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ABSTRACT  

Air pollution is one of the leading environmental risk factors to human health – Both 
short and long-term exposure to air pollution impact human health accounting for 
over 4 million deaths. Although the risk of exposure to air pollution has been 
quantified in different settings and countries of the world. The majority of these 
studies are from high-income countries with historical air pollutant measurements 
data and corresponding health outcomes data to conduct such epidemiological 
studies. Air pollution exposure levels in these high-income settings are lower than 
the exposure levels in low-income countries. The exposure level in sub-Saharan 
Africa (SSA) countries has continued to increase due to rapid industrialization and 
urbanization. In addition, the underlying susceptibility profile of SSA population is 
different from the profiles of the population in high-income settings. However, a major 
limitation to conducting epidemiological studies to quantify the exposure response 
relationship between air pollution and adverse health outcomes in SSA is the paucity 
of historical air pollution measurement data to inform such epidemiological studies.   

South Africa an SSA country with some air quality monitoring stations especially in 
areas classified as air pollution priority areas have historical particulate matter less 
than or equal to 10 micrometres in aerodynamic diameter (PM10 µg/m3) 
measurement data. PM10 is one of the most monitored criteria for air pollutants in 
South Africa. The availability of satellite-derived aerosol optical depth (AOD) at high 
spatial and temporal resolutions provides information about how particles in the 
atmosphere can prevent sunlight from reaching the ground. This satellite product has 
been used as a proxy variable to explain ground-level air pollution levels in different 
settings.   

This thesis main objective was to use satellite-derived AOD to bridge the gap in 
ground monitored PM10 across four provinces of South Africa (Gauteng, 
Mpumalanga, KwaZulu-Natal and Western Cape). We collected PM10 ground 
monitor measurements data from the South Africa Weather Services across the four 
provinces for the years 2010 – 2017. Due to the gaps in the daily PM10 across the 
sites and years. In study I, we compared methods for imputing daily ground-level 
PM10 data at sites across the four provinces for years 2010 – 2017 using random 
forest (RF) models.   

The reliability of air pollution exposure models depends on how well the models 
capture the spatial and temporal variation of air pollution. Thus, study II explored the 
spatial and temporal variations in ground monitor PM10 across the four provinces for 
the years 2010 – 2017. To explore the feasibility of using satellite-derived AOD and 
other spatial and temporal predictor variables, Study III used an ensemble machine-
learning framework of RF, extreme gradient boosting (XGBoost) and support vector 
regression (SVR) to calibrate daily ground-level PM10 at 1 × 1 km spatial resolution 
across the four provinces for the year 2016.   
In conclusion, we developed a spatiotemporal model to predict daily PM10 

concentrations across four provinces of South Africa at 1 × 1 km spatial resolution 
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for 2016. This model is the first attempt to use a satellite-derived product to fill the 
gap in ground monitor air pollution data in SSA.  
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1 Introduction   

Globally, air pollution has been identified as an environmental risk factor to human 
health. In 2019, air pollution moved from 5th to 4th risk factor for mortality, 
reemphasizing air pollution as a major environmental risk factor. Ambient air pollution 
accounts for about 63% of the 6.67 million deaths associated with air pollution in 2019 
(Murray et al., 2020). Several epidemiological studies have documented a body of 
evidence on the association between air pollution and adverse health outcomes across 
several countries on the different continents of the world (Adebayo-Ojo et al., 2022; 
Pope 3rd, 2000; Sheehan, Lam, Navas-Acien, & Chang, 2016; Southerland et al., 
2022; Stafoggia et al., 2022). This evidence has been used to inform air quality policy 
actions to mitigate the adverse effect of poor air quality. Historically, the Donora and 
London smog episodes of 1948 and 1952 are earlier seminal works on the influence 
of exposure to air pollution and provide earlier examples of the importance of air 
pollution data to drive scientific actions to tackle air pollution challenges (Logan, 1953; 
Shrenk, Heimann, Clayton, Gafafer, & Wexler, 1949). The threat posed by exposure 
to air pollution has attracted the attention of both local and international regulatory 
bodies and has led to the development and continued review of air quality 
management guidelines. However, the 2021 World Health Organization Air Quality 
Guidelines not only provide evidence of the adverse effect of exposure to air pollution 
on human health but also highlight the disparities in exposure to air pollution across 
the world. The upward trend in the levels of air pollution in low and middle-income 
countries remains unabated (World Health Organization, 2021).  

The limited air quality monitoring networks in sub Saharan (SSA) SSA countries are a 
big challenge for air quality management (Amegah & Agyei-Mensah, 2017; Health 
Effects Institute, 2020). The levels of air pollution in most SSA countries are high with 
above 90% of the population living in areas exceeding WHO air quality guidelines 
(World Health Organization, 2021). The availability of reliable air quality is central to 
all air pollution mitigation actions and have implication for epidemiological studies. For 
example, reliable air quality data is necessary to quantify exposure–response 
relationships between air pollution and adverse health outcomes. Also, science driven 
air quality management plans are informed by reliable air quality data (Health Effects 
Institute, 2020). Although, several air pollution exposure modelling approaches can 
complement ground-monitored air quality data. The majority of air pollution exposure 
modelling approaches are defined based on the state of existing ground-monitored air 
quality data or source of emission inventories (Vienneau, De Hoogh, & Briggs, 2009). 
This thesis will focus on the availability of air pollutant data, specifically particulate 
matter less than or equal to 10 micrometers in aerodynamic diameter (PM10 µg/m3), 
the spatial and temporal characteristics of PM10 in an SSA country and also explore 
the feasibility of applying hybrid approaches combining satellite data with ground 
monitored PM10 data, spatial and temporal variables that could help explain the spatial 
and temporal variation in PM10 concentration across the geographical domain.   
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1.1 Air Pollutants (Particulate Matters)   
Particulate matters are air pollutants that are a mixture of solid, liquid and gaseous 
particles that can suspend in the air and derived from different sources. They are 
generally classified into sub-categories based on their sizes; particulate matter less 
than or equal to 2.5 micrometers in aerodynamic diameter (PM2.5 µg/m3) also known 
as fine particles emanating primarily from the combustion of fossil fuels from cars, 
domestic and industrial activities or anthropogenic sources. Secondarily, PM2.5 can be 
formed through atmospheric chemical reactions of precursor gases such as ammonia, 
sulfur oxides, nitrogen oxides and organic gases.   

Particulate matter less than or equal to 10 micrometers in aerodynamic diameter (PM10 
µg/m3) is also referred to as inhalable particles. PM10 are mostly formed from dust from 
construction sites, landfills, transboundary transportation, waste burning and 
agricultural activities. Lastly, ultrafine particles less than or equal to 0.1 micrometers 
in aerodynamic diameter (PM0.1 µg/m3) are smaller than both PM10 and PM2.5. PM0.1 
primary sources also include anthropogenic activities of fossil fuels combustion. The 
smaller the particle size, the more dangerous they are to the body because of their 
ability to penetrate deeper into the body is relative to their size (Hamanaka & Mutlu, 
2018; World Health Organization, 2021). Consequently, PM2.5 and PM10 are priority air 
pollutants regulated by both local and international health/environmental organizations 
and are mostly used as a proxy indicator for air pollution. Notably, the revised 2021 
WHO Air Quality Guideline provided qualitative recommendation practice for PM0.1 

based on available evidence (World Health Organization, 2021).   

1.2 Spatial and Temporal Variation of Air pollutant  
An important characteristic of air pollutants is that they vary in space and time. The 
complex interplay between meteorological variables and air pollutants sources 
influences the dispersion and build-up of air pollutants. Thus, the concentration of air 
pollutants we breathe in differs based on daily meteorological variables and proximity 
to emission sources. Although, the sources of air pollutants are ubiquitous.  However, 
these sources may differ based on land use and cover features of different areas. For 
example, sources of air pollution in residential areas consist of the domestic use of 
fossil fuels for cooking, heating and population density. There are different sources of 
emission and can be highly variable within and between geographical boundaries 
based on the distribution of emission sources and meteorological variables. 
Consequently, the emission source profiles of urban areas are different from rural 
areas. Urban areas are often characterized by multiple sources of emission due to 
population density and economic activities linked to urbanization. Thus, it is important 
to account for sources of emission while modelling air pollution exposure. This can be 
achieved by using emission inventories data and proxy emission variables such as 
road density, population density while modelling air pollution exposure.   
Meteorological variables also play a significant role in the formation and dispersion of 
air pollution concentration (Dayan & Levy, 2005). These variables help explain the day 
to day variation in air pollution. Air temperature aids the movement of warm air near 
the ground level to the higher troposphere allowing the movement of pollution through 
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the process called convection. However, during the winter season, the layer of warm 
air can act as a cover keeping cold at ground level thereby trapping cool air and air 
pollution near the ground level in a process referred to as thermal inversion. Wind 
speed and direction also influence the dispersion and dilution of air pollutant, wind at 
high speeds lead to a great dispersion of air pollutants from the source. While 
precipitation has a scavenging effect on air pollution by washing and dissolving air 
pollutants from the atmosphere. Meteorological variables can also act synergistically 
to influence air pollution, the interaction between temperature and sunlight plays a role 
in the formation of photochemical smog from pollutants.  

2 Air pollution exposure models  

The applicability of air pollution exposure data for epidemiological studies remains 
central to air pollution exposure modelling. The relative availability of few conventional 
reference grade monitoring stations to characterize the population’s exposure to air 
pollution around the geographical extent of where people live and work has led to the 
application of different methods to estimate human exposure to air pollution.  

2.1 Ground-monitored approaches  
A simple approach to modelling air pollution exposures is the use of air pollution data 
of available stations to investigate the association between air pollution and health 
outcomes. Conventional reference grade monitoring stations have provided air 
pollution data for exposure assessments. The reference stations data are usually used 
as a proxy for individual and population exposure based on their proximity to the 
population’s residential address (Wong, Yuan, & Perlin, 2004). However, because air 
pollution can vary significantly within a small spatial domain, generalizing exposure 
data from non-representative and limited monitoring stations to individuals or 
populations away from the monitoring stations can result in exposure misclassification. 
Consequently, biasing the association between air pollution and health outcomes 
when used in epidemiological studies. Nonetheless, spatial interpolation techniques 
such as kriging and inverse distance weighting have been employed to extrapolate 
exposure concentration in space (Beelen et al., 2008; Künzli et al., 2005). However, 
their insufficient ability to account for spatial variability of air pollution due to the spatial 
coverage and representativeness of monitoring sites have restricted their applicability 
in epidemiology studies (Di, Koutrakis, & Schwartz, 2016) to areas without sufficient 
air pollution monitoring.       

2.2 Land-use regression   
Land Use Regression (LUR) is one of the common models used to assess air pollution 
exposure in epidemiological studies (short and long term). Conceptually, LUR 
combines air pollution data from selected locations with corresponding land use 
predictors variables such as roads, population and elevation data that provide insight 
on the characteristics of air pollution of the selected locations providing air pollution 
data in statistical frameworks (Briggs et al., 1997; Nieuwenhuijsen, 2015). The final 
models are subsequently used to estimate air pollution concentrations based on the 
characteristics of the predictors at the defined spatial level for the epidemiological 
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studies. Initially, traditional LUR focused on capturing spatial variation of air pollutants. 
However, spatiotemporal LUR models have been developed to account for temporal 
variability of air pollution by including temporal predictors such as chemical transport 
models estimates to explain the day-day variation of air pollution (de Hoogh et al., 
2016; Di et al., 2016; Kloog et al., 2015). To account for the non-linear relationship 
between predictors in spatiotemporal LUR, statistical frameworks such as generalized 
additive models have been used to model the relationship between air pollution 
concentration and spatiotemporal predictors (Wood, Pya, & Säfken, 2016).  

2.3 Dispersion models  
In contrast to the previously discussed methods to exposure models that rely on 
statistical frameworks to relate the relationship between air pollutants and other 
spatiotemporal predictors (Jones, Thomson, Hort, & Devenish, 2007), dispersion 
model depend on mathematical formulas that explain the atmospheric processes that 
drive the movement of air pollutants from emission sources to receptors. The 
dispersion model uses mathematical assumptions to model air quality concentration 
based on emissions and meteorological variables (Gibson, Kundu, & Satish, 2013). 
This model can be used to estimate air pollution concentrations at receptor locations 
of interest. They are traditionally used by air quality regulatory agencies to track their 
progress towards the national or international air quality standards (Arya, 1999). 
Dispersion models have also been used in epidemiological studies to assess air 
pollution exposure (Ancona et al., 2015). They can also provide air pollution 
concentration estimates at a high spatial and temporal resolution – an alluring feature 
of epidemiological interest. However, the use of dispersion models in epidemiological 
studies has reduced because most dispersion models are based on the correctness 
of the underlying mathematical assumptions and not actual measurements to model 
air pollution exposure from available emission sources. Thus, the development of 
hybrid models that allows the combination of actual measurements and other 
predictors limits the misclassification of exposure assignment for epidemiological 
studies (Esmen & Marsh, 1996).     

2.4 Hybrid models   
The development of new methods or techniques to improve the reliability of air pollution 
exposure has led to the use of remote-sensing data such as the Aerosol Optical Depth 
(AOD) (Lyapustin et al., 2011). The spatial and temporal coverage of AOD – a 
columnar measurement of light extinction or absorption by aerosol particles 
suspended in the atmosphere have been explored by researchers to create spatial 
and temporal continuous air pollution exposure maps. AOD is used as a proxy indicator 
for the ground level of air pollution under the assumption that the number of particles 
present in the column of air from the atmosphere to the ground level is a function of 
the level or extent of light extinction or absorbed by suspended aerosols (de Hoogh, 
Héritier, Stafoggia, Künzli, & Kloog, 2018; Schneider et al., 2020). Therefore, AOD 
could be an indicator of ground-level air pollution levels. AOD is measured by the 
moderate resolution imaging spectroradiometer (MODIS) onboard NASA Terra and 
Aqua satellites and ESA Sentinel satellite (Lyapustin et al., 2011).   



5 
 

The availability of AOD and other satellite products has been complemented by the 
increasing application of machine learning methods for air pollution exposure 
assessment in a hybrid statistical framework combining AOD and other spatiotemporal 
predictors to calibrate ground-level air pollution levels (Schneider et al., 2020; 
Stafoggia et al., 2017). The ability of machine learning methods to capture the either 
known or unknown relationship between spatiotemporal predictors of air pollutants is 
the major advantage of this statistical framework for exposure assessment compared 
to other multivariable methods. To this end, individual machine learning learners such 
as random forest and gradient boosting have been used to model the spatial and 
temporal variation of PM while using AOD as an input variable (Mandal et al., 2020; 
Schneider et al., 2020; Shtein et al., 2019; Stafoggia et al., 2019). To maximize the 
predictive potential and the bias–accuracy tradeoff of individual learners or algorithm, 
averaging the predictions from more than one machine learning learner have also 
become popular.   

3 Epidemiological evidence of the effects of air pollution on health outcomes.  

Air pollution is associated with a myriad of adverse health outcomes (Adar et al., 2018; 
Adar, Filigrana, Clements, & Peel, 2014). Indeed, the exposure of humans to air 
pollution could be detrimental to human health even at a low concentration (Stafoggia 
et al., 2022). These associations are scientifically assessed in an epidemiological 
framework that examines both the short and long-term relationship between air 
pollution and health outcomes. The common statistical approach employed in 
shortterm epidemiological studies is a time-series analysis where the air pollution 
exposure, health outcome and possible confounder variables are aggregated at the 
city level (Adebayo-Ojo et al., 2022). Because of the distribution of the health outcomes 
of interest e.g mortality or hospitalization from cardiorespiratory outcomes, a Poisson 
multivariable regression analysis is used to model the association between daily 
counts of health outcomes and acute exposure to air pollutants while accounting for 
potential confounding variables of seasonality, day of the week, meteorological 
variables (Schwartz, Dockery, & Neas, 1996). Alternatively, the case-crossover 
method is used to investigate the relationship between the daily mean of air pollutants 
and health outcomes when air pollution exposure data is available at a fine spatial and 
temporal resolutions and health outcomes data at the individual level (Jaakkola, 2003). 
By design, the case-crossover approach accounts for possible confounding variables 
because all cases with the outcome of interest contribute person-time of days without 
the outcome of interest – serving as his or her control (Jaakkola, 2003; Lee & 
Schwartz, 1999). This allows the comparison of air pollution exposure contrast 
between days with the outcome of interest and days without the outcome of interest. 
Recently, the Case Time Series design: a novel self-matched modelling approach for 
the association between short-term exposure to environmental risk factors and acute 
health outcomes has been introduced as an epidemiological design that combines the 
longitudinal structure of time-series analysis and self-matched design (Gasparrini, 
2021).   
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Chronic exposure to air pollution also has health consequences on human health. 
Long-term epidemiological studies are used to investigate if long-term exposure to air 
pollution is associated with adverse health outcomes in the population that resides in 
areas with increased air pollution levels compared to those residing in areas with lower 
air pollution levels. (Adar et al., 2018; Stafoggia et al., 2022) Conceptually, long-term 
epidemiological studies on air pollution compare the air pollution exposure contrast of 
those spatially exposed with those less spatially exposed to the long-term air pollution 
level in cohort study designs. To achieve this, spatially and temporally resolved  air 
pollution concentration is combined with health outcomes data. The multivariable 
models used commonly account for both individual and area-level variables that might 
confound the association between long-term exposure to air pollution and adverse 
health outcomes.   

