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Abstract

This thesis investigates the sensitivity of phononic metamaterials to the presence

of materials and changes in their environment.

The behaviour of surface acoustic waves (SAWs) in periodic arrays of holes

was investigated with finite element modelling and experimentally. SAW band-

structures and bandgap attenuation were obtained from simulations of arrays

of cylindrical and annular holes which were filled with materials with differ-

ent SAW velocities. Each type of hole array exhibited two distinct scattering

regimes (Mie and Bragg scattering). The dependence of the bandgap frequency

on the velocity was found to be stronger for annular holes than for cylindrical

holes, suggesting that annular holes are potentially a better route to create tune-

able phononic metamaterials. Annular holes also displayed a higher bandgap

attenuation than cylindrical holes, meaning that annular hole arrays might be

exploited for greater sensitivity in applications such as mass loading sensing.

SAW attenuation due to mass loading of air was calculated by measuring SAW

amplitude on a SAW device using an oscilloscope system and by laser Doppler

vibrometry (LDV). An extraordinary increase of 2 to 3 orders of magnitude

in mass loading attenuation was observed at the bandgap frequency when a

phononic metamaterial was present, with only 4 resonator elements needed to

produce this result. The measurements obtained by both experimental systems

displayed similar frequency dependencies of mass loading attenuation coeffi-

cients. Some mass loading effects were also reproduced using finite element

modelling. These approaches show great promise for improving the sensitivity

of SAW pressure sensors.

Finally, bandstructures were obtained from finite element simulations for an

array of annular holes filled with a small sphere comprised of materials with

different SAW velocities. The array exhibited similar scattering regimes as be-

fore, with an overlapping region. The dependence of the bandgap frequency

on the velocity was found to be stronger when the annular holes contained the

sphere than when they are fully-filled, suggesting that annular holes are poten-

tially a good candidate for probing biological cells. Higher bandgap attenuation

by up to a factor of 2 was exhibited by the single spherical inclusion compared to

fully-filled holes. Since annular holes have more degrees of geometrical freedom

than conventional phononic crystals, devices with greater sensitivity might be

realised for applications such as biological sensing and lab-on-a-chip diagnostics.
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Chapter 1

Introduction

1.1 Context

Surface acoustic waves (SAWs) are elastic waves which propagate on the surface

of solids. They were first proposed by Lord Rayleigh [1], who developed a

mathematical description for them in 1885. There are several different types

of SAW, including the Lamb wave [2] which oscillates in the direction of the

surface plane normal, the Love wave [3] which oscillates parallel to the surface

plane, and the Rayleigh wave [1] which has an elliptical oscillation, and is the

SAW predominantly investigated in this thesis.

SAWs occur on many different length scales and surface materials, from earth-

quakes in the Earth’s crust [3] to microchips in mobile devices [4]. White and

Voltmer [5] invented the interdigital transducer (IDT) in 1965, which allowed

microscopic SAWs to be generated more easily on piezoelectric substrates by

applying an AC voltage across a pair of metal electrodes with interlocking fin-

gers, transforming the way SAWs were generated and detected. This opened up

the field, leading to an enormous range of diverse applications for SAW devices.

Introducing a pattern on the surface through which SAWs propagate can affect

their behaviour [6] [7]. Attracting interest from the 1990’s, phononic crystals

are composite materials whose elastic properties are varied periodically [8], and

they exhibit bandgaps where acoustic waves (including SAWs) of particular
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frequencies cannot propagate, often caused by deconstructive Bragg interference

[9]. Patterns tend to consist of elements such as parallel stripes [10] or square

arrays of holes [11]. Phononic crystals with directional bandgaps were reported

experimentally in 1998 by de Espinosa et al. [12], but a complete bandgap in all

propagation directions was not realised until 2001 by Vasseur et al. [13]. This

was then extended to SAWs in 2004 by Tanaka et al. [14], and for a piezoelectric

lithium niobate substrate by Laude et al. in 2005 [15] as shown in Figure 1.1.

Figure 1.1: From [15]. The surface acoustic wave bandstructure for the
Γ−X−M −Y −Γ path in the first irreducible Brillouin zone, for a square

array of circular holes in lithium niobate.

Changing the array element geometry can have a dramatic effect on the be-

haviour of the overall structure. For example, the bandgap frequency can be

significantly lowered by the presence of a locally resonating component in the

array, due to other scattering mechanisms (such as Mie resonance [16]) which

contribute to acoustic energy loss. Olsson et al. [17] provided a brief mathemat-

ical explanation of bandgap origin in terms of Bragg and Mie scattering which

has been used as the analytical model comparison for the bandgaps measured

in this thesis. Pillars are the structure most commonly used to introduce local



1.1. Context 3

resonance into phononic crystals. A locally resonant phononic crystal was first

fabricated by Liu et al. [18], whose ‘sonic crystal’ structure consisted of sub-

wavelength elements and exhibited exotic behaviours such as negative elastic

constants and total wave reflection within a certain tunable frequency range, as

shown in Figure 1.2.

Figure 1.2: From [18]. Transmission coefficient plotted as a function of
frequency. Opened dots (joined by the solid line) are the measured trans-
mission amplitude for their ‘sonic crystal’ sample. The solid squares are
the measured transmission amplitude for an epoxy sample with a random
pattern of metallic particles 1 cm in diameter coated with silicon rubber
on its surface. The dotted line and the dot–dashed line give, respectively,
the calculated transmission amplitudes of an unpatterned epoxy slab and
an unpatterned slab of the same density as the composite material con-
taining the metallic particles. The two arrows indicate the calculated dip
frequency positions (using the multiple scattering method [19]) for hexag-
onally arranged locally resonant units. The two dips in the ‘sonic crystal’
transmission represent bandgaps caused by negative effective elastic con-

stants.

Other explorations of local resonance include Sainidou et al. [20], who were able

to tune bandgaps by modifying the array element geometry by characterising

the resonance modes responsible for bandgaps. Khelif et al. [21] were also able
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to replicate the changes in bandgap characteristics following changes in the unit

cell geometry, suggesting that this is a hallmark of local resonance. Importantly

for this thesis, bandgap characteristics (such as frequency limits) were extracted

at the X point of the first Brillouin zone (where wavenumber k = 0.5 in units of

π
a
), confirming that mode behaviour at this point is a fair representation of the

full Brillouin zone, at least for square arrays of circular or cylindrical elements.

Some mathematics behind the bandgap origin for locally resonant systems have

been derived by Jia et al. [22] and Yip et al. [23]. Many other groups (such

as Achaoi et al. [24], Sellami et al. [25]) have investigated local resonance as a

phenomenon and have all replicated the reduction in bandgap frequency from

modifying the unit cell to include a resonating element, as shown in Figure 1.3.

At this point, it is important to introduce the concept of metamaterials, which

are artificial composite structures exhibiting properties and behaviours not

found in nature. In a similar way to locally resonant structures, their behaviour

is influenced more by the characteristics of the individual elements forming the

overall structure, known as meta-atoms, rather than the properties of the base

materials from which the elements and overall structure are comprised. They

also tend to be periodic [26], with subwavelength distances separating the meta-

atoms, giving rise to characteristics as observed in both conventional Bragg

phononic crystals and also locally resonant phononic crystals. These include

phononic bandgaps, also at lower frequencies due to the resonant frequencies of

the meta-atoms being larger than the scale of the meta-atoms themselves.

These factors mean that metamaterials can be engineered to exhibit new be-

haviours, for example displaying negative refraction [27], and be double negative

in that their permittivity and permeability are both negative [28]. The two pre-

vious examples were observed first for electromagnetic metamaterials, as they

were discovered earlier, but have also been explored more recently for elastic

metamaterials [29] [30]. Lu et al. [31] review some of the key differences between
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Figure 1.3: From [25]. The elastic wave bandstructure of (a) solid carbon
cylinders and (b) hollow carbon cylinders arranged in a square epoxy resin

lattice. The reduction in bandgap frequency can be clearly seen.

phononic crystals and elastic metamaterials.

For a number of years, SAW devices have been exploited for sensing purposes
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since Rayleigh SAWs possess an out-of-plane component of oscillation. The

sensitivity of a SAW device is typically quantified by measuring a shift in SAW

velocity, frequency or phase as a function of various material parameters in-

cluding mass, density, elastic moduli or pressure (for example) [32]. Sensing

often takes place in a sensing layer located on top of the substrate, particu-

larly for chemical sensing applications where molecules adsorb onto the sensing

layer. Some applications where sensing occurs in layers were reviewed by Bo et

al. [33], which include but are not limited to sensors for temperature, pressure

and humidity. Some frequency shift-based pressure sensors have sensitivities

of up to 8 kHz atm−1. However, the addition of a sensing layer can increase

the complexity in device fabrication and also may introduce misleading false

positive or negative results [32], so avoiding a sensing layer where possible is

beneficial for some applications. Sensitivity can also be extracted by measuring

SAW attenuation, and is also typically achieved by quantifying shifts in SAW

wave parameters as above. More specifically, mass loading attenuation in the

presence of gas under different pressures can be induced on SAW devices. An

expression for mass loading attenuation as a function of frequency and pressure

(amongst other material properties) was derived in 1972 by Slobodnik [34].

Sensing can also be performed by patterned devices as an alternative to a sensing

layer on a blank surface. Mehaney [35] developed a 1D phononic crystal-based

sensor to measure properties (sound velocity, density, temperature and more)

of a layer of biodiesel, located in a defect in the crystal structure. Khaligh et

al. [36] measured the acidity of vinegar in a locally resonant cavity in a 2D

phononic crystal structure comprised of circular holes, as shown via frequency

shifts in Figure 1.4. Similarly Gharibi et al. [37] and Mehaney et al. [38] also

induced locally resonant cavities in their 2D phononic crystal sensors in order

to detect materials in or on the defects and measure their properties.
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Figure 1.4: From [36]. The frequency bandwidth of the total sensing
region for 0-100% acetic acid concentration, in the bandgap.

1.2 Motivation

In the majority of the work reviewed above, sensing and probing takes place

within defects or cavities in the periodic structure. In this thesis, the sensitivity

of hole phononic metamaterials is quantified when holes (annular and cylindri-

cal) are filled with different materials of different geometries. This is in contrast

to existing literature as the positioning of the object of interest is directly within

the array elements themselves rather than in or on a non-patterned defect in the

array. It is proposed that the work presented in this thesis are the first studies

of sensing taking place directly from the inclusions in the array elements, rather

than in a waveguiding cavity where acoustic energy is confined.

The annular hole geometry in particular could prove to be a very versatile can-

didate, scalable from micrometre length scales (as investigated here) to metres

(such as for seismic applications), in order to be implementable for a wide range

of sensing and probing applications. This work is proof of the concept that an-

nular holes are sensitive to being filled directly, and the clear trends established
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when the inclusion material properties are varied are further evidence of their

applicability for realising more efficient and predictable sensing devices.

In terms of mass loading, a method of quantifying SAW mass loading attenu-

ation is presented. This was achieved by directly measuring changes in SAW

amplitude. Again, this work is proof of the concept that SAW mass loading

attenuation can be quantified accurately in this way, as an alternative to more

conventional approaches such as measuring shifts in SAW wave parameters.

1.3 Overview

The results of this thesis build upon the first study of annular hole phononic

crystals performed by Ash et al. [39]. Using finite element modelling (FEM) and

experiments, the sensitivity of these phononic metamaterials to the presence of

materials and changes in their environment is investigated.

Chapter 2 contains an overview of the theory and mathematics behind the phe-

nomena explored in this thesis. The SAW equation is derived and the Rayleigh

wave solution introduced. Mechanisms behind mass loading attenuation are

derived and explained. The method for calculating bandstructures (via eigen-

vectors and eigenfrequencies) in periodic structures such as phononic crystals is

presented, followed by descriptions of some mechanisms (Bragg and Mie scatter-

ing) giving rise to bandgaps in phononic metamaterials. Finally, a brief overview

of the annular hole phononic metamaterial predominantly investigated in this

thesis can be found, which combines characteristics of Bragg and locally reso-

nant phononic crystals.

The use of the finite element method (FEM) for modelling SAW bandstructures

and propagation in phononic metamaterials is described in Chapter 3. This

begins with an explanation of the basic working principles of FEM, such as

discretisation, meshing and perfectly matched layers. COMSOL Multiphysics,
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the FEM software package used in this thesis, is then described, with a focus on

eigenfrequency and frequency domain studies to investigate the bandstructures

and transmission respectively.

In Chapter 4, an explanation of the materials and methods used in experiments

can be found, beginning with a description of the crystallography of lithium nio-

bate (LiNbO3), and the use of metal interdigital transducers (IDTs) to generate

and detect SAWs on piezoelectric substrates. Next, the steps required for the

preparation and fabrication of the SAW metamaterials investigated in this the-

sis are detailed, such as cleanroom preparation of substrates, focused ion beam

(FIB) milling, scanning electron microscopy (SEM) imaging, and the mounting

of the substrates on copper printed circuit boards. The experimental techniques

for characterising and measurement of SAWs are then described, such as the

oscilloscope system which sends and receives pulsed RF signals across the IDTs,

and laser Doppler vibrometry (LDV) which is able to image the SAWs directly

for amplitude measurements. A brief description of some data reduction and

analysis techniques can also be found.

The first results presented in this thesis are detailed in Chapter 5, which is a

computational study of the effects on the bandstructures and bandgap attenu-

ation of cylindrical and annular holes in lithium niobate substrates, when the

holes were filled with different materials. The main findings in this chapter were

that each type of hole array exhibited a Mie scattering regime at lower inclusion

material SAW velocity (Vi) and a Bragg scattering regime at higher Vi. The

dependence of the bandgap frequency on the velocity was found to be higher for

the annular holes than cylindrical holes, suggesting that the annular holes are

potentially a better route for tuneable phononic metamaterials. In terms of the

bandgap attenuation, the annular holes displayed higher values than cylindrical

holes, suggesting that annular hole arrays also might lead to greater sensitivity

in devices designed for applications such as mass loading sensing.
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A study of mass loading effects in a phononic metamaterial is presented in

Chapter 6, and includes experimental and simulation results. By measuring

SAW amplitudes in air and in a vacuum, it was found that an extraordinary

increase of up to 3 orders of magnitude in attenuation due to mass loading

across an annular hole metamaterial array on a LiNbO3 substrate (compared to

an unpatterned LiNbO3 surface) was exhibited at the bandgap frequency, and

validated by an oscilloscope system, an LDV system and a computational study.

The implication of these results is that annular holes are a potential candidate

for improving the sensitivity of gas pressure sensors.

The final results presented in this thesis are described in Chapter 7, which is a

similar study to that in Chapter 5 but with the inclusion geometry modified to a

small sphere, intended to represent an analogue of a biological cell. Again, it was

found that the array exhibited Mie-like, Bragg-like, and true Bragg scattering

regimes at low, mid, and high Vi respectively. The dependence of the bandgap

frequency on the velocity was found to be stronger when the annular holes

contained the sphere than for when they were fully-filled, suggesting that the

annular holes are potentially a good candidate for probing biological cell-like

analogues. The bandgap attenuation was also calculated with respect to either

a blank surface or empty holes. In the first case, higher bandgap attenuation

was exhibited overall by the single spherical inclusion than by fully-filled holes.

In the second case, annular holes appeared to be less sensitive to the presence

of a single spherical inclusion compared to being fully-filled. Using annular hole

arrays might give rise to devices with greater sensitivity for applications such

as biological sensing and lab-on-a-chip diagnostics.

Finally, Chapter 8 summarises the results obtained in this thesis, and potential

directions for future work are suggested.
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Chapter 2

Surface Acoustic Waves,

Phononic Crystals and Elastic

Metamaterials

2.1 Overview

In this chapter, an overview of the background, theory and mathematics be-

hind surface acoustic waves (SAWs), phononic crystals and metamaterials is

presented. In section 2.2, SAWs are introduced and the SAW equation derived,

and in sections 2.3 and 2.4 an mechanism affecting SAW propagation, mass

loading, is discussed. Phononic crystals and local resonance are introduced in

section 2.5 with an explanation of how SAW bandstructures are calculated, and

how Bragg and Mie scattering can lead to the formation of bandgaps. In section

2.6 a brief overview of metamaterials is presented, with a focus on the annular

hole geometry used throughout this thesis.

2.2 Surface Acoustic Waves

Rayleigh waves are a type of surface acoustic wave (SAW), so named after

Lord Rayleigh who discovered them in 1885 [1]. They are elastic waves which
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propagate on the surface of a solid, and possess both transverse and longitudinal

components, meaning particles under the influence of the wave move in ellipses

in the plane normal to the surface and parallel to the direction of propagation

(as seen in Figure 2.1).

Figure 2.1: Reproduced from [40]. A diagram showing the propagation
of a Rayleigh wave with elliptical particle motion. Each grid intersection

point represents a particle.

They can occur on many scales, from earthquakes in the Earth’s crust, to

millimetre-scale lab-on-a-chip devices. Basic SAW devices for electronics ap-

plications have sizes on the order of centimetres, and typically support SAWs

with amplitudes on the order of picometres and frequencies up to 1 GHz. They

are fabricated by using photolithography to pattern metal interdigital trans-

ducers (IDTs) on piezoelectric substrates. Applying a voltage across the IDTs

excites a mechanical response on the surface of the substrate, a SAW [5]. The

surface acoustic wave equation can be derived by considering the piezoelectric

effect in a homogeneous piezoelectric insulator [40].
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2.2.1 SAW Equation Derivation

Material elasticity can be described by the displacement from the equilibrium

position of a solid, strain S, and internal forces within it acting to restore the

solid to a non-deformed state, stress T . Considering an element volume (much

smaller than characteristic dimensions such as wavelength, and much larger than

interatomic distances) with equilibrium position x = (x1, x2, x3), displaced by

amount u = (u1, u2, u3), the strain can be defined by a symmetrical second rank

tensor:

Sij(x1, x2, x3) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
i, j = 1, 2, 3. (2.1)

In a homogeneous insulating piezoelectric material, an applied electric field E

induces strain components Sij in the material, so the stress components Tij are

written:

Tij =
∑
k

∑
l

cEijklSkl −
∑
k

ekijEk i, j, k, l = 1, 2, 3. (2.2)

where cEijkl is the stiffness tensor for constant electric field and ekij is the piezo-

electric coupling coefficient which relates elastic fields to electric fields. Because

of symmetry, indices i, j and k, l can be interchanged.

