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ABSTRACT

Humans interact with their environment and its physical laws with ease and thereby
demonstrate the ability to predict how dynamical situations unfold. Having an ap-
propriate internal model is indispensable to do so, however, it is unclear how our
brain can encompass this wealth of information and complexity of environmental
states and dynamics. For instance, dropping trash into a bin while passing by is an
effortless, almost unconscious process and yet a significant share of people show
tremendous misconceptions when being asked about the exact same dynamics in
physical reasoning tasks. This is also true for similar tasks when people are asked
to make judgments about other dynamical scenes like swinging pendula or moving
objects after curved trajectories. But how can this discrepancy between routine acting
and deficient reasoning be explained?

An early attempt to explain this discrepancy, especially the non-rational human
deviations from optimal behavior, is the reliance on rules of thumbs, often called
heuristics. Based on the idea that people’s internal models are likely not able to re-
flect the environmental complexity and thus need to rely on helpful, yet error-prone
approximations of processes and dynamics, heuristics try to reveal the underlying
mechanism for specific biases. However, these heuristics usually need to be individ-
ually adapted to the problem at hand and do not yield a general explanation beyond
the specific task. In contrast, probabilistic models of bounded rationality have been
able to quantify and explain these deviations as a consequence of human uncertain-
ties, a priori assumptions about their environment, and internal costs such as effort.
With this thesis we want to contribute to the understanding of this seeming dis-
crepancy and reconcile these two phenomena of humans being well tuned to daily
interactions and deficient in their reasoning about it using diverse tasks in controlled
environments as well as computational models and algorithms describing deviations
based on individual constraints.

First, we take a look at distance estimations in a judgment and a continuous action
control task and the resulting deviations from optimal responses. With respect to
physiological constraints, as perceptual uncertainty and action variability, and biased
a priori beliefs about the size of familiar objects we describe individual deviations
using probabilistic models and yet show the individual’s consistency across tasks
and beliefs. Since in both tasks people were constrained on viewing two-dimensional
projections of distant objects and thus could only access the visual angle or apparent
size they had to rely on assumptions about object sizes to infer a potential distance.
The fact that the observed objects being of constant and familiar size and people
likely having inaccurate and noisy beliefs can partially explain deviations in distance
judgments and estimations. Size beliefs were inferred using different estimation tech-
niques and the identified biases agreed across both techniques and were largely con-
sistent with behavior in both distance tasks. Overall, we are showing that deviations
in tasks about distance perception can be explained to a certain extent with con-
sistent biases in human prior beliefs. Thus, we are providing evidence for human
near-optimal behavior given constraints and the adequacy of probabilistic models
with individual size prior for distance perception in two dimensions.



In a second experiment we extended the experimental paradigm to test human
prior beliefs and internal models under conditions of varying feedback with a contin-
uous action control task. We investigated people’s belief about the non-linear dynam-
ics of sliding objects on a surface under the effect of friction with and without visual
feedback as well as their ability to transfer relevant information about mass, gained
by watching collisions, to this continuous action control task. Comparison of models
based on either a linear approximation or on the actual relationship described by
Newtonian physics revealed that people’s behavior could indeed be best described
by the model prescribed by Newtonian physics, especially while feedback was avail-
able. However, even without ever having seen the object’s trajectory in the feedback
deprived phase people were able to accurately transfer their gained knowledge and
perform extraordinary well. Not only the high Bayes factors favoring the noisy New-
ton model and the fact that it describes behavior well, but also the fact, that only
the sheer existence of an appropriate internal model for both, sliding with and colli-
sions without friction, can explain people correctly transferring the information to the
action control task, thus strongly support the near-optimal probabilistic view on peo-
ple’s behavior. In summary, the results of the second experiment further highlight the
superiority of probabilistic models with resource and physiological constraints over
heuristics as fixed rules in explaining human behavior and apparent deviations from
optimal responses.

Subsequently, we present an algorithm for the evaluation of individual cost func-
tions to unravel an additional cause for human deviations from optimal behavior. So
far only the puck sliding model considered subjective cost functions. There, the three
common cost functions o-1, hinge and squared loss were tested for by implicitly im-
plementing different shifts of the action distribution. But here, we allowed individual
parameterization of cost functions and the inclusion of effort specific costs, scaling
with the magnitude of the action itself. Since action selection is finally shaped by cost
functions considering these on an individual basis can be crucial to explain behavior.
Using generated data we demonstrate the algorithm’s capability to recover these pa-
rameters and to predict the varying influence of perceptual uncertainty and action
variability on responses in production and reproduction tasks. When used on data of
human behavior in diverse continuous action control tasks we were able to explain
pervasively observed undershoots as interaction of asymmetric cost functions and
action variability as well as identifying similarities between specific tasks. Thereby,
we provide further evidence in favor of explanations for human behavior in terms of
probabilistic model of decision making.

Finally, we transferred the puck sliding experiment to a VR setup enabling a nat-
uralistic interaction with the task. Here, the assumption was that holding an actual
physical puck and being able to accelerate it with a natural arm movement should
facilitate the recruitment of an appropriate internal model, which is in accordance
with the literature on embodied cognition. We compared data from this naturalistic
task design with the previously conducted experiment on a keyboard and found that
indeed individuals” behavior was significantly better described by a noisy Newton
model than the next best linear approximation. This was particularly interesting since
participants did not receive any feedback about the objects’ trajectories and final po-
sitions. Thus the internal models governing the responses had to be a priori learned
and accurately reflect the non-linearity of the environmental dynamics. These results
eventually demonstrate the relevance of naturalistic interactions to investigate human



behavior and again the capability of probabilistic models to describe it.

In summary, we present several experimental designs, probabilistic models and
algorithms in order to investigate people’s internal beliefs about functional relation-
ships and dynamics of their environment. By running these experiments in controlled
setups on screens and in VR we were able to constrain available information and to
identify relevant features supporting people in the recruitment of appropriate inter-
nal models. Our results emphasize: first, that naturalistic interaction facilitates the
recruitment of realistic models in accordance with both the idea of near-optimal re-
source constrained models and embodied cognition. Second, people’s behavior can
be biased but lawfully consistent and thus pointing out the importance and generality
of prior beliefs in modeling. And third, that individual cost functions incorporating
an effort related term can help to quantify and explain suboptimal behavior. These
results help to disentangle the mechanism behind the transition between deficient
reasoning and accurate routine behavior in humans. Future research will uncover
how the brain can achieve this level of performance, represent the enormous abun-
dance of information and interlink domains of knowledge.



ZUSAMMENFASSUNG

Wir Menschen interagieren mit unserer Umwelt spielerisch leicht, was so nicht mog-
lich wire ohne die Fahigkeit dynamische Prozesse einschédtzen zu koénnen. Es ist
unbestreitbar, dass hierzu die Existenz von passenden internen Modellen von Néten
ist, jedoch ist es unklar wie unser Gehirn es schafft mit der Komplexitdt und Daten-
fulle unserer Umwelt umzugehen. So bereitet es uns tiberhaupt keine Miihe etwas im
Vorbeigehen in einen Papierkorb fallen zu lassen, ohne dabei auch nur ansatzweise in
Verlegenheit zu geraten lange iiber die zugrundeliegenden Dynamiken nachdenken
zu miissen, doch zeitgleich geben Versuchspersonen, die nach diskreten Schlussfol-
gerungen iiber genau diesen physikalischen Prozess befragt werden, teilweise ab-
strus falsche Antworten. Gleichsam grobe Fehleinschdtzungen von Versuchsperso-
nen konnten unter anderem in Experimenten mit schwingenden Pendeln und Objek-
ten nach dem Verlassen einer erzwungenen Kreisbahn festgestellt werden. Doch wie
kann diese Diskrepanz zwischen addquatem Handeln im Alltag und groben Fehlein-
schiatzungen in Experimenten erkldrt werden?

Eine Erkldrung fiir diese Abweichungen vom Idealverhalten wurde schon vor Jahr-
zehnten darin gesucht, dass sich Menschen eher auf Faustregeln bzw. Heuristiken
verlassen. Dabei ist die Grundidee, dass davon auszugehen ist, dass interne Mo-
delle im menschlichen Gehirn nicht in der Lage sind die Komplexitdt ihrer Umwelt
abzubilden und deshalb auf fehleranfillige Vereinfachungen der zugrundeliegenden
Ablédufe angewiesen sind. Diese Heuristiken sind aber meist spezifisch auf das Ver-
halten in einzelnen Experimenten zugeschnitten und liefern dadurch auch selten all-
gemein giiltige Erkldrungen. Dem steht der Ansatz gegentiber Abweichungen im
menschlichen Verhalten mit probabilistischen Modellen zu erkldren, die sowohl men-
schliche Ungenauigkeiten als auch hilfreiche Vorannahmen berticksichtigen. In der
hier vorliegenden Thesis wollen wir uns dieser Widerspriichlichkeit der weitestge-
hend fehlerfreien Interaktion mit unserer Umwelt und den groben Fehleinschitzung-
en in Entscheidungsaufgaben annehmen. Dazu werden wir im Folgenden verschie-
dene Experimente in kontrollierten Umgebungen ebenso wie probabilistische Mo-
delle und Algorithmen zur Erkldrung dieser Abweichungen présentieren.

Zuerst betrachten wir die Abweichungen der Versuchspersonen vom Idealverhal-
ten in zwei Distanz-Einschdtzungs-Experimenten, eines mit bindren und eines mit
kontinuierlichen Antwortmoglichkeiten. Hier beschreiben wir individuelle Abweich-
ungen, deren Bestindigkeit iiber Experimente hinweg und Ubereinstimmung mit
a priori Groflenvorstellungen. Das Ganze erfolgt dabei unter Berticksichtigung von
physiologischen Limitierungen, wie eingeschrankter Prazision des Sehsystems und
Variabilitdt in Handlungen, und mitunter auch Verzerrungen durch Vorannahmen,
also a priori Vorstellungen. Da Versuchspersonen bei ihren Distanzentscheidungen
auf zwei-dimensionale Projektionen auf einem Bildschirm und damit nur auf die
scheinbare Grofie beschrankt waren, mussten sie auf ihre Annahmen tiber Objekt-
grofien zurtickgreifen, um tiberhaupt mogliche Entfernungen schitzen zu konnen.
Durch die Verwendung von gewohnten Objekten konstanter Grofse und der Tat-
sache, dass Menschen variable und mitunter verzerrte Grofienvorstellungen tiber
diese bekannten Objekte haben, konnen diese zur Erklarung der Abweichungen bei
den Distanzeinschdtzungen beitragen. Mithilfe zweier Inferenz Methoden wurden in-
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dividuelle Groflenvorstellungen bestimmt. Die so festgestellten Annahmen mitsamt
der moglichen Verzerrungen waren iiber beide Methoden hinweg konsistent und im
Einklang mit den Abweichungen bei den Distanzschitzungen. So zeigen wir, dass
Abweichungen bzw. Fehleinschidtzungen bei Distanzeinschitzungen in der Tat Hand
in Hand mit falschen Vorstellungen tiber Grofien und natiirlicherer Variabilitdt in
Wahrnehmungs- und Entscheidungsprozessen geht. Damit unterstiitzen unsere Re-
sultate die Sicht auf menschliches Verhalten als grundsatzlich auf akkuraten Vorstell-
ungen iiber die Umwelt beruhendes probabilistisches System, das optimale Entschei-
dungen fillt gegeben seiner Einschrankungen.

In einem weiteren Experiment zur Untersuchung von a priori Vorstellungen er-
weitern wir das experimentelle Design zu einer kontinuierlichen Interaktionsaufgabe
unter zusétzlicher Manipulation von visuellem Feedback. Im Fokus stehen dabei
die a priori Vorstellung der Versuchspersonen iiber die non-lineare Dynamik von
unter Reibungseinwirkung schlitternden Objekten und ihre Féahigkeit, Information
aus dem reinen Betrachten von Objektkollisionen auf diese kontinuierliche Interak-
tionsaufgabe zu tibertragen. Der Vergleich von heuristisch motivierten Modellen mit
realistischen, auf Newton’scher Physik basierender Modellen hat ergeben, dass das
Verhalten am Besten mit realistischen statt approximativen Modellen zu beschreiben
ist. Das gilt vor allem fiir Verhalten wéahrend visuelles Feedback vorhanden war, aber
auch in anschliefenden Phasen ohne Feedback. Nach dem Erlernen der Aufgabe
und dem Betrachten von Objektkollisionen waren Versuchspersonen in der Lage ein
Objekt im Mittel nahezu zielgenau iiber verschiedene Distanzen schlittern zu lassen
ohne jemals zu erfahren wo dieses zum Stehen gekommen ist oder wie schnell es sich
tiberhaupt bewegen lédsst. Nicht nur sprechen die hohen Bayes Faktoren zu Gunsten
der Newton’schen Modelle klar fiir die Sichtweise, dass interne Modelle realistischer
und probabilistischer Natur sind, sondern auch die schiere Notwendigkeit dieser re-
alistischen Modelle, um tiberhaupt die Information so korrekt zu erfassen und auf
die Interaktion {ibertragen zu konnen. Zusammenfassend unterstreichen die Ergeb-
nisse des zweiten Experiments noch einmal zusitzlich die hohere Passfahigkeit der
probabilistischen Modelle mit realistischen Dynamiken um Abweichungen vom Ide-
alverhalten bei Menschen zu erkldren sowie ihr Nutzen bei der Beschreibung von
Aufgabentransfer.

Darauffolgend gehen wir mithilfe eines neu entwickelten Algorithmus individu-
ellen Kostenfunktionen als zusatzliche Ursache fiir menschliche Abweichungen vom
Idealverhalten auf den Grund. Bis hierhin wurden im Modell, das das Verhalten der
Versuchspersonen beim Schlittern von Objekten erkldrt, nur die drei Kostenfunktio-
nen o-1, hinge und squared loss implizit durch eine Verschiebung der Verteilung, die
die messbaren Antworten beschreibt, beriicksichtigt. Bei diesem Algorithmus jedoch
ermoglichen wir individualisierte Kostenfunktionen und die Integration von Kosten
fir den Aufwand der Aktion selbst, wie z.B. die subjektive Anstrengung. Dabei
entsteht ein ganzer Parameterraum moglicher Kostenfunktionen. Da die letztendliche
Wahl einer Aktion mafsgeblich von den subjektiv erwarteten Kosten beeinflusst wird
ist die Berticksichtigung von individuellen Kostenfunktionen entscheidend fiir die Er-
klarung menschlichen Verhaltens. Die Fahigkeit, Kostenfunktionen und auch Variabi-
litaitsparameter aus menschlichen Antworten bei kontinuierlichen Schitzaufgaben zu
inferieren, haben wir mithilfe generativer Modelle erfolgreich getestet. Angewandt
auf reale Daten aus solchen kontinuierlichen Schitzaufgaben konnten wir auch die
allgegenwirtige Unterschdtzung von Werten durch das Zusammenspiel von indi-



viduellen, asymmetrischen Kostenfunktionen mit natiirlicher Variabilitit erklaren
und dariiberhinaus noch Ahnlichkeiten zwischen einzelnen Aufgaben aufzeigen. Da-
durch konnten wir weitere Evidenz fiir die Eignung probabilistischer Modelle zur
Beschreibung menschlichen Verhaltens und Abweichungen sammeln.

Abschliefiend haben wir das bereits beschriebene Experiment des Objekt-Schlitterns
in die virtuelle Realitdt tibertragen, um dabei eine moglichst natiirliche Interaktion
zu ermdglichen. Hierbei sind wir von der Annahme ausgegangen, dass sowohl das
haptische Greifen des echten Objektes als auch die natiirliche Armbewegung, um es
schlittern zu lassen, dazu beitragen, dass Versuchspersonen die Wahl eines passenden
internen Modelles leichter fallen und sich in addquatem Verhalten wiederfinden
sollte. Diese Annahme wire zudem dann im Einklang mit der Literatur um embodied
cognition. Im Vergleich zum vorherigen Versuchsaufbau mit Interaktion mittels Tas-
tatur konnte das Verhalten der Versuchspersonen signifikant besser mit dem realis-
tischen Newton’schen Modell beschrieben werden als mit der nachstbesten linearen
Approximation. Besonders interessant daran war, dass Versuchspersonen keinerlei
Informationen {iber die Trajektorie der Objekte erhielten, d.h. das Schlittern und der
Ort des Stillstandes nie zu sehen waren. Daraus ldsst sich schliefSen, dass das in-
terne Modell, das das Verhalten bestimmte, zuvor gelernt sein musste und korrekt
die Non-Linearitdt der Dynamik widerspiegeln konnte. Hier zeigen unsere Ergeb-
nisse die Relevanz von natiirlicher Interaktion in Experimenten zur Untersuchung
menschlichen Verhaltens auf und zugleich auch erneut die Eignung probabilistischer
und realistischer Modelle dieses zu beschreiben.

Zusammengefasst prasentieren wir verschiedene Experimente, probabilistische Mo-
delle und Algorithmen zur Untersuchung interner Vorstellungen des Menschen iiber
funktionale Zusammenhénge und Dynamiken unserer Umwelt. Dabei identifizieren
wir relevante Elemente, die die Wahl geeigneter interner Modelle beim Menschen
unterstiitzen, indem wir Monitor- und VR-basierte Experimente unter der Kontrolle
der verfiigbaren Informationen durchgefiihrt haben. Unsere Ergebnisse zeigen dabei,
dass erstens, natiirliche Interaktionen die Wahl geeigneter interner Modelle fordern.
Das steht dabei im Einklang sowohl mit der Idee von embodied cognition als auch
der, menschliches Verhalten als nahezu optimal mithilfe von probabilistischen Mo-
dellen zu beschreiben. Zweitens, dass menschliches Verhalten selbst mit Verzerrun-
gen konsistent {iber Aufgaben hinweg bleiben kann und dadurch nicht nur die Be-
deutung sondern auch die Allgemeingiiltigkeit von a priori Vorstellungen bei der Mo-
dellierung von Verhalten betont. Drittens, dass individuelle Kostenfunktionen zum
Einen auch Kosten fiir die Aktionen selbst statt nur deren Ergebnis beachten soll-
ten und zum Anderen einen wichtigen Beitrag zum Verstdndnis des Auftretens von
suboptimalen Verhalten leisten. Dabei helfen die Ergebnisse einen besseren Einblick
in die Mechanismen des Ubergangs von falschen Schlussfolgerungen iiber physika-
lische Zusammenhénge in Experimenten und dem routinierten Meistern unseres All-
tages zu erlangen. Kiinftige Untersuchungen konnten dabei noch starker in Richtung
moglicher Erklarungen fiir die zugrundeliegenden neuronalen Représentationen un-
serer komplexen Umwelt und Vernetzung verschiedener Wissensdoménen gehen, die
die Grundlage fiir diese Leistungen bilden.
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Using the olfactory sense to check whether the pizza has al-
ready developed its distinctivescent. . . . . . ... ... ... .. 14

Figure 7 Experimental design. Subjects participated in three subsequent
tasks. In the S-2AFC task subjects were asked to perform a
familiarity judgment task. Seeing two different sized spheres
with the same surface texture (sport balls) they should pick the
more realistic one. In each following trial the rejected sphere
is replaced by a new size sample drawn from a proposal dis-
tribution. Based on the accepted samples from multiple runs
(chains) with differing starting points with regard to the ini-
tial sphere sizes, subjective distributions for sphere sizes can
be derived for each participant. In the MoA task subjects were
asked to adjust the position of one sphere to the same dis-
tance of a second immobile sphere from another type, which
means that they only encountered combinations of different
sport balls. Thus, their belief about the object size, especially
when differing from the actual sizes, should strongly influence
their responses in this method of adjustment task. In the last
D-2AFC task participants were asked to judge which of the

shown objects was closer to them as observer. . .. ... .. .. 19
Figure 8 VR setup. A) VR replica of the room. B) Participant’s front

view of the desk. C) Single trial of the familiarity choice task

(S2AFC). . . . . e 20
Figure 9 Bayesian graphical models for S-2AFC and MoA experiments.

A) S-2AFC. Simple mean ps and sigma os inference for log-

normal size distributions. Yielding one parameter pair for each

participant and object describing the size belief. B) MoA. Model

describing the belief about objects” distances in the method of

adjustment task based on the previously determined size be-

liefs, i.e. the size belief parameters ug, ug and o, O'g. Percep-

tual uncertainty oper about the actual visual angle o can be

inferred from D-2AFC data with same object combinations for

each participant. . . . . .. ... ... ... o oo L 22
Figure 10 Resulting sampling chains of experiment ‘S-2AFC’” with burn-

in. A) Chains from human sample rejection task. For each

chain the chosen size in each trial is depicted. Vertical lines

indicate burn-in positions where all chains have intersected.

B) Posterior predictive values for sizes based on log-normal

distributions of Bayesian size prior model, see figure gA). C)

Overview of resulting prior size beliefs. . . . . . ... ... ... 23
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Figure 13
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Cumulative log-normal fits as psychometric curves. Psycho-
metric curves for same object combinations in the D-2AFC ex-
periment for each participant showing the thresholds for vi-
sual perception in absolute difference of visual angles. Raw
data points show whether a participant decided correctly and
the estimated line approximates participant’s probability of
recognizing a difference in visual angle size correctly. Red line

indicates the threshold atp=.75.. . . . . . ... ... ... ...

Single participant data (#4): size beliefs, MoA and D-2AFC
decisions. A) Size prior. Subjective size beliefs as distribu-
tions, correct sizes marked by accordingly colored lines and
mean shift in meter. B) Size ratio beliefs. Showing the devia-
tion of the ratio belief from the actual ratio. C) Data structure
explanation. MoA and D-2AFC data for base- and soccerball
comparison. MoA: Actual distance of fixed object on the y-
axis as function of the final distance of adjustable object. Trials
are colored conditioned on the adjustable object type. Base-
balls were placed to close, since the subject is overstimating
the baseball relatively to the soccerball, and thus deviating in
the light orange area. Vice versa when the soccerball was ad-
justable. D-2AFC: Subject’s decision in each trial whether the
actual bigger object is closer as function of the distance dif-
ference. Negative shifts of the threshold are expected if the
smaller object is relatively overestimated. D) MoA data for all
object combinations. Relative overestimation of the baseball
strongly influences decisions for SB and TB combinations. E)
D-2AFC data for all object combinations. In SB combination
soccerball is chosen too early and in TB combination tennisball
is chosen too long as function of the distance difference - both

signs of the overestimation of the baseball. . . . ... ... ...

MoA and D-2AFC data consistency for two participants. Ab-
sence or the directionality of biases are consistent for each par-

ticipant within each object combination. . . . . .. ... ... ..

Consistency of thresholds, slope differences and biases in
size ratio beliefs. A) Threshold values of the psychometric
functions as function of the slope differences between MoA
regressions for each participant and object combination. Re-
gression shows the systematic consistency across both tasks. B)
Size ratio beliefs for each participant and combination. Vertical
lines indicate actual size ratio and colored arrows the direction
and degree of the deviation. C) Again thresholds as function
of slope differences with regression and now with data points
colored by the relative deviation of the size ratio belief from

the actual ratio showninB). . . . ... ... ... ... ......
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MoA decisions and model’s mean posterior belief. A) Large
deviation of optimal behavior in MoA task can be well ex-
plained using the inferred subjective size beliefs. B) Model
based on the slightly deviating size beliefs explains slight devi-
ation. C) Bias in model posterior remains since size ratio belief
is not (clearly) deviating from actual value. D) Model overcom-

pensation due to strong deviation in size ratio belief. . . . . ..

Size belief measurements via depth camera. A) Participants
were placed in front of a camera measuring a depth profile. B)
Meanwhile they were asked to pose with their hands parallel
to the camera indicating their belief about. C) Measuring the
closest distance between two opposing points in their palm
forty times across several frames yields an a priori size belief
distribution (orange) which can be compared to the inference

of the S-2AFC task. . . . . . . . . .. . . . . . .

Comparison size prior from S-2AFC and depth camera. A)
Size prior distributions for each participant and object. Type of
measurement separated by color: S-2AFC in black and depth
camera data in orange. B) Mean value of size prior estimated
by depth camera as function of values from S-2AFC. C) Stan-
dard deviation of measured values for depth camera data as

function of S-2AFC. . . . . . . ..

Task design. (A) Single trial illustration. Target area and puck are
presented on a monitor from bird’s-eye perspective. Releasing the
pressed button accelerates the puck by applying a force, which is
proportional to the press-time. In trials without feedback the screen
turned black after button release, while in feedback trials partici-
pants were able to see the puck moving according to simulated
physics. (B) Four phases of the experiment. In the "prior” phase, no
feedback about puck motion was available, whereas in the "feed-
back” phase subjects obtained visual feedback about the pucks” mo-
tion. Two pucks with different colors and correspondingly different
masses were simulated. In the 'no feedback’ phase subjects obtained
a new puck as indicated by a new color and obtained no feedback. In
the last phase, subjects first watched 24 collisions between the new
puck and the pucks they had interacted with in the 'feedback’ phase
before interacting again with the puck. Note that the puck of the 'no

feedback” and “collisions + no feedback’ phase are identical. . . . . .

Press-times as function of initial distance to target. Press-times for
all participants by condition and experimental phase are shown with
data points in black and Newtonian relationship with perfect knowl-
edge about the involved parameters in blue. The top row shows the
data of subjects in the light-to-heavy condition and the bottom row
shows the data of subjects in the heavy-to-light condition. (A) Press-
times of participants in the first phase ("prior"), (B) second phase
("feedback") for the yellow puck, (C) second phase ("feedback") for
the red puck, (D) third phase ('no feedback"), and (E) last phase

("collisions and no feedback") after having seen 24 collisions. . . . . .
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Figure 21

Figure 22
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Task performance and pucks’ traveled distance for three phases
of experiment. (A) Participants’ performance by experimental phase
as quantified by pucks’ average absolute error in final position. The
number of the ring at which the center of the puck stopped was
used for coding performance, e.g. 1 and 3 in the shown cases. (B)
Aggregated final positions of pucks versus initial distance of pucks
to target. Phases of the experiment are separated by columns and
conditions are separated by rows. The line of equality represent-
ing final positions prescribed by the Newtonian model with perfect

knowledge of all parameters is showninblue.. . . . . . . .. .. ..

Change point detection. Average absolute error as function of tri-
als and posterior of mean average error derived using the change
point detection model. (A) Average absolute error over participants
as function of trial number. (B) Posterior over change point T. Red
dotted line marks trial six. (C) Posterior of mean error before and

after changepoint. . . . . . .. .. . oo oo

Kolmogorov tests - press-times in phase 2 & phase 3. In the light-
to-heavy condition both distributions of press times when seeing
pucks and without feedback in phase 3 differ significantly. How-
ever, considering the asymmetry within the task response - press-
times and potential masses are only constrained single-sided to-
wards lower values with a minimum at zero - this difference in
press-time distributions is surprisingly small. (B) In the heavy-to-
light condition there was no significant difference between the dis-
tribution of press-times of both combined feedback pucks and the
unknown puck before observing the collisions as revealed by the
Kolmogorov-Smirnov test. This suggests that participants adhere to
their previous adjusted strategies when facing decisions in great un-

certainty. . . . . . ...

Distance error distributions. Final discrepancy between target and
puck pooled for all participants. Pucks being shot too short are
shown with negative values, pucks with a positive deviation were
shot too far. Columns showing the the data for both conditions and
rows divide into puck and phase combinations. The first two rows
(in gold and red) showing the error distributions for both pucks
with feedback in phase 2. The error distribution for the unknown
puck in phase 3 before seeing the collisions is shown in the second
last row (in purple) with greater deviation, with a clear bias and
bigger spread. In the last row the error distributions are depicted for
the unknown puck after having seen the collisions with the previous

learned pucks, showing a reduced bias. . . . . ... .. ... ... ..

44
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Figure 24

Figure 25

Figure 26

Figure 27

Figure 28
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Press-time distributions. Pooled press-time distributions for all
participants. Columns showing the the data for both conditions and
rows divide into puck and phase combinations. First two rows show-
ing the press-times for the pucks with feedback. Press-time distri-
butions in phase 3 without feedback are shown in row three in
blue. Without further information participants” behavior in phase 3
is strongly influenced by the previous phase and its press-time dis-
tribution: press-time distributions for the unknown puck in phase
3 reflect roughly the combined distributions of press-times of the
previous pucks in phase 2 (Kolmogorov D = 0.0538; p = 0.092 for
heavy-to-light, D = 0.156; p = 9.8 x 1072 for light-to-heavy).

Hierarchical Bayesian network for the Newtonian interaction model.

The model expresses the generative process of observed press-times
t?7¢ across trials i, participants j, and pucks k including Weber-
Fechner scaling given perceptual uncertainties of distance x;; and
mass m; . of the pucks and subjects” press-time variability. The pa-
rameter values refer to the prior probability distributions. See the

textfordetails. . . . . . . .. ... o

Implementation of cost functions. Derivation of the three cost func-
tion models based on the expressions for the measures of the cen-
tral tendency of the log-normal distribution with its mode exp(u —
02), median exp(un) and mean exp(p + %2). Setting the intended
press-time to one of these measures for the press-time distribution is
equivalent with choosing the o-1, absolute or quadratic loss function.
Residuals of estimated press times and inferred masses in phase
two for three cost functions. (A)Residuals were calculated for each
participant and each puck in phase two ("feedback") given the actual
press-times and the best fits for the linear heuristics and the Newto-
nian model. Residuals for both models were calculated for all three
cost functions. (B) MAP estimates of the masses used by individ-
ual subjects inferred according to the Newtonian model for the the
three cost functions. Red and yellow pucks had different masses for
subjects in the two conditions "heavy-to-light" and "light-to-heavy".
Posterior estimates of perceptual uncertainty and press-time vari-
ability inferred with data from phase two "feedback". (A) Inferred
posterior distributions of perceptual uncertainty for the linear heuris-
tics model and the Newtonian physics model. Dark green distribu-
tions display posterior distributions for the Newtonian model class,
dark blue ones for the linear model class. A separation into cost
functions is not included since the different cost functions did not
lead to significant differences. (B) Inferred posteriors for individual
press-time variability varied significantly between subjects between
the two models. All but one participant show lower or equal val-
ues of variability regarding the press-time for the Newtonian model

class. . . . e e e
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Latent masses by cost function: aggregated data from phase 2.
Inferred latent mass beliefs with aggregated data from phase "feed-
back’ for each cost function. Posterior distributions for mass belief
aggregated over all participants for each cost function. Colored, ver-
tical lines indicate actual mass of pucks. In comparison the quadratic
loss function leads to posterior distributions that fit closest to the ac-

tual masses in the experiment. . . . . . .. ... ... oL

Bayes factors calculated from posterior odds sampled using the

product space method. Bayes factors are displayed for different phases

and combinations of phases. Blue line at 1 marks the point where
neither model is stronger supported by evidence. Red line at 3.2
marks the transition from Bayes factors being only worth mention-
ing to substantial evidence in favor of one the models. Colors of bars

indicate the model favored by the Bayes factors. . . . . . .. ... ..

MAP values of inferred latent mass in Newtonian model class

with quadratic loss function for each participant and condition. . .

Latent masses: phase "prior’ and 'feedback’. Inferred latent mass
in Newtonian model class with quadratic loss function for each par-
ticipant and with data from Prior and Feedback phase. Posterior mass
distributions for each participant in Prior and Feedback phase. Gray
distributions show the inferred mass distribution for an unknown
puck before participants have encountered the task dynamics. Re-
sulting mass distributions for both pucks in feedback trials in red
(light puck) and yellow (heavy puck). Dotted lines indicate actually

implemented mass for each of the feedback pucks. . . . . ... ...

Latent masses: phase 'no feedback’ and ‘collision and no feed-
back’. Inferred latent mass in Newtonian model class with quadratic
loss function for each participant with data from Prior and both No
Feedback phases. Posterior mass distributions for each participant in
Prior and Feedback phase. Gray distributions show again the inferred
mass distribution for an unknown puck before participants have
encountered the task dynamics. Distributions in violet and green
are the posterior mass distributions of the unknown puck without
feedback before and after the participants saw collision with known

pucks. Dotted line marks the actual mass of the unknown puck. . . .

Bayesian model for learning through observing collisions with
prior and posterior mass beliefs. The left panel shows inferred pos-
terior mass beliefs for the pucks from feedback phase 2 for each
participant. All 100 trials were used to infer the mass beliefs. These
posteriors were used as priors for the inference from observations.
The graphical model for learning by observing collision is shown in
the middle panel. Uncertainty about the pucks’ velocities is intro-
duced for the initial velocities v and v as well as for the resulting
velocities ur and unF after the elastic collision. Utilizing the phys-
ical relationship of velocities and masses in an elastic collision en-
ables inferring beliefs about the unknown puck based on previous
mass beliefs of pucks in phase 2. Resulting posterior mass beliefs are
shown in the right panel for inferences based on 6 and 24 observa-

tionsof collisions. . . . . . . . . . . .o
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Learning progress of mass beliefs during interaction and obser-
vation. Barplot of averaged variance for both models and a given
number of observations. First three columns show the average vari-
ance in posterior mass beliefs for inferences with 6, 24 and 100 trials
per puck and participant. Two last columns show the average vari-
ance of mass beliefs of the unknown puck resulting from inference
using the collision model for 6 and 24 trials, while using the poste-
rior mass belief of the known pucks from the interaction model with

1ootrialseach. . . . . . . . . ..o

Deviations from fully-observed Newtonian physics and model
predictions (light to heavy). Posterior predictive for press times, ac-
tual press times and ideal responses for phases two to four and con-
dition light-to-heavy. Black distributions show the actual data, red
and blue ones display samples from posterior predictive distribu-
tions of both, the linear and Newtonian model, and green ones show
the correct responses given perfect knowledge about the underly-
ing physics and all parameters. Visualizing the enhanced suitability
of this noisy Newtonian model framework compared to Newtonian
models excluding prior preferences and uncertainties in describing

human behavior. . . . . . . . . . ... ... e

Deviations from fully-observed Newtonian physics and model
predictions (heavy to light). Posterior predictive for press times, ac-
tual press times and ideal responses for phases two to four and con-
dition heavy-to-light. Black distributions show the actual data, red
and blue ones display samples from posterior predictive distribu-
tions of both, the linear and Newtonian model, and green ones show
the correct responses given perfect knowledge about the underly-
ing physics and all parameters. Visualizing the enhanced suitability
of this noisy Newtonian model framework compared to Newtonian
models excluding prior preferences and uncertainties in describing

human behavior. . . . . . . . . . . . . . o

Posterior predictive checks for press-times in both models. Pos-
terior press-time predictions for both, the linear and the Newtonian
model with quadratic cost function, and separately for every phase.
Actual data is shown as red line. Model predictions in dark green
(50 iterations) of the fitted Newtonian model match the data closely
and surpass the fitted linear model in dark blue for the complete

data set and in almost every phase individually. . . . . . .. ... ..

Inference model. A Typical behavioral data in a production or
reproduction task. B Bayesian network of response generation
from the perspective of the researcher. C Examples of parame-
terized costfunctions including effort. D Log-normal response
distribution. E Simulated responses using inferred model pa-

rameters. . . . . .. . e e e e e e e e e e e e e

62

18



Figure 40
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Visualization of cost inference algorithm. Numbers reflect
the steps in Algorithm 1 while red arrows indicate the pro-
cess direction. The chain starts at 1) with the initial parameter
for action variability and cost function. In 3) based on these
parameters and their associated stepsizes a first new proposal
is drawn from a Gaussian distribution. These values lead to a
response distribution, a cost function and the result of their
product the weighted distribution. This distribution has its
mode initially at the target position - that e.g. is the value to
be reproduced in a reproduction task. However, depending on
the value of alpha and beta, this choice may not necessarily
have the lowest cumulative cost and therefore is optimized in
4) with respect to the position of the mode of the response
distribution yint. The optimization process of finding the best
action given the constraints is approximated with a neural net-
work shown in the bottom row for both known and unknown
perceptual uncertainty. Input values are action variability og,
cost function coefficients « and 3, the actual target x and - if
unknown - the perceptual uncertainty op. Networks had six
layers: an input layer with 4 or 5 units, layer one with 16 units
and leaky ReLu activation (alpha at .1), layer two with 64 units
and leaky ReLu activation (alpha at .05), layer three with 16
units and ReLu activation, layer four with 4 or 5 units and
sigmoid activation, and layer 5 as a single unit output layer.
In step 5) the likelihood of the data given o and yin¢ is cal-
culated as well as the prior probability of o, o and 3 for the

initial parameters. MH acceptance rule in steps 6-9). . . .. ..

Tile plot showing the influence of perceptual uncertainty oy,
and action variability 0, on the intentional target, i.e. mode of
the log-normal() response distribution, for five different cost
functions. Both axes range from .05 to .5 to display realistic
values. Color code describes whether actions are expected to
match the target (green line), undershoot it (blue regions) or
overshoot it (red regions). Deviations are presented on a per-

centage scale of the actual target. . . . . . ... ... .......

Response pattern of a generic reproduction task and its recov-
ery for three different cost parameter settings. (A) Recovered
cost functions and ground truth cost function (dark red). (B)
Three-dimensional space with the most likely recovered pa-
rameters in dark grey and ground truth values in dark red.
(C) Generated responses based on ground truth parameters
as green dots and predictions as box plots based on the most
likely sample. (D) Posterior distributions for «, 3 and o4 pa-
rameters and ground truth marked by red vertical lines.
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Figure 44

Figure 45
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Comparison of three sampled cost functions with high pos-
terior probability for each of the two simulated data sets in
the second and third row in figure 42. Bottom row depicts the
log value of costs to better visualize the steep gradients, espe-
cially for the left example. Left panel A-C): three exemplary
cost functions with associated costs for the second case in fig-
ure 42. Right panel D-F): three exemplary cost functions with

associated costs for the third case in figure 42. . . ... ... ..

