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  Abstract 

Pseudorandom bit sequences are generated using deterministic algorithms to simulate 
truly random sequences. Many cryptographic algorithms use pseudorandom sequences, 
and the randomness of these sequences greatly impacts the robustness of these algo-
rithms. Important crypto primitive Linear Feedback Shift Register (LFSR) and its combi-
nations have long been used in stream ciphers for the generation of pseudorandom bit 
sequences. The sequences generated by LFSR can be predicted using the traditional Ber-
lekamp Massey Algorithm, which solves LFSR in 2×n number of bits, where n is the de-
gree of LFSR. Many different techniques based on ML classifiers have been successful at 
predicting the next bit of the sequences generated by LFSR. However, the main limita-
tion in the existing approaches is that they require a large number (as compared to the 
degree of LFSR) of bits to solve the LFSR. In this paper, we have proposed a novel Pattern 
Duplication technique that exponentially reduces the input bits requirement for training 
the ML Model. This Pattern Duplication technique generates new samples from the 
available data using two properties of the XOR function used in LFSRs. We have used 
the Deep Neural Networks (DNN) as the next bit predictor of the sequences generated 
by LFSR along with the Pattern Duplication technique. Due to the Pattern Duplication 
technique, we need a very small number of input patterns for DNN. Moreover, in some 
cases, the DNN model managed to predict LFSRs in less than 2n bits as compared to the 
Berlekamp Massey Algorithm. However, this technique was not successful in cases 
where LFSRs have primitive polynomials with a higher number of tap points. 
. 
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1. Introduction   

We use many randomized algorithms which require pseudorandom data for their working. Pseudorandom sequences are not 

truly random and can be regenerated again with a seed. Cryptographic algorithms use these sequences for their working by 

assuming their unpredictable property. Robustness of such cryptographic algorithms is highly dependent on the unpredictable 

property of sequence. That is if an attacker don’t have the access of initial seed, he can't predict the future bits of sequence. 

With the tremendous growth in the area of Machine Learning many attempts have been made to predict such sequences.  

Hernández et al. [2000, 2001] converted the prediction problem to classification problem and used decision tree classifier C4.5 

to predict pseudorandom sequences generated from LFSR. Their objective was to use ML based next bit prediction models as 

evaluation criteria. Khan [2005] extended this work and applied it on various LFSRs and tabulated the minimum number of bits 

required for predicting LFSR generated bits. Kant and Khan [2006] uses this model on other pseudo random generators like 

Geffe and proposed a True Next Prediction model. A more complex analysis was made by Kant [2009], reporting results for 

prediction of sequences generated by keystream generators of eSTREAM project. Though they have not been successful to 

predict eSTREAM candidates, they have reported good results on LFSRs, Geffe Generator and Alternative step generators.  

Then use of four machine learning algorithms was made; namely, decision tree based C4.5 algorithm, Naive Bayes, Averaged 

One Dependence Estimators (AODE) and Multi-Layer Perceptron for the next bit prediction problem. Peinando and Ortiz (2014) 

used backpropagation Multilayer Perceptron (MLP) to predict sequences generated by LFSR.  

In this paper, we apply a different approach - the deep neural networks - to predict the sequences generated by LFSR. We have 

used Pattern Duplication Technique along with Deep Neural Networks (DNN) for this task. We have used Feedforward Neural 

Network with two hidden layers in DNN and tested the sequence generated by LFSRs having primitive polynomials of degree 

6to 100. With thorough experimentation we have estimated the minimum bound on the number of input bits required by 

model for each LFSR and tabulated the results. We have found that the results of our model are comparable with the Berlekamp 

Massey Algorithm. 

The results show that the minimum number of bits required by the DNN is at least 7% lesser than the number of bits required 

by BM Algorithm and this percentage increases with the increase of degree of the LFSR and reaches up to 45% for LFSR of 

degree 100. The results confirm that these networks can predict the entire sequence knowing fewer input patterns than the 

existing reported techniques based on other classifiers. 