The displacement vector D also depends on strain Sij as:

Di =
∑
j

ϵSijEj +
∑
j

∑
k

eijkSjk i, j, k = 1, 2, 3. (2.3)

where ϵSij is the permittivity tensor for constant strain and eijk is the piezoelec-

tric tensor. The electric field can be expressed in terms of the electric potential
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Φ as Ei = −∂Φ/∂xi. Using Newton’s second law, the equation of motion can

be written:

ρ
∂2ui

∂t2
=
∑
j

∑
k

{
eijk

∂2Φ

∂xj∂xk

+
∑
l

cEijkl
∂2uk

∂xj∂xl

}
(2.4)

where ρ is the density of the material.

The enclosed charge is zero as the material is an insulator (∇ · D = 0) which

reduces the equation to:

∑
i

∑
j

{
ϵSij

∂2Φ

∂xi∂xj

−
∑
k

eijk
∂2uj

∂xi∂xj

}
= 0 (2.5)

Displacements u and potential Φ have the form of plane waves in an infinite

medium as follows:

u = u0 exp[i(ωt− k · x)] (2.6)

Φ = Φ0 exp[i(ωt− k · x)] (2.7)

Here, ω is the wave frequency, k = (k1, k2, k3) and u0 and Φ0 are constants. Sub-

stituting this into equations 2.3 and 2.4, four equations in the four variables u1,

u2, u3 and Φ are obtained. By setting the determinant of coefficients to zero,

four solutions with different values of k are found. One solution is the elec-

trostatic solution for an isotropic medium, while the others are non-dispersive

acoustic waves.

Solutions are obtained for surface acoustic waves by defining a piezoelectric

half-space shown in Figure 2.2.
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Figure 2.2: Reproduced from [40]. A schematic showing axes, wavefronts,
propagation and media for piezoelectric half-space.

Conventionally the x1 direction is the wave propagation direction and the x3

direction is defined as being parallel to the outwardly-directed surface normal.

The material is infinite in the x1 and x2 directions. Also by convention, the space

is vacuum for x3 > 0 and for x3 < 0 the space is occupied by the material. The

sagittal plane is the plane defined by the surface normal and wave propagation

direction, the (x1, x3) plane. The wavefronts are parallel to the x2 direction. A

boundary condition is applied so there is no net force acting on the surface:

T13 = T23 = T33 = 0 at x3 = 0 (2.8)

The continuity of electric fields must also be taken into account due to the

piezoelectricity of the material. There are two surface cases, the first being

where there is a vacuum above the material, the free-surface case, and the

second being where a thin, infinitely conductive metal film of negligible weight

is deposited on the material, known as the metallised case.
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For a free surface, there is an electric potential in the vacuum satisfying the

Laplace equation ∇2Φ = 0. Φ can be written as:

Φ = f(x3) exp[i(ωt− βx1)] (2.9)

if β is the wavenumber.

Substituting this into the Laplace equation with the condition that Φ vanishes

at x3 → ∞, the vacuum potential for (x3 ≥ 0) is:

Φ = Φ0 exp(−|β|x3) exp[i(ωt− βx1)] (2.10)

where Φ0 is a constant. D3 must be continuous at the interface between the

medium and the vacuum since there are no free charges, meaning that for x3 = 0:

D3 = ϵ0|β|Φ (2.11)

For the metallised case, charges in the metal screen the electric field, meaning

that Φ = 0 at x3 = 0.

Surface wave solutions are found by considering partial waves satisfying equa-

tions of motion in an infinite medium (Equations 2.3 and 2.4), either the free-

surface or metallised case and Equation 2.7. Partial wave displacements u′ and

Φ′ are of the form:

u′ = u′
0 exp(iγx3) exp[i(ωt− βx1)] (2.12)

Φ′ = Φ′
0 exp(iγx3) exp[i(ωt− βx1)] (2.13)
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assuming β is real, γ = f(Vl, Vt) is the wavevector x3 component. Vl and Vt

are the longitudinal and transverse wave velocities in the medium. If u′ and Φ′

are substituted into Equations 2.3 and 2.4, which are then solved numerically,

eight γ values are found. Solutions are valid if the imaginary component of γ

is negative as u′ and Φ′ are both required to be zero when x3 → −∞.

Four γ values are valid, so partial waves are written as:

u′
m = u′

0m exp(iγmx3) exp[i(ωt− βx1)] (2.14)

Φ′
m = Φ′

0m exp(iγmx3) exp[i(ωt− βx1)] (2.15)

where m = 1, 2, 3, 4. In a half-space, it is assumed the solution is a linear sum:

u =
4∑

m=1

Amu
′
m (2.16)

Φ =
4∑

m=1

AmΦ
′
m (2.17)

where Am coefficients are chosen to satisfy boundary conditions. Substituting

Equations 2.16 and 2.17 into the wave equation, valid solutions are only found

when values of β give a determinant of coefficients equalling zero. β is changed

iteratively until this condition is satisfied. u and Φ are subject to a number of

material characteristics including permittivity, stiffness, orientation and piezo-

electricity. The most common SAW solution is elliptical motion in the sagittal

plane, called the piezoelectric Rayleigh wave which is the solution which will be

used. Other solutions, including the Lamb wave and the Love wave, are beyond
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the scope of this work and will not be discussed as they do not have out-of-plane

components of oscillation necessary for sensing applications.

There are no analytical solutions to the SAW equation, due to the complexity

of the systems from which they are generated. Reasons include (but are not

limited to) an unbounded surface in the vertical direction and piezoelectric

coupling in very anisotropic substrates. Numerical methods must therefore be

relied upon for theoretical investigation of the behaviour of SAWs, as discussed

with a focus on the finite element method in Chapter 3.

SAWs are most commonly generated and detected using metal interdigital trans-

ducers (IDTs) patterned on piezoelectric substrates [5]. This is described in

more detail in section 4.3 of Chapter 4.

2.3 Mass Loading Attenuation

SAWs can be attenuated through mechanisms such as boundary scattering or

changes in elastic properties of propagation media, but in the presence of gases,

liquids, or any other material present on the substrate surface, a process known

as mass loading attenuation can occur. SAWs are particularly susceptible to

mass loading attenuation due to their out-of-plane displacement component,

and quantifying this sensitivity leads to applications in gas and pressure sensing

and safety.

SAW mass loading attenuation can manifest itself through a number of mech-

anisms, but is commonly measured using a chemical adsorption layer on top

of the substrate, through which chemical or conductivity changes caused by

the external environment are measured through a frequency, velocity or phase

shift of the SAW in an oscillator circuit after propagating through the adsorp-

tion layer. The attenuation can also be quantified by directly measuring SAW

amplitudes.
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2.3.1 Theory

Slobodnik [34] explored mechanisms behind attenuation due to gas loading,

and proposed that the dominant source of attenuation is likely to be from the

emission of compressional sound waves into the gas from the vibration of sur-

face. These compressional sound waves are generated when the phase matching

condition

cos ζ =
λgas

Λs

(2.18)

is met, where ζ is the angle at which the compressional waves are launched and

λgas is their wavelength, and Λs is the SAWwavelength. A schematic illustrating

the compressional sound waves emitted into a gas from a SAW propagating on

a solid-gas boundary, and the origin of the quantities used in Equation 2.18 can

be seen in Figure 2.3.

Figure 2.3: Adapted from [34]. A schematic illustrating the compres-
sional sound waves emitted into a gas from a SAW propagating on a solid-

gas boundary.

An approximate expression for the gas loading attenuation α was derived by

Arzt et al. [41]:
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α =
ρgasvgas
ρsvsΛs

(2.19)

where ρgas is the density of the gas, vgas is the longitudinal speed of sound

in the gas, ρs is the substrate density, vs is the SAW velocity and repeated

terms are defined above. Equation 2.19 can be rewritten in terms of frequency,

pressure, temperature and atomic weight with a number of steps. Firstly, using

the expression f = vs/Λs and relating the longitudinal speed of sound in the

gas to its compression modulus (labelled λ by Slobodnik) vgas = (λ/ρgas)
1/2,

Equation 2.19 can be rewritten as:

α =
f

ρsv2s

(
ρgas

(
λ

ρgas

)1/2
)

(2.20)

For ideal gases and SAW frequencies below 1 GHz:

ρgas =
MP

RT
(2.21)

λ =
γP

Ks

(2.22)

where M is the molar mass, P is the pressure, R is the universal gas constant,

T is the temperature, Ks is the adiabatic compressibility and γ is the ratio of

specific heats (constant pressure/constant volume). This allows Equation 2.20

to be rewritten in Np m−1 as:

α =
fP

ρsv2s

(
γM

RT

)1/2

(2.23)
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This equation for SAW mass loading attenuation was used as a theoretical

baseline against which experimental results were compared in Chapter 6.

2.4 Phononic Crystals and Metamaterials

Phononic crystals (PnCs) are periodic composites analogous to photonic crys-

tals, in that material properties (e.g. density and elasticity) are varied peri-

odically. Typically this might involve fabricating holes in the crystal surface,

and this can give rise to interesting waveguiding or lensing effects due to the

presence of phononic bandgaps, where no waves can propagate.

PnCs can control acoustic and elastic waves, and can be characterised with

band diagrams displaying phonon dispersions. Band diagrams are formed by

calculating eigenfrequencies within the first Brillouin zone of a periodic structure

with lattice vectors ai, i = 1, 2, 3. The first Brillouin zone is the primitive cell

in reciprocal space, described by G:

G = m1b1 +m2b2 +m3b3,

b1 = 2π
a2 × a3

a1 · (a2)× a3

, b2 = 2π
a3 × a1

a2 · (a3)× a1

, b3 = 2π
a1 × a2

a3 · (a1)× a2

,

(2.24)

where G is the reciprocal lattice vector and mi is an integer. Since SAW PnCs

are periodic in only two dimensions, a3 is defined as the device surface normal,

the unit vector in the x3 direction. Bandgaps and other features can be identified

by sweeping wavevectors over multiple directions within the Brillouin zone and

presenting them on the same axis. By convention, wavevectors are swept as in

Figure 2.4 if the structure is a 2D square array.

The wavevector k = k1 + k2 + k3 is defined as ki in the bi direction. The Γ

point, the centre of the Brillouin zone, is where the band diagram wavevector
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Figure 2.4: Sweeping wavevectors in the first Brillouin zone for 2D square
arrays.

axis starts, at |k| = 0. k1 is then increased to the X point, the [100] Brillouin

zone boundary, then k2 is increased to the M point [110] boundary at constant

k1. Finally, k1 is decreased to the Γ point.

Bloch theory [6] is used to calculate the eigenfrequencies. Displacement u at

location x and time t are given the form:

u(x, t) = exp[i(k · x− ωt)]
∑
G

uk(G) exp(iG · x) (2.25)

In elastic composites, the wave equation is defined as:

ρ
∂2u

∂t2
= ∇T · (ρc2T∇Tu) (2.26)

Here ρ is the mass density, cT is the transverse wave speed and ∇T is the 2D

differential vector operator. The density and speed are functions of location

since the structure is periodic,
(
ct(x), ρ(x)

)
. These can be Fourier transformed

into ρ(G)and τ(G). Here ρc2T = τ(x). Equation 2.25 can be substituted into

2.26 yielding:
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∑
G′

[τ(G−G′)(k+G) · (k+G′)− ω2ρ(G−G′)]uk(G
′) = 0 (2.27)

Consider a square array of cylinders (a ubiquitous PnC design) of material with

density ρa in a background material with density ρb, with unit cell filling fraction

f . Average parameters ρ and τ and ‘contrast’ parameters ∆ρ and ∆τ can be

defined so that:

ρ(G) =


ρaf + ρb(1− f) ≡ ρ, G = 0

(ρa − ρb)F (G) ≡ ∆ρF (G), G ̸= 0

(2.28)

Here, F (G) is the structure factor:

F (G) = A−1
c

∫
a

d2x exp(−iG · x) (2.29)

This is integrated over the cylinder cross section while Ac is the area of the unit

cell. Using this, Equation 2.26 can be written:

[τ |k+G|2−ρω2]uk(G)+
∑
G′ ̸=G

[∆τ(k+G)·(k+G′)−∆ρω2]F (G−G′)]uk(G
′) = 0

(2.30)

This is a set of linear, homogeneous equations of eigenvectors uk(G) and eigen-

frequencies ω(k) if G is allowed to take all possible values. Plotting the calcu-

lated eigenfrequencies as a function of wavevector (k) gives rise to the phononic

bandstructure of a material or structure. If different filling fractions and mate-

rials are studied, bandgaps may be found.
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2.4.1 Phononic Crystals

As discussed before, bandgaps prohibit waves of certain frequencies propagating

through a crystal and can occur under a number of circumstances, leading to

applications in frequency filters or wave confinement. Bandgaps can be formed

when waves are scattered by changes in the density or wave velocity in a sub-

strate. One important scattering mechanism is Bragg scattering, where peak

constructive interference occurs in a periodic array of scatterers, such as holes

as seen in Figure 2.5, when the Bragg law condition is met:

2d sin θ = nλ (2.31)

Here d is the separation between the scatterers, n is an integer, λ is the wave-

length and θ is the scattering angle [9]. A schematic of this process can be seen

in Figure 2.6.

Figure 2.5: Adapted from [15]. A schematic of a conventional hole-based
phononic crystal.

In conventional Bragg PnCs as discussed above, bandgaps are predominately

caused by destructive Bragg interference due to the periodicity of the array

elements preventing specific frequencies from propagating. SAWs of frequencies
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Figure 2.6: A schematic of the mechanism behind Bragg scattering and
interference.

just above the bandgap are ‘leaky’, meaning that acoustic energy is transferred

into the bulk of the material due to the coupling of SAWs to bulk waves which

contributes to attenuation, but the mechanisms are not well understood [42].

The slowest bulk solution is known as the ‘soundline’, which is often plotted on

bandstructure diagrams. SAW effects are often difficult to observe at frequencies

close to the soundline, so integrating local resonators into PnC structures can

play a part in engineering bandgaps by ensuring they occur at lower frequencies

with respect to the soundline in the first Brillouin zone. This can increase

the efficiency of devices by reducing the ‘leakiness’ of the SAWs and allowing

SAW bandgaps to be observed and defined more easily. Examples of SAW

bandstructure diagrams can be seen from Chapter 5 onwards.

2.4.2 Locally Resonant Phononic Crystals

When PnCs are fabricated with an array of resonators rather than just scat-

terers, local resonance is introduced into the system. An example of this is

an array of cylindrical pillars (rather than holes in a Bragg phononic crystal).
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Compared to conventional phononic crystals where the origin of the bandgap

is predominantly from Bragg scattering, in locally resonant systems the char-

acteristics of the individual array elements play more of a part in the bandgap

origin, so for example the bandgap may evolve with pillar height.

Mie scattering [16], important in locally resonating systems, occurs when the

diameter of the scatterers is comparable to the wavelength of the scattered wave

(unlike Rayleigh scattering which is when the scatterer diameter is much smaller

than the wavelength), is often a mechanism behind this. Mie scattering is also

characterised by an asymmetry in scattering directions of the incident wave

while Rayleigh scattering is isotropic. A simple schematic of Mie scattering can

be seen in Figure 2.7.

Figure 2.7: A schematic of Mie scattering.

In microfluidics, the Mie scattering regime can be important in describing the

acoustic radiation force that droplets and particles experience. A general ap-

proach is to consider the theory of ray acoustics and Snell’s law relating angles

of incidence and reflection, to calculate acoustic fields and intensity profiles

within fluids [43].
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In this thesis, a simple but key difference between Bragg and Mie scattering is

that Bragg scattering occurs between neighbouring array elements (i.e. between

unit cells), while Mie scattering occurs across each individual array element (i.e.

within a single unit cell).

2.5 Metamaterials

Metamaterials, which consist of meta-atoms, are composites that do not typ-

ically exist in nature. In recent years they have attracted much attention,

particularly for electromagnetic wave applications. This is due to their exhi-

bition of interesting behaviours such as negative refractive indices, which are

achieved by the geometry and periodicity of the meta-atoms giving rise to reso-

nant frequencies and wavelengths much larger than the scale of the meta-atoms

themselves.

Elastic metamaterials operate on the same principle, in that material properties

such as elastic moduli and mass density (rather than permittivity and perme-

ability in, for example, the electromagnetic case) are modulated on length scales

similar to the acoustic wavelength. This allows for the subwavelength (specifi-

cally) manipulation of elastic waves within the structure and leads to a number

of novel effects including phononic waveguiding [44] and even acoustic cloaking

[45].

2.5.1 Annular Hole Phononic Metamaterial

With bandgaps originating from both Mie and Bragg scattering, the array ele-

ments of annular hole phononic metamaterials consist of resonating pillars inside

holes, which combine characteristics of both conventional phononic crystals and

local resonating phononic crystals. Originally investigated by Ash et al. [39],

finite depth annular holes are a novel structure which improve upon purely
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hole-based phononic crystals by reducing fabrication time, and by lowering the

bandgap compared to pillar-based locally resonating phononic crystals to avoid

leaky SAWs. A schematic of the geometry can be seen in Figure 2.8. Also in

terms of the geometry, the annular holes have another degree of freedom with

two radii (labelled r1 and r2) compared to one of a conventional pillar-based

phononic crystal, allowing for more precise tuning of phononic bandstructures

if required. The annular holes also exhibit much higher bandgap attenuation

than either hole- or pillar-based phononic crystals, pointing to applications in

sensing environmental changes with fewer array elements required than previous

device designs.

Figure 2.8: A schematic of the annular hole geometry in (a) 3D and (b)
2D. r1 and r2 are the inner and outer radii respectively, d is the depth and

a is the lattice constant.