Puck sliding as action control task. Both targets and actions are
on a continuous scale. (A) actual responses (y-axis) given the
targets (x-axis). (B) predictions based on best inferred parame-
ter setting as boxplots for exemplary targets (1,000 data points
each). (C) most likely 5% of posterior distribution for «, 3 and
04 in 3D parameter space. (D) cost functions corresponding to

parameters in (C). Best sample highlighted in blue. . . ... ..

Beanbag throwing as action control task. Targets on five dis-
crete positions and actions on a continuous scale. (A) actual
responses (y-axis) given the targets (x-axis). (B) predictions
based on best inferred parameter setting as boxplots for these
targets (1,000 data points each). (C) most likely 5% of poste-
rior distribution for «,  and o4 in 3D parameter space. (D)
cost functions corresponding to parameters in (C). Best sam-

ple highlighted inblue. . . . . . .. ... ... .. .........

Recap-visualization of cost inference algorithm. Numbers re-
flect the steps in Algorithm 1 while red arrows indicate the
process direction. The chain starts at 1) with the initial pa-
rameter for action variability and cost function. In 3) based
on these parameters and their associated stepsizes a first new
proposal is drawn from a Gaussian distribution. These values
lead to a response distribution, a cost function and the result of
their product the weighted distribution. This distribution has
its mode initially at the target position - that e.g. is the value
to be reproduced in a reproduction task. However, depending
on the value of alpha and beta, this choice may not necessar-
ily have the lowest cumulative cost and therefore is optimized
in 4) with respect to the position of the mode of the response
distribution yint. In step 5) the likelihood of the data given o
and Yint is calculated as well as the prior probability of o,
and f for the initial parameters. MH acceptance rule in steps
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A) Exemplary cost functions. Five different generic cost func-
tions from concave to convex and low effort to high effort.
Parameters shown on top. B) A priori model predictions. Pre-
dictions using the generative model shown in figure 46 for
different values of o, « and (3. Box-plots show the optimal
distribution of responses for different target positions given
log-normal perceptual uncertainty, action variability and cost
functions. C) Task specific cluster of cost functions. Two di-
mensional density plot of cost function parameters « and 3 of
each individual’s best sample. Cluster show similar and con-
sistent behavior across participants and differences between
different experiments. Participants used for the upcoming task
specific visualizations of inferences in figures 48-52 are high-
lighted as red dots. One cost function, participant additionally
marked by an red arrow, for each task is depicted in the upper

TOW. . o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Puck curling data (Neupirtl, Tatai, and Rothkopf, 2020). A
Participant’s actual responses (scatter plot) and model predic-
tions (box plot) as function of the target magnitude. B 3D scat-
ter plot of the five percent samples with the highest likelihood
from iterations with adjusted step size and initial values. C
1D visualization of cost functions corresponding to each «-f3
pair shown in B) for a target magnitude of 1. Cost function of
the sample with the highest likelihood, also used to generate
predictions in A), highlighted in blue. D,E) 2D visualization of
cost functions with action values here on the y-axis and target
values on the x-axis - D) shows the absolute costs and E) their

logarithm, useful for steep gradients. . . . . . ... ... .. ...

Beanbag throwing data (Willey and Liu, 2018b). Responses of
two exemplary participants from the beanbag throwing exper-

iment and the corresponding parameter inference. . .. .. ..

Force reproduction data (Onneweer, Mugge, and Schouten,
2015). Responses of two exemplary participants from the force
reproduction experiment and the corresponding parameter in-
ference. Note that target and response values are shown here

as hundredths of Newton. . . . . .. .. .. ... ... ......

Time reproduction data (Birkenbusch, Ellermeier, and Kat-
tner, 2015). Responses of one examplary participant from the
time reproduction experiment and the corresponding param-

eterinference. . . . . . . . ... e

Walking reproduction data (Sun et al., 2004). Responses of
one examplary participant from the distance walking exper-
iment and the corresponding parameter inference. Note that

target and response values are shown here as tenth of meters. .
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Weberfraction derivation from log-normal distributions. A)
Relationship between the normal and log-normal distribution,
enabling the use of classic signal detection theory for two nor-
mal distributions. Three exemplary log-normal distributions
are shown on the x-axis in the linear space with their log-
transformed counterparts on the X-axis in the log-space. Loga-
rithmic function is shown as dotted black line. B) Visualization
of equation 34. Detection threshold O as function of difference
between two stimuli A for given stimulus at x = 1 and uncer-
tainty o = .2. Red lines mark values of A that lead to a thresh-
old © at .6, .75 and .9. C) Three resulting cumulative normal
difference distributions for three different stimulus differences
A at .075, .212 and 435 leading to corresponding aforemen-
tioned threshold level © at .6, .75 and .9. D) Weberfraction as
a function of log-normal variability o as shown in equation 35
for the common threshold level © at .75 (Wichmann and Jakel,
2018). Discrepancy between weberfractions and inferred log-

normal variabilities o diverges for higher values of uncertainty. 88

Comparison of both experimental setups. (a) In the keyboard
condition participants saw the target and the puck on a com-
puter screen and adjusted the momentum acting upon the
puck via press-time of a keyboard button (Neupértl, Tatai,
and Rothkopf, 2020). (b) In the Virtual Reality setup partici-
pants viewed the scene including the distance to the target in
a Head Mounted Display (HMD) and were able to grasp the

actual puck and slide it naturally ona table. . .. ... ... ..

Basic Bayesian interaction model (a) and corresponding nested
model (b) for the product space method. Shaded nodes, e.g.
the actual distance x and impulse p in the basic impulse model,
are observed and known to the experimenter. White nodes are
latent and need to be inferred. Participants’ observation of the
actual distance x is inevitably subject to perceptual uncertainty

ox and thus leads to a noisy percept xper. . . . . . . .. ... ..

Actions as function of the initial distance to the target for the
keyboard (a) and haptic (b) conditions across all participants.
Best generalized additive model fits based on maximum like-
lihood are shown for a linear and a square-root relationship in
light and dark grey, respectively. For the data from the hap-
tic condition, the ideal curve based on the actual weight of
the puck and friction coefficients is also drawn as dotted line.
(c) Estimated variability of participants” actions as function of

distance totarget. . . . . ... ... ... . L o L 97

Comparison of inferred perceptual uncertainties and action
variabilities for both conditions and models. (a) The x-axis
shows the perceptual uncertainty o inferred using the linear
model and the y-axis the one inferred using the Newtonian
model. (b) Inferred values for the action variability o, again
with values on the x-axis for the linear and on the y-axis for the
Newtonian model. (c) Differences between linear and Newto-

nian model inferences for oy and op. . . . . ...
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Comparison of inferred mass beliefs (Newtonian model) and
linear factors (linear heuristic) for both conditions and mod-
els. (a),(b) The x-axis shows the linear factor inferred using
the linear model and the y-axis the mass inferred using the
Newtonian model for the two conditions, respectively. (c) In-
dividually inferred modes of the mass posterior compared to

the actual mass of the used puck in the haptic condition. . . . .

Standard deviation of posterior distributions over mass beliefs
in the Newtonian model (y-axis) and linear factor (x-axis) in

the linear model for the keyboard (a) and haptic conditions (b). 100

(a),(b) Posterior predictives for both models and data sets in
comparison with the actual data and (c) Bayesfactors calcu-
lated based on the inferred posterior odds of the nested model.
Ideal behavior shown as green distribution for the haptic con-
dition. For a better overview, Bayes factors in (c) are plotted
on a log scale. Red dotted line indicates threshold at 3.2 for
substantial evidence that one model is superior to the other. .
Mean absolute error and standard deviation of errors for each
subject based on the best parameters for both models. Values
for the best linear model are shown on the x- and for the best
Newtonian model on the y-axis. Gray line marks equal values,
above lie data of subjects with higher values for the Newtonian
model and below with higher values for the linear model. . .
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ACRONYMS

2AFC Two-alternative forced choice
HMD Head mounted display
MCMC Markov Chain Monte Carlo
MAP Maximum a posteriori

MH Metropolis-Hastings

SEM Standard error of the mean

VR  Virtual Reality
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INTRODUCTION

The whole of science is nothing more than a refinement of every day thinking.

— FEinstein, A. (1936). Physics and reality. Journal of the Franklin Institute, 221(3),
349-382.

Since the beginning of the human era one of the important and in large parts
still unsolved puzzles is to understand our own mind. By searching for quantitative
descriptions of behavior scientists have been trying for centuries to find fundamen-
tal mechanisms on small and large scales alike. Significant milestones on this quest
were already reached in the 19th century by pioneers such as von Helmholtz in vi-
sual perception with the description of physiological optics (Von Helmholtz, 1867)
and Fechner in describing both sensation in general and conscious perception with
the foundation of psychophysical methods (Fechner, 1860). Nowadays, a variety of
disciplines including cognitive science and neuroscience have emerged, which have
devoted themselves to unraveling answers to this great question. And since the rapid
increase in computational power over the last decades, computational models and
analyses in these fields are becoming more important and influential. These compu-
tational models are used in cognitive science to gain insights trough inferences based
on data gathered in everyday life or in specifically engineered experiments investi-
gating human perception, cognition, and decision making. While a large number of
studies have interpreted clear deviations in human judgements and behavior about
the dynamics of their environment as errors and misconceptions, e.g. in reasoning
about physics (Cohen, 2006; Gilden and Proffitt, 1994, McCloskey, Caramazza, and
Green, 1980; Todd and Warren Jr, 1982), more recent research has begun to explain
these discrepancies through natural constraints in using probabilistic models (Gersh-
man, Horvitz, and Tenenbaum, 2015; Kersten, Mamassian, and Yuille, 2004; Kubricht,
Holyoak, and Lu, 2017; Sanborn, Mansinghka, and Griffiths, 2013; Smith, Battaglia,
and Vul, 2013). So, how can experimental designs and models be designed to bet-
ter describe human behavior quantitatively while considering relevant constraints?
What adjustments for both, experiments and analyses, should we make to gain the
most insight into underlying mechanisms and potential causes for deviations from
optimal behavior?

In the following chapters, we will present a sequence of experiments and associated
generative probabilistic models of behavior considering natural constraints, prior be-
liefs, and subjective cost functions. The models are designed to explain continuous
single actions in tasks while yielding inferences about otherwise unobservable vari-
ables. By taking into account physiological limitations and the inherent uncertainties
of information about states of the environment, these computational analyses also
provide potential explanations for human deviations from ideal behavior. Most im-
portantly, by employing Bayesian models of behavior, we provide quantitative and
interpretable models of behavior.
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The last decades have seen a vast array of successes in modeling human behavior and
inferring unobservable subjective quantities (Chater, Tenenbaum, and Yuille, 2006;
Kubricht, Holyoak, and Lu, 2017; Sanborn, Mansinghka, and Griffiths, 2013; Yuille
and Kersten, 2006) from describing prior expectations and their influence on hu-
man perception (Adams, Graf, and Ernst, 2004; Kersten and Yuille, 2003; Stocker and
Simoncelli, 2006; Weiss, Simoncelli, and Adelson, 2002) or using MCMC sampling
algorithms to study human representations of object properties (Harrison et al., 2020;
Sanborn and Griffiths, 2008) to model action selection under uncertainty (Trommer-
shduser, Maloney, and Landy, 2003, 2008) and implict cost functions (Hoppe, Helf-
mann, and Rothkopf, 2018; Hoppe and Rothkopf, 2016). However, when it comes to
reasoning experiments, especially in intuitive physics, so far the majority of studies
investigated human reasoning based on discrete and often binary judgments. Such
discrete experiments have been carried out with human subjects investigating mass
ratio (Gilden and Proffitt, 1994; Sanborn, Mansinghka, and Griffiths, 2013) or stabil-
ity judgments of towers of blocks (Hamrick et al., 2016), decisions about causality in
collisions (Gerstenberg et al., 2017), fluid spill over when tilting containers (Kubricht
et al., 2016), motion predictions for bouncing objects in contained spaces (Smith et al.,
2017) or when learning in novel environments about distinct levels of mass (Ullman
et al., 2018). While this restriction to discrete response options may have advantages,
such as the absence of action variability, it may only be representative of a small part
of daily human behavior. And since a large part of our interactions with the envi-
ronment is not only based on observing and judging but also on performing actions
on a continuous spectrum based on our observations, it is necessary to capture and
investigate these in experiments as well. An effort in this sense already starts with
investigating and formalizing discrete decisions when additionally querying partici-
pants’ confidence about the decisions on a continuous scale (Gerstenberg et al., 2015).
Actions on a continuous spectrum have been assessed for e.g. distance perception
with auxiliary haptic cues (Battaglia, Kersten, and Schrater, 2011), when catching
balls or cutting pendula (Smith, Battaglia, and Vul, 2013) or for a variety of produc-
tion and reproduction tasks regarding time (Akdogan and Balci, 2017; Birkenbusch,
Ellermeier, and Kattner, 2015), travel distance (Petzschner and Glasauer, 2011; Sun,
Campos, and Chan, 2004) or force (Onneweer, Mugge, and Schouten, 2015).

1.2 OVERVIEW

In this thesis we will investigate human behavior in a variety of continuous action
control tasks, showcase computational approaches to analyze behavioral patterns and
relate seemingly flawed human deviations from optimal behavior to physiological
and environmental constraints. In chapter 2 COMPUTATIONAL MODELING OF PER-
CEPTION AND ACTION we will take a look at basic computational concepts impor-
tant for all subsequent models. In chapter 3 GENERALITY AND CONSISTENCY OF
HUMAN SIZE PRIOR we present a first experiment about human judgments and bi-
ases in depth estimation. Here, we combine the inference of subjective beliefs about
size with a physical reasoning task investigating human behavior with discrete and
continuous single actions. In the following chapter 4 INTUITIVE PHYSICAL REA-
SONING TRANSFERS TO A VISUOMOTOR TASK we will look at the human ability
to transfer knowledge of physical quantities obtained through perceptual inferences
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to a continuous action control task with differing levels of feedback. Moreover, we
show that through learning with feedback people’s behavior is accurately described
by a non-linear model, a representative of the noisy Newton framework (Sanborn,
Mansinghka, and Griffiths, 2013), better than by any linear heuristics approximation.
In chapter 5 INFERRING PERCEPTUAL DECISION MAKING PARAMETERS FROM BE-
HAVIOR IN PRODUCTION AND REPRODUCTION TASKS we develop an approach in
the tradition of reverse engineering to estimate several sources of uncertainty and
individual cost functions from observed behavior to explain people’s deviations in
continuous production and reproduction tasks. Using this algorithm in chapter 6 IN-
DIVIDUAL COSTS AS AN EXPLANATION FOR PERVASIVE UNDERSHOTS IN MOTOR
TASKS we are looking at a potential explanation for pervasive undershoots in human
behavior (Elliott et al., 2004; Engelbrecht, Berthier, and O’Sullivan, 2003; Onneweer,
Mugge, and Schouten, 2015; Sun, Campos, and Chan, 2004; Willey and Liu, 2018b)
across a broad range of continuous action control tasks. In chapter 7 NATURALISTIC
INTERACTIONS ELICIT INTUITIVE PHYSICAL BEHAVIOR the influence of the ac-
tion’s mode on the recruitment of internal models is investigated in an virtual reality
extension of the previously discussed puck sliding experiment. Finally the overall
discussion and conclusion of this thesis will be presented in chapter 8 GENERAL
DISCUSSION and in chapter 9 CONCLUSION.

1.3 CONTRIBUTIONS

All chapters are based on work from Neupartl, Tatai, and Rothkopf (2020), Neupirtl,
Tatai, and Rothkopf (2021) and Neupirtl and Rothkopf (2021) and may contain pre-
viously published text and figures:

* Generality and consistency of human size prior. Chapter 3

In this work we investigated human depth perception in two-dimensional pro-
jections with respect to consistent prior beliefs about object sizes. In three sub-
sequent experiments we evaluated subjective size beliefs, measured perceptual
uncertainty and described individual biases in both, an two-alternative forced
choice and a method of adjustment task.

This work is currently in preparation for submission.

¢ Intuitive physical reasoning transfers to a visuomotor task. Chapter 4

Here, we examined responses in an continuous action control task where par-
ticipants were asked to propel a puck towards a target under the influence of
friction. In four different phases of the experiment varying in the accessibility of
relevant information hundreds of trials with differing distances were presented.
Behavior was explained by and compared between two competing modeling
approaches: one heuristic approach, assuming people make rough linear ap-
proximations, and one noisy Newton model, assuming that they utilize prior
knowledge about the non-linearity of sliding under friction. The results show
that 1) the majority of participants adapt only to the non-linearity once feed-
back was given, 2) they were able to transfer relevant mass information from
perceiving puck collisions to the control task and 3) when given feedback hu-
man behavior was best described by the noisy Newton model approach.
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This work was published in:

Neupiirtl N, Tatai F, Rothkopf CA (2020) Intuitive physical reasoning about objects’
masses transfers to a visuomotor decision task consistent with Newtonian physics.
PLOS Computational Biology 16(10): e1007730

Inferring perceptual decision making parameters from behavior. Chapter 5

The proposed method here combines the structure of the classic Metropolis-
Hastings MCMC algorithm with a deep neural network for the inference of
parameters of cost functions in the spirit of amortized inference to infer percep-
tual uncertainty, action variability and individual cost functions for production
and reproduction tasks. By assuming strictly positive distributions for inherent
noise both in perception and action and costs that take into account not only
the task but also the effort, we are able to present an potential explanation for
systematic deviations from target values and likewise an inference approach for
experimenters.

This work was published in:
Neupiirtl, N., & Rothkopf, C. A. (2021). Inferring perceptual decision making parame-
ters from behavior in production and reproduction tasks. arXiv:2112.15521.

Individual internal costs as an explanation for pervasive undershots in motor
tasks. Chapter 6

Largely based on the method described in chapter 5 we look at a variety of
experimental as well as real-world data on everyday behavior explaining poten-
tial mechanisms that lead to pervasive undershots.

This work is currently in preparation for submission.

Naturalistic interactions elicit intuitive physical behavior. Chapter 7

In this chapter we compared human behavior when modes of interaction dif-
fered. People were asked to slide pucks either in the experiment in chapter 4
or with a puck on a table, however both without feedback about trajectories
or final positions. This allowed investigating how the mode of interaction in-
fluences the recruitment of internal models for physical interaction. While no
such differences may be expected in terms of a computational level explanation
of physical reasoning, subjects performed more accurately in the experiment
involving actual physical pucks and clearly used the mapping of distances to
velocities prescribed by Newtonian physics, differently from the previous exper-
iment. This provides evidence that subjects were able to recruit embodied rep-
resentations for physical interactions with objects an that these representations
were facilitated physical interactions in accordance with Newtonian physics.
This result strongly suggests a role for embodied representations in physical
interactions.

This work was published in:

Neupiirtl, N., Tatai, F., & Rothkopf, C. A. (2021). Naturalistic embodied interactions
elicit intuitive physical behaviour in accordance with Newtonian physics. Cognitive
Neuropsychology, 1-15.



COMPUTATIONAL MODELING OF PERCEPTION AND ACTION

What I cannot create, I do not understand.

— Richard P. Feynman (1988). Blackboard, California Institute of Technology.

2.1 PERCEPTION AS PROBABILISTIC PROCESS

Perception is in itself a subjective process and varies from individual to individual.
Even in very explicit questions without influences of context and ambiguities, clear
differences in answers emerge. For example, imagine asking a dozen passers-by in
the pedestrian zone about your own height. People’s estimates would surely vary,
however, not in an arbitrary way but likely around your actual height. The answers
obtained in this way can then be visualized as a histogram or even used to approx-
imate the probability distribution of people’s potential responses p(x) as shown in
figure 1. Likewise, the uncertainty or variability in the perception of a single individ-
ual could be determined this way, for example, when she is asked to estimate the
height of dozens of people simply assuming that she does not know that they are all
of the same height.

u=1.75 u=1.75

1.6 1.7 1.8 1.9 1.6 1.7 1.8 1.9
Height guesses

Figure 1: Variability in continuous estimates. A) Uncertainty about the actual height. Each
individual will have uncertainty about the actual height of a passer-by. B) His-
togram and Gaussian density for sampled responses. Potential responses of 6, 12,
24 or 100 pedestrians estimating the height of a single person. Resulting best MLE
estimates are shown and colored with respect to the assumed ground-truth with
p=175and o =.02.

The quality of this approximation in turn increases with the number of answers
collected as well as with background knowledge about possible functional forms.
With infinite amount of possible functional forms, there are nevertheless a number of
commonly used continuous probability distributions which are usually considered as
good approximations to describe noisy perception. One of the most commonly used
ones is the normal or Gaussian distribution N(y, ) as an example for a simple and
symmetric distribution that is often chosen because of its convenient mathematical
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handling and shape as well as because of the implication of the central limit theorem

that leads to many processes in nature to be well approximated.

(x —w)?
207

p(xly, 0) = exp — ~N(u, o) (1)

o2

This distribution can be described with two parameters that are additionally easy

to interpret: the mean 1, determining the peak, and the standard deviation o, speci-
tying the variability of the data.

Parameter estimation via Maximum Likelihood Estimation

Here, the mean could be used to describe a basic bias and the standard deviation
to describe uncertainty or variability of responses in the example above. Given the
assumption about the normal distribution being a good functional approximation for
the variability in height responses in our thought experiment, one can estimate these
parameters based on the n gathered data points x; by using maximum likelihood
estimation (MLE) (Bishop, 2006):

p(x1,.xn0®) =p(x110).p(xn|®) = | [ p(xil©®) with © = {u, o}
o (2)
OMLE = argmaxe HP(XJ@)

Finding the MLE estimates for both parameters can be easily achieved by finding
the zero point of the derivative of the log likelihood function. Note, using the natu-
ral logarithm turns the product into a sum and does not influence the result of the
maximization but additionally yields computational advantages as avoiding quickly
decreasing values for [ ;' p(xi) and assuring concavity in the objective function []:
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The best point estimate for the mean [t can now be calculated by differentiating
with respect to
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Similarly, derivating with respect to o and setting to zero will yield the best point
estimate for the standard deviation o:
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For example, given the six sampled height responses as shown in the upper left of
figure 1 B) the resulting best estimates for {1 and ¢ would be 1.77 and .035, respec-
tively.

However, there are of course plenty of other distributions that model different
occurrences and shapes of collected data. Especially when Gaussian distributions
violate specific constraints like allowing negative values to arise due to its property
of being non-zero on the entire continuous scale. These situations and the use of
log-normal distributions will be discussed later, among others, in chapter 4. In the
next section we will show which experiments can be used to examine and quantify
behavior and what to pay attention to when setting them up and modeling data.

2.2 PSYCHOPHYSICS

In the following we briefly survey methods of psychophysics, a field concerned with
quantifying sensation and conscious perception (Fechner, 1860; Hawkins, 2011; Wich-
mann and Jakel, 2018), that emerged with Weber and Fechner (Fechner, 1860; Weber,
1834) and experienced a resurgence in the middle of the last century, driven largely
by the work of Stevens (Stevens, 1957) and the formalization through Signal Detection
Theory. In the following we will shortly address some of the indispensable founda-
tions for the subsequent experiments from interrelationships in perception to useful
experimental paradigms.

2.2.1  Psychophysical laws

The first classic work on postulating methods to quantify perception and its variabil-
ity and trying to interpret the resulting responses lawfully was carried out in the
19th century by Weber (Weber, 1834) and shortly thereafter Fechner (Fechner, 1860).
While examining human perception it was assumed that certain thresholds must be
exceeded to enable people to perceive differences between stimuli. E.g. how big does
a difference in height between two persons need to be to be reliably recognized by
someone, to stay in the example above. These thresholds or just noticeable differences
(JND) were first thoroughly examined by Weber (Weber, 1834). He found that JNDs
are dependent on the type of sensation and the stimulus intensity itself. Le. this is an
early and yet no less significant finding that people’s sensitivity is not independent
of the stimulus intensity. Shortly afterwards, this insight was taken up by Fechner
and formulated in general mathematical terms dp = dTI, the so called Weber con-
trast, with dI being the JND, I the stimulus intensity and dp the perception of this
difference. Fechner also stated his famous "Maf$formel” or Fechner-law as a general de-
scription of perception as function of the stimuli and affected senses (Fechner, 1860):

p=k lnsi Fechner law or Mafsformel (6)
0

with p being the perception of the stimulus, S the intensity of the stimulus, So a
threshold stimulus at which the stimulus is no longer perceived and k describing the
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sense- and stimulus-dependent sensitivity.

This basic insight about human perception will reemerge as a relevant component
in the models ahead. This is especially important since in most of the experiments
in the subsequent chapters experiments were asking subjects to produce continuous
responses so that data was gathered on a continuous scale and thus variability will
differ in a stimulus intensity dependent way.

2.2.2  Psychophysical methods

Among the methods for quantitatively determining human perception and conscious-
ness, a seemingly endless variety of experiments and designs have emerged over time.
Nonetheless, they can be roughly categorized traditionally into three groups: method
of limits, method of constant stimuli and method of adjustment. Here, however, we
will discuss them separated into two groups to highlight the modality of possible
responses: binary or discrete and continuous response tasks. For an overview see
also Wichmann and Jékel (2018), Gescheider (2013a) or Stiittgen, Schwarz, and Jakel
(2011).

2.2.2.1 Binary response tasks: 2AFC, 2IFC and yes-no tasks

Next, we are looking at paradigms that have been developed to measure sensation
or conscious perception quantitatively. These approaches are indirect and implicit
to avoid biases due to the influence of subjective a priori beliefs or action variabil-
ity. Le. participants are not explicitly asked about their percept in some arbitrary
absolute scale but based on their discrete responses one can derive parameters to
quantify their perception. A common feature of the three experimental designs, yes-
no, two-interval forced choice (2IFC) and two-alternative force choice (2AFC), is that
participants are forced to select one of their given response options regardless of their
level of uncertainty. However, these paradigms differ in the presentation of stimuli
and the exact nature of the response.

These differences between the experimental concepts are best explained with an ex-
ample: Imagine you are a fruit seller specialized in grapefruits and you are interested
in people’s belief about the appearance of grapefruits as you want to avoid confusion
with the oranges of the neighboring stand in a newly designed advertising space. Be-
fore committing to a specific exemplary grapefruit, you could ask one of your friends
to participate in a small experiment: you are showing her several different pictures
of grapefruits, varying in size and color, while asking her whether each photograph
is looking like a grapefruit or not. This would be a yes-no task, since her task is
to identify whether a stimulus - here the grapefruit - is present or not, see figure 2
A). This would certainly help you narrow down your selection of appropriate pho-
tographs. However, now you are interested which of the remaining ones reminds her
of a grapefruit the most. In order to get an answer here, you could present her all the
possible combinations of two of the chosen grapefruit-like photographs asking the
question: which of the two presented fruits does look more like a grapefruit to you?
This experimental design would then correspond to the 2AFC paradigm, see figure
2 B). Carrying out this procedure with a sufficient number of trials and participants
may in the end yield the best choice for your advertising campaign, which is the most
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frequently chosen photograph assuring a high recognition value with passers-by.

Yes-No 2AFC
Does it look like a grapefruit? Sequence of fruits: What does look more like Seq. of fruit combinations:
a grapefruit?
e 0
-
o -c
oe
Yes or No? Grapefruit, pomelo, orange ... Left or right?

Figure 2: Yes-No and 2AFC task for the fruit seller example. A) Yes-No task design In the
Yes-No task only one stimulus is present in each trial. The observer is asked to
decide whether the stimulus searched for is present or not. Of course, this desired
stimulus can also encompass an entire class, in this case a type of fruit, and not just a
single specific photograph. B) 2AFC task design. In the 2AFC task two stimulus are
presented in one trial, at the same time but spatially separated. Here, the observer is
asked to decide which of the two stimuli belongs to the searched class (more likely).

The 2IFC can be seen as an extension of a 2AFC where instead of separating the
stimuli spatially stimuli get separated by a time-interval into distinct frames. Simi-
larly, both paradigms can also be extended to offering more available options in each
trial, yielding nIFC and nAFC tasks - with n being the number of stimuli presented
per trial.

Yes-No and forced choice tasks have been implemented in a huge variety of ap-
plication fields from investigating human perception, like children’s discrimination
ability in their olfactory sense (Gellrich et al., 2017), testing hand devices for stiff-
ness discrimination in VR (Maereg et al., 2017) or examining the learning of auxiliary
haptic cues and interaction with visual cues in judging bulginess (Adams, Kerrigan,
and Graf, 2010), or physical reasoning tasks, like judging the stability of towers of
blocks (Hamrick et al., 2016), fluid spill over when tilting containers (Kubricht et al.,
2016) or causality in collisions (Gerstenberg et al., 2017), up to investigating mon-
keys” neuronal responses in neuroscience with random-dot kinetograms (Britten et
al., 1992; Gold and Shadlen, 2003), with vibrotactile stimuli (Luna et al., 2005), mea-
suring human representations based on MCMC sampling logic (Harrison et al., 2020;
Sanborn and Griffiths, 2008) or examining human planning in visual search (Hoppe
and Rothkopf, 2019).

2.2.2.2  Continuous response tasks: MoA, production and reproduction tasks

Instead of allowing only discrete responses and thus restricting behavior usually to
less natural scenarios, continuous response tasks offer a more complex alternative.
More complex as they contain additional elements that are a natural part of our ac-
tions and significantly affect people’s behavior: action variability and cost functions.

Action variability comprises several sources, but the most prominent is motor vari-
ability as studied and quantified in motor control (Todorov and Jordan, 2002), here
a variable involuntarily influence on the movements of the participants in experi-
ments, as shown for pointing tasks (Trommershduser, Maloney, and Landy, 2003,
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2008), tracing curves or hitting balls in a table tennis environment (Todorov and
Jordan, 1998; Todorov, Shadmehr, and Bizzi, 1997) or [...]. At least as significant is
the influence of individual cost functions on behavior (Kérding and Wolpert, 2004b;
Wolpert and Landy, 2012) that depends not only on the task (Trommershéuser, Mal-
oney, and Landy, 2008) but the effort itself to perform the appropriate action (Hoppe,
Helfmann, and Rothkopf, 2018).

Both, action variability and cost function, affect these continuous response tasks,
however here the Method of Adjustment (MoA) clearly differs from the production
and reproduction tasks: in a MoA task participants are asked to adjust a stimulus or
more precisely a certain property of the stimulus to meet a given specification. This
can be, for example, the length of a bar that is to be adjusted so that it matches the
length of a second object. And since, in general, the participants are allowed to per-
form their adjustment in any number of steps the final property may be less affected
by individual action variability. Still, with costs for each action and thus accumulat-
ing costs for continuing to adjust, the action variability will influence responses made
in a MoA as well. In production and reproduction tasks, on the other hand, actions
can be performed only once in a trial and cannot be corrected afterwards. While in
reproduction tasks a certain sensory stimulus is shown or an action is carried out
and the instruction is to subsequently generate a response of equal magnitude, in
production tasks participants are asked to produce such a response or action with-
out having seen or executed it before. For example, a classic production task would
be either a task to walk a certain distance or to throw an object at a target (Willey
and Liu, 2018b). When producing an initial reference for the action to be executed
subsequently, like walking or cycling a certain marked distance and then repeating
it without markers (Petzschner and Glasauer, 2011; Sun, Campos, and Chan, 2004),
participants face a reproduction paradigm.

2.3 BAYESIAN MODELING FRAMEWORK OF PERCEPTION
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Figure 3: Concepts for modeling perception. A) Cue integration. Cue integration describes
the optimal fusion of different information sources based on their reliability into
one percept of the stimulus, i.e. the relevant property of the underlying cause. B)
Sensory combination vs integration. The distinction between sensory combination
and integration covers the fact that different cues might appear in differing coor-
dinates or units and thus need to be transformed before being integrated into one
percept. C) Causal inference. In causal inference the observer may decide whether
two sensations do or do not have a common cause or they might combine the esti-
mates according to the relative uncertainties of the respective causal scenario.

Based on the probabilistic description of human perception several significant con-
cepts have been derived for its modeling. In the following sections we will briefly
outline some of the key concepts and their fundamentals: how to combine different
sources of cues optimally? Which intermediate steps might be necessary for success-

10
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ful integration of multiple sensory cues? How to find solutions when multiple causes
are conceivable?

2.3.1 Cue integration

It is not surprising that in many situations of daily life we can rely on several of
our senses to guide us in making decisions: whether we want to cross a road, both
noticing engine sounds and approaching vehicles, or at sensing the first drops on our
skin assure ourselves of the weather condition by looking upwards to spot clouds.
While we are accustomed to assuring ourselves when assessing the state of our envi-
ronment , the question is whether we are doing this in an optimal way.

We start with the assumption that n cues x; about a certain state need to be in-
tegrated into one percept. Now we further assume that all cues can be described as
independent and stemming from Gaussian distributions with the same mean p but
with differing standard deviations 0. An approach to get the minimal variance unbi-
ased estimator X would be to use the weighted average here (Cochran, 1937; Jacobs,
2002; Kersten and Yuille, 2003; Landy, Banks, and Knill, 2011; Landy et al., 1995):

N
X = Z xiwi , weighted average (7)
i

Note, the weighted average automatically becomes the sample mean if all samples
or cues come from the same distribution, i.e. have the same variance O'iz and thus the
same reliability r;:

. Ti 1
with w; = & ri=— 8)

N 2
i T 03

However, this is only the simplest approach to arrive at an estimate with minimum
variance. So far the model assumes samples or cues x; that arise from a single Gaus-
sian distribution or several but with the same mean . That is a rather unrealistic
assumption in natural conditions were cues might have different reliabilities. Even
presumable influences of people’s prior knowledge about likely states of X on their
perception is not considered yet. However, this can be elegantly solved by taking a
Bayesian point of view on the problem in order to extend the model.

In the Bayesian approach uncertainty about the state S of a variable of interest is
described as a probability distribution called posterior p(S|D). This posterior reflects
the individual belief about the true state S, unknown to the individual, dependent
on the data D, which can and was observed by the individual, i.e. their sensory mea-
surement. This belief is shaped by the individual’s prior belief about potential states
of the world p(S) and the likelihood p(DIS) or L(D; S), a function describing the prob-
ability of states S giving rise to the actually observed data D. Thus the posterior is
proportional to the product of the prior belief and the likelihood:

p(SID) o< p(S)p(DIS) (9)

Since the likelihood function is not a probability distribution and thereby the prod-
uct does not need to integrate to 1, a factor for normalization is necessary to end up

11
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with a normalized probability distribution again. This denominator p(D) is called the
marginal likelihood or evidence, since it is the distribution marginalized over all states
S and an indicator of the model’s plausibility. This evidence term can for example
directly be utilized for model comparison (Pooley and Marion, 2018).

p(S)p(DIS)  p(S)p(DIS)  prior - likelihood
p(D)  [p(S)p(DIS)dS evidence

p(SID) = Bayes formula (10)
Bayes formula can be simply remembered and derived using the chain rule [] for
joint probability and restructuring, like:

p(S,D) =p(S)p(DIS) = p(D)p(S/D) (11)

Now we can use the Bayesian framework and equations 9 & 10 to rephrase the
original problem of cue integration. Given n cues for an estimate we can describe the
likelihood of the data as the product of each cue’s probability distribution:

p(DIS) Hp (DilS) (12)

With both cues being conditionally independent and Gaussian distributed the re-
sulting likelihood will again be Gaussian distributed with reduced variance. For an
example with two cues assume we want to estimate the position of a bird in a tree.
We hear the bird chirp and we see slight movements in the densely leafed tree crown.
It is also known that human visual sensory precision usually exceed that of audition
(Alais and Burr, 2004; Kording et al., 2007) and hence o4 > oy. With an uninfor-
mative uniform prior we again end up with the MLE estimate as minimum-variance
estimator like in equation 7 and 8, as e.g. shown for the combination of haptic and
visual cues in Ernst and Banks (2002).

2 oY oA :
OyaA = 55 since r1ya =) Tj 1
VA 0_%/ I 0_%\ VA Z i (13)
For our example this means that the final percept will be somewhere between the
position of the sound and the movements in the tree crown, however shifted to the
more reliable visual cue. However, given the shape of a tree an informative prior is
likely. Then the posterior belief about potential states p(S|D) is proportional to the

product of the likelihood and prior belief p(S).

p(SID) x p(S Hp (DilS) (14)

With an almost bell-shaped tree crown, see figure 4 B), we could assume for p(S) a
Gaussian distribution again to end up with a Gaussian distribution for the posterior
belief.
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Flat prior

Gaussian prior

Probability

Position of the bird Position of the bird

Figure 4: Cue integration of visual and auditory cue based on cue reliability. A) Flat prior.
Prior knowledge about potential bird positions is absent or extremely uncertain -
high op - and does not influence posterior belief significantly. Hence, maximum-
a-posteriori coincides with MLE estimate based on both cues. B) Gaussian prior.
Prior knowledge - smaller o, - additionally influences belief. Could be based on
e.g. position of the tree and the knowledge that birds are more likely in the dense
parts of the crown.

The idea of integrating cues optimally based on their reliability has been tested
among others in auditory localization (Searle et al., 1976), in ventriloquist auditory-
visual localization (Alais and Burr, 2004), depth estimation (Landy et al., 1995), sur-
face slant estimation via texture and stereo cues (Knill and Saunders, 2003) and prior
assumptions about isotropy (Knill, 1998), edge localization via texture orientation and
spatial frequancies (Landy and Kojima, 2001) or object height estimation via visual
and haptic cues (Ernst and Banks, 2002).

2.3.2 Binding and causal inference

Now that we have reviewed the theory of optimal Bayesian integration of cues, the
question arises at which point one should integrate different cues anyway. In do-
ing so, we dive into an even larger and more general question about the 'binding
problem’ (Burwick, 2014; Von Der Malsburg, 1999) spanning fields from psychology
to neuroscience: how and when are several feature bound to a single object or per-
cept? Influential ideas about the "how” and ‘"when” are the feature integration theory
(FIT) (Treisman and Gelade, 1980), arguing that focused attention is necessary to bind
stimuli into a single object, and the temporal correlation hypothesis (TCH) (Von Der
Malsburg, 1994), proposing that neuronal signals that are correlated in time explain
binding (Burwick, 2014; Von Der Malsburg, 1999). In synaesthetic binding, as an ex-
ample for abnormal binding, digits might evoke colors or words the perception of
taste (Robertson, 2003; Sagiv and Robertson, 2005; Ward and Mattingley, 2006) and
even the visual perception can be affected by this color-photism (Smilek et al., 2001).