4 Research Gaps   

The trend of ambient air pollution has continued on an upward trajectory in 
SubSaharan Africa (SSA) countries due to a rapid increase in population, urbanization 
and the resultant increase in emissions from vehicles, industries, unpaved roads, bush 
burning and biomass (Amegah & Agyei-Mensah, 2017; Health Effects Institute, 2020; 
World Health Organization, 2020, 2021). Concurrently, SSA is undergoing an 
epidemiological transition in disease from communicable diseases to non-
communicable diseases. Lower respiratory infections is one of the leading cause of 
death and disability in Africa accounting for about 1 million death per year (World 
Health Organization, 2020). This suggests air pollution, is an important risk factor 
contributing to the epidemiological transition in African countries (Gouda et al., 2019). 
However, there are limited epidemiological studies from African countries and a major 
reason for the paucity of evidence is the lack of historical air pollution data needed for 
both short and long-term epidemiological studies.   
The earliest epidemiological studies relied on the aggregation of air pollution exposure 
data at large geographical domains and temporal e.g annual averages for 
epidemiological studies under the assumption that air pollution does not vary 
substantially in space (Künzli et al., 2005). However, several studies have reported 
that this assumption is generally unrealistic (Eeftens et al., 2012). The impact of air 
pollution exposure misclassification can bias the association between exposure to air 
pollution and adverse health outcome. Thus, spatially and temporally resolved air 
pollution exposure are preferred for epidemiological studies. In addition, spatially and 
temporally resolved air pollution exposure data provides an opportunity to account for 
individuals' risk profiles such as age and area-level factors such as socio-economic 
factors that can influence the association between air pollution and adverse health 
outcomes (Stafoggia et al., 2022).   

This thesis aims to assess the feasibility of using remote sensing data, land use, 
chemical transport model data and other spatial and temporal predictor data to 
characterize PM10 concentration across four provinces of South Africa (Mpumalanga, 
Gauteng, Western Cape and KwaZulu-Natal).   
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Specific objectives are:  

• To compare methods of imputing daily missing ground-level PM10.  
• To investigate the spatial and temporal variation of PM10 concentration across 

the four provinces  
• To provide spatially and temporally resolved PM10 estimates across the four 

provinces.    
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1 . Introduction 

Ambient particulate air pollution is a major environmental risk to health. An estimated 4.14 million mortality in 2019 
was associated with exposure to ambient air pollution [1]. Routine ambient air quality measurements at a sufficient spatial 
and temporal scale are essential for the management and evaluation of ambient air pollution regulations, policies and 
mitigation measures. They are also crucial for calibrating air pollution statistical models for accurate exposure assessment 
in epidemiological studies investigating the link between air pollution and health. However, in low- and middle-income 
countries (LMIC), routine air pollution monitoring stations are sparse due to the limited financial, human and technical 
capacities to manage these monitoring networks [2,3]. The lack of air pollution measurements in LMIC obstructs the 
development of aforementioned air pollution models for estimating ambient air pollution exposures and thus informing 
population health studies. 
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Abstract: Good quality and completeness of ambient air quality monitoring data is central in supporting 
actions towards mitigating the impact of ambient air pollution. In South Africa, however, availability of 
continuous ground-level air pollution monitoring data is scarce and incomplete. To address this issue, we 
developed and compared different modeling approaches to impute missing daily average particulate matter 
(PM10) data between 2010 and 2017 using spatiotemporal predictor variables. The random forest (RF) 
machine learning method was used to explore the relationship between average daily PM10 concentrations 
and spatiotemporal predictors like meteorological, land use and source-related variables. National (8 
models), provincial (32) and site-specific (44) RF models were developed to impute missing daily PM10 data. 
The annual national, provincial and site-specific RF cross-validation (CV) models explained on average 78%, 
70% and 55% of ground-level PM10 concentrations, respectively. The spatial components of the national and 
provincial CV RF models explained on average 22% and 48%, while the temporal components of the national, 
provincial and site-specific CV RF models explained on average 78%, 68% and 57% of ground-level PM10 

concentrations, respectively. This study demonstrates a feasible approach based on RF to impute missing 
measurement data in areas where data collection is sparse and incomplete. 
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Particulate matter less than or equal to 10 micrometers in aerodynamic diameter 
(PM10 µg/m3) is associated with acute and chronic adverse health outcomes and it is of high public 
health significance globally [1,4,5]. PM10 is one of the criteria air pollutants in most countries 
including South Africa, it is measured in South Africa by an air quality monitoring network 
managed by three levels of government (National, Provincial and Metropolitan/Local) and 
privately managed air quality monitoring stations [6]. However, due to limited air quality 
management capacities, these monitoring stations are concentrated around the designated air 
pollution priority areas. To date, four areas (located in four of the nine provinces) of South Africa 
have been designated an air pollution priority area; Vaal triangle, Highveld, South Durban Basin 
and Waterberg based on historical evidence of poor ambient air quality due to the presence of 
possible source of air pollution [7]. The quality of available data is a major concern with only a 
small number of South Africa’s ambient air pollution monitoring stations accredited by South 
African National Accreditation System [8]. 

In South Africa, air quality measurements are often missing due to various reasons such as 
vandalization of monitoring facilities, and periodic interruption of measurements due to electrical 
shut down or breakdown of monitoring equipment. This has led to a significant number of 
monitoring stations being out of operation for months or years resulting in long time-series of 
PM10 measurements missing [9]. Inconsistent air quality data hampers epidemiological studies in 
South Africa from investigating the association between air pollution and health. Previous studies 
in South Africa have documented the trends in air pollutants for raising public health awareness 
about the need for air pollution control [10–13]. 

Univariable methods of unconditional mean or median, nearest neighbour have been 
compared with multivariable methods from regression models using other environmental 
predictors’ for imputing daily PM10 measurements [14,15]. Multivariable methods were reported 
to be more robust in performance when the proportion of missing data are higher than 10% 
[14]. The relationship between PM2.5 and PM10 at co-located monitoring sites was explored using 
multivariable methods with the aim to predict PM2.5 at sites with PM10 data only in Switzerland 
and India [16,17]. However, this approach is not feasible in South Africa due to the paucity of 
PM2.5 data as it was only designated a criteria air pollutant in 2012 [18]. 

Random forest (RF)—a machine learning method can be classified as a multivariable method 
that aggregates the predictions of several regression trees to improve the performance of single 
regression models. Several studies have been published using RF and other multivariable models 
to predict missing air pollutants in areas with no or sparse monitoring networks [16,17,19–21]. 
However, this study aims to leverage on the spatial and temporal dependence characteristics of 
air pollutants [22,23], by combining observed PM10 data with spatial and temporal predictors as 
well as chemical transport estimates of PM10, ozone (O3) and nitrogen dioxide (NO2) in a RF model 
to predict missing daily PM10 observation in some monitoring stations across four provinces of 
South Africa for years 2010–2017. The result of this analysis will be subsequently used to construct 
models to predict PM10 in areas without monitoring sites. 

2. Materials and Methods 
2.1. Methods 

The RF machine learning method was employed to accommodate the non-linear relationship 
between PM10 measurements and covariates. For each year we constructed RF models at 3 
geographical scales to predict missing daily PM10 data: (1) one national model, using all daily PM10 

measurements from the four provinces combined; (2) four provincial models using daily PM10 

monitoring measurements from sites within each province; and (3) site specific models exclusively 
using daily PM10 measurements from individual sites. 
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2.2. Monitoring Sites 
The focus of this investigation was on PM10 monitoring sites in South Africa, which are located 

in Mpumalanga, Gauteng, Western Cape and KwaZulu-Natal (Figure 1). These stations are 
managed by the Department of Environmental Affairs, South Weather Services, provincial, local 
governments and private industries. Hourly PM10 data from the four provinces were obtained from 
the South African Air Quality Information System (SAAQIS) for 61 monitoring sites (27 in Gauteng, 
17 in Mpumalanga, 10 in Western Cape, 7 in Kwazulu-Natal) for the study period 1 January 2010–
30 December 2017. Air quality monitoring stations instruments were serviced and calibrated bi-
weekly, undergoing a full calibration annually, using National Metrology Institute of South Africa 
certified gases. The number of sites per year varies across the study period. Figure 2 shows the 
data completeness of the PM10 observations obtained from the SAAQIS by province between 2010 
and 2017. SAAQIS provides PM10 data for research purposes in South Africa upon completion of 
the required data disclosure forms. SAAQIS can be reached via their website 
(https://saaqis.environment.gov.za/. Accessed on 22 October 2018). 

 

Figure 1. The spatial distribution of particulate matter (PM10) monitoring stations across the four provinces of South Africa operating at 
some point during 2010–2017. 

To ensure quality of the PM10 data, the following quality check filters were applied. All 
negative values or observations greater or less than four times the interquartile range of each 
monitoring stations were considered outliers and were subsequently removed. A threshold of 
75% hourly data per day was used to aggregate hourly data to a daily mean concentration. 
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Figure 2. PM10 data availability by year and by province—the size and colour of the circles indicate percentage of data capture per year. 

2.4. Temporal Parameters 
Daily meteorological parameters of total precipitation, boundary layer height, temperature, 

the component of the horizontal wind towards east (U wind component) and the component of 

the horizontal wind towards north (V wind component) at a spatial resolution of 0.125 × 0.125◦ 

(approximately 10 × 10 km2) for the hour 12:00:00 were downloaded from the European Centre 
for Medium-Range Weather Forecasts Reanalysis 5th Generation (ERA5) global climate reanalysis 
dataset for the year 2010–2017 for South Africa. The U and V wind components were 
subsequently used to calculate wind speed (ws) and wind direction (wd) respectively using the 
formulas below: 

 wd  (1) 
 

ws = pu102 + v102 
(2) 

In addition to Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis PM10 estimates, 
columnar daily ensemble estimates of pollutant gases of nitrogen dioxide, ozone were also 

downloaded from the CAMS data store at 0.125 × 0.125◦ (approximately 10 × 10 km2). All 

temporal predictors were resampled at a 1 × 1 km2 resolution, matching the 1 × 1 km2 resolution 
of the raster specifically constructed for this study. The monitoring stations locations were 
subsequently linked to this raster to extract the temporal predictors. 

A number of spatial geographic information system (GIS) predictor variables were 

calculated for this study at the aforementioned 1 × 1 km2 grid (see Table 1). South Africa’s road 
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network was obtained from OpenStreetMap. For each 1 × 1 km2 grid cell, we calculated the sum 
of road length for two categories: major roads and other roads. Land cover data were extracted 
from the 2018 South Africa National Land cover dataset. The initial 72 land use classes were re-
categorized into five major categories: residential; industrial; built-up; agriculture; and water 
bodies. South Africa’s climatic zones were extracted based on the South Africa Bureau of 
Standards 2005 classification. Population density was obtained from the Socioeconomic data and 
Application Center (SEDAC) dataset. For the light at night, data extracted from the Visible 
Infrared Imaging Radiometer Suite-Day/Night Band (VIIRS-DNB) was extracted and averaged at 

the 1 × 1 km2 resolution. Elevation and impervious surface were extracted from respectively the 
Shuttle Radar Topography Mission Digital Elevation Database version 4.1 and the National 
Oceanic and Atmospheric Administration database. 

Table 1. Spatial and temporal predictors used for random forest models 
Variable Description Source Resolution 

Population density Mean population within 1 × 1 km2 grid cell SEDAC ~1 km 

Landcover 

South Africa National Land Cover 2018 densities 
(summary of meters within the grid cells by land 
cover categories of 
Natural, Built-up, Residential, 
Agricultural, Industrial) 

South Africa Department of 
Environmental Affairs. 20 m 

Light at night 1 × 1 km2 Intersected aggregate VIIRS-DNB 750 m 

Impervious Surface 1 × 1 km2 Intersected aggregate after removing 
no data, clouds, shadows data 

NOAA 30 m 

Elevation 1 × 1 km2 intersected aggregate of mean 
elevation 

SRTM Digital Elevation 
Database 90 m 

Roads 
Summary of road length distance to nearest 
road type: major roads and other roads OpenStreetMap Lines 

Climate zones 
Cold interior, Temperate interior, Hot interior, 
Temperate coastal, Sub-tropical coastal, Arid 
interior 

South Africa Bureau of 
Standards 2005 6 Zones 

Meteorological variables (daily 
modelled planetary boundary layer 
height, temperature, precipitation, 
wind speed, wind direction, relative 
humidity, vertical velocity 

Daily global ECMWF re-analysis estimates ERA5-reanalysis 10 × 10 km 

Modeled Tropospheric estimates of 
NO2, PM10, O3 Daily Chemical transport model estimate 

Chemical transport model 
Copernicus Atmosphere 

Monitoring Service (CAMS) 10 × 10 km 

Abbreviations: SEDAC (Socioeconomic Data and Applications Center), VIIRS-DNB(Visible Infrared Imaging Radiometer Suite-Day/Night Band), 
NOAA(National Oceanic and Atmospheric Administration, SRTM (Shuttle Radar Topography Mission), ERA-5 (European Centre for Medium-Range 
Weather Forecasts Reanalysis 5th Generation). 

2.6. Random Forest Model 
RF is a non-parametric machine learning algorithm and an ensemble method that can be 

used to perform regression for continuous outcome variable (e.g., PM10). Imputation of missing 
daily PM10 data for stations with at least 70% of annual PM10 was achieved by combining the 
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measured PM10 and spatial and temporal predictor variables at three geographical scales; 
national, provincial and site specific. 

To impute missing PM10, all possible monitoring stations with valid PM10 measurements 
were included in RF analysis. RF was used to estimate the PM10 concentration for the missing 
days by exploring the relationship between observed PM10 and spatial and temporal predictors. 
RF leverages on averaging several independent bootstrap ensemble trees to reduce the variance 
in the predicted PM10 by [24,25]: 

1. Randomly resample the data with replacement to create training and validation sets of same 
sample size as the original dataset. 

2. Repeatedly construct regression trees on the training sets and predict on the validation sets. 
3. At each trees node, the best predictors from the random subsets of predictors were 

subsequently used to partition the nodes of respective trees. 
4. The final estimate of PM10 is the average of individual trees of PM10 predictions in a process 

called bagging. 
In this study, the RF parameters number of variables randomly sampled as candidates at each 

split (mtry) and number of trees to grow (ntree) and minimum number of observations in a 
terminal node (min.node.size) were selected based on the combinations that minimized out of 
bag prediction error in the one-third sample left out for validation. Throughout this study, 500 
trees were considered. Generally, mtry was tuned at each terminal nodes with two and respective 
predictors to de-correlate the trees. RF models are less sensitive to parameter tuning for low 
dimensional data [26]. Similarly, using minimum number of predictors that substantially 
contribute to explaining the variance in PM10 could prevent overfitting the models as RF is prone 
to overfitting when spatial and temporal variables are included as predictors [27,28]. 

