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ABSTRACT
Emerging safety-related applications like autonomous vehicles will require high levels of navigation performance in terms of
accuracy while still satisfying stringent requirements of integrity, availability and continuity. Achieving sub-meter accuracy
in land-based scenarios with GNSS-based solutions can only be achieved with carrier-phase based approaches in combination
with additional sensors. So that these solutions can be considered for future certified systems, the safety aspect must be ensured,
which is still a challenge in the presence of local GNSS threats (like multipath or NLOS) as well as in multisensor architectures.
In this work, we propose a multisensor architecture that uses float Real-Time Kinematic (RTK) GNSS with additional integrity
information from an augmentation network. The architecture also considers different layers of protection against local GNSS
threats that supports the rigorous design of integrity monitoring algorithms and protection level computation. GNSS is combined
with additional sensors like Inertial Measurement Unit (IMU) and a robust relative location of the vehicle is complemented
with stereo camera and vision processing. This allows for different possible types of localization modes. The algorithms are
validated with real measurements collected with a car during a measurement in Rome, Italy. The results show clearly that our
design can achieve high accuracy while ensuring high integrity.

I. INTRODUCTION
Different Intelligent Transportation Systems (ITS) and new emerging autonomous land-based applications require of a precise-
accurate positioning information that can be trusted. According to the European Union Agency for the Space Programme
(EUSPA) (formely GSA) consultation reports (GSA, 2019a,c,b), the requirements for these applications can reach submeter
accuracy and stringent alert limits with low integrity risk. Even though high integrity GNSS positioning can offer a reliable
solution for civil aviation applications and is continuously evolving, the environment on land presents a lot of challenges to
guarantee a certain integrity level as well as the availability of the positioning system based solely on GNSS. In order to provide
high-accurate, high-integrity solutions, it is widely agreed that multiple sensor fusion technologies are necessary. However,
the combination of multiple sensors poses on its own new problems so that the integrity of the system can be demonstrated.
In particular, the following expected challenges and foreseen solutions are considered when designing a safe localization
architecture:

• Use of augmentation messages for high accuracy and high integrity GNSS measurements

• Adoption of suitable detectors to protection against the presence of local GNSS threats such as multipath, NLOS and
interferences

• Rapid changing number of visible satellites due to urban environment

• Trustable and error bounded integration of different sensor technologies

• Coasting capability during periods of no satellite visibility to ensure the provision of a continuous solution

• Adaptability to sensor quality information

Previous work has addressed the provision of GNSS integrity in urban environments Zhu et al. (2018), also in combination with
other sensors Saidani et al. (2021); Meng and Hsu (2021); Toledo-Moreo et al. (2007); Bijjahalli and Sabatini (2021). However,
in many cases, no high accuracy solutions are taken into account or integrity algorithms used in the aviation domain (like RAIM
or SBAS) are proposed without rigorous consideration of the differences in the operational environment Joerger and Spenko
(2017), like error models, probabilities of faults or bounding of estimation errors with different estimators than least-squares.

In this work, we propose an architecture that uses multifrequency-multiconstellation GNSS in Real Time Kinematic with
additional integrity augmentation information, Inertial Measurement Unit (IMU) and stereo cameras. Additional layers of
protection are added against local threats, which allows for a more rigorous assumption about residual fault probabilities and
protection level derivation. A localization mode selector is also included as an interface to the user to increase the availability
of solutions even if in a degraded mode of operation.

The algorithms performance, methodology and behavior of the multisensor system is evaluated with real measurements in
automotive environment recorded during a demonstration campaign of the European H2020 project HELMET. The architecture
proposed and the different processing blocks considered in this work address several of the aspects so that an accurate and
high-integrity positioning information can be provided for land-based applications. The results validate the benefit of the
different fault detection and error protections and the possibility to provide protection levels in RTK float type solutions. This
solution may not only be considered as a baseline for automotive but for other land-based or close to ground navigation in
non-restricted environments (e.g., railways or UAVs).



