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Abstract: Tissue-engineered (TE) scaffolds provide an ‘off-the-shelf’ alternative to autograft proce-
dures and can potentially address their associated complications and limitations. The properties of TE
scaffolds do not always match the surrounding bone, often sacrificing porosity for improved compres-
sive strength. Previously, the layer-by-layer (LbL) assembly technique was used to deposit nanoclay
containing multilayers capable of improving the mechanical properties of open-cell structures without
greatly affecting the porosity. However, the previous coatings studied contained poly(ethylenimine)
(PEI), which is known to be cytotoxic due to the presence of amine groups, rendering it unsuitable
for use in biomedical applications. In this work, poly(diallydimethylammonium chloride) (PDDA)-
and chitosan (CHI)-based polyelectrolyte systems were investigated for the purpose of nanoclay
addition as an alternative to PEI-based polyelectrolyte systems. Nanocomposite coatings comprising
of PEI, poly(acrylic acid) (PAA), Na+ montmorillonite (NC), PDDA, CHI and sodium alginate (ALG)
were fabricated. The coatings were deposited in the following manner: (PEI/PAA/PEI/NC), PEI-
(PDDA/PAA/PDDA/NC) and (CHI/ALG/CHI/ALG). Results from scanning electron microscopy
(SEM) and energy-dispersive X-ray (EDX) analyses demonstrated that the nanoclay was successfully
incorporated into each polymer bilayer system, creating a nanocomposite coating. Each coating
was successful at tailoring the elastic modulus of the open-cell structures, with polyurethane foams
exhibiting an increase from 0.15 ± 0.10 MPa when uncoated to 5.51 ± 0.40 MPa, 6.01 ± 0.36 MPa
and 2.61 ± 0.41 MPa when coated with (PEI/PAA/PEI/NC), PEI-(PDDA/PAA/PDDA/NC) and
(CHI/ALG/CHI/ALG), respectively. Several biological studies were conducted to determine the
cytotoxicity of the coatings, including a resazurin reduction assay, scanning electron microscopy and
fluorescent staining of the cell-seeded substrates. In this work, the PDDA-based system exhibited
equivalent physical and mechanical properties to the PEI-based system and was significantly more
biocompatible, making it a much more suitable alternative for biomaterial applications.

Keywords: layer-by-layer assembly; nanocomposite coating; bone tissue scaffold; biocompatible;
compressive elastic modulus

1. Introduction

With over 2 million bone grafts performed annually worldwide, bone defect reparation
is rapidly becoming one of the most common procedures in bone regenerative medicine [1].
Bone defects can occur due to a wide range of conditions, such as various diseases [2],
trauma, infection [1,3] or non-unions (failure of bone to heal) [4,5]. Non-unions, also
known as critical-sized defects, do not heal naturally on their own throughout the course
of a patient’s lifetime and thus require additional procedures to prevent more extensive
damage [6]. As autograft procedures maintain the natural osteogenic qualities and exhibit
sufficient structural stability [7,8], they are currently the gold standard for non-union repair.
However, this grafting method has several drawbacks, including the introduction of a
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second surgery site, elevated rates of post-procedure infection [9,10], donor site complica-
tions [11] and limited grafting material [12]. An engineered ’off-the-shelf’ solution would
address many of these complications. Tissue-engineered (TE) scaffolds have been shown
to facilitate the regeneration of damaged tissue [7] and provide an effectively limitless
material that can potentially reduce the healing time and limits the risk of infection [13].
Such TE scaffolds must match the physio-mechanical requirements that are exhibited by
bone [14,15], including an elastic modulus ranging from 0.05–0.5 GPa [16] and a porosity
range of 75–85% [17]. However, the porosity of the scaffold is often sacrificed in order to
obtain sufficient mechanical properties. Layer-by-layer (LbL) assembly is a well-established
technique for the application of thin film coatings, which achieves a coating by depositing
alternating layers of oppositely charged materials onto a substrate. The versatility of this
method [18] allows for the use of many different materials and the incorporation of various
functionalities. Poly(ethylenimine) (PEI), poly(acrylic acid) (PAA) and cloisite Na+ mont-
morillonite (NC) coatings have been utilised previously in LbL assembly by Podsiadlo
et al. and Ziminska et al. for the mechanical reinforcement of open-cell structures. Through
the deposition of this mechanically robust thin film, it is possible to tailor the mechanical
properties of a porous structure without excessively sacrificing its porosity [19]. Although
these coatings can be used to tailor the mechanical properties of structures, the cytotoxic
nature of PEI [20] means that their use as a biomaterial is significantly limited. In this
work, the incorporation of nanoclay into other polymer layers, including PDDA/PAA and
CHI/ALG, to create nanocomposite thin films was investigated. These polyelectrolytes
exhibit an exponential growth regime under specific conditions [21,22], similar to PEI/PAA,
and thus offer appropriate alternatives for researchers to explore. Coatings deposited on
open-cell foams and glass slides were characterised to assess their unique properties under
ambient conditions, and the cytotoxicity of the coatings was investigated. The coating
topography/morphology, biocompatibility and mechanical integrity were examined to
understand the resulting differences between the PEI substitutes.