The feature importance of the models was ranked based on predictors that reduced 
prediction error when used as splits over the ensemble trees in the RF models. For all the RF 
models, the faster implementation of RF via the ranger packages was accessed from the caret 
package in R [29]. 

2.7. Model Validation 
Spatial and temporal cross-validation was used to assess the daily PM10 models prediction 

errors in time and space. Spatial leave one location out cross-validation (LOLO CV) was used to 
evaluate the national and provincial models. The national model was split into four folds using the 
province as splitting criterion. Thus, a model was trained on data from all but one province (n − 
1). The hold-out provinces sites were iteratively used to estimate the prediction errors of using 
these models to predict for sites not included in the training data. Sites were used as the splitting 
criterion for the different provincial models. To account for possible spatial autocorrelation in the 
models, a complete time-series of observations of a site was sequentially withheld (n − 1) for 
cross-validation. Spatial LOLO CV was not possible for the site-specific models. Temporal leave 
time out cross-validation 
(LTO CV) was used to assess the model’s performance in time. Day of the year was used to split 
the dataset 10 fold. All three models were sequentially trained on all but one held-out fold. All 
the models cross-validation were implemented using CAST (Caret Applications for Spatial-
Temporal Models) package—a caret package wrapper for spatial and temporal cross-validation 
[28]. 

2.8. Error Metrics 
Coefficient of determination (R2), the square of the correlation coefficient between the 

observed and predicted daily PM10 observation was used to evaluate the variance explained by 
the models. For all the models but sites models, we computed three R2 measures to assess the 
models performance. The model building R2 describing the overall models ability to explain the 
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variance between observed and predicted daily PM10 observation. Spatial and temporal R2 to 
quantify the contribution of the spatial and temporal level to the total variance of daily PM10 

model predictions on held-out stations and days. 
Root mean squared error (RMSE), the square root of the mean quadratic differences 

between observed and predicted daily PM10. 
Mean absolute error (MAE), the average over the absolute differences between the 

observed daily PM10 and predicted daily PM10 were also calculated to provide summary estimates 
of the models prediction errors. 
3. Results 
3.1. National Model 

The RF models combined spatial and temporally predictor variables with ground monitored 
PM10 from all the four provinces to construct national models for 2010–2017 (Table 2). Figure 3 
shows the top 15 ranked variable of importance based on the predictors that reduced prediction 
error when used as splits over the ensemble trees in the RF models. Temporal predictors of 
chemical transport model-based estimates of PM10, humidity, Julian date and the spatial variable 
population emerged as influential variables across 2010–2017. The national RF models for 2010 
to 2017 explained between 77% and 79% of the variation in daily PM10 concentrations. Spatial CV 
was used to assess the robustness of the models. The R2 of the spatial and temporal cross 
validation varies between 0.11 and 0.35 (RMSE: 
17.72–29.47 µg/m3) and 0.77 and 0.79 (RMSE 12.31–16.43 µg/m3), respectively. 

 

Figure 3. National model variable of importance. 

3.2. Provincial Model 
The provincial model explored the relationship between PM10 and predictor variables by 

each province across 2010–2017. Supplementary Material Figures S1–S4 highlight chemical 
transport model-based estimates of PM10, humidity, total precipitation, sites coordinates as 
variables of importance for explaining the intra-province PM10 variability. The contribution of 
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these variables also varied across the study period and provinces— underlying the heterogeneity 
in the provincial characteristics of PM10 concentration. 

The performance of the provincial models while predicting PM10 for held-out sites varied 
across provinces and study period (Table 2). The CV results of the RF models for Gauteng, for 
example, explained between 26% and 52% of spatial variability and between 52% and 79% of 
temporal variability in measured PM10 concentrations. Mpumalanga RF models slightly improved 
on the Gauteng models with R2 ranges of 0.39–0.69 (spatial) and 0.73–0.78 (temporal). 
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Table 2. Summary of model performance statistics over the period 2010–2017 for the national, provincial and site-specific models showing the range of R2, root mean squared error (RMSE) and mean 
absolute error (MAE) for the years included. 

  Model Building   Spatial LOLO CV   Temporal LTO CV  Data Availability 

 R2 

(Range) 
RMSE 

(Range) 
MAE 

(Range) 
R2 

(Range) 
RMSE 

(Range) 
MAE 

(Range) 
R2 (Range) RMSE 

(Range) 
MAE 

(Range) 
No of 

Unique Sites Years 

National 0.77–0.79 12.1–16.76 8.69–11.38 0.11–0.35 17.72–29.47 13.62–23.65 0.77–0.79 12.31–16.43 8.85–11.39 20–44 2010–2017 
Provincial * 

Mpumalanga 0.73–0.81 14.03–19.35 9.63–12.13 0.39–0.69 22.06–36.21 13.5–29.59 0.73–0.78 13.55–19.21 9.85–12.01 5–17 * 2010–2017 
Gauteng 0.49–0.79 10.34–23.36 9.24–16.75 0.26–0.52 19.72–34.25 15.69–29.42 0.52–0.79 15.11–23.43 9.94–16.87 6–18 * 2010–2017 

Western Cape 0.29–0.71 6.74–8.73 5.11–6.72 0.35–0.54 7.38–11.22 5.76–8.86 0.44–0.66 6.66–23.29 5.18–17.92 1–11 * 2010–2017 
KwaZulu-Natal 0.55–0.79 7.36–9.53 5.29–8.11 0.29–0.57 8.54–19.95 6.95–16.82 0.47–0.78 7.37–10.71 5.46–8 3–6 * 2010–2017 
Site-specific ** Beliville 

0.42–0.47 5.81–9.16 4.51–7.26 NA NA NA 0.45–0.49 5.67–9.02 4.45–7.03 NA 2012, 2013, 2015–2017 
Bodibeng 0.54–0.63 16.89–19.42 13.61–15.07 NA NA NA 0.57–0.67 16.36–18.91 13.32–14.87 NA 2012–2013 

Brackenham 0.41–0.49 8.06–8.95 6.31–7.10 NA NA NA 0.46–0.49 7.81–8.95 6.25–7.15 NA 2011, 2015–2017 
Booysens 0.45–0.67 22.13–22.82 17.99–20.77 NA NA NA 0.5–0.71 22.10–25.74 17.87–20.53 NA 2012,2014 
Camden 0.38–0.62 10.64–23.27 8.69–17.85 NA NA NA 0.39–0.65 10.29–22.43 9.61–17.15 NA 2013, 2015, 2017 

CBD 0.38–0.59 6.35–9.55 4.93–7.45 NA NA NA 0.41–0.64 6.28–9.23 4.98–7.21 NA 2011–2013, 2015–2017 
City Hall 0.45 10.29 7.69 NA NA NA 0.48 9.78 7.43 NA 2010 

Elandsfontein 0.39–0.52 11.72–12.49 9.38–9.68 NA NA NA 0.45–0.57 11.17–11.79 8.99–9.38 NA 2016–2017 
Ermelo 0.48–0.76 9.20–18.96 7.69–15.31 NA NA NA 0.51–0.77 9.12–19.98 7.54–13.89 NA 2010–2016 

Etwatwa 0.63 24.03 18.74 NA NA NA 0.69 23.78 18.56 NA 2012 
Ferndale 0.68–0.74 3.63–5.42 2.84–3.92 NA NA NA 0.65–0.77 3.49–5.38 2.76–3.88 NA 2010–2012 
Foreshore 0.32–0.49 5.29–9.76 4.1–7.22 NA NA NA 0.33–0.49 5.27–9.58 4.13–7.08 NA 2011–2013,2015–2017 
Gangles 0.48–0.74 11.86–13.4 9.22–10.11 NA NA NA 0.51–0.75 11.23–11.88 8.96–9.71 NA 2010, 2011, 2013,2014 

Germiston 0.42 19.65 14.96 NA NA NA 0.44 19.07 14.79 NA 2011 
George 0.55–0.56 7.09–8.41 5.49–6.56 NA NA NA 0.58 6.95–8.12 5.39–6.34 NA 2010, 2013 

Goodwood 0.46–0.57 6.77–8.78 5.26–8.24 NA NA NA 0.49–0.59 6.60–8.49 5.29–7.80 NA 2011–2012, 2014–2016 
Grootvlei 0.41–0.44 10.76–11.32 8.70–8.87 NA NA NA 0.42–0.49 10.65–11.12 8.63–8.82 NA 2011, 2013 
Hendrina 0.39–0.71 11.12–17.02 8.32–13.62 NA NA NA 0.43–0.74 11.18–16.56 8.36–12.96 NA 2010–2012,2015–2016 

Middleburg 0.67–0.81 7.81–19.25 6.08–14.73 NA NA NA 0.70–0.82 7.49–18.63 5.92–14.25 NA 2010–2016 
Olievenhoutbosch 0.57 34.23 27.01 NA NA NA 0.59 34.16 26.98 NA 2012 

Orange Farm 0.45–0.69 10.78–19.81 8.57–15.56 NA NA NA 0.49–0.71 10.23–19.49 8.28–15.62 NA 2010,2017 
Rosslyn 0.55–0.61 5.91–11.49 4.77–9.30 NA NA NA 0.52–0.67 5.86–11.05 4.47.8.93 NA 2012–2014 
Secunda 0.63–0.77 7.73–25.21 5.86–19.96 NA NA NA 0.67–0.77 7.47–24.64 5.75–19.7 NA 2010–2013 
Witbank 0.72–0.83 9.21–22.33 7.63–17.27 NA NA NA 0.73–0.83 8.79–21.87 7.34–16.75 NA 2010,2013–2016 
Komati 0.45–0.83 8.52–28.02 6.61–21.51 NA NA NA 0.46–0.84 8.29–27.11 6.5–20.91 NA 2011–2012,2014–2017 
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Leandra 0.29–0.36 6.63–14 4.86–10.38 NA NA NA 0.35–0.4 6.35–13.64 4.81–10.31 NA 2011–2012 
Newtown 0.43 22.07 17.52 NA NA NA 0.47 21.68 17.27 NA 2012 

Phola 0.54–0.65 22.44–28.89 17.83–22.55 NA NA NA 0.57–0.65 22.02–28.88 17.48–22.72 NA 2013–2014,2016–2017 
Stellenbosch 0.35–0.56 6.34–7.31 4.85–5.67 NA NA NA 0.37–0.61 6.26–7.14 4.83–5.62 NA 2012–2013 

Tableview 0.36–0.4 5.63–7.04 4.43–5.81 NA NA NA 0.38–0.43 5.54–7 4.31–5.6 NA 2011–2013 
Tembisa 0.71 17.78 14.09 NA NA NA 0.73 17.35 13.89 NA 2011 
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Table 2. Cont. 

    

  Model Building   Spatial LOLO CV   Temporal LTO CV  Data Availability 

 R2 

(Range) 
RMSE 

(Range) 
MAE 

(Range) 
R2 

(Range) 
RMSE 

(Range) 
MAE 

(Range) 
R2 (Range) RMSE 

(Range) 
MAE 

(Range) 
No of 

Unique Sites Years 

Thokoza 0.56 41.30 29.22 NA NA NA 0.57 40.25 28.76 NA 2011 
Wallacedene 0.47–0.51 5.53–11.26 4.28–8.9 NA NA NA 0.47–0.54 5.52–10.82 4.29–8.69 NA 2012, 2015–2017 

Wattville 0.52 39.10 29.09 NA NA NA 0.57 37.16 28.57 NA 2012 
Club 0.59–0.67 11.01–14.87 8.76–11.86 NA NA NA 0.62–0.69 10.7–14.88 8.55–11.99 NA 2012–2014, 2016–2017 

Ekandustria 0.46–0.59 11.14–16.83 8.88–13.09 NA NA NA 0.50–0.64 10.58–16.43 8.5–12.83 NA 2013–2014 
Embalenhle 0.56–0.73 16.48–22.18 11.34–14.69 NA NA NA 0.59–0.73 13.31–22.18 11.03–17.86 NA 2012,2014,2016–2017 
Verkykkop 0.44–0.49 6.63–9.71 5.53–7.88 NA NA NA 0.47–0.48 6.56–9.49 5.33–7.72 NA 2013,2016–2017 
Randwater 0.32–0.73 12.99–15.99 9.82–15.83 NA NA NA 0.36–0.75 12.08–15.63 9.57–12.19 NA 2013–2017 
Esikhaweni 0.43–0.58 9.07.9.45 7.36–7.4 NA NA NA 0.44–0.60 8.95–9.35 7.17 NA 2016–2017 

Chicken Farm 0.44 13.14 10.44 NA NA NA 0.48 12.71 10.21 NA 2017 
Kwazamokuhle 0.65 18.10 14.44 NA NA NA 0.67 17.10 13.84 NA 2017 

Kriel Village 0.62 17.27 13.55 NA NA NA 0.66 16.89 13.41 NA 2017 
Bosjesspruit 0.51 13.05 10.44 NA NA NA 0.55 12.58 10.27 NA 2017 

* The provincial models included all possible sites with PM10 observation; ** The sites models included the monitoring stations with at least 70% annual PM10 observation. NA: Not applicable. These are individual site models—
Spatial cross-validation (CV) cannot be perform for models with less than two sites. LOLO: Leave one location out spatial cross-validation; LTO: Leave time out temporal cross-validation. Range: The minimum and maximum 
values of the statistics metrics from the models across 2010.
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3.3. Site-Specific Models 
Site-specific or individual site models were used to assess the relationship 

between PM10 and temporal predictor variables if the site have at least 70% annual 
PM10 data. The site-specific models were explored independently from each other. 
The models for Witbank monitoring station performed best with explaining PM10 

variability between 72% and 83% (Table 2). Leandra monitoring station performed 
worst with a range of explained 
PM10 variability between 29% and 36%. The temporal variables of chemical 
transport model-based estimates of PM10, humidity, Julian date, wind speed, 
temperature, total precipitation are important variables for explaining PM10 

variability of the different sites (Supplementary Material Figure S5). 

3.4. Models Prediction 
Table 3 compares the distribution of observed PM10 values against the CV 

predicted PM10 for the three models (national, provincial and site-specific) for days 
with PM10 measurements. The site-specific models outperformed the national and 
provincial models in capturing the variability in PM10. The mean and the standard 
deviation of the predicted PM10 from the provincial and site-specific models are 
somewhat comparable to that of the observed PM10 concentrations. The range of 
the predicted mean PM10 concentrations from the national models differs 
substantially from the observed PM10 concentrations. 

Table 3. Range of the observed versus predicted PM10 concentrations (in µg/m3) for the 3 different models (National, 
Provincial and Site-specific) averaged over all sites and years (2010–2017) by province for the mean, standard 
deviation (SD) and 5th, 25th, 50th, 75th and 95th percentiles). 
Province  Mean SD   Percentiles   

  µg/m3 µg/m3 5 25 50 75 95 
Mpumalanga Observed 35.70–50.90 17.70–29.10 9.30–15.30 21.40–30.30 32.90–46.20 47.70–71.20 68.20–102.80 

 National 34.60–48.60 6.30–11.10 23.70–34.20 29.20–41.10 34.30–47.80 39.50–56.80 45.70–66.50 
 Provincial 34.20–46.30 10.40–17.40 17.10–24.70 24.90–33.60 32.20–44.30 42.30–60.40 53.00–75.80 
 Site-specific 35.70–52.00 11.40–19.50 18.60–26.10 26.80–37.10 34.30–49.80 43.30–66.90 55.50–85.40 

Gauteng Observed 53.40–58.30 28.40–31.30 16.20–20.30 31.10–35.20 47.50–52.10 71.10–77.10 107.60–
115.00 

 National 36.30–41.60 10.20–12.90 21.30–24.40 27.00–31.00 34.80–40.70 44.60–52.00 54.00–62.40 
 Provincial 52.90–59.40 16.90–17.90 30.80–35.50 40.30–45.40 50.20–56.50 66.10–73.30 81.20–90.00 
 Site-specific 53.00–58.40 17.40–19.70 29.30–33.50 37.90–43.10 49.70–54.80 65.60–72.30 84.70–93.20 

Western Cape Observed 19.50–26.70 8.10–11.60 8.50–12.70 13.40–18.70 18.50–25.20 24.30–33.30 35.00–48.10 
 National 31.90–49.10 7.10–11.20 22.00–35.90 26.00–41.00 29.90–46.80 36.60–55.40 45.20–71.60 
 Provincial 20.00–28.00 39.00–5.50 13.50–20.40 16.70–24.10 20.00–28.00 22.70–31.80 26.90–37.10 
 Site-specific 19.50–26.70 4.80–6.60 11.80–17.90 15.90–21.80 18.80–26.20 22.40–30.70 28.00–38.40 

KwaZulu-Natal Observed 24.20–29.80 11.01–14.01 9.50–13.50 15.90–20.01 22.10–26.60 30.70–37.10 45.70–56.60 
 National 31.60–43.80 8.20–12.90 21.10–28.40 24.50–33.40 29.00–40.40 37.60–53.00 47.60–66.00 
 Provincial 23.90–32.90 5.20–9.50 15.60–21.60 19.20–25.90 22.50–31.60 27.10–39.40 35.40–49.50 
 Site-specific 24.20–30.50 6.01–10.02 15.30–19.70 19.10–23.30 23.00–28.30 28.00–36.00 36.00–50.80 

4. Discussion 
     This study explored methods for imputing missing daily PM10 measurements in 
South Africa, while considering the spatial distribution pattern of the sparsely 
PM10 monitoring stations across four provinces of South Africa. The RF models, 
representing three different geographical domains, exhibit markedly different 
predictive performances for predicting missing daily PM10 measurements across 
four provinces of South Africa. 

