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1 Introduction

Recent theoretical studies suggest that the physical skewness of an asset’s future discrete

(“dollar”)1 return distribution can be negatively priced in equilibrium (see Brunnermeier et

al. (2007), Mitton and Vorkink (2007), and Barberis and Huang (2008)). Boyer et al. (2010),

Bali et al. (2011), Kozhan et al. (2013), Boyer and Vorkink (2014), Conrad et al. (2014), and

Amaya et al. (2015) provide empirical evidence that historical or forward-looking skewness

proxies negatively price stocks, stock indexes, and single-stock options.2

Notwithstanding the empirical evidence, the literature is notably silent on the return

horizon(s) over which skewness is priced. For example, the theoretical literature only studies

two-period models with an arbitrary return horizon. In turn, the empirical literature almost

always relies on proxies for the skewness of shorter-horizon (often intraday or daily) returns.

However, as skewness does not, in contrast to, for example, expected returns and variance,

generally scale with the return horizon (see Neuberger (2012) and Fama and French (2018)),

it is unclear whether the proxies used in the empirical literature also reflect skewness over

other return horizons. Given this, it is then further unclear whether the pricing ability of those

proxies comes from skewness being priced over the short return horizons used to estimate

them, from it being priced over other return horizons, and/or from other factors.

In this study, we take a closer look at skewness proxies used in the empirical stock pricing

literature, evaluating how well they capture the skewness of dollar returns over alternative

horizons and how much of their pricing ability comes from them capturing skewness over

a particular horizon. In doing so, we begin by developing a novel estimator of the realized

skewness of dollar returns over arbitrary horizons. Relying on the estimates derived from that

estimator as forecasting target, we then explore the ability of the skewness proxies to predict
1We define the gross dollar return as the ratio of the sum of an asset’s value at the end of the investment

period plus the dividends paid out over that period to the asset’s value at the start of the period. Conversely,
we define the log return as the natural log of the gross dollar return.

2Defining (as we do) the skewness premium as the mean spread return between high and low skewness
assets, prior studies find a negative premium. If we instead defined that premium as the spread in skewness
across the real-world and the equivalent martingale measure, they would find a positive premium.
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the realized future skewness of the daily, monthly, quarterly, and annual dollar return. Finally,

we decompose each proxy into the sum of a component capturing the expected future realized

skewness of the dollar return over one of the four horizons and a residual component, separately

studying each component’s pricing power. As skewness proxy contenders, we use Boyer et al.’s

(2010) cross-sectional least-squares prediction of daily dollar return skewness (OLSSkew); a

cross-sectional counterpart of Ghysels et al.’s (2016) quantile regression prediction of annual

dollar return skewness (QuantileSkew); daily dollar return skewness calculated over some prior

period (HistoricalSkew); Conrad et al.’s (2014) logit-model prediction of the probability that

a stock’s log twelve-month-ahead return exceeds 100% (LogitSkew); and Bali et al.’s (2011)

maximum of the daily dollar return over the prior month (MaxRet).

Building on Fama and French (2018), our novel estimator of the realized skewness of

dollar returns starts by repeatedly using Politis and Romano’s (1994) block bootstrap to

form a large number of bootstrapped samples of a stock’s short-horizon dollar returns. Using

each bootstrapped sample, we calculate one artificial long-horizon dollar return. Finally,

we obtain our realized skewness estimate by applying the sample skewness to the set of

artificial long-horizon dollar returns. In contrast to Fama and French’s (2018) and Farago and

Hjalmarsson’s (2022) estimators,3 the advantage of our estimator is that it does not assume

that returns are independent and identically distributed (i.i.d.), allowing it to capture the

effects of return dependencies (as, e.g., Black’s (1976) leverage effect). In contrast to Neuberger

and Payne’s (2021) estimator, our estimator has the further advantage of capturing the effects

of compounding (see Bessembinder (2018)). Using a Monte Carlo simulation exercise based on

geometric Brownian motion (GBM), stochastic volatility (SV), and stochastic volatility-jump

(SVJ) stochastic processes, we confirm that our estimator yields less biased estimates with

competitive standard errors relative to the other estimators.
3Whereas Fama and French’s (2018) estimator is identical to ours except that they rely on a simple (and

not a block) bootstrap, Farago and Hjalmarsson’s (2022) estimator can essentially be interpreted as the
closed-form equivalent of Fama and French’s (2018) estimator.
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Next, we assess how accurately the skewness proxies predict the realized skewness estimates

obtained from our block-bootstrap estimator. Using portfolio sorts and Mincer-Zarnowitz

(1969) regressions, we find that all skewness proxies are significantly positively related to the

future realized skewness of short- and long-horizon dollar returns. However, in comparison,

OLSSkew, QuantileSkew, and LogitSkew perform better than HistoricalSkew and MaxRet over

short horizons, with them (the other proxies), for example, capturing 5% to 8% (2% to 3%) of

the cross-sectional variation over the daily horizon. Moving to longer horizons, the predictive

ability of QuantileSkew, LogitSkew, and MaxRet dramatically improves relative to that of

OLSSkew and HistoricalSkew, which is consistent with the skewness proxies designed to directly

capture the skewness of long-horizon returns performing better over such horizons. Whereas

QuantileSkew and LogitSkew, for example, capture 18% of the cross-sectional variation over

the annual horizon, the other proxies capture no more than 10%. In addition, once we omit the

compounding effect from our realized skewness estimates, the predictive ability of all skewness

proxies drops significantly, especially over long horizons, in line with the idea that the proxies

mostly capture the compounding effect in the skewness of dollar returns.

Finally, we examine the extent to which the ability of a skewness proxy to reflect the

expected future realized skewness of the dollar return over some horizon drives its stock pricing

power. Using Hou and Loh’s (2016) methodology, we first decompose the skewness proxy

into the sum of a component reflecting expected skewness and an orthogonal component. To

mitigate attenuation error, we conduct the decomposition at the portfolio level, sorting stocks

into 50 portfolios based on the skewness proxy and running a cross-sectional regression of a

portfolio’s average skewness proxy value onto its average future realized skewness. We then

assign the fitted regression value, which we interpret as the expected skewness component, to

all the stocks in a portfolio. Finally, we gauge each component’s ability to price stocks and

calculate the proportions of the skewness proxy premium attributable to the components.

In line with the literature, our portfolio sorts and Fama-MacBeth (FM; 1973) regressions

suggest that OLSSkew, LogitSkew, and MaxRet, but not QuantileSkew and HistoricalSkew,
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yield significantly negative simple or risk-adjusted premia. Decomposing the skewness proxies

into components reflecting expected skewness over some horizon and orthogonal components,

we find that the pricing of the skewness proxies generally comes from them predicting skewness

over short horizons. For example, while the component in OLSSkew that predicts daily skewness

is significantly negatively priced (t-statistic: –2.90) and explains 70% of OLSSkew’s pricing, the

component that predicts annual skewness is insignificantly priced (t-statistic: –1.34) and explains

only 51%. We obtain similar results for QuantileSkew and LogitSkew. Notably, the component

in MaxRet predicting skewness is significantly negatively priced over all horizons, suggesting

that MaxRet mostly captures the compounding effect in skewness, and that the compounding

effect is generally significantly negatively priced. Taken together, we conclude that the skewness

pricing evidence in the literature appears to come mostly from the skewness proxies used in

that literature picking up skewness over short (and not long) horizons.