II. REQUIREMENTS AND HIGH LEVEL SYSTEM CONCEPT
The demand on safety-related navigation solution with very stringent requirements on accuracy, integrity as well as availability
and continuity has been constantly increasing in the last years. To provide an overview, we have summarized the joint
requirements of different applications in terms accuracy and integrity in Figure 1. This diagram is based on the different EUSPA
requirements reports on user requirements for road, rail and UAV (GSA, 2019a,b,c). On the x-axis you can see the required
Alert Limits in meters and on the y-axis the target Integrity risk. As a comparison you can find the requirements of different
operations in civil aviation in the lower right area with red squares. The orange triangles depict different railway operations.
The green line identifies the potential requirements of UAV operations and the two blue lines with diamonds are representing
the requirements of two potential automotive applications. For automotive, a parallel study with somehow similar requirements
is Reid et al. (2019). In contrast to civil aviation, the requested accuracy performance are up to two order of magnitudes more
stringent, whereas the allowed integrity risk might be significantly smaller depending on the application and requested operation
but it is also comparable for the most critical applications. This sets a new scenario where to meet the accuracy requirements,
the usage of carrier-phase based GNSS processing options (compared to only code-based) in combination with additional other
sensors is mandatory. Another huge difference to the well-elaborated civil aviation, is the local propagation environment of
the satellite signals. The potential presence of multipath, non-line of sight reception, interference, jamming or even spoofing
is much larger and hence, it need to be treated differently since the operational environment is not apriori restricted (like for
instance an airport).

Figure 1: Alert limit and integrity risk requirements for safety/liability related applications (GSA, 2019a,b,c)



III. THE AUGMENTATION SYSTEM AND BASE STATIONS FOR VALIDATION
For the Pilot Development, an Augmentation System for High Accuracy and Integrity Augmentation has been developed,
starting from the existing Sogei GRDNet (GNSS R&D Network) facilities. The Augmentation Integrity Monitoring Network
(AIMN) consists of many Reference stations which receive multiconstellation (GPS, GLONASS, Beidou and Galileo) and
multifrequency GNSS signals. The Reference Stations have been connected to the Sogei GRDNet Control Center through
http. Here, the real-time 2-Tiers FDE algorithms is running and provides RTK messages and experimental Integrity messages,
following the SC-134 Experimental Messages 1 and 2 have been developed.

Such messages contains the SIS Integrity Status flags of the Constellation and Reference Stations, leaving the user receiver the
responsibility to integrate their autonomous algorithms for local hazard monitoring. The AIMN is based on the analysis of code
and phase residuals for developing satellite and Reference Station FDE (Fault Detection and Exclusion). The Augmentation
Monitoring System process is shown in Figure 2.

Figure 2: 2-Tiers Algorithm Processing flow

The 2-Tiers algorithm is based on the processing of real-time Reference Station raw measurement between satellite and between
receivers difference residuals for both SIS and Reference Station FDE. That is the FDE for satellite exclusion is based on
the calculation of Single Differences residuals among satellites and the comparison with a statistical derived threshold (Neri
et al., 2015). It is defined as a function of the probability of false alert or probability of missed detection, following the
Neyman-Pearson criterion. The test statistic is represented by the weighted squared norm of single differences residuals:

ỹicod = [ζζζi(k)]TR−1
ζζζi ζζζ

i(k) (1)

where Rζζζi is the covariance matrix of single differenced measurements and i is the analyzed satellite.
The single difference residual is defined as:

ζζζi(k) = S̃(i)∆ρρρTier2(k) (2)

where S is the satellite differencing matrix with respect to satellite i.
Following the Neyman-Pearson criterion, fault detection thresholds are set according to the given Missed Exclusion of False
Exclusion probabilities. Given the n−th Reference Station, for the i−th satellite, the algorithm first rearranges the single
differences {ζi,jn (k), 1 ≤ j ≤ Nsat, j ̸= i}, where Nsat is the number of visible satellites. A fault on the signal related to the
i−th satellite code channel will affect every yjcod,n. Nevertheless, the contribution to yicod,n is (Nsat − 1) times the contribution
to yjcod,n. Thus the signal originating large values can be detected by selecting the satellite corresponding to the largest yjcod,n.
A satellite is excluded if the above statistics overcome a defined threshold γyi

cod
.

The same procedure is applied to the raw phase single differences {Ii,jn (k), 1 ≤ j ≤ Nsat, j ̸= i} rearranged into the vector
Iin(k) in a similar way.



Such an algorithm is carried out iteratively for all single differences for satellite FDE.
The same approach is used for the exclusion of reference stations, where double difference among satellites and reference station
are used for calculation and checking. In order to check for reference stations failure, we have to isolate the error contribution
introduced into the augmentation by the single reference station.
At this aim, for each reference station, the statistics derived from the double differences residuals with respect to raw data
provided by the first tier are calculated:

Zcod,n = [ζζζn,T ier1(k)]
T R̃−1

ζζζn,Tier1
ζζζn,T ier1(k) (3)

where
ζζζn,T ier1(k) = SD

(1)
(NRIM1+1)

∆ρρρraw(k) (4)

and D is the double difference operator. Reference Station from highly reliable reference stations can be used as first tiers
(e.g. EGNOS RIMS or EUREF Reference Stations). The algorithm can work also with the second tier only (Local Reference
Stations). The probability of excluding the n-th healthy Reference Station while it is healthy is given as a design parameter and
it is provided by:
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is the cumulative generalized Chi-Square distribution. Given these results, the exclusion threshold can be derived accord-
ingly (Neri et al., 2015).