2. Materials and Methods
2.1. Substrate and Polyelectrolyte Preparation

Glass slides (Brand, Wertheim am Main, Germany) and polyurethane (PU) foams (The
Foam Shop, Taunton, UK) were prepared for pre-coating by washing in 1 M of NaOH
(Sigma Aldrich, St. Louis, MO, USA) for 10 min and rinsing with 18.2 MΩ deionised
water from a Milli-Q Purification System (Sigma Aldrich, St. Louis, MO, USA). Solutions
of 1 wt.% of PEI, PAA and PDDA and 0.5 wt.% NC and sodium alginate (ALG) were
prepared in 18.2 MΩ deionised water. Then, 0.5 wt.% chitosan (CHI) was prepared in
lactic acid solution (1% v/v). The PEI, PDDA, ALG, CHI and lactic acid solution were all
purchased from Sigma Aldrich (St. Louis, MO, USA), while NC was obtained from BYK
Additives (Wesel, Germany) and PAA was purchased from Alfa Aesar (Lancashire, UK).
The pH values of the PAA, PDDA and CHI were adjusted from ~2 to 8, ~6 to 4 and ~4 to 7,
respectively, via the addition of 1 M of NaOH. The pH of ALG was adjusted from ~6 to
3 with 88% conc. lactic acid, and the pH levels of PEI and NC were left unadjusted. The
pH levels were adjusted to achieve a specific growth regime of the polyelectrolytes. In this
work, an exponential growth was desired. Samples assembled with PDDA were subjected
to PEI solution for 30 s before coating to maximise the adhesion of the first layer.

2.2. Coating Method

In this work, the dipping method was utilised to coat the glass slides, as it offers a good
reproducibility of the film formation and the precise control of the coating thickness [23].
The PU foams were coated using a unique solution replacement chamber. For the exper-
imentation, both the microscopic glass slides and polyurethane (PU) foam were coated
to represent 2D and 3D substrates, and the glass slides were coated using a customised
dipping robot setup, Table 1, with the following coating sequences:
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Table 1. Coating sequences for microscopic glass slides using the customised dipping robot.

Solution Dip Time

PEI PDDA CHI 2 s
DI Rinse DI Rinse DI Rinse 3 s

PAA PAA ALG 2 s
DI Rinse DI Rinse DI Rinse 3 s

PEI PDDA CHI 2 s
DI Rinse DI Rinse DI Rinse 3 s

NC NC NC 2 s
DI Rinse DI Rinse DI Rinse 3 s

The PU foam substrates were coated using a solution replacement chamber setup,
where the foam was placed into the chamber and subjected to each of the cationic, an-
ionic and NC solutions for 30 s. In between the application of each polyelectrolyte so-
lution, the solution in the chamber was replaced by 18.2 MΩ DI water for 6 intervals
of 5 s. Polymer-clay nanocomposite coatings were then assembled in a sequence of
(PEI/PAA/PEI/NC)n, PEI-(PDDA/PAA/PDDA/NC)n and (CHI/ALG/CHI/NC)n, where
n represents 15, 30, 45 and 60 quad layers (QLs). Moving forward, the (PEI/PAA/PEI/NC),
PEI-(PDDA/PAA/PDDA/NC) and (CHI/ALG/CHI/NC) coatings will be referred to
as PEI, PDDA and CHI, respectively. For the in vitro studies, square glass cover slips
(15 × 15 mm, double thickness (0.19–0.23 mm), AGL 46S15-2, Agar Scientific, Essex, UK)
were prepared and coated utilising the same method as described above.