Our work extends the emerging literature on accurately estimating the skewness of long-

horizon returns from short time-series of data. Neuberger (2012) proposes an estimator of the

skewness of long-horizon log returns based on short-horizon return data on the primary asset

and options written on it. Assuming i.i.d. returns, Fama and French (2018) propose a simple

bootstrap method, and Farago and Hjalmarsson (2022) propose an equivalent closed-form

estimator for the skewness of long-horizon dollar returns from short-horizon return data. Ap-

plying their estimators to single stocks, they find that dollar return skewness rises rapidly

with the return horizon, consistent with Bessembinder (2018). Neuberger and Payne (2021)

caution against those conclusions, showing that return dependencies (i.e., violations of the i.i.d.

assumption) greatly affect skewness. Unfortunately, however, their own estimator also yields a

biased estimate of the skewness of dollar returns because of approximation error. Motivated

by these studies, we develop a block bootstrap estimator that rectifies the shortcomings of the

existing estimators. Using a Monte Carlo simulation exercise, we confirm that our estimator

has several desirable properties and noticeably improves on other existing estimators.

Our study also contributes to the literature on whether the physical skewness of an asset’s
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future return distribution is priced. Scott and Horvath (1980) show that expected utility

investors with wealth-independent preferences like skewness. As adding assets to a portfolio

can lower skewness, Simkowitz and Beedles (1978) and Conine and Tamarkin (1981) establish

that skewness preferences can explain portfolio underdiversification. Despite that, Rubinstein

(1973) shows that monetary separation implies that investors who care about skewness but no

other higher moments choose portfolios such that an asset’s expected return is a function of

its return covariance and coskewness with the excess market return, but not skewness.4 To

create a separate pricing role for skewness, recent theoretical studies rely on assumptions that

violate monetary separation. Mitton and Vorkink (2007), for example, use heterogeneity in

skewness preferences, whereas Brunnermeier et al. (2007) and Barberis and Huang (2008) use

non-expected-utility preferences. While the aforementioned empirical studies often support

these theoretical studies, neither they nor the theoretical studies precisely identify the return

horizon(s) over which skewness is priced. We add to this literature by showing that the

empirical evidence comes mostly from short-horizon return skewness being priced in stocks.5

We finally add to an emerging literature that uses quantile regressions to forecast an asset’s

future return distribution. Cenesizoglu and Timmermann (2008) show that quantile regressions

efficiently estimate the conditional S&P 500 return distribution, improving market timing

and option investment strategies. Ghysels et al. (2016) combine quantile regressions with a

mixed-data sampling (MIDAS) model to predict stock index skewness. We transform their

time-series estimator into a cross-sectional estimator; however, we use a simpler regression

specification and alternative means to convert estimates into skewness predictions.

We proceed as follows. Section 2 introduces our block-bootstrap estimator for realized

skewness. In Section 3, we review the skewness proxies used in previous empirical studies.

Section 4 outlines our data sources. In Section 5, we evaluate the ability of the skewness proxies
4Kraus and Litzenberger (1976), Harvey and Siddique (2000), and Dittmar (2002) show that physical

coskewness negatively prices stocks. More recently, Chang et al. (2013) report that exposure to shocks in
risk-neutral market skewness calculated from Bakshi et al.’s (2003) methodology does so too.

5A related strand of literature studies whether the risk-neutral skewness of an asset’s future return
distribution is priced (see, e.g., Rehman and Vilkov (2012), Conrad et al. (2013), and Stilger et al. (2017)).
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to predict realized skewness. In Section 6, we examine whether the skewness proxies are priced

because they predict skewness over a particular return horizon. Section 7 concludes.

2 Calculating Realized Skewness

In this section, we introduce our block bootstrap estimator for the realized skewness of dollar

returns over arbitrary horizons. We begin by reviewing the issues inherent in estimating

realized skewness over long horizons and why other recent estimators do not satisfactorily

address these issues. Next, we describe our estimator. Finally, we conduct a Monte Carlo

simulation exercise to verify that our estimator improves on other recent estimators.

2.1 Skewness Estimators Proposed in the Recent Literature

It is well-known that it is generally infeasible to accurately estimate the skewness of long-horizon

dollar returns from standard moments-based estimators (see Lau et al. (1989)).6 To rectify the

deficiencies of standard estimators, Neuberger (2012), Fama and French (2018), Neuberger and

Payne (2021), and Farago and Hjalmarsson (2022) develop alternative estimators intended to

more accurately measure long-horizon-return skewness from limited amounts of short-horizon

return data. However, as Neuberger’s (2012) estimator focuses on the skewness of log (and not

dollar) returns, it cannot be used in cross-sectional asset pricing studies because these studies

generally consider investable dollar (and not uninvestable log) returns.

Assuming i.i.d. returns, Fama and French (2018) advocate a simple bootstrap to estimate

the skewness of long-horizon dollar returns. Specifically, they draw short-horizon dollar returns

from an estimation window, ensuring that each return has an equal probability of being drawn

and replacing the drawn returns. They then compound the drawn returns to construct an

artificial long-horizon dollar return. Repeating those steps multiple times, they finally apply
6Neuberger and Payne (2021) calculate that, if monthly (annual) returns were i.i.d. standard normal, a

moments-based estimator would require 50 (600) years of data to estimate skewness with a standard error of
approximately 0.10. As the median U.S. stock is listed for only seven-and-a-half years (see Bessembinder
(2018)), moments-based estimators cannot yield accurate estimates of long-horizon-return skewness.
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the sample skewness estimator to the sample of artificial long-horizon returns to obtain their

estimate. Using the same assumptions, Farago and Hjalmarsson (2022) derive the closed-form

equivalent of Fama and French’s (2018) simple bootstrap estimator.

Neuberger and Payne (2021) criticize Fama and French’s (2018) and Farago and Hjal-

marsson’s (2022) estimators, arguing that the i.i.d. assumption destroys the effect of return

dependencies (e.g., Black’s (1976) leverage effect) on skewness. Assuming that asset prices are

stationary martingales and approximating an asset’s return moments, they analytically show

that the skewness of long-horizon dollar returns equals the sum of the skewness of short-horizon

dollar returns and the scaled covariance between the current short-horizon return volatility and

past price changes divided by the square root of the length of the long horizon. Accordingly,

they propose an estimator of the skewness of long-horizon dollar returns based on estimates of

the skewness of short-horizon dollar returns and the scaled covariance term.

As Table 1 in Neuberger and Payne (2021) reveals, their estimator also yields a biased

estimate of the skewness of long-horizon dollar returns because it approximates away the

compounding effect in skewness. To see this, assume i.i.d. short-horizon log returns. In this case,

the central limit theorem implies that the long-horizon log return (the sum of the short-horizon

log returns) converges to a normal variable as the length of the return horizon increases

to infinity. Moreover, the variance of the normal variable, σ2, increases with the length of

the return horizon. As the long-horizon dollar return is the exponential of the long-horizon

log return, it converges to a lognormal variable whose skewness is known to be equal to

(eσ2 + 2)
√
eσ2 − 1. It immediately follows that the long-horizon dollar return becomes more

right-skewed with the length of the return horizon because of compounding. Despite that,

Neuberger and Payne’s (2021) estimator erroneously predicts that i.i.d. short-horizon returns

imply that dollar return skewness must decline with the length of the return horizon, simply

because the covariance term in the estimator’s numerator is zero under such returns. See

Appendix A for details on Neuberger and Payne’s (2021) estimator.
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Taken together, it is obvious that the estimators proposed in the recent literature suffer

from either not capturing the effects of return dependencies or from compounding on the

skewness of long-horizon dollar returns.

2.2 Our New Block Bootstrap Estimator

While it is correct that Fama and French’s (2018) estimator does not incorporate the effects of

return dependencies on skewness, a straightforward remedy is to use a modified version of that

estimator relying on a block (and not a simple) bootstrap. Sampling blocks of consecutive

observations, these bootstraps aim to ensure that bootstrap samples drawn from a population

mimic the dependence structure in the population. Given its popularity and desirable statistical

properties, we choose the stationary block bootstrap of Politis and Romano (1994) in our

estimator. Then, we take the following steps to implement our block bootstrap estimator to

obtain the skewness of the dollar return over horizon h, using the calculation of the skewness

of the annual IBM dollar return from (hypothetical) daily IBM dollar return data over the

start-2001 to end-2005 period (a total of 1,260 daily observations) as an example:

1. We collect data on an asset’s short-horizon dollar returns over a sample window. In the

IBM example, those data contain the 1,260 daily IBM dollar returns over the sample

window ranging from start-2001 to end-2005.