In this thesis, the annular hole geometry was adapted and the structure inves-

tigated in a number of ways. In Chapter 5, the bandstructures and bandgap

attenuation of annular holes were compared to those of cylindrical holes when

the holes were filled with materials of different SAW velocities. In Chapter 6,

the mass loading on an annular hole phononic metamaterial was studied exper-

imentally and computationally. In Chapter 7, a similar study to Chapter 5 is
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presented, with the modification of the hole inclusion geometry so as it became

a small sphere, intended to represent a biological cell-like analogue.

2.6 Summary

An overview of the background, theory and mathematics behind surface acous-

tic waves (SAWs), phononic crystals and metamaterials was presented in this

chapter. SAWs were introduced in section 2.2 and the SAW equation derived,

and an important mechanism affecting SAW propagation, mass loading was

discussed in sections 2.3 and 2.4. These mathematics and mechanisms must

be considered when applying in numerical models, as will be seen in Chapter

3. Section 2.5 introduced the concepts of phononic crystals and local resonance

and an explanation of how SAW bandstructures are calculated, along with some

mechanisms behind the formation of bandgaps. These are important concepts

underlying the numerical modelling and design of the structures and devices

used in later chapters. A brief overview of metamaterials was presented in

section 2.6, focusing on the annular hole geometry used throughout this thesis.
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Chapter 3

Finite Element Modelling with

COMSOL Multiphysics

3.1 Overview

In this chapter, the principles of Finite Element Modelling (FEM) and meth-

ods for simulating surface acoustic wave (SAW) dispersions and propagation in

phononic metamaterials are described. In section 3.2, FEM working principles

such as meshing and perfectly matched layers are explored, while in section 3.3

a description of COMSOL Multiphysics, the FEM software package used for

this thesis, can be found. Sections 3.3.1 - 3.3.2 contain descriptions of some

methods used to simulate SAW dispersions in unit cell eigenfrequency models,

and SAW propagation in frequency domain transmission models. A summary

of the chapter can be found in section 3.4.

3.2 Background

Finite element modelling (FEM), or finite element analysis, is a powerful com-

putational tool used by physicists, engineers and mathematicians to simulate

and solve an enormous range of problems numerically [46]. When conventional
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analytical methods are not suitable, such as problems involving complicated ge-

ometries or those without a straightforward analytical solution, FEM is a good

technique to turn to. Boundary value problems for partial differential equa-

tions (PDEs) are solved, meaning that dependent variables (such as mechanical

displacement or electric potential) have to satisfy PDEs in a domain of known

independent variables and boundary conditions.

The principle behind FEM is for PDEs to be approximated with numerical

model equations (NMEs), which are attained with discretisation, and so whose

solutions are approximations of the real PDE solutions. Discretisation is achieved

by dividing a larger continuous domain into discrete, non-differential finite ele-

ments, which are usually triangular or quadrilateral for 2D models, or tetrahe-

dral for 3D models. NMEs are solved at element vertices, characteristic points

lying on the element circumference called nodes, so that the dependent variable

values can be explicitly calculated, and the element boundaries are connected

to multiple other elements which then fill the entire geometry of the domain.

The values of the dependent variables away from the vertices are approximated

by using the solutions at each node.

FEM can support many different types of study step, such as time dependent

where dependent variables evolve with time, frequency domain which represent

a ‘snapshot’ of the model at chosen frequencies, or eigenfrequency studies for

eigenmodes and eigenfrequencies for linearised models [47].

In an FEM model, the mesh is the group of finite elements which comprise

the domain geometry, and meshing is the term for the process of building it.

Important mesh characteristics to consider are the size, shape and distribution

of the elements as these factors can have a major impact on the final model.

The number of elements per unit space is known as the mesh density, which also

profoundly affects both the accuracy and time of the solution, as a higher density

mesh results in a more accurate solution but at the expense of computational
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time and resources. An example of a course and sparse mesh compared to a

fine and dense mesh where the domain geometry is better approximated which

therefore results in better accuracy and higher resolution can be seen in Figure

3.1.

Figure 3.1: A mesh density comparison of a 2D circle with free triangular
mesh elements for (a) a course, sparse mesh and (b) a fine, dense mesh,

which better approximates the domain geometry.

The representation of waveforms is also important, so for any simulations in-

volving waves, the minimum mesh density must be 5 finite elements per wave-

length (of the highest frequency investigated). Optimising the density is called

mesh refinement, and solutions are incrementally improved with an incremen-

tally finer mesh. When the solutions stop changing as the mesh is made finer,

the optimal mesh density is achieved. Curved geometries or sub-wavelength

features may need a finer mesh density compared to the rest of the geometry,

and mesh densities can be tailored to accommodate this while also reducing

the number of finite elements and therefore solution time without sacrificing

accuracy. Graded mesh distributions such as those seen in Figure 3.2 can also

be exploited.

Finite elements are usually triangular/quadrilateral in 2D, and tetrahedral in

3D, meaning tessellation in complicated geometries is easy to achieve, and due

to the high rotational symmetry of the resulting mesh, wave propagation or
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Figure 3.2: A mesh density comparison of a 2D circle with free triangular
mesh elements for (a) a separate subdomain with an increased mesh density

and (b) a single circular domain with a graded mesh distribution.

scattering can be accurately represented in all directions. When the direction

of wave propagation is known or assumed such as in boundary layers (far from

scattering), quadrilateral elements can be used which can minimise reflection.

The elements on the face of such a layer can then be swept, where repeating

layers matching those below are built, from a source face to a destination face.

An example of this can be seen in Figure 3.3. Swept meshes must be used for

perfectly matched layers (PMLs).

Figure 3.3: From [48]. FEM mesh of a 2D circle, with free triangular
mesh elements in the inner subdomains and a swept quadrilateral mesh on

the boundary subdomain.
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In order to minimise spurious reflections at domain boundaries, virtual domains

called perfectly matched layers (PMLs) are often used. These behave as a

coordinate transform whose form is defined by a stretching function, which is

calculated based on the wavelength of each simulation frequency and a ‘typical’

wavelength from the model [47] [49]. In a given direction, coordinate stretching

is applied, and for stretching in a single direction, the complex displacement

∆x is given as:

∆x = λfi(ξ)−∆wξ (3.1)

where λ is a typical wavelength, ∆w is the PML domain width (defined in the

geometry) and ξ is a dimensionless coordinate, varying from 0 to 1 over the

PML domain. Two typical stretching functions are the polynomial fp(ξ), and

the rational fr(ξ):

fp(ξ) = sξp(1− i), (3.2)

fr(ξ) = sξ

(
1

3p(1− ξ) + 4
− i

3p(1− ξ)

)
, (3.3)

where p is the PML scaling factor and s is the PML curvature parameter. p

scales the PML effective width, useful in scenarios where plane waves are inci-

dent at an angle so the PML must compensate for seeing a longer wavelength

in the direction of stretching. s dictates the distribution of the mesh elements

within the domain with the stretched coordinate, and increasing its value in-

creases the density of mesh elements close to the PML inner boundary. If the

wave field is comprised of many different wavelengths or a mixture of propagat-

ing and evanescent components, increasing the mesh resolution at the boundary
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is required, at the expense of the requirement of more mesh elements in the do-

main itself. In order for a PML to be effective, the 3 parameters λ, p and s

must be optimised through an iterative process analogous to refinement of the

mesh.

The polynomial stretching function fp(ξ) has real and imaginary parts which are

both finite and equal, meaning that this function is appropriate for simulations

with many different wave types, since propagating and evanescent waves on a

similar length scale are handled in a similar way. The effective thickness of

the PML is scaled by the real part of the rational stretching function fr(ξ) to

a quarter of the typical wavelength, while the imaginary part attenuating the

waves is stretched towards infinity. This means that any propagating wave will

be absorbed perfectly by the PML if the mesh resolution is sufficient, so this

stretching function is appropriate for simulations with propagating waves with

a mixture of wavelengths and incident angles.

By definition finite element models must have finite sized geometries, so domain

truncation is needed to fulfil this. Using PMLs is a way of achieving this, for

example for models simulating free space without having domain boundaries

exhibit spurious reflections. Implementing stretching functions in elastic fields

for example is comparable to anisotropic and complex values of densities and

elastic moduli in domains, so the PML domains must replicate this anisotropy

in order for perfect absorption without reflection to be successful [50]. A circu-

lar/spherical domain surrounded by a square-shaped/cubic PML domain with

correct mesh can be seen in 2D and 3D in Figure 3.4, where the mesh on the

boundaries of the real domains is swept to the exterior of the virtual PMLs with

quadrilateral elements. Corner boundaries of square domains must be separate

from the remaining PMLs in order to be successful.



3.3. COMSOL Multiphysics 37

Figure 3.4: From [48]. FEM meshes of a (a) 2D circle and (b) a 3D
sphere, both with free triangular/tetrahedral mesh elements in the inner
subdomains and a correct swept quadrilateral mesh on the PML virtual
domains (coloured darker blue), minimising spurious reflections at the real

domain boundaries (coloured lighter blue).

3.3 COMSOL Multiphysics

In this thesis, COMSOL Multiphysics was the FEM software package used for

all simulations. COMSOL has a huge number of modules specific to different

physics applications, such as the Acoustics module, Electrostatics module, Solid

Mechanics module, the Particle Tracing module, and many others. Each physics

module has a number of default and additional parameters which can be set

up, defined and varied as desired. Each module can also be used alone or

be coupled with other modules via Multiphysics interfaces, which allows a vast

array of physics problems to be simulated. The piezoelectric effect, for example,

can be simulated by coupling the Solid Mechanics and Electrostatics modules.

Most COMSOL models are constructed through the same process, by firstly

defining the spatial dimension (2D, 3D or 2D axisymmetric) and then choos-

ing the physics modules. Then, definitions can be specified, such as global or

geometric parameters, lattice vectors, global variables (functions of defined pa-

rameters i.e. reciprocal lattice vectors) or any material properties which need

to be entered manually. PMLs can also be defined here, along with anisotropic
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material domains requiring a custom coordinate system to define a crystallo-

graphic axis.

Once the domain geometry has been constructed, each subdomain has material

properties applied, which are either chosen from a library of commonly used

pre-defined materials, or defined manually. The physics modules then need

relevant physics conditions to be applied, such as boundary conditions (peri-

odic conditions, fixed displacement constraints) and domain conditions (volume

forces, material models). Depending on the physics modules and boundary con-

ditions, multiphysics coupling is then applied as necessary. The mesh is then

built and study steps are selected from a list including the eigenfrequency study,

frequency domain study, time domain study and stationary study amongst oth-

ers. A parametric sweep can also be applied which sweeps through a range of

values of chosen parameters from the definitions and repeats simulations for

chosen combinations of parameter and study step values.

Lastly the computational algorithm used by the simulation is selected, which

is called the solver. COMSOL has 2 types of solver, the first type being direct

(MUMPS, PARDISO and SPOOLS) which are usually chosen by default by

COMSOL and solve simulations in one large step, and the second type being

iterative, which converge on a solution over a number of steps n. The relative

error decreases as n increases, and when the error reaches a value below a

defined relative tolerance, the iterative solver model is converged. Compared

to direct solvers, iterative solvers require much less memory but depend highly

on the system of equations being solved. The MUMPS direct solver was used

predominantly in this thesis due to its efficiency in calculating solutions for the

particular problems investigated.
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3.3.1 Eigenfrequency Models for SAW Dispersions

An important technique used in this work was using COMSOL to calculate

eigenfrequencies of unit cells, to investigate surface acoustic wave dispersions in

phononic metamaterials patterned in lithium niobate (LiNbO3), a piezoelectric

material often used in SAW applications whose properties are discussed fur-

ther in Chapter 4. The model setup was adapted from Ash et al. [39], who

adapted it from a setup defined by Assouar et al. [51], and the geometry of a

typical LiNbO3 unit cell can be seen in Figure 3.5. The full geometry has three

subdomains, labelled A, B and C. A is the active subdomain at the top which

includes the phononic metamaterial pattern, B is the bulk subdomain and C is

the bottom PML. The bulk domain B is much deeper than the active domain

A so as to properly resolve SAW displacement modes at the surface.

To model the piezoelectric effect in the LiNbO3, the ‘Solid Mechanics’ physics

module with the ‘Linear Elastic Material’ material model was applied to the

whole geometry, and was coupled to the ‘Electrostatics’ module by the ‘Piezo-

electric Effect’ Multiphysics coupling, also over the whole geometry. The ‘Free’

and ‘Fixed Constraint’ boundary conditions were applied to the very top and

very bottom boundaries respectively. The ‘Fixed Constraint’ was required to

eliminate any in-plane displacement modes as displacement is forced to zero

(u = 0) at the bottom. Periodic Floquet boundary conditions were applied on

the remaining opposite parallel boundaries to simulate an infinite square array.

This was set up by defining udst = usrce
−kF·(rdst−rsrc) where udst and usrc are

the displacements on the boundary condition destination and source faces, rdst

and rsrc are the spatial coordinates at the boundaries and kF is the wavevec-

tor (controlling this of the periodic boundary conditions allows the excitation

wavevector being solved for by the simulation to be controlled).

Since in experiments 128°YX LiNbO3 was used, this could be simulated by

applying density, relative permittivity, elasticity matrix, piezoelectric coupling
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Figure 3.5: A schematic of a typical LiNbO3 annular hole unit cell for
calculating SAW dispersions. A is the top active subdomain which includes
the phononic metamaterial structure, B is the bulk subdomain and C is

the bottom PML.

matrix properties to the LiNbO3 domain, and also a Euler transformation ro-

tated coordinate system, which defines the material crystallographic axis. In

this case the Euler transformation was (0, -0.663, 0).

In the active subdomain A a free tetrahedral mesh was used with a maximum

element size in relation to the lattice constant a
8
, and swept meshes were used

in the bulk subdomain B and PML C with a maximum element size of a
2
. The

PML also had a 6 element distribution. A schematic of the mesh in a typical

unit cell can be seen in Figure 3.6.
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Figure 3.6: A schematic of the mesh in a typical unit cell. The active
subdomain A has a free tetrahedral mesh, the bulk subdomain B and PML
C have a swept mesh with maximum element size a

2 , and the PML also has
a 6 element distribution.

Bandstructures were found by running an eigenvalue study step on the unit cell,

which solved for a specified number of frequencies (usually 10 in this thesis),

searching for solutions around 0 Hz since the modes of interest were typically

the lowest for each given wavevector. The study step performed a paramet-

ric sweep of the Floquet boundary condition kF = kxx̂ + kyŷ + kzẑ within

the first Brillouin zone defined by the geometry and reciprocal lattice vectors.

The bandstructure could then be constructed by plotting the eigenfrequency

solutions against wavevector.
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SAW velocities for particular materials could also be calculated from the gradi-

ent of the lowest eigenfrequency found when the active subdomain A was blank

(i.e. has no hole or pattern) and the entire model geometry was made up of

that particular material.

3.3.2 Frequency Domain Models for SAW transmission

The transmission in phononic metamaterials with a finite array size could be

investigated with a frequency domain study step at any frequency, as defined

wavevectors were not required to drive excitation sources. This allowed the

performance of the phononic metamaterial to be measured through quantities

such as bandgap attenuation. Adapted from Ash et al. [39], a schematic of

the typical geometry for a frequency domain transmission model can be seen

in Figure 3.7, which shows a substrate of length L, width W and depth D

surrounded by PMLs (coloured blue), and with a finite (4 elements) phononic

metamaterial array and a SAW excitation source.

The setup was very similar to the eigenfrequency unit cell model (the same

material models and physics modules, fixed constraint at the base, PMLs and

piezoelectric multiphysics). The geometry width W corresponded to the lattice

constant a, so the geometry could be modelled as infinite in the direction per-

pendicular to SAW propagation by applying Floquet periodic conditions on the

long opposite faces. The frequency range investigated in this work was between

1-205 MHz, and following work by Ash et al. [39] a typical SAW frequency 140

MHz was defined, from which a typical wavelength λ was derived and used to

inform the geometry dimensions. The depth D is 3λ and the length L is 15λ.

In order to generate SAWs, an edge load with an arbitrary amplitude of 1 N

m−1 was applied the SAW source as labelled in Figure 3.7 in the direction of

propagation. This negated the need to model interdigital transducers directly

with a complicated scaling geometry and mesh, and additional electric potential
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Figure 3.7: A schematic of the typical geometry for a frequency domain
transmission model. A substrate of length L, width W and depth D is sur-
rounded by PMLs (coloured blue) and patterned with a finite (4 elements)
phononic metamaterial array, and the SAW excitation source can also be

seen.

setup within the electrostatics module. The edge load could be excited at any

frequency to simulate all required SAW frequencies.

A maximum mesh element size based on a maximum frequency of 205 MHz

was chosen so as to resolve all SAW features properly at all frequencies. In

the active domain (coloured grey in Figure 3.7), a free tetrahedral mesh was

used, and in the PMLs a swept mesh with an element stretching distribution

was used. An example of the full mesh can be seen in Figure 3.8.

Transmission could be investigated by comparing phononic metamaterial sim-

ulations to blank surface simulations. The average root-mean-square (RMS)

SAW displacements were extracted from cut lines on the substrate surface on

the opposite side of the SAW excitation source, after propagating through the

phononic metamaterial array, and in the same location on the blank surface.

The location and dimensions of the cut line can be seen plotted in red in Figure
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Figure 3.8: A schematic of the typical geometry mesh for a SAW trans-
mission model, with a maximum element size based on a maximum fre-

quency of 205 MHz.

3.9. The relative transmission spectrum could then be plotted by calculating

the expression T = 20 log10

(
uph

ublank

)
at each frequency, where uph and ublank are

the average RMS displacements for the phononic metamaterial and blank sur-

face models respectively. Example displacement and transmission spectra are

plotted in Figure 3.10.