The output of these FDE algorithms are the Satellite and Reference Stations Integrity Status flags which are passed to the
RTK/NRTK Control Centre engine or to the user receiver for relevant resources exclusion. Satellite and Reference Station
Integrity Status flag Data Fields and messages have been proposed within SC-134 for integrity monitoring purposes.

IV. ONBOARD SYSTEM ARCHITECTURE AND INTEGRITY MONITORING
This section provides a more detailed architecture and algorithm design of the multisensor on-board unit for the automotive
application. It primary considered that at least the available sensors on the vehicle are GNSS, Inertial Measurement Unit (IMU)
and a stereo camera system.

The general detailed architecture of the onboard system is shown in Fig. 3, where the onboard unit is divided between the
sensing units (GNSS antenna and receiver, Cameras and IMU) and the processing of the physical magnitudes to finally provide
the vehicle position and dynamics and related integrity information. The software processing is subdivided in 3 main blocks:

• GNSS Processing channel

• Sensor fusion & Integrity Monitoring Channel

• Camera processing channel

It is additionally considered a preliminary Localization Mode Selector block that makes smart decisions about the most suitable
combination of sensors and GNSS augmentation information, and the best solution that must be provided to the user. In the
next sections, each of the processing channels are described more in detail.

1. GNSS Processing
The GNSS processing block receives the RF signal from the GNSS Antenna installed on the roof of the vehicle and performs
the normal GNSS receiver signal processing to extract the raw measurements (i.e., multifrequency, multiconstellation code and
carrier phase). Additionally, in the context of the high-accuracy, high-integrity positioning the following blocks and functions
are considered:

a) Local Threats Protection Functions
GNSS Positioning on land-based applications is highly affected by the presence of different local threats that cannot be corrected
or compensated for by augmentation information (e.g., EGNOS or the HELMET augmentation subsystem). The protection
functions are mainly targeted at detecting the presence of local effects that can corrupt the GNSS code and carrier measurements



Figure 3: Onboard Multisensor System Architecture

in a way that their error is not representative of the nominal error model that will be considered by the estimation algorithm.
A list of relevant local threats and possible detection techniques is provided in (Garcia Crespillo et al., 2019) for land based
applications. The following protection measures can be typically at least be considered:

• RFI detection based on PSD analysis: Suitable COTS GNSS receivers provide information about the frequency spectrum
or can provide the I/Q samples to allow for the computation of it. By comparing a nominal PSD with the current time
received one, the presence of different types of narrow/wide band interferences can be detected (Vennarini et al., 2020).

• Excessive multipath detection: Based on the Code-minus-Carrier (CMC) observable, a multipath detector can be built
for urban scenarios based on the expected rate change of multipath (Caamano et al., 2020). If strong multipath is detected
on a certain channel, the corresponding measurements from that satellite are discarded

• Data editing: Discarding measurements by applying reasonable checks and decisions has proven to reduce the presence
of large unbounded measurement errors (Bryant et al., 2019). Discarding measurements based on this criteria is here
called data editing. These measures consider for instance: Applying a certain CN0 mask, discarding measurements based
on the loss of lock indicator (LLI), discarding measurements where both L1 and L2 measurements are not available, etc

The excessive protection against local threats may have a big impact on measurements availability. A trade-off must be found
between nominal error model and threats protection to satisfy the availability requirement. It is however expected that continuity
and availability of the final solution is ensured thanks to the presence of additional sensors, like inertial measurement units and
its filter-based coupling. It is therefore important to guarantee the integrity of the measurements even if this reduces the number
of available (i.e., trustable) code and carrier phase measurements.

b) Augmentation Information & Correction
Depending on the type of external information that is available and that will determine the main processing channel localization
mode, this block may receive:

• The HELMET augmentation information as described in the Section “Augmentation System” (Section 2).

• EGNOS integrity and correction information.

• PPP satellite orbit and clock correction products.



When available this block can:

• Apply the Integrity Status flags to discard those satellites that have been determined unhealthy by the augmentation
system.

• Perform corrections to code/phase measurements applying the augmentation data.

• Relay both the onboard measurements and the augmentation information and ground station measurements to allow for a
relative baseline estimator and ultimately an absolute position computation based on it.

c) PVT / RTK solver
In certain situations, with enough satellite visibility, it is possible to compute a GNSS-only position, either via SPP, PPP or RTK.
This constitutes a possible localization mode that might be available at the vehicle. For instance, RTK (float or fixed solution)
can be particularly interesting in static situations and/or to support a fast convergence of other float-based (multisensor) solution.