But at which discrepancy or dissonance does binding or cue integration break
down in regular cases? This dissonance between different cues has among others
been investigated for the ventriloquism effect, where temporal and spatial timing
maintain the illusion (Munbhall et al., 1996; Slutsky and Recanzone, 2001). When peo-
ple are told that visual and auditory cues have a common cause, cue reliability is
optimally considered in stimulus localization estimates (Alais and Burr, 2004). How-
ever, when they report that cues are not perceptually unified, i.e. have distinct causes,
cue integration breaks down and estimates are not longer influenced by the addi-
tional cue (Kording et al., 2007; Wallace et al., 2004).

13
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2.3.3 Explaining away for multiple causes

In daily life we encounter common situations in which one does not find several cues
with a clear allocation to one cause, but that an individual cue or percept can have
competing explanations, i.e. different underlying causes. This creates the need to ex-
plain away potential causes in order to fin the most likely cause (Kersten, Mamassian,
and Yuille, 2004; Kersten and Yuille, 2003; Murray, Schrater, and Kersten, 2004; Ne-
upirtl and Rothkopf, 2018).
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Figure 5: Two competing causes for auditory stimulus. A) Ambiguity about cause. Auditory
signal ‘Ding’ can be caused by either the telephone or the micro-grill. B) Pictorial
graph presentation. Either of the two events may have triggered the sound. C)
Graph. Nodes representing causes and stimuli and edges show their dependency.

Imagine you are an undergraduate student (again) and still with poorly developed
cooking skills while lacking the money to frequently visit restaurants. But there-
fore, you've developed a preference for simple frozen food suitable for your own
microwave grill. However, the notification sound of the microwave when the grill
program has finished is very similar to that of the messenger app on your smart-
phone when receiving messages, as shown in figure 5 A). Having waited for your
pizza for quite a while and receiving many messages all day makes both causes seem
similarly likely to you.

Figure 6: Explaining away the ambiguity using additional available sensory measurements.
A) Auxiliary visual measurement. Using the visual sense to check whether the
telephone’s light is flashing helps to disambiguate the cause. B) Graph with both
auxiliary cues. Both, the visual and olfactory cue, can help to find the actual cause.
C) Auxiliary olfactory measurement. Using the olfactory sense to check whether
the pizza has already developed its distinctive scent.

However, rather than walking to either your grill or to your phone on the desk you
can use your other senses, too. You could try to peek from some distance if your cell
phone light is blinking, see figure 6 A). If it is blinking you gathered evidence from

14
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your smartphone for receiving a message in your app as being the more likely cause
for the sound. Since you just have a binary decision to make - walking to the grill
or the phone - you’d decide to go to the phone based on its now higher likelihood
of being the cause. Likewise, you could use your olfactory sense. During the exam
phase of the last semester you have trained this sense abundantly and recognize quite
well whether a pizza could be almost done. Here, a distinctive scent would in turn
lead you to consider the grill as a probable cause and to approach it, see figure 6
C). Importantly, in both cases, the posterior probability for the competing cause of
hearing a sound decreases based on the increased posterior probability for the cause,
for which you gathered evidence.

2.4 BAYESIAN DECISION THEORY

So far we have described several concepts trying to explain perceptual processes:
from simple estimation of latent variables, the integration of cues into a single per-
cept up to disambiguating multiple causes for a single cue. But which action is opti-
mal given the perception and how can this process be described?

Here the Bayesian decision theory (BDT) (Gelman et al., 2013; Maloney and Ma-
massian, 2009) provides a normative probabilistic framework for solving this prob-
lem. Based on the prior belief p(S) about the environmental state of interest and the
likelihood of the observed data p(DIS), the so-far observer wants to perform an op-
timal action aopt. Le. the action that maximizes her expected gain or, alternatively,
minimizes her expected costs £(a,S).

Gopt = argminE[L(a, S)] (15)
a

Usually this cost function depends on the presented task (Kording and Wolpert,
2004b; Trommershduser et al., 2005) but it may include costs for the effort produc-
ing the action itself, since people are sensitive to motor costs (Hagura, Haggard,
and Diedrichsen, 2017) or costs for withholding an action such as blinking (Hoppe,
Helfmann, and Rothkopf, 2018). When combining the subject’s prior belief p(S), the
likelihood p(DIS) and the fact that the action output p(ayqrla) is subject to noise as

well, the equation 15 can be written as (Landy, Banks, and Knill, 2011):

opt = argmin ||| £(avar, ) plavarlalD)) p(S) p(DIS) dadD s (16)

In an estimation task state S can be a certain duration of an auditory stimulus. The
subject has a prior belief p(S) about the state, assuming she is used to this kind of
task. Hearing the stimulus in a single trial generates data D and its likelihood p(DIS)
which reflects her internal model, here simply assuming some probability distribu-
tion like a Gaussian or log-normal distribution. Based on her task, reproducing this
perceived stimulus as precisely as possible, we can assume that the cost function
will be zero at the actual and correct value and symmetrically increasing around it.
Thereby, penalizing erroneous deviations as a function of distance to the actual value.
The action distribution p(a,qrla) describes the motor variability of the subject when
she is reproducing the interval by e.g. a key press duration on a keyboard. Finally,
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integrating over all possible states, the data points obtained and potential actions and
minimizing the outcome for action a yields the optimal action aopt to choose.

In the subsequent chapters we will revisit the idea of cost functions shaping be-
havior: a comparison between models with different potential cost functions is done
in chapter 4 for a puck sliding task and in chapter 5 we will propose an algorithm
estimating individual generic cost functions for estimation tasks with variability con-
straints.
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GENERALITY AND CONSISTENCY OF HUMAN SIZE PRIOR

Love truth, but pardon error.
Aime la vérité, mais pardonne a l'erreur.

— Voltaire, "Deuxiéme discours: de la liberté," Sept Discours en Vers sur I'Homme
(1738)

3.1 INTRODUCTION
3.1.1 Environmental prior beliefs

When interacting with the environment we need to include prior knowledge and
expectations about the benefit of certain outcomes associated with the actions we
take. Both, prior beliefs as well as expected utilities are learned either by experience
from perception (Adams, Graf, and Ernst, 2004; Hoppe, Helfmann, and Rothkopf,
2018; Seitz, Kim, and Watanabe, 2009), sensorimotor feedback (Kording and Wolpert,
2004a), interactions like path integration (Petzschner and Glasauer, 2011), or by ex-
plicit description (Hertwig et al., 2004; Trommershduser et al., 2005, Weber, Shafir,
and Blais, 2004). Even systematic errors or illusions can be well explained when tak-
ing potential prior biases into account (Girshick, Landy, and Simoncelli, 2011; Weiss,
Simoncelli, and Adelson, 2002). But there are however situations where prior knowl-
edge about specific variables in our environment enables us to draw conclusions in
the first place.

3.1.2  Ambiguity of two-dimensional scenes

One of these situations is the decoding of the ambiguity of apparent size, which is
the visual angle, into the size of an object and its distance to an observer (Kilpatrick
and Ittelson, 1953). Especially, when seeing a two-dimensional projection of a scene
and only having information about the visual angle of an object, prior knowledge or
additional cues about the size help us to infer potential distances correctly (Battaglia,
Kersten, and Schrater, 2011).

3.1.3 Inference of subjective beliefs

Thus, in order to understand and describe human behavior precisely inference of po-
tentially underlying prior beliefs is vital. Such inferences have been investigated in
synthetic cases, where participants were trained on specific distributions, (Sanborn
and Griffiths, 2008) or on familiarity tasks with transfer of priors between separate
tasks (Houlsby et al., 2013). Here, we want to combine the approach shown in (San-
born and Griffiths, 2008) to infer size prior of three commonly known sports balls for
each participant with a distance estimation and judgment task for familiar objects in
two-dimensional projections.
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Here, each subject participated in three subsequent experiments: i) a two-alternative
forced choice task (S-2AFC) measuring subjective beliefs about sizes of familiar ob-
jects (size prior) in a virtual environment, ii) a continuous distance estimation task
using the method of adjustment (MoA) and a iii) binary distance judgment task (D-
2AFC). With this design we can independently measure individual size priors using
the S-2AFC experiment and perceptual uncertainty regarding the visual angle using
the D-2AFC. Both variables are crucial to explain behavior and potential biases in the
MoA and D-2AFC task and thus can be measured beforehand rather than need to
be inferred. Based on the data from these three experiments we can compare partic-
ipants’ consistency across the two distance judgment and estimation tasks, estimate
subjective prior and perceptual uncertainty and investigate people’s posterior belief
with a Bayesian model.

3.2 MATERIALS AND METHODS
3.2.1 Participants

Five subjects (f = 2, m = 3, pqge = 25.0) took part in the experiment. All participants
were undergraduate or graduate students recruited at the Technical University of
Darmstadt, who received course credit or payment (10 euro/hr) for participation. All
experimental procedures were carried out in accordance with the guidelines of the
German Psychological Society and approved by the ethics committee of the Technical
University of Darmstadt. Informed consent was obtained from all participants prior
to carrying out the experiment.

3.2.2  Apparatus

All participants had normal or corrected to normal vision and were seated approx-
imately 45 cm away from the computer screen in the two-dimensional part of the
experiment. The screen subtended 61.5 cm or 93.3° in visual angle horizontally and
36.5 cm or 49.2° visual degree vertically. In the VR setup participants wore an Oculus
Rift head-mounted display (HMD) with 1080 x 1200 resolution and a horizontal field
of view of 88°. Additionally, participants were asked to demonstrate how they would
hold an imaginary ball with their hands in front of an Intel Realsense Depth Camera

D435.
3.2.3 Task procedure

In the following we will describe the experimental procedure for each of the three
subsequent tasks. Each subject participated in these experiments in the same order.
In figure 7 an overview for the three experiments is shown.

Experiment 1: familiarity choice task (S-2AFC): In the first experiment we mea-
sure subject’s subjective prior belief about the size of three sports balls in VR, see
first column of figure 7. We utilized the approach to run MCMCs with humans act-
ing as acceptance function (Sanborn and Griffiths, 2008). To this end, participants
were asked to select in a two-alternative forced choice task which of two objects pre-
sented looked more familiar or realistic to them with respect to their size while being
able to move and look freely in VR, see figure 8 C). These simultaneously shown
objects only differed in their size but were identical otherwise. Object sizes in the
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Figure 7: Experimental design. Subjects participated in three subsequent tasks. In the S-2AFC
task subjects were asked to perform a familiarity judgment task. Seeing two differ-
ent sized spheres with the same surface texture (sport balls) they should pick the
more realistic one. In each following trial the rejected sphere is replaced by a new
size sample drawn from a proposal distribution. Based on the accepted samples
from multiple runs (chains) with differing starting points with regard to the initial
sphere sizes, subjective distributions for sphere sizes can be derived for each partici-
pant. In the MoA task subjects were asked to adjust the position of one sphere to the
same distance of a second immobile sphere from another type, which means that
they only encountered combinations of different sport balls. Thus, their belief about
the object size, especially when differing from the actual sizes, should strongly in-
fluence their responses in this method of adjustment task. In the last D-2AFC task
participants were asked to judge which of the shown objects was closer to them as
observer.

subsequent trials were then sampled with respect to previous decisions: the previ-
ously selected size is used as the mean of a proposal distribution. This distribution
is then used in turn to sample a new and differently sized object as an alternative to
present to the participant. In order to achieve both, a precise measure of which de-
cisions already correspond to the subjective belief and as little influence as possible
from initially chosen variables, using multiple chains with differing starting points
is essential. Since not all values correspond to the actual beliefs at the beginning, a
choice has to be made from when on the decisions are representative for the actual
belief. This position in the chain will be called burn-in from here on, analogously to
standard MCMC algorithms. By using multiple chains this burn-in can be obtained
as the index beyond which all chains have intersected at least once, see the red line
exemplarily sketched in figure 7 "Experiment 1 - Results’. Preceding size values of the
accepted proposals are not taken into account for estimating the prior distributions.

Three different common sport balls were displayed: a tennis, base and soccer ball.
Each participant was supposed to complete 450 trials for each distinct object divided
over three initialized chains. Chains of the same object were never shown in succes-
sive trials. However, which of the other two sport objects was shown was random.
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Virtual Replica Front view desk Size 2AFC

Figure 8: VR setup. A) VR replica of the room. B) Participant’s front view of the desk. C)
Single trial of the familiarity choice task (S-2AFC).

It was also always switched between the chains within the sport objects. Le. partici-
pants could not see the same chain again until the fourth run after they saw it at the
earliest and that, as well, only with a probability p = .125. This approach ensured
that participants could not remember previously selected samples and only selected
objects based on the conformity of the size with their own subjective belief. Initial
values of the three chains were uniformly drawn from three non-overlapping ranges
3—7,11—15and 19 —23cm. New samples were drawn from a Gaussian proposal
distribution with its mean at the previously selected size pprop = Sse1 and a standard
deviation oprop at 1 for tennis and base ball and 1.5 for the soccer ball. These val-
ues were adjusted to achieve an appropriate convergence speed while ensuring that
even subtle deviations that are still visible to the participant appear and thus can be
distinguished. For the same reason of detectability, proposals were discarded and re-
sampled that would make jumps much too large, from twice the standard deviation,
or much too small, that is below 0.1 times the standard deviation. Between each trial
a 100ms black screen was shown as transition. In each trial the position of the new
sample, right or left, was randomly drawn. The objects were placed 20cm apart on a
table that replicated the actual table in the lab in front of which the participants were
sitting in VR. The table served both, the immersion in VR and as an additional rela-
tive reference size for estimating samples, and thereby helped to measure the actual
subjective belief more precisely, see figure 8 C). Similarly, to improve the precision
of the measurement, participants spent one minute in a replica of the room in VR,
see figure 8 A) before the start of the experiment to adjust to VR and the environment.

Experiment 2: distance estimation task (MoA): In the second experiment, see the
second column of figure 7, participants were asked to match the distance of two dis-
tinct sport objects on a two-dimensional computer screen via method of adjustment
(Gescheider, 2013b). Objects were randomly placed left or right again. One of them
could be moved via button presses on a regular keyboard in order to match the other
object’s perceived distance. In contrast to the first experiment, the sizes of the objects
were kept constant based on official specifications: tennis ball with 6.6cm, base ball
with 7.45cm and soccer ball with 22cm diameter.

Each object combination with two different sports objects was shown 160 times,
with each object being mobile in 8o trials, leading to overall 480 trials for every par-
ticipant. No same-object combinations were shown in the method of adjustment task.
Initial distances of both objects were drawn uniformly in a range between .7 and 2m.
The lower limit of this distribution was chosen to strike a balance between preventing
overlap between the objects or the observer, i.e. the camera, and keeping the object
positions as close as possible. This is useful since close positions make it easier for
the participants to determine the individual distances and thus provide less noisy
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data. Objects were spawned and could be moved on lines originating at the observer
at a 30 degree angle to each other.

Experiment 3: distance judgment task (D-2AFC): In the third and last experiment
participants were asked to judge which of two presented sport balls was closer to
them in a distance two-alternative forced choice task (D-2AFC) on a two-dimensional
computer screen as shown in the last column of figure 7. Again, objects were ran-
domly placed left or right again and object specific sizes were kept constant across
the experiment at the same levels as in the MoA task before.

Here, participants judged 100 trials in each object combination, here also including
combinations with identical objects, leading to 600 trials per participant. These iden-
tical object combinations can then be utilized to estimate the perceptual uncertainties
of participants regarding visual angles on a computer screen, since there were no
more size influences to consider. In order to avoid many trials with too easy deci-
sions objects” decisions within a trial were kept close. This was achieved by sampling
the distance of one object dependent on the other. Thereby getting more data points
in the range where clear decisions were difficult to make and thus improving the pre-
cision and significance of the psychometric functions. The first object was randomly
chosen at one of two distances, close at 0.9m or distant at 1.2m and randomly placed
left or right. Then the distance of the second object was sampled with a Gaussian dis-
tribution with its mean being the first object’s distance. The standard deviation was
slightly different for close and distant positions since more distant positions yield
increasingly small visual angles and thus distance differences need to get bigger for
participants to sense them. Similarly standard deviations differed for object combina-
tions with identical and different objects, since the former is easier as it is reduced
to a purely perceptual task in which only the object with the larger visual angle has

to be selected. Both considerations lead to following values: O'(ifllo se =15, Gid%st = .2,
odHt = .24 and odiff = 35. Sampled distances that deviated less than Tcm or more

than two times the standard deviation from the mean, i.e. the distance of the other
object, were discarded and re-sampled.

3.3 BAYESIAN NETWORK MODEL OF PERCEPTUAL INFERENCE

Here we will describe the probabilistic generative model that describes how latent
quantities like individual a priori beliefs about size and distance of sport objects in-
fluence people’s perception of distances of objects given their visual angle. Using the
subject’s size beliefs already inferred from the S-2AFC task and perceptual uncer-
tainty estimated from D-2AFC task as observed variables (see last row "Variables” in
tig. 7) we can now infer the actual belief about each object’s distance for every subject.
First model shown in fig. 9 A) is used to infer parameters for the size belief for each
object and participant based on people’s choices in the first S-2AFC experiment. Us-
ing these inferred size beliefs we can describe people’s posterior belief about object
distances for each actual visual angle while inferring their a priori belief (up, op)
about distances with the Bayesian net shown in fig. 9 B).

The first model is used to come up with the most appropriate parameters for the
size beliefs measured in the S-2AFC. For each participant and object the unknown
mean ps and standard deviation os parameter of a log-normal distribution is in-
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Figure 9: Bayesian graphical models for S-2AFC and MoA experiments. A) S-2AFC. Simple
mean ps and sigma os inference for log-normal size distributions. Yielding one
parameter pair for each participant and object describing the size belief. B) MoA.
Model describing the belief about objects’ distances in the method of adjustment
task based on the previously determined size beliefs, i.e. the size belief parameters
ue, ug and o%, O‘g. Perceptual uncertainty oper about the actual visual angle o can
be inferred from D-2AFC data with same object combinations for each participant.

ferred based on the proposed samples accepted by the participant. However since
chains are deliberately initialized along a broad spectrum, early trials are not yet
representative for the actual internal belief and need to be discarded before the infer-
ence process. For a reliable burn-in specification the index at which all chains have
intersected at least once was chosen, see column 1 of figure 7 "Data’ for a simplistic
visualization or figure 10 A).

The parameters us and os inferred in this manner represent each individual’s a
priori size belief about each object as log-normal distribution and can now in turn be
used to describe participants” a priori and posterior beliefs about object distances in
the MoA task, as shown in figure 9 B) as grey-colored observed nodes in the upper
row. In the MoA experiment, the task was to move objects to the same perceived
distance, so that one could imagine to stretch the arm equally far to be able to touch
both objects.

Here the subjective belief about the size of the objects plays a prominent role,
because only the two-dimensional projection in visual angle could be seen on the
monitor. And since the two-dimensional projection is a direct interaction of size and
distance, one should be able to attribute deviations from ideal behavior here to a-
priori differences in size beliefs and uncertainty in perception. The connection of the
quantities is as follows:

S
x=2 tan(ﬁ) with o as visual angle, S as object size & D as distance  (17)



3.4 RESULTS

Having inferred the individual size beliefs for each object together with knowing
the visual angle of the object on screen allows statements about the distance per-
ceived by the participant to be made. Nevertheless, there are two other sources of
variability: the uncertainty in the perception of the visual angle oper and the a priori
belief about the distance of certain object types D. The latter will be considered by
using participant and object specific distance prior with unknown hyper parameters
up and op.

In addition to the parameters of the size prior and the actual visual angle, the per-
ceptual uncertainty oper is known and displayed as a gray node in the model, since
it can be estimated based on same object combination trials of the last D-2AFC exper-
iment, see section 3.4.2. Following the model graph the joint posterior probability of
the observed data d and the model parameters © can thus be stated simplistically for
one object as:

p(d,0) =p(S)p(up)p(op)p(Dlup, op)p([S, D, oper) (18)
3.4 RESULTS
3.4.1 Individual size beliefs

First, we will examine the raw data from the S-2AFC experiment. Each participant
had to choose the more appropriate object size out of two samples in three chains per
object. The resulting chains are shown in figure 10 A) separated in rows by participant
and in columns and through color by object affiliation. One can see that initial points
of these chains are randomly scattered along the y-axis and that the burn-in indices,
marked by the red dotted lines, emerge after all chains have intersected, as both
previously described in section "Task procedure” in more detail.
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Figure 10: Resulting sampling chains of experiment 'S-2AFC’ with burn-in. A) Chains from
human sample rejection task. For each chain the chosen size in each trial is de-
picted. Vertical lines indicate burn-in positions where all chains have intersected. B)
Posterior predictive values for sizes based on log-normal distributions of Bayesian
size prior model, see figure 9A). C) Overview of resulting prior size beliefs.
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3.4 RESULTS

Based on the raw data and choice of burn-in indices we used the minimal model
for parameter inference, shown in figure 9 A), to come up with suitable log-normal
distributions that describe each individual’s size beliefs. These resulting beliefs about
object sizes or size prior are shown in figure 10 B) for all objects separated by partici-
pant. Actual object sizes, based on official guidelines and used for experiments 2 and
3, are marked by colored horizontal lines, making individual deviations apparent. So
are e.g. all participants significantly deviating in their size belief about soccerballs
from the actual value at .22m in diameter (multiple Wilcoxon signed rank test with
continuity correction, p < .00T). However, if we look at the whole population based
on the distribution of the mean values of the log-normal soccer size prior, we see that
they do not deviate significantly from the actual value (One Sample t-test, t = 0.1765,
p = .8685). Le. each participant has a more or less large bias in her size belief but the
total population does not. This unbiasedness is also true for the tennis (One Sample
t-test, t = 0.8521, p = .4422) and baseball (One Sample t-test, t = 2.3666, p = .0771).
Interestingly, however, the baseball is the only object that was overestimated by all
participants, whether only slightly or clearly, which also shows in the mean deviation
of the size prior mean values from the actual size being almost one order of magni-
tude bigger (i}, = .0037m, uf 5 = .0148m and uy, . g = .0021m). As expected,
the mean values of the participants’ size prior again vary across all three different
objects (Kruskal-Wallis rank sum test, chi —squared = 11.58, p = 0.0031) for each
object comparison (Pairwise comparisons using Wilcoxon rank sum test, Benjamini-
Hochberg adjusted, psg = .012, ptg = .032 and pts = .012). Le. people did know
that these objects differed in size.

3.4.2 Estimating perceptual uncertainty

As previously mentioned, data from the D-2AFC can be used to estimate individ-
ual’s perceptual uncertainty about displayed two-dimensional visual angles, since
responses do not incorporate action variability and can be free from any influence of
subjective size beliefs. For this purpose, the same object combinations of the D-2AFC
are helpful as they can be viewed as being reduced to a simple perceptual discrimina-
tion task: ‘which of the two identical sport objects is closer?” thus becomes "which of
the two objects is bigger on the screen?’. That means these trials remain free from the
influence of subjective size beliefs and action variability and thereby help to measure
the perceptual uncertainty unbiased.

In figure 11 the resulting psychometric curves for each participant are shown. Re-
sponses of individual trials were plotted on the x-axis according to the difference in
visual angle of the two objects shown and on the y-axis according to the correctness
of the participant’s decision. In addition the best fits of the cumulative log-normal
distributions are displayed with their recognition threshold at .75 probability high-
lighted with a red dashed line. These thresholds are at a low level for all participants,
suggesting high visual precision, in a range of oper = .0021 to .003 in visual degree.
This inference can then be utilized to determine the perceptual uncertainty node oper
in the model describing participants’ sensations in the MoA task.

3.4.3 Consistency across tasks

Before proceeding to the different analyses on the consistency of subjects in their de-
cisions, we will first take a look at raw data and explain their interrelationship and
the estimated parameters for a single subject as an example. We do this using visual-
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Figure 11: Cumulative log-normal fits as psychometric curves. Psychometric curves for same
object combinations in the D-2AFC experiment for each participant showing the
thresholds for visual perception in absolute difference of visual angles. Raw data
points show whether a participant decided correctly and the estimated line ap-
proximates participant’s probability of recognizing a difference in visual angle
size correctly. Red line indicates the threshold at p =.75.

izations of estimated parameters like size prior and ratios, the psychometric curves
from the D-2AFC and the raw data from the MoA task - see figure 12.

In the first panel A) of figure 12 in the upper left, the size prior estimated based
on the data from the S-2AFC task for participant #4 are shown. The resulting distri-
butions and the actual size ot the objects are correspondingly colored. Deviations in
meter from the actual size are additionally noted next to the distributions. For a bet-
ter assessment of the effect of these subjective size beliefs, the size ratio beliefs of each
possible combination are shown in the middle panel B) of figure 12. Here, the actual
size ratios are again marked by vertical lines showing the relative biases. Ratios are
formed by dividing the size of the actually bigger object and result in values greater
than 1. As one can see , especially the base- and tennisball combination as well as the
soccer- and baseball combination deviate clearly from the actual size ratio, since the
baseball’s size was strongly overestimated by the subject, as shown in A).

Data from the MoA and the D-2AFC task are shown in panel C) exemplary for tri-
als with soccer- and baseball combinations. The distance of the fixed and adjustable
object in the MoA task are shown on the y- and x-axis of the left plot, respectively.
Decisions in the MoA task can be split for each combination in two groups depend-
ing on which object was at a fixed distance and which was free to adjust. Each trial is
color coded based on the adjustable object: here, in trials with orange data points the
baseball and with blue ones the soccerball was to adjust. Correct responses, where
the adjustable object is pushed exactly to the same distance, will fall on the black di-
agonal line. Given the subject’s clearly shifted belief about the size of the baseball and
thus compromised belief about the size ratio, we expect to see a bias in the MoA data.
This bias should have two different directions depending on which of the two objects
was free to move. We can see that the participant relatively overestimates the size of
the baseball in the orange colored trials when moving it, as she does not correctly
move it far enough. Le. with a still too large visual angle of the baseball she already
has the impression of a further distance. Vice versa, when moving the soccerball she
overestimates the actual distance of the baseball and therefore also puts the soccer-
ball too far, which can be seen in the blue data points” deviation from the optimal
line. This bias should then in turn be reflected in the data of the D-2AFC, too. Here,
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Figure 12: Single participant data (#4): size beliefs, MoA and D-2AFC decisions. A) Size
prior. Subjective size beliefs as distributions, correct sizes marked by accordingly
colored lines and mean shift in meter. B) Size ratio beliefs. Showing the deviation
of the ratio belief from the actual ratio. C) Data structure explanation. MoA and
D-2AFC data for base- and soccerball comparison. MoA: Actual distance of fixed
object on the y-axis as function of the final distance of adjustable object. Trials are
colored conditioned on the adjustable object type. Baseballs were placed to close,
since the subject is overstimating the baseball relatively to the soccerball, and thus
deviating in the light orange area. Vice versa when the soccerball was adjustable.
D-2AFC: Subject’s decision in each trial whether the actual bigger object is closer
as function of the distance difference. Negative shifts of the threshold are expected
if the smaller object is relatively overestimated. D) MoA data for all object com-
binations. Relative overestimation of the baseball strongly influences decisions for
SB and TB combinations. E) D-2AFC data for all object combinations. In SB com-
bination soccerball is chosen too early and in TB combination tennisball is chosen

too long as function of the distance difference - both signs of the overestimation of
the baseball.

the decision whether the soccerball, as the bigger object, is closer to the participant
is shown as function of the difference in distance of the both objects to the observer.
At negative values on the x-axis the baseball is closer to the observer, since the dif-
ference is calculated from the distance of the small object minus the large object, and
at positive values the soccerball is closer. Based on the participant’s decisions in this
2AFC we can estimate a psychometric function yielding a threshold estimate that
indicates potential biases. As expected, the participant perceives the baseball in all
trials to be further away than it is, resulting in a negative threshold reflecting this bias.

In figure 13 further data and biases for two participants in MoA and D-2AFC tasks
are shown. One can see that e.g. one object combination per participant is almost
unbiased in both experiments as a sign of consistency across the two tasks: in case of
participant #2 the SB (soccer-baseball) and of participant #5 the TB (tennis-baseball)
combination. Likewise, consistent but this time strongly biased are combinations TB
and SB for participants #2 and 4, respectively.

However, rather than just describing the consistent directionality (or consistent ab-
sence) of bias in both experimental tasks for each participant and combination, we
can quantify the magnitude of these biases using the estimated thresholds of the psy-
chometric fits for the D-2AFC data and the difference between the slopes for both
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Figure 13: MoA and D-2AFC data consistency for two participants. Absence or the direction-
ality of biases are consistent for each participant within each object combination.

conditions in the MoA data. The correlation of these two variables for all participants
and object pairs p(,s = .8819 is highly significant (Pearson’s product-moment corre-
lation, t = 6.7432, p < .001). Further, we can visualize participants’ consistency by
plotting thresholds and slope differences on the y- and x-axis as scatter plot and cal-
culate the linear regression, see figure 14 A). This calculated regression is likewise
highly significant (F = 45.47, p < .001, adj. R? = .7606) with an estimated intercept of
.0173 that does not differ significantly from zero (t = .5%4, p = .563), both showing
the participants” overall high consistency across both tasks.
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Figure 14: Consistency of thresholds, slope differences and biases in size ratio beliefs. A)
Threshold values of the psychometric functions as function of the slope differences
between MoA regressions for each participant and object combination. Regression
shows the systematic consistency across both tasks. B) Size ratio beliefs for each
participant and combination. Vertical lines indicate actual size ratio and colored
arrows the direction and degree of the deviation. C) Again thresholds as function
of slope differences with regression and now with data points colored by the rela-
tive deviation of the size ratio belief from the actual ratio shown in B).

In a next step we can extend this comparison of consistency with respect to the
inferred size and size ratio beliefs of the participants. Size ratio beliefs for all partic-
ipants and combinations are shown in figure 14 B) with vertical lines indicating the
actual size ratios. Deviations of the mean values of the inferred size ratio beliefs from
these actual ratios are visualized via arrows: their orientation depicts the direction
of the deviation and their color its relative percentage amount. These colors are then
used to investigate and highlight the consistency of size ratio beliefs with behavior in
both, the MoA and D-2AFC, tasks, as shown in figure 14 C). Here, data points further
down in the bottom left should become increasingly more blue, corresponding to a
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relative overestimation of the smaller object and thus reduced ratio belief, while data
points on the upper right should turn increasingly red, corresponding to a relative
underestimation of the smaller object and thus increased ratio belief. This turns out to
be true for participants” object pairs with strongly biased size ratio belief, especially
for participants #2 — 4 in object combinations TB and SB, see rows 2-4 and columns
1-2 in B) and blue circles and red triangles for 2-4 in C). However, some data points
deviate from this overall pattern, like 3-TS, showing slight biases with inverse orien-
tation in size ratio belief and tasks, or 5-S5B showing an mostly unbiased size ratio in
B), however in both tasks the participant #5 overestimates the soccer-baseball ratio.
When calculating a linear regression like for figure 14 A) but this time for the relative
percentage deviation of the size ratio beliefs as function of the MoA slope differences,
we can obtain again a significant result (F = 9.648, p = .008, adj. R? = .3819) with an
estimated intercept of —.0298 that does not differ significantly from zero (t = —.659,
p = .521). This can be considered as a sign of an overall consistency between behavior
in the MoA task and the inferred size prior. Looking at the same regression for the
deviation of the size ratio beliefs as function of D-2AFC thresholds, however, does
not yield a significant result (F = 2.392, p = .155, adj. R? = .0904). This might be
caused by clear outlier like 3-TS (participant with bias in D-2AFC but no bias in size
ratio belief) or 2-SB (participant with no bias in D-2AFC but with relevant bias in size
ratio belief), see figure 14 C).

So far, we can state that participants’” behavior is 1) highly consistent across the
MOoA and D-2AFC tasks and that 2) size ratio beliefs match the MoA data but 3) can-
not significantly explain the behavior in the D-2AFC.

Finally, we can use the Bayesian graphical model shown in figure 9 B) to investi-
gate participants’” posterior beliefs about the object distances in the MoA trials. Based
on the inferred subjective prior beliefs about object sizes, the estimated perceptual
uncertainty based on decisions in the D-2AFC task and the final positions and visual
angles of the objects in the MoA task we can infer participants’ belief about each
object’s distance in a trial. And since the task was to move the adjustable object to the
same distance, we can check whether their decisions were optimal given their subjec-
tive beliefs. We can do this by calculating the mean values for participants” posterior
belief for both objects in every trial. These mean values are shown in figure 15 for the
fixed and adjustable object in green. Actual distances are colored orange and ideal
responses are indicated by the blue dashed line.

Here, six object pairs have been selected as examples for differing model results: in
figure 15 A) and B) participants” object pairs are shown whose MoA data can be well
explained using the inferred size prior and the Bayesian model, C) data where no
changes are expected due to the unbiased size ratio beliefs and D) overcompensation
caused by stronger biased size ratio belief than MoA data suggests.

Especially, in A) the strong deviation of the participant’s orange colored responses
from the dashed optimal line is obvious and can be completely corrected with the
inferred subjective size prior. The high consistency of MoA data and size prior can
be also found in the regression’s slope parameters, with raw data slopes fp from
left to right of .6067 and 1.623 turning to model posterior slopes fm of 9914 and
.9940. Thereby, the model also significantly reduces the error (Wilcoxon signed rank,
V = 12792, p < .001) with mean error values e dropping from —.84 and .48m to
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Figure 15: MoA decisions and model’s mean posterior belief. A) Large deviation of optimal
behavior in MoA task can be well explained using the inferred subjective size be-
liefs. B) Model based on the slightly deviating size beliefs explains slight deviation.
C) Bias in model posterior remains since size ratio belief is not (clearly) deviating
from actual value. D) Model overcompensation due to strong deviation in size ra-
tio belief.

—.01 and Om, respectively. With less intense deviation in size beliefs participants #2
and 5 posterior beliefs are improved for the TB pair: raw data slopes p from left to
right of 1.397 and .7894 turn to posterior slopes Bm of 1.1034 and .9994 for partici-
pant #2, and raw data slopes Bp again from left to right of .9220 and 1.107 turn to
posterior slopes By of 1.042 and .9798 for participant #5. Given the subjective size
beliefs participant #2’s mean error changes from .39 and —.38m to .11 and .01m and
participant #5’s mean error changes from —.11 and .13m to .07 and —.03m. Mean er-
ror values for each are trial are likewise significantly smaller for the model compared
with the raw data for participant #2 (Wilcoxon signed rank, V = 12700, p < .001) and
#5 (Wilcoxon signed rank, V = 9450, p < .001). For all regression slopes and changes
see table 1.

3.4.4 Size prior: measurement and reliability

As size prior are latent and unobserved quantities that have tremendous impact on
distance estimation, precision in their determination is essential. Yet it is often diffi-
cult to measure these beliefs explicitly or estimate them implicitly in models. Espe-
cially since inference with probabilistic models will always yield values that explain
the data given the model. But how to be certain these values are meaningful and
general? Up to this point, we have used the estimated prior beliefs in a first step
to describe and explain behavior in two separate experiments at once. However, we
chose another additional method to assure ourselves about the fit and correctness of
the measured prior: We utilized people’s imagination and muscle memory by asking
them to pose with their hands in front of a depth camera indicating the size of the
three objects.

In figure 16 A) a resulting depth matrix of a participant sitting in front of the cam-
era can be seen in a three-dimensional view. Participants were then asked to place
their hands so that they are parallel and with the edge of their hands facing the cam-
era while trying to imagine holding a specific object between their palms, see figure
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Part. + Bp  Bm fo BPm  Bp  Bm
obj. pair Tadj. Tadj. Badj. Badj. Sadj. Sadj
1 1TB 0.99 0.92 1.11 1.19
2 1TS 0.89  0.80 1.20  1.34
4 1SB 0.95 0.91  1.11 1.16
7 2TB 0.79 1.00 1.40 1.10
8§ 2TS 0.91 0.90 1.23  1.25
10 2SB 1.12 087 098 1.26
13 3TB 0.71 0.77 1.64 1.50
14 3TS 1.01 1.06 0.94 0.90
16 3SB 1.31 1.26 o077  0.80
19 4TB 0.75 1.27 1.40 0.83
20 4TS 1.25 1.29 0.75  0.73
22 4SB 1.62 0.99 0.61 0.99
25 57TB 1.11 0.98 0.92 1.04
26 57TS 0.87  0.78 1.22 1.36
28 5SB 080 081 133 1.31

Table 1: Regression slope parameter {3 for data und model posterior of the MoA task. Val-
ues separated in rows by participant and object pair and in columns by adjustable
object and data fp and model fn1. The megnitude of deviation from 1 as a sign for
the strength of bias in the MoA raw or modeled data.

A B C
Depth matrix Pose indicating size Size distributions

Soccerball
Hm S-2AFC B3 Depth-Cam
|

Density
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.1 .2 3
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Figure 16: Size belief measurements via depth camera. A) Participants were placed in front
of a camera measuring a depth profile. B) Meanwhile they were asked to pose
with their hands parallel to the camera indicating their belief about. C) Measuring
the closest distance between two opposing points in their palm forty times across
several frames yields an a priori size belief distribution (orange) which can be
compared to the inference of the S-2AFC task.