Bandgap attenuation Γ could also be extracted by locating the bandgap fre-

quency from the corresponding lowest RMS displacement value in the trans-

mission step above, and calculating the in-plane displacement amplitude A at

that value, and then calculating the expression Γ = 20 log10

(
Aph

Ablank

)
at that

frequency, where Aph is the displacement amplitude for the phononic metama-

terial and Ablank is the displacement amplitude for the blank surface. Further

details on extracting this quantity can be found in Chapters 4, 5 and 7.
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Figure 3.9: The location and dimensions of the cut line plotted in red on
the surface of a typical phononic metamaterial model.

Figure 3.10: (a) Example RMS displacement plotted as a function of
frequency for a blank surface and a phononic metamaterial and (b) the

resulting transmission spectrum.

3.4 Summary

An outline of finite element modelling principles was presented in section 3.2,

such as meshing and perfectly matched layers, followed by a discussion of the

use of COMSOL Multiphysics to simulate SAW dispersions and propagation in
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phononic metamaterials in section 3.3. A particular focus on using an eigen-

frequency study step on unit cell models to calculate phononic bandstructures

was presented in section 3.3.1, and the use of a frequency domain study to

simulate SAW propagation and transmission in a finite phononic metamaterial

was discussed in section 3.3.2 as these types of models form the basis of all the

simulations undertaken in this thesis.
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Chapter 4

Materials and Experimental

Techniques

4.1 Overview

In this chapter, descriptions are presented of the materials and methods used

to generate and detect surface acoustic waves in this thesis, and experimental

techniques to fabricate and characterise SAW phononic metamaterial devices.

In section 4.2 the crystallography of lithium niobate, a piezoelectric often used

in SAW devices, is described, and in section 4.3 an explanation of how interdig-

ital transducers can be used for SAW generation and detection. Descriptions

of the experimental methods behind SAW device fabrication and characterisa-

tion can be found in section 4.4, such as focused ion beam etching, electrical

characterisation with an oscilloscope system, and laser Doppler vibrometry.

4.2 Lithium Niobate

The behaviour of SAWs is highly dependent on the properties of the media on

which they propagate, particularly for anisotropic piezoelectrics. The material

from which devices were fabricated in this thesis was lithium niobate (LiNbO3),
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which is both highly anisotropic and highly piezoelectric and therefore efficient

for SAW generation, but also widely commercially available.

LiNbO3 is ferroelectric, and consists of planar oxygen sheets interspersed with

atoms of lithium and niobium, as shown in Figure 4.1(a) [52]. There are several

ways of defining the +c axis, such as the face normal to the axis becoming nega-

tively charged when the structure is compressed. There is also 3-fold rotational

symmetry about the c axis as seen in Figure 4.1(b) [52], and therefore LiNbO3

has a hexagonal unit cell.

Figure 4.1: Taken from [52]. (a) A diagram of the crystal structure of
LiNbO3, where the lithium and niobium atoms are represented by shaded
and cross-hatched circles respectively. (b) A diagram showing the hexago-
nal unit cell of LiNbO3, with the rotational symmetry illustrated by mirror

planes and highlighting of principle axes.

LiNbO3 does not occur naturally and so when engineering it, standardised prin-

ciple axes must be defined in order to maintain the crystal orientation consis-

tently. The +Z axis is just taken to be the +c axis, while the X axis is perpen-

dicular to the plane of symmetry and the Y axis is parallel to it. This forms

right-handed Cartesian axes. Standard notation is used to define crystal cuts,
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(θ − ϑ), where θ is the surface normal and ϑ is the direction of propagation of

the wave. SAWs in 128° YX LiNbO3, which was used in this thesis, propagate

in the X-direction while having a surface normal rotated clockwise about the

+X axis of 128° from the +Y axis.

Crystal cuts can also be defined conveniently with Euler angles, such as in the

case for 128° YX LiNbO3 whose surface normal does not align with a crystal

principle axis. Three angles α, β and γ define Euler angles and Euler trans-

formed axes are (x, y, z) from the principle axes (X, Y, Z). Illustrated in Figure

4.2 [53], α is the angle between the x-axis and the axis defined by the line of

nodes intersecting the planes defined by XY and xy (labelled N), β is the angle

between the z-axis and the Z-axis, and γ is the angle between the N-axis and

X-axis. The 128° YX LiNbO3 cut can be achieved with a Euler angle transfor-

mation of (0, -38°, 0).

Figure 4.2: Taken from [53]. An illustration of the Euler angle trans-
formation (α, β, γ) between the principle axes (X, Y, Z) and transformed

axes (x, y, z), and the line of nodes N.
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The orientation of the crystal cut and propagation direction is critical as seen

in Figure 4.3 in which, for free and metallised cases, SAW velocity is plotted

as a function of the direction of plate normal (in this case, −β, but labelled as

µ) [54]. The SAW velocity changes markedly with the surface normal angle in

both cases, and 128° YX LiNbO3 with a free SAW velocity of around 3880 m

s−1 is labelled on the plot.

Figure 4.3: Taken from [54]. For the free and metallised cases, SAW
velocity plotted as a function of the angle between the Z-axis and surface
normal, with the direction of propagation in the direction of the X-axis.

SAWs are commonly generated on 128° YX LiNbO3 through the use of inter-

digital transducers (IDTs).



4.3. Interdigital Transducers 51

4.3 Interdigital Transducers

For the SAWs generated experimentally in this work, interdigital transducers

(IDTs) were used, which are comb-like structures of interlocking metal electrode

fingers, patterned on the surface of piezoelectric materials such as LiNbO3.

An example schematic of an IDT can be seen in Figure 4.4. IDTs induce

elastic stress in the material when a voltage is applied across them, and when

the voltage is oscillated, SAWs are generated and propagate in both directions

perpendicular to the electrodes’ long axis. Peak amplitude SAWs are generated

when the AC source frequency corresponds to the IDT periodicity, and the

fundamental frequency f0 is given by:

f0 =
vSAW

λ
(4.1)

where vSAW and λ are the SAW velocity and wavelength respectively. Higher

frequency SAWs are also generated at higher order harmonic frequencies. In a

reciprocal process, IDTs can also detect SAWs from an electrical signal gener-

ated by a corresponding elastic stress, so when two IDTs are opposed a SAW

delay line (with one source IDT and one detection IDT) is formed. Typically

in SAW delay lines, propagation distances and transducer apertures are on the

order of millimetres, with IDTs of 20-1000 electrode fingers. IDTs can also

have multiple interlocking electrode fingers rather than the single-digit scenario

illustrated in Figure 4.4 [40]. For example the IDTs used for the experiments

in this thesis were double-digit, to give multiple resonant frequencies.

The frequency response around the IDT fundamental frequency can be found

by considering electrode fingers of uniform widths (a) and pitches (p) such that

there is a metallisation ratio of 50% [40]. Assuming no diffraction or propagation

losses occur and the IDT is non-reflective, the IDT has N electrode fingers

centred at x = x1, x2, ..., xn etc and x = 0 is just outside the IDT, as illustrated
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Figure 4.4: Adapted from [40]. A schematic of an IDT with n electrode
fingers of width a, pitch p, aperture W and the fundamental SAW wave-

length is labelled as λ.

in Figure 4.4. As discussed above, SAWs are generated in both x-directions

when an AC voltage is applied, but in this case only the negative x-direction

is considered as that is where a detecting IDT would be located. The flat

horizontal domain at the top of Figure 4.4 is known as the ‘live busbar’, and

this is where the voltage is applied to the electrode connected to it, while those

attached to the bottom busbar are grounded. Each live electrode finger behaves

as an individual SAW source and, assuming it is not affected by all the other

electrodes, the amplitude of the SAW induced by the nth electrode has the

form eik(x−xn), where k is the wavenumber. A polarity P̂n, which distinguishes

between grounded and live electrodes, is defined for each electrode n, so that

for grounded electrodes P̂n = 0 and live electrodes P̂n = 1. This means that

the SAW generated by the nth electrode finger has an amplitude:

ϕn(x, ω) = V E(ω)P̂ne
ik(x−xn)eiωt (4.2)
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where ω is the frequency, V is the applied voltage and E(ω) is the element fac-

tor, representing the individual electrodes’ responses which allows for physical

process. The SAW amplitude at x = 0 can be written as a linear summation of

the contribution from each IDT electrode finger:

ϕn(ω) =
N∑

n=1

ϕn(0, ω) = V E(ω)eiωt
N∑

n=1

P̂ne
−ikxn (4.3)

This expression will hold for any polarity sequences P̂n, for example ‘single-digit’

IDTs (P̂n = 0, 1, 0, 1, ...) or ‘double-digit’ IDTs (P̂n = 0, 0, 1, 1, 0, 0, 1, 1, ...) as

used experimentally in this thesis.

Excluding V and E(ω) allows the frequency response to be represented conve-

niently by an array factor A(ω):

A(ω) =
N∑

n=1

P̂ne
−ikxn (4.4)

For single-digit IDTs A(ω) can be written as a sum of Mp terms which have a

spacing of ∆x = 2p and electrode centres at xn = np, and where the number of

periods in the IDT is Mp = N/2:

A(ω) =

Mp∑
m=1

e−2ikp (4.5)

When this summation is treated as a geometric progression it can be rewritten

as:

A(ω) =
sin(Mpkp)

sin(θkp)
e−i(Mp+1)kp (4.6)
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This expression for A(ω) is plotted (in arbitrary units) close to f0 in Figure

4.5 [55]. Amplitude peaks occur at kp = nπ in Equation 4.6, which can be

rewritten as 2p = nλ. This means the fundamental frequency response occurs

at n = 1 and for higher values of n, higher harmonics are exhibited. Similar

behaviour is displayed by double-digit IDTs.

Figure 4.5: Adapted from [55]. Array factor A(ω) plotted (in arbitrary
units) in the region of the fundamental frequency f0 of a uniform single-

digit IDT.

IDT frequency responses can also be manipulated through a process known as

apodisation, where electrode lengths are varied with respect to the transducer

aperture W , but all the transducers used in this thesis have constant electrode

finger lengths.

4.4 Metamaterial Fabrication and Experimen-

tal Methods

The steps of the overall fabrication process of the metamaterial array are illus-

trated in Figure 4.6.
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Figure 4.6: The four overall steps of the fabrication process for a typical
SAW device used in this thesis.

4.4.1 Device Preparation

Diamond-shaped 128° YX-cut LiNbO3 substrates from MESL Microwave/COM

DEV International with 2 opposing pre-patterned aluminium interdigital trans-

ducers (IDTs) with 8 double-digit fingers, a centre-to-centre IDT separation of

5.4 mm and aperture of 3.25 mm were used. The substrates required a number

of steps in order to be prepared for focused ion beam (FIB) etching. They were

first washed with acetone, then rinsed with isopropanol and dried. A resistive

400 nm layer of 950K A6 PMMA was then spin-coated onto the surface at 4000

rpm, followed by a 2 thermally evaporated layers, 5 nm of Cr and 95 nm of

Au. Since pattern etching took place in a combined FIB-SEM (focused ion

beam-scanning electron microscope) system, this conductive metal layer was

necessary to avoid a build-up of charge on the substrate surface which can dis-

rupt the FIB beam, and the samples were grounded to stubs with carbon tape

as shown in Figure 4.7(a).
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4.4.2 Focused Ion Beam Etching

The prepared substrates were then placed in a FEI Nova 600 dual-beam FIB-

SEM system as shown in Figure 4.7(b). The FIB component used a gallium

ion column, with a range of 5 - 30 kV of accelerating voltage and a range of 1

pA - 20 nA of probe current, giving a resolution of 5 nm. The SEM component

had a range of 200 V - 30 kV of accelerating voltage, and a probe current of up

to 20 nA, giving a resolution of 1.0 nm at 30 kV. Imaging was performed by a

secondary electron detector.

Figure 4.7: A schematic of the SAW device substrate, ready for milling in
the FIB-SEM system. (a) The substrate mounted on a stub and grounded
with carbon tape, ready for calibration holes to be milled within the blue
areas, and for the metamaterial array to be milled within the red area
between the IDTs. (b) The substrate on the stub mounted at the eucentric

height between the electron and ion beam columns.

The substrate surface was moved to be normal to the ion beam path, which is

52° from the vertical, and adjusted so that the electron and ion beams are both

incident at the same point on the device surface, known as the eucentric height.

Both beams were focused and the stigmation adjusted, and the equipment was

pumped down over several hours to achieve a vacuum for improved milling

conditions.
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Before each milling session, a series of calibration annular holes of constant

radii (inner and outer radii of 3.5 and 4.5 µm respectively) had to be milled

with different FIB doses (combinations of specified depth and beam current) in

order to consistently mill the correct hole dimensions. This took place in the

areas of the device outside the SAW apertures as indicated by the blue circles in

Figure 4.7(a). The resulting true depths of the calibration holes were measured

by SEM using a cross-section. Platinum was deposited with a gas injection

system of C9H16Pt, in which the gas adsorbed to the substrate surface, and

its chemical bonds were broken when exposed to the secondary electrons from

the lower current FIB. The Pt was deposited over a section of each hole for

imaging contrast, then a stepping cross-section trench was milled and the depth

measured. This process can be seen in Figure 4.8, and two example calibration

holes with Pt can be seen in Figure 4.9(right).

Figure 4.8: A demonstration of the depth calibration process using plat-
inum deposition and cross-sectioning.
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When the measured depth of the calibration holes and FIB dose converged on

the correct depth, a square array of four annular holes 6 µm deep, with inner and

outer radii of 3.5 and 4.5 µm respectively, and a pitch of 12 µm could be milled

within the red circled area in Figure 4.7, over a series of milling sessions. With

a 7.0 nA FIB current, milling could only take place over an area of 220 x 250 µm

(the size of the FIB aperture at the particular magnification and beam current)

at one time before having to move the stage, resulting in manual array stitching

between each section of the array and thus some minor defects in the final device.

The final array covered the entire transducer aperture (approximately 250 rows

of 4 elements), a small section of which can be seen in Figure 4.9(left).

Figure 4.9: (left) SEM image of a section of the fabricated array in
LiNbO3, (right) iterative cross-section procedure converging on 6 µm

depth, with Pt deposited for contrast.

4.4.3 Sample Mounting

After etching, the substrates were placed in acetone for lift-off of the PMMA/metal

layer, and fixed with conductive silver paint on copper printed circuit boards

(PCBs) with SMA connectors soldered onto the end of the signal tracks. Bonds

of gold wire between the IDT bonding pads and the PCB were created with a

Kulick and Soffa 4123 Wedge Bonder, which ultrasonically vibrated thin gold

wire threaded through a silicon carbide wedge to melt it onto the copper PCB
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surface. These bonds allowed voltage to be applied across the device through

the SMA connectors at the bottom of the signal tracks, and hence SAWs to be

launched and detected. A photo of a SAW device mounted on and bonded to

the PCB, ready for characterisation, can be seen in Figure 4.10.

Figure 4.10: A photo of the SAW device mounted on and bonded to the
copper PCB with gold bonding wires and SMA connectors.

4.5 Experimental Techniques and Characteri-

sation

Characterisation of devices was undertaken at room temperature in air at atmo-

spheric pressure, then in a vacuum chamber. The vacuum chamber was flushed

three times with nitrogen to remove any water vapour condensation on the de-

vice surface before vacuum measurements are made, since this could artificially

increase mass loading effects.
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4.5.1 Oscilloscope System

An oscilloscope system was used to investigate the SAW transmission through

the metamaterial device, by measuring the amplitude of the electric signal from

the receiving transducer. A schematic of the system setup can be seen in Fig-

ure 4.11. RF signal up to 205 MHz was pulsed through the device through

the source IDT using an Agilent 8648C RF signal generator for the source and

a Kiethley 3390 arbitrary waveform generator for the pulse, at frequencies at

which the SAWs have the largest amplitudes (the first 6 IDT resonant frequen-

cies, 11, 33, 97, 119, 183 and 205 MHz), and SAW waveforms detected at the

receiving IDT were analysed for amplitude and other wave characteristics with

a LeCroyWaveRunner 204Xi-A digital oscilloscope.

Figure 4.11: A schematic of the oscilloscope measurement system.

A typical SAW measurement as seen on the oscilloscope is shown in Figure

4.12 where the yellow waveform in Channel 1 (C1) is the pulse signal, the red

waveform in Channel 2 (C2) is the input reference signal, the first blue waveform

in Channel 3 (C3) is the output signal from the SAW device and the second

blue waveform in Z3 is a zoomed section of C3. Z3 waveforms were subsequently
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exported and analysed. The amplitudes of the output signals have an envelope

due to the frequency response of the transducers as shown in Figure 4.5.

Figure 4.12: A screenshot from a typical SAW measurement taken by
the oscilloscope system. Channel 1 (C1) is the pulse signal, Channel 2 (C2)
is the input reference signal, Channel 3 (C3) is the output signal from the

SAW device and Z3 is a zoomed section of C3.

4.5.2 Data Reduction and Analysis

A segment a few wavelengths in length was the chosen from the widest part of

the waveform saved from the oscilloscope, as the waveform was contained in an

envelope. An example of this can be seen in Figure 4.13. A sine wave was fitted

to this segment using a SciPy curve fit function where the frequency was known,

and the amplitude was extracted from the resulting fitting report, from which

attenuation coefficients (discussed in Chapter 6) could then be calculated.
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Figure 4.13: (a) an example oscilloscope waveform (11 MHz) plotted in
Python, where the red dashed box represents the chosen segment at the
widest part of the envelope, (b) the chosen segment, (c) the chosen segment

with fitted sine wave.

4.6 Laser Doppler Vibrometry

Imaging and direct measurements of the SAWs themselves were also possible

thanks to laser Doppler vibrometry (LDV), which is a technique able to quantify

vibrations on the surface of materials through measurements of lasers which are

reflected from surfaces on which SAWs propagate. LDV specifically measures

the Doppler shift fd induced by the velocity of the out-of-plane displacement

generated by the SAW, given by:
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fd =
2v(t)

λ
cos(θ) (4.7)

where v(t) is the displacement velocity, λ is the wavelength of the incident

laser and θ is the angle between the velocity vector and incident laser [56].