2.3. Zeta Potential

The charge of all the polyelectrolyte solutions was determined by a Zetasizer NanoZS
laser diffractometer through phase analysis light scattering (Malvern instruments Ltd.,
Malvern, UK), Table 2. The resulting polyelectrolyte solutions were adjusted and measured
to maintain the following charges:

Table 2. Z-potential of the various polymer solutions under specific pH conditions.

Polyelectrolyte Z-Potential (mV) pH

PEI 7.63 ± 0.6 11
PAA −25.87 ± 5.9 8

PDDA 21.5 ± 2.57 4.4
CHI 11.63 ± 0.76 7
ALG −31.33 ± 2.20 3
NC −28.61 ± 0.30 8

2.4. Scanning Electron Microscopy with Energy-Dispersive X-ray (SEM-EDX)

SEM was utilised to examine the coating topography of the 2D glass substrates de-
posited with the PEI, PDDA and CHI coatings. Prior to examination, the samples were
coated with a conductive layer of gold palladium using a sputtering system (Emitech
K500X, Quorum Technologies, Lewes, UK) at 25 mA for 2 min. Micrographs were collected
by a Hitachi SU5000 field emission scanning electron microscope (SEM) (Hitachi, Tokyo,
Japan) under a high vacuum in the secondary electron (SE) mode, with an accelerating
voltage of 4 keV, to maximise the surface sensitivity. An energy-dispersive X-ray (EDX)
analysis was then conducted under the same conditions. A total of 3 areas of each surface
were examined at a resolution of 1024 × 1024, and the analysis was performed using the
Aztec software (Oxford Instruments, Abingdon, UK). This analysis was performed at 4 keV,
which corresponds to an electron range of approximately 600 nm in a polymeric material
of a similar density. Therefore, only the coating, specifically the NC, was detected, without
obtaining a contribution from the underlying glass substrate.
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2.5. Stylus Profilometry

To assess the coating thickness, half of the glass slide was masked with Scotch tape
(3 M, Berkshire, UK) so that the step height between the coated and masked, uncoated
section could be measured. Stylus profilometry scans were performed, Table 3, using
a Bruker Dektak XT (Bruker, Billerica, MA, USA) and a diamond conical tip with the
following parameters:

Table 3. Line profilometry parameters.

Stylus Type Radius = 2 µm
Range 534 µm
Length 5000 µm

Duration 60 s
Stylus Force 3 mg

Profile Hills and Valleys

Three samples from each coating type were assessed, and five parallel scans of the
surface were taken for each sample. Samples were placed in a desiccator in a humidity of
~10% for 24 h to ensure that the coatings were tested in the same conditions.

2.6. Coating Density

The coated and uncoated glass slides were weighed using a microbalance (Radwag,
Radom, Poland) with an accuracy of 0.001 mg. Volumetric measurements of the coating
were determined by calculating the coating area and thickness. The coating area was
defined by optical microscopy and the thickness measurements were retrieved by line
profilometry. The density was then calculated by:

Density =
mass (g)

volume (cm3)
(1)

2.7. Micro-Computed Tomography (CT)

A SkyScan 1275 (Bruker, Billerica, MA, USA) system was utilised for the micro-CT
analysis, conducted with an operating voltage and current of 25 kV and 125 µA, respectively,
and a pixel size of 8.5 µm. The samples were scanned and, using the NRecon software
(Bruker, Billerica, MA, USA), we reconstructed the rotational slices before thresholding so
as to determine the presence of the material. All the scans were analysed with the same
reconstruction and thresholding settings to obtain comparable results. A volumetric bitwise
analysis was performed for each sample to determine the porosity and interconnectivity
using the CTAn software (Bruker, Billerica, MA, USA).