16 B). These specific objects were again the three sport objects in a random order.

Size prior estimated via S-2AFC and via depth camera are shown for all partic-
ipants and objects in figure 17 A) in black and orange, respectively. To obtain the
samples for the depth camera condition forty measurements of distances between
the palms were taken across multiple frames of the recorded videos. The estimated
mean [Lcqm and standard deviation ocqm for these samples are compared with val-
ues parc and oarc from the S-2AFC data in panel B) and C) of figure 17. There is
no significant difference found when comparing these mean size values between the
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Figure 17: Comparison size prior from S-2AFC and depth camera. A) Size prior distribu-
tions for each participant and object. Type of measurement separated by color:
S-2AFC in black and depth camera data in orange. B) Mean value of size prior esti-
mated by depth camera as function of values from S-2AFC. C) Standard deviation
of measured values for depth camera data as function of S-2AFC.

S-2AFC and the depth camera condition (Wilcoxon signed rank test for paired sam-
ples, V = 41, p = .3028). Likewise there is so significant difference for the standard
deviation (Wilcoxon signed rank test for paired samples, V = 84, p = .1876). That
means the inferred values using the human MCMC approach seem to be meaningful
and not biased by the type of measurement.

3.5 DISCUSSION

Here, we were interested in measuring prior beliefs specifically about familiar ob-
jects and investigate whether people’s behavior was in accordance with them. Since
these beliefs about familiar size are useful cues for distance estimation (Gogel, 1963;
Hochberg and Hochberg, 1952; Kilpatrick and Ittelson, 1953) and can even be essen-
tial especially in a two-dimensional projection without stereo or auxiliary cues, we
ran two experiments limited to two-dimensional projections testing people’s percep-
tion of distance. In both experiments people’s perception of distance was investigated,
differing in the type of available responses: discrete answers in a 2AFC and contin-
uous adjustments in a MoA task. Individual responses across the tasks were highly
consistent and yet able to demonstrate varying biases between participants. Likewise,
inferred beliefs about familiar sizes were also largely in agreement across both meth-
ods of measuring, however, do not necessarily concur with each individual’s behavior
in all conditions.

As unobserved subjective prior beliefs about environmental variables usually influ-
ence behavior strongly (Adams, Graf, and Ernst, 2004; Petzschner and Glasauer, 2011;
Stocker and Simoncelli, 2006; Trommershéduser et al., 2005; Wolpert and Landy, 2012)
and sometimes are even pivotal to explain behavior at all (Hochberg and Hochberg,
1952; Kilpatrick and Ittelson, 1953) it is crucial to consider their influence in mod-
eling. Identifying these beliefs about familiar size is especially important, since real
sizes of familiar objects have been reported to be automatically recognized by par-
ticipants leading to a stroop effect (Konkle and Oliva, 2012), potentially even before
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the objects are correctly identified (Long and Konkle, 2017). Prior beliefs about size
as well as cues that are able to influence the perception of size and thus distance - or
vice versa - have been investigated among others for haptic cues improving distance
perception in an interception task (Battaglia, Kersten, and Schrater, 2011), prior be-
liefs about familiar size in time-to-contact judgments (Hosking and Crassini, 2010) or
when reaching for and trying to grasp objects (McIntosh and Lashley, 2008). Yet it can
be difficult to measure these prior beliefs in a rather direct way than just to fit them
to data. There have been various approaches to measure and infer these subjective
beliefs e.g. for stimuli lengths and animal categories (Sanborn and Griffiths, 2008),
matching of colors to words, indicating the pleasantness of musical chords, assigning
emotions to face expressions (Harrison et al., 2020) or face familiarity (Houlsby et al.,
2013). Here, we have taken up the approach of Sanborn and Griffiths, 2008 but with-
out the need to train participants to an arbitrary and artificial distribution since we
were interested in the already established subjective beliefs about the size of familiar
objects. We were able to show that the participants were overall unbiased in their
mean size beliefs with respect to actual object sizes, while individual beliefs about
single objects of course could differ from the actual size, as well. Furthermore, we
tested whether the prior determined this way were meaningful and correct by ask-
ing participants to indicate the diameter of the objects with their hands in front of a
depth camera. Using this visuomotoric task yields an additional advantage of using
an embodied action. This could be useful since embodied cognition states inter alia
that the body and its various forms of interaction can translate to differences in cog-
nitive processing (Foglia and Wilson, 2013). It was shown that e.g. body postures can
facilitate the retrieval of memories (Dijkstra, Kaschak, and Zwaan, 2007). This might
mean that people can benefit from such a visuomotoric recollection to retrieve beliefs
with an improved precision or less bias. We found that samples from the depth cam-
era were in accordance with the data from the size MCMC experiment. This means,
since there was no significant difference found, that size prior correctly reflected the
subjective belief or at least that both methods used to measure these prior yield the
same individual biases.

In order to check participants” consistency we can compare both distance percep-
tion tasks as well as the conformity of biases with subjective size prior beliefs. All par-
ticipants exhibited highly consistent behavior across both distance estimation tasks,
the MoA and D-2AFC, as shown with the highly significant correlation p¢,s = .8819
(p < .001) of biased thresholds in the D-2AFC and the deviations from optimal line in
MoA. Meaning, the direction and degree of biases scaled comparably in both experi-
ments, see again figure 14 A). However, when considering the biases in the subjective
beliefs the Bayesian model did not necessarily explain deviations well for all partici-
pants and object pairs. These inconsistencies might arise from imprecise and biased
measurements of their size beliefs. Yet this is less likely since we have employed two
different methods to measure these beliefs which yielded similar results. Another
cause for the inconsistency between size beliefs and judgments might arise from par-
ticipants using heuristics to simplify their tasks. Describing behavior as arising from
heuristics, approximations and combinations or so called rules-of-thumb, as an idea
to break down computationally highly demanding tasks in easier approximations,
is common e.g. in object interception (Belousov et al., 2016; Zago et al., 2009), in
judgments about probability (Tversky and Kahneman, 1974) or physical properties
(Cohen, 2006; Gilden and Proffitt, 1994). Here, a potential approximation could be the
usage of a fixed ratio of visual angles as a decision threshold in both experiments. It
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is also conceivable that participants, given their degree of uncertainty, were biased by
their first choice and stick to it for the sake of consistency, whether it reflected their
size prior well or not. However, with the small number of participants up to this
point, this question cannot be conclusively resolved and more data will be gathered.

In summary, the results confirm the value of the human MCMC approach (San-
born and Griffiths, 2008) to access individual and subjective a priori beliefs as well as
demonstrate the consistency of human behavior in distance estimation tasks. How-
ever, so far not all behavioral biases can be explained by a Bayesian model considering
the individual perceptual uncertainty and shifted subjective beliefs.
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INTUITIVE PHYSICAL REASONING TRANSFERS TO A
VISUOMOTOR TASK

Every thing of nature works according to laws.
Ein jedes Ding der Natur wirkt nach Gesetzen.

— Kant, I. (1791). Grundlegung zur metaphysik der Sitten.

4.1 INTRODUCTION
4.1.1  Human predictions in physics - heuristic or realistic

Whether sliding a glass containing a beverage on a counter top in your kitchen or
shooting a stone on a sheet of ice in curling, acting successfully in the world needs
to take physical relationships into account. While humans intuitively sense an un-
derstanding of the lawful relationships governing our surroundings, research has
disputed that this is indeed the case (McCloskey, Caramazza, and Green, 1980; Todd
and Warren Jr, 1982). Instead, human judgements and predictions about the dynam-
ics of objects deviate systematically from the laws of Newtonian mechanics. Past
research has interpreted these misjudgments as evidence that human judgements vi-
olate the laws of physics and that they instead use context specific rules of thumb, so
called heuristics (Cohen, 2006; Gilden and Proffitt, 1994, Todd and Warren Jr, 1982).
E.g., when judging relative masses of objects such as billiard balls based on observed
collisions, people seem to use different features of motion in different contexts and
end up with erroneous predictions (Todd and Warren Jr, 1982).

But recent research has provided a different explanation of human misjudgments
on the basis of the fact that inferences in general involve sensory uncertainties and
ambiguities, both in perceptual judgements (Kersten, Mamassian, and Yuille, 2004;
Knill and Richards, 1996) as well as in reasoning and decision making (Gershman,
Horvitz, and Tenenbaum, 2015; Griffiths et al., 2010). Therefore, physical reasoning
needs to combine uncertain sensory evidence with prior beliefs about physical rela-
tionships to reach predictions or judgements (Hamrick et al., 2016; Sanborn, Mans-
inghka, and Griffiths, 2013; Smith, Battaglia, and Vul, 2013; Smith and Vul, 2013;
Ullman et al., 2018). By probabilistically combining prior beliefs and uncertain obser-
vations, a posterior probability about the unobserved physical quantities is obtained.
Judgements and predictions are then modeled as based on these probabilistic infer-
ences. Thus, deviations from the predictions of Newtonian physics in this framework
are attributed to perceptual and model uncertainties.

4.1.2  Noisy Newton framework

This framework of explaining reasoning about physical systems on the basis of New-
tonian mechanics and perceptual uncertainties has been referred to as the noisy New-
ton framework (see e.g. (Kubricht, Holyoak, and Lu, 2017) for a review). It has been
quite successful at explaining a range of discrepancies between predictions of Newto-
nian physics and human predictions for various perceptual inference tasks, including
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subjects” biases in judgements of mass ratios when observing simulated collisions of
objects, if perceptual uncertainties are taken into account (Sanborn, Mansinghka, and
Griffiths, 2013; Smith et al., 2013). Additionally, the noisy Newton framework can also
explain why human judgements depend on experimental paradigms, because tasks
differ in the availability of knowledge about objects” properties (Smith, Battaglia, and
Vul, 2018). As an example, this suggests an explanation for the fact that judgements
about physical situations based on a static image representing a situation at a single
timepoint have usually been reported to deviate more from physical ground truth
compared to richly animated stimuli (Kaiser et al., 1992), which additionally allow to
estimate objects” velocities. Nevertheless, some persistent failures of intuitive phys-
ical reasoning have been suggested to be caused by distinct systems of reasoning
compared to the more calibrated physical reasoning underlying visuomotor tasks
(Smith, Battaglia, and Vul, 2018).

4.1.3 From reasoning and discrete actions to continuous visuomotor control

While physical reasoning has been studied predominantly using tasks in which sub-
jects needed to judge physical quantities or predict how objects continue to move,
much less is known about how intuitive physical reasoning guides actions. Com-
monly, experimental paradigms have asked subjects to judge physical properties in
forced choice paradigms such as relative masses in two-body collisions (Gilden and
Proffitt, 1994; Hamrick et al., 2016; Sanborn, Mansinghka, and Griffiths, 2013; Smith
and Vul, 2013), predict the future trajectory of an object when no action is taken based
on an image of a situation at a single timepoint, such as a pendulum (Smith, Battaglia,
and Vul, 2018), a falling object (Kaiser, Proffitt, and McCloskey, 1985), or whether an
arrangement of blocks is stable (Hamrick et al., 2016). Other experiments have asked
subjects to predict a trajectory of objects (McCloskey and Kohl, 1983) or their land-
ing position (Smith, Battaglia, and Vul, 2013) after seeing an image sequence, but
again without subjects interacting with the objects in the scene. Recent studies have
also investigated more complex inference problems in which subjects needed to learn
multiple physical quantities by observing objects” dynamics (Ullman et al., 2018) or
quantified how much entropy reduction for forced choice questions about physical
properties of objects was achieved by interactions with objects in a scene (Bramley
et al., 2018). By contrast, the literature on visuomotor decisions and control (Kord-
ing and Wolpert, 2004a, 2006; Todorov, 2004; Trommershduser, Maloney, and Landy,
2003) has seldom investigated the relationship between visuomotor decisions, actions,
and control and physical reasoning. Notable exceptions are studies, which have in-
vestigated how humans use internal models of gravity in the interception of moving
targets (Zago et al., 2004) and how exposure to o-gravity environments (McIntyre
et al., 2001) changes this internal model. Nevertheless, these studies did not investi-
gate the inference and reasoning of unobservable physical quantities. Other studies
have investigated how perceptual judgements and visuomotor control in picking up
and holding objects in the size-weight and material-weight illusions can be dissoci-
ated (Baugh et al., 2012; Flanagan, Bittner, and Johansson, 2008). Nevertheless, these
studies did not investigate the relationship of intuitive physical reasoning and visuo-
motor actions.

Here we investigate how human subjects guide their actions based on their be-
liefs about physical quantities given prior assumptions and perceptual observations.
Thus, we combine work on intuitive physics (Hamrick et al., 2016; Sanborn, Mans-
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inghka, and Griffiths, 2013; Smith and Vul, 2013) and visuomotor control (Flanagan,
Bittner, and Johansson, 2008; Kérding and Wolpert, 2006; Trommershduser, Maloney,
and Landy, 2003; Zago et al., 2004). First, do humans use the functional relationships
between physical quantities as prescribed by Newtonian mechanics in new task situ-
ations? Specifically, when sliding an object on a surface the velocity with which the
object needs to be released needs to scale linearly with the object’s mass but with
the square-root of the distance the object needs to travel. Second, when interacting
with simulated physical objects, do humans interpret differences in objects” behav-
ior in accordance with physical laws? Specifically, when two objects slide according
to two different non-linear relationships, subjects may attribute these differences to
the lawful influences of unobserved physical quantities such as mass. Third, after
having observed collisions between objects do humans adjust their actions consistent
with the inferred relative masses of those objects? Specifically, while it is known that
subjects can judge mass ratios of two objects when observing their collisions, it is
unclear whether they subsequently use this knowledge when sliding those objects.
To address these questions, subjects were asked to shoot objects gliding on a surface
under the influence of friction to hit a target’s bullseye in a simulated virtual envi-
ronment. The simulated puck was accelerated by subjects” button presses such that
the duration of a button press was proportional to the puck’s release velocity. A suc-
cession of four phases investigated, what prior assumptions subjects had about the
relationships between their actions and physical quantities, whether they could learn
to adjust their actions to different objects when visual feedback about their actions
was available, whether they would interpret the differences in objects” behavior in
accordance with physical laws, and whether they could transfer mass ratios inferred
from observing collisions to adjust their actions accordingly.

Analysis of the data shows that subjects adjusted their press-times depending on
the distance the pucks had to travel. Furthermore, subjects adjusted the button press-
times to get closer to the target within a few trials when visual feedback about the
puck’s motion was available. Because perceptual uncertainties and motor variability
can vary substantially across subjects and to take Weber-Fechner scaling into account,
we subsequently analyzed the data with a hierarchical Bayesian interaction model
under the assumption that subjects used a Newtonian physics based model and com-
pared it to the prediction of a linear heuristics model. Importantly, because subjects
needed to adjust their button press-times, the model needs to account for percep-
tual judgements and the selection of appropriate actions. We include a comparison
of three cost functions to investigate subjects” selection of press-times. Based on this
model of the sliding task, we find evidence that subjects used the functional rela-
tionship between mass and distance of pucks as prescribed by Newtonian physics
and readily interpreted differences between two pucks” dynamics as stemming from
their unobserved mass. Moreover, biases in subjects’ press-times can be explained as
stemming from costs for not hitting the target, which grow quadratically with the
distance of the puck to the target’s bullseye. After observing 24 collisions between
an unknown puck and two pucks with which subjects had previously interacted, we
found evidence that participants transferred the inferred relative masses to subse-
quent sliding actions. The mass beliefs from observing the collisions were inferred by
a hierarchical Bayesian observation model. Thus, intuitive physical reasoning trans-
fers from perceptual judgements to control tasks and deviations from the predictions
of Newtonian physics are not only attributable to perceptual and model uncertainties
but also to subjects” implicit costs for behavioral errors.
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4.2 MATERIALS AND METHODS
4.2.1 Participants

Twenty subjects took part in the experiment. All participants were undergraduate or
graduate students recruited at the Technical University of Darmstadt, who received
course credit for participation. All experimental procedures were carried out in ac-
cordance with the guidelines of the German Psychological Society and approved by
the ethics committee of the Technical University of Darmstadt. Informed consent was
obtained from all participants prior to carrying out the experiment. All subjects had
normal or corrected to normal vision and were seated so that their eyes were approx-
imately 40 cm away from the display and the monitor subtended 66 degrees of visual
angle horizontally and 41 degrees vertically. In the vertical direction the monitor had
a resolution of 1080 pixels, which corresponded to a distance of approximately 11.5m
in the simulation. Four participants have been excluded from the analysis (three due
to incorrect task execution and one due to incomplete data; f=9, m=11, age=[18,27],
median=22.5, mean=22.25).

4.2.2  Task procedure and physics

Participants were instructed to shoot a puck in a virtual environment into the bullseye
of a target, similar to an athlete in curling. The shot was controlled by the duration
of pressing a button on a keyboard. Participants were told that they were able to
adjust the force, which initially was going to accelerate the puck and thus the initial
velocity of the puck, by the duration of their press. Additionally, participants were
told that realistic friction was going to slow down the puck while sliding on the
simulated surface. The general objective of the experimental design was to investi-
gate whether subjects adjusted their shooting of the pucks in a way that was in line
with the physical laws governing motion under friction. Specifically, the magnitude
of the initial impulse exerted on the puck determines how far the puck slides on the
surface. Thus, subjects needed to adjust the duration of a button press according to
the distance between the randomly chosen initial position of the puck and the target
on each trial. The different experimental phases allowed investigating subjects” prior
beliefs about the puck’s dynamics, their adjustments of button presses when these
beliefs were updated given visual feedback of the puck’s motion, and the potential
transfer of knowledge about relevant object properties to the control of the puck from
perceiving object collisions. Therefore we designed a task with two conditions and
four consecutive experimental phases, which differed in the availability of previous
knowledge and feedback.

Laws of motion governing the puck’s motion. At the beginning of each trial, sub-
jects saw the fixed target and a puck resting at a distance chosen uniformly at random
between one and five meters from the target’s bullseye. To propel the puck toward
the target, subjects needed to press a button. To model the relationship between the
button press and the puck’s motion, we reasoned as follows. Human subjects have
been shown to be able to reason accurately about the mass ratio of two objects when
observing elastic collisions between them (Sanborn, Mansinghka, and Griffiths, 2013).
In elastic collisions, according to Newtonian laws, the impulse transferred by the col-
lision is proportional to the interaction duration with a constant force. In other words,
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the duration of the interaction with a constant force leads to a linearly scaled impulse.
Given a constant mass m of a puck and assuming a constant surface friction coeffi-
cient i, Newtonian physics allows deriving the button press-time Ty ;ess required to
propel the puck to the target at a distance Ax:

2 2
Toress =4/ 7“5? Ax x m-VAx (19)

with gravitational acceleration g and a constant force F. Here, the constant force
F is being applied by the interaction, i.e. the button press of duration Tyress, which
is physically equivalent to an elastic collision with an object. Note that this formu-
lation of the interaction has the additionally intuitive consequence that the release
velocity of the puck scales linearly with the duration of the button press (see S1 Ap-
pendix "Puck Movement"). The second expression clarifies, that the press-time scales
linearly with the mass of the puck, while it scales with the square-root of the distance
to the target. Obviously, this relationship assumes perfect knowledge of all involved
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Figure 18: Task design. (A) Single trial illustration. Target area and puck are presented on a
monitor from bird’s-eye perspective. Releasing the pressed button accelerates the
puck by applying a force, which is proportional to the press-time. In trials without
feedback the screen turned black after button release, while in feedback trials par-
ticipants were able to see the puck moving according to simulated physics. (B) Four
phases of the experiment. In the "prior’ phase, no feedback about puck motion was
available, whereas in the "feedback’ phase subjects obtained visual feedback about
the pucks” motion. Two pucks with different colors and correspondingly different
masses were simulated. In the 'no feedback’ phase subjects obtained a new puck as
indicated by a new color and obtained no feedback. In the last phase, subjects first
watched 24 collisions between the new puck and the pucks they had interacted
with in the "feedback’ phase before interacting again with the puck. Note that the
puck of the 'no feedback’ and ’collisions + no feedback” phase are identical.
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quantities. The movement of the puck was implemented by simulating the equivalent
difference equations for each frame given the friction and the velocity of the preced-
ing frame:

Xt4ot = Xt + VOt (20)

Viyst = Vi — At (21)

4.2.3 Phases of the experiment

Phase 1: Prior beliefs. In the first phase, we wanted to investigate, which functional
relationship subjects would use a priori to select the duration of button presses de-
pending on the perceived distance between the puck and the target. A black puck
with unknown mass m was placed at a distance to the target drawn uniformly at
random. Participants received no further information about the puck or the environ-
ment. Participants were instructed to press the button in a way so as to bring the
puck into the target area, but after pressing the button for a duration tP™® and re-
leasing it the screen turned black to mask the resulting movement of the puck. This
screen lasted for at least half a second until the participant started the next trial by
button press. All participants carried out fifty trials. Thus, the collected data allowed
relating different initial puck distances to the press-times subjects selected based on
their prior beliefs.

Phase 2: Visual feedback. The second phase was designed to investigate, how
participants adjusted their button press-times in relation to the simulated masses of
pucks and their initial distances to the target when visual feedback about the pucks’
motion was available. To this end, participants carried out the same puck-shooting
task but with two different pucks, as indicated by distinct surface textures (yellow di-
amond versus five red dots, see figure 18 b, Feedback). The two pucks were alternating
every four trials with a total number of two-hundred trials. The two different pucks
were simulated with having differing masses, resulting in different gliding dynam-
ics. In this condition, participants received visual feedback about their actions as the
pucks were shown gliding on the surface from the initial position to the final position
depending on the exerted impulse. Thus, because the distances traveled by the two
pucks for different initial positions as a function of the button press-times tP™¢ could
be observed, participants could potentially use this feedback to adjust their press-
times on subsequent trials. Note, that the two pucks were only distinguished by a
color cue and no cue about mass was given apart from the different dynamics. Half
the participants were randomly assigned to the ‘light-to-heavy’ condition, in which
the two pucks had masses of 1.5 kg and 2.0 kg, and the other half of the participants
were assigned to the "heavy-to-light” condition, in which the pucks had masses of 2.0
kg and 2.5 kg.

Phase 3: No feedback. In phase three, we wanted to investigate how having ob-
served the sliding of the pucks in phase two influenced participants” press-times
with an unknown puck. Subjects were asked to shoot a new puck they had not seen
before to the target without visual feedback, as in the first experimental phase, for
one-hundred trials (figure 18 B, No Feedback). The texture of the puck consisted of five
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concentric rings. For participants in the "light-to-heavy’ condition, the new puck had
a mass of 2.5 kg whereas for participants in the 'heavy-to-light” condition the new
puck had a mass of 1.5 kg. However, different from phase one, in which subjects had
not obtained feedback about the pucks” motion, by phase three participants had al-
ready interacted with three pucks and obtained visual feedback about the motion of
two pucks. Importantly, participants had received feedback about the non-linear na-
ture of gliding under friction in phase two, albeit scaled differently for the two pucks.
Thus, this experimental phase allowed investigating, whether subjects use the func-
tional mapping from puck distances to press-times prescribed by Newtonian physics
and what assumptions about the mass of an unknown puck they used.

Phase 4: Collisions & no feedback. With the final experimental phase we wanted
to investigate, whether participants can use the relative mass ratios inferred from
observing collisions between two pucks to adjust their subsequent actions with one
of those pucks. At the beginning of phase four, participants watched a movie of
twenty-four collisions between two pucks. One was always the puck with unknown
mass used in phase three (without feedback; five rings) (see figure 18 B, Collisions No
Feedback), while the second puck was one of the two pucks presented in phase two
(see figure 18 B, Feedback). Each collision thus showed one of the two previously seen
pucks from phase two selected at random colliding with the puck from phase three
with a total of twelve collision with each of the two known puck. By observing these
elastic collisions participants were expected to learn the mass ratios between pucks,
as shown in previous research (Sanborn, Mansinghka, and Griffiths, 2013; Smith et
al., 2013). Note that the pucks were simulated without the influence of friction in
these collisions, ensuring that participants only obtained a cue about relative masses
and not about the dynamics under friction for the puck from phase 3. After watching
these collisions, subjects were asked to shoot the puck from phase three again with-
out obtaining visual feedback, as in phases one and three, for one-hundred trials.
Thus, subjects interacted with the same puck as in phase three but had now seen the
collisions of this puck with the two pucks they had interacted with. This experimental
phase therefore allowed investigating, whether subjects used the learned mass ratios
and transferred them to the control task to adjust their press-times. Importantly, hav-
ing learned the mass ratios between pucks needs to be transferred to the press-times,
which differ in a physically lawful way depending on the initial distance of the pucks
to the target. As the two pucks from phase two of the experiment were only distin-
guished by color, such a transfer indicates that subjects had attributed the different
dynamics to their masses consistent with Newtonian physics. Thus, if subjects used
an internal model of physical relationships, they should be able to adjust their press-
times for the new puck without ever having seen it glide.

4.3 RESULTS
4.3.1 Behavioral results

As subjects did not receive visual feedback about the consequences of their button
presses in the first phase of the experiment, the button press-times reflect the prior
assumptions they brought to the experiment. Indeed, subjects’” press-times tP"¢ grew
with the initial distance between the puck and the target. The button press times
for all phases of the experiment are shown in figure 19. The correlation between tP™®
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Figure 19: Press-times as function of initial distance to target. Press-times for all partici-
pants by condition and experimental phase are shown with data points in black
and Newtonian relationship with perfect knowledge about the involved parame-
ters in blue. The top row shows the data of subjects in the light-to-heavy condition
and the bottom row shows the data of subjects in the heavy-to-light condition.
(A) Press-times of participants in the first phase ("prior"), (B) second phase ("feed-
back") for the yellow puck, (C) second phase ("feedback") for the red puck, (D)
third phase ("no feedback"), and (E) last phase ("collisions and no feedback") after
having seen 24 collisions.

and the initial distance was 0.482 (p < 0.001). However, the functional relationship ac-
cording to Newtonian physics prescribes a scaling of the press-time according to the
square-root of the distance as specified in eq. 19. The correlation between press-times
tPT¢ and the square-root of the initial distance was 0.478 (p < 0.001). We expected the
standard deviation of press-times to scale with the the mean of press-times in accor-
dance with the Weber-Fechner scaling. This was confirmed by subdividing the range
of distances into three intervals of the same size, i.e. [1,2.33]m, (2.33,3.66)m, and
(3.66,5lm and computing the standard deviation of press-times within these three
intervals resulting 2.97 x 107 7s,4.19x 107 's, and 5.69 x 10~ 's.

In phase two, participants adjusted their press-times based on observing the glid-
ing of the pucks after button presses. Performance was evaluated by calculating the
mean absolute distance of pucks to the target after sliding. The mean absolute er-
ror over the entire phase was 0.928m (0.0177m SEM), see figure 20. Accordingly, the
correlation between tP"¢ and the initial distance was 0.644 (p < 0.001) and with the
square-root of distance 0.646 (p < 0.001). The performance improved between the
first eight trials at the beginning of the phase (mean absolute error 1.76m) and the
last eight trials at the end of the phase (mean absolute error 0.89m). The adjustment
of pressing times was achieved on average after only a few trials, as revealed by a
change-point analysis (Lee and Wagenmakers, 2014), which showed that after six tri-
als the average endpoint error of the puck was stable (see figure 21). Note that this
includes four trials with one puck of the same mass and two trials of the second puck
with a different mass.

Phase three involved shooting a new puck, which subjects had previously not inter-
acted with, without visual feedback. Note that the puck was identical to the puck sub-
jects later interacted with in phase four after seeing the collisions. This phase there-
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Figure 20: Task performance and pucks’ traveled distance for three phases of experiment.
(A) Participants’ performance by experimental phase as quantified by pucks” av-
erage absolute error in final position. The number of the ring at which the center
of the puck stopped was used for coding performance, e.g. 1 and 3 in the shown
cases. (B) Aggregated final positions of pucks versus initial distance of pucks to
target. Phases of the experiment are separated by columns and conditions are sep-
arated by rows. The line of equality representing final positions prescribed by the
Newtonian model with perfect knowledge of all parameters is shown in blue.

fore allowed testing whether subjects used the non-linear scaling of the press-times
depending on initial distance of the puck after having observed the pucks” motion
in phase two. As expected, performance was significantly lower with the new puck
without obtaining visual feedback. Mean absolute error was 2.87m (0.104m SEM), see
tigure 20. The correlation between tP"¢ and the initial distance was 0.599 (p < 0.001)
while the correlation between tP"¢ and the square-root of the initial distance was
0.603 (p < 0.001). Given that subjects had already obtained feedback about two pucks
in phase two but did not obtain feedback in this phase, their press-time distribution
could potentially be the mixture of the two press-time distributions of the two previ-
ous pucks, which were different in the conditions ‘light-to-heavy” and "heavy-to-light’.
We compared the combined press-time distributions of phase two with the press-
time distribution of phase three for each condition with the Kolmogorov-Smirnov
test. Press-times in phase three reflected the behavior of both previous pucks com-
bined for condition "heavy-to-light’(Kolmogorov-Smirnov, D = 0.0538, p = 0.092, see
tigure 22 B, "Kolmogorov tests - press-times in phase two & phase three") and approx-
imately for condition ‘light-to-heavy’ (Kolmogorov-Smirnov, D = 0.156, p < 0.001, see
figure 22 A).

At the beginning of phase four subjects watched a movie showing 24 collisions be-
tween the pucks from phase two, for which visual feedback of the gliding had been
available, and the unknown puck from phase three. Thus, this condition allowed test-
ing whether observation of the collisions was used to infer the mass ratios of pucks
and to subsequently adjust the pressing times for that puck from phase three. Per-
formance was significantly higher than in phase three (see figure 20) with a mean
absolute error of 1.63m (0.0440m SEM), although the puck was the same as in phase
three and although subjects did not obtain visual feedback. This effect was significant
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Figure 21: Change point detection. Average absolute error as function of trials and posterior
of mean average error derived using the change point detection model. (A) Aver-
age absolute error over participants as function of trial number. (B) Posterior over
change point T. Red dotted line marks trial six. (C) Posterior of mean error before
and after change point.

for both conditions as tested with Wilcoxon Signed Rank test for the absolute error
(light-to-heavy: W = 339300, p = 0.018; heavy-to-light: W = 441330, p < 0.001). This
shift towards longer and shorter press-times in the light-to-heavy and heavy-to-light
condition respectively is depicted in figure 24. The shift was statistically significant
by testing with a Wilcoxon Signed Rank test for shorter and longer press-times for
both conditions respectively (light-to-heavy: W = 158580, p < 0.001; heavy-to-light:
W = 490620, p < 0.001). For more detail of the error distributions across phases two
to four see figure 23.

Taken together, these analyses suggest, that subjects adjusted their press-times both
depending on the distance of the pucks to the target and depending on the pucks’
masses used in the simulation. Furthermore, the analyses provide a very weak initial
hint, that subjects may have scaled their press-times with respect to mass and with
a non-linear function of initial distance after having obtained visual feedback about
the pucks” motion. Finally, observing collisions between pucks lead subjects to adjust
their press-times even without obtaining visual feedback. In the following section we
provide two computational generative models, one for the sliding task and one for
the collision observation task to quantitatively analyze participants” press-times in
terms of perceptual, physical, and behavioral quantities.

4.3.2 Interaction model results

The above analyses give only a weak indication that our participants were able to
adjust their press-times consistent with Newtonian physics and that they transferred
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the inferences about relative mass ratios from observing collisions to the press-times,
and are limited in several ways. First, perceptual variables such as the initial distance
of the puck to the target were uncertain for our subjects, which is not quantitatively
entering the correlation analyses of press times with physical predictions under the
assumption of perfect knowledge of all parameters. Secondly, our participants had
to press a button to propel the puck. For longer press-times, subjects are known to
demonstrate variability in pressing times, which scales linearly with its mean and
which may vary considerably between subjects. Thirdly, while subjects pressed a but-
ton and observed the simulated motion of the pucks from a bird’s eye view on a
monitor, it would be desirable to be able to estimate subjects’ belief about the masses
of the different pucks implicit in their press-times. Therefore, we devised a hierarchi-
cal Bayesian model of the full visuomotor decision task to provide a computational
account of our subject’s behavior.

The Bayesian network model in figure 25 expresses the relationship between vari-
ables on a subject-by-subject and trial-by-trial basis. While as experimenters we have
access to the true initial distance x used in the simulation of the puck and displayed
on the monitor as well as the measured press-time tP"¢ chosen by the subject on a
particular trial i, subjects themselves do not know these values. Instead, each partici-
pant j has some uncertain percept of the puck’s distance ije " and, potentially, some
belief about the mass m; of the puck, which depends on its color and the phase
of the experiment k. This structure of the graphical model from the experimenter’s
view leads to the following joint distribution p(d, 1) with observed data d = {x, tP"¢}
and latent variables | = {xP¢", 0, m, 0}, where trial, puck and participant subscripts
were omitted for clarity:

p(d, V) =p(x) p(c®) p(xPeTIx,0*) p(m) p(o*) p(tPT¢[xPeT, m, 0", 0) (22)
A light-to-heavy B heavy-to-light
(D =0.1563, p < 0.001) (D =0.0570, p = 0.0820)
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Figure 22: Kolmogorov tests - press-times in phase 2 & phase 3. In the light-to-heavy con-
dition both distributions of press times when seeing pucks and without feedback
in phase 3 differ significantly. However, considering the asymmetry within the
task response - press-times and potential masses are only constrained single-sided
towards lower values with a minimum at zero - this difference in press-time dis-
tributions is surprisingly small. (B) In the heavy-to-light condition there was no
significant difference between the distribution of press-times of both combined
feedback pucks and the unknown puck before observing the collisions as revealed
by the Kolmogorov-Smirnov test. This suggests that participants adhere to their
previous adjusted strategies when facing decisions in great uncertainty.
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Figure 23: Distance error distributions. Final discrepancy between target and puck pooled
for all participants. Pucks being shot too short are shown with negative values,
pucks with a positive deviation were shot too far. Columns showing the the data
for both conditions and rows divide into puck and phase combinations. The first
two rows (in gold and red) showing the error distributions for both pucks with
feedback in phase 2. The error distribution for the unknown puck in phase 3 be-
fore seeing the collisions is shown in the second last row (in purple) with greater
deviation, with a clear bias and bigger spread. In the last row the error distribu-
tions are depicted for the unknown puck after having seen the collisions with the
previous learned pucks, showing a reduced bias.

Here, p(x) is known to the experimenter as the actual distribution of distances to
target used in the simulations. By contrast, the distribution of perceived distances
p(xP€T|x, 0*) is the noisy perceptual measurement by our participants described as
a log-normal distributed variable, ensuring that samples are strictly positive and
including uncertainty scaling according to Weber-Fechner (Battaglia, Kersten, and
Schrater, 2011). p(ox) describes the prior distribution over possible values of this
perceptual uncertainty. Participants” prior beliefs about the masses of the different
pucks p(m) are described by gamma distributions, which entail the constraint that
masses have to be strictly positive. The log-normal distribution of actually measured
press-times p(tPT¢[xP€", m, o*) depends on the noisy perception of the distance to
target xP€", the belief about the mass of the object and the variability in acting, which
is the press-time variability o' with its gamma distribution p(c*). We additionally
summarize all constant factors, i.e the surface friction coefficient, the gravitational
acceleration, the constant interaction force in the parameter 6.

The potential functional relationship between the perceived distance of the puck
to the target and the required press-time is expressed in the deterministic node rep-
resenting t'™! in the Bayesian network. We consider two possible functional relation-
ships between the press-time and the distance to be covered: subjects may use a linear
relationship between press-time and initial distance as a simple heuristic approach:

Hy o 60 oc xPeT (23)
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Figure 24: Press-time distributions. Pooled press-time distributions for all participants.
Columns showing the the data for both conditions and rows divide into puck
and phase combinations. First two rows showing the press-times for the pucks
with feedback. Press-time distributions in phase 3 without feedback are shown in
row three in blue. Without further information participants’ behavior in phase
3 is strongly influenced by the previous phase and its press-time distribution:
press-time distributions for the unknown puck in phase 3 reflect roughly the com-
bined distributions of press-times of the previous pucks in phase 2 (Kolmogorov
D = 0.0538; p = 0.092 for heavy-to-light, D = 0.156; p = 9.8 x 1072 for light-to-
heavy).

or may use the square-root relationship as prescribed by Newtonian physics ac-
cording to Eq. 19:

Hy @t o v/xper (24)

As experimenters, we only have access to the observed data d, i.e. the actual dis-
tances given the experimental setup and the measured press-times. We use Bayesian
inference employing Markov-Chain Monte-Carlo to invert the generative model and
infer the latent variables describing subjects” internal beliefs given the observed data
d:

p(ld) = p(d, 1 _ p(o*) p(xPeTlx,0*) p(m) p(o*) p(txP", m, 0", 6) (25)
p(d) p(tix)

However, modeling perception as inference may not be sufficient to describe our
participants’ behavior and their selection of actions. Given a posterior over mass and
distance describing the perceptual belief of a subject on a particular trial, a specific
press-time needs to be selected. In order to model this selection process we take
action variability and potential cost functions into account. Cost functions govern
which action, here the press-time, should be chosen given a posterior belief and a
cost function, which quantifies how the decision process penalizes errors on the task.
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Figure 25: Hierarchical Bayesian network for the Newtonian interaction model. The model
expresses the generative process of observed press-times tf’jre across trials i, partic-
ipants j, and pucks k including Weber-Fechner scaling given perceptual uncertain-
ties of distance x; ; and mass m; i of the pucks and subjects” press-time variability.
The parameter values refer to the prior probability distributions. See the text for
details.

ﬂ Trial

This means that it is assumed that participants select an action that minimizes poten-
tial costs associated with missing the target. Loss functions, describing the rewards
or costs for every action in the action space, can have any arbitrary form, nonetheless
we chose a set of three standard loss functions and compare their predictions: o-1,
absolute and quadratic loss functions. These three canonical loss functions express
subjects” implicit preferences for reaching a decision about press-times based on a
putative perceptual posterior: the o-1 loss corresponds to penalizing equally all devi-
ations between the chosen value and the correct value, the absolute loss corresponds
to penalizing deviations from the true value linearly, and the quadratic loss penalizes
the deviations quadratically. It can be shown that these loss functions lead to differ-
ent decisions for a continuous variable with a non-symmetric distribution (Gelman
et al., 2013). Thus, assuming that humans do have costs for missing the target and
associated policies to minimize these costs, leads to three different model versions
for each model class (see figure 26).