2. We use Politis and Romano’s (1994) block bootstrap to draw a bootstrap sample of

short-horizon returns containing a sufficient number of short-horizon returns to be able

to compound those up to the h horizon. In the IBM example, assuming that a year

features 252 trading days, the bootstrap sample would thus contain 252 daily IBM dollar

returns taken from the 1,260 daily dollar returns. To form the bootstrap sample:

(a) We draw a short-horizon return from the sample window, ensuring that each short-

horizon return is equally likely to be drawn and replacing the drawn return. We

8



add that return to the bootstrap sample. In the IBM example, the drawn return

could, for instance, be the 587th out of the 1,260 daily dollar returns.

(b) We next draw a number from the univariate distribution with support [0,1]. If the

number is below a threshold p, we add the short-horizon return immediately after

the last drawn return to the bootstrap sample and repeat step (ii).7 In the IBM

example, that return would be the 588th out of the 1,260 daily dollar returns. If

it is not, we return to step (i). We continue until we have a sufficient number of

short-horizon returns in the bootstrap sample (252 in our example).

3. We compound up the bootstrap sample returns to the dollar return over horizon h. In

the IBM example, we ensure that the 252 drawn daily IBM dollar returns are gross

returns and use their product to create an artificial annual IBM dollar return.

4. We repeat steps (2) and (3) until we have a large sample of horizon h dollar returns. In

the example, we may, for instance, create 1,000 artificial annual IBM dollar returns.

5. We apply the sample skewness estimator to the sample of dollar returns over horizon h

to obtain an estimate of the skewness of the dollar return over that horizon. In the IBM

example, we apply the estimator to the 1,000 artificial annual IBM dollar returns.

To find the threshold p fixing the expected length of a consecutive block of observations

in step 2(b), we follow Politis and White (2004) and set p equal to the value minimizing the

theoretical mean-squared error of a bootstrap based estimator of the long-run variance of the

underlying variable (in our case: the daily dollar return). Specifically, the bootstrap-based

estimator estimates the variance using the square root of the number of observations over the

sample window multiplied by the variance of the sample mean of the variable calculated from the

bootstrap samples. Notwithstanding, we obtain similar skewness estimates by setting p = 0.95,

in line with Politis and Romano’s (1994) result that their block bootstrap’s performance is
7The return after the final short-horizon return in the sample window is the first return in the window.
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largely insensitive to the choice of the threshold p. We provide further details in Appendix B.8

In our Monte Carlo simulation exercise and empirical tests, we consistently use daily dollar

returns as short-horizon dollar returns, the prior 60 months of data as the sample window,

and 1,000 artificial long-horizon dollar returns to implement our block bootstrap estimator.9

We use the estimator to estimate the skewness of monthly (22 daily returns), quarterly (66

daily returns), and annual (252 daily returns) dollar return. As our estimator (obviously) does

not improve upon the sample skewness in estimating daily dollar return skewness, we stick to

the sample skewness in estimating skewness over that horizon in our empirical tests.

2.3 A Monte Carlo Simulation Exercise

We conduct a Monte Carlo simulation exercise to study the unbiasedness and efficiency of

our block bootstrap estimator and two recent competitors, Fama and French’s (2018) and

Neuberger and Payne’s (2021) estimators. To achieve this goal, we simulate daily asset value

paths from a geometric Brownian motion (GBM), stochastic volatility (SV), and stochastic

volatility-jump (SVJ) process (see Bates (1996); Andersen et al. (2002); Broadie et al. (2009);

and others). We can compactly write these asset value processes as follows:

dS(t) = αS(t)dt+ S(t)
√
V (t)dW S(t) + d

N(t)∑
j=1

S(τj−)[eZs
j − 1]

− λµ̄S(t)dt, (1)

dV (t) = κv(θv − V (t))dt+ σv
√
V (t)dW v(t), (2)

where S(t) and V (t) are, respectively, the asset value and asset variance at time t; α is the asset

value drift rate; κv is the variance mean-reversion parameter; θv is the long-run variance; and

σv is the volatility of variance. Conversely, W S(t) and W v(t) are two Brownian motions with
8We are grateful to Andrew Patton for distributing a Matlab code calculating Politis and White’s (2004)

optimal p value. Importantly, that code incorporates Patton et al.’s (2009) correction of the errors in the variance
formulas originally used in Politis and White’s (2004) derivations.

9We checked that the usage of 1,000 artificial long-horizon dollar returns is sufficient to obtain reasonably
accurate bootstrap estimates. In particular, using 2,000 artificial returns to recalculate the bootstrap estimates
for five random cross-sections of real-world U.S. stock returns, we find that the original and recalculated
monthly (quarterly) [annual] estimates share a cross-sectional correlation above 0.95 (0.93) [0.90].
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correlation coefficient equal to ρ (i.e., dW S(t)dW v(t) = ρdt). Finally, N(t) is an independent

Poisson process with intensity λ, Zs
j ∼ N(µz, σ2

z), and µ̄ = eµz+σ2
z/2 − 1. While the SV process

imposes λ = 0 (no jumps), the GBM process further imposes κv = σv = 0 (constant variance).10

Using standard values, we set the initial asset value, S(0), to 30, the initial volatility,
√
V (0),

to 0.30, and α = 0.12 in our base case specification. As we are ultimately interested in the

skewness of single stocks, we employ the SV and SVJ process parameter estimates of Pollastri

et al. (2022), who rely on a Monte Carlo Markov chain (MCMC) approach to obtain the

estimates for all single stocks included in the S&P 100 index.11 Specifically, we take the average

estimate for each parameter taken over all single stocks as the basecase value, which yields

κv = 7.50, θv = 0.30, σv = 0.40, ρ = −0.25, µz = 0.01, σz = 0.05, and λ = 9.00.12 We then

separately vary either one or two parameters from
√
V (0), σv, ρ, µz, and σz, choosing low and

high values of 0.15 and 0.45 for
√
V (0) and the 2.5th and 97.5th percentiles of Pollastri et

al.’s (2022) estimates for the others.13 Given a stochastic process and parameter value set, we

further apply the moment-generating functions of the process to calculate the true skewness of

the dollar return from time 0 to one month (monthly return), three months (quarterly return),

and a year (annual return) later, S(t)/S(0). See Appendix C for further details.

For each stochastic process and parameter value set, we calculate the mean estimate and

standard error of the skewness of the monthly, quarterly, and annual dollar returns produced by

our block bootstrap, Fama and French’s (2018) simple bootstrap, and Neuberger and Payne’s

(2021) closed-form estimator. To do so, we first simulate 10,000 daily asset-value paths per
10We acknowledge that our Monte Carlo simulation evidence explicitly depends on stochastic processes

unable to generate time-varying conditional non-Gaussianity. Models able to produce such non-Gaussianity
(and thus greater time-series variation in skewness) include the bad environment–good environment (BEGE)
model of Bekaert et al. (2015). Given that our focus is on cross-sectional variation in skewness, we believe
that we are not overly restrictive by relying on conditional Gaussian stochastic processes.

11We are indebted to Professor Michael Johannes for pointing us to Pollastri et al. (2022).
12In comparison to stock indexes, single stocks thus tend to have a slightly higher variance mean reversion,

a higher volatility of variance, and a less negative asset value-volatility correlation. Moreover, they also tend to
jump more, with, however, a positive (rather than negative) mean jump size and a higher jump volatility. See,
for example, Eraker (2004), Broadie et al. (2009), Hurn et al. (2015), and Jacobs and Liu (2018).