2.8. Instron Mechanical Testing

Compressive mechanical testing was conducted using an Instron machine (Instron
5660 series, Norword, MA, USA) and a 50 N load cell. The coated foams were placed in
a desiccator for up to 48 h prior to mechanical testing to ensure that the coatings were
completely dry. The samples were compressed at a rate of 2 mm/min to obtain a total
displacement of 0.6 mm. Stress–strain curves were generated, and the elastic modulus was
calculated using the linear (elastic) region of the stress–strain curve, as per ISO844.

2.9. Cell Culture

Cell studies were completed using a ‘medium’ comprised of McCoy’s 5A medium with
L-glutamine supplemented with 10% foetal bovine serum and 1% penicillin/streptomycin
mix (5000 units:5 mg/mL, respectively) under standard incubation conditions (a humidified
incubator at 37 ◦C with 5% CO2). An immortalised human osteosarcoma cell line, U-2
OS (HTB-96, ATCC, Manassas, VA, USA), was chosen as a ‘model’ for human bone cells
over the other commonly used osteosarcoma cells, such as MG-63s and Saos-2s, because
the follow-on biological studies aimed to investigate the cell maturation, and the authors
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wanted to ensure that the cell line used for the preliminary biological studies demonstrated
maturation characteristics that can mineralise to form bone-like nodules in vitro. The
authors previously reported such cell maturation results with this cell line using microscopy
techniques and Raman spectroscopy [24]. The cells were monitored daily using an inverted
microscope (Nikon Eclipse TS100, Nikon, Amsterdam, The Netherlands) and passaged
every 3–4 days to ensure that confluency was maintained at ~70%. Unless otherwise stated,
all reagents were supplied from Sigma Aldrich, Merck, UK. All cell culture and associate
biological assays were performed aseptically in a class 2 biosafety cabinet (Bioquell UK
Ltd., Andover, UK).

2.10. Cell Count and Seeding

Prior to conducting the in vitro cell assays, each substrate type was individually
wrapped in triple-layered aluminium foil and tightly sealed with autoclave tape. To remove
any microbial load, the substrates were then placed in a dry oven (OV-12, Thermo Fisher
Scientific, Waltham, MA, USA) for 4 h at 160 ◦C. The sterile substrates were placed in a class
2 biosafety cabinet (Bioquell UK Ltd., Andover, UK) until they were transferred to sterile
12-well tissue culture plastic plates. The cell suspension concentration, at day 0 and passage
number 11, was determined as per the manufacturer’s protocol using an automated cell
counter (TC20, Bio-Rad Laboratories Ltd., Watford, UK). The suspension was standardised
as 4 × 105 cells per ml, with 50 µL (20,000 cells per substrate) centrally pipetted onto
each substrate and incubated for 2 h under standard conditions. An additional 1950 µL
of medium was then pipetted into each well and the plates incubated until each time
point (days 2, 3 and 7). The tissue culture plastic (TCP) controls were represented by the
as-received square glass cover slips, where negative controls contained medium only and
positive controls contained cell suspension and medium. These were treated under the
same conditions as the test substrates, as previously stated.

2.11. In Vitro Cell Assay to Measure Cell Viability

The cell viability at days 2, 3 and 7 was evaluated using the resazurin reduction (RR)
assay, an assay commonly used to monitor and quantify the number of viable cells in a
sample/substrate at a particular timepoint based on the principle that the mitochondrial
respiratory chain of any viable cells will reduce the oxidised non-fluorescent blue resazurin
to fluorescent red resorufin. Resazurin salt (ab145513-5g, purity > 80%, abcam, Cambridge,
UK) was dissolved in 0.01 M of phosphate-buffered solution (PBS) to 0.30 mg/mL and
sterile-filtered using a 0.2 µm filter into a light-protected container. Aliquots were then
prepared and stored, ensuring light protection. The substrates and their medium were
placed in 12-well plates and 100 µL of RR solution was added to each well. The plates
were wrapped in aluminium foil, rotated at 20 RPM for 5 min at room temperature and
then incubated for 4 h. Once incubated, each well was thoroughly mixed, and 3 × 100 µL
of the contents per well was transferred to a black 96-well plate, again ensuring light
protection until the plate was read. The fluorescence was recorded using 560 nm excita-
tion/590 nm emission filter set with a Tecan Spark multi-mode plate reader (Tecan Group
Ltd., Seestrasse, Switzerland).