Shifting the frequency of the incident laser (for example with a Bragg cell) can

induce a carrier frequency fc, and a photodetector can detect the beat frequency

between the two paths (fc + fd). By demodulating the beat frequency (usually

on the order of tens of MHz), the out-of-plane displacement can be measured.

A schematic of a typical LDV system can be seen in Figure 4.14.

Figure 4.14: A schematic of a typical laser Doppler vibrometer system.

In the same way as for the oscilloscope system, measurements also took place

under vacuum and atmospheric pressure conditions. For both pressure condi-

tions, the device was housed in a Linkam stage, carefully positioned on the LDV

stage. Using a Polytec UHF-120 lase Doppler vibrometer with a 50 magnifica-

tion objective, frequency domain scans of the device surface were performed for

each SAW frequency, which were generated by the LDV system itself with con-

tinuous wave RF signals to the source IDT. A 500 nm wavelength laser scanned

the patterned scanned a section of the array and its immediate surroundings

in a grid pattern, and averages of maximum amplitudes at three grid points
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in the region just before the SAW encountered the array and three grid points

just after the SAW encountered the array were taken, by manually finding the

maximum by cycling through frames of the animation generated by the LDV.

A screenshot of the LDV data gathering process can be seen at an example

SAW frequency of 33 MHz in Figure 4.15. LDV data required no subsequent

curve fitting, and attenuation coefficients were again calculated from the SAW

amplitudes, as discussed in Chapter 6.

Figure 4.15: A screenshot of the LDV data gathering process at a SAW
frequency of 33 MHz. The yellow-coloured circular pattern is the meta-
material array, and the peak SAW amplitudes on the grid can be seen in
turquoise. The peaks from which the maximum amplitudes were extracted

are labelled.

4.7 Summary

The crystallography of lithium niobate, a piezoelectric often used in SAW de-

vices, was described in section 4.2, and in section 4.3 an explanation of how

interdigital transducers (IDTs) can be used for SAW generation and detection

was presented. The experimental methods behind the fabrication and character-

isation of the particular SAW device patterned with a square array of annular
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holes used in this thesis, such as focused ion beam etching, electrical char-

acterisation with an oscilloscope system, and laser Doppler vibrometry, were

described in section 4.4.
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Chapter 5

Tuning Surface Acoustic Wave

Bandstructures in Phononic

Crystals and Local Resonator

Arrays

5.1 Overview

As discussed in Chapter 2 SAWs can be controlled and manipulated in a num-

ber of ways, including the use of phononic crystals (PnCs) but more recently,

periodic local resonator arrays, which have also attracted attention as their

bandstructures are affected by the characteristics of the individual resonating

elements as well as the geometry. This allows for greater freedom of design

compared to conventional PnCs.

New SAW devices with better performance and functionality compared to ex-

isting devices can potentially be realised by exploiting the properties of PnCs

and local resonator arrays. For example, tunable filters for radar and commu-

nications applications could be created if bandgaps can be dynamically tuned.

Phononic metamaterials, including both PnCs and local resonator arrays, can
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also be engineered for sensing applications, since SAW propagation is affected by

the presence of external stimuli. An improved understanding of the behaviour

of PnCs and local resonator arrays in the presence of additional materials (other

than the substrate and air) is needed if such novel devices are to be realised.

However, a full analytical analysis of the effect of introducing additional mate-

rials on the properties of phononic metamaterials is not straightforward for a

number of reasons. Firstly, as discussed in Chapter 2 there are no analytical so-

lutions to the surface acoustic wave equation, for example due to an unbounded

surface in the vertical direction and piezoelectric coupling in very anisotropic

substrates. These factors apply to just the single substrate material, mean-

ing that any interactions with additional inclusion material introduce a further

layer of complexity.

In this chapter, a computational study is therefore presented of the effects of

filling both cylindrical and annular holes in lithium niobate substrates, repre-

senting conventional phononic crystals and local resonator arrays respectively,

with different materials. Using finite element modelling, bandstructure analyses

are performed on the filled cylindrical and annular holes as well as a study of

the bandgap attenuation, with aims to identify the best candidates for bandgap

tuning (through a relationship between bandgap features and material charac-

teristics) and sensing respectively by comparing the results of the FEM study

with a simple analytical model.

5.2 Geometry

Two types of surface patterning on a lithium niobate substrate were investi-

gated. The first geometry was a square array of cylindrical holes, which forms

a conventional phononic crystal, in which the holes were 6 µm deep, with a top

radius of 4.5 µm, and where the lattice constant of the array was 12 µm. The
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holes were slightly conical, to reflect what can be fabricated in practice, with a

bottom radius of 3.5 µm.

The second geometry was a square array of annular holes, which forms an array

of local resonators, shares these dimensions but also possesses an inner radius

of 2.5 µm. Schematics of the 3D geometry of both hole types can be seen in

Figure 5.1. In the analytical model a single unit cell was considered, and top

down views of the top of both types of holes can be seen in Figure 5.2. The

darker grey domains in Figure 5.2 can be filled with material, which introduces

scattering across and between unit cells.

Figure 5.1: Schematic diagrams (not to scale) of 4 adjacent unit cells
of (a) the cylindrical hole geometry, where the depth d is 6 µm, the top
radius r is 4.5 µm and the lattice constant a is 12 µm, and (b) the annular
hole geometry, where the depth d is 6 µm, the top inner radius r1 is 2.5
µm, the top outer radius r2 is 4.5 µm and the lattice constant a is 12 µm.
The darkest shade of grey represents the top of the substrate, the middle
shade represents the hole edges and bottom surfaces, and the lightest shade
represents the side boundaries, made transparent for easier visualisation of
the holes. In practice, this is where periodicity conditions are applied in

the simulation.
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Figure 5.2: To scale, at the top of the hole/lithium niobate surface.
The lighter grey domains represent the lithium niobate substrate, while
the darker grey domain represents the hole. Top down schematics of an
individual unit cell of (a) the cylindrical hole geometry, where the depth
d is 6 µm, the top radius r is 4.5 µm and the pitch/lattice constant a is
12 µm, and (b) the annular hole geometry, where the depth d is 6 µm, the
top inner radius r1 is 2.5 µm, the top outer radius r2 is 4.5 µm and the

pitch/lattice constant a is 12 µm.

5.3 Analytical Modelling

Two different regimes of scattering were considered - Mie scattering (occurring

within the unit cell), and Bragg scattering (occurring between adjacent unit

cells) [17]. The fundamental resonance frequency due to Bragg scattering along

the Γ−X path is given by:

fBragg =
Vavg

2a
(5.1)

where a is the period of the array, and the average SAW velocity, Vavg, is given

by:

Vavg = π
(r
a

)2
Vi +

(
1− π

(r
a

)2)
VM (5.2)

for cylindrical holes, where Vi is the SAW velocity of the material within the

holes, VM is the SAW velocity within the surrounding lithium niobate (approx.
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3980 m s−1), r is the radius of the holes and a is the lattice constant. For

annular holes, the average velocity is modified to:

Vavg =

(
πr22 − πr21

a2

)
Vi +

(
1− πr22 − πr21

a2

)
VM (5.3)

where r1 is the inner radius and r2 is the outer radius, and all other terms

remain the same.

The fundamental frequency for Mie scattering in cylindrical holes is given by:

fMie =
Vi

4r
(5.4)

where all terms are defined as above. The fundamental radial mode (across the

ring) in annular holes occurs when λ/2 equals the width of the ring, and since

Vi = fMieλi, the fundamental frequency is modified to:

fMie =
Vi

2(r2 − r1)
(5.5)

where, again, r1 is the inner radius and r2 is the outer radius.

5.4 Finite Element Modelling

5.4.1 Bandstructures

Bandstructures were obtained from a COMSOL Multiphysics eigenfrequency

study (following work by Ash et al. [39]) on a lithium niobate (LiNbO3) res-

onator supercell, which is equivalent to one unit cell of Figure 5.1, and can

be seen in Figure 5.3. Floquet periodicity conditions were applied on oppo-

site parallel sides to simulate an infinite square array, and a perfectly matched
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layer (PML) was applied at the bottom boundary to absorb any bulk wave ex-

citation without reflection. The bandgap centre was calculated from the first

(lowest frequency) clear bandgap between 2 eigenfrequencies, the frequency val-

ues of which were extracted at the Brillouin zone edge X (wavenumber k = 0.5

in units of π/a), as indicated by the circles in Figure 5.4.

Figure 5.3: Schematics of the individual resonator supercell of (a) cylin-
drical holes and (b) annular holes.

Indicative bandstructures across the first irreducible Brillouin zone (Γ − X −

M−Γ) for empty holes can be seen in Figure 5.4. Only the Γ−X bandstructure

was investigated in this chapter, since Figure 5.4 shows the first clear bandgap

extending across the whole Brillouin zone for both types of hole. Simulating

full bandstructures for all scenarios is computationally expensive, so choosing

just the Γ − X path is justified as it is a good representation of the whole

Brillouin zone. The same is also true when the holes are filled with material,

and indicative full bandstructures are shown in Figure 5.5.

When the holes (the darker grey domains in Figure 5.2) were empty, bandgaps

were observed at X with central frequencies of 141.2 MHz and 119.0 MHz for

the cylindrical and annular holes respectively, consistent with the findings of

Ash et al. and Kyrimi et al. [39] [57].
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Figure 5.4: Bandstructures for the first irreducible Brillouin zone for (a)
empty cylindrical holes and (b) empty annular holes. With the exception
of a band touching point between X and M for the cylindrical holes, the
first clear bandgap extends across the whole Brillouin zone, justifying the
choice of extracting the bandgap characteristics at X as a representation
of the full Brillouin zone. The circles represent the eigenfrequencies chosen

for the first clear bandgap, the frequencies of which were extracted.

The holes were then filled with different materials. In COMSOL, materials

not pre-defined in the material library can be created with combinations of
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Figure 5.5: Bandstructures for the first irreducible Brillouin zone for (a)
cylindrical holes and (b) annular holes, both filled with Material 30 from

Table 5.1.

user-chosen parameters, the default combination being Young Modulus (YM),

density and Poisson Ratio. In this chapter, 50 different combinations of YM

and density were used (resulting in different SAW velocities), a summary of

which can be seen in Table 5.1. All the materials defined had a Poisson Ratio
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of 0.3, which is a value similar to or shared by many common materials. For

example, glass, stainless steel and PMMA all have Poisson Ratios within ± 0.02

of 0.3.

SAW velocities for each material were found by performing an eigenfrequency

study (as above) on a supercell of a solid block comprised of the material (rather

than of lithium niobate) with no surface patterning, and calculating the gradient

of the first eigenfrequency. Materials missing a corresponding SAW velocity in

Table 5.1 (such as Material 14) did not produce bandgaps when either type of

hole was filled with those materials.

In Figure 5.6 the calculated central bandgap frequency extracted from the sim-

ulated bandstructure is plotted as a function of the SAW velocity of the filling

material, Vi, for cylindrical ((a) solid red symbols) and annular ((b) open blue

symbols) holes. Values of the bandgap frequency calculated using Equations

5.1 - 5.4 are also plotted in Figure 5.6, and show that the data follow 2 distinct

regimes, aligning at lower Vi with Mie scattering, and at higher Vi with Bragg

scattering. Modes (displacement magnitude) were also extracted from bandgap

limits at the Brillouin zone boundary, which give an indication of the appear-

ance of Mie and Bragg resonance. Examples of these resonances can be seen in

Figure 5.7.

At lower Vi for the cylindrical holes, at the bandgap limits, the displacement

is concentrated towards the centre of the hole inclusion, and modes here are

described by circular Mie modes, in particular the 2nd order resonance mode

(in Equation 5.4 the fundamental mode corresponds to λ = r, so for the 2nd

order mode, λ = 2r), so two dark red antinodes are seen in Figure 5.7(a) rather

than one. At higher Vi, more Bragg-like modes are observed, with the highest

displacement occurring symmetrically at the edges of the unit cell, as in Figure

5.7(c). In the overlapping Vi region, combinations of mode shapes can be seen.

For the annular holes at lower Vi the bandgap centre is determined by resonance
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Table 5.1: A summary of the 50 different combinations of Young Modulus
and density, and the resulting SAW velocities.

Material ID Young Modulus (GPa) Density (kg m−3) SAW Velocity (m s−1)

Material 1 100 1000 5721
Material 2 50 1000 4045
Material 3 1 1000 572
Material 4 0.5 1000 404
Material 5 0.1 1000 180
Material 6 100 500 8090
Material 7 100 100 18091
Material 8 100 50 25585
Material 9 100 1 180914
Material 10 100 0.5 255851
Material 11 1 500 809
Material 12 0.1 500 255
Material 13 0.01 500 80
Material 14 0.01 1000
Material 15 0.05 1000 127
Material 16 0.05 500 180
Material 17 10 1000 1809
Material 18 10 500 2558
Material 19 0.5 1000 404
Material 20 0.5 500 0.01
Material 21 100 2000 4045
Material 22 50 2000 2860
Material 23 100 3000 3303
Material 24 50 3000
Material 25 100 4000
Material 26 50 4000
Material 27 150 2000
Material 28 150 3000
Material 29 150 4000
Material 30 5 500 1809
Material 31 2 1000 809
Material 32 3 1000 990
Material 33 2.5 1000 904
Material 34 2 500 1144
Material 35 3 500 1144
Material 36 2.5 500 1279
Material 37 1.5 500 990
Material 38 2 1000 809
Material 39 1.5 1000 700
Material 40 1 2000 404
Material 41 1.5 2000 495
Material 42 2 2000 572
Material 43 2.5 2000 639
Material 44 5 2000 904
Material 45 1 3000 330
Material 46 1.5 3000 404
Material 47 2 3000 467
Material 48 0.5 3000 233
Material 49 0.5 4000 202
Material 50 1 4000 286
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Figure 5.6: Central bandgap frequencies as a function of filling material
SAW velocity Vi for (a) cylindrical holes and (b) annular holes, where
the uncertainty bars represent the upper and lower bandgap limits. The
magenta line in both subfigures represents the relevant Mie resonant regime

while the green line represents the relevant Bragg resonant regime.
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Figure 5.7: Indicative mode shapes, where the darkest red represents the
largest displacement while the blue represents the smallest displacement.
(a) 2nd order Mie resonance in a cylindrical hole (Material 50, 40 MHz),
(b) fundamental radial Mie resonance (r2 − r1) in an annular hole (Ma-
terial 50, 98 MHz), (c) fundamental Bragg resonance in a cylindrical hole
(Material 30, 129 MHz), (d) fundamental Bragg resonance in an annular

hole (Material 30, 140 MHz).

in the annulus (Mie regime) and agrees with the annular radial modes (the fun-

damental mode across the annular ring) predicted by the analytical model. At

higher Vi Bragg scattering dominates, and displacement resonance is present

across the unit cell, which is further evidence for Γ−X Bragg scattering as the

frequencies extracted from the simulation are consistent with those calculated

from theory. Figures 5.6 and 5.7 also show that at lower Vi for annular holes,

displacement is highest within the inclusion at the bandgap limits and is de-

scribed by two ring modes, radial (across the ring) and circumferential (around

the ring). For higher Vi at the bandgap limits, more Bragg resonance charac-

teristics can be observed, with displacement modes extending across the unit

cell and within the central region. For values of Vi spanning both regimes, a
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combination of mode shapes can be seen.

The array of cylindrical holes forms a conventional phononic crystal where the

bandgap characteristics primarily arise from the crystal geometry, meaning that

the only factor affecting the position of the bandgap should be the period of

the holes, a (12 µm). When the holes are empty, the main mechanism behind

the origin of the bandgap is Bragg scattering in this case. However, adding

materials to the holes introduces a Mie resonance at low Vi, which can be seen

in Figure 5.7(a). At high values of Vi, Bragg scattering dominates.

When empty, the annular holes form an array of local resonators, with resonant

frequencies determined by the displacement of the central pillar [39]. However,

as material is added to the annular holes, as for cylindrical holes, the simulated

bandgap frequencies are largely consistent with Mie and Bragg scattering at

low and high values of the velocity respectively. At lower values of Vi in the Mie

regime, displacement of the central pillar appears suppressed by the addition of

material, seen in Figure 5.7(b), with the displacement confined to the annular

ring. At high values of Vi, where Bragg scattering is dominant, there is still

some displacement within the central pillar, suggesting that the characteristics

of the array will be determined by a mixture of local resonator and Bragg like

behaviour.

Differences between the simulated and calculated (using Equations 5.1 - 5.5)

values of bandgap frequency may also be due to the 3D nature of the holes,

and the conical nature of the inclusion, as Equations 5.1 and 5.4 assume the

inclusion radius is constant with depth and is therefore only strictly valid at

the surface for these geometries. This is particularly significant for the annular

holes as they possess more conical elements than the cylindrical holes.

Finally, the effect of introducing materials on the bandgap widths was also

considered, and simulated values of normalised bandgap width (∆w/c%, where
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∆w is the bandgap width and c is the bandgap centre) are plotted as a function

of velocity, for both cylindrical and annular hole arrays, in Figure 5.8.

The widest bandgaps occur when scattering is highest, i.e. a combination of

both Mie and Bragg scattering, and this can be seen particularly clearly for

the annular holes near where the Mie and Bragg resonance lines cross in Figure

5.6. However, further analysis of the dependence of the bandgap width on

the SAW velocity is complicated, due to the multiple mechanisms leading to

the formation of a bandgap in these systems, and these results are shown for

completeness only.

In conclusion, there is good agreement between the values of bandgap frequency

extracted from the simulated bandstructure, and values calculated from the

analytical model, for both the cylindrical and annular hole arrays, suggesting

that Mie and Bragg scattering are important processes in both cases. For both

systems, the bandgap frequency is more strongly dependent on the SAW velocity

when the inclusion material has a relatively low velocity compared to the base

material of lithium niobate, with a stronger dependence seen in the annular hole

cases, as expected from the geometry, although more investigation is needed as

to the underlying physics of both systems. This suggests that, even if the local

resonator behaviour of the annular holes has been somewhat suppressed by the

addition of an extra materials, annular holes are potentially a better route for

creating tuneable phononic metamaterials.

