

Microstructural Study of MgB₂ in the LiBH₄-MgH₂ Composite by Using TEM

Ou Jin ^{1,2}, Yuanyuan Shang ³, Xiaohui Huang ², Xiaoke Mu ², Dorothée Vinga Szabó ^{1,2,4}, Thi Thu Le ³, Stefan Wagner ¹, Christian Kübel ^{2,4,5}, Claudio Pistidda ³, and Astrid Pundt ^{1,*}

- ¹ Institute of Applied Materials, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; ou.jin@kit.edu (O.J.); dorothee.szabo@kit.edu (D.V.S.); stefan.wagner3@kit.edu (S.W.)
- ² Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; xiaohui.huang@partner.kit.edu (X.H.); xiaoke.mu@kit.edu (X.M.); christian.kuebel@kit.edu (C.K.)
- ³ Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, 21502 Geesthacht, Germany; yuanyuan.shang@hzg.de (Y.S.); thi.le@hzg.de (T.T.L.); claudio.pistidda@hzg.de (C.P.)
- ⁴ Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- ⁵ Joint Research Laboratory Nanomaterials, Technical University of Darmstadt, 64206 Darmstadt, Germany
- * Correspondence: astrid.pundt@kit.edu; Tel: +49-721-608-42345

Keywords: hydrogen storage; transmission electron microscopy; crystallography; reactive hydride composite; additive

Figure S1. The results of 2LiBH₄-MgH₂ without additives after desorption: STEM-HAADF image acquired from the corresponding position in Figure 2a and EDX elemental map of Mg.

License: CC BY 4.0 International - Creative Commons, Attribution

Figure S2. The results of 2LiBH₄-MgH₂ with 5 wt% 3TiCl₃·AlCl₃ after incomplete desorption: (**a**) STEM-HAADF image, and (**b**) the corresponding electron diffraction pattern; (**c**) STEM-HAADF image acquired from the selected area in (**a**) and (**d**) the corresponding EDX elemental map of Mg.

Figure S3. The results of 2LiBH₄-MgH₂ with 0.625 mol% 3TiCl₃·AlCl₃ after desorption: (**a**) STEM-HAADF images showing the morphology of the generated MgB₂ crystals; (**b**) electron diffraction pattern; (**c**) STEM-HAADF image acquired from the corresponding position in (**a**), and EDX map of Mg.

Figure S4. The results of 2LiBH₄-MgH₂ with 20 mol% 3TiCl₃·AlCl₃ after desorption: STEM-HAADF image acquired from the selected position in Figure 3a, and the corresponding EDX elemental map of Mg, Ti, and Al.

Figure S5. The results of 2LiBH₄-MgH₂ with 20 mol% 3TiCl₃·AlCl₃ after desorption: HRTEM image acquired from the position of purple agglomerates in Figure 4a, and the corresponding FFT, showing the existence of TiB₂ (and AlB₂).

Figure S6. The results of 2LiBH₄-MgH₂ with 20 mol% 3TiCl₃·AlCl₃ after desorption: (**a**) STEM-HAADF image showing the distribution of MgB₂ platelets; (**b**) electron diffraction patterns showing the crystallographic orientation of the corresponding MgB₂ platelets indicated in (**a**).

 $Figure \ S7. \ Simulated \ superimposed \ diffraction \ patterns \ of \ MgB_2 \ / \ Mg \ (a-b), \ and \ MgB_2 \ / \ TiB_2 \ (c-d).$

Table S1. The interatomic misfit between $(0002)_{MgB_2}$ and the possible matching directions of Mg nucleation center (%).

MgB_2/Mg	$\langle 0002 angle \langle 10\overline{1}0 angle$	$\langle 0002 \rangle \langle 0002 \rangle$	$\langle 0002 \rangle \langle 1\overline{2}10 \rangle$
	48.6	58.4	8.5

Table S2. The interatomic misfit between $\langle 0002 \rangle_{MgB_2}$ and the possible matching directions of MB₂ (M = Ti or Al) nucleation center (%).

MB_2/Mg	$\langle 0002 angle \langle 10\overline{1}0 angle$	$\langle 0002 \rangle \langle 0002 \rangle$	$\langle 0002 angle \langle 1\overline{2}10 angle$
TiB ₂	-49.2	8.2	13.9
AlB ₂	-47.9	7.6	14.6