2. Integrated INS/RTK processing
The INS & Sensor Fusion block is the core positioning block for the automotive application since it is the only one that can
guarantee a continuous and high frequency positioning information thanks to the inertial measurement unit that is not affected
by the environment or scenario (e.g., loss of satellite signals due to urban canyon or bad image quality). The main localization
modes for the automotive application are therefore generated here depending on the available GNSS information. This block is
composed of:

• An error state Extended Kalman filter (EKF) as main estimator that combines the GNSS and INS measurements in a
tightly coupled fashion to provide position, velocity and other related estimated magnitudes. Different EKF filter running
in parallel with different hypothesis subsets of measurements can be considered in the future to allow for a solution
separation fault detection and integrity quantification.

• Fault detection and Exclusion (FDE) functions that targets those faults that were not detected on the Local threats
protection block. The relevant possible faults are considered within a threat model that is described later. Both a solution
separation and an innovation-based fault detection are considered.

• Integrity Monitoring block which is the main responsible for computing the protection levels based on the EKFs estimator
and the fault detection information.

The IMU measurements (i.e., specific forces and angular rates) are processed by a strapdown computer in order to obtain the
Inertial Navigation System (INS) magnitudes attitude, position and velocity over time. The solution of the INS is the main
positioning solution provided by the INS channel. In order to prevent the estimated pose from drifting over time due to the IMU
error processes, an error state Extended Kalman filter is implemented to calibrate the INS system over time thanks to GNSS
or other information. An error state version of the EKF is chosen so that effects due to linearization of the INS differential
equations does not have a significant impact on the representations of the error estimation provided by the filter. Since the main
purpose of the EKF is to estimate the errors in the INS system, the EKF will always contain the following INS related states
xINS:

xINS =
(
δψψψT δvT δpT bT

f bT
w

)T (7)

where δψψψ, δv and δp are the 3D error in attitude, velocity and position of the INS system respectively. This leads to the
classical 15 main states of the filter. Depending on the characteristics of the IMU under used, the filter may consider additional
3D accelerometer scale factors and 3D gyroscope scale factors and/or misalignment quantities. The implementation of this
part of the filter is well known in the community (Groves, 2013). A very important aspect is the correct error modelling of
the inertial sensor errors. This must be carefully performed offline typically by using different calibration procedures and error
modelling tools like Allan variance. Deterministic errors are here assumed to be compensated for by the manufacturer or by a
dedicated procedure before the run-time application so that they can be correctly parametrized. The remaining stochastic and
time-correlated errors are estimated over time as bias states within the filter. When necessary and depending on the specific
error behavior of the IMU axis measurements, more than one bias per axis could be considered to guarantee a trustable and
accurate estimation. The bias terms are modelled as first order Gauss-Markov processes with the parameters determined (and
possibly parametrized) from for instance Allan variance analysis (IEEE, 1998).

GNSS is used in differential RTK mode, therefore, it is necessary to consider additional states. The additional GNSS related
states that are included in the EKF are related to the float single difference ambiguities N:

xGNSS =
[
Nf1

G Nf2
G Nf1

E Nf2
E

]T (8)



where the subscript indicates the constellation and the superscript the satellite signal frequency. In the following, we only solve
for the float solution, so no ambiguity fixing technique is applied.

At the moment, we are considering short baselines (i.e., baselines below 20 km). Hence, we assume the tropospheric and
ionospheric propagation delays to be equivalent at the reference station and the rover. Longer baselines could be also considered
by additionally model the tropospheric and ionospheric delay differences within the filter.

The measurement model is based on the double-difference (DD) pseudorange and phase measurements. According to (Groves,
2013), these measurements for satellite s given the reference satellite t are be expressed as

∇∆ρ̃tsGNSS = ρ̃sr − ρ̃tr −
(
ρ̃sb − ρ̃tb

)
, (9)

≈ (us
r − ut

r)xr,b +∇∆ϵρ, (10)

∇∆Φ̃ts
GNSS = Φ̃s

r − Φ̃t
r −

(
Φ̃s

b − Φ̃t
b

)
, (11)

≈ (us
r − ut

r)xr,b + λ(∆Ns −∆Nt) +∇∆ϵΦ, (12)

where ρ̃ir and Φ̃i
r denote the pseudorange and phase measurement of the i satellite at the rover, whereas the subscript b indicates

the same for the reference base station. The reference satellite t is chosen to be the one with the highest elevation angle. The
single difference ambiguities for satellite s are denoted by ∆Ns = Nr

s −N b
s and λ is the wavelength of the satellite signal. The

quantities ∇∆ϵρ and ∇∆ϵΦ describing the remaining double difference multipath and noise component for pseudorange and
phase measurements, respectively. The line of sight vector for each satellite i at the rover is expressed by ui

r.