In order to evaluate participants’ behavior computationally we first utilized sub-
jects” data from phase two of the experiment to estimate their perceptual uncertainty
and behavioral variability. We chose to start with analyzing phase two for two rea-
sons: first, if participants are able to use visual feedback about the pucks” dynamics
to adjust their press-times, predictions of the model with the correct physical relation-
ships should capture the behavior better than the linear heuristics model. Secondly,
inferred values for latent variables describing visual uncertainty in distance estima-
tion and variability in press-times are less prone to be assigned additional uncertainty.
Additional uncertainty arising in all other phases of the experiment due to the lack
of visual feedback should be assigned to the uncertainty about the mass or the linear
scaling rather than to the variability of press-times in general. Therefore, by evalu-
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Figure 26: Implementation of cost functions. Derivation of the three cost function mod-
els based on the expressions for the measures of the central tendency of the
log-normal distribution with its mode exp(n — 0?), median exp(n) and mean

exp(p + %2). Setting the intended press-time to one of these measures for the
press-time distribution is equivalent with choosing the o-1, absolute or quadratic
loss function.

ating data from phase two "feedback" first, values for the press-time variability and
uncertainty in the perception of distances can be estimated for each participant.

First, we used the data of phase two "feedback" to investigate, which of the three
loss functions best describes our participants” data. In order to choose the appropri-
ate cost function explaining participants” actions most accurately, we computed the
press-times predicted by the linear heuristics and the Newtonian model and applied
the three cost functions to both models. This was achieved by using the inferred
maximum a posteriori (MAP) values for the latent variables in both model classes,
i.e. the mass m in the Newtonian and a linear factor in the heuristic linear model
class. This allowed calculating the residuals, i.e. the difference between subjects” ac-
tual press-times and the predicted press-times for all six combinations of two models
and three cost functions. The residuals are shown as a function of the distance to
the target in figure27. The strong correlation of residuals and distance to target indi-
cates a systematic bias of the linear heuristics model, whereas the weak correlation
of the Newtonian model demonstrates its superiority in explaining the measured
data. These relationships were tested with Spearman correlation tests for each model
and cost function. The data show highly significant correlations for all models (p <
0.001 in all cases; 0-1 loss function: pnew = 0.167, prin = —0.550; abs. loss function:
PNew = 0.124, p1in = —0.643; quadratic loss function: pnew = 0.0976, p1in = —0.686)
and higher correlation in the linear model for each cost function (p < o.001 in each
case, with Bonferroni corrected orit = .017).

Secondly, the posterior predictive distributions for press-times estimated from data
in phase two (see S1 Appendix, "Posterior predictive checks for press-times") match
the actual behavior of the participants more closely compared to the linear heuristics
model. Kullback-Leibler divergence for each pair support this with divergence values
at 0.0558 and 0.0851 for the Newtonian and linear model, respectively. Not only did
the Newtonian model capture participants” press-times in phase two better than the
linear heuristics model, but this also affected the inferred variabilities. While percep-
tual uncertainty only varied marginally (see figure 28 (A)), the posterior distributions
of the press-time variability O';E show higher values for the linear model (see figure
28 (B)) compared to the Newtonian model. This was confirmed by calculating a re-
peated measure ANOVA on the posterior distributions of press-time variability for
both models, showing that the difference was highly significant (F = 39.2, p < 0.001).
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Figure 27: Residuals of estimated press times and inferred masses in phase two for three
cost functions. (A)Residuals were calculated for each participant and each puck in
phase two ("feedback") given the actual press-times and the best fits for the linear
heuristics and the Newtonian model. Residuals for both models were calculated
for all three cost functions. (B) MAP estimates of the masses used by individual
subjects inferred according to the Newtonian model for the the three cost functions.
Red and yellow pucks had different masses for subjects in the two conditions
"heavy-to-light" and "light-to-heavy".

This elevated level of uncertainty is necessary for the linear heuristics model to com-
pensate for the diminished ability to capture the relationship of initial distances and
participants’ press-times. Therefore, in the following we used the Newtonian model
with quadratic cost, because it shows the lowest residual correlation, smallest diver-
gence in posterior predictive distributions of press-times, and smallest press-time
variability.

A consequence of selecting the quadratic cost function on the basis of the analy-
ses of press-time residuals and posterior predictive distribution of press-times allows
comparing the masses inferred on the basis of participants” behavior. Remarkably,
posterior distributions inferred with data aggregated over participants only from
phase two match actual masses implemented in the physical simulations better for
the quadratic cost function (see figure 27 (B) and figure 29). In both conditions in-
ferred beliefs about the masses are closer to the actual masses implemented in the
simulations when presuming that participants use a quadratic loss function. This
was confirmed by testing for the absolute differences between the posterior belief
and the actual mass for each condition, puck and cost function. An ANOVA revealed
highly significant differences (F = 486, p < 0.001) and post-hoc tests showed that
the posterior belief when using the quadratic cost function is the closest fit for all
pucks (p < 0.001 condition light-to-heavy, yellow diamond puck; p = 0.002 red dots
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Figure 28: Posterior estimates of perceptual uncertainty and press-time variability inferred
with data from phase two "feedback". (A) Inferred posterior distributions of per-
ceptual uncertainty for the linear heuristics model and the Newtonian physics
model. Dark green distributions display posterior distributions for the Newtonian
model class, dark blue ones for the linear model class. A separation into cost func-
tions is not included since the different cost functions did not lead to significant
differences. (B) Inferred posteriors for individual press-time variability varied sig-
nificantly between subjects between the two models. All but one participant show
lower or equal values of variability regarding the press-time for the Newtonian
model class.
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Figure 29: Latent masses by cost function: aggregated data from phase 2. Inferred latent
mass beliefs with aggregated data from phase "feedback’ for each cost function.
Posterior distributions for mass belief aggregated over all participants for each
cost function. Colored, vertical lines indicate actual mass of pucks. In comparison
the quadratic loss function leads to posterior distributions that fit closest to the
actual masses in the experiment.

puck; p < 0.001 condition heavy-to-light, yellow diamond puck; p < 0.001 red dots
puck). This result also held at the individual participant levels as illustrated in figure
27 (B)). Thus, the quadratic cost function, which best described participants” press
times, revealed that participants’ mass beliefs were more accurate compared to as-
suming other cost functions.
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Subsequently, we used the MAP values of the inferred press-time variabilities
65 ap for each subject as fixed values for the analyses of data of all experimental
phases. The same applied for the MAP values of the inferred perceptual uncertain-
ties 63, op Which did not differ across subjects or models (see figure 28 (A)) and
therefore were set to one fixed value for all subjects. Note that the mean was 0.05m
in simulation space, which, given the current setup corresponded to approximately
4.7 pixels on the monitor. Using the hierarchical Bayesian interaction model, sam-
ples of the posterior predictive distributions of press-times and of the perceptual
uncertainty are used to infer latent variables for both the linear and the Newtonian
models. The posterior predictive distributions of press-times are shown in figure 38.
Evidence was in favor of the Newtonian model compared to the heuristics model
across all phases of the experiment with the exception of the Prior phase. The largest
differences in prediction power appears in the Feedback phase with the Newtonian
model being the considerably better choice to describe the actual press-times. This
superiority of the Newtonian model over the linear heuristic one remains in the sub-
sequent phases even without any visual feedback. This was again tested by running
two-sample Kolmogorov-Smirnov tests for posterior predictive distributions of phase
three of both models and the actual data, as well as calculating the Kullback-Leibler
divergence for each pair, resulting in lower K-S statistic values for the Newtonian
model (D = 0.0436, p = 0.00521) compared to the linear one (D = 0.0851, p < 0.001).
KL divergence values are 0.0582 and 0.0599 for the Newtonian and linear model, re-
spectively.

Finally, to confirm that the behavioral data of our subjects was best described by
the Newtonian model with quadratic cost function we carried out model selection
using the product space method (Lodewyckx et al., 2011). In this approach, a mixture
model combines both the linear and the Newtonian model to account for the data.
An index variable indicates, which of the two models is selected at each iteration to
explain the data. Given that both models have the same a priori probability to be
chosen, the Bayes factor equates to the posterior odds of the index variable. Result-
ing Bayes factors are shown in figure 30. Given the complete data set from all phases
there is small support for the Newtonian model (Bayes factor K of 2.33). When only
considering data from the Prior phase there is weak support for the linear model (K
= 1.88). Instead, when considering all phases but the first phase there is substantial
support for the Newtonian model (K = 3.71) and strong evidence for the square-root
model in the feedback phase (K = 9.71).

The hierarchical Bayesian interaction model also allows inferring the masses best
describing our subjects’ internal beliefs given the Newtonian model and the mea-
sured press-times. Not surprisingly, mean mass beliefs vary strongly across subjects
in the Prior phase, where participants had to make decisions without any observa-
tions of the pucks, only relying on their prior beliefs about the potentially underlying
dynamics and environmental conditions. Nevertheless, the variances of mass beliefs
within the first phase were surprisingly small for individual subjects with a mean of
0.0023 kg, potentially indicating that each subject consistently used a belief about the
mass of the puck. Inferred values for these prior mass beliefs are displayed in figure
32 for each participant.

When obtaining visual feedback in the Feedback phase of the experiment, subjects
only needed on average six trials to adjust their press-times so that mass beliefs were
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Figure 30: Bayes factors calculated from posterior odds sampled using the product space
method. Bayes factors are displayed for different phases and combinations of
phases. Blue line at 1 marks the point where neither model is stronger supported
by evidence. Red line at 3.2 marks the transition from Bayes factors being only
worth mentioning to substantial evidence in favor of one the models. Colors of
bars indicate the model favored by the Bayes factors.
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Figure 31: MAP values of inferred latent mass in Newtonian model class with quadratic
loss function for each participant and condition.

stable thereafter. Implicit mass beliefs were quite accurate with the mean of inferred
MAP values at 1.5218 and 1.8818 kg in the condition light-to-heavy (1.5 and 2.0 kg)
and 1.9415 and 2.3068 kg in condition heavy-to-light (2.0 and 2.5 kg). figure 31 shows
the MAP estimates of the masses for both conditions and phases two to four for all
subjects.

In phase three No Feedback participants faced an unknown puck without any visual
feedback but with the acquired knowledge about the relationship of press-time and
distance. Note however, that participants had learned two different mappings from
distances to press-times in phase two, one for the red puck and one for the yellow
puck. Thus, participants had to select press-times without knowing the mass of the
unknown puck. As reported above, the press-time distributions in this phase of the
experiment were close to the combined press-times that subjects had used for the
two pucks in the previous phase two of the experiment. The corresponding MAP
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Figure 32: Latent masses: phase "prior’ and 'feedback’. Inferred latent mass in Newtonian
model class with quadratic loss function for each participant and with data from
Prior and Feedback phase. Posterior mass distributions for each participant in Prior
and Feedback phase. Gray distributions show the inferred mass distribution for an
unknown puck before participants have encountered the task dynamics. Resulting
mass distributions for both pucks in feedback trials in red (light puck) and yellow
(heavy puck). Dotted lines indicate actually implemented mass for each of the
feedback pucks.

mass beliefs were accordingly approximately the average of the two previous pucks’
masses with 1.87 and 2.19kg and corresponding mass distributions differed signifi-
cantly for the two conditions light-to-heavy and heavy-to-light (ANOVA: F = 1060, p
< 0.001; see also figure 33). But after observing the 24 collisions in phase Collisions
+ No Feedback of the two known pucks with the unknown puck participants were
able to adjust their press-times so that the estimated mass beliefs were significantly
closer to the true values used in the simulations than in the previous phase. This
was quantified by running a repeated measures ANOVA of the deviations from the
actual mass (F = 7.103, p = 0.0176). Thus, the mass beliefs implicit in our participants’
press-times reflected the inferred mass ratios and transferred from having observed
the pucks’ collisions to the subsequent visuomotor control task. Note that this implies
that subjects must have interpreted the dynamics of the red and yellow pucks in the
second phase as stemming from objects’ masses, as otherwise a physically consistent
transfer to a new puck would be very difficult to explain.

4.3.3 Observation model result

Participants in our experiment were apparently able to make appropriate inferences
in phases with feedback, altering their beliefs about unknown objects based on previ-
ous inferences and new observations, and to transfer this knowledge to an action-
control task. But how were they able to make these adjustments after observing
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Figure 33: Latent masses: phase 'no feedback’ and ’collision and no feedback’. Inferred
latent mass in Newtonian model class with quadratic loss function for each par-
ticipant with data from Prior and both No Feedback phases. Posterior mass distri-
butions for each participant in Prior and Feedback phase. Gray distributions show
again the inferred mass distribution for an unknown puck before participants have
encountered the task dynamics. Distributions in violet and green are the posterior
mass distributions of the unknown puck without feedback before and after the
participants saw collision with known pucks. Dotted line marks the actual mass of
the unknown puck.

collisions and perform well with a continuous range of responses? Here, we want
to look at another Bayesian model capturing the learning process through observa-
tions. To this end, we adapted a hierarchical Bayesian observation model similar to
(Sanborn, Mansinghka, and Griffiths, 2013; Smith and Vul, 2013), which describes
how subjects could infer the relative mass ratios of two pucks from observing their
elastic collisions. But, here we used the mass beliefs inferred from phase two of the
experiment with the interaction model as initial prior mass beliefs in the observation
model for phase four of the experiment on-a-subject-by-subject basis. This allows
comparing how subjects” uncertainty decreases on the basis of perceptual observa-
tions compared to visuomotor interaction.

The Bayesian network model for the observation task in figure 34 expresses the re-
lationship between variables on a subject-by-subject basis for observing 12 collisions
for each of the two pucks. The model incorporates the generative physical relation-
ship of velocities and masses in elastic collisions as shown in (Sanborn, Mansinghka,
and Giriffiths, 2013). The grey nodes are known to the experimenter: the initial veloc-
ities vr of the known feedback puck and vnF of the unknown no-feedback puck, the
resulting velocities ur and unr. Individual subjects” posterior mass beliefs at the end
of phase two inferred with the interaction model, shown on the left panel of figure
34, were used as prior mass beliefs of the yellow and red pucks in the observation
model for each participant. Unknown parameters are depicted as white nodes and
were inferred with MCMC. Subjects” uncertain beliefs about the pucks’ velocities are
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Figure 34: Bayesian model for learning through observing collisions with prior and pos-
terior mass beliefs. The left panel shows inferred posterior mass beliefs for the
pucks from feedback phase 2 for each participant. All 100 trials were used to infer
the mass beliefs. These posteriors were used as priors for the inference from obser-
vations. The graphical model for learning by observing collision is shown in the
middle panel. Uncertainty about the pucks’ velocities is introduced for the initial
velocities vi and vr as well as for the resulting velocities ur and unr after the
elastic collision. Utilizing the physical relationship of velocities and masses in an
elastic collision enables inferring beliefs about the unknown puck based on previ-
ous mass beliefs of pucks in phase 2. Resulting posterior mass beliefs are shown
in the right panel for inferences based on 6 and 24 observations of collisions.

incorporated for the initial velocities vi and vnF as well as for the resulting velocities
ur and unr after the elastic collision. To describe the perceptual uncertainty of ve-
locities we used a log-normal distribution with o, fixed at 0.2 and its mode at the
actual velocity (see figure 6 in (Sanborn, Mansinghka, and Griffiths, 2013) or section
"Subject Performance" in (Smith and Vul, 2013) for comparison). Inferred posterior
mass beliefs for the new puck are shown in the right panel. This structure leads to
the following joint distribution p(d, 1) with observed data d = {vf, VNF, UF, UNF, MF}
and latent variables | = {vF*", VR T, ul®", uky, mnr), where actual and perceived ve-
locities are summarized for both pucks using an index i to vi and u; for abbreviation

purposes:

p(d, V) =p(vi) plui) plmg) pOWVP vy, over) plmne) plul Ty, vP7, me, muE, Ovet) (26)

The observation model allows inferring participant’s mass beliefs for the puck,
which they had first interacted with in phase three of the experiment. Importantly,
the two Bayesian models allow inferring the uncertainty in participants’ mass beliefs
after only six and after 24 trials, both for the interaction phase two and the observa-
tion of the collision movies, see figure 35. These results quantify, how uncertainty in
mass beliefs decreased over trials and the difference in uncertainty reduction due to
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Figure 35: Learning progress of mass beliefs during interaction and observation. Barplot
of averaged variance for both models and a given number of observations. First
three columns show the average variance in posterior mass beliefs for inferences
with 6, 24 and 100 trials per puck and participant. Two last columns show the
average variance of mass beliefs of the unknown puck resulting from inference
using the collision model for 6 and 24 trials, while using the posterior mass belief
of the known pucks from the interaction model with 100 trials each.

interactions versus observations. More specifically, as expected, subjects” variance in
inferred posterior mass beliefs for each puck decreased with the progression of tri-
als when using the interaction model with data from phase 2 (Friedman chi-squared
= 62.06, p-value < 0.001 & Conover’s PostHoc p < 0.001 for all comparisons) and,
as well, when using the observation model with mass beliefs from phase 2 with the
highest precision after 100 trials (Wilcoxon signed rank test, V = 136, p < 0.001). Addi-
tionally, the variance in resulting inferences about the mass in the observation model
is significantly higher than the variance of the mass beliefs used as input, as we
compared variances on subject basis for columns three, four and five (Kruskal-Wallis
chi-squared = 37.43, p-value < 0.001 & Dunn PostHoc for grey compared to red and
green, each p < 0.001, see figure 35). Thus, the larger variance in participant’s mass
estimates after observing the pucks’ collisions compared to interacting with them,
see e.g. figure 31, stems from the fact that subjects needed to use the uncertain mass
beliefs of the red and yellow pucks when observing the collisions and had additional
uncertainty stemming from inferring pucks’ velocities. Furthermore, the predictions
of the idealized observation model deviate quantitatively from mass beliefs inferred
using the interaction model for two reasons: 1) participants would need to remember
their belief about the mass of feedback pucks perfectly while performing in phase 3
and 4, whereas these beliefs may well suffer from memory effects, and 2) they will
be biased from initial, uninformed guesses in phase 3 before they have seen any col-
lisions and thus probably show recency effects, as well (see e.g. participant 7 & 8 in

tiguress).
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4.4 DISCUSSION

Although people are able to interact with the physical world successfully in every-
day activities, classic research has contended that human physical reasoning is fun-
damentally flawed (Cohen, 2006; Gilden and Proffitt, 1994, McCloskey, Caramazza,
and Green, 1980; Todd and Warren Jr, 1982). Recent studies instead have shown that
biased human behavior in a range of perceptual judgement tasks involving physical
scenarios can be well described when taking prior beliefs and perceptual uncertain-
ties into account (Hamrick et al., 2016; Sanborn, Mansinghka, and Griffiths, 2013;
Smith, Battaglia, and Vul, 2013; Smith and Vul, 2013). The reason is that, inferences in
general need to integrate uncertain and ambiguous sensory data and partial informa-
tion about object properties with prior beliefs (Gershman, Horvitz, and Tenenbaum,
2015; Griffiths et al., 2010; Kersten, Mamassian, and Yuille, 2004; Knill and Richards,
1996). Much less is known about how intuitive physical reasoning guides actions.
Here, we used a perceptual inference task involving reasoning about relative masses
of objects from the intuitive physics literature and integrated it with a visuomotor
task. Subjects had to propel a simulated puck into a target area with a button press
whose duration was proportional to the puck’s release velocity. The goal was to in-
vestigate how people utilize relative masses inferred from watching object collisions
to guide subsequent actions.

Specifically, we devised an experiment consisting of four phases, which differed in
the available sensory feedback and prior knowledge about objects” masses available
to participants. The physical relationship underlying the task requires subjects to
press a button for a duration that is proportional to the mass of the puck and propor-
tional to the square-root of the initial distance. This allowed examining peoples’ prior
assumptions about the underlying dynamics of pucks’ gliding, their ability to adjust
to the pucks’ initial distances to the target and to the varying masses of pucks, and
the transfer of knowledge about relevant properties gained by observing collisions
between pucks. A hierarchical Bayesian generative model of the control task and
one of the collision observation task accommodating individual differences between
subjects and trial by trial variability allowed analyzing subjects” press-times quanti-
tatively. Importantly, we also tested, which of three cost functions best describe our
subjects” choices of press-times.

In the prior phase without visual feedback, subjects adjusted their press-times with
the initial distance of the puck to the target. Not surprisingly, because subjects did
not obtain any feedback about their actions and therefore the degree of friction, the
magnitude of the applied force, and the scale of the visual scene, could only hit
the target by chance. Nevertheless, model selection slightly favored the linear heuris-
tics model compared to the square-root model, i.e. subjects approximately scaled the
press-times linearly with the initial distance to target. Thus, subjects came to the ex-
periment with the prior belief that longer press-times would result in longer sliding
distances but did not scale their press-times according to the square-root of the initial
distance of the pucks as prescribed by Newtonian physics. As subjects did not sense
the weight of the pucks and did not obtain any visual feedback about the pucks” mo-
tion, the observed behavior in this phase of the experiment may be dominated by the
uncertainty about the underlying mapping between the duration of button presses
and the pucks’ release velocities, the effects of friction, and the visual scale of the
simulation. Remarkably, while no feedback was available, each participants” scaling
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of press-times was consistent as indicated by individuals” variance in posterior mass
estimates being of the same order of magnitude as in feedback trials, see figure 32.

When visual feedback about the pucks” motion during the feedback phase was
available, subjects needed on average only six trials to reach stable performance. This
is particularly remarkable, because it corresponds to adjusting the press-times to
a single puck’s mass over the four initial trials and then adjusting the press-times
within only two subsequent trials to a new puck with a different mass. Thus, the
observation of the pucks” dynamics over six trials was sufficient to adjust the press-
times with the square-root of initial distance, but differently for the two pucks, see
figure 19. Note that in phase two, subjects only had a contextual color cue distin-
guishing the two pucks. Therefore, subjects needed to learn two different functions
relating the pucks’ initial distances to the required press-times, one for each puck,
without any explicit reference to mass. Data from this phase of the experiment were
utilized to infer parameters describing individual subjects’ perceptual uncertainty
and motor variability. Perceptual variability was consistent across subjects and var-
ied only marginally so that a constant value of 0* = 0.05m was used across subjects
and models for all other phases of the experiment. Remarkably, this corresponds to a
distance of 4.7 pixels in the vertical direction on the display monitor with a resolution
of 1080 pixels. By contrast, the variability of press-times ¢* varied substantially across
subjects with almost all subjects lying between 0.15s and 0.33s, so that individuals’
parameters were used in all subsequent models.

Given that the variability of peoples’ press-times scales with the mean of the du-
ration, longer press-times can lead to larger deviations from the targeted press-time.
This can result in larger errors by overshooting the target. To reduce possible over-
shoots, participants may implicitly aim at a shorter distance, which can be quantified
through a cost function incorporating the relative desirability of the pucks’ final dis-
tance to the target. Therefore, we tested which of three commonly used cost functions
best described subjects” press-times: the o-1 cost function, the quadratic cost func-
tion, and the absolute value cost function. Model selection using the product space
method showed that the press-times were best explained by the Newtonian physics
model when taking into account perceptual uncertainty, motor variability and the
quadratic cost function. Similarly, this was confirmed through posterior predictive
checks of press-times and the analysis of the correlation of the residuals between pre-
dicted and observed press-times with the initial distance to target.

Thus, participants adjusted the press-times with the square-root of the initial dis-
tance to the target and used the contextual color cue of the pucks to adjust the press-
times. Subjects only had the contextual cue of different colors between the two pucks
but adjusted the press-times in such a way that this was interpretable in terms of
the two different masses used in the puck’s simulations. Therefore, just on the basis
of these adjustments alone, one might argue that subjects may have adjusted their
press-times based on the available visual feedback about the pucks” motion without
any recurrence to a the concept of physical mass. That this is unlikely, is due to the
following two phases of the experiment.

Previous research has demonstrated, that people can infer the mass ratios of ob-
jects from observing their collisions (Hamrick et al., 2016; Sanborn, Mansinghka, and
Griffiths, 2013; Smith and Vul, 2013; Ullman et al., 2018). Here, subjects were asked
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Figure 36: Deviations from fully-observed Newtonian physics and model predictions
(light to heavy). Posterior predictive for press times, actual press times and ideal
responses for phases two to four and condition light-to-heavy. Black distributions
show the actual data, red and blue ones display samples from posterior predictive
distributions of both, the linear and Newtonian model, and green ones show the
correct responses given perfect knowledge about the underlying physics and all
parameters. Visualizing the enhanced suitability of this noisy Newtonian model
framework compared to Newtonian models excluding prior preferences and un-
certainties in describing human behavior.

to propel one particular puck before and after seeing 24 collisions between this puck
and the two pucks for which they had previously obtained visual feedback. Note that
the two pucks in phase two were only distinguished by a color cue and that subjects
might have only learned two different mapping from initial distances to press-times,
as no explicit cues about mass were available. But subjects readily utilized the in-
ferred mass ratios to adjust their press-times to reach the target more accurately in
phase four of the experiment. That the different dynamics were to attribute to differ-
ent masses and that relative masses from observing the collisions could be transferred
to press-times entirely relied on subjects intuitive physical reasoning. This is strong
evidence that participants in our experiment interpreted the dynamics of the red and
yellow pucks from phase two to be caused by their respective masses. Model selec-
tion provided evidence, that subjects continued to use the square-root relationship
of initial distance and scaled their press-times consistent with Newtonian physics to
successfully propel the puck to the target.

Different from tasks requiring a forced choice response (Cohen, 2006; Gilden and
Proffitt, 1994, Hamrick et al., 2016; McCloskey, Caramazza, and Green, 1980; San-
born, Mansinghka, and Griffiths, 2013; Smith and Vul, 2013; Todd and Warren Jr,
1982; Ullman et al., 2018), participants in the current experiments provided a continu-
ous action by pressing a button for variable durations. Therefore, it is not sufficient to
model our participants” actions as in an inference task, e.g. by assuming that subjects
choose a press-time on the basis of the mass belief with highest probability, i.e. the
MAP. Instead, modeling continuous actions requires a cost function, which addition-
ally incorporates people’s variability in press-times. This is evident when comparing
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Figure 37: Deviations from fully-observed Newtonian physics and model predictions
(heavy to light). Posterior predictive for press times, actual press times and ideal
responses for phases two to four and condition heavy-to-light. Black distributions
show the actual data, red and blue ones display samples from posterior predictive
distributions of both, the linear and Newtonian model, and green ones show the
correct responses given perfect knowledge about the underlying physics and all
parameters. Visualizing the enhanced suitability of this noisy Newtonian model
framework compared to Newtonian models excluding prior preferences and un-
certainties in describing human behavior.

the press-times according to the different models considered here, see figure 36 &
37. Remarkably, posterior means of masses best explaining our participants’ press-
times were closer to the true masses used in the pucks’ simulations for the quadratic
cost function compared to the other cost functions. Thus, the current study estab-
lishes that people’s deviations from the predictions of Newtonian physics are not
only attributable to prior beliefs and perceptual uncertainties but also to implicit cost
functions, which quantify internal costs for errors due to participants” action variabil-

ity.

Taken together, the present study is in accordance with previous studies on intu-
itive physics within the noisy Newton framework (Kubricht, Holyoak, and Lu, 2017).
The systematic deviations in our subjects” press-times from the those prescribed by
Newtonian physics under full knowledge of all parameters were explained quan-
titatively as stemming from perceptual uncertainties interacting with prior beliefs
according to probabilistic reasoning. Previous studies had also shown, that people
are able to infer relative masses of objects from their collisions (Hamrick et al., 2016;
Sanborn, Mansinghka, and Griffiths, 2013; Smith and Vul, 2013). The present study
additionally shows, that subjects can utilize such inferences and transfer them to a
subsequent visuomotor task. This establishes a connection between reasoning in intu-
itive physics (Hamrick et al., 2016; Sanborn, Mansinghka, and Griffiths, 2013; Smith,
Battaglia, and Vul, 2013; Smith and Vul, 2013) and visuomotor tasks (Flanagan, Bit-
tner, and Johansson, 2008; Kording and Wolpert, 2006; Trommershduser, Maloney,
and Landy, 2003; Zago et al., 2004). Crucial in the quantitative description of partic-
ipants” behavior was the inclusion of a cost function. Commonly, cost functions in
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visuomotor behavior are employed to account for explicit external rewards imposed
by the experimental design, e.g. through monetary rewards (Dayan and Daw, 2008;
Trommershduser, Maloney, and Landy, 2003) or account for costs associated with the
biomechanics or accuracy of movements (Kérding and Wolpert, 2006; Todorov, 2004).
The present model used a cost function to account for the costs and benefits implicit
in our participants visuomotor behavior and may encompass external and internal
cost related to different task components, perceptual, cognitive, biomechanical costs
and preferences. Inferring such costs and benefits has been shown to be crucial for
the understanding of visuomotor behavior (Hoppe and Rothkopf, 2016, 2019; Zhang
et al., 2018).

The results of the present study furthermore support the notion of structured in-
ternal causal models comprising physical object representations and their dynamics.
Although our participants never sensed the weight of pucks, they readily transferred
their visual experiences by interpreting them in terms of the physical quantity of
mass. A recent study (Schwettmann, Tenenbaum, and Kanwisher, 2019) found sup-
port at the implementational level for representations of mass in parietal and frontal
brain regions that generalized across variations in scenario, material, and friction.
While our results do not provide direct evidence for the notion of internal simula-
tions of a physics engine (Battaglia, Hamrick, and Tenenbaum, 2013), they also do
not contradict them. While it could be argued that structured recognition models
may be sufficient for the inference of object properties such as mass, in our experi-
ment subjects had to act upon such inferences, which strongly suggest the availability
of representations of mass.

Finally, the present study also shows the importance of using structured proba-
bilistic generative models that contain interpretable variables when attempting to
quantitatively reverse engineer human cognition (Zednik and Jakel, 2016). Previous
research has demonstrated pervasive and systematic deviations of human reasoning
from probabilistic accounts (Tversky and Kahneman, 1974). Similarly, systematic de-
viations in physical reasoning (Cohen, 2006; Gilden and Proffitt, 1994, McCloskey,
Caramazza, and Green, 1980; Todd and Warren Jr, 1982) have been interpreted as fail-
ures of physical reasoning. It is only more recently, that a number of these deviations
have been explained through computational models (Battaglia, Hamrick, and Tenen-
baum, 2013; Hamrick et al., 2016; Sanborn, Mansinghka, and Griffiths, 2013; Smith,
Battaglia, and Vul, 2013; Smith and Vul, 2013) involving structured generative mod-
els relating observed and latent variables probabilistically. These models involve the
explicit modeling of prior beliefs and perceptual uncertainties (Kersten, Mamassian,
and Yuille, 2004; Knill and Richards, 1996) as well as uncertainties in visuomotor
behavior (Kording and Wolpert, 2004a, 2006; Trommershauser, Maloney, and Landy,
2003), which have been modeled successfully in a probabilistic framework. As such,
the present study is in line with efforts of understanding perception and action un-
der uncertainty through computational models, which use structured probabilistic
generative models and external as well as internal costs (Gershman, Horvitz, and
Tenenbaum, 2015).
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Figure 38: Posterior predictive checks for press-times in both models. Posterior press-time
predictions for both, the linear and the Newtonian model with quadratic cost func-
tion, and separately for every phase. Actual data is shown as red line. Model
predictions in dark green (50 iterations) of the fitted Newtonian model match the
data closely and surpass the fitted linear model in dark blue for the complete data
set and in almost every phase individually.



INFERRING PERCEPTUAL DECISION MAKING PARAMETERS
FROM BEHAVIOR IN PRODUCTION AND REPRODUCTION
TASKS

5.1 INTRODUCTION

Psychophysics has developed a variety of experimental paradigms to measure human
decision making under perceptual uncertainty. Different experimental paradigms can
be distinguished by the specifics of how stimuli are generated, presented, and which
responses are required by participants. One of the most common paradigms is the
two-alternative forced choice task (2AFC) (Gescheider, 2013a; Stevens, 1958; Stiittgen,
Schwarz, and Jdkel, 2011; Wichmann and Jdkel, 2018), which confronts the subject
with a binary decision regarding the property of a stimulus and thereby allows the
experimenter to draw conclusions about the subject’s perceptual sensitivity given the
stimulus and the task conditions. Other experimental paradigms include the two-
interval forced choice task (2IFC), where stimuli are presented sequentially, and the
yes-no task, in which the subject needs to detect a stimulus, which is either present
or absent (Gescheider, 2013a; Stevens, 1958; Stiittgen, Schwarz, and Jékel, 2011; Wich-
mann and Jakel, 2018).

Because all these tasks involve binary responses, they differ fundamentally from
other psychophysical paradigms such as production and reproduction task. While
production tasks ask subjects to generate a graded response with a target magni-
tude, in reproduction tasks subjects first sense a stimulus magnitude and are then in-
structed to reproduce the sensed stimulus magnitude. The distinguishing factor here
is that actions can be taken on a continuous scale and thus, in addition to the purely
perceptual uncertainty, action variability is introduced into the overall noise mani-
fested in decisions. Classic examples of a production task include walking to targets
using visual cues (Harris, Jenkin, and Zikovitz, 2000; Mittelstaedt and Mittelstaedt,
2001) and time estimation tasks after stimuli onset (Miltner, Braun, and Coles, 1997;
Wild-Wall, Willemssen, and Falkenstein, 2009) and of a reproduction task are path
length reproduction (Berthoz et al., 1995; McNaughton et al., 2006; Petzschner and
Glasauer, 2011), time interval reproduction (Buhusi and Meck, 2005; Fraisse, 1984)
and force reproduction (Onneweer, Mugge, and Schouten, 2015; Shergill et al., 2003;
Walsh, Taylor, and Gandevia, 2011).

Bayesian models combining prior beliefs with sensory measurements have been
successfully applied to provide computational level explanations of human behav-
ior in perceptual decision tasks (Knill and Richards, 1996). Very often, these studies
employ a particular psychophysical paradigm, to measure perceptual uncertainties.
Exemplary studies on human cue integration such as Ernst and Banks (2002) and
Knill and Saunders (2003) first measured the uncertainties of individual cues with
classic psychophysical tasks. In both cases, the models assumed Gaussian distribu-
tions describing perceptual noise or more generally, perceptual uncertainties. Simi-
larly, experimental paradigms involving continuous actions in visuomotor behavior
have often also used Gaussian distributions to capture response variability. Exem-
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plary studies such as Kérding and Wolpert (Kérding and Wolpert, 2004a) and Trom-
mershduser, Maloney, and Landy (2003) represented spatial distributions of manual
response variability with normal distributions.

According to Bayesian decision theory, the optimal decision depends not only on
the combination of prior beliefs about unobserved environmental parameters with
the likelihood of these parameters given sensory measurements as represented by
the inferred posterior, but additionally takes the response variability introduced by
the necessary action into account. The loss function encompasses the costs and ben-
efits for deviating from the true target value, which is the consequence of response
variability. Broad experimental evidence suggests, that the nervous system takes this
variability into account when carrying out movements (Harris and Wolpert, 1998;
Kording, 2007; O’Sullivan, Burdet, and Diedrichsen, 2009). If the involved uncertain-
ties are normally distributed and the cost function is symmetric, then selecting the
optimal response leads to an action that corresponds to the mean of the posterior
distribution, which coincides with the mode and the median in case of normal dis-
tributions. But in case of asymmetric cost functions and skewed probability distribu-
tions describing perceptual uncertainties and action variability, these quantities may
interact in non-trivial ways resulting in optimal responses, which can be systemati-
cally biased. Importantly, while human cost functions in psychophysical tasks have
been measured, they are often conveniently assumed to be symmetric (Koérding and
Wolpert, 2004b).

Here we introduce a computational approach to infer the parameters in Bayesian
decision models of production and reproduction tasks in the spirit of rational analysis
(Griffiths, Lieder, and Goodman, 2015; Simon, 1955). The model employs log-normal
distributions both for the perceptual uncertainty, as this accommodates well known
perceptual Weber-Fechner phenomena (Battaglia, Kersten, and Schrater, 2011; De-
haene, 2003) , and for the response variability observed in humans (Hamilton, Jones,
and Wolpert, 2004; Harris and Wolpert, 1998; Van Beers, Haggard, and Wolpert, 2004).

Specifically, we infer individual’s perceptual uncertainty, response variability, and
their subjective cost function based on the responses in production and reproduc-
tion tasks. Importantly, these types of tasks require a graded response with different
magnitudes. Thus, behavior balances the trade-off between task fulfillment and ef-
fort, leading to possibly non-trivial response distributions of undershoots and over-
shoots, which are ubiquitous in human psychophysical experiments. We show that
this framework is able not only to recover the parameters in Bayesian decision mod-
els for diverse cost functions but additionally can be utilized to guide designing
psychophysical experiments.

5.2 METHODS
5.2.1 Continuous Cost Optimized Parameter Inference for decision making tasks

Here we present a method to infer parameters from subject’s behavior in decision
making tasks involving a continuous response, which includes production and re-
production tasks. We employ Markov Chain Monte Carlo (MCMC) and optimization
based on a neural network approximation to infer posterior distributions describing
perceptual uncertainty, action variability and parameterized cost functions, including
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Figure 39: Inference model. A Typical behavioral data in a production or reproduction task. B
Bayesian network of response generation from the perspective of the researcher. C
Examples of parameterized costfunctions including effort. D Log-normal response
distribution. E Simulated responses using inferred model parameters.

costs for action outcomes and response efforts. These parameters can be inferred on
an individual-by-individual basis for for a wide range of continuous response tasks
and data. By using log-normal distributions for perceptual uncertianty and action
variability we constrain values to a strictly positive range and importantly reproduce
Weber-Fechner like phenomena, i.e. variability that increases with stimulus magni-
tude.