The performance of the national models and provincial models decreased 
considerably when used to predict daily PM10 in the LOLO validation. Table 3 
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indicates that the provincial and site-specific models predicted PM10 

concentrations do not differ substantially from the observed PM10 concentrations 
in terms of mean and standard deviation. In addition, we constructed a national 
model for the entire eight years (2010–2017) to compare the performance of this 
model to the yearly models (not presented in Table 2). The overall performance of 
the model R2 of 0.67 (RMSE, 17.70) suggest a reduced performance when 
compared to the range of the yearly models R2 of 0.77–0.79 (RMSE 2.10–16.76). 
The cross-validated spatial R2 of 0.24 (RMSE, 23.47) is within the range of yearly 
models R2 (0.11–0.35), RMSE (17.72–29.47). The better performance of the yearly 
models might be because most of the PM10 sites did not provide measurements 
consistently through the eight years. Also, the levels of PM10 between the years 
are different due to changing PM10 related emission variables. The national model, 
despite high overall R2′s (0.77–0.79), performed poorly in the LOLO CV (R2 0.11–
0.35). This was also reflected in the poor ability to predict the observed PM10 

concentration (Table 3). This is perhaps not surprising given the large geographical 
domain of South Africa. The distances between the provinces are substantial (e.g., 
approximately 1000 km between Western Cape and the other three provinces) 
and, therefore, they exhibit different local emission characteristics driven by social 
and economic factors, but also by different climatological differences. The air 
pollution priority areas of Mpumalanga, Gauteng and KwaZulu-Natal provinces are 
home to the majority of coal reserves, mining and steel facilities in South Africa. 
The combined impact of these anthropogenic sources with other local sources of 
PM10 and different climatic zones is likely to result in spatial variation in PM10 

concentration levels between the provinces resulting in distinct provincial 
characteristics of PM10, which are not transferable between the provinces. 

Our provincial models were based on few monitoring stations relative to the 
size of the four provinces. For example Western Cape Province, the largest 
province among the four provinces (area = 129,462 km2), has only 10 operating 
sites to capture the variability in PM10. The lack of sufficient representative 
monitoring sites to capture intra-province variability in PM10 could explain the 
relative poor performance of the provincial and national models. Previous studies 
also reported on the limitation of regulatory monitoring networks in capturing 
small-scale spatial variations of pollutant concentrations due to the sparse 
distribution of the few monitoring stations [30,31]. 

The site-specific models’ PM10 predictions did not differ substantially from 
the distribution pattern of the observed PM10 (Table 3). The site-specific RF 
models, only using temporal predictor variables, were able to capture the 
observed temporal variability in PM10 better than the national and provincial 
models. Previous studies in India and Switzerland have explored the association 
between PM2.5 and PM10 in co-located sites to impute missing daily PM2.5 

observations. These studies were able to develop imputation models explaining 
89% (Switzerland) and 92% (India) variability in PM2.5 [16,17]. These two studies 
were able to use sufficient PM10 and PM2.5 measurements at co-located sites to 
inform their models and then apply these to PM10 only sites to impute PM2.5. In 
South Africa, there were insufficient co-located sites to follow this approach. 
Despite this disadvantage, we were able to explain PM10 variance by between 29% 
and 83% in the site-specific models. 

This finding highlights the paucity of air quality monitoring data in South 
Africa where only four provinces provided PM10 measurements used for this study. 
Increasing the number of air pollution monitoring sites in South Africa and 
improving the data capture will provide more power to model more improved and 
reliable exposure estimates. Nonetheless, the RF variable of importance ranking 
across the four provinces indicates that chemical transport model estimates of 
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PM10 and meteorological variables contributed considerably to explaining ground-

level PM10 across our study area and study period. 

5. Conclusions 
This study compared three models (national, provincial and site-specific) 

combining spatial, temporal and chemical transport model-based estimates of 
PM10, O3 and NO2 with observed PM10 concentrations to predict missing daily PM10 

concentrations across 44 monitoring sites in four provinces of South Africa 
between 2010–2017. Given the extent of air quality monitoring currently 
conducted in South Africa, the site-specific and provincial models showed a better 
performance compared to the national models in capturing the variability of 
ground-level PM10. Thus, our study provides evidence that a model constructed 
with sites from a province is less generalizable to another province. 

The results of this study, complete time-series of daily PM10 concentrations 
containing a mix between measured and imputed PM10 concentrations, will be 

used in subsequent air pollution exposure studies aimed at informing population 
health studies in South Africa. 
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1 . Introduction 

The levels of air pollution in sub-Saharan Africa (SSA) have remained high compared to other regions of the 
world that have witnessed notable improvements [1]. The deteriorating trend of air quality in SSA countries, such 
as South Africa, has been linked to rapid urbanization, industrialization and the resultant increase in population. 
South Africa relies significantly on fossil fuel for both industrial and domestic activities—over 80% of power 
generation is from fossil fuel. Other important sources of air pollution emission in South Africa include bush 
burning, land-fills, dust from construction sites and wind-blown dust from open land [2,3]. Exposure to ambient air 
pollution accounted for over four million deaths globally in 2019 [4]. Particulate matter less than or equal to 10 µm 
in aerodynamic diameter (PM10 µg/m3) is one of the most important pollutants of public health interest that is 
monitored in South Africa [5]. The revised 2015 National Air Quality standard of daily limit of 75 µg/m3 and annual 
limit of 40 µg/m3 are less stringent than the World’s Health Organization’s limit of 45 µg/m3 and annual limit of 15 
µg/m3 [6,7]. 

The levels of PM10 concentration can vary in space and time due to distinct meteorological conditions and 
anthropogenic sources, such as vehicular, domestic and industrial emissions, between the different provinces in 
South Africa [8,9]. Several air quality management policies and strategies have been introduced to address the 
worsening air quality 
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in South Africa [6]. These include the identification and control of priority pollutants, the 
promulgation of regulations to reduce emissions from industries and the classification of air 
pollution prone areas as priority areas for efficient management of limited air quality management 
resources [6,10,11]. To this end, air quality management and monitoring resources are 
concentrated in four air pollution priority areas, including the Highveld, the Vaal triangle, the 
South Durban Basin and Waterberg, located in four different provinces 
(Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal) of South Africa. These four areas 
were prioritized due to the propensity of the observed or outlook of air quality in these areas to 
exceed the national air quality standards [6,10,12]. Only a few previous studies of air pollutants 
have examined the spatial and temporal trends of PM10 from sites in these areas and SSA [10,12–
15]. This is because of limited measurement data to explore the long-term spatial and temporal 
patterns of PM10 in these areas. A couple of studies have assessed the trend in PM10 mostly in air 
pollution priority areas of Gauteng and Mpumalanga province of South Africa [10,12,13,15,16]. 
In addition, Onyango et al. described the spatial and temporal variation in PM10 concentrations 
at three sites in Uganda [14]. 

Our previous study described the quality of ground-level PM10 measurements in four 
provinces of South Africa, Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal, for the years 
2010–2017 [17]. The earlier study explored methods to bridge the gap in daily PM10 data by 
imputing missing daily PM10 for some sites in these provinces for the study period. This study 
intends to build on the PM10 exposure data from the earlier study to characterize daily PM10 

spatially and temporally for four provinces of South Africa. To investigate the pattern of change in 
PM10, we assessed the change in annual PM10 average across the sites in these areas for the years 
2010–2017. Additionally, we explored the characterization of potential influencing factors of PM10 

emission around the sites. An improved understanding of the pattern of PM10 concentration 
between the four provinces can play a significant role in informing mitigation actions toward 
addressing the threat posed by air pollution, especially in low- and middle-income countries, such 
as South Africa, with limited ground-monitored data. 

                                                    2. Materials and Methods 

In this study, PM10 measurements from 44 monitoring sites across four provinces (Gauteng, 
Mpumalanga, Western Cape and KwaZulu-Natal) of South Africa were included. Hourly PM10 from 
the South African Air Quality Information System (SAAQIS). SAAQIS can be reached via their 
website (https://saaqis.environment.gov.za/, accessed on 
22 October 2018). For our study, we selected, for each year between 2010 and 2017, all sites with 
more than or equal to 70% of total daily measurement data available during a year [17]. Missing 
data were imputed using a random forest machine learning method, including spatiotemporal 
predictors, like meteorological, land use and source-related variables, as described in detail in our 
previous paper [17]. The combined observed and imputed data were used for this study analysis. 
The distribution of the sites across the provinces differs substantially (Figure 1). The Vaal triangle 
airshed Priority Area monitoring network and the Highveld Priority Area air quality-monitoring 
network that cut across Mpumalanga and Gauteng Provinces were the earliest networks 
established to monitor ambient air quality in South Africa. The South Africa Weather Service 
classifies the majority of the sites (21) as industrial sites, 18 as residential sites and 5 as traffic 
sites. An overview of the state of annual PM10 availability is presented in supplementary material 
Table S1. Thirty-two of the forty-four sites (73%) have more than a year of PM10 measurement 
data. 
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Figure 1. The spatial distribution of particulate matter (PM10) monitoring stations included in this paper across the four provinces of 
South Africa operating at some point during 2010–2017. 

To evaluate the potential influencing factors of PM10 around these monitoring sites, we 
explored multiple buffers (100, 300, 500, 1000, 10,000 m) of land use categories (Residential and 
Industrial), population density and road density around the monitoring sites. South Africa’s road 
network was obtained from OpenStreetMap (OSM) and the sum of road length was calculated for 
two categories: (1) major roads defined as roads of OSM types of primary, secondary and tertiary 
roads and (2) all roads defined as roads of OSM types of residential, service, motorway and trunk. 
Population density was obtained from the Socioeconomic data and Application Center (SEDAC) 
dataset. Land use was classified based on the 2018 South Africa National Land cover dataset 
categories. 

To evaluate changes in annual average PM10 concentrations for 2010–2017, we applied two 
formulas. For sites with two consecutive years with average PM10 data, the change was calculated 
by applying the formula: 

                                    ∆= �𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶
− 1� ∗ 100                                                                                                                     (1) 

   

where ∆ is the change, Cx is the annual mean PM10 concentration in the current year and Cy is 
the annual mean PM10 concentration in the previous year. 

For sites with missing data between successive years, the change in average PM10 for a year 
with average PM10 data was calculated by applying: 
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                  ∆=  �
𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶
𝑦𝑦−𝑥𝑥

− 1� ∗ 100                                                                                                    (2) 

where ∆ is the change, Cx is the annual mean PM10 concentration in current year y, Cy is the annual 
mean PM10 concentration in the next previous year (year x) with an annual mean PM10 concentration 
and y - x is the number of year(s) between available measurements. 

We also calculated annual changes of PM10 levels for the 32 sites with more than a year of 
PM10 sites using a linear regression analysis. 

                                                     3. Results 

3.1. Characterization of Sites 

Figure 2 presents the level of variation in potential land use, road density and population 
variables that can provide information about the likely prominent influencing factors of PM10 

around the site types as designated by the South Africa Weather Service. Buffers of different sizes 
ranging from 100, 300, 500, 1000, and 10,000 m radii around the sites were considered. Figure 3 
presents the analysis for a 300-m buffer. The other buffers sizes did not show substantially 
different patterns in their distributions. Generally, the distribution of calculated land use, road 
density and population within a 300 m buffer are in agreement with the monitoring site 
classification, although industrial land use was actually lower around industrial sites compared to 
the other two site types. Residential land use and population density were highest for residential 
classified sites. Major road density within a 300 m buffer was highest for monitoring sites classified 
as traffic sites. 

 

Figure 2. Distribution of indicators of PM10 emissions; land use (sum of area, m2), road density (sum length, m) and population (sum 
number of people) within a 300 m buffer across the three site classifications. 
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Figure 3. Variations in mean PM10 µg/m3 concentration across the provinces and months of the year. Error bars represent one standard 

deviation of the mean. 

3.2. Annual Change in Site’s Average PM10 µg/m3 Concentration over the Study Period 

Table 1 shows how the levels of PM10 change across the sites for the years 2010–2017. In 
Gauteng province, the average change in annual PM10 concentration decreased in 5 of 8 sites 
(63%) (Table 1). In Mpumalanga province, the average change in annual PM10 concentration 
decreased in 9 of 12 sites (75%). The average change in annual PM10 concentration decreased in 
only 3 of 7 (43%) Western Cape Province sites. Similarly, a decrease in the average change in 
annual PM10 concentration was observed in only 2 of 5 (40%) KwaZulu-Natal province sites. 

Table 1. Levels and changes in annual PM10 µg/m3 concentrations across sites for the years 2010–2017. The first entry per site shows 

the annual PM10 concentration in µg/m3. Subsequent entries depict the percentage changes compared to the previous entry. The last 

column shows the annual changes in µg/m3 per year assuming a linear trend between the first and last available measurement per site. 
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Table 1. Cont. 
 

Annual 

 
1st annual PM10 average 

Percentage decrease in annual PM10 
Percentage increase in annual PM10 

No Data 
 

3.3. Monthly Differences in Daily PM10 

A summary of monthly mean PM10 concentrations across all sites per province and across the 
years 2010–2017 is presented in Figure 3. The pattern in the levels of PM10 across the four 
provinces (Gauteng, KwaZulu-Natal, Mpumalanga and Western Cape) of South Africa suggests 
seasonal variation in monthly PM10 levels. The monthly PM10 levels show a seasonal pattern across 
the provinces and are more prominent in Gauteng and Mpumalanga provinces. The monthly mean 
PM10 levels were highest in Gauteng Province and lowest in Western Cape Province. In Gauteng, 
the lowest monthly mean PM10 concentrations were recorded during the summer months 
(December–February), ranging from a monthly mean of 15.51 µg/m3 recorded in December 2017 
to 51.92 µg/m3 recorded in February 2012. The monthly mean PM10 peaked during the winter 
months, ranging from 35.29 µg/m3 recorded in July 2016 to 88.46 µg/m3 recorded in July 2011. 
The highest mean PM10 recorded during the winter months is about 5.7 times higher than the 
revised 2021 WHO annual PM10 air quality guideline of 15 µg/m3. In Western Cape Province, the 
lowest monthly mean during the summer months ranged from 15.53 µg/m3 recorded in December 
2010 to 34.17 µg/m3 in February 2017. The monthly mean PM10 during the winter months ranged 
from 18.69 µg/m3 recorded in August 2012 to 34.98 µg/m3 recorded in June 2017. In general, all 
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provinces recorded peak PM10 levels during the winter months in South Africa between June and 
August. 
3.4. Week Day Differences in Daily PM10 

Figure 4 summarizes daily mean PM10 per province for the eight-year study period. 
Generally, marginal differences were found between different days of the week between 2010 
and 2017. Average daily PM10 concentrations during the weekdays are slightly higher than during 
weekends in all four provinces. The highest PM10 concentrations of 51.4 µg/m3, 46.8 µg/m3, 29.1 
µg/m3 and 25.1 µg/m3 at Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape Province were 
recorded during the weekdays. Statistically significant differences in mean PM10 concentrations 
were observed between weekdays and weekends (F = 14.57 and value = 0.0009) and by province 
(F = 380.11 and p value =< 0.0001). The Pairwise Tukey’s test comparisons suggest the difference 
between weekdays and weekends mean PM10 concentrations was statistically significant in all 
pairs of provinces but between KwaZulu-Natal and Western Cape (p value = 0.14). 