For the EKF measurement model, we compute the difference between GNSS measurement based DD and expected DD based
on the position of the calibrated INS and obtained satellite positions:

z =

[
∇∆ρ̃tsGNSS −∇∆ρ̂tsINS
∇∆Φ̃ts

GNSS −∇∆ρ̂tsINS

]
. (13)

For the corresponding measurement covariance matrix R, we assume in this work the same satellite elevation depending
pseudorange noise model all constellations and frequencies, similar the phase noise model:

σi
ρ =

σρ√
sin eli

, σi
Φ =

σΦ√
sin eli

.

Hence, we can express the measurement covariance matrix as block diagonal matrix with the off-diagonal elements are zero
and diagonal matrices:

R = blkdiag
(
Rf1

G,ρ,R
f2
G,ρ,R

f1
E,ρ,R

f2
E,ρ,R

f1
G,Φ,R

f2
G,Φ,R

f1
E,Φ,R

f2
E,Φ

)
(14)

where the constellation-frequency dependent pseudorange covariance matrices are given by

Rf
c,ρ = DDf

c,ρΣ
f
c,ρDDf

c,ρ

T
, (15)

where each signal covariance matrix Σf
c,ρ is a diagonal matrix with σ2

ρ as diagonal elements and zeros as off-diagonal elements.
The same applies for the phase covariance matrices Rf

c,Φ. The double difference matrix DDw,t
c for constellation c, signal

frequency f and reference satellite t has a size of (Lc,f − 1) × Lc,f , and the number of available satellites per constellation
and frequency is denoted by Lc,f . The double difference matrix, if the first available satellite is chosen as reference satellite, is
given by:

DDf,t
c =


−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

...
. . .

...
−1 0 0 . . . 1

 (16)

For simplicity, we omit the superscript t for the reference satellite.

Finally, when static periods of time are detected, the filter performs Zero Velocity Updates and Zero Angular Rate Updates that
aid in the initial convergence of the filter, in estimating the inertial sensor biases and in preventing a high drift of the heading
error until the vehicle starts or resumes movement.



3. OBU Integrity Monitoring
Based on the nominal error models used for the Kalman filter, the threat model, the test statistics defined in the previous section
and the required integrity risk (IR), a protection level (PL) is computed. In this work the protection level is ultimately based on
a normalized innovation square fault detection, which assumes the presence of a residual single fault. This assumption is made
based on the expected performance of the batch of local threats detectors and logic that are introduced per channel before GNSS
measurements reach the KF and the expected performance of the innovation screening detector, which discard any measurement
suspected of not belonging to the nominal error model. This conclusion is validated based on the analysed data in the result
section with Figure 10. For the local test statistics, we analyze each of the innovation vector elements related to each of the
visible ground stations independently. This is commonly referred to as innovation screening. The normalized innovation for the
element j serves as our local test statistic (Garcı́a Crespillo et al., 2017a):

qjk =
γγγjk√[
S−1
k

]
jj

(17)

since the innovation vector follows a Gaussian distribution, so does the local test statistic. In the nominal case (H0 hypothesis),
each of the local tests follows a standard normal distribution, in case of a faulty measurement (H1 hypothesis) the corresponding
distribution is biased:

H0: qjk ∼ N (0, 1) (18)

H1: qjk ∼ N (µj , 1) (19)

Given a certain probability of false alarmPfa, IS, a suitable threshold can be found by means of the inverse Normal distribution. In
case the normalized innovation is above this threshold, the corresponding measurement is excluded from the EKF measurement
update step. All innovations passing the innovation screening step are further considered.

For the second local test that is ultimately used to support the protection level computation, we investigate the sum of normalized
innovation squares related to each of the visible ground stations independently. This is commonly referred to as Normalized
Innovation Square (NIS) local test statistic (Grosch et al., 2017).

This test statistic qNIS,k is obtained by:

qNIS,k = γγγTk S
−1
k γγγk. (20)

In the GNSS fault-free case H0, i.e., no local threats are present, this test statistic is assumed to follow a chi-square distribution
with L degrees of freedom. In the faulty case, the test statistic is following a non-central chi-square distribution with L degrees
of freedom and non-central parameter

λm = µµµT
γµµµγ , (21)

where µµµγ represents the bias on each innovation caused by the measurement fault. We can state:

H0 : qNIS,k ∼ χ2(L) (22)
H1 : qNIS,k ∼ χ2(L, λm). (23)

The detection threshold is found by using the inverse chi square cumulative density function for L degrees of freedom and
a maximum allowed probability of false alarm Pfa, NIS. The latter is retrieved from the availability and continuity system
requirement. If the test statistic exceeds the corresponding threshold, a fault is triggered.