2. Preliminaries 

2.1. LFSR 

A Linear Feedback Shift Register is a shift register used to generate long pseudorandom sequences. An LFSR can be of any 

desired length but it has to be given a certain initial state (usually random distribution) and has to be tapped at certain points 

to feedback one bit after performing a certain linear operation (usually XOR) on the tapped bit. The tapped bits/ tap points are 

generally decided using primitive polynomials. An LFSR of length m can be constructed using primitive polynomials of degree 

m, where the period of the LFSR will be 2m – 1 bits long. A primitive polynomial is one which is not reducible and has a non-

zero constant term. In the field of cryptography, they are used for pseudorandom generators (PRGs). Primitive polynomials are 

used for PRGs because they can generate the full period of the pseudorandom bits. In general, a primitive polynomial of degree 

m over a field with two elements will generate 2m – 1 pseudorandom bits before repeating the same sequence. An LFSR can 

be better understood using an example.  
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For example, an LFSR of degree m = 5. For every LFSR of degree m there exist certain primitive polynomials of degree m, out 

of which we can choose the one we desire according to the tap points. The primitive polynomials of degree 5 are x5 + x2 + 1, x5 

+ x4 + x2 + 1 & x5 + x4 + x3 + 1. The indices of the polynomials tell us which bits in the LFSR are to be tapped to generate a 

pseudorandom sequence. These primitive polynomials will generate pseudorandom sequences where the maximum length of 

the sequence will be 31 (25 – 1) bits.  Figure 1 shows the structure of LFSR using x5 + x2 + 1 as the primitive polynomial for our 

LFSR. 

 

Figure 1. LFSR for x5 + x2 + 1 

2.2. Deep Learning 

Deep Learning is a sub-field of machine learning and its algorithms try to mimic the function of neurons in the brain. These 

algorithms are scalable with the data and generally their performance keeps getting better with the input of more data. Feed-

forward neural networks with multiple layers are generally being used in DNN. They have many configurable hyperparameters 

like activation function, loss function, learning rate etc. which greatly impact the performance of the model. Also the choice of 

number of layers and number of neurons in each layer are very important decisions which a developer has to take considering 

the size and type of problem and resource availability. 

2.3. Next Bit Prediction Problem 

Suppose an adversary is observing a binary sequence b1,b2...bn generated by a deterministic Pseudo Random Bit Generator. 

Then predicting the next bit i.e. bn+1 bit with the limited information from the past, should not be possible with better than 

chance probability.     

 

Figure 2. Next Bit Prediction Problem 
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3. METHODOLOGY 

3.1. Pattern Duplication Technique 

Hernández et al. [2000, 2001] stated a way to convert the Next Bit Prediction problem into a classificatory problem. In this 

approach, bits generated by PRBG are converted into patterns of length ‘b’ (b<<n) in an overlapping way, where b is called 

frame length. For example, the sequence b1, b2, b3, b4, b5, b6 will be converted into following patterns if frame length is 

3: 

P1: b1, b2, b3, b4 

P2: b2, b3, b4, b5 

P3: b3, b4, b5, b6 

In each pattern, the last bit is considered as Class Bit and other bits are considered as attributes and these patterns are 

fed to various classification algorithms. All the existing Machine Learning based research is based on this pattern formula-

tion technique. With this formulation only a limited number of patterns (n- b) are generated. We have developed a Pattern 

Duplication technique that exponentially increases the number of these patterns. In this technique, a bitstream is gener-

ated using an LFSR and then, initial patterns are formed using the same way as suggested by Hernández et al. [2000, 2001]. 

Then different combinations of these initial patterns are formed and for each combination, the shift and add and the 

inversion property of sequence operations are used to create new patterns. The 'Shift and Add' property of sequences 

generated by the XOR operation states: the modulo-two addition of any two identical pseudorandom sequences with 

different phases generates another identical pseudorandom sequence but with another phase. The pseudocode of the 

module for implementing 'Shift and Add' property is given in Module 1. 