13We highlight that whereas a higher volatility of variance and a lower (i.e., more negative) correlation
between asset value and volatility produce stronger deviations from the i.i.d. assumption, variations in the
mean jump size and jump volatility do not do so because the asset value jumps occur independently.
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Figure 1. Monte Carlo Simulation Exercise Outcomes. The figure plots the true value (True) and
the mean estimates of our block bootstrap (Ours), Fama and French’s (2018) simple bootstrap (FF), and
Neuberger and Payne’s (2021) closed-form (NP) estimator of the skewness of the annual dollar return in
the SV (Panels A to C) and SVJ (Panel D) worlds. We describe the basecase parameters in Section 2.3. In
Panels A to D, we allow for simultaneous variations in two parameters out of asset volatility, the volatility of
variance, the asset value-volatility correlation, the mean jump size, and jump volatility.

process and parameter value set. We then separately apply each of the three skewness estimators

to the data from every single path, yielding nine estimates (three estimators times three return

horizons) per path and 90,000 estimates in total. We follow the description in Section 2.2 in

implementing our block bootstrap estimator, whereas we implement Fama and French’s (2018)

estimator exactly like ours, except for setting p = 0. We follow the description in Appendix A in

implementing Neuberger and Payne’s (2021) estimator. Finally, we compute the mean, the

absolute bias (i.e., the absolute value of the mean minus the true value), and the standard

deviation (standard error) of the estimate for each estimator and return horizon.

In Table 1 and Figure 1, we present the simulation exercise outcomes for annual dollar

returns. In line with Bessembinder (2018), Panel A of the table suggests that in a GBM world

without return dependencies, the skewness of the annual dollar return strongly rises with

volatility
√
V (0) because of the compounding effect, from 0.46 to 1.53. As our estimator and

Fama and French’s (2018) estimator, however, consider the compounding effect, they both yield
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almost unbiased and efficient estimates. Notwithstanding, Fama and French’s (2018) estimator

is slightly less biased and slightly more efficient than ours. More specifically, while the average

absolute bias (standard error) of our estimator is about 0.07 (0.26), the corresponding number

for Fama and French’s (2018) is 0.04 (0.23). In contrast, because Neuberger and Payne’s (2021)

estimator does not consider the compounding effect, it yields a significantly biased estimate,

with the average absolute bias (standard error) equal to 0.98 (0.14). On balance, our evidence

in Panel A of Table 1 thus favors Fama and French’s (2018) estimator over the other two

estimators in a GBM world in which there are no return dependencies.

However, as there are strong return dependencies in the real world, Panels B and C of

the table and the figure next turn to contrasting the skewness estimators in the SV and SVJ

worlds. Starting with the base case values in either world, both table and figure suggest that

while our estimator yields an essentially unbiased estimate, Fama and French’s (2018) yields

a markedly more biased estimate. Looking into the SV world, Panel B, for example, reveals

that the absolute biases of our and Fama and French’s (2018) estimator are now 0.01 and

0.08, respectively. Notwithstanding the reversal in unbiasedness, our estimator continues to

attract a standard error only 0.03 higher than that of Fama and French (2018). Amplifying

the return dependencies (through, e.g., raising the volatility of variance σv and/or lowering

the asset value-volatility correlation ρ), the absolute bias spread can widen to 0.15, without

accompanying changes in the spread in standard errors (see, e.g., the σv = 0.60 and ρ = −0.50

case in Panel B). Despite these results, we acknowledge that once return dependencies become

extreme, our estimator also struggles to yield a close-to-unbiased estimate. In the σv = 0.60

and ρ = −0.50 case, the absolute bias of our estimator is, for example, 0.19. Finally, turning to

Neuberger and Payne’s (2021) estimator, the table and figure suggest that it yields as biased

estimates in the SV and SVJ worlds as in the GBM world. Setting volatility
√
V (0) to 0.30,

its absolute bias is, for example, again close to 0.95 across all parameter value sets.

Overall, our evidence in Panels B and C of Table 1 and Figure 1 favors our estimator

over the other two in worlds with notable return dependencies (as, e.g., ours), especially
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when unbiasedness is more important than efficiency. While the average absolute bias of our

estimator is only about one-third of Fama and French (2018), its average standard error is

approximately 19% higher. In comparison, Neuberger and Payne’s (2021) estimator yields

significantly more biased estimates than ours and Fama and French’s (2018).14 Looking into

monthly and quarterly returns, Internet Appendix Tables IA.1 and IA.2 further support the

conclusions drawn from the annual returns in Table 1 and Figure 1.

3 Calculating the Skewness Proxy Contenders

In this section, we introduce the skewness proxies used in empirical asset pricing studies and

evaluated by us. The skewness proxies consist of Boyer et al.’s (2010) least-squares prediction

of daily dollar return skewness; a modified version of Ghysels et al.’s (2016) quantile regression

prediction of annual dollar return skewness; historical daily dollar return skewness; Conrad et

al.’s (2014) logit model probability of a stock’s one-year ahead log return exceeding 100%; and

Bali et al.’s (2011) historical maximum daily dollar return. In short, we detail the construction

of the variables underlying the skewness proxies in Appendix D.

3.1 Boyer et al.’s (2010) Least-Squares Forecast

Boyer et al. (2010) use a cross-sectional least-squares prediction of the skewness of the daily dol-

lar return as skewness proxy (OLSSkew). To do so, they first compute the skewness coefficient

of a stock from daily dollar return data over the 60 months prior to month t. Next, they conduct

a cross-sectional least-squares regression of that coefficient on predictor variables measured

until the start of the 60-month period. Among these predictor variables are historical volatility

and the historical skewness coefficient, the intermediate-term past return (“momentum”),
14We highlight that our absolute bias estimates for Neuberger and Payne’s (2021) estimator align with

those reported in their own Table 1. Specifically, assuming that the CRSP market return’s sample moments
are equal to its population moments, they show that while the “true” skewness of the annual CRSP market
dollar return is –0.07, the “true” value of their estimator is –0.93, yielding an absolute bias of 0.86. Despite
examining single stocks (and not an index), we find a similar average absolute bias.
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and average share turnover. They also use the 17 Fama-French (FF) industry dummies plus

two market size dummies. Finally, they combine the regression estimates with the predictor

variable values at the end of month t, yielding a forward-looking direct estimate of the skewness

of the daily dollar return. See Appendix D for more details on the predictor variables.

3.2 Ghysels et al.’s (2016) Quantile-Regression Forecast

Motivated by Ghysels et al.’s (2016) time-series quantile-regression estimator of the skewness

of the dollar return, we also investigate an analogous estimator adapted to our cross-sectional

setting (QuantileSkew).15 To form this estimator, we run panel data quantile regressions of the

annual dollar return on predictor variables measured until the start of the return horizon over

the past 20 years of monthly data, fitting the first, fifth, tenth, 25th, 50th, 75th, 90th, 95th, and

99th quantiles of the return distribution. If a stock is delisted over an annual horizon, we replace

its final return with its delisting return and compound up until the delisting date to create

the annual return. We choose Boyer et al.’s (2010) variables as predictor variables, excluding

the market size dummies but adding (continuous) market size, company age, asset tangibility,

sales growth, the book-to-market ratio, share issuances, asset growth, and total profitability.

See Appendix D for more details on the predictor variables. Finally, we combine the regression

estimates with the values of the predictor variables at the end of the 20-year estimation window

to yield forward-looking estimates of a stock’s one-year-ahead dollar return quantiles.