5.4.2 Bandgap Attenuation

As well as tuneability, bandgap attenuation was obtained from transmission

models in the frequency domain in COMSOL Multiphysics, following a method

developed by Ash et al. [39]. 4 hole elements were patterned on a thin slab

of LiNbO3 as shown in Figure 5.1. Infinite Floquet periodicity conditions were

again used on the long parallel sides. SAWs were launched over a range of
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Figure 5.8: Normalised bandgap width as a function of filling material
SAW velocity Vi for (a) cylindrical holes and (b) annular holes.

frequencies (1 - 250 MHz) from an edge load force, along a cut line perpendicular

to the direction of propagation some distance away from the array.

When the holes were empty, the frequency at which the root-mean-square
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(RMS) displacement of the SAW was lowest was extracted from a cut line

positioned parallel to the direction of propagation and after the array, as shown

schematically in Figure 5.9. Attenuation was then extracted at this frequency

to allow for the fact that the maximum attenuation does not always occur at

the centre of the bandgap predicted by the bandstructure model (for some ma-

terials, there is a discrepancy of up to 20 MHz), since the transmission model

is only infinite on either side of the holes in the y-direction, and finite in the

direction of SAW propagation (x-direction).

Figure 5.9: Example schematic of the transmission model geometry for
4 annular holes (the cylindrical hole model is exactly the same apart from
the hole geometry). The SAW source is circled in green, and the cut line

along which SAW displacements are extracted is plotted in red.

The x-displacement amplitude Aholes was then extracted along the same cut

line, but at the frequency at which the RMS displacement was lowest. The

same procedure was repeated on a blank (unpatterned) slab using the lowest

RMS frequency as before, but extracting the x-displacement amplitude Ablank at

the frequency corresponding to the model with the holes. Bandgap attenuation

Γ in dB was then calculated using Equation 5.6:
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Γ = 20 log10

(
Aholes

Ablank

)
(5.6)

When the holes are empty, Γ has a value of -21.9 dB for cylindrical holes and

-26.8 dB for annular holes, consistent with the findings of Ash et al. [39], who

found Γ values of -19.0 dB and -24.5 dB for cylindrical pillars and annular holes

(of a slightly different depths and radii) respectively.

The same process was then repeated to find the attenuation as the holes were

filled with the different materials listed in Table 5.1 in the previous section (note

that attenuation was extracted using materials for which there was a bandgap in

the simulated bandstructures). Values of attenuation are plotted as a function

of velocity in Figure 5.10, by calculating the bandgap attenuation again using

Equation 5.6.

Although for both annular and cylindrical holes, the bandgap attenuation tends

to increase with increasing velocity, attenuation is generally larger in the annu-

lar hole arrays compared to the cylindrical hole arrays. This is illustrated by

plotting the ratio of the bandgap attenuation in the annular holes compared

to that in the cylindrical holes, Figure 5.11, which shows that attenuation in

the annular holes can be up to 3x greater than in the cylindrical holes. The

biggest difference in the attenuation in the two types of arrays was at a veloc-

ity of approximately 600 m s−1, where the bandgap is likely to be formed by

a combination of Mie and Bragg scattering. There is also a large amount of

scatter, suggesting that other factors affect the bandgap attenuation as well as

Vi.

One reason why the attenuation in the annular holes is higher is that the annular

hole arrays possess more interfaces where scattering can occur, leading to the

SAWs losing greater energy when they propagate across the array.
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Figure 5.10: Bandgap attenuation as a function of filling material SAW
velocity for (a) cylindrical holes and (b) annular holes.

The effect of the presence of materials within the holes can also be quantified

by calculating Γfill, the attenuation caused by filling the holes:
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Figure 5.11: The ratio of annular hole bandgap attenuation over cylindri-
cal hole bandgap attenuation as a function of filling material SAW velocity.
Since most of the values are above 1, it is clear that annular holes exhibit

more bandgap attenuation than cylindrical holes.

Γfill = 20 log10

(
Afilled

Aempty

)
(5.7)

This attenuation is plotted as a function of velocity for both cylindrical and

annular holes in Figure 5.12, and again demonstrates that overall annular holes

exhibit higher attenuation that cylindrical holes when filled with material, and

are therefore more sensitive to the presence of an additional material. The ratio

of Γfill for annular and cylindrical holes is plotted as a function of velocity in

Figure 5.13, with values at most velocities again being above 1.

This higher bandgap attenuation in annular hole arrays as additional materials

are added to the system suggests that the use of annular hole arrays might
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Figure 5.12: Bandgap attenuation of filled holes compared to empty holes
as a function of filling material SAW velocity for (a) cylindrical holes and

(b) annular holes.

lead to greater sensitivity (in that obvious and easily measurable effects are

observed when the inclusion material is slightly varied) in devices designed for

applications such as mass loading sensing.
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Figure 5.13: Calculated compared to empty holes rather than an un-
patterned surface. The ratio of annular hole bandgap attenuation over
cylindrical hole bandgap attenuation as a function of filling material SAW
velocity. Since most of the values are above 1, it is clear that annular holes

exhibit more bandgap attenuation than cylindrical holes.

5.5 Summary

Bandstructures were obtained from finite element simulations for arrays of cylin-

drical and annular holes, as the holes were filled with materials with different

SAW velocities Vi. By comparison to bandgap frequencies calculated using an

analytical model, it was found that each type of hole array exhibited a Mie

scattering regime at lower Vi and a Bragg scattering regime at higher Vi. The

dependence of the bandgap frequency on the velocity was found to be higher

for the annular holes than for cylindrical holes, suggesting that the annular

holes are potentially a better route for creating tuneable phononic metamateri-

als. The displacement within the arrays was also investigated. At low values of
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Vi, the displacements were consistent with Mie scattering for both annular and

cylindrical holes. At high values of Vi, the displacements in both hole arrays

were consistent with Bragg scattering, but in the annular holes displacement of

the central pillar could also be seen.

The bandgap attenuation was also investigated with a finite element simulation

and calculated with respect to either a blank surface or empty holes. In both

cases the annular holes displayed a higher bandgap attenuation, by up to a

factor of 3x compared to the attenuation in arrays of cylindrical holes. The

largest difference in the attenuation between the two types of arrays was at the

SAW velocity when both Mie and Bragg scattering are thought to contribute

to the formation of a bandgap, suggesting that it might be the greater number

of interfaces in the annular holes that lead to this greater attenuation. The use

of annular hole arrays might lead to greater sensitivity in devices designed for

applications such as mass loading sensing.
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Chapter 6

Mass Loading Effects in a

Phononic Metamaterial

6.1 Overview

SAW devices lend themselves to a wide range of diverse applications, including

telecommunications, microfluidics (particle separation, cell sorting, fluid manip-

ulation and mixing), and sensing (chemical, pressure, humidity). Recent work

by Kumar et al. [58] has even found that SAW pressure sensors can be exploited

in hospitals for the monitoring of COVID-19 patients.

The out-of-plane displacement component means that SAWs, confined to the

surface of materials, are susceptible to attenuation. There are many ways in

which SAWs can be attenuated, such as boundary scattering or changes in

elastic properties of propagation media, but in the presence of gases, liquids, or

any other material present on the substrate surface, a process known as mass

loading attenuation can occur. SAW mass loading attenuation can manifest

itself through a number of mechanisms, but is commonly measured using a

chemical adsorption layer on top of the substrate, through which chemical or

conductivity changes caused by the external environment are measured through

a frequency, velocity or phase shift of the SAW in an oscillator circuit after
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propagating through the adsorption layer [32]. High levels of sensitivity to

these changes has led to applications in gas sensing for safety. Less explored is

the direct measurement of SAW amplitude on device surfaces to calculate the

mass loading attenuation of the SAW, where difficulty is often posed in precisely

measuring picometre amplitudes, but this method shows great promise for gas

pressure sensing applications.

In between generation and detection, SAW propagation can also be controlled

on the main surface of devices between interdigital transducers (IDTs) through

the use of surface patterning, some effects of which were explored in Chapter 5.

Phononic metamaterials are useful in SAW delay line applications due to their

exhibition of high bandgap attenuation, and it has already been demonstrated

in Chapter 5 that they are sensitive to changes in their environment.

Annular hole array elements, as found by Ash et al. [39] and explored partially in

Chapter 5, show great promise since only a few elements are needed to produce

the equivalent bandgap attenuation as many hole or pillar elements in the same

substrate, with the particular advantage of them being easier and quicker to

fabricate than conventional phononic crystals. The individual array elements

also have more degrees of freedom in design for tuning.

Slobodnik [34] explored mass loading effects on substrates in the absence of

surface patterning, so in this chapter a phononic metamaterial is introduced

(a square array of annular holes), which exhibits an extraordinary increase in

attenuation due to mass loading across the metamaterial array at the bandgap

frequency. In this chapter this phenomenon is explored experimentally and

computationally, and it is proposed that similar devices show great promise in

increasing the sensitivity of SAW gas pressure sensors.
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6.2 Mass Loading Theory

There are several different sources of mass loading attenuation on SAW de-

vices which can be broken down into individual attenuation coefficients. The

attenuation coefficient of mass loading due to the presence of gas (in Nepers

per metre, similar to dB but using the natural logarithm rather than base 10)

in the absence of surface patterning, α, can be predicted according to theory

developed by Slobodnik [34], seen in Equation 6.1:

α =
fP

ρsv2s

(
γM

RT

)1/2

(6.1)

where f is the SAW frequency, P is the pressure of the gas, ρs is the substrate

density, vs is the speed of sound in the substrate, γ is the ratio of specific heats,

M is the molar mass of the gas, R is the universal gas constant and T is the

temperature.

Values of the attenuation coefficient calculated for air at a pressure of 1 atmo-

sphere are plotted as a function of SAW frequency on the blue line in Figure

6.1. At a SAW frequency of 100 MHz, the mass loading attenuation coefficient

for a blank device is approximately 0.5 Np m−1.

In practice, SAW amplitudes were measured and converted into attenuation

coefficients. A visual explanation of the origin of the mass loading coefficients

as demonstrated on an example device can be seen in Figure 6.2, whereas a

fully labelled schematic of the fabricated device can be seen in Figure 6.3. For

mass loading on a blank device (unpatterned), amplitudes were measured in air

and vacuum, and the attenuation coefficient αg was calculated as:

αg = − 1

LB

ln

(
Ag

A0

)
(6.2)
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Figure 6.1: The mass loading attenuation coefficient calculated for air
plotted as a function of SAW frequency for 3 different pressure and tem-
perature conditions - RTP i.e. 1 atm and 293 K (blue line), 0.5 atm and

293 K (red line), and 1 atm and 273 K (green line).

where LB is the propagation length, Ag is the SAW amplitude in the presence

of gas, and A0 is the SAW amplitude in vacuum.

Surface patterning also contributes to attenuation, and this attenuation coeffi-

cient αph was calculated by comparing the measured amplitude on a patterned

device to that of a blank device (both in vacuum), seen in Equation 6.3:

αph = − 1

Lph

ln

(
Aph

A0

)
(6.3)

where Lph is the length of the resonator array pattern, Aph is the SAW am-

plitude on a patterned device and A0 is the same as in Equation 6.2. When

calculating this parameter from laser Doppler vibrometry data or simulations,
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the expression for the attenuation coefficient due to the resonator array is mod-

ified to:

αph = − 1

Lph

ln

(
A2v

A1v

)
(6.4)

where A2v is the (average) measured SAW amplitude close to the final array

element in vacuum, and A1v is the (average) measured SAW amplitude close to

the first array element in vacuum.

Since measured amplitudes on the oscilloscope system (discussed later) include

all contributions to attenuation, the attenuation coefficient due to mass loading

just across the patterned area of the device, αpg, can be written as:

αpg =
−
(
ln
(

Apg

Aph

)
+ αgLnp

)
Lph

(6.5)

where Apg is the SAW amplitude on a patterned device in the presence of gas,

Lnp is the non-patterned path length, and any repeated terms remain the same

as before from Equations 6.2 and 6.3.

When calculating this parameter from LDV data or simulations, the attenuation

coefficient due to mass loading across the patterned area is modified to:

αpg = − 1

Lph

ln

(
A2g

A1g

)
− αph (6.6)

where A2g is the (average) measured SAW amplitude close to the final array

element in the presence of gas, A1g is the (average) measured SAW amplitude

close to the first array element in the presence of gas, and any repeated terms

remain the same as before from Equation 6.4.
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The bandgap attenuation coefficient Γ (in dB) can also be extracted in a similar

way as described in Chapter 5. These quantities can be calculated for each

frequency from the measured amplitude A in each scenario. In vacuum Γ is

defined:

Γvac = 20 log10

(
Aholes.vac

Ablank.vac

)
(6.7)

while in air the expression is modified to:

Γair = 20 log10

(
Aholes.air

Ablank.vac

)
(6.8)

6.3 Device Design and Measurements

A schematic of the device, including the location of the resonator array between

the interdigital transducers and the resonator geometry can be seen in Figure

6.3. A summary of the methods behind the device design, preparation and

characterisation can be found in Chapter 4, from section 4.4 onward.

Only one patterned device was fabricated and measured to give the results

presented here. For the oscilloscope system, each SAW frequency was measured

on a blank device and on a patterned device, once in air and once in vacuum.

6.4 Experimental Results

6.4.1 Oscilloscope System

The mass loading attenuation coefficients for unpatterned (αg) and patterned

(αpg) devices measured on the oscilloscope are plotted as a function of SAW fre-

quency in Figure 6.4. The values for αg on the unpatterned device are consistent
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Figure 6.2: Not to scale. The striped grey domains at either end represent
the interdigital transducers (IDTs) where SAWs are launched and detected
respectively. The rectangular dotted domain represents the area where
surface patterning is present. (a) blank device in air, where αg is measured
along LB, (b) patterned device in vacuum, where αph is measured along
Lph and (c) patterned device in air, where αpg is measured along Lph and

αg (measured from (a)) contributes along Lnp.

with the theory (Equation 6.1), which predicted an attenuation coefficient that

linearly increases with frequency. When the resonator array (phononic meta-

material pattern) is present, nearly all the attenuation coefficients αpg are at

least two orders of magnitude higher, with the largest attenuation coefficient
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Figure 6.3: Not to scale. (a) Device schematic showing the location of
the resonator array patterned between the interdigital transducers (IDTs)
of a SAW delay line, (b) schematic diagram of the resonator geometry,
where the inner radius r1 is 3.5 µm, the outer radius r2 is 4.5 µm, the

depth d is 6 µm and the lattice constant a is 12 µm.

being observed at the frequency of the lowest SAW bandgap, 97 MHz (hereafter

referred to as the bandgap frequency - other higher order bandgaps exist in this

system but the lowest one is most important for this chapter), with a value of

1711 Np m−1, which is more than 2000 times higher than what was measured at

the same frequency on the blank device, and over 3000 times higher than what

was predicted by the theory in the absence of surface patterning. In Equation

6.5 the dominating factor is Apg, suggesting that most of the enhancement is

due to the movement or vibration of the pattern.

Sources of uncertainty may arise from the sensitivity of the oscilloscope and

associated experimental setup. In addition, imperfect flushing of the vacuum



6.4. Experimental Results 97

Figure 6.4: Measured gas loading attenuation coefficient for an unpat-
terned device, αg (blue symbols, left y-axis), and due to the resonator
array, αpg, (red symbols, right y-axis. The straight blue line (left y-axis)

is the calculated gas loading for an unpatterned device.

chamber can also lead to water vapour condensing on the device surface, man-

ifesting in an artificial increase in mass loading. However, due to the highly

resolved digitising of the waveform by the oscilloscope and the excellent fit of

the sine-fitting function used to obtain and calculate SAW amplitudes, calcu-

lated uncertainties in the values of the mass loading attenuation coefficients

were too small to be visible at the scales shown in Figure 6.4 and have therefore

been omitted.

Taking these factors into consideration, it is clear that the patterned device

exhibits high mass loading attenuation due to the presence and motion of the

pattern, which is particularly demonstrated by the significantly higher value at

the bandgap frequency.
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Bandgap attenuation coefficients Γ (Equation 6.7) were calculated for the pat-

terned device at each IDT frequency in both vacuum and air, and are plotted

in Figure 6.5. At 97 MHz, Γvac has a value of -10.3 dB (-118 Np), consistent

with the findings of Ash et al. [39] who measured a value of -12.6 dB (-145

Np). Overall slightly more attenuation is observed in air than in vacuum, but

the biggest difference at 97 MHz where Γair is almost 1 dB (almost 11 Np)

higher than Γvac at at -11.1 dB (-128 Np). This is more evidence that surface

patterning increases attenuation due to mass loading.

Figure 6.5: Measured attenuation Γ (in dB) for the patterned device in
vacuum and in air plotted as a function of frequency.

6.4.2 Laser Doppler Vibrometry

The mass loading attenuation coefficient due to the resonator array (αpg) ex-

tracted from LDV measurements plotted as a function of frequency can be seen

in Figure 6.6. Here the attenuation coefficients are three orders of magnitude



6.4. Experimental Results 99

higher than those observed on the unpatterned device, and the largest attenua-

tion coefficient is still observed at the bandgap frequency, 97 MHz, with a value

of around 22000 Np m−1.

Figure 6.6: Measured gas loading attenuation coefficient due to the res-
onator array, αpg, extracted from laser Doppler vibrometry measurements,

plotted as a function of frequency.