 

Figure 4. Weekdays variation in average daily PM10 µg/m3 concentration across the provinces. 

3.5. Spatial Variation in PM10 

A summary of descriptive statistics is presented in Table 2. There are 20 industrial sites, 18 
residential sites and 5 traffic sites included in this analysis. These traffic sites are located in the 
three provinces of Gauteng (1 site), Western Cape (2 sites), KwaZulu-Natal (2 sites). The results 
from Table 2 show that the levels of PM10 concentration level is highest in Gauteng and for all 
provinces PM10 concentration is highest at the residential sites compared to industrial and traffic 
sites. In Gauteng, the concentration at one traffic site was similar to the concentration at the 
residential sites and substantially higher than the levels at the industrial sites. 
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Table 2. The distribution of daily PM10 concentration in µg/m3 by province and site type. 

  

     Site Classifications      
 Industrial   Residential    Traffic  

Province N Median 25–75% 
percentile Min–Max N Median 25–75% 

percentile Min-Max N Median 25–75% 
percentile Min–Max 

Gauteng 5114 29 17.5–43.9 7.03–139 4020 58.5 41.2–144 20.9–344 731 53.9 38.8–74.6 23.5–152 
Western Cape 4750 22.3 16.5–29.7 9.68–82.5 2193 25.4 18.4–34.8 10.9–93.4 2922 21.1 16.4–27.7 10.7–74.0 
Mpumalanga 18264 37.1 22.3–59.2 8.78–228 2921 37.7 21.9–61.4 9.1–216 NA NA NA NA 

KwaZulu-Natal NA NA NA NA 5114 26 16.5–37.2 7.27–130 23.6 23.6 18.3–32.2 13.1–79.9 

NA: Not available. 
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The levels of PM10 concentration in Mpumalanga province are also high (Table 2). The 
industrial sites in Mpumalanga recorded the highest levels of PM10 compared to the industrial sites 
in other provinces. The PM10 concentration levels at both industrial and residential sites in 
Mpumalanga are comparable. The levels of PM10 concentration in Western Cape are the lowest 
compared to other provinces. Residential sites recorded the highest level of PM10 concentration 
in Western Cape. However, there are no substantial differences in the levels of PM10 concentration 
across the site types. Similarly, sites from KwaZulu-Natal province also recorded relatively low 
levels of PM10 concentration compared to Gauteng and Mpumalanga provinces. The levels at 
residential sites are also marginally higher than the levels at traffic sites (Table 2). 

3.6. Attainment of PM10 Standards 

Table 3 shows the percentage of days that PM10 concentration daily limits were exceeded 
using WHO and South Africa’s National Air Quality Standard (NAAQS) for the sites in the four 
provinces from 2010–2017. Gauteng province reported the highest proportion of days exceeding 
the daily limits of WHO and NAAQS standards, with about 38% of the days exceeding the WHO 
daily standard and around 17% of days exceeding the NAAQS daily standard. In contrast, Western 
Cape Province reported the lowest percentage of days exceeding both WHO and NAAQS PM10 air 
quality standards (3% and 0.09%, respectively) between years 2010–2017 (Table 3). 

Table 3. The percentage of PM10 (µg/m3) concentration exceeding daily standards by province for the years 
2010–2017. 

Province 

WHO Standard NAAQS Standard 

Number of 
Days Exceeding 

Daily Limit 

% of Days 
Exceeding 

Daily Limit a 

Number of 
Days Exceeding 

Daily Limit 

% of Days 
Exceeding 

Daily Limit a 

Gauteng 3820/9865 38.7 1605/9865 16.3 

Mpumalanga 7139/21185 33.7 3104/21185 14.7 

KwaZulu-Natal 549/7671 7.2 108/7671 1.4 

Western Cape 272/9865 2.8 8/9865 0.1 
a The percentage of days PM10 concentration daily limits were exceeded based on the number of days with PM10 data for 
2010–2017 divided by the total number of days with valid PM10 data. WHO standard; World Health Organization 2021 
daily standard of 45 µg/m3. NAAQS; South Africa’s National Air Quality 2006 daily standard of 75 µg/m3. 

4. Discussion 

This study adds to existing evidence on levels of PM10 in South Africa. The eight-year trend 
in PM10 level suggest that PM10 is still high in the earliest high pollution designated priority areas 
around Gauteng and Mpumalanga provinces. However, there is evidence of decreasing PM10 

levels at most sites in both Gauteng and Mpumalanga Provinces. While the level of PM10 of most 
sites in KwaZulu-Natal and Western Cape Provinces suggest an increase in PM10 levels during the 
study period. The presented analysis identified trends in ambient PM10 concentrations in four 
South African Provinces for the years 2010–2017. 

4.1. Spatial and Temporal Trends in Daily PM10 
The Vaal Triangle Airshed Priority Area (VTAPA) and Highveld Priority Area around Gauteng 

and Mpumalanga Provinces were the first areas designated as air pollution priority areas in 
South Africa due to the observed or expected level of air pollution in these areas [2,10]. Both 
provinces share similar emissions profiles; they are home to the majority of coal-powered plants, 
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coal mining, gold mining, mine tailing, petrochemical and ferroalloy industries in South Africa. To 
address the level of air pollution in these areas, air quality management plans were developed to 
guide actions towards improving the air quality in these priority areas. Some of the actions 
implemented to reduce the air pollution in these areas include the closure of a high polluting 
industry, large-scale domestic electrification program in these areas to reduce domestic 
emissions [2,10]. Thus, the decrease in the levels of PM10 reported in this study at most sites 
around these areas in Mpumalanga and Gauteng Provinces could be because of the changing 
emission profiles in these priority areas due to these mitigation actions. Despite the lower levels 
of PM10 reported in KwaZulu-Natal and Western Cape Provinces compared to Gauteng and 
Mpumalanga 
Provinces, the average change in annual PM10 increased at most sites in these Provinces. This 
trend signals a deteriorating air quality in these areas that is likely due to changes in emissions 
profiles in these areas. The Southern Basin Industrial areas in KwaZulu-Natal have been 
identified as air pollution hotspots due to the high density of industrial activities in this area [18]. 
There are also concerns about the air quality in Western Cape provinces, especially around the 
increasing informal settings in Western Cape Province [19]. 

The monthly variation in PM10 across the provinces during the study period shows that PM10 

concentrations are highest during the winter months between June and August. This is consistent 
with results of a study in Gauteng assessing the characteristics of ground-monitored PM2.5 and 
PM10 between years 2010 and 2014 [13] and a study conducted in eMbalenhle—a low socio-
economic in Mpumalanga province [15]. Similarly, the marginal seasonal difference in PM10 

reported in Western Cape Province follows the pattern reported in a Western Cape study that 
reported the seasonal difference in PM10 in 2016 using data from one monitoring site [16]. A 
Ugandan study, however, reported higher PM10 concentration during the dry seasons compared 
to wet seasons [14]. The difference in seasonal weather patterns and sources of PM10 between 
South Africa and Ugandan could explain the seasonal difference in PM10 concentration. The cold 
season in most of South Africa’s provinces is characterized by cold weather and an increase in 
solid biomass use as a source of energy. The reliance of South African’s on solid biomass as a 
source of energy for cooking and heating system during the winter has been reported in other 
studies [2,20–22]. Residential fuel consumption in South Africa includes kerosene, residential fuel 
oil, LPG, sub-bituminous coal, wood/wood waste, other primary solid biomass and charcoal. 
Overall, residential fuel consumption dropped from 2010 to 2017, but domestic coal consumption 
increased slightly [22]. This study also highlights the fact that domestic sources of PM10 contribute 
substantially to the variability of PM10 in South Africa. 

The trend in weekday PM10 level follows a similar pattern across the four provinces. PM10 

concentration increased through the weekdays, reaching its peak between Wednesday and 
Friday. This study suggests that there is a difference between PM10 levels between weekends and 
weekdays, with lower PM10 levels reported during the weekends. Although there are only four 
traffic sites in this analysis, the decreased level in traffic-related activities during the weekend 
might be responsible for the observed lower PM10 levels during the weekend. 

4.2. PM10 Level across Site Types 

The trends in PM10 across the primary environment types in South Africa used for classifying 
the PM10 monitoring sites by the South Africa Weather Service are the Industrial, Residential and 
Traffic areas. The majority of the monitoring sites included in this analysis are industrial and 
residential sites. Table 2 shows that average PM10 levels were highest in residential sites compared 
to other categories of sites during the study period in all four provinces. This result is not unusual; 
similar results were reported in Gauteng areas of South Africa [13]. Our result also show that PM10 

levels are generally higher at residential sites in the other three provinces. A possible explanation 
for the high levels of PM10 concentration levels at residential areas across the provinces is the high 
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level of domestic burning in residential areas in South Africa. Previous studies have highlighted 
domestic emissions as the predominant source of particulate matter in South Africa [2,13]. It has 
also been argued that because the industrial emissions are released into a stable atmosphere in 
stacks above the generally shallow boundary layer height in South Africa could have affected the 
dispersion of the emissions to the ground level [2,13]. We also explored the variation in residential 
and industrial land use and road and population density around the monitoring sites. The 
residential radii have the highest level of variation from multiple influencing factors of PM10 

emission. The high variability in the multiple sources of PM10 emission suggests that the high 
density of PM10 emissions around residential areas could explain the highest concentration of 
PM10 recorded in residential sites in our analysis. The high level of PM10 concentration and high 
variability of potential PM10 influencing factors around residential areas have implications on the 
population’s health outcomes [23]. 

4.3. Strengths and Limitations 
There are some limitations in this study worth nothing. First, the pattern of missingness of 

PM10 exposure data during the study period poses a challenge to understanding the time-series 
trend in PM10 exposure data across the sites. The results presented are for four out of nine 
provinces in South Africa. Thus, these results cannot be extrapolated beyond the provinces that 
contributed data to our analysis. In addition, the representativeness of the site types is also a 
limitation of this study; the majority of the sites included in this study are industrial and residential 
sites. To address the challenge of missing daily PM10 data, this study combined observed and 
imputed PM10 exposure data from 44 monitoring sites across four provinces in South Africa to 
investigate the trends in PM10 concentrations. Despite the limitations, our results provide some 
insights on trends of PM10 concentrations in the four provinces during the study period. 

5. Conclusions 

It has been over a decade since the promulgation of South Africa’s National Environmental 
Management Air Quality Act in 2004. There have been concerns over the progress made so far 
[11]. We found that PM10 levels are higher than the WHO limits standard across the four provinces. 
The provincial differences in PM10 concentration show that PM10 levels are higher around air 
pollution priority areas, while the temporal variability of PM10 suggest that emissions during the 
winter months contribute markedly to the high level of PM10 recorded during the winter seasons. 

An interesting result for future epidemiological studies in South Africa is the high level of 
PM10 and high variability of potential influencing factors of PM10 emission around where people 
live and work. Taken together, these results have implications for addressing the trends of PM10 

pollution in South Africa. 
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A R T I C L E   I N F O   A B S T R A C T   
 

There is a paucity of air quality data in sub-Saharan  African countries to inform science driven air quality management and 
epidemiological studies. We investigated the use of available remote-sensing aerosol optical depth (AOD) data to develop spatially 
and temporally resolved models to predict daily particulate matter (PM10) concentrations across four provinces of South Africa 
(Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) for the year 2016 in a two-staged approach. In stage 1, a Random Forest 
(RF) model was used to impute Multiangle Implementation of Atmospheric Correction AOD data for days where it was 
missing. In stage 2, the machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to 
model the relationship between ground-monitored PM10 data, AOD and other spatial and temporal predictors. These were 
subsequently combined in an ensemble model to predict daily PM10 concentrations at 1 km × 1 km spatial resolution across 
the four provinces. An out-of-bag R2 of 0.96 was achieved for the first stage model. The stage 2 cross-validated (CV) 
ensemble model captured 0.84 variability in ground-monitored PM10 with a spatial CV R2 of 0.48 and temporal CV R2 of 
0.80. The stage 2 model indicated an optimal performance of the daily predictions when aggregated to monthly and 
annual means. Our results suggest that a combination of remote sensing data, chemical transport model estimates and 
other spatiotemporal predictors has the potential to improve air quality exposure data in South Africa’s major industrial 
provinces. In particular, the use of a combined ensemble approach was found to be useful for this area with limited 
availability of air pollution ground monitoring data.    

 
1. Introduction  

Exposure to ambient air pollution is linked with several adverse health 
outcomes and is a major environmental risk factor associated with about 5 
million deaths in 2019 (Murray et al., 2020). The World Health Organization 
(WHO) reported that 87% of the 3 million deaths estimated to be attributable 
to ambient air pollution in 2012 occurred in low and middle income countries 
(LMICs) (World Health Organization, 2016). Recently new findings from 
Northern America (Pinault et al., 2017; Shi et al., 2020) and Europe (Stafoggia 
et al., 2022; Strak et al., 2021) have provided evidence that adverse health 
effects are associated with air pollution even at levels less then national and 

                                                           
1 This paper has been recommended for acceptance by Admir Cr´eso Targino.  

international standards. This adds to the growing body of evidence 
supporting the revised 2021 WHO Air Quality Guidelines, where, for example, 
the guideline value for annual mean of particulate matter less than or equal 
to 10 μm in aerodynamic diameter (PM10) was lowered from 20 μg/m3 to 15 
μg/m3. In addition to higher emission of air pollutants in LMICs, barriers to an 
improved air quality in these regions include gaps in infrastructure, lack of 
data openness, unwillingness to share data to not hinder economic 
perspectives and capacity for air quality management (Mak and Lam, 2021; 
World Health Organization, 2021). The health impact of exposure to air 
pollution could be related to the current epidemiological transition of 
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diseases from communicable diseases to non-communicable diseases in sub-
Saharan African (SSA) countries (Adebayo-Ojo et al., 2022; Gouda et al., 2019; 

Kone et al., 2019´ ). However, the limited number of monitoring sites for air 
pollutants in SSA countries has been a major challenge in investigating the 
association between exposure to air pollutants and adverse health outcomes 
(Amegah, 2018; Amegah and Agyei-Mensah, 2017). Air pollution monitoring 
sites in South Africa are sparsely distributed. These sites are mostly located in 
the designated air pollution priorities areas based on historical evidence of 
poor ambient air quality (Department of Environmental Affairs, 2016). These 
areas includes the Highveld, the Vaal triangle, the South Durban Basin and 
Waterberg areas located in four different provinces (Gauteng, Mpumalanga, 
Western Cape and KwaZulu-Natal) of South Africa (Arowosegbe et al., 2021b; 
Feig et al., 2019; Tshehla and Wright, 2019). There is also a substantial gap in 
historical and current air quality measurement data in South Africa due to 
inadequate technical and financial capacity to continuously operate these 
sites. Our previous work in South Africa used the most complete air pollutant 
monitoring data set, PM10, to compare methods to impute missing daily PM10 

concentrations across sites located in four provinces of Gauteng, 
Mpumalanga, Western Cape and KwaZulu-Natal (Arowosegbe et al., 2021b). 
In addition, large differences in PM10 concentrations exist between these 
provinces with monitoring sites in Gauteng exceeding the WHO air quality 
guideline 24-h PM10 concentration of 45 μg/m3 38% of the time between 2010 
and 2017 compared to only 3% in Western Cape. Across the provinces, PM10 

concentrations were highest in the winter months between June and August 
(Arowosegbe et al., 2021a).  