2.12. Scanning Electron Microscopy of U-2 OS Cells

The medium was aspirated from the wells of each tissue culture plastic (TCP) control
and test substrate, and the wells were washed twice with 0.01 M PBS followed by 3 washes
of deionised water (to minimise any PBS crystallisation within the imaged cells), with each
well aspirated between each wash. Following this, 2.5% of glutaraldehyde (in deionised
water) was added for 45 min at room temperature and then aspirated. An alcohol series of
increasing ethanol concentrations were used to gradually dehydrate the samples. Concen-
trations of 25, 50, 75, 90 and 100% were added consecutively for 8 min at room temperature,
with the wells aspirated between each concentration. Once aspirated, a 1:1 ratio of ethanol
and hexamethyldisilane (HDMS) was added and incubated at room temperature for 8 min.
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The wells were aspirated, and 2–3 drops of HMDS were added in order to thoroughly
dry the samples at room temperature overnight. The coated square glass cover slips were
coated with a conductive layer (~18 nm) of gold palladium using a sputtering system
(Emitech K500X, Quorum Technologies, Lewes, UK) at 25 mA for 2 min before examination
by SEM (Hitachi SU5000 instrument, Hitachi, Buckinghamshire, UK).

2.13. 4′,6-Diamidino-2-Phenylindole (DAPI) Staining

Medium from each well was aspirated, and the substrates washed twice with 0.01 M
PBS. The wells were aspirated, and 4% paraformaldehyde (PFA, in 0.01 M PBS) was added
for 8 min at room temperature. The substrates were washed twice with 0.01 M PBS prior to
staining the cells with 300 nM 4′,6-diamidino-2-phenylindole (DAPI) in 0.01 PBS for 10 min
at room temperature. Prior to imaging, the substrates were washed 3 times with 0.01 M
PBS. The substrates were viewed and imaged using a 10× objective, and any fluorescently
stained ‘blue’ nuclei were automatically counted using a wide-field fluorescent microscope
and its associated software (Zeiss Axio Imager and Zen software, Zeiss GmbH, Oberkochen,
Germany). At least 5 random areas per DAPI-stained substrate were imaged using Colibri
7 LED illumination at an excitation wavelength of 405 nm for 820 milliseconds. Images
were captured at a resolution of 1024 × 1024 pixels.

2.14. Statistical Analysis

The statistical analysis (n = 6) was performed using GraphPad Prism version 9.3.1
for Windows (GraphPad Software, San Diego, CA, USA). Ordinary one-way analysis
of variance (ANOVA), including the Brown–Forsythe and Bartlett’s tests, were applied
to test for statistically significant differences at each timepoint, with a value of p < 0.05
considered statistically significant. Any significant difference between the scaffold types
was determined (and plotted) using Tukey’s multiple comparisons test, with a value of
p < 0.05 taken as statistically significant.

3. Results

As shown in Figure 1, the thickness of the coatings increases with the number of
QLs deposited, and this is observed for all coating types on the glass microscopic slides.
Throughout the deposition process, it can be observed that the growth of the PEI and PDDA
coatings is quite similar, with both coating types reaching an approximate thickness of
4 µm at 60 QLs. The CHI coating maintains a thicker coating, and at 60 QLs it reaches a
thickness of 7 µm.

Figure 1. Mean coating thicknesses of PEI, PDDA and CHI coatings assembled with 15, 30, 45 and
60 QLs on glass microscopic slides.
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The mean densities of the PEI, PDDA and CHI coatings deposited with 15 and 60 QLs
are shown in Table 4. At 15 and 60 QLs, the PEI and PDDA coatings exhibit similar densities,
whereas the CHI coating exhibits a slightly higher density.

Table 4. Mean coating densities of PEI, PDDA and CHI coatings on glass microscopic slides at 15 QL
and 60 QL.