If the test is passed, we assume the innovation to be consistent and compute the protection level. As we proposed in (Garcı́a Crespillo
et al., 2017b), we compute the horizontal protection level as

HPL = Hslopemax

√
T (L,Pfa, NIS) +Kff

√
Pee + Pnn, (24)

where Pee and Pnn are the covariance diagonal elements addressing the estimated east and north position error uncertainty
and Kff an inflation factor corresponding to the allowed probability of missed detection. Under non-nominal conditions, the
presence of a fault projects both on the estimated position error and the test statistic. The relation between how much in each



part is affected is known as the slope. A bigger slope brings us faster to the integrity risk area. The protection levels are here
computed by assuming the maximum (worst-case) slope for a single satellite fault hypothesis. For a certain fault vector f , the
horizontal slope under single fault assumption can be expressed as:

Hslopeγ,k,i =

√
fTi KT

k ϵϵϵ
T
nϵϵϵnKkfi + fTi KT

k ϵϵϵ
T
e ϵϵϵeKkfi

fTi S−1
k fi

(25)

where ϵ selects the desired state from the full state vector, Kk is the current time Kalman gain and Sk is the covariance associated
with the current time innovation vector. Being the vector fi a vector containing zeros except for the corresponding satellite
position under evaluation.

4. Camera Processing
The camera processing block provides additional capability to the onboard unit to improve the overall availability and accuracy
of the system. In specific urban environments such as in urban canyons or tunnels, the onboard navigation system may experience
a relatively long period of time without reliable reception of GNSS signals. In such challenging scenarios, since the error from
IMU will accumulate over time, the availability of GNSS/INS based navigation may degrade given that the integrity of the
system must be guaranteed. The vision system will play a significant role in such cases to localize the vehicle and to keep it
staying in the correct lane. As in our test set-up, it is assumed that two front-facing cameras are mounted on left and right
side of the car respectively so that a well-aligned stereo rig can be formed. The triggering clocks of both cameras needs to be
synchronized, e.g., using Precise-Time-Protocol (PTP), etc. The left and right cameras must be calibrated before utilization,
so that the camera intrinsic parameters and the extrinsic parameters between the two cameras are estimated in a controlled
environment. The uncertainty of the calibrated parameters are taken into consideration and are propagated into the localization
uncertainty in the onboard processing. The procedure of the camera processing is shown in Fig. 4. The processing starts when

Figure 4: Onboard Camera Processing Module

both measurement images from the stereo rig are available. A Deep Neural Network (DNN) based lane detector is applied on
both left and right images independently, exploiting its outstanding detection performance in challenging real-life scenarios,
especially when occlusions and curved lane markers appear in the scenes. The applied neural network is a modified version of
the SCNN (Spatial Convolutional Neural Network) for lane marker segmentation proposed by Pan et al. (2018). The SCNN
assigns each pixel in the input image with a binary label, which indicates whether it belongs to a lane marker or not, and it
supports multiple different lane segments (4 as default) distinguished by the output channels. Then the same lane marker in the
left and right images are associated according to the projective geometry between the two cameras and the ground plane. The
details of the DNN based lane detection as well as the data association and their error analysis can be found in the publication
(Hao et al., 2021). With the aligned image points in both views, the 3D location of the lane markers can be reconstructed, and as
a result, the relative distance from the vehicle (in the vehicle’s body frame) to both closest lanes on both sides can be estimated.

The central role of safety and reliability is a distinguished aspect of our camera processing module design. It can be seen from
the block diagram in Fig. 4 that a fault detection and elimination (FDE) function block is added after each step of processing
(marked as red blocks). The design of the FDE functions follows the multi-domain error monitoring concept proposed for visual
navigation integrity by Zhu et al. (2022). The neural network outputs are first independently denoised and validated according
to projective geometry. Then, the associated data is tested according to the nominal error distribution. Similar method as from
Zhu et al. (2020) can be applied if a quantified association failure probability is required. Points with large 3D position error
can still exist after 3D reconstruction, so an outlier removal is essential before localizing the vehicle to the lane markers. As a



last safety checking, the prior information of the lane width is applied to validate the calculated distance to the borders of the
lane. Only if all the FDE tests are passed, the camera processing block outputs the relative localization information including
the camera measurements timestamps, the flag of the processing (successful or not), the estimated distance to the lane markers,
and the reliability metrics of the output to the mode selector.

In our demonstration campaign in Rome, an example of the camera based lane detection and in-lane localization results is shown
in Fig. 5.