Long- and short-term spatially varying air pollution data is important for air 
pollution mitigation strategies and epidemiological studies to protect the 
health of vulnerable populations. However, there are relatively few reference 
monitoring networks globally to capture the variation in air pollution around 
where people live and work (Martin et al., 2019). Consequently, a number of 
approaches including dispersion modeling, interpolation and land-use 
regression modeling have been used for long-term air pollutant exposure 
assessment in epidemiological studies (Bertazzon et al., 2015; Eeftens et al., 
2012; Gulliver and Briggs, 2011; Wong et al., 2004). To better capture the 
spatial and temporal variation of air pollution required for epidemiological 
studies, hybrid statistical models have been implemented by several studies 
(de Hoogh et al., 2018; Mandal et al., 2020; Schneider et al., 2020; Stafoggia et 
al., 2019). Hybrid statistical models, for example, leverage the spatial and 
temporal coverage of satellite retrieved Aerosol Optical Depth (AOD) which 
quantifies the amount of light extinction by absorption or scattering that occurs 
in the column when light passes through suspended particles (Hoff and 
Christopher, 2009).  

Recently, machine learning algorithms have been used to explore the 
relationship between ground-monitored air pollution data, AOD, spatial and 
temporal predictors (e.g. land use and meteorology). Machine learning 
algorithms are increasingly being used to model air pollution levels because of 
their ability to capture the underlying relationship between ground-monitored 
air pollution data and spatiotemporal predictors (de Hoogh et al., 2018; Mandal 
et al., 2020; Schneider et al., 2020; Sorek-Hamer et al., 2020; Stafoggia et al., 
2019). Several variants of the hybrid statistical models have been implemented 
mostly in developed countries with good ground-monitored data to model 
long-term air pollution exposures (de Hoogh et al., 2016) and short-term air 
pollution exposures (de Hoogh et al., 2018; Lee et al., 2011; Stafoggia et al., 
2019). Many previous air pollution modeling studies have either used single 
statistical models at different stages of their modeling approach or selected the 
best model out of several models to estimate air pollution concentrations 
(Bertazzon et al., 2015; Stafoggia et al., 2019; Stafoggia et al., 2020; Stafoggia 
et al., 2017). The application of machine algorithms to model PM10 

concentration across South Africa presents an opportunity to assess the 
performance of this method in an area with limited ground-level monitoring 
data. Despite the flexibility and predictive performance of machine learning 
algorithms, these models are prone to overfitting especially when 
characterizing spatial predictors (Meyer et al., 2018). To improve the 
predictions from individual algorithms, ensemble averaging of different 

machine learning algorithms has been utilized in air pollution exposure 
modeling studies. Ensemble averaging takes advantage of the strengths of the 
individual machine learning algorithms to improve the accuracy of models 
predictions (Di et al., 2019; Mandal et al., 2020; Shtein et al., 2019).  

Hybrid statistical models have been identified as a potential solution to 
bridge the gap in ground-monitored air pollution data in LMICs, especially in 
SSA countries (Pinder et al., 2019). In this study, we developed a hybrid 
statistical model based on ensemble averaging for predicting daily PM10 

concentrations at a 1 km × 1 km spatial resolution across four provinces of 
South Africa for the year 2016. The year 2016 was selected as it was the year 
with the largest available number of PM10 monitoring sites operating in recent 
years (i.e. between 2010 and 2017 the respective number of sites were: 21, 41, 
42, 40, 39, 32, 46 and 41 sites). The performance of hybrid statistical models is 
largely dependent on the availability of air pollution monitoring data used to 
calibrate the models. Consequently, this study aims to explore the possibility 
of using remote-sensing data in combination with other spatial and temporal 
predictors and monitoring data to predict daily PM10 concentrations at 1 km × 
1 km spatial resolution across four provinces of South Africa.  

2. Materials and methods  

2.1. Study area  

South Africa is located at the southernmost tip of Africa. The surface area is 
1,219,912 km2, with an estimated population of 58.8 million (2019) 
(Department of Statistics South Africa, 2019). South Africa has a long coastline 
that stretches more than 2500 km along the Atlantic and Indian oceans. Its 
coastal plain is dominated by a plateau surrounded by a great escarpment. The 
central and eastern part of the plateau is known as the Highveld, which is 
between 1500 and 2100 m above sea level. The highest edge of the escarpment 
is the Mpumalanga province (Drakensberg) in the east from where it then 
extends south-west to Free State and Gauteng Provinces. Gauteng province, 
the smallest province with a land area of 18,176 km2, has the largest population 
of approximately 15 million (about 26% of the total South Africa population) 
and is bordered to the east by Mpumalanga. Mpumalanga is home to most of 
South Africa’s coal factories and is bordered by KwaZulu-Natal to the south. 
The coastal province of Western Cape occupies a land area of 129,462 km2. 
South Africa is characterized with distinct climatic conditions; the eastern part 
of the country has a tropical climate while the south-western part has a 
Mediterranean climate with year-round wind. These climatic features coupled 
with a mountainous escarpment influence the spatial and temporal pattern of 
air pollutants across the country. South Africa has four climatic seasons: 
Autumn (March–May), Winter (June–August), Spring (September–November) 
and Summer (December–February).  
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2.2. PM10 monitoring data 

PM10 hourly data were collected from 46 monitoring sites jointly maintained by 
the Department of Environmental Affairs, South Weather Services, provincial, 
local governments and private industries. Of those 46 sites, 19 sites are located 
in Gauteng province, 16 sites in Mpumalanga, 7 sites in Western Cape and 4 
sites in KwaZulu-Natal (Fig. 1). The data were obtained from the South African 
Air Quality Information System (https://saaqis.environment.gov.za/. Accessed 
on October 22, 2018). Data quality checks were undertaken for each 
monitoring station including removing outliers defined as negative values or 
observations greater or less than four times the interquartile range of each 
monitoring sites. Hourly PM10 data were aggregated to daily values if 75% of 

hourly data were valid. For this study, 2 Gauteng province sites, 9 Mpumalanga 
sites, 4 Western Cape sites and 3 KwaZulu-Natal sites had at least 70% of 
annual PM10 data. Missing daily PM10 values for these sites were imputed as 
explained in our previous paper (Arowosegbe et al., 2021b). In brief, we 
imputed missing daily PM10 concentration by combining spatial and temporal 
predictors with ground-level monitored PM10 concentrations at sites with at 
least 70% of annual PM10 data in a Random Forest (RF) model. In contrast to 
the distribution of the predictions from National and Provincial RF models, the 
site-specific models PM10 predictions distribution were more comparable to 
the observed PM10 concentration distribution (Arowosegbe et al., 2021b). The 
final monitoring dataset used in this study included measured and imputed 
daily PM10 concentrations for a total of 18 sites.  

2.3. Spatial and temporal predictors  

Table 1 presents the data used as predictor variables in this study. All 
analysis were performed at a 1 km x 1 km-grid covering the entire study area, 
and each predictor variable was calculated to this spatial scale. Geospatial 
analyses were performed in ESRI ArcGIS 10. The next section describes the data 
in more detail.  

2.3.1 Aerosol optical depth (AOD)  

Aerosol Optical Depth (AOD) is a columnar integrated value that quantifies 
the amount of light absorbed or scattered by suspended particles as it passes 
through the atmosphere. AOD serves as an indicative measurement of particles 
in the column of the atmosphere at a given time. The Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) product of AOD from the 
Moderate Resolution Imaging (MODIS) instrument on the Terra and Aqua 
satellites provides daily AOD estimates (Lyapustin et al., 2011). The MAIAC AOD 
product is provided at 1 km × 1 km spatial resolution (from 
https://lpdaac.usgs.gov/produ cts/mcd19a2v006/. Accessed on October 20, 
2018). The Terra and Aqua satellites travel across South Africa at a different 
time; Terra between 09:00 and 11:00 local time and Aqua between 13:00 and 
15:00. Due to the two different measurement times, we combined daily AOD 

measurements of wavelength 470 nm from both the Aqua and Terra satellites. 
We used measurements from Aqua and combined it with AOD 470 nm 
measurements from Terra when Aqua AOD 470 nm measurements were 
missing. Data quality checks were performed to remove spurious 
measurements of AOD from cloud masking, values adjacent to cloud, high 
uncertainty flags and values within a 2.5th percentile moving window variance. 
The final MAIAC AOD data set for input in stage 1 for the year 2016 contained 
62% of all possible observations.  

2.3.1. Spatial and temporal predictors  
Meteorological variables play an important role in the dispersion of air 

pollutants (De Visscher, 2013; Lana et al., 2016˜ ). We used daily global climate 
reanalysis of total precipitation, temperature, boundary layer height, vertical 
velocity, the component of the horizontal wind towards the east (U wind 
component) and the component of the horizontal wind towards north (V wind 
component) from the European Center for Medium-Range Weather Forecasts 
Reanalysis 5th Generation  
(ERA5) climate reanalysis dataset at a spatial resolution of 0.125◦ × 
0.125◦ (approximately 10 km × 10 km) for the year 2016. We extracted 
Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis daily columnar 
ensembles estimates of PM10, nitrogen dioxide and ozone at a spatial resolution 

 
Fig. 1. The spatial distribution of PM10 Monitoring Sites.   

https://saaqis.environment.gov.za/
https://lpdaac.usgs.gov/products/mcd19a2v006/
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of 0.125◦ × 0.125◦ (approximately 10 km × 10 km) from the CAMS data store 
(https://ads.atmosphere.copernicus. eu./Accessed on October 30, 2018). 
Bilinear resampling was used for the spatially coarse meteorological and CAMS 
datasets (10 km × 10 km) to downscale to our 1 km x 1 km-grid using 
information from the four nearest grid cells values of these variables.  

The spatial variables used for this study were calculated at a 1 km × 1 km 
grid covering the study area. The 2018 South Africa National Land cover dataset 
with 72 land use classes were reclassified into the five main categories (1) 
residential area, (2) industrial area, (3) built-up  
Table 1  
Description of spatial and temporal predictors.   

Variable  Description  Source  Resolution  
Population density  Mean population  

within 1 km × 1 km grid 
cell  

SEDAC  ~1 km  

Land cover  South Africa  
National Land Cover 
2018 densities  
(summary of meters 
within the grid cells by 
land cover categories 
of Natural, Built-up,  
Residential,  
Agricultural, Industrial)  

South Africa  
Department of 
Environmental  
Affairs.  

20 m  

Light at night  1 km × 1 km  
Intersected aggregate  

VIIRS-DNB  750 m  

Impervious surface  1 km × 1 km  
Intersected aggregate 
after removing no 
data, clouds, shadows 
data  

NOAA  30 m  

Elevation  1 km × 1 km 
intersected aggregate 
of mean elevation  

SRTM Digital  
Elevation Database  

90 m  

Roads  Summary of road 
length distance to 
nearest road type: 
major roads and other 
roads  

OpenStreetMap  Lines  

Climate zones  Cold interior,  
Temperate interior, Hot 
interior,  
Temperate coastal,  
Subtropical coastal,  
Arid interior  

South Africa Bureau 
of  
Standards  
2005  

6 Zones  

Copernicus  
Atmosphere  
Monitoring Service 
(CAMS) ensemble 
estimates of AOD  

Daily CAMS ensemble 
estimates of AOD 
bilinear resampled at 
1 km × 1 km  

Copernicus Atmosphere 10 km × 
10 km Monitoring Service  
(CAMS)  

Meteorological variables 
(daily modelled 
planetary boundary 
layer height, 
temperature, 
precipitation, wind 
speed, wind direction, 
relative humidity, 
vertical velocity)  

Daily global  
ECMWF re-analysis 
estimates bilinear 
resampled at 1 km  
× 1 km  

ERA5-reanalysis 10 km × 10 km  

Modelled Tropospheric 
estimates of NO2,  
PM10, O3  

Daily Chemical 
transport model 
estimate bilinear 
resampled at 1 km × 1 
km  

Chemical transport model  
Copernicus Atmosphere 10 km × 
10 km  
Monitoring Service (CAMS)  

Abbreviations: SEDAC (Socioeconomic Data and Applications Center), VIIRS- DNB(Visible 
Infrared Imaging Radiometer Suite-Day/Night Band), NOAA(National Oceanic and 
Atmospheric Administration, SRTM (Shuttle Radar Topography Mission), ERA-5 (European 
Center for Medium-Range Weather Forecasts Reanalysis 5th Generation(Hersbach et al., 
2020)).  

area, (4) water bodies and (5) agricultural area. Sum of major road and sum of 
other road length was calculated for each 1 km x 1 km-grid cell using road data 
extracted from OpenStreetMap. Similarly, population density at each grid cell 
was calculated based on the data extracted from the Socioeconomic Data and 
Application Center (SEDAC). Other spatial variables such as the light at night 
were extracted from Visible Infrared Imaging Radiometer Suite-Day/Night Band 
(VIIRS-DNB) and averaged at the 1 km × 1 km spatial resolution. Impervious 
surface and elevation data were respectively obtained from the National 
Oceanic and Atmospheric Administration and the Shuttle Radar Topography 
Mission Digital Elevation databases.  

2.4. Statistical methods  

We implemented a multi-stage machine learning modeling approach aimed 
at 1) imputing missing MAIAC AOD data using modelled estimates of CAMS 
AOD and 2) modeling the ground-monitored PM10 with AOD data, 
meteorological predictors, land use and land cover predictors. The calibrated 
model was then used to predict daily PM10 concentration at 1 km × 1 km grid 
cells over the four provinces of South Africa. In this study, we applied three 
machine learning algorithms at different stages of the analysis (Fig. S1).  

2.5. Stage 1  

We developed a model to impute missing MAIAC AOD data. The percentage 
of missing satellite-AOD measurements in South Africa, mainly caused by cloud 
cover, was 38%for the year 2016. We explored the statistical relationship 
between MAIAC AOD 0.47 μm wavelength, modelled co-located CAMS AOD 
estimates (469 nm, 550 nm, 670 nm, 865 nm and 1240 nm) day of the year, 
latitude and longitude using an optimized RF model:  

PredMAIAC.AODi, t = MAIAC.AODi, t 

∼ f(CAMS.AODi, t,z1−5 +day of the year+ latitudei + longitudei) (1)  where 

PredMAIAC.AODi,t is the predicted MAIAC AOD 0.47 μm at grid cell i, on day t; 

MAIAC. AODi,t is the target variable representing MAIAC AOD 0.47 μm 

wavelength estimates at grid i on day t; CAMS.AOD estimates the main 

predictor at grid cell i, on day t, at five wavelengths (z = 
0.47 μm, 0.55 μm, 0.67 μm, 0.87 μm and 1.24 μm); day_of_the_year from 1 to 
366; latitudei and longitudei represent the coordinates of grid cell centroid i.  

2.6. Stage 2  

A predictive model for daily PM10 concentrations was constructed by 
exploring its relationship with spatial and temporal predictors and AOD 
estimates from stage 1. We used an ensemble averaging approach using three 
different machine learning learners. The learners were RF (Breiman, 2001; 
Kwok and Carter, 1990), support vector regression (SVR) (Vapnik, 1999; Vapnik 
et al., 1997) and extreme gradient boosting (XGBoost) (Chen and Guestrin, 
2016). We selected tree based learners (RF and XGBoost) and SVR to account 
for complex non-linear relationship and patterns in explaining the variation in 
PM10 concentrations across the four South African provinces. We also 
implemented ensemble averaging of the predictions from the individual 
learners using a RF models that included the longitude and latitude of the 1 km 
× 1 km-grid cells to prevent the overfitting of the individual models. All the 
individual models were trained on the training data and optimized models were 
achieved through grid search, learners’ internal parameter tuning and cross-
validation processes. The RF parameter tuning includes grid search for the 
number of variables used to split each tree (mtry). Random variables of 2, 4, 6, 
8, 10 and 12 were assessed in the grid search. We also searched for the number 
of random trees from 100 to 500 trees for an optimized model. The XGBoost 
model parameters grid space of maximum tree depth ranged from 4 to 14, 
maximum child weight from 2 to 10 and the subsample ratio from 0.4 to 0.9 
were assessed to select the optimized model. The sigma and gamma values of 
the SVM were also selected based on grid search.  

https://ads.atmosphere.copernicus.eu/
https://ads.atmosphere.copernicus.eu/
https://ads.atmosphere.copernicus.eu/
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The individual learners were defined as:  

YY PredPM10i,t = PM10i, t ∼ f(SPT1i,t, .. .., SPT10i,t,…, SP20i,..., SP24i) (2)   
where YY_ PredPM10i,t stands for RF, XGBoost or SVR, PredPM10i,t is the 
predicted PM10 at grid cell i, on day t; PM10i,t is the ground-monitored PM10 at 
the monitoring site in grid cell i on day t. SPT1-10i,t are spatio-temporal 
predictor variables numbering 1–10 in grid cell i and on day t and SPi represent 
spatial predictor variables numbering between 20 and 24 in grid cell i on day 
t.  