To convert the quantile estimates into the skewness proxy, we assume that a stock’s dollar

return distribution is uniform between two consecutive quantiles and ignore density outside

the extreme quantiles. We then calculate the first three conditional moments of a stock’s dollar
15In a quantile regression, we model the conditional quantiles of a random variable as a linear function of

exogenous variables. See Koenker (2005) for more technical details about quantile regressions.
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return from time t to t+ T , denoted by Rt,t+T , as follows:

Ê[Rt,t+T |q̂τ(j−1) ≤ Rt,t+T < q̂τ(j) ] =
q̂τ(j−1) + q̂τ(j)

2 , (3)

Ê[R2
t,t+T |q̂τ(j−1) ≤ Rt,t+T < q̂τ(j) ] =

q̂2
τ(j−1)

+ q̂τ(j−1) × q̂τ(j) + q̂2
τ(j)

3 , (4)

Ê[R3
t,t+T |q̂τ(j−1) ≤ Rt,t+T < q̂τ(j) ] =

q̂3
τ(j−1)

+ q̂2
τ(j−1)

× q̂τ(j) + q̂τ(j−1) × q̂2
τ(j)

+ q̂3
τ(j)

4 , (5)

where q̂τ(j) is an estimate of the τth quantile of Rt,t+T , j = {1, 2, . . . , J} indexes the estimated

quantiles in ascending order (so j = 1 refers to the lowest estimated quantile), J is the number

of estimated quantiles, and Ê[.] is the estimated conditional expectation. In turn, the stock’s

first three unconditional return moments can be estimated as follows:

Ê[Rn
t,t+T ] =

J∑
j=2

F−1(q̂τ(j))− F−1(q̂τ(j−1))
F−1(q̂τ(J))− F−1(q̂τ(1))

Ê[Rn
t,t+T |q̂τ(j−1) ≤ Rt,t+T < q̂τ(j) ], (6)

where n is equal to one (two) [three] for the first (second) [third] moment. Essentially, Equa-

tion (6) estimates the unconditional moments by approximating the integrals taken over the

conditional moments. However, because there is density mass outside the extreme estimated

quantiles, we scale the approximated integral by F−1(q̂τ(J))− F−1(q̂τ(1)) to ensure that density

mass sums up to unity. Finally, we plug the approximated unconditional moments from

Equation (6) into the formula for the skewness coefficient to obtain the skewness proxy:

QuantileSkewt =
Ê[R3

t,t+T ]− 3Ê[Rt,t+T ](Ê[R2
t,t+T ]− Ê[Rt,t+T ]2)− Ê[Rt,t+T ]3

(Ê[R2
t,t+T ]− Ê[Rt,t+T ]2) 3

2
. (7)

Similar to OLSSkew, QuantileSkew is a forward-looking direct estimate of the skewness of

dollar returns, focusing, however, on the skewness of annual (not daily) returns.16

16We also used Kelly’s measure of skewness, defined as the 90th plus the tenth quantile minus two times
the median, to convert our quantile estimates into a skewness proxy. However, as the skewness proxy derived
from Equation (7) strongly dominates the proxy derived from Kelly’s measure in terms of predictability, we
decided to report only the results from the skewness proxy derived from Equation (7).
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As QuantileSkew has not been used in prior studies, at least not in its cross-sectional

version, we offer more details about its construction in the Internet Appendix. More specifically,

Internet Appendix Table IA.3 offers the average estimates and fractions of significant estimates

obtained from the underlying quantile regressions. Conversely, Internet Appendix Table IA.4

suggests that the forward-looking annual dollar return quantiles generated through these

regressions are well calibrated in the full sample and subsamples.17

3.3 Historical Skewness

Amaya et al. (2015) and Bali et al. (2016) use the skewness coefficient calculated from a stock’s

historical short (i.e., intraday or daily) dollar returns as skewness proxy. Spurred by them,we also

consider such a proxy calculated over the previous 60 months of data (HistoricalSkew).18 His-

toricalSkew is a backward-looking direct estimate of the daily dollar return skewness.

3.4 Conrad et al.’s (2014) Logit Model Forecast

Conrad et al. (2014) use an estimate of the probability that a stock’s twelve-month-ahead

log return exceeds 100% as skewness proxy (LogitSkew). To form that proxy, they estimate

a logit model of a dummy variable equal to one if a stock’s log return from start-July of

year t to end-June of year t+ 1 is above 100% (translating into a dollar return above 170%)

and else zero, on predictor variables measured until the end of June of year t. They use

market size, momentum, company age, asset tangibility, and sales growth as predictor variables.

They further use historical volatility, historical skewness, and share turnover, but calculate

those differently from Boyer et al. (2010). See Appendix D for more details on the predictor
17In the Internet Appendix, we further study quantile-regression proxies capturing the skewness of the daily,

monthly, and quarterly dollar return. More specifically, Internet Appendix Table IA.5 shows that adapting the
return horizon of the skewness proxy to the return horizon of the forecasting target improves predictability,
whereas Internet Appendix Table IA.6 reveals that the short-horizon-return quantile-regression proxies are
more significantly negatively priced than the long-horizon-return quantile-regression proxies.

18Using the skewness of daily returns over the prior month or monthly returns over the prior 60 months, we
obtain asset pricing conclusions in line with those reported later. We thank Scott Murray for prompting us to
look into alternative data frequencies and historical windows in calculating HistoricalSkew.
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variables. Recursively estimating the logit model starting from June 1951 and using only

June observations, they finally combine the model estimates with the values of the predictor

variables over the twelve months directly after the estimation period. LogitSkew is thus a

forward-looking indirect estimate of the skewness of the annual (either dollar or log) return.

3.5 Bali et al.’s (2011) Maximum Return

Bali et al. (2011) use the maximum of a stock’s daily dollar return over the prior month to

proxy for the stock’s propensity to yield a “lottery-like return” (MaxRet). While MaxRet is not

designed to capture skewness, we can nonetheless interpret it as an indirect backward-looking

estimate of the skewness of the daily (either dollar or log) return.

4 Data Sources

We obtain stock data from CRSP, accounting data from Compustat, and data on the FF

benchmark factors, the 17 FF industry portfolios, and the risk-free rate of return from Kenneth

French’s website.19 We study the common stocks (share codes: 10 and 11) traded on the NYSE,

AMEX, and NASDAQ. We exclude financial (SIC codes: 6000-6999) and utility (4900-4949)

stocks. To avoid microstructure biases, we further exclude stocks with prices below $5 at the

end of the forecast production/portfolio formation period. To ensure our data were available

to real investors, we use the accounting variable values from the fiscal year ending in calendar

year t−1 from start-July of year t to end-May of year t+1. We winsorize all variables involving

accounting data at the 0.5th and 99.5th percentiles per month. We run our forecasting tests

over the period for which we have data on all the skewness proxies (January 1988 to December

2016). To be fair to the studies advocating the skewness proxies, we run our asset pricing and

decomposition tests over sample periods whose starting dates align with those in the studies,

but whose ending date is always December 2016. Specifically, we start the sample data for the
19The URL address is <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html>.
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later tests in January 1988 for OLSSkew and QuantileSkew, July 1963 for HistoricalSkew and

MaxRet, and January 1972 for LogitSkew.

5 Predicting Realized Skewness

In this section, we study the ability of the skewness proxies introduced in Section 3 to predict

the realized skewness of future short- and long-horizon dollar returns estimated using our block

bootstrap estimator in Section 2. First, we present descriptive statistics and correlations for

the realized skewness estimates and skewness proxies. Next, we evaluate how well the skewness

proxies calculated using data until time t predict the realized skewness of the dollar return

from time t to one day, one month, three months, and one year later.