Figure 5: Camera Lane Detection and In-lane Localization

5. Localization Mode Selector
The localization mode selector function acts as a user interface by providing the best solution available from the different
sensors and systems. It is here assumed that the main INS filter and integrity monitoring provides the most complete and risk
quantifiable information of the position of the vehicle. There may be however situations when the protection levels might exceed
a certain level that is unacceptable by the current operational scenario or necessary information are not available such as AIMN
data link. This block may decide that it is better to provide at least partial solution (e.g., only lateral) coming from the relative
positioning based on the camera system.



V. EXPERIMENTAL SETUP AND TEST CAMPAIGN
1. Hardware Equipment
For the HELMET validation, the following three GRDNet Reference Stations have been used for the implementation of the
2-Tiers algorithm for the validation area (Roma-Fiumicino area in the centre of Italy): RIET, ROMA and TERN. The map,
showing the geographical distribution of the second tier Reference Station, are shown in Fig. 6a.

(a) Used 2-tier AIMN Reference Station and their locations (b) Onboard Experimental Sensor Setup and connections

Figure 6: Setup for Demo Campaign in Rome, Italy

The onboard equipment is shown in Figure 6b and consists of two Septentrio Mosaic GNSS receivers with multi-band antennas,
Inertial Labs INS-D, a pair of global-shutter cameras Triton 2.3 from Lucid Vision, Ouster lidar, Trimble PTP GM200 for clock
synchronisation, and a central computing unit to mange the sensor system, provide connectivity, and to record sensor data. A
key enabler of the onboard unit is the clock synchronisation of individual components, which has been achieved by utilising
GNSS system time to discipline GNSS receivers, inertial unit, and Precise-Time-Protocol (PTP) source. The PTP synchronizes
over the Ethernet both cameras and lidar. The onboard unit records timestamped sensor data streams, which have been used for
the post-processing.

(a) Placement of stereo camera, inertial sensor and
LIDAR.

(b) Placement of Dual Frequency, Dual Constellation GNSS antennas
on top.

Figure 7: OBU Hardware setup.



2. Test Campaign
The test campaign the results in this paper are based on was performed on April 12, 2022 in Rome, Italy. The setup comprised a
ground vehicle on which two GNSS antennas where mounted, one in front and one at the back as shown in Figure 7a and Figure
7b. An inertial measurement unit was also mounted to record inertial data and a calibrated camera to record videos during the
entire campaign. The vehicle was setup in the vicinity of a base station that was installed prior to the start of the campaign to
provide augmentation data through RTCM messages.

The measurement campaign consisted of a start with a static period of time in a yard in an urban area. This static period was
shortly followed by a series of turn manoeuvres. The vehicle was then driven from the urban area towards a highway, through
some tunnels for a few minutes then returned to the start point of the campaign The trajectory of the vehicle is shown in Fig. 8
and the available GPS and Galileo satellites are indicated via a skyplot in Fig. 9.

For the configuration of the RTK/INS filter and integrity monitoring the parameters in Table 1 were used.

System Parameters Values
Initial state uncertainty SD ambiguities 100
SD ambiguities state transition uncertainty 1× 10−5

Pseudorange measurement noise σi
ρ 4m

Phase measurement noise σi
Φ 0.01m

Probability of false alarm IS 1× 10−2

Probability of false alarm NIS 1× 10−6

Probability of missed detection NIS 1× 10−8

Table 1: System parameters

Figure 8: Trajectory including the location of the AIMN reference station ROMA.



Figure 9: Skyplot of the received GPS (circular markers) and Galileo (hexagon markers) satellites after applying the local threat protection
block.

VI. RESULTS
1. Minimizing the residual probability of local GNSS fault
Due to multi-layer GNSS fault detection and exclusion architecture, the remaining undetected GNSS faults are assumed to
have a very low probability such that it is here leveraged to assume a single simultaneos satellite fault. To illustrate the impact
of the usage of local threat protection and detection techniques on the remaining errors, we computed the folded cumulative
density function of the normalized innovations over all satellite signals and all epochs after different stages. Figure 10a shows

(a) Postcorrelation measurement residuals (b) After applying local FDE (c) After applying innovation screening