When investigating the LDV attenuation coefficients, values of the mass load-

ing attenuation coefficient are 10 times higher again than the resonator array

measured with the oscilloscope system. Overall the mass loading attenuation

coefficients follow a similar frequency dependence, with the highest mass load-

ing attenuation observed clearly at 97 MHz, with a value more than three times

higher than the next nearest value. Possible reasons for the difference in magni-

tude compared to the oscilloscope system include the fact that only out-of-plane

displacements are measured on the LDV whereas the oscilloscope system is sen-

sitive to all displacements experienced by the IDTs i.e. shear components and

bulk waves etc. The oscilloscope system is also sensitive to mass loading on
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the non-patterned area of the device, which introduces a degree of complexity

into unravelling the different attenuation coefficients, whereas the LDV only

measures the SAW directly before and after the array. The LDV operates

in the frequency domain rather than the time domain of the scope, meaning

a ‘snapshot’ of the SAW is investigated for amplitudes which are subsequently

extracted directly with units of picometres. The data gathering process also has

a number of averaging steps in both pre- and post-processing, possibly leading

to loss of resolution from not using the sine-fitting function. Negative values

of αpg have been assumed to be insignificant, especially at higher frequencies

where higher order bandgaps may be present, and other reflective effects may

occur which may falsely increase the amplitude after the pattern.

The mass loading attenuation coefficients due to the resonator array (αpg) ex-

tracted from oscilloscope and LDV measurements, normalised to the corre-

sponding value at the bandgap for each measurement system, are plotted as

a function of frequency in Figure 6.7. This demonstrates that both measuring

techniques exhibit a similar frequency dependence at different orders of mag-

nitude (with the exception of the values at 205 MHz, where there might be

a higher order bandgap as seen in the simulated full bandstructures in Figure

5.4 in Chapter 5, which may lead to difficulty in interpreting SAW effects ob-

served at higher frequencies). Both have a maximum mass loading attenuation

coefficient at the bandgap frequency, 97 MHz, with values more than twice as

high as the next nearest value and up to four times as high as other values.

This is further evidence of an extraordinary increase in mass loading due to the

resonator array in the bandgap.
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Figure 6.7: Mass loading attenuation coefficients due to the resonator ar-
ray (αpg) extracted from oscilloscope and LDV measurements, normalised
to the value at the bandgap frequency (97 MHz) for each system (1711 Np
m−1 for the oscilloscope system and 21922 Np m−1 for the LDV), plotted

as a function of frequency.

6.5 Simulations

6.5.1 Setup

The experimental geometry (unpatterned LiNbO3 substrate with infinite Flo-

quet periodicity conditions, and subsequently with 4 annular hole elements) was

recreated in transmission models in COMSOL Multiphysics following work by

Ash et al. [39], and investigated in both a vacuum and in air. The geometry

was identical to the transmission model in Chapter 5, but the annular holes

had slightly different dimensions to reflect what was fabricated, and also an

air domain was added above the substrate surface (using Pressure Acoustics,

frequency domain interface and Acoustic-structure boundary multiphysics).
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SAWs were generated by an edge load along a cut line perpendicular to the

direction of propagation, negating the need to include transducers in the model

geometry and electrostatics setup. The average SAW amplitude was extracted

from the out-of-plane displacement field component measured along a cut line

running the entire length of the blank model, and subsequently the amplitudes

of individual wave peaks before and after the resonator array on a patterned

model were extracted at each frequency. The out-of-plane displacement field

component was chosen over the RMS or out-of-plane displacement amplitude

(used in Chapter 5) as the oscillation was primarily symmetrical about 0 (the

device surface) and most closely mirrors the measurements taken from the LDV.

The wavelength was also consistent with distance and frequency unlike some of

the other displacement field or amplitude components. Equations 6.4 and 6.6

could be used again to calculate the attenuation coefficients. The bandstructure

of one individual hole was also investigated in vacuum, again following work by

Ash et al. [39], using an eigenfrequency study of one unit cell.

6.5.2 Results

The simulated bandstructure of the Γ−X path in the first Brillouin zone of the

resonator array obtained from the resonator supercell in vacuum can be seen

in Figure 6.8. It can be seen that the third IDT resonant frequency, 97 MHz,

lies very close to the lowest simulated SAW bandgap, which has a lower limit

of 98.1 MHz, while the fourth IDT resonant frequency, 119 MHz, falls within

the bandgap. Other higher order bandgaps open up at higher frequencies. The

simulated bandstructure produced agrees well with Ash et al. [39] who observed

a bandgap around 97 MHz in vacuum. The introduction of air here is not trivial

due to the coupling of an additional and completely different physics interface in

a separate domain (whereas in Chapter 5, the coupling was between two separate

domains with the same physics interface) and even with extensive discussions
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with and support from engineers at COMSOL, additional bandstructures were

produced with limited success and have not been included in this chapter.

Figure 6.8: Simulated bandstructure of the Γ−X path in the first Bril-
louin zone for an infinite square array of annular holes in vacuum.

According to experimental results, 97 MHz lies within the lowest SAW bandgap

on the patterned device as seen in Figure 6.5, but according to the simulated

bandstructure in Figure 6.8, the highest attenuation should occur at 119 MHz

since that frequency falls within the bandgap.

Indicative displacement mode shapes at the simulated bandgap limits (98 MHz

and 128 MHz) in vacuum can be seen in Figure 6.9. At 98 MHz the highest

displacement is at the top of the pillar, meaning that the surface there could be

most susceptible to changes in out-of-plane displacement in the presence of gas

around that frequency (observed experimentally). At the 128 MHz a Bragg-like

mode (see Chapter 5) can be seen with comparatively little displacement of the

pillar, with higher displacement at the unit cell edges.
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Figure 6.9: Indicative mode shapes simulated in vacuum at (a) 98 MHz,
the lower bandgap limit and (b) 128 MHz, the upper bandgap limit. The
darkest red shade indicates the highest displacement while the darkest blue

indicates zero displacement.

The out-of-plane displacement field component can be seen in Figure 6.10. At

98 MHz (a), out-of-plane displacement is concentrated inside the pillar with zero

displacement of the surrounding substrate, while at 128 MHz, almost no out-of-

plane displacement occurs in the pillar, with the majority of the displacement

occurring near the unit cell corners. The higher proportion of displaced surface

within the unit cell at 128 MHz (compared to 98 MHz) suggests that SAW

frequencies around that value may be more susceptible to mass loading.

Figure 6.10: Indicative mode shapes simulated in vacuum at (a) 98 MHz,
the lower bandgap limit and (b) 128 MHz, the upper bandgap limit. The
darkest red shade indicates the highest displacement while the darkest blue

indicates zero displacement.

The simulated bandgap attenuation coefficient in vacuum, Γvac, has a value of

-26.8 dB (-308 Np) at a frequency of 88 MHz, consistent with the findings of

Ash et al. [39], who found a Γvac value of -24.5 dB (-282 Np) for simulated

annular holes of a slightly different geometry. When air is added, Γair is almost

double Γvac with a value of -45.8 dB (527 Np) which is a significant increase.
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The mass loading attenuation coefficients extracted from simulations are plot-

ted as a function of frequency in Figure 6.11, where the blue symbols in Figure

6.11(a) represents the unpatterned device model and the red symbols in Figure

6.11(b) represents the resonator array model. Again, the behaviour of the sim-

ulated unpatterned device is consistent with the theory, with a linear increase

in attenuation coefficient with frequency and at a similar order of magnitude.

However, when the resonator array is present, the simulation does not repro-

duce the increase in gas loading attenuation at 97 MHz which was measured

with both the oscilloscope and the LDV. The highest attenuation coefficient

(with the exception of the value at 205 MHz) occurs at 119 MHz, well within

the simulated SAW bandgap, with a value of 5 Np m−1 (to which the data in

Figure 6.11(b) has been normalised for easier comparison to the behaviour of

the experimental systems). While it may occur at a different frequency, this

is still consistent with the behaviour observed experimentally, with the high-

est mass loading attenuation being observed at the bandgap frequency of each

respective system.

The theoretical expression for mass loading attenuation was only explored by

Slobodnik at frequencies several orders of magnitude higher than those investi-

gated here, and it has been assumed that the expression obtained by Slobodnik

applies at all frequencies. The expression also includes a temperature term, the

effects of which however have been assumed to be negligible as all experiments

were undertaken at a constant temperature of 21.5 °C and default COMSOL

settings are always at RTP.

6.6 Summary

SAW attenuation due to mass loading of air was obtained by directly mea-

suring SAW amplitude on a SAW device using an oscilloscope system and by

laser Doppler vibrometry (LDV). An extraordinary increase of 2 to 3 orders of
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Figure 6.11: (a) simulated gas loading attenuation coefficients (symbols),
αg, as a function of frequency for an unpatterned device with the gas
loading attenuation for an unpatterned device calculated from the theory
(line), and (b) simulated gas loading attenuation due to the resonator array,
αpg (symbols), normalised to the value in the simulated bandgap (5 Np m−1

at 119 MHz).

magnitude in attenuation due to mass loading was observed at the bandgap
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frequency of 97 MHz when a phononic metamaterial (a square array of an-

nular holes) was present, with only 4 resonator elements needed to produce

this result. The oscilloscope system and LDV measurements displayed similar

frequency dependencies of mass loading attenuation coefficients, although at

different orders of magnitude. Some mass loading effects were also reproduced

using Finite Element modelling, although at a different bandgap frequency.

Comparisons between this approach and more conventional measures of SAW

mass loading (such as via a velocity shift, or through a chemical adsorption

layer) are difficult to make without a numerical conversion, nevertheless it ap-

pears that these device are extraordinarily sensitive to changes in pressure (be-

tween 1 and 3 orders of magnitude depending on the experimental approach)

at the bandgap frequency. In addition, devices are straightforward to produce

and use, with commercially available substrates, minimal fabrication steps, and

standard laboratory equipment. This experimental approach and these devices

show great promise for improving the sensitivity of SAW pressure sensors with

their adaptability (both in terms of array design and subsequent applications),

convenience and ease of fabrication.
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Chapter 7

A Spherical Inclusion in a

Phononic Metamaterial Array

7.1 Overview

The recent rise in popularity of ‘lab-on-a-chip’ devices has introduced a need

to miniaturise analysis techniques traditionally used in biology, chemistry and

medical laboratories. SAW microfluidics has gained increasing interest due to

its high compatibility with these systems. Basic SAW devices are compact,

versatile and quick to operate, features advantageous for fluid manipulation on

the micro-scale. The leaky nature of SAWs means acoustic energy confined on

the device surface is transferred into the fluid, meaning fluid manipulation due

to the coupling with SAWs is contact-free. It is also straightforward to inte-

grate devices into microfluidic systems, resulting in a vast number of potential

applications. SAW microfluidic devices are able to perform a wide variety of

types of actuation, including mixing [59], droplet translation [60], jetting [61]

and atomisation [62]. They are also capable of biological and chemical sensing,

important for biomedical diagnostics.

Acoustophoresis (the manipulation of matter with sound) of microparticles and
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cells is a rapidly emerging field due to its easy applicability to biomedical diag-

nosis. An inherently gentle technique, manipulated particles are not damaged

in the process, unlike, for example, in the case of optical tweezers where highly

focused laser beams may cause biological cells to lyse. SAWs are an ideal candi-

date for devices which exploit this phenomenon, as standing SAWs couple into

the fluid, generating pressure fields in fluid channels which can trap or focus

particles or cells onto pressure nodes [63], allowing for sorting by size or mass,

or even for direct probing of the material properties of the cell itself .

It was discussed in Chapters 5 and 6 that SAWs and SAW devices are sensitive

to changes in their environment, through the presence of material or gas in and

around the surface of phononic metamaterials. In this chapter, a computational

study is presented of the SAW bandstructure characteristics and bandgap at-

tenuation of the same phononic metamaterial structure explored in Chapters 5

and 6 (a square array of annular holes), with the addition of a small spherical

inclusion within the hole, intended to represent an analogue of a simple cell-like

structure. An understanding of the relationships between the SAW bandstruc-

ture and the inclusion material properties could inform the realisation of new

devices, able to probe biological cells directly and gently, without the need

for an external microfluidic system, with a view to integrate similar phononic

metamaterial structures into existing techniques for biomedical diagnostics.

7.2 Simulations

7.2.1 Geometry

The model geometry was identical to that of the annular hole geometry in

Chapter 5, with the exception of the size and geometry of the inclusion material

domain. The cone-shaped inclusion was replaced with a small sphere of radius

0.75 µm on the left hand side of the hole, placed at such a height as to just
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touch either side of the hole walls (the centre of the sphere was positioned 1.5

µm below the substrate surface). While it may be small compared to typical

biological cells (with the exception of some bacteria), this size was chosen to be

compatible with the existing geometry and to be proof of concept. A schematic

of the geometry can be seen in Figure 7.1. The inclusion material in the sphere

was varied as before with the same 50 combinations of Young Modulus and

density, listed in Table 5.1 in Chapter 5.

Figure 7.1: Not to scale. Schematics of one unit cell of the model geom-
etry, (a) a top down view and (b), a view from the side. The blue shaded
domain represents the sphere comprising the inclusion material. As before,
the lattice constant a was 12 µm, the depth d was 6 µm, the inner radius
r1 was 2.5 µm and the outer radius r2 was 4.5 µm. The sphere had a radius
rs of 0.75 µm, and was positioned so its centre was at a depth of 1.5 µm.

7.2.2 Bandstructures

The bandstructures were calculated in exactly the same way as in Chapter 5,

as were the Bragg and Mie resonant frequencies for the system. For a sphere

of radius rs in an annular hole of inner radius r1, outer radius r2 and lattice

constant a, the fundamental resonance frequency due to Bragg scattering along

the Γ−X path is given by:
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fBragg =
Vavg

2a
(7.1)

and the expression for the average velocity Vavg is given by:

Vavg =
(rs
a

)2
Vi +

(
1− πr22 − πr21

a2

)
VM (7.2)

where Vi is the SAW velocity in the inclusion material and VM is the SAW

velocity within the surrounding lithium niobate (approx. 3980 m s−1).

Since the only domain comprising of the inclusion material was the sphere, the

fundamental resonance frequency for Mie scattering is given by:

fMie =
Vi

4rs
(7.3)

where all repeated terms are defined above.

7.2.3 Bandgap Attenuation

The bandgap attenuation model had more permutations for position and hole-

filling fraction when a single sphere was present in just one annular hole out of

four. To investigate how the position of the hole containing the sphere affected

the bandgap attenuation, a single sphere of PMMA was moved between the

four holes, then a PMMA sphere was placed in each of the 4 annular holes.

It was found that bandgap attenuation was highest when the annular hole closest

to the SAW source contained the sphere, and decreased approximately linearly

as the sphere was moved further away. The bandgap attenuation is plotted as a

function of hole index (the position of the hole containing the PMMA sphere in

relation to the SAW source, where 1 is the closest and 4 is the furthest away) in

Figure 7.2. When all four holes contained a PMMA sphere, the attenuation was
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slightly lower than when the sphere was closest to the source (indicated by the

lower black horizontal line in Figure 7.2). It was assumed that this behaviour

was the same for any inclusion material, so only hole index 1 (the hole closest

to the SAW source) contained a sphere for all inclusion materials.

Figure 7.2: The bandgap attenuation plotted as a function of hole po-
sition index when 1 annular hole out of 4 contains a PMMA sphere. The
upper horizontal black line indicates the value of the bandgap attenuation
when all 4 annular holes are empty, and the lower horizontal black line
indicates the value of the bandgap attenuation when all 4 annular holes

contain a PMMA sphere.

Following Chapter 5, the inclusion material was varied in exactly the same way,

and the bandgap attenuation Γ was calculated with Equation 7.4 as before.

Γ = 20 log10

(
Aholes.sphere

Ablank

)
(7.4)

The sensitivity to the presence of a sphere of material within one of the annular

holes was also quantified by calculating the bandgap attenuation coefficient
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Γsphere, the attenuation caused by adding a sphere to one of the annular holes:

Γsphere = 20 log10

(
Aholes.sphere

Aholes.empty

)
(7.5)

7.3 Results

7.3.1 Bandstructures

In Figure 7.3 the calculated central bandgap frequency extracted from the sim-

ulated bandstructure is plotted as a function of the inclusion material SAW

velocity, Vi, for an annular hole containing a sphere ((a) open blue symbols

with dots) and fully-filled annular holes ((b) open red symbols, which is the

same data presented in Figure 5.6(b) in Chapter 5). Again, the uncertainty

bars represent the simulated upper and lower bandgap limits (in MHz). Values

of the predicted bandgap frequency calculated using Equations 7.1 - 7.3 are also

plotted in Figure 7.3 as green and magenta lines for Bragg and Mie resonances

respectively. Similar to the behaviour observed in Chapter 5, the bandgap cen-

tres of the annular holes containing spheres appear to follow at least two distinct

velocity regimes, approximately corresponding to the Mie and Bragg resonances

calculated from Equations 7.1 - 7.3. At higher Vi above 2500 m s−1, a Bragg

regime describes the data well, but at lower Vi deviation from both regimes is

observed.

A Mie-like regime appears to occur from 0 to around 750 m s−1, but at a lower

gradient than calculated from Equation 7.3, as well as a Bragg-like regime from

that point up to around 2000 m s−1 at a lower gradient than calculated from

Equation 7.1. One reason for this deviation from the calculated Mie regime

could be the asymmetry of the unit cell when a sphere is included. Equations

7.1 and 7.3 are also only valid at the unit cell surface. Both the Mie and Bragg

resonances were calculated based on a sphere of radius 0.75 µm treated as if it
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were at the surface rather than at a depth of 1.5 µm as in the model geometry.

In addition, Equations 7.1 and 7.3 do not take the 3D nature of the sphere with

regard to the depth into account, so are probably too simplistic to fully describe

this scenario. Nevertheless, they enable a comparison between the fully-filled

annular holes to be made more easily, but a more in-depth and 3-dimension

analytical model may be required to explain the behaviour in more detail.

Indicative mode shapes (viewed from directly above the annular hole so as to

see the displacement within the sphere) can be seen at the bandgap limits for

four different inclusion materials in Figure 7.4. In almost all the modes, a

Mie-like resonance can be seen across the sphere with very little displacement

occurring elsewhere in the unit cell, which is in some agreement with the cal-

culated Mie resonance line at lower Vi. The only clearly Bragg-like resonance

can be seen in 7.4(h) which is on the Bragg resonance line in Figure 5.6(a),

suggesting that true Bragg resonance does indeed occur at higher Vi. However

in the overlapping Vi region, neither Mie or Bragg resonance fully describes the

mode shapes, indicating a need for a more rigorous approach in reconciling the

observed behaviour with an analytical model.