The RF averaging meta-model was defined as:  

PredPM10i,t = PM10i,t ∼ f(RFpredPM10i,t +XGBoostpredPM10i,t + SVRpredPM10i,t + latitudei 

+ longitudei) 
(3)   

where PredPM10i,t is the ensemble averaged predicted PM10 at grid cell i, on 
day t; PM10i,t is the ground-monitored PM10 at the monitoring site in grid cell i 
on day t, while RF_predPM10i,t, XGBoost_predPM10i,t and SVR_predPM10i,t are 
the predicted PM10 concentrations in grid cell i on day t from RF, XGBoost and 
SVR respectively. The latitudei and longitudei represent the coordinates of grid 
cell centroid i.  

We included latitude and longitude as additional predictors to the 
individual learners predictions to allow the RF meta-model to capture and 
account for the variation in the performance of the individual learners in 
space. If one learner does better in Gauteng province but another in Western 
Cape province, the RF meta-model will capture the underlying interaction, 
thus, allowing some level of weighting when averaging the predictions of the 
individual learners. The final averaged ensemble model was used to predict 
daily PM10 concentrations across the four provinces at 1 km × 1 km. All 
statistical analyses were implemented in R open source programming 
software using the Caret package, version 4 (R Core Team (2018)).  

2.7. Statistical performance  

We evaluated the performance of the Stage 1 RF model by assessing the 
relationship between observed AOD and predicted AOD estimates in the two-
third training dataset and the one-third out-of-bag (OOB) sample. The 
percentage of variation of AOD captured by the RF model, the R squared (R2), 
the root mean squared prediction error (RMSPE), the intercept and the slope 

of the linear regression between the observed and predicted AOD were 
computed as the performance metrics.  

For Stage 2 models, a ten-fold cross validation was conducted by building 
the model on 90% of the PM10 data and assessing the ensemble model 

prediction on the hold out 10% PM10 data. Spatial performance was assessed 
through leave-location-out cross-validation (LLO CV). Site ID was used as the 
splitting criterion and the models were divided into ten folds to compute the 

models spatial performance. A model was trained on data from all but one-
fold of sites (n−1). The hold-out folds were iteratively used to estimate the 

prediction errors of these models to predict for sites not included in the 
training folds dataset. For temporal cross-validation, day of the year was 

used to divide the dataset into 10 folds and temporal leave-time-out cross-
validation (LTO CV) was used to assess the model’s performance in time.  

3. Results  

3.1. Stage 1 imputation of AOD data  

The stage 1 model performance was evaluated by comparing MAIAC AOD 
observations and model predictions in the OOB samples. The estimated 
percentage of variability (R2) captured by the RF model in the OOB samples was 
0.96 (RMSPE = 0.014, intercept = −0.001, slope = 1.01). The stage 1 model 
metrics suggest a good fit between the valid observed and the predicted AOD 
470 nm. Fig. 2 shows a map of predicted AOD 470 nm for June 6, 2016 for 
Gauteng province. Example AOD prediction maps for the other three provinces 
are presented in (S2 – S4). The spatial coverage of valid MAIAC AOD values in 
South Africa in 2016 ranged from 43% in July to 80% in December (Table S1). 
The distribution of the valid MAIAC AOD data was not markedly different across 
the months. However, the month of September recorded the highest values of 
AOD (mean of 0.15).  

3.2. Stage 2 calibrating PM10 with AOD and spatial-temporal data  

Fig. 3 shows scatter plots between predicted and observed PM10 

concentrations of the spatial, temporal and overall cross validation of the 
ensemble model. The overall R2 of 0.81 suggest good correlation between 
ground-level PM10 and ensemble model PM10 predictions. The ensemble 
performed well temporally (R2 of 0.80) but less so spatially (R2 of 0.48). The 
cross-validated performance metrics of the individual models compared to the 
ensemble model is presented in Table 2. Of the  

 
Fig. 2. Gauteng prediction map of AOD 470 nm for June 6, 2016.   



O.O. Arowosegbe et al.                                                                                                                                                                                                                        Environmental Pollution 310 (2022) 
119883 

46 

 
Fig. 3. Scatter plots between predicted and observed PM10 concentrations of the spatial, temporal and overall cross validation of the ensemble model.   

Table 2  
Cross-validated Performance Measures of the Different Stage 2 Models for 2016: R2 

(percent of explained variability). Overall root mean squared error (RMSE in μg/m3), 
spatial and temporal R2 and RMSE are reported for the ensemble averaged model.   

Model  CV  R2  RSME  
Ensemble  Total  0.81  11.4  

 Spatial  0.48  20.5  

 Temporal  0.80  12.3  
RF  Total  0.79  12.0  

 Spatial  0.34  23.3  

 Temporal  0.78  12.9  
XGBOOST  Total  0.81  11.4  

 Spatial  0.36  23.9  

 Temporal  0.78  12.7  
SVR  Total  0.77  12.6  

 Spatial  0.14  31.0  

 Temporal  0.76  12.3   
three machine learning algorithms, the model performance of the XGBoost 
marginally outperformed RF and SVR. In principle, XGBoost sequentially 
optimizes weak trees to improve their performance. This might explain the 
better performance of our XGBoost model. The ensemble model monthly 
mean PM10 predictions follow the observed monthly mean PM10 temporal 
trends across the four provinces (Fig. 4). Fig. 5 shows the annual mean PM10 

concentrations estimated at 1 km × 

1 km resolution for the four provinces. The spatial distribution of the annual 
PM10 concentrations highlights highly populated and industrialized areas of 
Gauteng province. Our models identified Johannesburg, Soweto and areas 
around the Vaal Triangle as PM10 pollution hotspots in Gauteng province. 
Similarly, the Highveld areas of Secunda, Middelburg, Kriel, eMalahleni and 
Hendrina emerged as PM10 pollution hotspots in Mpumalanga province. The 
cities of Cape Town and Durban are highlighted as PM10 pollution hotspots in 
Western Cape and KwaZulu- Natal provinces respectively. The predicted 
concentrations of PM10 in Western Cape and KwaZulu-Natal provinces were 
lower compared to those in Gauteng and Mpumalanga provinces (Fig. S8). To 
illustrate the monthly variation in predicted PM10 concentrations, Fig. 6 shows 
seasonal patterns in the monthly mean PM10 concentrations for Gauteng 
province (see Supplementary Figs. S5–S7 for the monthly mean maps of 
Mpumalanga, KwaZulu-Natal and Western Cape Provinces). PM10 

concentrations were highest during the winter months from June to 
September, peaking in September. The percentage improvement of the 
models for each variables included in the Stage 2 models are ranked in Fig. 7. 
The relative importance of each predictor quantifies the amount of error 
reduced when used by the models. For ease of interpretation, the importance 
score of each predictor was standardized from 0 to 100% by dividing each 
predictor importance score by the highest importance score of the predictors 
and multiply by 100 using R package Caret. Fig. 7 shows that the most 
important predictor was relative humidity, closely followed by CAMS_PM10.  

 
Fig. 4. Monthly observed versus predicted PM10 means. Error bars represent standard deviation of the mean.   
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Fig. 5. Annual mean PM10 concentrations (μg/m3) for 2016 at 1 km × 1 km grid cells aggregated from daily estimates.   

4. Discussion  

The application of AOD data to explain the variation in ground- monitored 
air pollutant has been explored in different countries because of its spatial 
coverage. In this study, about 38% of all possible AOD data were missing in 
2016. The proportion of valid AOD data was high when compared to studies 
from the Northern Hemisphere. A Swiss study reported 80.2% missing AOD 
observation in Switzerland from 2003 to 2013 while a range of 67%–83% 
missing AOD observations was observed in Italy during the study period of 
2013–2015 (de Hoogh et al., 2018; Stafoggia et al., 2019). The higher number 
of valid observations reported in this study was achieved due to the 
combination of the Aqua and Terra AOD products and favorable 
meteorological conditions in South Africa with fewer days, on average, with 
cloud cover in South Africa compared to Europe. The performance of the 
model used to impute missing AOD data suggested the model was able to 
capture about 96% variability in AOD with negligible error metrics. Our result 
is consistent with studies that have employed a similar approach in Great 
Britain and Italy with 98% and >94% percentage of variability in AOD captured 
respectively (Schneider et al., 2020; Stafoggia et al., 2019). The maximum value 
of AOD was recorded in September of 2016 in South Africa. This is comparable 
with results from a South African study on the regional and local characteristics 
of aerosols that also observed maximum values of AOD between August and 
October from 2000 to 2009 (Hersey et al., 2015). The high values of AOD 
reported during this period have been linked to the burning season in South 
Africa’s neighboring countries of Mozambique and Zimbabwe. Both countries 
have been identified as the major source of aerosols transported to South 

Africa. In addition, August and October also coincide with increased 
windblown dust across South Africa (Hersey et al., 2015).  

The missing 38% of AOD data, although a low percentage compared with 
other study regions, is not random, with the largest fraction of missing AOD 
data observed in the winter (June to August). The winter also coincides with 
the highest observed PM10 concentrations in the ground-level measurements 
due to increased use of fossil fuels e.g. for heating purpose (Hersey et al., 
2015). This could potentially lead to bias in the predicted PM10 concentrations 
either over- or under-predicting. However, we also offered CAMS predicted 
PM10 which was higher ranked in the relative importance compared to AOD 
470 nm (Fig. 7), which would have reduced the likelihood of potential bias in 
our estimates.  

Recently, the application of ensemble models has become more prominent 
(Di et al., 2019; Mandal et al., 2020; Shtein et al., 2019). The argument for the 
ensemble modeling approach is that by combining individual model estimates 
the individual biases of the different statistical models can be reduced. In this 
study we applied an ensemble approach using a generalized linear model to 
combine three models; RF, XGBoost and SVR. The overall CV R2 of 0.81 of the 
ensemble model was within the range of 0.71–0.81 reported by the two Italian 
studies for the years 2006–2012 and years 2013–2015, and substantially higher 
than the R2 of 0.64 reported in Sweden (Shtein et al., 2019; Stafoggia et al., 
2020; Stafoggia et al., 2017). Like the suboptimal performance of our model 
(spatial R2 of 0.48 in hold-out sites), the model fit (total R2) of the Swedish study 
reduced to 0.50 in hold-out sites. The strong decrease in our model 
performance in space is possibly due to the limited number and the uneven 
distribution of the monitoring sites. The monitoring sites  
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Fig. 6. Gauteng Province estimated monthly mean PM10 concentrations (μg/m3) for 2016 at 1 km × 1 km grid cells aggregated from daily estimates.   
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Fig. 7. Relative importance (scale from 0 to 100%) of the top 20 predictors from the individual models in Stage 2.   
are located in high pollution priority areas and this might not be sufficient to 
capture the variation in PM10 concentrations beyond the spatial domains of the 
monitoring sites. In addition, due to lack of availability we may have missed 
important predictor variables to characterize PM10 concentrations in South 
Africa, for example, detailed emission data. Despite this, the geographical 
variation of the estimated PM10 concentrations aligns with the spatial pattern 
of PM10 concentrations presented in our previous study on the spatial and 
temporal characteristics of PM10 data. The potential to use AOD data to explain 
the variation of air pollution at ground level is dependent on its relationship 
with ground-monitored measurements. In this study, AOD did not emerge as 
a strong variable for explaining the variation in PM10 concentrations in South 
Africa. Hersey et al., (2015) also reported a poor correlation between PM2.5 and 
PM10 and AOD in South Africa. The persistent and frequent dilution of South 
Africa’s vertical column with plumes from biomass burning emissions from the 
tropics at stable layers between 3 and 5 km above the majority of South Africa 
has been posited for the poor correlation between AOD and ground-level PM 
(Campbell et al., 2003; Chand et al., 2009; Hersey et al., 2015; Tyson et al., 
1996). Another reason is the likely inability of the satellite retrievals to 
differentiate between ground surface aerosol and concentrated aerosol layers 
from emissions released to the shallow boundary layer, related to geographical 
features, during the winter season in South Africa. Lastly, particulate matter 
concentrations in South Africa are influenced by morning and evening air 
pollution peak times. These peak times do not correspond to the different 
overpass times of the satellites in South Africa (Hersey et al., 2015).  

Nonetheless, in the four provinces included in this study, the areas around 
the economic and industrial cities of these provinces recorded the highest 
PM10 concentrations estimates. The estimated annual mean PM10 

concentration maps of the four provinces also suggest that concentrations in 
large parts of the Gauteng province are higher than WHO annual PM10 

guideline of 15 μg/m3 (World Health Organization, 2021). This is not surprising 
given that the Gauteng conurbation is the most densely populated province in 
South Africa with the highest density of anthropogenic emissions from all 
sources. Furthermore, we previously reported higher levels of PM10 

concentrations in Gauteng province monitoring stations compared to the 
other three provinces (Arowosegbe et al., 2021a). A similar pattern was also 
reported for PM2.5 by Zhang and colleagues (Zhang et al., 2021) showing high 
modelled PM2.5 concentrations in Northern and Southern Gauteng of the 
Highveld region of South Africa. The models identified the PM10 pollution 
hotspots around the mining activities of Mpumalanga province, Southern 
Durban Basin industrial Basin of KwaZulu-Natal and Cape Town Metropolitan 
of Western Cape province. To demonstrate the seasonal pattern captured by 
our models, we found an increase in PM10 concentrations between May and 
September. This overlaps with the winter months when there is an increase in 
anthropogenic emissions due to increased use of coal for domestic and 
industrial purposes and the formation of surface inversion layers preventing 
the atmospheric mixing mechanism for the dispersion of pollutants (Hersey et 
al., 2015).  

The ensemble approach used in this study performed well in characterizing 
PM10 concentrations across the four selected provinces of South Africa. 
However, we acknowledge the limited number of monitoring stations and 
ground-monitored PM10 data to calibrate these models. In addition, the 
distribution of the sparse monitoring stations impacted the stability of the 
models. The availability of emission data could have improved the 
performance of our models.  

5. Conclusions  

High quality air pollution exposure data to support health studies is lacking 
in many LMICs. With sparse air pollution monitoring data, we have shown - for 
the first time - that is possible to estimate daily PM10 concentrations for a 
whole year across four provinces of South Africa by leveraging remote sensing 

and novel spatiotemporal modeling approaches. Our spatiotemporal model 
was successful in capturing the day to day temporal variation, but was less 
efficient in characterizing the spatial contrast of PM10. In particular, the 
chemical transport model variable, CAMS PM10, was a highly influential 
predictor, and in our case more important than the satellite–derived variable 
MAIAC AOD. These variables should be considered as crucial predictors when 
modeling air pollution concentration in areas with limited ground monitoring 
networks. The potential of spatiotemporal models presented here, however, 
remains largely dependent on good air quality monitoring data as 
demonstrated by our study results. Therefore, efforts to improve air quality 
monitoring in SSA and other LMICs should be encouraged and supported to 
enable derivation of exposure data in these challenging settings.  
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9 Discussion  

This thesis presents new approaches to fill the gap in ground-monitored PM10 in South 
Africa. In tandem with the overall aim of this thesis, three individual studies presented 
the approach and results of the PM10 exposure assessment in South Africa. This 
chapter will discuss the challenges of air pollution exposure in South Africa and offer 
some suggestions on how to improve air quality monitoring in South Africa.   