5.1 Descriptive Statistics and Rank Correlations

Table 2 presents descriptive statistics on our estimates of the realized skewness of the daily,

monthly, quarterly, and annual dollar return (Panel A) and the skewness proxies from prior

studies (Panel B). Consistent with our later forecasting tests, we calculate the realized skewness

estimates using data from the start of month t+ 1 to the end of month t+ 60 and the skewness

proxies using data until the end of month t.20 We exclude observations for which we are unable

to calculate values for all realized skewness estimates and skewness proxies.

Panel A of Table 2 suggests that the realized dollar return skewness of the average single stock

is positive and becomes more positive with the return horizon, consistent with Bessembinder’s

(2018) argument that compounding induces right skewness in stock returns. The skewness of

the daily dollar return of the average (median) stock is, for example, 0.41 (0.30), whereas the

skewness of that stock’s annual dollar return is 1.47 (1.14). The panel further reveals that the

cross-sectional volatility in the realized skewness estimates also rises with the return horizon,
20Our timing conventions ensure that we can interpret each skewness proxy as a (direct or indirect) forecast

of the skewness of the dollar return from time t to some later time formed from only information available
at time t. They further ensure that we can interpret each realized skewness estimate as an estimate of the
realized dollar return skewness obtained using data over the window from time t to 60 months later.
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Figure 2. Evolution of Mean Realized Stock Skewness Over Time. The figure plots the cross-sectional
average of our estimates of the realized skewness of the daily, monthly, quarterly, and annual dollar return over
our sample period. The realized skewness estimates are calculated from the 60 months of daily data starting
from the month shown in the figure. The gray areas are NBER-defined recession periods.

from 0.60 for the skewness of the daily dollar return to 1.22 for the skewness of the annual

dollar return. Plotting the simple cross-sectional mean of each realized skewness estimate over

our sample period, Figure 2 shows that, except for several months in 2004, the average realized

skewness consistently rises with the return horizon. Finally, the figure reveals that all realized

skewness estimates tend to drop over NBER recessions (gray bars).

Turning to the skewness proxies, Panel B shows that those designed to directly fit skewness,

OLSSkew, QuantileSkew, and HistoricalSkew, attract positive mean values, in agreement with

the positive mean values for the realized skewness estimates in Panel A. Interestingly, however,

OLSSkew and QuantileSkew yield notably lower cross-sectional volatilities than HistoricalSkew,

in line with these being statistical predictions of future skewness and the other being a historical

realization. The mean values of the indirect skewness proxies, LogitSkew and MaxRet, suggest

that the average stock has a close to one percent probability of yielding a lottery return, and

that its maximum daily return over the prior month is approximately six percent.

Table 3 shows the Spearman rank correlations across the realized skewness estimates and

skewness proxies. The first lesson to take away from the table is that the realized skewnesses

of dollar returns computed over alternative horizons are only imperfectly correlated, with the

correlation coefficient dropping with the difference in the return horizon. While the skewnesses
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of the daily and monthly dollar returns, for example, still share a correlation coefficient of 0.51,

the coefficient between the skewnesses of the daily and annual returns is only 0.34. Another

lesson to draw is that while QuantileSkew, LogitSkew, and MaxRet share far more positive

correlation coefficients with the realized skewnesses of longer-horizon dollar returns, in line

with at least the first two being fitted to longer-horizon returns, the coefficients of OLSSkew

and HistoricalSkew form no discernable patterns with the return horizon used to calculate the

realized skewness estimates. The final lesson is that the skewness proxies are often highly but

never close to perfectly correlated, implying that they contain different information about the

future realized skewness of dollar returns over alternative horizons.

5.2 Forecasting Tests

We next gauge the ability of the skewness proxies to predict cross-sectional variation in

the future realized skewness of short- and long-horizon dollar returns. At the end of each

sample month t, we first sort all sample stocks into portfolios according to one of the skewness

proxies calculated from data until that date, using the tenth, 20th, 40th, 60th, 80th, and 90th

percentiles as breakpoints. Separately for each portfolio and sample month t, we next form

equally weighted averages of the future realized skewness estimates of the daily, monthly,

quarterly, and annual dollar returns, where we calculate the future realized skewness estimates

using data from start-month t+ 1 to end-month t+ 60. Separately for each portfolio, we take

the simple average of the equally weighted averages over our sample period.

Table 4 presents the portfolio sort forecasting exercise results, with Panels A to D focusing

on the skewness of daily, monthly, quarterly, and annual returns, respectively. The table

further reports the spreads in the simple realized skewness estimate averages across the

extreme portfolios, plus the accompanying t-statistics (in parentheses). To account for the

overlapping nature of our data, we calculate the t-statistics from Newey and West (1987)

standard errors with a 60-month lag length. The table shows that all skewness proxies are

statistically significant predictors of future realized skewness over all return horizons. While
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we are unable to judge the absolute performance of the skewness proxies (as we do not know

how much of the cross-sectional variation in future realized skewness is predictable), it is

obvious that their relative performance varies across return horizons. For example, while

Panel A shows that OLSSkew and LogitSkew perform best over the daily horizon, with spreads

over the portfolios equal to 0.49 and 0.54, Panel B reveals that QuantileSkew and LogitSkew

perform best over the annual horizon, with spreads equal to 1.47 and 1.56, respectively.

To supplement the portfolio sort forecasting exercises, we next perform stock-level Mincer-

Zarnowitz (1969) regressions of the future realized skewness of the daily, monthly, quarterly,

and annual dollar returns on each skewness proxy and a constant, where we again calculate

future realized skewness using data from start-month t+1 to end-month t+60 and the skewness

proxies using data until the end of month t. For each realized skewness estimate-skewness

proxy combination, we first conduct cross-sectional regressions separately by sample month

and then average the constant estimates, slope coefficient estimates, and model diagnostics

over our sample period. While the Mincer-Zarnowitz (1969) regressions allow us to assess how

much of the cross-sectional variation in a realized skewness estimate is captured by a skewness

proxy through their R-squared values, they also allow us to formally test for unbiasedness,

with an unbiased skewness proxy yielding a mean constant estimate insignificantly different

from zero and a mean slope coefficient estimate insignificantly different from one.

Table 5 presents the regression results, with Panels A to D again focusing on the realized

skewness of daily, monthly, quarterly, and annual dollar returns, respectively. While plain numbers

are average estimates, those in parentheses are Newey-West (1987) t-statistics with a 60-month

lag length. The table demonstrates that the Mincer-Zarnowitz (1969) regressions yield conclusions

in complete agreement with the portfolio sort forecasting exercises. Although all skewness proxies

relate significantly positively to future realized skewness over all return horizons, their relative

ability to capture cross-sectional variation in future realized skewness varies across horizons. For

example, Panel A reveals that OLSSkew and LogitSkew yield R-squared values of approximately

7% and 8% over the daily horizon, respectively, and no other skewness proxy yields an R-
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squared above 5% over that horizon. Conversely, while Panel D establishes that QuantileSkew

and LogitSkew both yield R-squareds of approximately 18% over the annual horizon, no other

skewness proxy yields an R-squared above 10% over that horizon.21

The table further establishes that the skewness proxies designed to directly capture the

skewness of the daily dollar return, OLSSkew and HistoricalSkew, are significantly biased

over all return horizons, including, surprisingly, the daily horizon. When forecasting future

realized skewness, an unbiased predictor of skewness is expected to have a mean constant

estimate that is not significantly different from zero and a mean slope coefficient estimate

close to one. Notwithstanding, Panel A reveals that both OLSSkew and HistoricalSkew yield

a mean constant estimate significantly above zero and a mean slope coefficient estimate

significantly below one. In comparison, the skewness proxy designed to directly predict the

skewness of the annual dollar return, QuantileSkew, is more weakly biased, at least over the

annual return horizon. While Panel D shows that this proxy also produces a mean constant

estimate significantly above zero, its mean slope coefficient estimate is only slightly below one,

with the deviation of the mean estimate from one being only mildly significant (unreported).