5.2.2  Bayesian observer model

We first assume that the experimenter’s stimulus is a continuous random variable
x € RT. Perception leads to an internal variable Xp, which we model as having a
log-normal distribution with variance o, resulting in the distribution P(xp|up, 0p) :

P(xplip, 0p) =log N(xplup, 0p) with w, =log(x) + o7 (27)

where log N(xp|up, 0p) is a log-normal distribution with its mode at the actual tar-
get x. This modeling choice accommodates the known scaling of uncertainty in the
human sensory system, commonly referred to as Weber-Fechner scaling (Battaglia,
Kersten, and Schrater, 2011; Neupartl, Tatai, and Rothkopf, 2020). The perceptual un-
certainty can either be measured independently through experimental means (Wich-
mann and Jakel, 2018) or it can be inferred given behavioral data. In the former case
its value is fixed and in the latter case a hyperprior incorporating prior knowledge
about the possible range of its magnitude can be used with o, ~ log N(y, 02).

In order to act optimally given a task and the perceived magnitude of the stimulus,
human subjects are assumed to try to minimize their costs as described by Bayesian
decision theory (BDT). In production and reproduction tasks, subjects aim at getting
as close as possible to a target magnitude with their response. Therefore, in these
tasks costs depend on how close the action leads to the actual target. It is commonly
assumed that subjects evaluate outcomes based on a function of their absolute error
(Kording and Wolpert, 2004b; Wolpert and Landy, 2012), i.e. that they assess the
value of an action on a continuous scale based on the absolute distance from the
target, regardless of whether they fall above or below the desired value. Such cost
functions are symmetrical around the target value and can be formalized as:

£ (xp,xa) = xp —xal® (28)
with the target value x, the value of a single action outcome x, and an exponent «
describing the shape of the cost function, e.g. with values of « at 1 or 2 cost functions
correspond to the L or hinge-loss and L, or quadratic cost functions, respectively.

However, production and reproduction experiments require subjects to produce
a response that increases in magnitude with the sensed magnitude of the stimu-
lus. Thus, the task-dependent description of costs does not yet suffice, since actions
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themselves are already associated with effort and thus costs. These costs can now be
included in the cost function term relative to the costs for the outcome of the action:

L(prxa) :B|Xp_xa‘(x+(] —B)xa (29)

with 3 governing the trade-off between task costs and production effort. That is, if 3
is close to 1, actions are dominated by the costs due to the expected errors whereas
if 3 is close to 0, actions are instead dominated by the effort cost due to the response
action. Accordingly the factor 1 — 3 describes the raye of effort increase for responses
at higher magnitudes. A suitable prior over the parameter 3 can be obtained using
the beta distribution 3 ~ Beta(aj, ap). The parameter « again determines the shape
of the task dependent costs and its hyperprior is chosen as a log-normal distribution
with & ~ log N(p, o?).

The actions themselves are in turn affected by variability, which is also known
to be signal dependent and the nervous system takes this variability into account
when carrying out movements. Therefore, the optimal action takes into account the
perceptual uncertainty, the expected action variability and applies the costs stemming
from the task’s goals and the effort in producing the response. This can be expressed
as the solution to the minimization of the overall expected loss:

opt __
opt =

o0 roo
min | | " L0 xala, B) p(xalha 0a) Plxplitn, 07) dip dxa: (30)
ma€RL Jo Jo

Algorithmically, we use amortized inference to approximate response distribution
using a regression neural network trained with numerically solved samples. The ac-
tion variability is already included in the optimization problem to obtain the optimal
action while considering and compensating for motor noise as well. This leads to log-
normal response distribution with a mode that reflects individual task and action
specific costs while including perceptual and action associated variability:

P(xalugPt, 0a) = log N(xalugh*, oa) (31)

Due to the non-symmetrical form of p(xp) and p(xq) together with non-trivial cost
functions, optimal responses do not necessarily have to aim for the actual target. Thus,
the interplay of perceptual uncertainties, response variability, and complex asymmet-
ric cost functions can explain biases and systematic deviations in subjects” responses.
Inference of these parameters given observed behavior can therefore quantitatively
ascribe seemingly suboptimal behavior to objective task parameters and subjective
costs and benefits. The whole process is The pseudo algorithm for the complete in-
ference process is shown The complete inference process is summarized as pseudo
algorithm 1 and additionally visualized in figure 4o0.

5.2.3 MCMC with neural network approximated optimization

To infer the aforementioned parameters we utilize Markov Chain Monte Carlo (MCMC)

sampling together with a neural network, which approximates the parameters of
the optimal response distribution given the sampled parameter values. Similar tech-
niques for likelihood or posterior approximations via neural networks are also in-
creasingly popular across various fields from reinforcement learning (Hamrick et al.,
2020; Wulfmeier, Ondruska, and Posner, 2015) and cognitive neuroscience (Fengler
et al., 2021) to population genetics (Beaumont, Zhang, and Balding, 2002). We start
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Algorithm 1 Inference algorithm for production and reproduction tasks

1: Draw chain startvalues Oy = [, o, 08, og] from priors and MH-stepsize s

2: for iterations i from 1 to N do

3: Draw new proposal ©, ~ N(©;_1,s)

4 Approximate optimal action distribution parameter uoP! via neural network
= find p given «, 3, 0, 0 according to eq.30

5. Calculate posterior probability of actual responses P(x2¢tugP*, o)
6 if BETPOSEL 51 U[0,1] then

7 Accept proposal ©; < ©,

8: else

9: Reject proposal ©; < ©;_;
10: end if
11: end for

the Metropolis-Hastings algorithm by drawing samples from symmetrical proposal
distributions for each parameter. Given the resulting cost function, magnitude of the
variability and the target one can calculate the optimal parameter of the response
distribution u2"", i.e. the optimal aiming point for the response. Given the asymme-
try of a log-normal distribution, its mode does not have to coincide with the target.
Accordingly, a subject could intentionally aim for values deviating from the target
in an attempt to minimize her own costs. For example, in a task requiring responses
involving large effort, it may be more suitable to undershoot the target in order to
obtain a good task-effort trade-off.

5.2.4 Network structure and training

The optimization needs to be done for each data point in each MCMC iteration, which
is costly for large data sets originating from experiments with continuous response
variables. Therefore, we trained a neural network approximating this optimization,
allowing to infer behavioral parameters on large data sets more efficiently. With the
neural network yielding the ideal shift of the log-normal distribution’s mode for each
data point and the previously drawn action variability o, one can calculate the like-
lihood of the data given the model and its parameters.

For inference of the optimization, we utilized a regression neural network (see
tigure 40 step 4 'Optimization”) with four hidden layers approximating the optimal
position of the response distribution’s mode given the perceptual uncertainty oy, the
action variability o, both cost function parameters «, 3 and the actual target x. The
six layers are as follows: an input layer with, depending whether oy, is known or not,
4 or 5 units, layer one with 16 units and leaky ReLu activation (alpha at .1), layer two
with 64 units and leaky ReLu activation (alpha at .05), layer three with 16 units and
ReLu activation, layer four with 4 or 5 units and sigmoid activation, and layer five as
a single unit output layer.

We trained several networks depending on whether the perceptual uncertainty was
assumed to be known and thus could be fixed to a specific value or whether it was
assumed to be unknown and therefore needed to be inferred, too. Training used 200
epochs for each neural network with fixed op, only differing in the magnitude of
perceptual uncertainty (o}, at .05 and .2 for the puck and beanbag task, see figure 44
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Figure 40: Visualization of cost inference algorithm. Numbers reflect the steps in Algorithm
1 while red arrows indicate the process direction. The chain starts at 1) with the ini-
tial parameter for action variability and cost function. In 3) based on these param-
eters and their associated stepsizes a first new proposal is drawn from a Gaussian
distribution. These values lead to a response distribution, a cost function and the
result of their product the weighted distribution. This distribution has its mode
initially at the target position - that e.g. is the value to be reproduced in a repro-
duction task. However, depending on the value of alpha and beta, this choice may
not necessarily have the lowest cumulative cost and therefore is optimized in 4)
with respect to the position of the mode of the response distribution yint. The op-
timization process of finding the best action given the constraints is approximated
with a neural network shown in the bottom row for both known and unknown
perceptual uncertainty. Input values are action variability o, cost function coeffi-
cients « and f3, the actual target x and - if unknown - the perceptual uncertainty
op. Networks had six layers: an input layer with 4 or 5 units, layer one with 16
units and leaky ReLu activation (alpha at .1), layer two with 64 units and leaky
ReLu activation (alpha at .05), layer three with 16 units and ReLu activation, layer
four with 4 or 5 units and sigmoid activation, and layer 5 as a single unit output
layer. In step 5) the likelihood of the data given o and yin+ is calculated as well as
the prior probability of o, x and ( for the initial parameters. MH acceptance rule
in steps 6-9).
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& 45) and 600 epochs for the neural network with variable o}, (see figure 41). In both
cases we used the mean-squared-error loss for training, early stop callbacks based on
validation loss, and a validation split of 0.2. The training data consisted of 18,910 sam-
ples for networks with known and 123,752 samples for the network with unknown
o0p. To obtain training data, we sampled parameter values for «, 3, op, 0q and target
positions (4-par network: o4 .01 to 1, « .01 to 4, .5 to .99 and target .2 to 5; 5-par
network: 04 .01 to 1, 0 .005 to 1, « .01 to 8, .5 to .99 and target .2 to 5). For each
resulting parameter set, we calculated the mode of the optimal action distribution, i.e.
the distribution yielding the lowest costs, by solving equation 30 numerically with
Brent’s method. Training was stable with a mean absolute error of 0.05. It should
be pointed out, that using this network is predominantly a tool to speed up the
optimization shown in equation 30. Evaluation of each iteration’s proposals is again
performed via rejection sampling as in the traditional Metropolis-Hastings algorithm.

5.3 EXPERIMENTS

In the experimental evaluations we first show how the proposed method can be used
to investigate how behavioral responses such as undershoots and overshoots in po-
tential experiments depend on both the experimental parameters and parameters
describing a subject’s uncertainty and cost function. This can be utilized to adjust
experimental parameters to facilitate inference of the model’s parameters given ob-
served behavior. We proceed to show how the proposed method can be utilized to
obtain posterior distributions over parameters describing behavior in production and
reproduction tasks. Specifically, we evaluate the inference algorithm on synthetic data
showing that it is possible to recover individual posterior probabilities for the param-
eters governing perceptual uncertainties and parameter of the cost function based on
empirical data. Finally, we apply our method to experimental data from two produc-
tion tasks (Neupartl, Tatai, and Rothkopf, 2020; Willey and Liu, 2018b), showing that
the cost functions and action variability parameters can be recovered.

5.3.1 Investigating the feasibility of task designs

To investigate the expected behavior in an experiment, we simulate the responses aris-
ing from the Bayesian decision model for parametrically changing perceptual uncer-
tainty and response variability. By assuming different cost functions including those
that explicitly implement subjective costs for effort, we can investigate the resulting
parameter ranges with associated undershoots and overshoots. The corresponding
parameter spaces can be visualized, as in figure 41. These plots show the optimal
aiming point for each combination of action variability (x-axis) and perceptual uncer-
tainty (y-axis). The optimal aiming point corresponds to the mode of the resulting
response distribution and accordingly undershoots are colored in blue while over-
shoots are colored in red. The combination of parameters resulting in an optimal
aiming point coinciding with the perceived position of the target, i.e. an unbiased
aiming point from the perspective of the experimenter, is marked in green. Each
column shows the relative position of optimal aiming points for different types of
exemplary cost function: from symmetric cost functions (column 1-3) to asymmetric
ones involving higher effort costs (column 4,5).
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Figure 41: Tile plot showing the influence of perceptual uncertainty o}, and action variability
0q on the intentional target, i.e. mode of the log-normal() response distribution,
for five different cost functions. Both axes range from .05 to .5 to display realistic
values. Color code describes whether actions are expected to match the target
(green line), undershoot it (blue regions) or overshoot it (red regions). Deviations
are presented on a percentage scale of the actual target.

This allows basic conclusions about the influences of different magnitudes of the
individual parameters: i) increasing action variability result in an increasing tendency
to undershoot the target (see x-axis in figure 41), the consequence of avoiding costly
overshoots arising from the heavy-tailed log-normal response distribution, ii) high
values of perceptual uncertainty, on the other hand, can lead to overshoots (see y-
axis), especially when action variability is low and « coefficients are high, see first
three columns in figure 41. Consider for example the case of high perceptual un-
certainty about the actual target and no action variability. Then, the responses falls
exactly on the mean of the perceptual distribution for the squared loss. Thus, the
experimenter would observe overshoots, since the actual target is the mode of this
perceptual distribution. This effect is further enhanced by stronger subjective penal-
ties on the response errors, i.e. larger values of alpha, see figure 41 columns 1-3.

These theoretical implications give experimenters the opportunity to consider in
advance effects of certain parameter adjustments. When designing an experiment,
experimenters always set up a cost function, even if it is only implicit in the task
description. By changing the task demands or by directly including an explicit cost
function they can influence the potential parameter space for participants. Similarly,
it can be useful to measure the perceptual uncertainty of subjects in advance or to
manipulate it in certain task conditions in order to guide behavior in predictable
ways.

5.3.2 Inferring behavioral parameters from synthetic data

We proceed to validate the proposed inference algorithm by showing numerical eval-
uations on synthetic data sets allowing to compare recovered parameters with ground
truth. In all simulations we used the priors 3 ~ Beta(10,2) and &« ~ logN(3.5,2), ini-
tialized eight chains to explore the parameter space with 5,000 samples each, used
the results to start a chain with 20,000 samples and optimized initial parameters and
stepsize. First, we demonstrate the ability of the algorithm to recover parameters
from synthetic data and use the framework to generate predictions based on the best
parameter setting. To do so we generated 200 data points, uniformly distributed on
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a continuous range (from 1.2 to 4.8, see generic responses as green data points in
tigure 42 (C)). This allows a test under realistic conditions, as they occur e.g. in psy-
chophysics tasks as time reproduction (Birkenbusch, Ellermeier, and Kattner, 2015),
throwing (Willey and Liu, 2018a,b), lifting or walking tasks (Petzschner and Glasauer,
2011; Sun, Campos, and Chan, 2004). These values can now be thought of as target
values that a subject tries to achieve with her actions and can be interpreted on trial
by trial and subject by subject level. Here, we chose three different sets of data, which
vary in their cost function parameters but neither in their range nor their uncertain-
ties (all with o = .05 and o4 = .3). Thus, besides investigating the ability to recover
values, influences of different cost functions on behavioral response patterns become
more conspicuous.
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Figure 42: Response pattern of a generic reproduction task and its recovery for three differ-
ent cost parameter settings. (A) Recovered cost functions and ground truth cost
function (dark red). (B) Three-dimensional space with the most likely recovered
parameters in dark grey and ground truth values in dark red. (C) Generated re-
sponses based on ground truth parameters as green dots and predictions as box
plots based on the most likely sample. (D) Posterior distributions for «, 3 and oq
parameters and ground truth marked by red vertical lines.

Each row in figure 42 shows one simulation of a particular subject with a partic-
ular cost function, the recovered parameters and resulting predictions. With clear
prioritization of the task, i.e. a high task motivation (here, = .95), and a concave
functional dependence of the cost on the absolute distance (x = .5), we can observe
a cost function, almost symmetric around the target value, in the first row. Together
with an intermediate action variability (04 = .3) and a low perceptual uncertainty
(op = .05), this nearly symmetric cost function leads to the largely unbiased behav-
ior in (C) as green data points, which differ from the ideal line only through the
increased action variability. Given the data it is now possible to reverse engineer the
underlying parameters: (D) depicts the complete posterior distributions for o4, ot and
3, of which the five percent data points with the highest likelihood are additionally
represented in the three-dimensional parameter space (B). In (A), the ground truth
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cost function (in darkred) and the cost functions belonging to the inferred parameters
are plotted. The cost function belonging to the recovered parameter setting with the
highest likelihood is used to generate synthetic responses shown as grey boxplot in
(C) (10,000 data points distributed over ten targets). The same procedure is followed
in the second and third row with modified cost functions: second row shows a flatter
cost increase around the target (« = 8) and thus a slightly increased influence of the
action cost, despite unchanged (3, resulting in the expected slight deviation of the be-
havior from the ideal line in data and prediction. In the third row however, « is again
at 0.5 as in the first row, only this time with a decreased value of 0.7 for 3 and thus
creating higher costs for longer or greater actions. Deviations of the inferences were
extremely small for the action variability o, with modes at 0.3053, 0.3034 and 0.3091
and RMS errors of 0.0124, 0.0149 and 0.0164 for the three data sets, respectively, given
the actual value of 0.3. Inferred values for the o parameter show higher variability
with modes at 0.8209, 7.5105 and 0.4910 given their actual values at 0.5, 8 and 0.5
and with RMS errors of 0.9928, 0.8846 and 0.2136. Inferences for (3 yield modes at
0.9161, 0.9101 and 0.7047 with actual values at 0.95, 0.95 and 0.7 and RMS errors of
0.0510, 0.0706 and 0.0885. This validates the overall high precision in recovering the
parameters under variability for a set of just 200 sampled data points.

For a more profound explanation and visualization of the resulting samples of cost
function parameters we can display, besides the one-dimensional cost functions for
a specified target (e.g. at 1 as in figure 42), costs as a function of both, potential tar-
gets and actions. Figure 43 shows targets and actions in a range from 0 to 5 with
corresponding costs as colored tile plots for samples of the two generic data sets in
the second and third row of figure 42. We visualized two-dimensional cost profiles
of three samples of cost function parameters for each example. The upper row shows
cost functions of three high posterior probability samples when recovering the cost
function from simulated behavioral response data, from left to right: the sample with
the highest likelihood and, in order to portray the entire diversity and range of in-
ferred cost functions, showing the sample with the highest and lowest inferred o
value. Low costs are shown in green while high costs increasingly fade into orange
and white.

This two-dimensional visualization is especially useful since the one-dimensional
visualization of the recovered shape of the cost functions in the second row of figure
42 can be misleading and suggests a wider variety of potential cost functions despite
the previously presented accurate parameter recovery. However this can be explained
as an interplay of two factors: First, the high ground truth value of the « coefficient of
8 causing a cost landscape which is very flat close to the target and has an extremely
steep increase of costs for further deviations. Thus, differences in the 3 parameter
become more noticeable within close proximity to the target, but show only a small
overall influence due to the cost function being dominated by alpha at larger dis-
tances. With the second factor, the action variability o4 of .3, these small differences
in costs at small deviations in A-C) of figure 43 become irrelevant. Since especially
the cost functions in A-C) have high o parameters, cost values increase rapidly with
larger deviations, leading to a difficult interpretability of short deviations relative to
each other, see upper left and lower right of the two-dimensional cost tile plots in
the middle row where deviations of actions from the target are maximal. In order
to solve this and make it visually more accessible we also depicted the resulting tile
plots with logarithmized values of cost in the last row. There the high functional sim-
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Figure 43: Comparison of three sampled cost functions with high posterior probability for
each of the two simulated data sets in the second and third row in figure 42. Bot-
tom row depicts the log value of costs to better visualize the steep gradients, es-
pecially for the left example. Left panel A-C): three exemplary cost functions with
associated costs for the second case in figure 42. Right panel D-F): three exemplary
cost functions with associated costs for the third case in figure 42.

ilarity of these cost functions becomes apparent again. When in the end the action
variability o, of .3 is additionally considered even the slight differences in costs for
small deviations are no longer a relevant factor.

5.3.3 Inference for continuous action control tasks

In addition to generic data and theoretical statements, we will analyze anonymized
data from two different continuous action-control tasks in the following. For this pur-
pose, we infer the sensory and motor descriptive parameters and the cost functions
on an individual level for two exemplary subjects each. In one task participants were
asked to propel a puck pressing a key on a keyboard into gliding towards a target
(Neupaértl, Tatai, and Rothkopf, 2020) and in the other they were asked to throw a
bean bag with their hands to a target (Willey and Liu, 2018b). Both tasks are char-
acterized by actions being on a continuum and both perception and the action itself
being subject to variability. In the puck task however people could control the initial
velocity of the object by the duration of a key press with uniformly drawn distances
to the target to cover whereas in the beanbag task the object was directly controlled
via muscle power for five different distances.
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Figure 44: Puck sliding as action control task. Both targets and actions are on a continuous
scale. (A) actual responses (y-axis) given the targets (x-axis). (B) predictions based
on best inferred parameter setting as boxplots for exemplary targets (1,000 data
points each). (C) most likely 5% of posterior distribution for &, 3 and o4 in 3D pa-

rameter space. (D) cost functions corresponding to parameters in (C). Best sample
highlighted in blue.

Inferred parameters for two participants of the puck task are shown in figure 44:
(A) showing the actual responses as a function of the target stimulus, (B) model pre-
dictions based on the most likely parameter combination of «, 3 and o (values for
op were adopted from the original study), (C) the five percent sampled parameters
with the highest likelihood in 3D space for better visibility and (D) the correspond-
ing cost functions. Clearly, inferences for both subjects are similar. Participant one
exhibits slightly higher variability in her responses (A) as inferred in (C). In both
cases the convex shape of the cost function increasingly penalizes larger deviations.
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Figure 45: Beanbag throwing as action control task. Targets on five discrete positions and
actions on a continuous scale. (A) actual responses (y-axis) given the targets (x-
axis). (B) predictions based on best inferred parameter setting as boxplots for these
targets (1,000 data points each). (C) most likely 5% of posterior distribution for «,
B and o4 in 3D parameter space. (D) cost functions corresponding to parameters
in (C). Best sample highlighted in blue.

Figure 45 depicts responses and inferences for two participants of the beanbag
throwing task: (A) showing the actual responses for each of the five target distances,
(B) model predictions based on the most likely parameter combination of «, 3 and
0q (0p again adopted from the original study), (C) the five percent sampled parame-
ters with the highest likelihood in 3D space and (D) the corresponding cost functions.
Again, we find strong similarities between subjects with respect to their action vari-
ability and shape of their cost function. Thereby participants in different tasks are
potentially forming clusters in the 3D parameter space, and yet showing differences
on the individual level. So that slight deviations in a parameter can lead to clear dis-
tinction in behavior, e.g. in figure 45 the lower value for (3 in participant 2 causes a
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more asymmetric cost function and a stronger tendency to undershoot target values
with increasing distance. However, here we showed only two examples as representa-
tives for all participants from two action control tasks. Even though with them being
the best individual representatives for the population they still do not reflect the
whole diversity of parameters and thus cost functions and behavioral patterns.

5.4 DISCUSSION

Production and reproduction tasks are a popular tool in psychophysics and yet also
a complex computational problem, since people’s behavior is influenced by diverse
factors, for not only the perception but also the response in these continuous tasks are
subject to variability while their behavior is additionally shaped by internally and ex-
ternally motivated cost functions. Here we present an inference algorithm as a useful
tool to investigate human behavior in these continuous decision making situations
by inferring posterior beliefs about meaningful parameters describing the complete
process from perception to final response. Using this framework we can explain seem-
ingly suboptimal behavior, quantify responses in terms of meaningful parameters. In
our framework we use logarithmic representation of perception and actions, naturally
accommodating Weber-Fechner phenomena in human behavior (Battaglia, Kersten,
and Schrater, 2011; Neupadrtl, Tatai, and Rothkopf, 2020). Additional support for the
presence of such representations comes from recent studies that have indicated e.g.
that intuitive representation of numbers in humans (Dehaene et al., 2008; Siegler and
Opfer, 2003) or time in animals (Roberts, 2006; Yi, 2009) may be of logarithmic nature.

Similar work on a priori identifiability of probabilistic models in estimation tasks
was done by Acerbi, Ma, and Vijayakumar (2014). They developed a probabilistic
framework to recover prior beliefs in estimation tasks and to investigate candidate
experimental designs a priori by comparing and ranking their identifiability. Here,
we focus on inference of parameters that can describe perception, action, and multi-
ple individual cost functions without the influence of strong priors over distributions
in experiments. This can be particularly useful when distributions are complex, the
experiment is too short to learn them, or there is no feedback on the actions at all.
In doing so, we infer not only task specific costs but also, unlike Acerbi, Ma, and
Vijayakumar (2014), the cost of performing the action itself. This part of the costs can
be especially important for continuous tasks like production and reproduction tasks
with increasing magnitude of the target stimulus, which can exemplary be seen for
participant two in figure 45 with her increasing tendency to undershoot the target
values.

Important prerequisites for our framework are the ability of subjects to assess their
own uncertainty and variability and to adjust their behavior optimally given their
uncertainty and cost functions. The high degree of the former capability was shown
in studies investigating human movement planning and interval timing (Balc1 et al.,
2011; Hudson, Maloney, and Landy, 2008; Sims and Gray, 2008) and likewise for
animals from rats (Foote and Crystal, 2007) to macaque monkeys (Hampton, 2001).
The fact that subjects can adapt to external cost functions and the influence of costs,
inherent in the execution of the action itself, has been shown in e.g. visuo-motor
experiments where subjects explicitly adapt to external cost functions when point-
ing on a screen while also optimally include their own uncertainty (Trommershéuser,
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Maloney, and Landy, 2008). However, here we additionally include costs for efforts.
For example, it has been shown that people are sensitive to these costs in 2AFC tasks
when the necessary force is manipulated (Hagura, Haggard, and Diedrichsen, 2017).
These effort costs also need to be considered in computational models in line with
bounded rationality to accurately describe human behavior as e.g. done for the sup-
pression of blinking in an event detection task (Hoppe, Helfmann, and Rothkopf,
2018).

Given its trial by trial nature our proposed algorithm can be susceptible to outlier
and inconsistent behavior. These data points can strongly alter inferred parameters,
changing conclusions about perceptual uncertainty, action variability and cost func-
tions. However, this vulnerability can be as well used to detect even subtle changes in
behavior in sequential data. Taken together we introduced an useful inference tool to
quantify behavior in continuous decision tasks and to a priori investigate appropriate
experimental settings.n previous studies addressing differences in physical reasoning
between tasks (Smith, Battaglia, and Vul, 2018) and quantifying different sources of
uncertainty in physical reasoning (Smith and Vul, 2013) by adding the mode of phys-
ical interaction as an additional factor. This may also reconcile some previous result
on intuitive physics, which reported strong deviations from Newtonian physics, but
utilized very abstract depictions of scenes and no possibility for interaction (Cara-
mazza, McCloskey, and Green, 1981; Todd and Warren Jr, 1982).

The present results are additionally relevant for the question of how the brain may
implement physical reasoning. Previous studies have found evidence for the repre-
sentation of abstract physical factors in parietal and frontal regions, when physics
students thought about verbally presented physics terms (Mason and Just, 2016).
Similarly, recent studies involving physical reasoning about objects” dynamics on the
basis of short movies also identified frontal and parietal regions representing ab-
stract physical quantities such as mass (Schwettmann, Tenenbaum, and Kanwisher,
2019) and involved in judging physical interactions (Fischer et al., 2016). These re-
sults give credence to the notion of causal generative models of physical objects and
their interactions compared to model-free pattern recognition approaches, such as
those based on deep neural networks. Nevertheless, the involvement of overlapping
parietal regions in the representation of physical quantities such as mass when plan-
ning visuomotor interactions (Gallivan et al., 2014) and the additional involvement of
motor related regions in such tasks (Chouinard, Leonard, and Paus, 2005) speak for
a crucial role of embodied representations (Anderson, 2003; Foglia and Wilson, 2013;
Wilson, 2002) in physical reasoning at the implementational level.
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INDIVIDUAL COSTS AS AN EXPLANATION FOR PERVASIVE
UNDERSHOTS IN MOTOR TASKS

6.1 INTRODUCTION
6.1.1 Undershots in various actions

Whether when moving to a target, moving their arms, grabbing objects, estimate
time intervals or even when making saccades to new fixation points animals and
people constantly show patterns of movements that end up to be too short (Becker
and Fuchs, 1969; Bergmann et al., 2011; Elliott et al., 2010, 2004; Engelbrecht, Berthier,
and O’Sullivan, 2003; Harris, 1995; Lejeune and Jasselette, 1986; Lejeune and Richelle,
1982; Lowe, Harzem, and Spencer, 1979; Sun et al., 2004; Weber and Daroff, 1971;
Zeiler and Hoyert, 1989). These underestimations or undershots have been observed
among others in pigeons during perching and treadle pressing (Lejeune and Jasse-
lette, 1986; Lejeune and Richelle, 1982), in rats and pigeons for time estimation in
tixed-interval schedules (Lowe, Harzem, and Spencer, 1979) and for time reproduc-
tion in pigeons (Zeiler and Hoyert, 1989). People on the other hand show underesti-
mations e.g. when placing objects relative to a target point (Elliott et al., 2004), when
reaching and aiming, especially for initial movements (Elliott et al., 2010), when cov-
ering distances by walking or bicycle (Bergmann et al., 2011; Sun, Campos, and Chan,
2004; Sun et al., 2004) or when moving an object on a computer screen under uncer-
tainty (Engelbrecht, Berthier, and O’Sullivan, 2003). Even for saccades to target points,
general initial undershots have been reported that underestimate the distance to the
fixation point by up to ten percent (Becker and Fuchs, 1969; Harris, 1995; Weber and
Daroff, 1971).

6.1.2  Reasons for undershots

But why do these undershots occur? Especially when it has often been argued that
people can act close to optimally given their limitations and constraints (Hoppe and
Rothkopf, 2016, 2019; Todorov, 2004), usually having accurate beliefs about their
accustomed environment and its statistics (Girshick, Landy, and Simoncelli, 2011;
Mamassian and Goutcher, 2001; Stocker and Simoncelli, 2006), utilizing appropriate
models of their environment (Neupértl, Tatai, and Rothkopf, 2020; Sanborn, Mans-
inghka, and Griffiths, 2013; Smith and Vul, 2013), and being able to precisely learn
and act upon new environmental statistics (Hoppe, Helfmann, and Rothkopf, 2018;
Hoppe and Rothkopf, 2016). Even after learning, the tendency to underestimate dis-
tances seems not to change but rather to manifest itself (Elliott et al., 2010, 2004; En-
gelbrecht, Berthier, and O’Sullivan, 2003). Reasons for these undershots were sought
in costs for the duration of saccades (Harris, 1995) or in the attempt to minimize costs
for energy-costly overshots in limb movements (Elliott et al., 2010; Lyons et al., 2006;
Oliveira, Elliott, and Goodman, 2005). Here we suggest however that this behavior
can be explained consistently across this variety of scenarios with three underlying
assumptions: i) uncertainty in perception and variability in action execution as log-
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normal distributed entities, ii) cost functions describing the desirability of an outcome
and the effort necessary to produce it and iii) the interaction of uncertainty and cost
functions based on individual’s endogenous knowledge about their own uncertainty.

There are several reasons to consider a logarithmic representation of perception
and action execution. Properties of log-normal distributions naturally take Weber-
Fechner phenomena, variability that scales with the intensity of the stimulus, into
account and further lead to strictly positive values for both perception and action
variables. These strictly positive values should be considered as more realistic than
Gaussian distributed ones, as used before in (Battaglia, Kersten, and Schrater, 2011;
Neupartl, Tatai, and Rothkopf, 2020). A log-normal distributed representation of per-
ception is indeed controversial (Brannon et al., 2001; Cantlon et al., 2009), however
more recent studies discuss and indicate that such an assumption seems to fit, e.g.
for number representations for different age groups and socialization (Cantlon et
al., 2009; Dehaene et al., 2008; Siegler and Opfer, 2003). For animal behavior it was
likewise argued that subjective time is consistent with the linear Scalar Timing the-
ory (Gibbon and Church, 1981) whereas more recent research with pigeons (Roberts,
2006) or rats (Yi, 2009) showed evidence that speaks for a logarithmic representation
of time rather than a linear one as well. For a review about scalar properties in animal
timing see (Lejeune and Wearden, 2006).

The second assumption of the framework proposed here is that human decisions
are influenced by cost functions. Whether in economic decisions (Tversky and Kahne-
man, 1974), in pointing tasks (Trommersh&duser, Maloney, and Landy, 2008) or virtual
curling (Neupaértl, Tatai, and Rothkopf, 2020), it is known that goals and their asso-
ciated evaluations of single trials, i.e. cost functions, fundamentally influence human
behavior. Further, it was shown that subjects” decisions are not only influenced by the
outcome alone but as well by the cost of the action itself (Elliott et al., 2010; Hagura,
Haggard, and Diedrichsen, 2017; Hoppe, Helfmann, and Rothkopf, 2018; Lyons et al.,
2006; Oliveira, Elliott, and Goodman, 2005). This is why cost functions integrated in
this framework not only consider the outcome but also the effort to achieve it. In or-
der to explain the interaction between uncertainty and cost functions, the knowledge
of the individual about his own uncertainty is required. More recent research showed
that people and animals can take their endogenous uncertainty into account in order
to maximize reward or conversely minimize costs (Akdogan and Balci, 2017; Balc
et al., 2011; Hudson, Maloney, and Landy, 2008; Sims and Gray, 2008).

The impact of these asymmetrical distributions, cost functions and the endogenous
knowledge about uncertainty on continuous visuomotor tasks is discussed in the fol-
lowing and visualized exemplarily in figure 46. Cost functions used in this framework
consider the cost of the outcome and action itself and can take an unlimited number
of shapes enabled by a continuous parameter space. Using this framework we can
quantitatively reverse engineer human cognition (Zednik and Jakel, 2016) and deter-
mine various influencing factors for individual subjects in continuous tasks, from
uncertainties to individual cost functions. Eventually, we show how the resulting
variability of log-normal distributed variables can additionally be transformed into
weberfractions for comparability reasons.
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6.2 MCMC WITH INTERMEDIATE OPTIMIZATION
6.2.1 Optimizing responses under uncertainty and costs

Actions are not only subject to uncertainties in the perception on which they are
based on, but also to variability in their execution. Both sources of variability are con-
sidered here in the form of log-normal distributed variables (see figure 46). Crucial
however, apart from these sources of variability, are the costs £ associated with pos-
sible outcomes. In general, there would be an unlimited number of possible forms
of cost functions. But there are obvious assumptions about potential forms of these
cost functions. E.g. subjects will likely evaluate values based on a function of their
absolute error, that means regardless of whether they are slightly above or below the
desired value. Hence we assume at the beginning costs for potential outcomes of ac-
tions to be symmetrical around the target:

L =|xy —x|*

With x; being the target value, x the value of a single outcome and « a coefficient
describing the form of the cost function - e.g. values of « at 1 or 2 correspond to the
hinge loss and quadratic cost function, respectively.

A further adjustment of the cost functions was applied by including basic costs for
the execution of actions. L.e. a term of the costs, which adapts to the magnitude of
the action x, itself. The variable x4 and x can be identical for e.g. a press-time repro-
duction task with action costs increasing with the press duration but can be distinct
for e.g. a curling task were x correspond to the distance covered and x4 could corre-
spond to the necessary power to accelerate the puck (Neupadrtl, Tatai, and Rothkopf,
2020). These costs can now be included in the general cost function term relative to
the costs for the outcome of the action:

L=Bxe=x"+(1—=B)xa

With x4 being the effort to achieve the value of x and {3 a coefficient describing the
trade-off between task and effort. High values for 3 make the task the determining
factor whereas low values strongly emphasize the effort to reach certain values.

Both the fact that subjects can adapt to external cost functions and the influence of
costs, inherent in the execution of the action itself, has been shown in studies. In a
visuo-motor experiment, for example, (Trommershduser, Maloney, and Landy, 2008)
have shown that subjects explicitly adapt to external cost functions when pointing on
a screen while also optimally include their own uncertainty in the execution. (Hagura,
Haggard, and Diedrichsen, 2017) have shown that subjects in a 2AFC experiment are
sensitive to the force required for an action and show a bias towards less demanding
actions. With parameters for the uncertainty in the perception and execution and for
the form and weighting of the cost functions one can calculate the expected cost given
that the response distribution peaks at the target , see figure 46 action variability and
convolution. However, the question arises whether this positioning is ideal, i.e. yields
the minimal expected cost, for given values of o, « and 3. In figure 46 optimization,
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Figure 46: Recap-visualization of cost inference algorithm. Numbers reflect the steps in Al-
gorithm 1 while red arrows indicate the process direction. The chain starts at 1)
with the initial parameter for action variability and cost function. In 3) based on
these parameters and their associated stepsizes a first new proposal is drawn from
a Gaussian distribution. These values lead to a response distribution, a cost func-
tion and the result of their product the weighted distribution. This distribution has
its mode initially at the target position - that e.g. is the value to be reproduced in a
reproduction task. However, depending on the value of alpha and beta, this choice
may not necessarily have the lowest cumulative cost and therefore is optimized in
4) with respect to the position of the mode of the response distribution yin¢. In
step 5) the likelihood of the data given o and yin+ is calculated as well as the prior
probability of o, « and (3 for the initial parameters. MH acceptance rule in steps

6-9).

an ideal shift of the response distribution for a given set of parameters is shown,
minimizing the overall expected cost. Based on these principles we built an MCMC
algorithm, sampling potential values, optimizing the relative peak position of the
response distribution to the target and calculating posterior probabilities for these
parameters given the data.