Figure 10: Cumulative probability of normalized KF residuals of measurements at different processing stages

the folded cumulative probability distribution of the normalized KF residuals of code and phase measurements as they are
provided by the receiver after correlation. The two red lines marked a 3 sigma threshold, which is here used as a criteria to
classify a measurement as faulty. As we can see, in Figure 10a, there is substantial probability mass that extends beyond the
threshold, indicating ultimately tha the probability of simultaneous faults is highly frequent (as expected in urban environments).
Figure 10b depicts the same distribution when several local threats protection and logic are applied. In this case, it was considered
a Carrier-To-Noise masks, a cycle slip detector and a multipath detector based on CMCD. As we can see, the probability mass
concentrates much more inside the thresholds but there exists still long tails that accumulates probabilities higher than 1E-5.
Finally, Figure 10c considers the cumulative probability of the measurement KF residuals considering the local threats blocks
and an innovation screening. We can see that all the probability mass (given the avaialble measurements over the experimental
tests) stays below the 3 sigma threshold. Given the number of available measurements we can assume that the residual probability
of fault after the protections may be below 1E-5, which is here used to make the assumption of single simultaneous fault and
can be used in the future as an input for a solution separation integrity monitoring algorithm.



(a) Horizontal Position Error (HPE) and Horizontal Protection Level includ-
ing constant performance identifier of one meter and half a meter horizontal
position error.

(b) Empirical cumulative density function of obtained horizontal position
error including the accuracy quantile of 68.27% = 34.76 cm, 95.45% =
49.10 cm and 99.73% = 135.16 cm

Figure 11: Horizontal protection level and position error results.

2. Position Accuracy and Protection Level
Fig. 11a shows the horizontal position error (HPE) as well horizontal protection level (HPL) over the whole demo run. For
better comparison, we have also included two performance lines, i.e. half a meter HPE and one meter HPE. As it can be seen,
the obtained HPE is below or equal to half a meter in 95.5% and below or equal to one meter in 99.05% of the cases. For
a more detailed analyse, we provide the empirical cumulative density plot of the HPE in Fig. 11b. The plot depicts that the
accuracy quantile of 68.27% is equal to a HPE of 34.76 cm, 95.45% is equal to a HPE of 49.10 cm and 99.73% is equal to a
HPE of 135.16 cm.

VII. DISCUSSIONS
Due to multi-layer GNSS fault detection and exclusion architecture, the remaining undetected GNSS faults are assumed to be
one a single satellite. This assumption might be conservative but reasonable. The lower half Standford in Fig. 12a analyze the
obtained integrity results. That is the horizontal axis is the Horizontal Position Error (HPE) and the vertical axis the Horizontal
Protection Level (HPL). Each bin indicates the number of occurrences of a specific (HPE,HPL) pair. Any pair laying the white
area represents a true overbound of our solution, whereas any pair laying in red triangle would represent misleading information,
i.e., the protection level does not overbound the position error. As it can be seen, our observed HPL-HPE pairs lay only in the
white area. However, the protection level is often much bigger than the corresponding HPE, hence we might be to conservative
in some cases. Depending on the required mode of operation, and therefore, resulting required alert limit, this might lead to
increased but unnecessary system unavailability. Since the system is set unavailable as soon as the protection level excesses the
alert limit. For instance, a horizontal alert limit of four meter would cause a system unavailability in 8.86% while the actual
horizontal position error in always below 2.1m.

The empirical cumulative density function of the obtained horizontal protection level can be seen in Figure 12b. As you can
see protection level under one and a half meters are only observed in four percent of the cases, below two meters for 54% and
below three meters for 83%, respectively. Depending on the mode of operation these results might violate the corresponding
horizontal alert limit requirement and lead to a decrease of system availability Remember this protection levels are based on
a single fault assumption. Therefore, we want to exploit Kalman filter based solution separation techniques. So, we consider
different fault modes such as RTK reference satellite faults and carefully revise the budget allocation. All this might lead also
lead to lower protection levels and higher system availability.



(a) Lower half Stanford plot: The horizontal axis is the Horizontal Position
Error (HPE) and the vertical axis the Horizontal Protection Level (HPL).
Each bin indicates the number of occurrences of a specific (HPE,HPL) pair.

(b) Empirical cumulative density function of obtained horizontal protection
levels including identification of HPL being small or equal to one and a half,
two and three meters, respectively.

Figure 12: Evaluation of obtained Horizontal Protection Levels.

VIII. CONCLUSIONS
Ensuring high accuracy and high integrity positioning is necessary for new emerging applications. It is however, very challenging
to satisfy rigorously both simultaneously. The use of carrier-phase based positioning is indispensable in combination with
additional sensors. The general architecture proposed in this work could be a good candidate starting point for achieving these
requirements. Further investigations about the fault probabilities, not only of residual local threats but also of the additional
sensors will be carried in the future. Although relatively low protections levels were obtained, achieving even tighter protection
levels might require fixing the ambiguities, for which a rigorous integrity assessment needs to be still considered. The proposed
architecture and aspects discussed in this paper may not only be considered as a baseline for automotive but also for other
applications in challenging GNSS environments.
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