In the Internet Appendix, we further examine the ability of the skewness proxies to predict

the realized skewness of returns that is not attributable to the compounding effect over the

same horizons. In particular, Internet Appendix Table IA.8 offers strong evidence that the

lion’s share of all proxies’ predictive power comes from them capturing that effect, especially

over the longer return horizons over which the effect is relatively more important.

Overall, this section offers strong evidence that the skewness of dollar returns only imper-

fectly scales with the return horizon, as clarified by the far-below-one correlations between the

realized skewness estimates in Table 3. Notwithstanding, the skewness proxies advocated in

the prior empirical asset pricing literature are all significant predictors of the realized skewness
21In the Internet Appendix, we also report the results from Mincer-Zarnowitz (1969) regressions on the joint

set of skewness proxies. To be specific, Internet Appendix Table IA.7 suggests that the skewness proxies often
embed independent information about future realized skewness over different horizons. While QuantileSkew,
LogitSkew, and MaxRet are, for example, jointly significant in predicting the realized skewness of the annual
dollar return, OLSSkew and HistoricalSkew are both insignificant over that horizon.
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of the dollar return over short and long horizons. In line with intuition, the proxies designed

to capture the skewness of short-horizon dollar returns (e.g., OLSSkew) are generally more

successful in predicting skewness over shorter horizons, whereas those designed to capture

the skewness of long-horizon returns (e.g., QuantileSkew) are generally more successful in

predicting skewness over longer horizons. The two exceptions are LogitSkew and MaxRet.

While LogitSkew performs best over all horizons, MaxRet performs better over longer horizons

despite being derived from short-horizon (i.e., daily) returns. MaxRet’s higher predictive ability

over longer horizons can be explained by it being a much stronger proxy for stock volatility

than skewness, as shown by, for example, Hou and Loh (2016). As stock volatility critically

conditions the compounding effect in skewness (see, e.g., our simulation evidence in Section

2.3), it is a strong determinant of dollar return skewness, especially over longer horizons, over

which the compounding effect is more important.

6 The Pricing of Skewness

In this section, we investigate whether the skewness proxies advocated in prior studies and

evaluated by us price stock returns because they contain information about the skewness of

future dollar returns over alternative horizons. To do so, we first verify that the skewness

proxies continue to be priced over our updated sample periods. Next, we decompose each proxy

into the sum of a component reflecting the expectation of the skewness of the future dollar

return over the daily, monthly, quarterly, or annual horizon and an orthogonal component and

then separately evaluate the stock pricing power of those two components.

6.1 The Skewness Proxy Premiums Over Our Sample Periods

We first use portfolio sorts to establish whether the skewness proxies continue to price stocks

over our updated sample periods. At the end of each sample month t, we sort the sample

stocks into decile portfolios according to one of the skewness proxies calculated using data
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until then. We value-weight the portfolios and hold them over month t+ 1. Next, we form a

spread portfolio long the top and short the bottom portfolio. To adjust for risk, we regress

the spread portfolio return on the excess market return (MKT; CAPM alpha) or MKT, SMB,

and HML (FF3 alpha), and report the intercept. Finally, we compute Newey-West (1987)

t-statistics with a twelve-month lag length for the spread portfolio mean returns and alphas.

Table 6 presents the portfolio sort results. While the plain numbers are mean returns

and alphas, the numbers in parentheses are t-statistics. The table suggests that, in line with

the literature, mean returns decline significantly over all decile portfolios, except for the

QuantileSkew and HistoricalSkew portfolios. Interestingly, however, the decline is only close to

monotonic over the OLSSkew portfolios, whereas it is close to zero over the earlier LogitSkew

or MaxRet portfolios and only more pronounced over the latter. In agreement with this, the

OLSSkew, LogitSkew, andMaxRet spread portfolios produce significantly negative mean returns

and alphas. For example, the OLSSkew spread portfolio produces a mean monthly return of

–1.03% (t-statistic: –2.50), a lower CAPM alpha of –1.10% (t-statistic: –2.88), and an even lower

FF3 alpha of –1.28% (t-statistic: –3.23). Conversely, while the QuantileSkew spread portfolio

produces an insignificant mean return but significantly negative CAPM and FF3 alphas, the

HistoricalSkew spread portfolio does not produce significant mean returns or alphas.

In Table 7, we supplement our portfolio sort evidence with the results from FM regressions

of single-stock returns over month t+ 1 on each skewness proxy calculated using data until the

end of month t. Whereas Panel A relies on a stock’s dollar return as regressant, Panel B relies

on the same return minus the dollar return of the value-weighted size and book-to-market

portfolio to which the stock belongs (the so-called Daniel, Grinblatt, Titman, and Wermers

(DGTW; 1997) return).22 An advantage of using the DGTW return is that it parsimoniously
22We follow Fama and French (1993) in forming the value-weighted size and book-to-market portfolios. At

the end of June in each calendar year t, we thus measure a stock’s market size and the ratio of its book equity
value from the fiscal year ending in calendar year t− 1 to its market size at the end of calendar year t− 1. We
calculate the book equity value as total assets minus total liabilities plus deferred taxes (zero if missing) minus
preferred stock (zero if missing). Using only NYSE stocks, we next separately derive quintile breakpoints for
both market size and the book-to-market ratio. Using the intersection of the two sets of breakpoints, we sort
all stocks (including financial and utility stocks) into 25 portfolios. We finally value-weight the 25 portfolios
and hold them from start-July of calendar year t to end-June of calendar year t+ 1.
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controls for market size and book-to-market effects in stock returns. The table reveals that

the FM regressions yield conclusions that are in close agreement with the portfolio sorts. In

particular, the regressions also suggest that OLSSkew, LogitSkew, and MaxRet are significantly

negatively priced in dollar and DGTW returns. However, deviating from our portfolio sort

evidence, QuantileSkew is never significantly negatively priced, even in DGTW returns.

Taken together, our evidence that OLSSkew, LogitSkew, and MaxRet robustly negatively

price stocks aligns with Boyer et al. (2010), Bali et al. (2011), and Conrad et al. (2014). By

contrast, our evidence that HistoricalSkew only prices stocks more weakly aligns with Bali et

al. (2016), who also find that most of their historical skewness estimates are not priced.

6.2 Why Do the Skewness Proxies Price Stocks?

We next examine whether some of the skewness proxies price stocks because they predict

the skewness of the dollar return over one or more horizons. To do so, we rely on a slightly

modified version of Hou and Loh’s (2016) methodology and decompose each skewness proxy

into the sum of a component reflecting the expectation of the realized skewness of the dollar

return over some horizon, and an orthogonal component. As explained below, if a skewness

proxy predicts skewness over some horizon and the expectation of skewness over that horizon

is priced, the expectation component of the skewness proxy would be priced with the same

sign as the expectation of skewness in our decomposition methodology.

To decompose the skewness proxies, we first conduct the cross-sectional regression:

SkewnessProxyi,t−1 = at−1 + δt−1ExpectedFutureSkewnessi,t,t+T + µi,t−1, (8)

where SkewnessProxyi,t−1 is one of the five skewness proxies for stock i calculated using data

until end-month t, ExpectedFutureSkewnessi,t,t+T is the expected skewness of stock i’s dollar

return from start-month t to end-month t+T (so that T is the return horizon), at−1 and δt−1 are

parameters, andµi,t−1 is the residual. Next,we treat δt−1ExpectedFutureSkewnessi,t,t+T as the
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expected skewness component, and at−1 +µi,t−1 as the residual component. While we separately

use the components in FM regressions to contrast their pricing power, we further rely on them

to decompose the SkewnessProxyi,t−1 premium obtained from an FM regression of stock i’s

return over month t, Ri,t, on the same skewness proxy, γt, as follows:

γt = cov[Ri,t, SkewnessProxyi,t−1]
var[SkewnessProxyi,t−1]

= cov[Ri,t, at−1 + δt−1ExpectedFutureSkewnessi,t,t+T + µi,t−1]
var[SkewnessProxyi,t−1]

= δt−1cov[Ri,t, ExpectedFutureSkewnessi,t,t+T ]
var[SkewnessProxyi,t−1] + cov[Ri,t, µi,t−1]

var[SkewnessProxyi,t−1] (9)

= γCt + γRt , (10)

where γCt is the first and γRt is the second summand of Equation (9). Finally, we interpret the

sample mean of γCt /γt (γRt /γt) as the fraction of the SkewnessProxyi,t−1 premium due to the

proxy capturing expected future skewness over the T return horizon (other factors).

