Data Analysis in Parabolic Trough Fields
Determination of Mirror Cleanliness with Machine Learning
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Motivation Objectives

Development of an alternative method to estimate the cleanliness of individual collectors
Optimization of the cleaning schedule towards a demand oriented schedule based on model predictions
Only operational data from the power plant and meteorological data available at the site are used

« Concentrated solar power (CSP) plants are
located in arid regions with high dust loads
« Mirrors need to be cleaned frequently to

maintain high reflectivity « Easy and cheap implementation without additional hardware requirements
« Knowledge about cleanliness of mirrors is crucial « Which model inputs have the biggest influence on the model prediction?
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* (Cleanliness usually measured
with hand-held devices \
« Accurate but costly
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Approach & Methods

Model inputs/Features Models
Timestamp ML Model Prediction * Machine Learning models: Neural Network (NN), Decision Tree (DT), Gaussian Processes (GP),
Last cleaning Support Vector Regression (SVR), Linear Regression (LR)
" « Models are trained with datasets of different sizes
Position of the Neural . . . _—
collector Network/ I - « Models should be adaptable to different CSP plants with changing data availability
Irradiance Decision cleanliness Metrics for model evaluation
Focus factor of Tree/etc. « Comparison with reference cleanliness measurements (optimal outcome is a perfect fit of
collector the reference measurements)
. « Comparison with cleaning schedule (only a classification of mirror cleanliness between
Dumping factor HlozsLIEe Parl | J (only
cleanliness clean/soiled required)
| . - « Feature Permutation Loss used as method to estimate the influence of different model inputs
I\/Ieteorqlogmal Update during training . . , , , put
data (Wind, » Uncertainties of model predictions are taken into account via multiple model runs (systematic
precipitation,...) uncertainty) and confidence intervals (statistic uncertainty)
Results Summary & Outlook
Optimizing cleaning schedule Comparison with reference measurements Key results
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ol LR actual Cleanliness determination:
| Accuracy Recall Precision  F1-score 100 - " Sie « Predicting average values for entire subfield with
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« Too early cleanings can be reduced by 14.3 % Bsof o LN Convolutional N.eural Networks
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- 70— temperature deviation in solar field to calculate flow
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& = the year - SVR « Using Autoencoders to detect and locate anomalies
S . Mean R * Best results are achieved with Decision Tree in parabolic trough fields
= 3 N . model using the biggest dataset (operational
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* High influence of temporal feature in accordance 1287-1305
with high seasonality of soiling
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