15 QL 60 QL

Mean Density
(g/cm3) Std. Dev Mean Density

(g/cm3) Std. Dev

PEI 1.12 0.26 1.29 0.29
PDDA 1.14 0.26 1.36 0.37

CHI 1.76 0.58 2.64 0.67

SEM analysis was conducted on the substrates to assess any differences in topography
across each of the coating types. From SEM micrographs, shown in Figure 2, all coating
types show visible similarities in topography and surface features.

Figure 2. SEM analysis of 60 QL (a) PEI, (b) PDDA and (c) CHI coatings on glass microscopic slides
examined at a magnification of ×1k.

Results from the EDX analysis confirm that NC was successfully incorporated into
each of the coatings. The major constituents of the NC include silicon and aluminium, and
these elements are not observed in the polymers utilized in this work, thus providing an
indication of the elemental composition of NC. It is evident from Table 5 that silicon and
aluminium are present across all coating types. The EDX maps of the coating constituents
are shown in Figure 3.

Table 5. EDX analysis conducted on glass slides deposited with 60 QL coatings.

PEI Coating PDDA Coating CHI Coating

Element Atomic % Std. Dev Atomic % Std. Dev Atomic % Std. Dev

C 23.33 0.38 49.63 0.57 38.23 0.85
O 36.97 0.68 31.03 4.88 39.53 0.86
N 25.67 1.01 5.93 3.17 5.07 0.25
Si 6.57 0.06 6.67 1.08 10.13 0.86
Al 2.97 0.50 3.05 0.64 4.03 0.15
Na 0.00 0.00 0.00 0.00 0.30 0.10
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Figure 3. EDX maps of PEI, PDDA and CHI coatings where carbon, oxygen, nitrogen, aluminium
and silicon are represented by C, O, N, Al and Si, respectively.

The mechanical properties, derived from compressive testing, determine that the
elastic modulus of the coated foams increases as a function of the number of QLs deposited,
as shown in Figure 4. The modulus of the open-cell foams increased from 0.15 ± 0.10 MPa
when uncoated to 5.51 ± 0.40 MPa, 6.01 ± 0.36 MPa and 2.61 ± 0.41 MPa for the PEI,
PDDA and CHI coatings deposited with 60 QLs, respectively. The PEI and PDDA coatings
exhibit comparable increases in the modulus throughout testing, although the CHI-coated
foams exhibit a notably lower modulus, although, overall, this increases with the number
of QLs deposited.

Figure 4. Mean elastic modulus ± SD of the coated foams as a function of the quad layers deposited.

The porosity was assessed for both the uncoated and coated PU foams, and the
porosity of an uncoated foam substrate was determined to be 98.67%. As the number of
QLs deposited increased from 15 to 60, there was a slight decrease in the porosity exhibited
by the coated foams (Table 6). The overall decrease in the porosity was 6.98%, 4.91%
and 6.64% for the PEI, PDDA and CHI coatings, respectively. All three coating types
demonstrated similar results, meaning that the PDDA and CHI coatings do not negatively
impact the porosity any more than the PEI coating.
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Table 6. Total calculated porosity of PEI, PDDA and CHI coated PU foams (n = 3) at 15 and 60 QLs.

15 QL 60 QL

Total Porosity (%) Std. Dev Total Porosity (%) Std. Dev

PEI 95.85 0.40 88.87 1.01
PDDA 93.55 1.35 88.64 0.60

CHI 95.92 0.68 89.28 0.51

There is a decreasing trend in the cell viability of the PEI coating as the culture time
increases; however, this was not shown for the PDDA and CHI coatings, as seen in Figure 5.
Reviewing the results of day 7, as the longest day of culture, it is apparent that the PEI
coating has a considerably lower cell viability, with statistically significant differences
(p < 0.0001) observed between PEI and PDDA, and the PEI and CHI coatings. There was
no statistically significant difference between the PDDA and CHI coatings at day 7.

Figure 5. Resazurin reduction assay results as an indication of the U-2 OS cell viability upon exposure
to the PEI, PDDA and CHI coatings on square glass cover slips, cultured under standard conditions
for 2, 3 and 7 days. Each scaffold type was tested in triplicate. Any statistical significance is shown
where p < 0.05. Increasing significance is represented by an increasing number of asterisks (* p < 0.05
and **** p < 0.0001.