 

Module 1: Module for Shift and Add property 

Function shift_and_add 

Pass In: combination of patterns c 

foo ← list of 0s equal to length(pattern) 

for every pattern p in c:  

for i from 0 to length(p)-1: 

foo[i] ← foo[i] xor p[i] 

endfor 

endfor 

append foo to new_patterns 

Pass Out: new_patterns 

Endfunction 

 

The ‘Inversion’ property of sequences generated by the XOR operation states: if all the attribute bits of patterns are in-

verted, the class bit remains the same with the assumption that size of subsequence should be  equal to the degree of 

LFSR. The pseudocode of the module for implementing ‘Inversion' property is given in Module 2. 

     

Module 2: Module for Inversion property 

Function Inversion 

 Pass In: single pattern  
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 for i from 0 to length(pattern)-2: 

  invert pattern[i] 

 endfor 

 append pattern to new_patterns 

 Pass Out: nothing 

Endfunction 

 

Using these two properties, a new pattern can be formed with two or more existing patterns. Furthermore, these new 

patterns can be used to generate more patterns. The process of pattern creation is repeated till a sufficient number of 

unique patterns are created. The number of patterns generated depends upon many factors like the storage capacity of 

the computational system, maximum possible patterns and need for retraining the model. In our case, we have generated 

around 15000 patterns (or maximum possible patterns: 2framelength). The pseudocode of the module for implementing ‘Pat-

tern Duplication’ property is given in Module 3.  

 

Module 3: Module for Pattern Duplication 

Function Pattern_duplication 

 Pass In: dataset, max_counter 

while (count(unique values in new_patterns) ≤ max_counter) 

combinations ← nested list of all possible combinations of patterns in dataset taken 2,3,4...length(dataset) -1 

at a time 

  for each combination c in combinations: inversion (Shift_and_add (c)) 

 end while 

 Pass Out: new_patterns  

Endfunction 

 

Valid patterns are formed only when the frame length is equal to the degree of the LFSR. Therefore, an initial frame length 

is chosen and incremented iteratively till good classification results are obtained. In the next step, the number of initial 

bits generated by the LFSR is repeatedly reduced to get a lower bound on the number of bits required to successfully 

predict the LFSR. 

3.2. Prediction using Deep Learning 

Initially, some LFSRs of different configurations (degree, tap points, primitive polynomials) were taken and sufficient patterns 

were generated using the Pattern Duplication technique. Numerous tests were performed with the DNN program various com-

binations of hyperparameters like number of layers, number of nodes in each layer, activation functions, learning rates etc. 

The goal here was to find which parameters would result in a lesser value of loss function. A good model here is defined as one 

in which the training accuracy tends to meet the validation accuracy.  

Based upon extensive experimentation using KERAS library we were able to freeze following hyper parameters for the deep 

learning model: 

1. Number of Internal Layers: 2 (with number of nodes = frame length) 

2. Regularization : L2 

3. Activation Function: Relu (internal layers) & Sigmoid (final layer) 
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4. Optimization Function: Adam  

5. Learning rate :  0.001 

6. Loss function : Binary Cross Entropy 

After freezing the best hyper parameters, the model is tested with different LFSRs and estimation of the minimum amount of 

bits required for successful prediction is done. After reaching a certain threshold where the validation accuracy was close to 

100% consistently, the program was terminated and the results were recorded 

4. OBSERVATIONS AND RESULTS 

After applying the Pattern Duplication technique, the final dataset is split into training, testing and validation sets. Training 

accuracy is calculated as how often the predicted values match the true values present in the training set. Validation dataset 

has at least 100 patterns and model performance is evaluated using this dataset after each epoch. This accuracy is called vali-

dation accuracy. The plot of training and validation accuracy against the number of epochs for some polynomials is given below. 

For each LFSR polynomial, the graph on the left is plotted once training and validation accuracy reaches 1.0 (100%) and testing 

accuracy is recorded using the testing set, which has around 100 patterns. Frame length is recorded at this instance and then 

the model is retrained by fixing this frame length with repeatedly reducing the number of bits generated by the LFSR so that 

we achieve around 100% validation and testing accuracy. The graph on the right is plotted on reaching the lower bound on the 

number of bits. This number of bits is also recorded. Finally, the Model is tested with the test data set for final conformance. 

The results confirm that around 100% validation and testing accuracy is achieved only when frame length is equal to the degree 

of the primitive polynomial (or the degree of the LFSR). 