The bandgap centre, however, does have a stronger velocity dependence over

the velocity range simulated for spherical inclusions than when the holes are

fully-filled, suggesting that predictions may be made about the properties of

the inclusion material from the bandstructure and vice versa more easily for

spherical inclusions than filling the hole completely. Because of this, annular

holes could be a good candidate for probing cell-like analogues trapped within

them, and could therefore be adapted for use in biomedical diagnostics.

7.3.2 Transmission

In Figure 7.5 the bandgap attenuation Γ is plotted as a function of inclusion

material SAW velocity Vi for a sphere in the index 1 annular hole, and four
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Figure 7.3: Central bandgap frequencies as a function of inclusion mate-
rial SAW velocity Vi for (a) a sphere in an annular hole and (b) fully-filled
annular holes, where the uncertainty bars represent the upper and lower
bandgap limits. The magenta line in both subfigures represents the rele-
vant Mie resonant regime while the green line represents the relevant Bragg

resonant regime.

fully-filled annular holes (the same data presented in Figure 5.11 in Chapter 5).

When the annular holes are all completely empty, Γ has a value of -26.8 dB.
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Figure 7.4: Indicative mode shapes viewed from directly above the annu-
lar hole so as to see the displacement within the sphere, where the darkest
red represents the largest displacement while the blue represents the small-
est displacement. (a) Material 41 lower bandgap limit, 19 MHz, Mie-like
resonance across the sphere, (b) Material 41 upper bandgap limit, 68 MHz,
Mie-like resonance across the sphere, (c) Material 39 (border-lining Bragg-
like regime in Figure 7.3) lower bandgap limit, 28 MHz, Mie-like resonance
across the sphere, (d) Material 39 upper bandgap limit, 96 MHz, Mie-like
resonance across the sphere, (e) Material 30 (well within Bragg-like regime
in Figure 7.3) lower bandgap limit, 72 MHz, Mie-like resonance across the
sphere, (f) Material 30 upper bandgap limit, 99 MHz, displacement con-
centrated in the pillar with compression of the sphere, (g) Material 23 (well
within Bragg regime in Figure 7.3) lower bandgap limit, 111 MHz, Mie-
like resonance across the sphere, (h) Material 23 upper bandgap limit, 132
MHz, Bragg resonance across whole unit cell with asymmetrical displace-

ment within the sphere.

Although not immediately obvious, for one sphere in the index 1 annular hole,

more bandgap attenuation is observed overall than for four fully-filled annular

holes, but the range of values is much smaller, from around -5 dB to around -40

dB compared to around -12 dB to around -63 dB. It can be seen in Figure 7.5(a)

that for most values of Vi up to around 2500 m s−1, the bandgap attenuation Γ

is around -27 dB, indicating that adding a sphere to the index 1 annular hole

does not have much of an effect on the bandgap attenuation in that range Vi.

Above 2500 m s−1 there is a jump of around 15 dB to around -40 dB, which

could correspond to Bragg interference between some of the hole elements as

observed in Figure 7.3.
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For both spherical inclusions and fully-filled annular holes, the bandgap attenu-

ation tends to increase with increasing velocity. Attenuation is generally larger

for the single spherical inclusion compared to the fully-filled annular holes. This

is illustrated by plotting the ratio of the bandgap attenuation for the spherical

inclusions compared to that in the fully-filled holes, Figure 7.6 which shows that

attenuation by the spherical inclusion can be up to around 2x greater than in

the fully-filled holes.

In Figure 7.7 the bandgap attenuation coefficient Γsphere (Equation 7.5, a mea-

sure of the sensitivity of the structure to the presence of the spherical inclusion)

is plotted as a function of inclusion material SAW velocity Vi for a sphere in

the index 1 annular hole, and four fully-filled annular holes (the same data

presented in Figure 5.12 in Chapter 5). In Figure 7.7(a), again much less at-

tenuation is observed than for the four fully-filled annular holes, with nearly

a third of the values being positive, suggesting that some SAW enhancement

occurs at some lower Vi values, with respect to when all the holes are empty.

In general, above 1000 m s−1, attenuation values are fairly constant between 0

and -15 dB, compared to a negative correlation with increasing Vi in a range of

around -10 to -60 dB observed for fully-filled annular holes.

The ratio of Γsphere for the spherical inclusion and fully-filled holes is plotted as

a function of velocity in Figure 7.8, with values at most velocities being below

1, indicating somewhat intuitively that the annular holes are less sensitive to

the presence of a single spherical inclusion than being fully-filled.

The exhibition of higher bandgap attenuation and sensitivity to the presence

of materials of different shapes and sizes suggests that the use of annular hole

arrays might inform the realisation of devices with greater sensitivity for appli-

cations such as biological sensing and lab-on-a-chip diagnostics, without having

to integrate complex microfluidic systems or additional analytical processes.
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Figure 7.5: Bandgap attenuation Γ as a function of inclusion material
SAW velocity Vi for (a) a single sphere in index 1 annular hole and (b) four

fully-filled annular holes.
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Figure 7.6: The ratio of the spherical inclusion bandgap attenuation (Γ)
over fully-filled annular hole bandgap attenuation as a function of filling
material SAW velocity Vi. Since most of the values are above 1, it is clear
that a spherical inclusion exhibits more bandgap attenuation than fully-

filled holes.

7.4 Summary

Bandstructures were obtained from finite element simulations for an array of

annular holes, as the holes were filled with a small sphere comprised of mate-

rials with different SAW velocities Vi. By comparison to bandgap frequencies

calculated using an analytical model as in Chapter 5, it was found that the

array exhibited a Mie-like scattering regime at lower Vi, a Bragg-like scattering

regime at a mid-range of Vi and a true Bragg scattering regime at high Vi. The

dependence of the bandgap frequency on the velocity was found to be stronger

when the annular holes contained the sphere than for when they are fully-filled,

suggesting that the annular holes are potentially a good candidate for probing



7.4. Summary 121

Figure 7.7: Bandgap attenuation coefficient Γsphere as a function of in-
clusion material SAW velocity Vi, compared to when the holes are empty
(as in Equation 5.7) for (a) a single sphere in index 1 annular hole and (b)

four fully-filled annular holes.

biological cell-like analogues. The displacement modes within the array were

also investigated. At lower values of Vi, the displacements were consistent with

Mie scattering across the spherical inclusion. At higher values of Vi, some Bragg
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Figure 7.8: The ratio of the spherical inclusion bandgap attenuation
coefficient (Γsphere) over fully-filled annular hole bandgap attenuation co-
efficient (compared to when the holes are empty) as a function of filling
material SAW velocity Vi. Since most of the values are below 1, it is clear
that annular holes are less sensitive to the presence of a single spherical

inclusion compared to being fully-filled.

scattering was observed across the unit cell surface.

The bandgap attenuation was also investigated with a finite element simulation

and calculated with respect to either a blank surface or empty holes. In the first

case, higher bandgap attenuation was exhibited overall by the single spherical

inclusion than by fully-filled holes, by up to a factor of around 2x. In the second

case, it was seen that annular holes are less sensitive to the presence of a single

spherical inclusion compared to being fully-filled. The use of annular hole arrays

might lead to the realisation of devices with greater sensitivity for applications

such as biological sensing and lab-on-a-chip diagnostics.
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Chapter 8

Conclusions and Outlook

The work described in this thesis focuses on how phononic metamaterial arrays

can affect the sensitivity of surface acoustic waves (SAWs) to changes in their

environment, by investigating bandstructures, displacement modes, bandgap

attenuation and other attenuation coefficients. This was investigated under a

number of conditions, firstly with a computational study of inclusion materials

in fully-filled cylindrical and annular holes, then with an experimental study of

SAW mass loading attenuation on an annular hole device which was recreated

in a simulation, and finally with a similar computational study to the first,

only that the geometry of the inclusion in the annular hole was modified to be

spherical.

Beginning with RF signal processing, SAW interactions and devices have his-

torically had a number of interesting uses but are increasingly attracting atten-

tion for sensing applications, as the out-of-plane component of SAW oscillation

is susceptible to changes in the local environment. Introducing a pattern on

the surface is also known to affect SAW propagation by introducing phononic

bandgaps, which prevent specific SAW frequencies from propagating.

The concept of this work was to build upon the findings of Ash et al. [39] who

suggested that annular hole arrays could be used for sensing applications, and to
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begin to quantify their sensitivity under different conditions. SAW bandstruc-

tures were calculated with finite element (FEM) eigenfrequency simulations,

and SAW propagation was investigated with FEM frequency domain simula-

tions. Commercially available SAW delay lines, consisting of a lithium niobate

substrate with pre-patterned aluminium interdigital transducers, were prepared

for focused ion beam milling in a cleanroom environment, and an array of an-

nular holes was patterned within the transducer aperture. Devices were char-

acterised in air at atmospheric pressure and in a vacuum with an oscilloscope

system which quantified SAW transmission, and laser Doppler vibrometry which

measured SAW amplitudes directly.

The main findings of this work were that the bandstructures of annular holes

filled with materials had a higher dependence on the inclusion material SAW

velocity and exhibit more bandgap attenuation than when the holes were cylin-

drical, which suggests that an annular hole array is a good candidate for a

tunable phononic metamaterial and for sensing applications. Annular hole de-

vices also exhibited an extraordinary increase in SAW mass loading attenuation

compared to unpatterned devices, verified by an oscilloscope measuring system,

laser Doppler vibrometry and a computational study. Only 4 hole elements

were required for this result. Finally the bandstructures of annular holes filled

with a small biological cell-like spherical inclusion had a higher dependence on

the inclusion material SAW velocity than when the holes were fully-filled, sug-

gesting that annular holes may be a good candidate for biological sensing and

lab-on-a-chip applications. In addition, all of the sensing explored in this the-

sis took place within the pattern inclusions themselves. This is in contrast to

most of the literature, where sensing and probing takes place in or on defects

or cavities in the pattern.

In this chapter, the experimental results described in this thesis are summarised,

and future work is discussed. The tuning of SAW bandstructures in phononic
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crystals and local resonator arrays is reviewed in section 8.1. In section 8.2, mass

loading effects in a phononic metamaterial are reviewed and in section 8.3, a

review of spherical inclusions in a phononic metamaterial array is presented.

Suggestions for future research are discussed in section 8.4.

8.1 Tuning Surface Acoustic Wave Bandstruc-

tures in Phononic Crystals and Local Res-

onator Arrays

Bandstructures were obtained from finite element simulations for arrays of cylin-

drical and annular holes, as the holes were filled with materials with different

SAW velocities Vi. By comparison to bandgap frequencies calculated using an

analytical model, it was found that each type of hole array exhibited a Mie

scattering regime at lower Vi and a Bragg scattering regime at higher Vi. The

dependence of the bandgap frequency on the velocity was found to be higher

for the annular holes than for cylindrical holes, suggesting that the annular

holes are potentially a better route for creating tuneable phononic metamateri-

als. The displacement within the arrays was also investigated. At low values of

Vi, the displacements were consistent with Mie scattering for both annular and

cylindrical holes. At high values of Vi, the displacements in both hole arrays

were consistent with Bragg scattering, but in the annular holes displacement of

the central pillar could also be seen.

The bandgap attenuation was also investigated with a finite element simulation

and calculated with respect to either a blank surface or empty holes. In both

cases the annular holes displayed a higher bandgap attenuation, by up to a

factor of 3x compared to the attenuation in arrays of cylindrical holes. The

largest difference in the attenuation between the two types of arrays was at the

SAW velocity when both Mie and Bragg scattering are thought to contribute
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to the formation of a bandgap, suggesting that it might be the greater number

of interfaces in the annular holes that lead to this greater attenuation. The use

of annular hole arrays might lead to greater sensitivity in devices designed for

applications such as mass loading sensing.

8.2 Mass Loading Effects in a Phononic Meta-

material

SAW attenuation due to mass loading of air was obtained by directly measur-

ing SAW amplitude on a SAW device using an oscilloscope system and by laser

Doppler vibrometry (LDV). An extraordinary increase of 2 to 3 orders of magni-

tude in attenuation due to mass loading was observed at the bandgap frequency

of 97 MHz when a phononic metamaterial (a square array of annular holes) was

present, with only 4 resonator elements needed to produce this result. The

oscilloscope system and LDV measurements displayed similar frequency depen-

dencies of mass loading attenuation coefficients, although at different orders of

magnitude. Some mass loading effects were also reproduced using finite element

modelling, although at a different bandgap frequency.

Comparisons between this approach and more conventional measures of SAW

mass loading (such as via a velocity shift, or through a chemical adsorption

layer) are difficult to make without a numerical conversion, nevertheless it ap-

pears that these device are extraordinarily sensitive to small changes in pressure

(between 1 and 3 orders of magnitude depending on the experimental approach)

at the bandgap frequency. In addition, devices are straightforward to produce

and use, with commercially available substrates, minimal fabrication steps, and

standard laboratory equipment. It is believed that this experimental approach

and these devices show great promise for improving the sensitivity of SAW

pressure sensors with their adaptability (both in terms of array design and
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subsequent applications), convenience and ease of fabrication.

8.3 A Spherical Inclusion in a Phononic Meta-

material Array

Bandstructures were obtained from finite element simulations for an array of

annular holes, as the holes were filled with a small sphere comprised of mate-

rials with different SAW velocities Vi. By comparison to bandgap frequencies

calculated using an analytical model as in Chapter 5, it was found that the

array exhibited a Mie-like scattering regime at lower Vi, a Bragg-like scattering

regime at a mid-range of Vi and a true Bragg scattering regime at high Vi. The

dependence of the bandgap frequency on the velocity was found to be stronger

when the annular holes contained the sphere than for when they are fully-filled,

suggesting that the annular holes are potentially a good candidate for probing

biological cell-like analogues. The displacement modes within the array were

also investigated. At lower values of Vi, the displacements were consistent with

Mie scattering across the spherical inclusion. At higher values of Vi, some Bragg

scattering was observed across the unit cell surface.

The bandgap attenuation was also investigated with a finite element simulation

and calculated with respect to either a blank surface or empty holes. In the first

case, higher bandgap attenuation was exhibited overall by the single spherical

inclusion than by fully-filled holes, by up to a factor of around 2x. In the second

case, it was seen that annular holes are less sensitive to the presence of a single

spherical inclusion compared to being fully-filled. The use of annular hole arrays

might lead to the realisation of devices with greater sensitivity for applications

such as biological sensing and lab-on-a-chip diagnostics.
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8.4 Future Work

8.4.1 Tuneable Phononic Metamaterials

An obvious next step for the work carried out in Chapters 5 and 7 would be

to fabricate the systems and characterise them experimentally in order to val-

idate behaviours observed in simulations. However, difficulty may be posed

in filling the holes perfectly, particularly for the spherical inclusions, and of

course many of the inclusion materials investigated in simulations do not exist

in reality. In addition, the particular SAW device substrate used in Chapter

6 exploit a specific design of pre-patterned IDT, which only generate SAWs at

discrete frequencies. Chirped IDTs allow for finer control of the SAW frequen-

cies generated, which would allow for more accurate identification of bandgap

limits.

One key limitation encountered in Chapter 7 was the geometrical applicability

of the analytical model used to describe simulation results in Chapter 5. In

addition, only two scattering mechanisms (Mie and Bragg) were considered.

For all inclusion geometries (cylindrical, annular and spherical), developing a

more rigorous analytical approach, valid at all length scales and depths and

which takes into account the 3D nature of the system, would allow for a more

predictable relationship between inclusion material SAW velocity Vi and cen-

tral bandgap frequency, with a full description of the behaviour and resonance

regimes.

A more thorough understanding of the dependence on the bandgap on inclu-

sion material characteristics, not just material properties such as elastic moduli

but also the geometry, would enable the realisation of tuneable SAW devices.

Finer control over the tuning could lead to applications in frequency filters for

telecommunications.
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8.4.2 Phononic Metamaterials for Pressure Sensing

The experimental system in Chapter 6 has only been characterised at two dis-

crete pressures, atmospheric pressure and vacuum. An investigation into the

limits of its sensitivity, such as to incremental changes up to and beyond at-

mospheric pressure may inform its potential integration into more complicated

and battery-less pressure sensing systems such as those already used for TPMS

(Tyre Pressure Monitoring Systems) for the safety and efficiency of car tyres

[64].

The mass loading simulations attempted in Chapter 6 also may have uncovered

limitations of how COMSOL handles some multiphysics interfaces for some

specific applications. Further computational investigation is certainly needed,

either with COMSOL or an alternative modelling approach, FEM or otherwise.

8.4.3 Phononic Metamaterials for Biological Sensing

This technique is expected to be sensitive to some physical properties of cells

(particularly red blood cells), such as elasticity, which tend to be compromised

in disease due to factors such as oxidative stress as well as cell shape. This can

manifest in a number of conditions, including sickle cell anaemia [65], sphero-

cytosis [66] and malaria [67]. An obvious follow-up study to those in Chapters

5 and 7 would be to scale up the hole geometry to a more comparable size.

For example, for a red blood cell with a diameter of 8 µm, an annular width of

at least that is required in order for it to fit inside the hole for probing of its

material properties. Only simplistic inclusion geometries have been considered

so far, so more complex shapes (e.g. the biconcave red blood cell). If an an-

nular hole system is to be used for probing real biological cells, then knowing

the dependence of the bandgap on Vi and other material parameters again may

allow biomedical diagnosis to be reached easily and accurately.
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Scaling and fabricating the system described in Chapter 7 so a real red blood

cell would fit in the inclusion could also be a potential avenue to be explored,

using a larger annular hole system to probe the material properties and overall

health of the cell. This naturally leads on to integrating annular holes into a

microfluidic, acoustophoretic system for lab-on-a-chip applications, potentially

allowing for greater control of SAWs coupling into fluid in microchannels, and

subsequent applications in manipulation, detection and investigation of fluid,

particles or biological cells.
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