9.1 The state of Air Pollution Measurement.  
The availability of good and reliable ground-monitored PM10 is central to these thesis 
objectives. The National Environmental Management Air Quality Act (AQA) of 2004 
introduced air quality monitoring as a tool for effective air pollution management in 
South Africa (Government of South Africa 2005). The introduction of this Act also gave 
birth to ambient air quality standards in South Africa set in 2009 where PM10 was 
identified as a criteria pollutant of interest (South African Department of Environmental 
Affairs (DEA) 2009). PM2.5 only became a priority air pollutant in South Africa in 2012 
(The Law Library of Congress 2018). The revised 2015 National Air Quality standards 
for PM10 are a 75 µg/m3 daily limit and an annual limit of 45 µg/m3 (Department of 
Environmental Affairs 2016). An important feature of the 2004 AQA is the framework 
for the management of air quality management. The management of air pollution was 
devolved to local municipalities while the national Department of Environmental Affairs 
provides legislation. In addition, areas with recorded bad air quality and areas prone 
to increased air pollution levels were designated as air pollution priority areas 
(Government of South Africa 2005). This was done to mobilize available limited 
resources to areas where they are needed most. The prioritization of air quality 
management resources has an impact on the distribution of air pollution monitoring 
sites across South Africa. To date, there are four air pollution priority areas in South 
Africa; the Highveld, the Vaal Triangle, the South Durban Basin and Waterberg located 
in four different provinces (Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal) 
of South Africa (Department of Environmental Affairs 2016, Feig, Naidoo et al. 2016, 
Feig, Garland et al. 2019). The density of air pollution monitoring sites in these areas 
informed our decision to focus on the four provinces. The first two studies (studies I 
and II) of this thesis presented the availability and completeness of PM10 at the sites 
distributed across these provinces. The huge gap in the continuous availability and 
completeness of PM10 was a trend that is consistent across sites from the four 
provinces (Arowosegbe, Röösli et al. 2021). This trend coupled with the limited number 
of monitoring sites may affect the ability of the spatiotemporal model ability in study III 
to capture variability in PM10 and the generalizability of model estimates to areas 
contributing little or no ground-level data information. We, however, reduced these 
biases by focusing on the provinces with some ground-level information. Study I also 
explored methods to increase the daily availability of PM10 in sites with relatively better 
PM10 annual data completeness. Our decision to only provide a model for 2016 in 
study III was also informed by the availability and completeness of ground-level PM10 

data.  
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9.2 Spatial predictors   
Important groups of predictor variables included in studies I-III to characterize PM10 
are spatial predictors such as road traffic, land use, population, and impervious surface 
data. Spatial variables are used as proxies for possible sources of air pollution 
emissions, especially in areas like South Africa where there are no emission data. 
These variables vary across different locations but their values in time are mostly 
unavailable and are assumed to be constant in time. We used Geography Information 
Systems (GIS) methods to resample these variables to 1 x 1 km grid cells across our 
study areas. The spatial variables values were subsequently used in our models to 
capture the spatial variability in PM10. The ability of the spatial variables to capture 
spatial variability was further explored in studies III and I. The variable of importance 
ranking of the spatial variables suggests they performed relatively poor when 
compared with temporal variables in explaining the variation in PM10 across the study 
areas. The poor performance of the spatial variables may be due; i) they are not good 
proxies for air pollution emission sources which might be due to the spatial resolution 
of these variables. ii) spatial variables' values do not vary in time i.e their values are 
constant over time. Thus, the constant pattern of these variables adds little explanatory 
information when used to characterize air pollution exposure.    

9.3 Spatiotemporal predictors  
In contrast to spatial predictors, spatiotemporal predictors are time and location 
varying variables. In studies I and III we used spatiotemporal predictors to construct 
our models. The majority of the spatio-temporal predictors are freely available on open 
source repositories.  Reanalysis meteorological and atmospheric composition 
variables of PM10, NO2 and O3 were obtained to achieve continuous spatial and 
temporal completeness of their values for our analysis. In study III, CAMS AOD 
estimates of AOD were used to impute missing MAIAC AOD across our study area. 
The complete time series of AOD data were subsequently used to reconstruct PM10 
concentration levels for the year 2016 across the four South Africa provinces. The 
variable of importance of studies I and III indicates that spatio-temporal predictors are 
relatively better in characterizing ground-level PM10 across South Africa. An important 
variable that emerged as a good predictor for explaining ground-level PM10 
measurements is the CAMS ensemble estimate of PM10. This suggests that the CAMS 
ensemble PM10 estimates have a good correlation with the ground-monitored PM10. 
The completeness of the CAMS ensemble PM10 estimates makes it a good variable to 
be considered in hybrid models, especially in areas with sparse ground monitored air 
quality data.  

9.4 AOD as a predictor of ground-monitored PM10   
The satellite product of AOD was conceptually considered a major predictor to 
characterize PM10 levels in South Africa because it is assumed that since AOD 
captures the columnar distribution of suspended particles; it would be associated with 
the distribution of ground-level particles. The availability of AOD at 1×1 km spatial and 
daily temporal resolution corresponds with the resolutions of target PM10 estimation 
spatial and temporal domain PM10 of study III. The result of study III however suggests 
that AOD did not contribute substantially to explaining the variation in ground-level 
PM10. A poor association between AOD and ground-monitored PM have also been 
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reported in other studies (Hersey, Garland et al. 2015, Alvarado, McVey et al. 2019). 
An important explanation for the poor predictive performance of AOD in South Africa 
despite relatively better data completeness of 68% for the year 2016 is the vulnerability 
of South Africa’s vertical column to plumes from biomass burnings. The persistent 
transboundary transportation of these plumes at stable layers close to ground level 
between 3 – 5 km above South Africa might impact the ability of AOD to capture the 
characteristics of ground level PM (Hersey, Garland et al. 2015). This, however, 
suggest that the columnar properties of AOD should not be considered as the primary 
variable for explaining ground-level PM concentration in South Africa.   

10 Methodological considerations for exposure assessment   

The methodological approaches to reconstruct PM10 exposure for 2016 across the four 
provinces of South Africa were informed by the quality of ground-monitored PM10 and 
the spatial and temporal predictors available to construct these models. Importantly, 
we considered statistical models that can capture the complex underlying relationship 
between ground-monitored PM10 and the spatio-temporal predictors. In addition, the 
generalizability of the models across the four provinces was also an important factor 
that was considered.   

First, as earlier emphasized, the distribution of the monitoring networks in South Africa 
is sparse and data completeness is a challenge. In study I, we tried to improve the 
completeness of the ground-monitored PM10 data. To this effect, we compared three 
models (National, Provincial and Site-specific) using Random Forest (RF) machine 
learning model to explore the statistical relationship between ground-monitored PM10 
and spatial and temporal variables to increase daily PM10 data at some sites with at 
least 70% of annual PM10 data. The site-specific model predictions were closest to the 
observed PM10 (Arowosegbe, Röösli et al. 2021). The results of study I suggest both 
National and Provincial models are less generalizable possibly due to the limited 
number of monitoring sites to capture the variation in ground-level PM10 across the 
study areas. Study II shows PM10 levels vary across the four provinces, site 
classifications and land use categories (Arowosegbe, Röösli et al. 2021). Given the 
variability of PM10 across the four provinces and the level of data completeness of 
ground-level PM10 for the years 2010 – 2017 together, we decided to model PM10 
exposure for only 2016. The year 2016 had the highest number of monitoring sites 
with the most complete PM10 daily data. In addition, we decided to use the ensembling 
of three machine-learning methods to achieve average PM10 predictions across the 
study areas. Machine learning methods are increasingly used for modelling 
environmental exposure because they do not assume the underlying relationship that 
exists between environmental exposure variables i.e. they learn the relationship from 
the data (Masih 2019). Extreme gradient boosting (XGBoost), RF and Support Vector 
Regression (SVR) were the individual learners selected to calibrate ground-level PM10 
and a RF model was used to average the daily predictions from the individual models. 
For study III analysis, we combined auxiliary markers of air pollution emissions and 
distribution such as satellite-derived AOD, meteorological variables, road network, 
population, and ensemble estimates of PM10, O3 and NO2 with daily ground-level PM10 
concentration in an ensemble machine learning framework. The ensemble machine 
learning framework has three main advantage over individual models; (i) It improves 



 

55 

the individual learners' prediction performance by averaging the predictions 
performance, (ii) The averaged predictions from the ensemble framework is more 
robust to overfitting and (iii) The averaged predictions are less bias compared to 
individual learners prediction (Zhang and Ma 2012). The applicability of exposure 
models for epidemiological studies depends on the reliability and generalizability of 
the models in space and time.  Thus, study III models were cross-validated spatially 
and temporally. Because the ground-level PM10 data are not representative of the 
study areas, we cannot assume the ground-level PM10 used for our exposure 
modelling is independent and evenly distributed across the study areas. This informed 
the spatial leave location out validation method used to assess the performance in 
space. The spatial leave location out validation allowed us to leave out data points of 
some sites and predict their PM10 concentration from the remaining sites, not held-out. 
In conclusion, the ensemble machine learning framework improved the individual 
learners' performance and predictive capacity.   

11 The implication of our exposure modelling results for similar studies in 
LMICs  

This thesis was conceived to explore satellite information as an opportunity to bridge 
the gap in ground-monitored air quality data in South Africa. South Africa has one of 
the most extensive air quality monitoring networks in sub Saharan Africa (SSA) 
countries. There are officially more than 180 reference-monitoring stations in South 
Africa but as earlier alluded to the majority of these stations are not operational all year 
round because of insufficient technical capacity, vandalism and financial constraints. 
The challenges of air quality in South Africa have left a gap in air quality management 
and air pollution health impact studies. Study III, to the best of our knowledge, is the 
first study integrating satellite information and spatio-temporal predictors with 
groundmonitored air pollution data to fill the gaps in ground-monitored air quality 
measurements in SSA. The key results from our studies should be highlighted as we 
believe more studies from SSA will consider spatio-temporal models using satellite 
information to address the challenges of air quality measurement in the region.   

Continuous air quality measurement is still a big challenge for air pollution exposure 
assessment. Study I detailed the gap in ground monitored PM10 data. This gap in 
ground-level monitored PM10 influenced the selection of the year 2016 for PM10 

exposure modelling. This implies that reliable and consistent ground monitored data 
is necessary for similar spatio-temporal models in areas with sparse ground monitored 
data. This further compound the challenges to bridging the gap in PM10. Nonetheless, 
the good predictive capacity of ensemble estimates of air pollutants is a piece of 
important information from our studies that future air pollution exposure assessment 
studies from sub-Saharan Africa countries should explore. The expected United States 
National Aeronautics and Space Administration (NASA) Multi-Angle Imager (MAIA) for 
Aerosol satellite instrument revolving around the earth at 740 kilometres is equipped 
with a specialized camera designed to differentiate different sizes of aerosols 
(particulate matter) based on how the particles reflect or absorb sunlight is an 
improvement on the satellite-derived columnar measurement of AOD (Diner, Boland 
et al. 2018). This could potentially resolve the problem of frequent dilution of South 
African vertical columns with plumes from burning emissions. In addition, the proposed 
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calibration of the MAIA satellite instrument data with ground-monitored data and 
computer models will further enhance MAIA’s product data for particulate matter 
exposure modelling in LMICs. However, the coverage of the under-development MAIA 
satellite is currently limited to a few selected primary and secondary target areas 
including two SSA cities of Johannesburg, Addis Abba designated as primary target 
areas and six SSA cities of Dakar, Accra, Lagos, Harar, Cape Town, and Nairobi 
selected as secondary target areas.  

12 The case for low-cost monitoring sensors  

The cost of establishing and maintaining reference-monitoring sites is one of the major 
challenges of air quality monitoring in LMICs including countries in SSA. Indeed, the 
estimated $100,000 per year to install and maintain a reference monitor might be 
responsible for just one ground-level monitor per 15.9 million people in SSA (World 
Health Organization 2018, Pinder, Klopp et al. 2019). Low-cost sensors are becoming 
popular for addressing the challenges of access and affordability of reference 
monitors, especially in LMICs. However, because the performance of these sensors 
can vary based on the technology and local meteorological conditions, low-cost 
sensors were initially used as indicative measures of air quality and were mostly used 
by citizen scientists to drive awareness about local air quality challenges (Amegah 
2018, Levy Zamora, Xiong et al. 2018, Malings, Tanzer et al. 2020).   

Nonetheless, low-cost sensors offer settings with limited reference networks an 
opportunity to collect air pollution data. The co-location of these sensors with reference 
monitors to derive calibration factors is been used to improve the quality of data from 
these sensors (McFarlane, Isevulambire et al. 2021). This approach offers an 
opportunity to interpret and use the data from these sensors to drive policy actions and 
research purposes. Studies from SSA are exploring the capacity of low-cost sensors 
with some cities in SSA now on the map of cities with air quality measurements due to 
the deployment and continuous development of these sensors based on the 
understanding of local conditions (Awokola, Okello et al. 2020, McFarlane, 
Isevulambire et al. 2021, Sewor and Obeng 2021).  

13 Conclusion and Recommendation  

The primary objective of this thesis is to bridge the gap in ground-monitor PM10 data 
using satellite information in four provinces of South Africa. This thesis addressed the 
objectives as follows. Firstly, we assessed the availability and methods to increase 
daily ground – monitor PM10 across the four provinces for different years between 2010 
– 2017. Secondly, the spatial and temporal pattern of daily ground–monitor PM10 
across the four provinces was assessed. Finally, we presented PM10 exposure maps 
across the four provinces for the year 2016. This thesis provides insight into the 
feasibility of using remote sensing data to bridge the gap in ground-monitor PM10 in 
South Africa. Our findings emphasized the gaps in ground-monitor data in South Africa 
and its impact on the success of PM10 exposure assessment using a spatio-temporal 
statistical modelling approach. In light of our findings, there is no one-size-fits-all 
approach to addressing air quality data gaps in South Africa and we believe this 
applies to all LMICs with limited air quality data.   
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The continuous advancement in air quality measurement tools and the use of remote 
sensing data offers South Africa  excellent opportunities to bridge the gap in air quality 
data. However, this can only be achieved within an efficient air quality management 
system. An efficient air quality management system in South Africa will recognize the 
distribution of air quality monitoring and the pattern of air pollution in South Africa to 
design a complementary and integrative air quality measurement system that 
delineates the role of low-cost sensors and remote sensing data for air quality 
monitoring in South Africa. The proliferation of low-cost sensors has made it difficult to 
identify the best sensors. However, a science-driven low-cost sensor deployment 
protocol informed by results from field calibration exercises and the suitability of these 
sensors base on South Africa’s environment, power and internet connection situation 
will help guide the adoption and use of these sensors in South Africa.  In addition, 
satellite-derived estimates of air pollution can play an important role in optimally 
understanding the dynamics of air pollution as demonstrated by our study III. It is, 
therefore, important that South Africa’s air quality measurement systems recognizes 
the growing number of satellite estimates measuring different properties of air 
pollutants and assess their applicability to characterizing air pollution in South Africa. 
While the primary focus of air quality stakeholders in South Africa should be on 
improving air quality monitoring, efforts should also be placed on the following:  

Data transparency and data use: Access to data for research and policy actions in 
South Africa is still a challenge. In South Africa, there is an online repository for air 
quality data managed by South African Air Quality Information Systems (SAAQIS). 
However, the availability and quality of air quality data on this platform are dependent 
on SAAQIS's access to data from the different monitoring networks across South 
Africa. Local, provincial and private authorities manage a substantial number of sites 
in South Africa and exercise some level of discretion on the availability of their data on 
the SAAQIS platform. Thus, incorporating data transparency into SAAQIS architecture 
will improve local and international air pollution community access to air quality data 
for scientific and public awareness purposes.  

Air quality management capacity building: South Africa has the most extensive air 
quality monitoring in SSA. However, a pertinent gap noticed in South Africa’s air quality 
data is the lack of continuous air quality measurements. Stations are reportedly shut 
down for several reasons bordering the financial and technical capacities of these 
stations to function optimally. An evaluation of both the individual (technical officers) 
and organization capacities needed to ensure the effective functioning of these sites 
is necessary. To ensure continuous monitoring of air quality data in South Africa, the 
South Africa Department of Environmental Affairs coordinates air quality monitoring 
activities in South Africa and should collaborate with the different monitoring networks 
and other stakeholders to design and implement continuous training activities for the 
stations' technical staff and create an ecosystem for knowledge sharing and colearning 
on air quality measurements best practices. Adequate funding for continuous 
monitoring could also be achieved through cooperate social responsibility and through 
funding from institutions with interest in air quality monitoring.   
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