
roglobin); VIM = vimentin; ACTB = actin beta (beta 
actin); ELA2 = elastase 2 (neutrophil elastase); H4C1 
= H4 clustered histone 1 (histone H4); AZU1 =
azurocidin 1; MPO = myeloperoxidase; CTSG =

cathepsin G; CHI3L1 = chitinase-3-like protein 1; 
PLBD1 = Phospholipase B domain containing 1 
(phospholipase B-like 1); S100P = S100 calcium- 
binding protein P; LCN2 = ; GPI = ; S100A8 =
S100 calcium-binding protein A8; S100A9 = S100 
calcium-binding protein A9.   
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neutrophil-derived proteins as lung function impairment progresses. Of 
these proteins, many are released in response to infection. Some have 
previously been shown to relate to CF lung disease severity or increase 
during pulmonary exacerbations, such as myeloperoxidase [13], 
neutrophil elastase [10,11], azurocidin [10], chitinase 3 like protein 
[15], protein S100-A8/A9 [16], cathepsin G [17] and matrix metal
lopeptidase 9 [13], whereas others are novel, such as, peptidoglycan 
recognition protein 1 and triosephosphate isomerase. Additional intra
cellular proteins known to be part of the core NET proteome [24], 
including several histones and their isomers, catalase and glucose 6 
phosphate isomerase, were detected at high levels in CF samples. Some 
of these intracellular proteins become increasingly abundant with pro
gressive lung function impairment likely indicating enhanced NET for
mation due to increased infective or inflammatory stimuli within the 
airway, and may also represent additional biomarkers in CF. High levels 
of NETs may damage CF lung tissue by increasing exposure to the pro
teases incorporated within their structure, through histones leading 
directly to lung injury, and/or through NETs themselves acting as 
pro-inflammatory stimuli [28]. These effects may worsen airway dys
biosis [29] and cause more neutrophilic inflammation [30]. 

The dysregulated inflammation within the CF airway is characterised 
by an abundance of neutrophil derived proteases and oxidants such as 
neutrophil elastase and myeloperoxidase, and a lack of anti-protease and 
antioxidant proteins, such as those belonging to the serpin [31], cystatin 
[32], and peroxiredoxin [33] protein families. Other proteins with 
immunomodulatory actions that may reduce inflammation within the 
lung, such as uteroglobin, vimentin, nucleobindin-2 and clusterin are 
also reduced [34–37]. Again, this disruption appears to become more 
pronounced with progressive lung function impairment. The relation
ship of these counterregulatory and immunomodulatory proteins to CF 
lung disease severity is less well described and for some, such as cystatin 
D and alpha-1 antichymotrypsin, this is the first time they have been 
reported. These protein differences may highlight pathways for future 
therapeutic intervention. 

The novelty of this study is showing the relationship between lung 
disease severity and the global proteome i.e., the pattern of changes in 
the entire set of proteins, which has not been previously demonstrated. 
This goes beyond existing studies that have only correlated baseline lung 
function with selected proteins from global proteomic analyses [7,14]. 
That we can replicate existing findings, such as increased neutrophil 
activity and imbalances in protease/anti-protease and oxidant/antiox
idant states validates our novel findings and supports the utility of a 
global proteomics in early translational work for understanding disease 
mechanisms and identifying biomarkers. This proteomic approach can 
also make dramatic savings in time and resource, as evidenced by our 
replication of a large body of work examining the relationship between 
individual proteins and CF lung disease that has spanned many experi
ments [10–17]. 

Alpha-amylase 1 levels were higher in patients with mild lung dis
ease (Fig. 6). As alpha-amylase 1 is a highly abundant salivary protein its 
presence suggests a degree of salivary contamination [38]. This is 
interesting as CF patients with milder lung disease expectorate samples 
with less sputum and a larger salivary component. To ensure contami
nation was minimised there was a preparatory step whereby sputum 
plugs were visually separated from the salivary portion. We feel this 
makes a dilutional effect an unlikely explanation for why 
neutrophil-derived proteins were reduced in milder subjects. If that was 
the case, we would expect to see in milder lung disease other salivary 
proteins being more abundant, whereas in fact the differences are driven 
by reductions in what appear to be sputum proteins. However, the 
preparatory step maybe insufficient to remove all salivary residue which 
would explain the detection of alpha-amylase 1 in samples and possibly 
the association seen with lung disease severity. In future analyses an 
additional validation step, such as a differential cell count to calculate 
the percentage of squamous epithelial cells, could be used to further 
ensure that sputum samples were not excessively contaminated with 
saliva. 

The predictable and quantifiable nature of the differences seen in the 

Fig. 3. Principal component analysis of sputum 
protein profiles. (a) Score plot with CF subjects and 
healthy controls subjects labelled. Each data point is 
an individual subject with 95% confidence intervals 
overlayed (superimposed ellipses, centroid marked by 
cross). The subjects on CFTR modulation are labelled. 
(b) Score plot with labelling of CF subjects based on 
severity of lung disease as defined by FEV1%: mild 
>70%; moderate 40-70%; severe <40%. (c) Correla
tion between principal component 1 and baseline 
lung function (d) Correlation between PC2 and 
baseline lung function.   
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proteome with progressive lung function impairment suggests that this 
approach may provide translational insights for disease stratification. 
That there are obvious variations in the proteome between CF patients 
supports this notion. Specifically, we believe that variations seen be
tween CF subjects with similar lung function reflect limitations associ
ated with stratification based on clinical characteristics. Agusti and 
colleagues have proposed that current stratification of inflammatory 
airway disease relies too heavily on clinical characteristics (the pheno
type) and fails to appropriately account for underlying disease biology 
(the endotype) [39,40]. Currently, CF lung disease is classified based on 
characteristics such as lung function, body mass index, exacerbation 
frequency or sputum microbiology. That one CF subject with mild lung 
disease clustered amongst those with severe disease may exemplify this 
point. In contrast to the rest of the group, this subject was on the cusp of 
an exacerbation and required IV antibiotics within a month of the 
sputum sample being obtained. We speculate that the close proximity to 
a pulmonary exacerbation may have shifted the sputum proteome before 
changes in baseline lung function were apparent. Longitudinal mea
surement of the sputum proteome may offer an opportunity for the 
identification of biomarkers capable of capturing changes in the disease 
biology and recognising patients at risk of clinical deterioration before 
they develop symptoms or before changes can be detected in clinical 
characteristics, such as baseline FEV1%. 