6.2.2  Metropolis Hastings and Simulated Annealing

As a starting point for developing our algorithm we used Metropolis-Hastings. Metropolis-
Hastings algorithms usually show a decreasing acceptance rate with the model com-
plexity. However, it was shown that there is an ideal acceptance rate for any higher
dimensional models (Roberts, Gelman, Gilks, et al., 1997). We addressed this prob-
lem with an approach based on Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi,
1983). With two adjustments it is possible to cover a larger search space for potentially
adequate variable combinations: i) using a reasonably large step size to be able to ex-
plore faster and broader and ii) an exponentially increasing acceptance-threshold,
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starting at a very low level and eventually ending at a threshold value identical with
common Metropolis-Hastings. This means that the majority of the proposed samples
are accepted, large areas of the search-space are evaluated, and nonetheless allows
the chain to finally end up in an area that provides the highest probabilities. Based
on these samples we can determine an improved step size and initial parameters for
a classic MH-MCMC run (see 1 & 3 in figure 46). By adjusting the step size we can
assure an appropriate acceptance rate with simultaneous assurance that the chain is
not stuck in local minima. With the resulting posterior we can not only determine
the uncertainty of the subjects but also draw conclusions about the underlying cost
function. This in turn gives us information about the individual evaluation of single
outcomes and about the relative weighting of the task and intrinsic costs, i.e. the
effort required for the execution.

6.2.3 Neural Network Approximation of the Likelihood

The optimization shown in figure 46 has to be done for every target value in the
data set and for every set of sampled parameters in each iteration. Thus, running this
MCMC based algorithm takes time, especially for continuous data with varying tar-
get distances. However, by approximating this optimization using a neural network
this process can be accelerated. After training the model with 300,000 sampled com-
binations of target values, model parameters and the corresponding ideal action, i.e.
the ideal shift of the log-normal distribution’s mode, we can quickly pull the ideal
action based on the samples for action variability o4, cost parameters o and 3 as well
as the target value x from the network.

We utilized a regression neural network with six layers: an input layer with 4
units, layer one with 16, layer two with 32, layer three with 64, layer four with 32
units, all with Hyperbolic tangent activation function, and layer five as a single unit
output layer with ReLu activation function. The network was trained for 1,000 epochs.
Rather than running the time costly optimization we can now utilize the network in
each iteration for a multitude of individual target values.

6.2.4 Predictions from the Generative Model

Using this framework we are not only able to infer individual probability distribu-
tions for uncertainties and parameter of the cost function based on empirical data, but
also to make predictions about the impact of changes in uncertainty or cost functions
and to visualize these theoretical expectations a priori. Some of these predictions are
shown in figure 47 for different levels of action uncertainty o and cost function pa-
rameters « and (3. Resulting optimal behavior given uncertainty and cost constraints
is depicted with box-plots of action responses as function of binned target values.
One can simply imagine a time reproduction task with multiple trials per target time
binned over a range from .5 to 3 seconds. Red lines indicate the correct response for
each bin. However, it becomes evident that given the constraints, the behavior that re-
sults in the lowest cost will result in more or less pronounced undershots on average,
depending on the cost function and the level of uncertainty. Basically, the greater the
variability or uncertainty and the stronger the gradient in costs between small and
large errors, the more pronounced the undershots in behavior will be.
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Figure 47: A) Exemplary cost functions. Five different generic cost functions from concave to
convex and low effort to high effort. Parameters shown on top. B) A priori model
predictions. Predictions using the generative model shown in figure 46 for differ-
ent values of o, « and (3. Box-plots show the optimal distribution of responses for
different target positions given log-normal perceptual uncertainty, action variabil-
ity and cost functions. C) Task specific cluster of cost functions. Two dimensional
density plot of cost function parameters « and 3 of each individual’s best sample.
Cluster show similar and consistent behavior across participants and differences
between different experiments. Participants used for the upcoming task specific
visualizations of inferences in figures 48-52 are highlighted as red dots. One cost
function, participant additionally marked by an red arrow, for each task is depicted
in the upper row.

63 EXAMPLES OF UNDERSHOTS IN VISUOMOTOR BEHAVIOR

Using this inference approach we analyzed 69 participants across five different mo-
tor tasks, from sliding pucks on a screen and reproducing time intervals via button
press to throwing bags and reproducing force levels by hand. In figure 47 C) one can
see an overview for each task’s density plot of participants” most likely cost function
parameter o and (3, highlighting the high level of uniformity within and differences
across tasks. More detailed description of each task and its associated inferences for
exemplary participants are shown in the following sections from "Undershots in virtual
curling” to "Undershots in distance reproduction’.

Values arising from these actions are depicted as function of the actual target in the
upper part of figures 48-52 A) for one or two exemplary participant. Ideal responses
would be located on the red dashed line. The lower part shows predictions of the
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generative model using the most likely parameter combination found by the MCMC
run. Predictions are here shown as box plots for several illustrative target positions
in the range of the original. For each target 1,000 responses were sampled from the
model. In column B) the five percent sampled parameter combinations with the high-
est likelihood are depicted with o4, o and 3 spanning the three dimensional space.
For a better overview, additional projections on the two-dimensional planes are visu-
alised as grey shadows, and for the purpose of comparing the different data sets, the
boundaries of the three dimensional space are constant across all subjects and exper-
iments. The cost functions associated with these parameter combinations are shown
in column C) for a chosen action. The cost function of the most likely parameters, o
and f3, is highlighted in blue. Two dimensional visualizations of costs as function of
both, the action and the target, are shown in column D) and E), showing the absolute
costs and their logarithm respectively.

Undershots in virtual curling

The first data set we are looking at deals with everyday interactions of humans in
their environment governed by physical laws (Kubricht, Holyoak, and Lu, 2017; Ne-
upadrtl, Tatai, and Rothkopf, 2020; Sanborn, Mansinghka, and Griffiths, 2013).
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Figure 48: Puck curling data (Neupartl, Tatai, and Rothkopf, 2020). A Participant’s actual
responses (scatter plot) and model predictions (box plot) as function of the target
magnitude. B 3D scatter plot of the five percent samples with the highest likelihood
from iterations with adjusted step size and initial values. C 1D visualization of cost
functions corresponding to each «-f3 pair shown in B) for a target magnitude of
1. Cost function of the sample with the highest likelihood, also used to generate
predictions in A), highlighted in blue. D,E) 2D visualization of cost functions with
action values here on the y-axis and target values on the x-axis - D) shows the
absolute costs and E) their logarithm, useful for steep gradients.

Actions in this continuous visuomotor task are shaped by participants” intuitive
understanding of physics. Participants were asked to propel a puck on a surface
aiming for a target’s bulls eye while realistic friction was acting on the gliding puck
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(Neupartl, Tatai, and Rothkopf, 2020). The acceleration of the puck to an initial speed
was adjusted by the participants via the duration of a key-press.

With 14 out of 16 participants, almost every participant showed a mean undershoot
with the heavy puck in the experiment’s feedback phase when participants were able
to learn the correct scaling, ranging from an average undershot of 0.02 to 0.78m. The
density plot of inferred cost function parameter o and {3 in figure 47 C) shows the dis-
tribution of the best model parameters of all participants in the first column "Puck’.
Obviously, a cluster is formed with mean values at x = .37, 3 = .97, containing 9
participants and thereby bundling more than half of all participants. We picked two
participants from the cluster, highlighted as dark red points: a first participant with a
slightly pronounced and a second one with a stronger tendency to undershoot. Infer-
ences and model predictions for both, participant #1 (x; = .16, 31 = .98) who showed
just a weak tendency to undershoot the target with a mean error of perr 1 = .16m
and #2 (2 = .18, B2 = .94) with a mean undershot of perr2 = .48m, are shown in
the upper and bottom row of figure 48, respectively.

Undershots in beanbag throwing

In the second data set we examine the performance of participants in a beanbag
throwing experiment of Willey and Liu, 2018b.
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Figure 49: Beanbag throwing data (Willey and Liu, 2018b). Responses of two exemplary par-
ticipants from the beanbag throwing experiment and the corresponding parameter
inference.

Participants were asked to throw a beanbag twelve times at a target. Targets were
placed at five different distances from 3 to 11 feet with 2 feet increments (.9144 to
3.3528 in meter). In the pretest condition participants viewed the distance once and
then threw a beanbag twelve times in a row at the target. They did not receive any
visual or verbal feedback between the trials. Due to the lack of feedback, subjects
were unable to learn and form some prior about the statistics of the experiment in
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this condition and had to rely on their internal model.

With 16 of the 20 analyzed participants the majority showed a mean undershot
across the five different distances in a range of .03 to .61m. Figure 47 C) visualizes
the emergence of two cost function clusters. Both show very similar o parameters
(xa = .98 and ag = 1.04) but differ with high and low {3 values (A = .98 and
Bp = .6). Indicating that people in the second cluster B with stronger pronounced
asymmetric cost function showed a potential higher influence of action effort on be-
havior. Le. some participants probably had a harder time to handle the beanbag’s
weight with respect to the target distances. Participant #1 (perr,1 = Om, o = .82,
B1 = .99) and #2 (Kerr2 = .54m, x = .8, B, = .61) are depicted in figure 49 as
representatives for cluster A and B, respectively.

Undershots in force reproduction

The third data set contains data from a force reproduction task conducted by Onne-
weer, Mugge, and Schouten, 2015.
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Figure 50: Force reproduction data (Onneweer, Mugge, and Schouten, 2015). Responses of
two exemplary participants from the force reproduction experiment and the cor-
responding parameter inference. Note that target and response values are shown
here as hundredths of Newton.

Here, participants were asked to reproduce six different force levels (10, 40, 70, 100,
130, 160 N) eight times in a randomly presented order. This range of action magni-
tude was normalized to a range of .1 to 1.6 for comparison purposes and since the
network was trained with data in a range up to 5 in target values.

In this force reproduction task g out of 10 participants showed an overall mean un-
dershot, ranging from 2.3 to 9.7N. They showed small but consistent undershooting,
increasing with the force magnitude. Figure 50 shows two participants, again each
one representative for one of the two cluster. In both clusters high values of the (3
parameter (BA = .94 and g = .99) lead to largely symmetrical cost functions. With

85



63 EXAMPLES OF UNDERSHOTS IN VISUOMOTOR BEHAVIOR

mean « values of xa = .95 and ag = 2.17 clusters are extremely close to the common
hinge and squared loss functions. These almost symmetric cost functions together
with the low action variability (04,1 = .11 & 04,2 = .20) are the cause for the low
extent of undershots for both, participant #1 (terr1 = 4.1N, &7 = .96, 31 = .93) and
#2 (Merr2 = 2.3N, 0 = 2.12, 3, = .98), in figure 50.

Undershots in time reproduction

In the fourth data set we can examine responses from an auditory time reproduction
task carried out by Birkenbusch, Ellermeier, and Kattner, 2015.
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Figure 51: Time reproduction data (Birkenbusch, Ellermeier, and Kattner, 2015). Responses
of one examplary participant from the time reproduction experiment and the cor-
responding parameter inference.

In this time reproduction task all 11 participants showed an overall mean under-
shot, ranging from .03 to .4s. One apparent cluster in figure 47 C) is formed at o« = .83
and 3 = .54, describing the ubiquitous undershots across all subjects. Despite her
low action variability (04,1 = .11) a strongly pronounced undershot can be seen ex-
emplary for the cluster in participant #1 (Lerr,1 = .19s, 7 = .81, B1 = .53), in figure
51. Here this asymmetry in cost functions however might more likely to be linked
to a lack of patience in reproducing the asked time intervals than to a physiological
effort as in the force reproduction task.

Undershots in distance reproduction

In the fifth data set we investigate undershots in a walking distance reproduction
task of Sun et al., 2004.

All 12 participants undershot their target on average in a range from .04 to 5.09m.
In figure 47 C) one clear cluster can be found at « = 1.5 and 3 = .6 and its asymmetry
in costs can explain participants’ tendency to undershoot the target even with the low
average action variability in the cluster (o4 = .14). In figure 52 one representative par-
ticipant’s responses and inferred parameters are shown (Herr,1 = 3.59m, a7 = 1.52,
By =.56).
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Figure 52: Walking reproduction data (Sun et al., 2004). Responses of one examplary par-
ticipant from the distance walking experiment and the corresponding parameter
inference. Note that target and response values are shown here as tenth of meters.

64 LOG-NORMAL VARIABILITY AND WEBERFRACTIONS

One of the most used concepts in the description of variability of subjects in psy-
chophysic experiments is the concept of weberfractions. However, this concept is
based on the assumption of normally distributed variables that are linearly scaled
for larger deviations at higher magnitudes of stimuli. As discussed above, the use
of log-normally distributed variables offers several advantages, not least the more
realistic interpretation of strictly positive values, but leads to a lack of comparabil-
ity with results from previous studies. Here we additionally postulate a possibility
to transform inferred uncertainties 01,4 of log-normal distributed variables into we-
berfractions. Following the transformation formula to calculate weberfractions from
uncertainties in graphical models with log-norm distributed variables will be derived.
Consider a random variable x in the linear space that is distributed log-normal, then
by definition its logarithm X is normally distributed (see figure 53 A)):

X ~ N(log(x), o) (32)

In order to find a criterion to tell two signals apart we can use signal detection
theory. In a first step we determine the probability distribution of difference between
X5 and Xj:

P(X2 > X7) =P(X2 — X1 > 0) = N(log(x + A) — log(x), V20) (33)

Here we replace x, and x; with x + A and x as we are interested in the increment
A, necessary to perceive a difference. The probability © that X; is perceived as bigger
is then described by the cumulative distribution function ®(x):

log(x+A) —log(x))
¢ ( V2o ) =©

We can now solve this equation for £ and obtain the formula for calculating the
weber-fraction based on the log-normal variability and ©:

(34)

A _ Viso (@) _y
X

(35)

Using this transformation direct comparisons of inferred posterior values of un-
certainty coming from a log-normal distribution with old values for weberfractions
from the literature are possible.
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Figure 53: Weberfraction derivation from log-normal distributions. A) Relationship be-

tween the normal and log-normal distribution, enabling the use of classic signal
detection theory for two normal distributions. Three exemplary log-normal dis-
tributions are shown on the x-axis in the linear space with their log-transformed
counterparts on the X-axis in the log-space. Logarithmic function is shown as dot-
ted black line. B) Visualization of equation 34. Detection threshold © as function
of difference between two stimuli A for given stimulus at x = 1 and uncertainty
o = .2. Red lines mark values of A that lead to a threshold © at .6, .75 and .9.
C) Three resulting cumulative normal difference distributions for three different
stimulus differences A at .075, .212 and .435 leading to corresponding aforemen-
tioned threshold level © at .6, .75 and .9. D) Weberfraction as a function of log-
normal variability o as shown in equation 35 for the common threshold level © at
.75 (Wichmann and Jdkel, 2018). Discrepancy between weberfractions and inferred
log-normal variabilities o diverges for higher values of uncertainty.
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6.5 DISCUSSION
Variability and Weber-Fechner

If values can be assumed to be represented on a logarithmic scale is debatable (Cant-
lon et al., 2009; Dehaene et al., 2008; Lejeune and Wearden, 2006; Yi, 2009). However,
direct implications of properties specific to the log-normal distribution like the natu-
ral integration of Weber-Fechner like scaling (Battaglia, Kersten, and Schrater, 2011;
Neupartl, Tatai, and Rothkopf, 2020) and the strictly positive values speak strongly
in favor of using them for modeling instead of over-simplified Gaussians. Especially
for perceived stimuli and responses positive values must be assumed. By choosing
log-normal distributions negative values can be elegantly excluded. For resulting val-
ues of variability in these distributions we have proposed a transformation to further
compare these values with weberfractions in the literature. It is noticeable that dis-
crepancies between log-normal variability and weberfraction start to rise for higher
levels of uncertainty. For uncertainties o < .1 the difference is negligible.

Explanation of undershots

Our proposed MCMC framework deals with the interaction of uncertainty in percep-
tion and action with the costs of outcomes and the effort to generate them on the
one hand and with an explanation for the pervasive phenomenon of undershots on
the other hand. But what other concepts are there that try to explain undershots? In
addition to experiments with pure undershots, overshots for shorter stimuli were
also found in some experiments. In these experiments undershots and overshots
have been explained as a result of a regression and range effect when learning statis-
tics of an experiment while performing (Petzschner and Glasauer, 2011; Petzschner,
Glasauer, and Stephan, 2015). More precisely, it has been argued that subjects grad-
ually learn the a priori distributions of the stimulus variables in an experiment and
are thus biased for smaller and bigger stimuli towards the mean. Such behavior was
mainly observed in human navigation and path integration (Loomis et al., 1993; Pet-
zschner and Glasauer, 2011), but also in time estimation (Sims and Gray, 2008). How-
ever learning a prior and thus develop a bias can not explain behavior when there is
only an undershot or when participants can not learn these priors due to the experi-
mental design or strong previously learnt prior beliefs. In the area of motor behavior,
however, there were other explanations especially for the frequent occurrence of un-
dershots: overshooting limb movements are more energy-costly (Elliott et al., 2004;
Oliveira, Elliott, and Goodman, 2005) and limb movements show increased costs for
second corrective movements, which have to change direction strongly or even dia-
metrically (Elliott et al., 2010, 2004; Lyons et al., 2006). These second corrective move-
ments with higher costs for inverted direction however can not explain undershots
in non-sequential tasks and maximizing mechanical advantages only applies in the
modest number of these explicit motor behavior experiments. Nevertheless the idea
of introducing costs scaling continuously with the effort is useful, e.g. when making
greater limb movements (Elliott et al., 2004), longer lasting gaze switches (Harris,
1995) or enduring longer without blinking (Hoppe, Helfmann, and Rothkopf, 2018),
and is in accordance with our implementation of effort costs, which can be empha-
sized using more asymmetrical cost functions like in column 4 in figure 47.

In order for people to be able to optimally take uncertainties into account, they need
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to be aware of them in the first place. How far such an endogenous knowledge goes is
debated in meta cognition, however time-discrimination experiments with rats (Foote
and Crystal, 2007), memory experiments with macaque monkeys (Hampton, 2001)
and experiments about human movement planning and interval timing (Balc et al.,
2011; Hudson, Maloney, and Landy, 2008; Sims and Gray, 2008) deliver evidence that
mammals are able to consider their own uncertainty, at least to some extent.

Taken together, our proposed framework is a further step towards understanding the
complex interlocking of perception and action and provides a possible explanation
for the recurrent and pervasive phenomenon of undershots in human and animal
behavior throughout the literature.
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NATURALISTIC INTERACTIONS ELICIT INTUITIVE PHYSICAL
BEHAVIOR

7.1 INTRODUCTION

Common to probabilistic models of intuitive physical reasoning is a rather disembod-
ied approach to cognition: inference about physical scenarios is based on probabilis-
tic representations of physical quantities (Sanborn, Mansinghka, and Griffiths, 2013),
symbolic representations of objects and relationships (Ullman et al., 2018), or geomet-
ric descriptions with physical properties (Battaglia, Hamrick, and Tenenbaum, 2013),
which are thought to be extracted from two-dimensional computer rendered images
of scenes. Reasoning unfolds in mental models akin to physics game engines (Ullman
et al., 2017) or by generating programs through probabilistic programming (Ullman
et al., 2018). In line with this view, participants’ responses mostly consist of binary
judgements (Kubricht et al., 2016; Sanborn, Mansinghka, and Griffiths, 2013) or esti-
mation of a single parameter (Battaglia, Hamrick, and Tenenbaum, 2013). Very rarely
subjects can interact with scenes at all, but then by simulating different manual inter-
actions and tool use with a computer mouse (Smith, Battaglia, and Vul, 2013) or by
simulating a touch by clicking with a computer mouse on simulated two-dimensional
objects rendered on a computer screen (Bramley et al., 2018; Smith, Battaglia, and Vul,
2018) instead of through visuomotor actions, as in every-day situations. Given evi-
dence that cognition is at least partly grounded in mechanisms for interaction with
the environment, that is, mechanisms of sensory processing and motor control in spe-
cific situations (Anderson, 2003; Foglia and Wilson, 2013; Wilson, 2002), this raises the
question, whether intuitive physical reasoning may take advantage of embodied rep-
resentations. Accordingly, we hypothesized that the mode of visuomotor interaction
in an intuitive physical reasoning scenario may affect the responses, whether it is a
button press simulating an interaction or a multimodal visuomotor interaction with
physical objects.

Here, we consider two variants of a visuomotor control task to investigate whether
naturalistic, multimodal, embodied interactions elicit the same physical behavior as
less representative, more abstract task designs. Subjects were asked to propel pucks
into a target’s bulls-eye positioned at different distances across trials. In a first condi-
tion, the scene was rendered on a monitor and the interaction was achieved through
a button press on a keyboard, as in (Neupartl, Tatai, and Rothkopf, 2020). In a second
condition, subjects were immersed in a virtual environment viewed through a head-
mounted display and interacted with a real hockey puck, sensed its weight, and slid
it on a real table. The visual displays were adjusted in exploratory experiments to
result in comparable uncertainties about the target’s distance. The physical simula-
tions were identical. In both conditions, subjects were not given any feedback about
the puck’s movement and final position to ensure that they could only rely on their
a priori internal model and their beliefs about physical factors, such as the table’s
friction coefficient and the laws of motion.
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7.2 METHOD
7.2.1 Participants

Sixteen subjects had performed the experiment using a keyboard and computer
screen, as described in (Neupaértl, Tatai, and Rothkopf, 2020). Sixteen additional sub-
jects were recorded in the Virtual Reality (VR) based experiment. All participants
were undergraduate or graduate students recruited at the Technical University of
Darmstadt, who were paid 10 € or received course credit for participation. All ex-
perimental procedures were carried out in accordance with the guidelines of the Ger-
man Psychological Society and approved by the ethics committee of the Technical
University of Darmstadt. Informed consent was obtained from all participants prior
to carrying out the experiment. All subjects had normal or corrected to normal vision.
One participant from the keyboard condition was excluded from further analysis, be-
cause variability of estimated mass beliefs was more than two standard deviations
larger than those of the other participants.

7.2.2  Apparatus

In the keyboard condition participants saw the scene containing the puck and the
target displayed on a computer monitor and responded through button presses on a
keyboard. All trials were rendered using Unity. Participants were seated so that their
eyes were approximately 40 cm away from the display and the monitor subtended
approximately 66° of visual angle horizontally and 41° vertically. For more details
see (Neupartl, Tatai, and Rothkopf, 2020).

The haptic condition was also implemented in Unity but using the SteamVR plugin
and the HTC Vive Pro Eye head-mounted display (HMD) with a resolution of 1440
X 1600 pixels per eye and a field of view of 110° horizontally and 110° vertically. For
motion tracking purposes the Qualisys Motion Tracking system with six 6+ cameras
was used. To easily change the weight of the object to be propelled we custom built
a puck by drilling multiple holes into the puck and filling them with different metal
weights, resulting in a mass of 0.25 kg or 0.35 kg. Drill holes were covered with a 3D
printed plastic covering staffed with four passive markers. Elastic fabric was fixed on
the table with bench vice to protect the motion tracking cameras and to facilitate trial
resets. Thus, the puck was restricted to a smaller area, allowing the subject to grab it
by themselves at the beginning of a trial.

7.2.3 Experimental design

In both experiments participants were instructed to slide pucks into the bulls eye of
a target, see figure 54. The two experiments however differed in the way subjects
were able to make the puck slide. In the keyboard condition the puck was a two-
dimensional rendition on a computer screen. Subjects carried out 50 trials in which
the target was placed at distances drawn uniformly at random between 1m and 5m,
where the entire scene displayed on the monitor was 7.5m in the vertical dimension.
The duration of the key press determined the duration of the impact of a constant
force, i.e. the change in momentum. Participants were told that they were able to
adjust this force, which initially was going to accelerate the puck and thus the initial
velocity of the puck, by the duration of their press. However, they were not explicitly
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Figure 54: Comparison of both experimental setups. (a) In the keyboard condition partici-
pants saw the target and the puck on a computer screen and adjusted the momen-
tum acting upon the puck via press-time of a keyboard button (Neupértl, Tatai,
and Rothkopf, 2020). (b) In the Virtual Reality setup participants viewed the scene
including the distance to the target in a Head Mounted Display (HMD) and were
able to grasp the actual puck and slide it naturally on a table.

told about the linear relationship between the press time and the initial velocity. In
contrast, participants in the haptic condition were able to pick up the custom built
hockey puck and pushed it in 100 trials on a table with their own hands. The objects
in the VR scene were carefully designed to match their actual dimensions, the table
on which the real pucks were slid and the puck itself. The target was placed at dis-
tances drawn uniformly at random between .3m and 2.5m. Subjects were randomly
assigned a puck with a mass of either 0.25 kg or 0.35 kg. Here, the puck and the bulls
eye were shown in VR using an HTC-Vive HMD.

In both setups, subjects did not obtain any feedback about their action by blanking
out the resulting movement as well as the final position in which the puck came to a
stop. For this purpose the screen turned dark for half a second in the keyboard condi-
tion after participants released the key and thus the puck. In the haptic condition, the
field of view was not completely darkened for safety reasons. Instead, both the puck
and the target were blanked out. Thus, the table was still visible to avoid dizziness.
Explorative trials were carried out prior to obtaining the experimental data to ensure
that the perceptual uncertainty about the targets” distances were comparable across
the two experimental setups.

7.2.4  Physical description of sliding task

To be able to compare the actions propelling pucks between both experiments, it is
necessary to find a single description of the physics governing the puck’s motion.
Besides the distance to the target, the impulse that subjects intend to use pint to
propel the puck to the target is the decisive physical quantity. When adjusting the
necessary impulse to reach the target’s bulls eye both participants” belief about the
necessary speed vint and their belief about the puck’s mass mg play a crucial role:

Pint = MB - Vint (36)

Now, both experiments differ in the way how participants can propel the puck and
control the resulting impulse. In the case of the haptic condition participants could
directly interact with the puck and accelerate it to the intended velocity by controlling
the release impulse with respect to the perceived mass, see eq.37(a). In the keyboard
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condition, subjects could control the impulse via the duration of a key-press. Here
the magnitude of the force F and the puck’s mass mg were abstract and hypothetical
quantities, unknown to the participant, and can be summarized as a constant variable
Cy, see eq.37(b):

Ving = T:; (37a)
F
Vint = mi]g “trey = C1 - tiey (37b)

This means, that the use of haptic interaction in the haptic condition enabled a direct

naturalistic control of the intended velocity compared to the indirect abstract control
in the keyboard condition. The magnitude of the intended velocity vin: however
needs to be chosen in both scenarios depending on the final distance to be covered
x and on the influence of the decelerating friction, i.e. the product of the friction
coefficient p¢, and the gravitational acceleration g:

Vint:\/Z’IJfr'g'XzCZ’\/72 (38)

The friction coefficients are unknown to participants in both conditions and their
product with the gravitational accelerations can be summarized as constant variable
C,, since both variables do not change during the experiment. Because subjects never
obtained feedback about the movement of the puck, they had no possibility to infer
the values of these constants. This has the consequence, that even if subjects consis-
tently acted under the belief of a specific gravitational acceleration, mass, and friction
coefficient, these values are interdependent. To allow recovering subjects” beliefs, we
therefore can set two of these values to constants. In the haptic condition we set
the friction coefficient to the true value measured for the table and the true gravita-
tional constant. Note that this does neither affect the physical relationship described
by either Newtonian physics or the linear heuristic nor the variability observed in
participants” actions, upon which our conclusions rest.

In the keyboard condition, subjects had no opportunity to infer either the initial
force, nor the coefficient of friction or the puck’s mass. Note however, that these con-
stants all enter the computation of the intended velocity linearly. Thus, if subjects
acted under a consistent belief for these quantities, we can set two of these values to
constants an investigate the variability of the third quantity. To be able to compare
the inferred values across both conditions we set the friction coefficient and initial
force so as to result in puck masses with the same mean as the masses in the hap-
tic condition. Note that this does not alter the conclusions that can be drawn from
the inferred variables, as this constitutes only a linear scaling in the masses. Subjects’
uncertainty about these environmental variables can still be captured by the spread
of the posterior over the mass beliefs, which is then compared across subjects. The
important point here is that these constraints do not affect the assumptions about
the basic relationship between intended velocity and distance to the target and thus
still allow the computational analysis of the two experiments based on probabilistic
models.

Taken together, two experiments were set up to study human behavior in the
physics-based task of sliding an object, in this case a puck, as accurately as possi-
ble across a given distance into a target under the effect of friction, without feedback.
The experiments differed primarily in the form of the available action: via a button
press in the keyboard condition and by pushing a real puck by hand in the haptic
condition. In the following, the effects of this difference on the behavior of subjects
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will be investigated based on participants’ beliefs as estimated by a Bayesian model
of the interaction task.

7.2.5 Bayesian graphical model of physical interaction

The Bayesian model depicted in figure 55(a) considers the subjects” actions from the
experimenter’s point of view. This means that variables that were experimentally
measurable, such as the distance to the target in the display and the actual magnitude
of the sliding action, are included as observed variables in the model. Variables that
describe the physical assumptions and perceptual beliefs of the subjects are unknown
to the experimenter, and therefore unknown in the model. Thus, this model consti-
tutes a departure from an ideal observer model in that the subject’s beliefs about
task relevant quantities are explicitly modeled. This in turn requires using Bayesian
inference to infer these latent beliefs of the subjects based on the model structure and
the observed experimental data. In figure 55, known observed nodes are shown in
gray and unknown latent ones are shown in white.

The perception of the actual distance x is naturally subject to sensory uncertainty.
This sensory uncertainty is modeled by the parameter oy of the Log-Normal dis-
tribution of the perceived distance xper. Given her perception, the subject internally
decides about a velocity vint required to let the puck slide to the target and stop there.
However, the subject is now dependent on her internal model, which describes the
relationship between target distance and initial velocity. Here we consider two candi-
dates as possible internal models describing the relationship between the distance x
and necessary speed vin: a linear and a square root relationship:

Vint ~ X (39)
Vint ~ VX (40)

The linear relation in eq.39 corresponds to an approximate heuristic and the square
root relation in eq.40 is the relationship prescribed by Newtonian physics.

Note that the other physical parameters of the environment such as the coefficient
of friction, the gravitational constant, and the force in the keyboard condition were
unknown to the participants throughout the experiment. Since subjects never saw
the puck gliding, decelerating, and stopping after being propelled, they could not
calibrate the impulse with which they push the puck nor the coefficient of friction
describing the gliding properties of the surface. Thus, the aforementioned constant
variables C; and C5, used to summarize these environmental variables, are not in-
cluded in the figure, as their values are fixed and they no longer functionally affect
the inferences, of course apart from their influence on the magnitude of the estimates.

The velocity vint estimated in this manner, together with their belief about the
mass mp of the puck to be accelerated, now guides the subject to produce the nec-
essary impulse pin¢. Her belief about the mass is relevant since heavier objects need
larger impulses to reach the same velocity. The finally measured impulse p is the re-
sult of the intended impulse pi,+ and the action variability o, of the subject during
the execution of the control action.
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The basic Bayesian impulse model in figure 55(a) is based on these assumptions,
with the linear and Newtonian models differing only in the calculation of the in-
tended velocity vint. While keeping in mind that variable p still denotes the puck’s
momentum whereas p(x) denotes the probability of a variable x, the joint posterior
probability of the observed data d and all parameters © expressed by this model can
be written as follows:

p(d, ©) = p(x) plox) p(xperlx, ox) P(mp) P(Pint[Xper, ms) P(0p) P(PIPint, op)

and accordingly the posterior probability of the parameters p(@®|d) given the model
and the data d can be computed using Bayes’ theorem:

plox) p(xperx, 0x) p(MB) P(Pintlxper, mp) p(op) P(PIPint, 0p)
p(plx)

p(Old) =

For comparison of the two potential model candidates we used the product space
method (Lodewyckx et al., 2011). For this purpose, a hierarchical model is used in
which both models are included and an index variable determines which model is
selected to explain the data. All inferences were carried out in R via Markov Chain
Monte Carlo using the JAGS package (Plummer, 2003).

(a) (b)

O,

Tper

Vint

-

Pint

@

trials

@

trials

Figure 55: Basic Bayesian interaction model (a) and corresponding nested model (b) for the
product space method. Shaded nodes, e.g. the actual distance x and impulse p
in the basic impulse model, are observed and known to the experimenter. White
nodes are latent and need to be inferred. Participants” observation of the actual
distance x is inevitably subject to perceptual uncertainty ox and thus leads to a
noisy percept xper-
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In figure 55(b) the index variable s selects which model is used to describe the
data for each participant. Whenever one model is selected on an iteration, the param-
eters of this model are updated based on the experimental data. Because the selected
model now describes the data better on the basis of the updated parameters, the al-
ternate model would become less likely to be selected on subsequent iterations. To
avoid this, we adopt the common technique of sampling the parameters of the un-
selected model by an already optimized pseudo-prior. This is also why there is not
only an arrow from s to p, indicating the model selection process in each iteration,
but also arrows to mi™ and m3™" describing the influence of the indicator variable
s whether the mass is sampled from the prior or pseudo-prior. The perceptual uncer-
tainties o, and action variabilities 0}, as well as the parameter of those pseudo-prior
for the mass beliefs mp for each participant were determined in advance by single
model runs for both models. Based on the posterior odds of s one can calculate the
Bayes factors supporting one or the other model. For a more detailed explanation of
the method, see (Lodewyckx et al., 2011).
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Figure 56: Actions as function of the initial distance to the target for the keyboard (a) and
haptic (b) conditions across all participants. Best generalized additive model fits
based on maximum likelihood are shown for a linear and a square-root relation-
ship in light and dark grey, respectively. For the data from the haptic condition, the
ideal curve based on the actual weight of the puck and friction coefficients is also
drawn as dotted line. (c) Estimated variability of participants” actions as function
of distance to target.

First, we can compare subjects’ raw responses in the two conditions, i.e. the press
times in the screen condition and the puck’s release velocity in the haptic condition.
These data are shown in figure 56 as function of the initial distance of the target aggre-
gated across subjects and trials. In the keyboard condition, subjects were constrained
to interact with the keyboard while having only very vague beliefs about the puck’s
mass and the friction coefficient. Subjects had additional uncertainty about how the
duration of a key press translates to an initial velocity, i.e. the strength of the acting
force. In the haptic condition, on the other hand, subjects were able to grasp and
accelerate the puck with their own hands, giving them a sensory measurement of the
puck’s mass through haptic feedback and the necessary momentum. In both experi-
ments, participants did not obtain any sensory feedback about the motion trajectories
nor about the endpoint of the puck’s motion. Therefore, participants could not up-
date their beliefs about the friction coefficient.
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To compare subjects” responses, we transformed subjects’ press times in the key-
board condition to initial velocities according to equation v = £t see right axis
labeling in the first panel of figure 56. Because subjects were never able to update
their beliefs about the initial force and the coefficient of friction and these quantities
both enter the target velocity linearly, we can rescale the duration of button presses
linearly according to equation - ~ 3, to be within a comparable range of veloci-
ties. Accordingly, the rescaling can be interpreted as setting specific values for force
and mass. The values were chosen (m = .3kg, F = .9N) so that both graphs are in
a comparable range, see first two panels in figure 56, and to allow a comparison of
masses between the keyboard and haptic conditions, see first two panels in figure 58.
The graph clearly illustrates the larger variability in subjects” actions in the keyboard
condition compared to the haptic condition. To illustrate differences in variability, the
third panel in figure 56 shows standard deviations for intervals binned over distance
for both experiments, ranging from 0.79 to 1.97"¢ in the keyboard and 0.45 to 0.61%*
in the haptic condition. The plots also demonstrate the in response variability with
increased action magnitude, which was captured by the log-normal distribution in

the Bayesian interaction model.

7.3.1  Subjects’ beliefs

Based on the Bayesian generative model shown in figure 55(a) we are able to in-
fer the perceptual uncertainty oy, the action variability o, and the mass mg in the
Newtonian model or the linear factor in the linear heuristics model for each individ-
ual subject. Modes of posterior distributions of perceptual uncertainty oy as well as
action variability o, are plotted in figure 57 both under the assumption that partic-
ipants employed a linear heuristic model or a Newtonian physics model. The plots
distinguish the putative internal model by the color of data points and the two condi-
tions by the shape of data points. Which model better accounted for an individual’s
data was decided based on the resulting Bayes-factors obtained through the nested
Bayesian model in the product-space method, see below.

Figure 57(a) compares the perceptual uncertainties inferred by the linear heuristics
model (x-axis) and the Newtonian model (y-axis) for each subject in both conditions.
Through preliminary explorative trials, the experimental setup of the two conditions
were adjusted to have comparable perceptual uncertainties about the target’s distance.
Indeed, inferred perceptual uncertainties do not differ significantly between the two
conditions (paired Wilcoxon signed rank test, V = 254, p = 0.8609). We also tested,
whether the perceptual uncertainties inferred from data under the two putative in-
ternal models differed. No significant difference in inferred perceptual uncertainties
was found between the linear heuristics model and the Newtonian physics model
(paired Wilcoxon signed rank test, V = 253, p = 0.8465).

By contrast, inferred action variability was clearly different when comparing the
linear heuristics and the Newtonian models in both experimental conditions. Figure
57(b) shows the corresponding plot of inferred action variabilities, demonstrating the
separation of the data of the two conditions. Modes of the inferred action variabilities
significantly differ between both, the linear and the Newtonian model, when analyz-
ing the keyboard condition’s data (pairwise Wilcoxon signed rank test, V = 112,
p = .02567) as well as for the haptic condition’s data (pairwise Wilcoxon signed rank
test, V.= 0, p < .001, both p-value adjusted after (Benjamini and Hochberg, 1995)).
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Figure 57: Comparison of inferred perceptual uncertainties and action variabilities for both
conditions and models. (a) The x-axis shows the perceptual uncertainty oy inferred
using the linear model and the y-axis the one inferred using the Newtonian model.
(b) Inferred values for the action variability o, again with values on the x-axis
for the linear and on the y-axis for the Newtonian model. (c) Differences between
linear and Newtonian model inferences for ox and oy.