The adhered U-2 OS cells on the PDDA and CHI coating surfaces were examined by
SEM at day 7 to provide qualitative information on their morphologies and osteoblast-like
properties, as shown in Figure 6. These features are most evident in the PDDA and CHI
coatings, shown in Figure 6b,c. The cells on these substrates exhibit a flattening morphology
and, on further examination of the PDDA coating, we can see that the cells have potentially
formed a film on this surface. The highlighted U-2 OS cells seeded onto the PEI coating
maintain a rounded, almost spherical morphology and are also notably smaller at day 7 of
the culture period. Spherical cells suggest that the filopodia do not successfully probe and
are not attached to this surface, displaying an effective decrease in the cell viability.

EDX was utilised for further analysis because the film formed on the surface of the
PDDA coating was cellular. The elemental composition of the cellular film was examined,
as shown in Figure 7, with the presence of silicon linked to the coating, due to its presence
in the nanoclay layers, and carbon indicating a cellular material. EDX analysis confirmed
that silicon was much less abundant in the areas of the cellular film on the surface of the
substrate. Moreover, the high intensity of the carbon present on the film further corroborates
that it is a cellular material.
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Figure 6. SEM analysis of U-2 OS cells seeded on square glass cover slips coated with (a) PEI coating,
(b) PDDA coating and (c) CHI coating, examined at a magnification of ×1k and cultured under
standard conditions for 7 days.

Figure 7. EDX analysis of the U-2 OS film formed on the square glass cover slips coated with the
PDDA coating.

Once the DAPI staining was completed, the samples were analysed at days 2, 3 and 7
utilising fluorescence microscopy. Figure 8 displays the results from day 7. It is evident that
there are no stained nuclei present on the PEI coating; however, there are numerous stained
nuclei present on the PDDA and CHI coatings. The polyelectrolytes used to manufacture
each of the coatings can act as an effective reservoir for reagents [25]. Therefore, conducting
a quantitative analysis of the number of nuclei was not viable, as it was possible that
some of the DAPI stain was contained within the coating, causing background fluorescence.
However, the result of the qualitative analysis retrieved in this study was still representative
of cytotoxicity.

Figure 8. DAPI staining analysis of U-2 OS cells seeded on (a) PEI, (b) PDDA and (c) CHI coatings
cultured under standard conditions for 7 days.