However, similar results weren’t obtained for some primitive polynomials with seven terms. For example, while working with 

LFSR of degree 54, 100% training and validation accuracy couldn’t be achieved using the primitive polynomial  x54 + x6 + x5 + 

x4 + x3 + x2 + 1 at any frame length up to 54. But once a primitive polynomial with five terms , i.e., x54 + x53 + x49 + x39 + 1, was 

used for the same LFSR, 100% training and validation accuracy was achieved at frame length of 54. After fixing this frame length 

and repeatedly reducing the number of bits generated by the LFSR, the minimum bound was found at 58 bits with 100% train-

ing, validation and testing accuracy. Table 1 shows some of our observations in tabular form. In all the given cases we were 

able to solve LFSR in less than 2×n bits. 
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x23 + x5 + x4 + x + 1 

     
Frame Length: 
Training Accuracy: 
Testing Accuracy: 

23 
1.000 
1.000 

No. of bits: 
Training Accuracy: 
Testing Accuracy: 

59 
1.000 
1.000 

x50 + x4 + x3 + x2 + 1 

    
Frame Length: 
Training Accuracy: 
Testing Accuracy: 

50 
1.000 
1.000 

No. of bits: 
Training Accuracy: 
Testing Accuracy: 

58 
1.000 
1.000 

 

x54 + x53 + x49 + x39 + 1 

     
Frame Length: 
Training Accuracy: 
Testing Accuracy: 

54 
0.994 
0.998 

No. of bits: 
Training Accuracy: 
Testing Accuracy: 

58 
1.000 
1.000 
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x83 + x7 + x4 + x2 + 1 

     
Frame Length: 
Training Accuracy: 
Testing Accuracy: 

83 
1.000 
0.998 

No. of bits: 
Training Accuracy: 
Testing Accuracy: 

92 
1.000 
1.000 

 

x100 + x8 + x7 + x2 + 1 

    
Frame Length: 
Training Accuracy: 
Testing Accuracy: 

100 
1.000 
1.000 

No. of bits: 
Training Accuracy: 
Testing Accuracy: 

109 
1.000 
1.000 

 
x54 + x6 + x5 + x4 + x3 + x2 + 1             x72 + x6 + x4 + x3 + x2 + x1 + 1 

    
Frame Length: 
Training Accuracy: 
Testing Accuracy: 
 

54 (FAILED) 
0.909 
0.835 

Frame Length: 
Training Accuracy: 
Testing Accuracy: 
 

72 (FAILED) 
0.921 
0.586 
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Table 1. LFSR Prediction results 

Degree of 
Polynomial 

Polynomial Frame Length Minimum no. of 
Bits 

No. of bits required 
by BM Algorithm 

15 x15 + x10 + x5 + x + 1 15 22 30 

23 x23 + x5 + x4 + x + 1 23 29 46 

38 x38 + x6 + x5 + x + 1 38 44 76 

50 x50 + x4 + x3 + x2 + 1 50 58 100 

54 x54 + x53 + x49 + x39 + 1 54 62 108 

54 x54 + x6 + x5 + x4 + x3 + x2 + 1 - - - 

72 x72 + x23 + x14 + x2 + 1 72 81 144 

72 x72 + x6 + x4 + x3 + x2 + x1 + 1 - - - 

75 x75 + x6 + x3 + x1 + 1 75 84 150 

83 x83 + x7 + x4 + x2 + 1 83 92 166 

100 x100 + x8 + x7 + x2 + 1 100 109 200 

 

5. CONCLUSION 

The use of DNN and the Pattern Duplication technique to solve the next bit prediction problem for LFSR of degrees up to 100 
has proven successful. The results confirm that the Pattern Duplication technique has been successful in generating new pat-
terns using the ‘Shift and Add’ and the ‘Inversion’ property. The minimum number of bits required by the DNN to solve LFSR is 
significantly less than what is required by the Berlekamp-Massey Algorithm. The proposed methodology did not work for some 
LFSRs having primitive polynomial of a certain degree with seven terms. However, desired results were obtained for primitive 
polynomial of the same degree having three or five terms. 
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