In these plots, data points beneath the red dotted line, which indicates the equality
of variability in both models, require less additive noise to be explained with the
Newtonian model compared to the linear heuristics model. The results of both infer-
ences of perceptual uncertainty and action variability are plotted together in figure
57(c). First, all our participants” behavior in the haptic condition was better accounted
for by the Newtonian model while most of the participants” behavior was better ac-
counted for by the linear heuristics model in the keyboard condition. Second, while
perceptual uncertainties were comparable across the two putative internal models,
the linear heuristics model required higher levels of additional noise to account for
our subjects” actions in the haptic condition.
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Figure 58: Comparison of inferred mass beliefs (Newtonian model) and linear factors (linear
heuristic) for both conditions and models. (a),(b) The x-axis shows the linear factor
inferred using the linear model and the y-axis the mass inferred using the New-
tonian model for the two conditions, respectively. (c) Individually inferred modes
of the mass posterior compared to the actual mass of the used puck in the haptic
condition.
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The Bayesian generative model also allows inferring individual participants’ inter-
nal beliefs about the masses of the pucks. The inferred modes of the mass posteriors
for each participant are plotted in figure 58. As subjects in the keyboard condition
never had access to any sensory measurement about the puck’s physical properties,
they had to entirely rely on their prior belief of its mass. Because the puck’s intended
velocity depends on its mass, the initial force, and the duration of the key press, we
can use an arbitrary values for the three factors entering the intended velocity lin-
early. We adjusted the arbitrary factors in such a way, that the masses of the pucks
in the keyboard condition had the same mean as the masses in the haptic condition.
The resulting inferred masses across participants accordingly have a mean of 0.296kg
and standard deviation of 0.138kg. By contrast, in the haptic condition a real puck
and its mass was haptically accessible to participants. They were able to grab and
lift the puck, and thus to adjust their belief accordingly. In both conditions, inferred
linear factors for the heuristic model were smaller than the inferred masses in the
Newtonian model (keyboard condition: Wilcoxon signed rank test, V =0, p < 0.001;
haptic condition: Wilcoxon signed rank test, V = 0, p < 0.001), accommodating the
undershoots that subjects showed with increasing distance of the target, see figure
56.

In the case of the mass inferences of the Newtonian model in the haptic condition
we can furthermore investigate, how close participant’s estimates of pucks’ masses
were based on the available haptic cues. Figure 58(c) shows the posterior modes of
the inferred masses for all participants. Remarkably, the mass estimates are quite
close to the true values of 0.25 and 0.35 kg, with overall mean values for each puck
being slightly smaller at 0.226 and 0.323 kg, respectively. This difference was signifi-
cant for the heavier puck (One sample t-test, t = —1.9243, p = .04786) but not for the
lighter one (One sample t-test, t = —1.5744, p = .0797). Subjects’ behavior was well
calibrated to the mass of the puck, as modes of the inferred posterior distribution
of masses for the lighter puck are significantly smaller than for the heavy one, as
expected (Welch two sample t-test, t = —4.5967, p < .001).
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Figure 59: Standard deviation of posterior distributions over mass beliefs in the Newtonian
model (y-axis) and linear factor (x-axis) in the linear model for the keyboard (a)
and haptic conditions (b).

The Bayesian interaction model additionally allows investigating the variability in
subjects” mass beliefs and linear factors across trials. The standard deviations of in-
ferred posterior distributions for the masses in the Newtonian model and the linear
factors in the linear model are plotted in figure 59. First, variability of standard de-
viations in mass beliefs is larger in the keyboard condition compared to the haptic
condition (Levene’s Test, F = 29.833, p < 0.001), reflecting the larger uncertainty
about physical parameters in the keyboard condition. Secondly, standard deviations
inferred with the Newtonian model are significantly higher in the keyboard condi-
tion than in haptic (Wilcoxon rank sum test, W = 215, p < 0.001), which is not true
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for the linear model (Wilcoxon rank sum test, W = 128, p = 0.3851). This indicates
a more precise computational description of participants” behavior with the Newto-
nian model and a higher consistency of subjects” decisions across the experiment in
the haptic condition. However, note that in the keyboard condition variability for the
linear factor according to the linear heuristic was on average only 1.08 times larger
than in the haptic condition. Remarkably, for some subjects, this variability was even
smaller in the keyboard condition compared to some subjects in the haptic condition.
This clearly demonstrates, that subjects in the keyboard condition were pushing the
key to propel the puck under a consistent belief about stable and lawful properties
of the puck.
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Figure 60: (a),(b) Posterior predictives for both models and data sets in comparison with the
actual data and (c) Bayesfactors calculated based on the inferred posterior odds
of the nested model. Ideal behavior shown as green distribution for the haptic
condition. For a better overview, Bayes factors in (c) are plotted on a log scale. Red
dotted line indicates threshold at 3.2 for substantial evidence that one model is
superior to the other.

Finally, we evaluated the goodness of fit of the linear and Newtonian models to
data from both experimental conditions. First, we obtained posterior predictive dis-
tributions of initial impulse for both conditions, as plotted in figure 60(a) and (b),
respectively. While the linear heuristics model is slightly closer to the observed data
in the keyboard condition, the Newtonian model is clearly closer to the data in the
haptic condition. Note that the distribution of momentum based on the real weight
of the pucks, the friction and the distance to the target, i.e. the ideal observer’s dis-
tribution, is additionally shown in green. The two peaks of the ideal distribution are
due to the two different masses used in both groups. One particular strength of prob-
abilistic modeling via nested models lies in the possibility of model comparison. The
Bayes factor favors the linear model in the keyboard condition, albeit with a value of
1.47 this is only anecdotal evidence. In stark contrast, the Bayes factor of 49.79 in the
haptic condition shows very strong evidence for the Newtonian modes.

7.3.2 Deviations from target based on subjects’ beliefs

Based on the inferred, best parameters for each subject we can calculate deviations
from the target according to both models. Here we can compare the performance, i.e.
the deviation from the target, as if the best fitting parameters would correspond to the
actual environment. This allows investigating participants’ consistency with regard
to their own, possibly wrong, beliefs. As an example, for the Newtonian model we
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Figure 61: Mean absolute error and standard deviation of errors for each subject based on
the best parameters for both models. Values for the best linear model are shown
on the x- and for the best Newtonian model on the y-axis. Gray line marks equal
values, above lie data of subjects with higher values for the Newtonian model and
below with higher values for the linear model.

can compute how far the puck would have slid using their internal beliefs inferred
from the Bayesian interaction model. Figure 61 (a) and (b) show the mean absolute
error for the keyboard and haptic conditions, again in comparison for the Newtonian
model and the linear heuristic. Comparing these errors between both models based
on the keyboard condition shows significantly higher error values for the Newtonian
model (Wilcoxon signed rank test, V.= 120, p < 0.001; see figure 61(a)). Based on
the haptic condition, however, mean absolute error values are significantly higher for
the linear model (Paired t-test, t = —5.8371, p < 0.001; see figure 61(b)). Both results
again emphasize the better fit of the linear and Newtonian model to the keyboard and
haptic conditions data, respectively. Additionally, we can also compare these errors
between both conditions for each model. As expected, the mean absolute errors in
the keyboard condition are significantly larger than in the haptic condition, both
for the linear model (Wilcoxon rank sum test, W = 219, p < 0.001) and for the
Newtonian model (Wilcoxon rank sum test, W = 240, p < 0.001). This reflects the
higher uncertainty about the pucks mass in the keyboard condition.

Similar to the mean absolute error, the standard deviation of the errors for the
Newtonian model is significantly larger than for the linear model in the keyboard
condition (Wilcoxon signed rank test, V. = 120, p < 0.001; see figure 61(c)). How-
ever, for the haptic condition, there is no significant difference between both models
(Paired t-test, t = —0.6736, p = 0.5108; see figure 61(d)). This suggests that the New-
tonian model is not able to capture the complete range of participants” actions in the
keyboard data, potentially caused by larger deviations at higher distances (see figure
56(a)). The fact that there is no difference for the haptic data set can also be well
explained with reference to the data in figure 56(b). The systematic bias of the linear
approximation with its undershots at near and overshots at far distances leads to the
higher mean absolute error for the linear model in figure 61(b) but keeps the standard
deviation at these lower values in figure 61(d). Taken together, these analyses further
demonstrate not only the better fit of the linear model for the keyboard condition’s
data and the Newtonian model for the haptic condition’s data, but also the increased
consistency in subjects” actions within the more naturalistic haptic condition.
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7.4 DISCUSSION

To investigate whether naturalistic, embodied, multimodal interactions influence vi-
suomtor behavior involving the judgement of physical relationships between task
relevant quantities, we designed an experiment in which subjects needed to propel
pucks toward a target’s bulls-eye, which was positioned at different distances across
trials. While in the keyboard condition subjects saw the target displayed on a monitor
and propelled a virtual puck with the duration of a key press, in the haptic condition
the scene was seen through a head-mounted VR display and a real puck with one of
two masses could be pushed on a tabletop. Importantly, subjects obtained no visual
feedback about their actions in either condition. Therefore, subjects needed to rely
on their prior beliefs about physical properties and their lawful relationships to ac-
complish either task. While in the keyboard condition the puck’s mass, the force with
which the duration of the key press was scaled, and the coefficient of friction were
unknown, only the coefficient of friction was unknown in the in the haptic condition.

The task requires participants first to visually estimate the distance that the puck
has to travel to reach the target’s bulls-eye. Then, subjects need to propel the puck
toward the target. For this, subjects need to choose the right impulse, which depends
on the puck’s mass, the coefficient of friction describing the surface on which the
puck is sliding, and the gravitational constant. In the keyboard condition, the initial
impulse was achieved through the length of a key press. Importantly, Newtonian
physics prescribes a relationship that is linear in the puck’s mass and grows with the
square-root of the target’s distance. Alternatively, subjects may employ a heuristic by
which the momentum and therefore the initial velocity of the puck is scaled linearly
with the distance to the target.

To be able to compare the behavior in the two conditions, a Bayesian model of
the full interaction task including the perception of distance and the generation of
a puck sliding action was devised involving perceptual uncertainty and action vari-
ability. The model was fit on an individual-by-individual and trial-by-trial basis un-
der the hypothesis that subjects could either use a linear heuristic or the relation-
ships prescribed by Newtonian physics. Results show very strong evidence that the
multimodal naturalistic embodied condition elicited the square root scaling of ini-
tial velocity by the target’s distance, which is consistent with Newtonian physics as
demonstrated by a Bayes factor of 49.8. By contrast, the keyboard condition, in which
subjects interacted with the puck through a key press on a keyboard, resulted in
anecdotal evidence that the elicited behavior was better accounted for by the linear
heuristic. Closer evaluation of Bayes factors at the individual subject level showed,
that ten of the sixteen subjects in the keyboard condition were better accounted for
by the linear heuristic while six were better accounted for by Newtonian physics.
Analyses of the variability of actions and mass beliefs supported this conclusion ad-
ditionally.

Further analyses of subjects” beliefs required constraining some of the constant
parameters in the Bayesian interaction model. Because subjects never obtained feed-
back about the puck’s dynamics, they were not able to infer the scaling of force in
the keyboard condition or the coefficient of friction in both conditions. The gravi-
tational constant, which also enters the computation of the initial velocity linearly,
can be assumed to be known to subjects based on previous research (Hubbard, 2020;
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Jorges and Lépez-Moliner, 2017; McIntyre et al., 2001). The coefficient of friction in
the haptic condition was set to the actual value of the table used. For the keyboard
condition, the initial force and the friction coefficient were adjusted to result in esti-
mated masses with approximately the same mean as in the haptic condition. Note
that this does not alter the conclusions about the model used by participants but
allows comparing the consistency and variability of participants beliefs. Indeed, sub-
jects acted with remarkable consistency in the keyboard condition. Even though the
keyboard condition elicited higher variability of beliefs about mass and linear fac-
tors (o = 0.138kg, o = 0.065kg) compared to the haptic condition (o, = 0.068kg,
o¢ = 0.029kg), individual subjects showed highly consistent variability within their
factor beliefs, being on average only 1.08 times larger than in the haptic condition,
see figure 58,59.

A first potential concern might be that interacting with a keyboard could influ-
ence participants to use a particular non-linear function. That this is unlikely the case
stems from the fact that ample research has employed button presses on keyboards
to investigate human time perception and timing of actions, e.g. (Buhusi and Meck,
2005). The results of these studies show that people seem to be quite unbiased in con-
trolling their button press duration and adhere to Weber’s Law in that the standard
deviation of press times scales linearly with duration. Some studies have reported
anchoring effects leading to overshots at smaller durations and undershots at larger
durations, but these effects are also described as linear (Jazayeri and Shadlen, 2010).
This suggests, that the scaling of press times in the keyboard condition were not
caused by an idiosyncratic mapping pertaining to the pressing of buttons on a key-
board, particularly, because some participants” press times were better explained by
the linear and others’ by the square-root relationship.

One may argue that the differences between the two conditions arise because of the
difference in the mode of visual presentation of the scenes. Indeed, several previous
studies have provided evidence, that uncertainty about physical parameters depends
on the mode of presentation. Adding motion cues (Kaiser et al., 1992) or auditory
cues (Gerstenberg, Siegel, and Tenenbaum, 2018) to stimuli used in probing intuitive
physical reasoning has been shown to reduce uncertainty about physical parameters.
While in the present experiments subjects saw the puck and the target displayed
on a two-dimensional screen in the keyboard condition, they had access to depth
cues present in the stereoscopic head-mounted display in the haptic condition. But,
importantly, preliminary explorative trials were used to match the perceptual uncer-
tainties across the two conditions. This was furthermore confirmed by the perceptual
uncertainties estimated using the Bayesian interaction model. Indeed, no significant
difference was found for the perceptual uncertainties between the two conditions.
Thus, we do not find evidence that the mode of visual presentation was the cause for
the difference in adopted strategies.

A further concern may be, that participants” uncertainty about the mass, the coeffi-
cient of friction, and the mapping from press times to initial velocities in the keyboard
condition led them to use random press times that only in the aggregated data sug-
gest a linear relationship with the initial target distance. Again, the analyses with the
Bayesian interaction model suggest otherwise. By estimating subjects” implicit beliefs
about the puck’s mass or equivalently linear factor on a subject-by-subject basis, one
can infer the variability in beliefs trial-by-trial. This analysis revealed, that in the key-
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board condition, standard deviations of subjects mass beliefs were on average only
about 2.4 times as large as in the haptic condition and for some subjects even compa-
rable between the two conditions. This is a remarkable result, as it provides evidence,
that subjects consistently used a mass belief to propel the puck towards the target in
the haptic condition.

A very much related question is whether subjects may have selected the correct
physical relationship only by virtue of touching a real puck and thereby sensing its
mass. The ability to grasp and hold the real puck certainly reduced subjects” un-
certainty about the pucks” weights in the haptic condition. This was confirmed by
participants’ inferred mass beliefs. Nevertheless, as state above, the variability in the
factor equivalent to mass in the linear relationship in the keyboard condition was
only 1.08 times larger than the value in the haptic condition, showing that subjects
used a consistent mass belief in their actions in the keyboard condition, in which
they could not sense a puck’s mass. Thus, it seems rather unlikely, that this differ-
ences in terms of the uncertainty in belief about the pucks mass could be the sole
reason for adopting a different functional relationship. Instead, this suggests that it
was primarily the mode of interaction contributing to the difference in adopted phys-
ical relationship.

Taken together, the present study is in accordance with previous studies on intu-
itive physics within the noisy Newton framework (Kubricht, Holyoak, and Lu, 2017),
which assumes that internal models based on physical laws interact probabilistically
with inherently uncertain and ambiguous sensory measurements. The systematic de-
viations in our subjects’ press-times from those prescribed by Newtonian physics
under full knowledge of all parameters were explained quantitatively as stemming
from perceptual uncertainties interacting with prior beliefs about physical relation-
ships and motor variability. The results of the present study furthermore support
the notion of structured internal causal models of physical relationships and shows
the importance of using structured probabilistic generative models that contain inter-
pretable variables to quantitatively reverse engineer human cognition (Griffiths et al.,
2010). Although visual feedback was never given about the pucks’ sliding dynamics
and final position, subjects showed behavior that was consistent with the implicit
assumption of a stable and lawful world. By employing a full generative model of
the interaction task, it was possible to infer subjects’ beliefs on an individual-by-
individual and trial-by-trial basis.

The present study established that the availability of naturalistic multimodal sen-
sorimotor interactions with physical pucks resulted in subjects adopting the func-
tional relationship prescribed by Newtonian physics. Instead, when the same task
was presented on a computer monitor lacking depth cues and the interaction was
implemented through a button press on a keyboard, subjects” behavior was more in
line with a linear heuristic. This result strongly suggests, that our subjects were able
to take advantage of the motor planning and motor output generating the physically
appropriate responses. This in turn suggests, that generating the actions involved in
physical reasoning can take advantage of representations that are not independent
of the motor control and the body but are thus "embodied". Previous research on
physical reasoning has emphasized abstract internal physics models (Battaglia, Ham-
rick, and Tenenbaum, 2013; Bramley et al., 2018; Sanborn, Mansinghka, and Griffiths,
2013) and the few studies allowing subjects to interact with scenes implemented those
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interactions through abstract mouse clicks in computer simulations (Bramley et al.,
2018). Thus, the current results extend our understanding based on previous studies
addressing differences in physical reasoning between tasks (Smith, Battaglia, and Vul,
2018) and quantifying different sources of uncertainty in physical reasoning (Smith
and Vul, 2013) by adding the mode of physical interaction as an additional factor.
This may also reconcile some previous result on intuitive physics, which reported
strong deviations from Newtonian physics, but utilized very abstract depictions of
scenes and no possibility for interaction (Caramazza, McCloskey, and Green, 1981;
Todd and Warren Jr, 1982).

Overall, the present results contribute to our understanding of how the brain may
implement physical reasoning. Indeed, in terms of a computational level account
(Marr, 1982) of intuitive physical reasoning, it is not clear, why the output of a pu-
tative physical simulation engine should depend on the mode of interaction. But, at
the implementational level of description there is evidence that different neuronal
substrates are involved in physical reasoning, some of which are also implicated in
motor planning and visuomotor control of actions involving the body. Previous stud-
ies have found evidence for the representation of abstract physical factors in parietal
and frontal regions, when physics students thought about verbally presented physics
terms (Mason and Just, 2016). Similarly, recent studies involving physical reasoning
about objects” dynamics on the basis of short movies also identified frontal and pari-
etal regions representing abstract physical quantities such as mass (Schwettmann,
Tenenbaum, and Kanwisher, 2019) and involved in judging physical interactions (Fis-
cher et al., 2016). These results give credence to the notion of causal generative models
of physical objects and their interactions compared to model-free pattern recognition
approaches, such as those based on deep neural networks. Nevertheless, the involve-
ment of overlapping parietal regions in the representation of physical quantities such
as mass when planning visuomotor interactions (Gallivan et al., 2014) and the addi-
tional involvement of motor related regions in such tasks (Chouinard, Leonard, and
Paus, 2005) speak for a crucial role of representations tied to motor planning and
motor output with the body (Anderson, 2003; Foglia and Wilson, 2013; Wilson, 2002),
i.e. of embodied representations in physical reasoning at the implementational level.
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8.1 OVERVIEW OF RESULTS

In this thesis we examined human behavior in several experiments requiring inter-
actions with the environment. Behavior was modeled by taking into account both
task dependent, external as well as human internal constraints. Because the external
world and access to its information, sensory systems, and consequences of actions are
ambiguous, noisy, and uncertain, these factors are crucial elements requiring proba-
bilistic modeling. While experiments may seem to keep the environment simple and
the number of relevant factors small, we developed experiments with many struc-
tured sources of uncertainties and varying modes of interaction. Accordingly, we de-
veloped several algorithms to investigate people’s behavior, all rooted in the Bayesian
decision theory. This allowed investigating the rationality in decision making with re-
spect to experimental designs and subjective beliefs.

8.2 HUMAN CONSISTENCY, GENERALIZATION AND TRANSFER

Humans show a stunning ability to learn and solve a broad range of differing and
complex tasks throughout their lives. In the field of artificial intelligence, studies
have attempted to mimic this evolutionary success story by building machines that
are supposed to perform and learn like humans (Ellis et al., 2020; Lake et al., 2017)
with the goal of tackling tasks for achieving human performance and generalization.

One of these approaches to come closer to this goal are neural networks. Espe-
cially, neural networks have been claimed to achieve and even exceed human per-
formance e.g. in object detection (Cai et al., 2016; Viola and Jones, 2004) or classi-
fication (Ciresan, Meier, and Schmidhuber, 2012; Mundt et al., 2019). Nevertheless,
they also usually suffer from the necessity of huge amounts of training data (Good-
fellow, Bengio, and Courville, 2016; LeCun, Bengio, and Hinton, 2015), over-fitting
and the bias-variance dilemma (Geman, Bienenstock, and Doursat, 1992) and lacking
both the robustness to distortions and adversarial attacks and the ability to general-
ize well (Brown et al., 2017; Geirhos et al., 2018; Goodfellow, Shlens, and Szegedy,
2014; Nguyen, Yosinski, and Clune, 2015; Szegedy et al., 2013). By contrast, people
are known to adapt, generalize well and even learn with very little information or
few samples (Biederman, 1987) sometimes referred to as one shot learning (Landau,
Smith, and Jones, 1988). This is particularly true for the rapid learning about concepts
and categories in infants and children (Izard et al., 2009; Markman, 1989). This fact
contradicts the necessity of abundant training data of most artificial neural network
algorithms. On the other hand, Bayesian models get by with significantly less data
describing human behavior with prior beliefs obtained through constant interactions
with their environment while mimicking, among others, the human approach to clas-
sification in speech and visual perception (Lake et al., 2014, 2011; Xu and Tenenbaum,
2007). It is apparent that some prior beliefs should be highly consistent through our
daily life and across various tasks that share a common influence. For instance, grav-
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ity, or more precisely the gravitational constant, does not change noticeably in the
course of our lives and forms a strong prior (Jorges and Lépez-Moliner, 2017), which
even persists when the environment changes (McIntyre et al., 2001). Likewise, our
perception is influenced by the prior beliefs that light comes from above (Adams,
Graf, and Ernst, 2004) or that cardinal orientations (Girshick, Landy, and Simoncelli,
2011) and slow velocities are more likely in our environment (Weiss, Simoncelli, and
Adelson, 2002). Familiar objects in our environment can form such reliable prior as
well as entities with stable properties like size (Kilpatrick and Ittelson, 1953; Konkle
and Oliva, 2011) or surface texture and gloss (Adams et al., 2018; Fleming, Wiebel,
and Gegenfurtner, 2013), and thereby influence our perception (Konkle and Oliva,
2012).

In order to investigate people’s consistency across different tasks and with respect
to beliefs about familiar size we implemented two tasks about distance perception,
differing in the way decisions were made, and two methods, inferring subjective size
beliefs, in chapter 3. Overall consistent deviations from optimal responses in both dis-
tance perception tasks indicate a general bias. With participants being restricted to
two-dimensional projections in these tasks, it is reasonable to assume that these con-
sistent deviations are driven by biased prior beliefs about object sizes (Gogel, 1963;
Hochberg and Hochberg, 1952; Kilpatrick and Ittelson, 1953). Biases in inferred size
beliefs also do not significantly differ across the two different methods utilized to
measure them and thus seem to be general. Nevertheless, not all deviations in re-
sponses could be quantitatively well explained by biases in size beliefs, thereby still
raising the question of potential causes, like misconceptions of the task or the use
of a heuristic. So participants could rather just rely on heuristics based on the visual
angle (Proffitt, 2006; Yilmaz and Warren, 1995), e.g. decide using constant ratios as
decision thresholds , than make an accurate inference of distances. In chapter 4 we
further tested whether participants were able to transfer information from perceiving
a dynamical interaction , the collision of two pucks, to a continuous action control
task of sliding pucks (Neupartl, Tatai, and Rothkopf, 2020). Participants learned the
functional relationship of their action and the resulting slide distances for two dif-
ferent pucks via visual feedback. After seeing several collisions of these pucks with
an unknown one, participants were able to appropriately scale their actions without
ever having received any feedback about the unknown pucks trajectories. Thus, par-
ticipants learned not only the correct functional relationship but readily interpreted
observed bounces of objects as being caussaly determined by their respective masses
and transferred their mass beliefs from watching these collisions to a subsequent in-
teraction task.

To summarize, we showed that in environments with control over relevant vari-
ables participants had previously learnt stable prior beliefs about familiar objects,
acted consistently across tasks according to their uncertainties and biases and were
able to learn functional relationships and prior beliefs via visual feedback and trans-
fer them appropriately to a distinct interaction task.

83 OPTIMALITY IN HUMAN BEHAVIOR: HEURISTICS AND CONSTRAINED MOD-
ELS

It is undeniable that humans constantly deviate from ideal behavior in a vast field
of interactions showing various degrees of variability and systematic biases. How-
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ever, it is controversial whether these deviations are caused by people relying on
fundamentally wrong assumptions about their environment and strongly simplified
approximations that govern their behavior, often so called heuristics or heuristic de-
cision making (Gigerenzer and Gaissmaier, 2011), or whether these deviations can
be explained with probabilistic models that take natural physiological and task de-
pendent constraints into account and can otherwise be seen as optimal (Kubricht,
Holyoak, and Lu, 2017; Lieder and Griffiths, 2020).

Heuristics have been proposed among others for naive beliefs explaining miscon-
ceptions about trajectories of cut pendula (Caramazza, McCloskey, and Green, 1981),
curvilinear trajectories (McCloskey and Kohl, 1983), judgments about mass in object
collisions (Cohen, 2006; Gilden and Proffitt, 1994), probability judgments (Tversky
and Kahneman, 1974) or optimal control policies in interception (Belousov et al., 2016;
Zago et al., 2009). Constrained models, on the other hand, argue that humans behave
optimally given their constraints. These models are known under different names,
often in relation to their scope of application, e.g. as the noisy Newton framework
in intuitive physics (Kubricht, Holyoak, and Lu, 2017) or resource rational models
in neuroscience and economics (Lieder and Griffiths, 2020). Considered constraints
can be physiological as the limited precision in sensory systems in visual (Hoppe
and Rothkopf, 2016), haptic (Battaglia, Kersten, and Schrater, 2011; Ernst and Banks,
2002) or auditory perception (Birkenbusch, Ellermeier, and Kattner, 2015), and their
combinations (Alais and Burr, 2004), or as the inevitable variability in executing con-
tinuous actions (Koérding and Wolpert, 2004a; Trommershéduser et al., 2005). However,
constraints can have their root in the availability of correct information, too, and arise
due to the task design, e.g. when feedback is deprived (Kording and Wolpert, 2004a;
Neupartl, Tatai, and Rothkopf, 2020; Willey and Liu, 2018b), the environment’s dy-
namics and statistics are unknown (Hoppe, Helfmann, and Rothkopf, 2018; Hoppe
and Rothkopf, 2016; Neupartl, Tatai, and Rothkopf, 2020), changes in accustomed dy-
namics like gravity (Clark et al., 2015; Jorges and Lépez-Moliner, 2017; McIntyre et
al., 2001) or after exposition to an altered environment (Zago et al., 2004). Probabilis-
tic models considering these kind of limitations have been proven to be successful
in a wide range of applications from describing mental simulations about stability
of blocks (Battaglia, Hamrick, and Tenenbaum, 2013; Hamrick et al., 2016), pendula
cutting and catching (Smith, Battaglia, and Vul, 2013) and object collisions (Gersten-
berg et al., 2015; Sanborn, Mansinghka, and Griffiths, 2013; Ullman et al., 2018) to
describing human understanding of liquid dynamics (Bates et al., 2019) or tool usage
(Allen, Smith, and Tenenbaum, 2020).

We showed in chapter 4 that participants” behavior in a puck sliding task under
realistic friction can be well described with the noisy Newton framework (Kubricht,
Holyoak, and Lu, 2017) when feedback was available. When initially dynamics were
unknown neither a linear heuristic nor the noisy Newton framework were clearly
supported by the model comparison. This is not particularly surprising since no in-
formation about the puck’s mass, the friction of the surface or the scaling of the
acceleration was available. Yet with feedback about resulting trajectories present the
Newton framework clearly outperforms the linear heuristic with a Bayes factor of
9.71 (Neupadrtl, Tatai, and Rothkopf, 2020). Likewise the Newtonian model is able
to infer meaningful parameters like the mass belief describing participants” high av-
erage accuracy. Based on findings that the way of participants” mode of interaction
may influence their behavior (Dijkstra, Kaschak, and Zwaan, 2007; Foglia and Wilson,
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2013; Smith, Battaglia, and Vul, 2018) we transferred the task design to enable visuo-
haptic interaction, as described in chapter 7. Here, we showed that even without any
feedback participants were not only able to adjust initial momentum appropriately
resulting in near-optimal inferences for mass beliefs but that the Newton framework
surpasses the linear heuristic by lengths with a Bayes factor of 49.79. This change in
interaction seems to facilitate people’s ability to recruit the (noisy) Newtonian model,
trained by ubiquitous interactions in daily life. Furthermore, we examined partici-
pants’ behavior in distance perception tasks in chapter 3. Here, individuals deviated
both from optimal responses and also from actual size values. Deviations in their
responses are overall consistent across both distance perception tasks and inferred
size beliefs do not differ significantly between human MCMC and depth camera
measurements. However, a probabilistic model using the inferred biases in the size
beliefs does not explain all deviations well. This could be due to a consistent bias in
both prior measurements or due to participants additionally relying on heuristics.

In summary, these three experiments yield evidence that considering their natural
variability people are near-optimal or rational when being able to access all necessary
information. Thus, the necessity arises to control the environment for relevant vari-
ables and assure their accessibility to the participants while making the interaction
as realistic as possible to facilitate appropriate model recruitment. The results give
insights about experimental designs and their influence on near-optimal responses
and thus help to bridge the gap between people’s partially deficient performance in
some physical reasoning tasks and yet being well tuned to environmental dynamics
of their daily lifes.

84 FROM INDIVIDUAL BELIEFS TO INDIVIDUAL COST FUNCTIONS

We know that prior beliefs can be extremely useful to describe and explain indi-
vidual's perception and behavior (Adams, Graf, and Ernst, 2004, Mamassian and
Goutcher, 2001; Weiss, Simoncelli, and Adelson, 2002). Yet, prior belief and likeli-
hood are just means to describe perception and do not suffice to explain the com-
plete process up to action selection. After all, when choosing an action one must take
into account not only their posterior belief, but also the cost or reward associated
with this action (Kérding and Wolpert, 2004b; Wolpert and Landy, 2012). Costs are
usually assumed to be implicitly stated through the task (Harris and Wolpert, 1998)
but can be made explicit as well (Trommershéduser et al., 2005). This means, costs are
judged based on the action’s outcome alone. However, it is known that the effort to
come up with an action itself affects behavior too as shown for when the urge to
blink had to be suppressed (Hoppe, Helfmann, and Rothkopf, 2018) or even in per-
ceptual 2AFC tasks with options differing in the required effort (Hagura, Haggard,
and Diedrichsen, 2017). Thus, realistic cost functions, should consider both, the eval-
uation based on the task demand and the effort to produce it. While the inference
of costs underlying behavior is classic problem both in economics (Kahneman, 1979)
and psychology (Mosteller and Nogee, 1951), it has seen a renaissance in the field of
artificial intelligence and machine learning (Boularias, Kober, and Peters, 2011; Finn,
Levine, and Abbeel, 2016; Ng, Russell, et al., 2000; Ziebart et al., 2008). Specifically
Inverse Reinforcement Learning strives to infer the cost function that is optimized
(Boularias, Kober, and Peters, 2011; Ng, Russell, et al., 2000; Ziebart et al., 2008) or
approximately optimized (Rothkopf and Dimitrakakis, 2011) by an agent. Some re-
cent work has particularly looked at leveraging these methods for measuring the cost
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functions underlying sensorimotor behavior (Mombaur, Truong, and Laumond, 2010;
Muelling et al., 2014; Reddy, Dragan, and Levine, 2018; Rothkopf and Ballard, 2013;
Schmitt et al., 2017; Zhang et al., 2018). Note however, that these methods assume per-
fect observability of the state of the world. By contrast, in this thesis human behavior
always involves perceptual uncertainty. Thus, how to recover such a cost function
quantitatively and yet take the influence of other e.g. physiological constraints and
perceptual uncertainty into account?

In chapter 5 we proposed an algorithm that enables us to recover the individual
cost functions that shaped people’s responses in continuous estimation tasks like pro-
duction and reproduction paradigms (Gescheider, 2013b; Wichmann and Jakel, 2018).
Besides considering physiological constraints in perception and action execution this
algorithm further includes also an effort or action magnitude dependent term. The
proposed algorithm is based on the following four basic building blocks: 1) percep-
tual uncertainty and 2) action variability implemented as log-normal distributions,
since human precision in sensory systems and action execution is limited, as well as
costs that depend on 3) the resulting distance to the perceived target or error and 4)
the effort to produce this action. This allows asymmetric distributions and cost func-
tions, which are able to explain deviations from optimal behavior and thus avoid
simply attributing it to seeming misconceptions about the task or the environment.
Using synthetic data for different cost functions we could show the algorithm’s ability
to successfully recover individual parameters. Based on this algorithm undershoots,
pervasive in ubiquitous continuous action control tasks, were investigated in chapter
6. These undershoots occur among others in reproducing distances on bicycles (Sun,
Campos, and Chan, 2004), sliding pucks to a target (Neupaértl, Tatai, and Rothkopf,
2020), throwing beanbags to a target (Willey and Liu, 2018a,b), reproducing forces
(Onneweer, Mugge, and Schouten, 2015) and multiples of auditory perceived time-
intervals (Birkenbusch, Ellermeier, and Kattner, 2015). Using this algorithm we are
able to measure individual cost functions revealing similarities between individuals
and tasks as well as showing the influence of task designs on behavior. Thus, one
can assess how laborious people perceive tasks and explain the degree of expected
deviations from optimal behavior.

Taken together, we introduced a new algorithmic approach to infer individual vari-
ability and cost functions for continuous action control tasks. Especially the individ-
ual cost functions can yield relevant insights about similarities between subjects and
tasks and likewise about the effort people are facing when trying to meet the task de-
mands. By using the algorithm’s ability to recover more complex cost functions and
realistic positively skewed distributions, describing the noisy perception and action
variability, seemingly suboptimal deviations previously attributed to misconceptions
can be explained as rational decisions.

85 THE MODE OF INTERACTION AND ITS INFLUENCE ON MODEL RECRUIT-
MENT

When designing experiments, especially perceptual ones, controlling stimuli and
their presentation is crucial as one need to consider phenomena like illusions (Weiss,
Simoncelli, and Adelson, 2002), grouping (Wagemans et al., 2012; Wertheimer, 1912)
or crowding (Levi, 2008; Whitney and Levi, 2011), just to name a few. Just as sig-
nificant for right conclusions is to revise which information is available, useful and
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distracting when conducting experiments (Alais and Burr, 2004; Ernst and Banks,
2002; Knill, 1998; Landy et al., 1995). However, besides the indisputable influence of
these factors and despite the numerous experimental paradigms that have formed
over the years (Gescheider, 2013b; Wichmann and Jékel, 2018), an additional impact
of the actual mode of action on behavior and internal model recruitment has been
questioned (Fodor and Pylyshyn, 1988).

This shortcoming is in part being addressed within the field of embodied cognition
arguing that our sensory and motor systems are not mere means as input and output
devices but are interlinked with the cognitive process itself (Foglia and Wilson, 2013;
Niedenthal, 2007; Wilson, 2002), see also (Smith, 2005) or grounded cognition (Barsa-
lou, 2008). Indeed, in terms of Bayesian models of behavior at the computational level
it might be unexpected, that the mode of interaction could influence the results in a
physical reasoning experiment. But, at the implementational level this may be much
less surprising. While speculative, with limited neuronal resources devoted to repre-
senting external states and mediating visuomotor actions, it may be resource rational
to encode actions dependent on the dynamics of external objects.

Here, we utilized a continuous action control task of sliding objects on surfaces un-
der influence of friction without visual feedback to test participants” a priori assump-
tions about physical dynamics of their environment and compared their behavior
when being restricted to keyboard interactions and being able to grab and acceler-
ate them with their hands (see chapter 7). When being able to interact with a real
puck participants not only performed extraordinarily well given the missing feed-
back about their trajectories but also clearly relied on an internal model considering
the non-linear nature of the task, whereas they mostly resorted to linear approxima-
tions in the keyboard condition. This provides evidence for the far-reaching effects
of embodiment for designing experiments and explaining the discrepancy between
humans mastering daily tasks and their deficient performance in abstract reasoning
tasks. Similarly, Smith, Battaglia, and Vul (2018) came to a related conclusion us-
ing tasks with swinging pendula (Caramazza, McCloskey, and Green, 1981) to test
participants” abilities in physical reasoning and continuous interaction or studies in-
vestigating effects of mental simulation on mechanical reasoning (Hegarty, 2004) like
Schwartz and Black (1999) in a task about spill over when tilting glasses with and
without the prompt to mentally simulate it.

In sum, we showed that utilizing a VR setup where people could naturally in-
teract with haptically accessible objects enabled them to recruit internal models in
accordance with Newtonian physics. Since people preferentially relied on rough ap-
proximations in the same task when interactions were restricted to keyboard inputs
this indicates that even the choice of the interaction mode in an experiment can lead
to more than just a change in precision but fundamentally shift results and biases
conclusions, providing evidence in favor of an embodied view of cognition.
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CONCLUSION

We as humans solve a variety of highly complex tasks on a daily basis, and we do so
without having to ponder over individual processes for too long. However, when we
start thinking about and describing many of these tasks, this ease seems to crumble
away. But how can this discrepancy between routine acting and deficient reason-
ing be explained? Using the experiments, algorithms and models in this thesis we
have investigated this issue showing that people are indeed well tuned to interact
successfully and near-optimal given their perceptual uncertainty, action variability,
individual cost functions and sometimes biased a priori expectations. Naturalistic in-
teractions in tasks can facilitate correct recruitment of internal models and seem to
prevent the occurrence of systematic misconceptions. Thus, we argue that we need
to understand behavioral patterns as mixture of environmental factors, limiting pre-
cision and sometimes even depriving relevant information, and internal factors, like
prior beliefs and individual cost functions.
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