4. Discussion

Nanocomposite coatings comprising of (PEI/PAA/PEI/NC) have been widely in-
vestigated in the literature for the purpose of mechanical reinforcement [19,26]. The
physico-mechanical properties of this PEI-containing coating provide a useful baseline
for the novel PDDA and CHI coatings that are investigated in this study. Previously, the
PEI coatings were found to be fabricated as a function of the number of QLs deposited,
and this work demonstrated that the PDDA and CHI coatings behave in the same manner,
as shown in Figure 1, with gradual increases in the thickness throughout the deposition
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process. The PEI and PDDA coatings exhibit a similar coating thickness and overall growth
increase from 15 to 60 QLs, whereas the CHI coating is significantly (p < 0.0001) thicker.
As shown in Figure 4, through the application of each of the coating types, it is possible to
significantly improve the elastic modulus of the highly porous open-cell structures. Our
results indicate that the modulus of the foams can be controlled by varying the number
of QLs deposited, allowing for a desired modulus to be achieved by altering the number
of deposited QLs. As the design and properties of TE scaffolds are paramount to their
application and achievement of a biomimetic structure suitable to cancellous bone [27], it is
crucial that any coating deposited in order to add functionality does not drastically reduce
the porosity of a potential scaffold. In this work, foams were coated with up to 60 QLs, and
the porosity was assessed after every 15 QLs, as the predicted the foams exhibited a slight
decrease in porosity with the increasing coating thickness. For the PEI and PDDA coatings,
it was possible to significantly improve the mechanical properties of the foam, reaching a
modulus of up to 6 MPa with just 60 QLs, whilst not excessively sacrificing the porosity
of the structure. It has been demonstrated previously in the literature that the PEI coating
can illustrate the desired mechanical properties (0.05–0.5 GPa [16]) required to tailor a
potential bone tissue scaffold [19]. Whilst exhibiting a similar coating thickness, mechanical
properties and porosity to the PEI coating, the PDDA coating could be just as useful for
tailoring the mechanical properties. PEI is a polycation that consists of numerous amine
groups (NH2) and two carbon aliphatic spacers (CH2CH2). Several studies have indicated
that PEI is cytotoxic, and this could be due to the fact that PEI induces mitochondrial-
mediated apoptosis. Moreover, PEI has also been shown to facilitate the reduction in the
mitochondrial membrane potential and impairment of mitochondrial respiration, and it
also induces its swelling [20,28,29]. The decreasing cell viability of the PEI coatings shown
in Figure 5 suggests that the PEI, as a main constituent of the coating, causes a cytotoxic
response to the U-2 OS cells seeded on the surface of this coating. Neither the PDDA
nor CHI coating induced this response, and it has been suggested that the quaternary
ammonium groups in PDDA exhibit a lower cytotoxicity compared to the primary amine
groups in PEI [30]. As detailed earlier, chitosan was prepared in an acidic aqueous solution,
which, in turn, promotes the protonation of the NH2 groups. The subsequent changes in the
chitosan structure [31,32] may have a favourable influence on cytotoxicity and, therefore,
may result in a higher cell viability than that of the PEI coatings. It is evident in Figure 6b,c
and further indicated by Figure 7 that, at day 7, the PDDA and CHI coatings support the
cell attachment and growth of the U-2 OS cells. The filopodia of the cells extending to the
coatings indicate that the cells favour the surfaces exhibited by PDDA and CHI, facilitating
their attachment. The cell flattening morphology was also demonstrated. This has been
noted previously in the literature, and it has been suggested that it is due to the fact that
the cells adhere more securely to the underlying substrate [33,34]. Cell attachment and
flattening were not observed on the PEI coatings. In Figure 6a, the round spherical shape
of the cells on this coating indicate the potential cytotoxicity of the underlying substrate.
Fluorescent microscopy images, shown in Figure 8, detailing the stained nuclei of the U-2
OS cells, provide additional information on the cell viability and behaviour at day 7 of
culture for each coating type. Stained nuclei were visible on both the PDDA and CHI
coatings but not the PEI coating. Although cell counting was not viable, the qualitative
analysis attained findings that corroborate the accompanying in vitro work.

5. Conclusions

In this work, nanoclay was successfully incorporated into PEI/PAA, PDDA/PAA
and CHI/ALG polymer layers to create nanocomposite coatings of PEI/PAA/PEI/NC,
PEI-(PDDA/PAA/PDDA/NC) and CHI/ALG/CHI/NC. Through the deposition of each
of these coatings onto microscopic glass slides and open-cell structures, it was possible
to tailor various properties as a function of the number of deposited QLs, including the
coating thickness, porosity and elastic modulus. At 60 QLs, the PEI and PDDA coatings
can be tailored to exhibit a modulus reaching over 5 MPa, whilst maintaining a similar
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porosity of approx. 88% and thickness of approx. 4 µm. The elastic modulus of the CHI
coating was tailored to approx. 3 MPa at 60 QLs and demonstrated a porosity and coating
thickness of approx. 89% and 7 µm.

This work has shown that the incorporation of nanoclay into polymer multilayers is
not restricted to the use of PEI/PAA/PEI/NC for the purpose of mechanical reinforcement.
This is because PEI-(PDDA/PAA/PDDA/NC) and CHI/ALG/CHI/NC coatings not only
enhance the mechanical properties but also provide a system with significantly lower cyto-
toxicity. The lower cytotoxicity illustrated by the PDDA and CHI coatings was confirmed
through a series of cell viability studies.

The PDDA coating explicitly presents as the most comparable with the physical and
mechanical properties of the PEI coating. However, crucially, it offers a significantly higher
biocompatibility. The findings in this work widen the potential use of these polymers and,
subsequently, the nanocomposite coatings for the functionalisation of open-cell structures
in biomedical applications, such as bone defect reparation.
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