The differences in the sputum proteome in the six subjects taking 

CFTR modulation therapy are intriguing, however we acknowledge that 
this too small a cohort to make any firm conclusions. These were limited 
to three subjects with class 3 or 4 CFTR mutations (Gly511Asp and 
Arg117His) prescribed ivacaftor, and not the other three with other 
mutations prescribed ivacaftor/lumacaftor. The positioning of the sub
jects prescribed only ivacaftor on hierarchical clustering and PCA 
adjacent/closer to the healthy controls rather than with those with 
similar lung function suggests this medication may reduce neutrophilic 
inflammation in subjects with these genotypes. This has not been a 
consistent finding in previous studies [41–43]. Of note, these findings 
were more marked and involved many more biological pathways when 
hierarchical clustering was expanded to include the entire proteome, 
suggesting that this approach may capture additional changes possibly 
related to molecular function brought about by change in CFTR func
tion, not just due to neutrophilic inflammation. The widespread avail
ability of ivacaftor/tezacaftor/elexacaftor (Trikafta) is timely. This 
potent CFTR modulator combination produces dramatic clinical im
provements in CF patients homozygote or heterozygote for the 
Phe508del mutation. Replicating our preliminary findings in patients 
before and after starting ivacaftor/tezacaftor/elexacaftor is an obvious 
next step. 

Our work has highlighted numerous sputum proteins with potential 
as clinical biomarkers. These could be useful in monitoring disease 
severity, measuring response to therapy, predicting exacerbations etc. 

Fig. 4. Abundance profiles for the key altered 
proteins. For the twenty proteins making the largest 
contribution to PC1, the abundances are plotted 
logarithmically, and stratified according to catego
risation of severity. For each group, individual pro
tein abundances, together with median and 
interquartile ranges are plotted. Definition of abbre
viations: S100A9 = S100 calcium binding protein A9; 
S100A8 = 100 calcium binding protein A8; TTR =
transthyretin; MPO = myeloperoxidase; CLU = clus
terin; SCGB1A1 = secretoglobin family 1A member 1; 
SLPI = secretory leukocyte peptidase inhibitor; 
NUCB2 = nucleobindin-2; H4C1 = H4 clustered his
tone 1; S100P = S100 calcium binding protein P; 
CHI3L1 = chitinase-3-like 1; PLBD1 = phospholipase 
B Domain containing 1 (phospholipase B-like 1); GP1 
= Glucose-6-phosphate isomerase); AZU1 = azur
ocidin-1; DPB = albumin D-box binding protein; 
SERPINA3 = serpin family A member 3 (alpha-1- 
antichymotrypsin); PRDX1 = peroxiredoxin-1; CAT 
= catalase; CST5 = cystatin D; TGM2 = trans
glutaminase 2.   
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However, it is very unlikely that a single protein biomarker will be 
sufficient given the complexity of the underlying biological processes in 
the lung and specifically the airway. There may be clinical utility in 
developing a carefully selected panel of sputum protein biomarkers that 
are able to capture as many relevant biological processes as possible, as 
well as inform in a range of possible clinical scenarios. To achieve this, 
further investigation using absolute quantification of a set of selected 
proteins is needed. This panel would need prospective validation in an 
independent cohort and then could be used to inform a predictive model 
for use in future studies. 

There are several limitations with this study. We were not able to 
include a validation cohort due to the size of the study population, but 
the numbers are still large for this type of exploratory proteomic study. 
We will seek to replicate these findings within future studies. While we 
acknowledge a gender imbalance in both CF and healthy control co
horts, no differences were found when the sputum proteomes of male 
and female subjects were analysed separately (see supplementary 
Figure E1). Within the study, although there were a relatively small 
number of patients with mild disease, the overall size of the cohort 
compared to other proteomic studies is large and any effect was miti
gated by using baseline FEV1% as a continuous variable. Lastly, the 
method by which sputum was collected differed between the two 
groups. This was unavoidable, as it is only possible to obtain sputum 
from healthy individuals by induction with hypertonic saline. 

In conclusion, our analyses support the utility of sputum proteomics 
for providing insights into disease mechanisms, as well as developing 
potentially clinically relevant biomarkers in CF. We observed 

differences in the sputum proteome driven by influx and heightened 
activity of neutrophils with consequent disturbance of protease/anti
protease and oxidant/antioxidant balances. Of note, the proteome of CF 
subjects prescribed ivacaftor shifted toward the profile of healthy con
trols. Future work might examine the effects of CFTR modulation using 
sputum proteomics to provide understanding of the underlying biolog
ical effects, as well as further assist in the selection of sputum proteins 
for a biomarker panel to monitor lung disease. 
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