An immediate problem with estimating regression (8) is that we observe only the ex-post

realization of skewness, but not its expectation. While we could rely on the ex-post realization

to proxy for the expectation, that strategy creates an attenuation bias. To understand this

better, letRealizedFutureSkewnessi,t,t+T be the realization of future skewness over the period

from t to t + T , which we can write as the sum of ExpectedFutureSkewnessi,t,t+T and an

orthogonal error independent of SkewnessProxyi,t−1,Errori,t,t+T . We then have the following:

cov(SkewnessProxyi,t−1, RealizedFutureSkewnessi,t,t+T )
var(RealizedFutureSkewnessi,t,t+T )

= cov(SkewnessProxyi,t−1, ExpectedFutureSkewnessi,t,t+T )
var(ExpectedFutureSkewnessi,t,t+T ) + var(Errori,t,t+T )

<
cov(SkewnessProxyi,t−1, ExpectedFutureSkewnessi,t,t+T )

var(ExpectedFutureSkewnessi,t,t+T ) , (11)

so that the slope coefficient obtained from the regression of SkewnessProxyi,t−1 ontoRealized-

FutureSkewnessi,t,t+T is downward-biased compared to that obtained from the regression of
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SkewnessProxyi,t−1 onto ExpectedFutureSkewnessi,t,t+T .

To mitigate the attenuation bias, we follow a well-known instrumental variable methodology

also used in Black et al. (1972) and Fama and French (1992). To implement this methodology,

we sort all stocks at the end of each sample month t into 50 portfolios according to one of the

skewness proxies. Separately for each portfolio, we calculate the average of the skewness proxy

and the future realized skewness estimate, where we again compute the skewness proxy using

data until end-month t and the future realized skewness estimate using data from start-month

t+ 1 to end-month t+ 60. Finally, we run a cross-sectional portfolio-level regression of the

average skewness proxy on the average future realized skewness estimate. As averaging the

future realized skewness estimates over observations with a similar expected future skewness

diversifies away the orthogonal error without greatly reducing the expected future skewness

variation, the estimates from the portfolio-level regression are likely to be close to those from

the (infeasible) stock-level regression of the skewness proxy on expected future skewness. See

Black et at. (1972) for the mathematical proof of this claim.

While the instrumental variable methodology allows us to obtain consistent estimates for

at−1 and δt−1, it does not allow us to calculate the expected skewness and residual component

because we do not observe stock-level expected future skewness. To obtain an estimate of

stock-level expected future skewness, we assume that a monotonic transformation of the

skewness proxy is an unbiased predictor of skewness over the chosen horizon. Recognizing that

all stocks within each of the 50 portfolios have a nearly identical skewness proxy value, we

then take a simple average of the future realized skewness estimates of all stocks in a portfolio

to obtain an estimate of their joint expected future skewness. By combining the at−1 and δt−1

estimates with the expected future skewness estimates, we can decompose each skewness proxy

into expected skewness and residual components.23

23While our methodology requires a skewness proxy to be a decent predictor of future realized skewness
over some horizon to yield reliable estimates, we stress that proxies with a low predictive ability do not lead
us to draw wrong inferences. To see that, assume that a skewness proxy has almost no ability to predict future
realized skewness over some horizon. In that case, the slope coefficient from the cross-sectional portfolio-level
regression of average skewness proxy value on average future realized skewness, δt−1, will be strongly biased
toward zero. In addition, there is almost no cross-sectional variation in the expected future skewness estimate
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Table 8 reports the premium estimates obtained from univariate FM regressions of single-

stock returns over month t on either of the two components extracted from each skewness

proxy for each return horizon and calculated using data until month-end t− 1 and the average

fractions of the overall skewness proxy premium due to the components. Panels A-E focus

on OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew, and MaxRet, respectively. Conversely,

columns (1) and (2) ((3) and (4)) offer the expected skewness (residual) component premium

estimates and their t-statistics, while columns (5) and (6) ((7) and (8)) offer the average

fractions attributable to the expected skewness (residual) component, γCt /γt (γRt /γt), and their

t-statistics. We consistently calculate t-statistics using Newey-West (1987) standard errors

with a twelve-month lag length. To aid interpretation, the panel headings repeat the overall

skewness proxy premiums and t-statistics from Panel A of Table 7.

The table suggests that the stock pricing power of the skewness proxies usually originates

from them predicting skewness over short horizons but not from them predicting skewness over

long horizons. Panel A, for example, reveals that while the OLSSkew components predicting the

skewness of the daily and monthly dollar returns yield significantly negative monthly premiums

of –0.57% and –0.50% (t-statistics: –2.90 and –2.37), all respectively, the corresponding

components predicting the skewness of the quarterly and annual dollar returns yield insignificant

premiums. In complete agreement, the fraction of the OLSSkew premium owing to the expected

skewness component markedly declines with the return horizon, from approximately 70%

to 51%. We reach similar conclusions for QuantileSkew and LogitSkew (see Panels B and D,

respectively). By contrast, Panel E indicates that the expected skewness component in MaxRet

is significantly priced over all return horizons, with its premium capturing a larger fraction of

the overall premium over longer horizons. Finally, Panel C shows that the expected skewness

components in HistoricalSkew are never priced.

over our sample stocks. Both effects further reduce the low (absolute and relative) pricing ability of the
expected skewness component derived from the skewness proxy (see Equation (9)). In other words, only
skewness proxies with high predictive abilities are able to perform well in our decomposition tests.
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The table further reveals that the orthogonal components in OLSSkew, LogitSkew, and

MaxRet are significantly negatively priced over all return horizons, implying that these skewness

proxies contain priced information that does not reflect skewness expectations. In contrast,

the orthogonal components in QuantileSkew and HistoricalSkew are not priced, except for the

HistoricalSkew component orthogonal to expected skewness over the daily horizon.

In Table 9, we re-evaluate the stock pricing ability of the two components controlling for

size and book-to-market effects by repeating the tests in Table 8 using DGTW (and not dollar)

returns. The table suggests that this strategy does not materially change our conclusions with

two exceptions. First, the components reflecting the skewness of the daily return are always

significantly negatively priced, even for HistoricalSkew. Second, the controls greatly boost

the significance of the LogitSkew premium, inducing its expected skewness components to be

consistently negatively priced over both short and long horizons.

In the Internet Appendix, we repeat the tests in Tables 8 and 9 controlling for realized

skewness estimates over different horizons. We do so because the high correlations between

the realized skewness estimates over alternative horizons may create concern that the relation

between a skewness proxy and future realized skewness over some horizon may be spuriously

driven by both variables also relating to future realized skewness over another horizon. To

address this concern, we control for the non-systematic parts of the future realized skewness

estimates over other horizons in the portfolio regressions used to calculate the expected

skewness and orthogonal component. Internet Appendix Tables IA.9 and IA.10 reveal that

this methodological variation does not materially alter our conclusions.

Taken together, this section suggests that the skewness proxies advocated in the empirical

asset pricing literature often price stocks because they embed forward-looking information

about the skewness of short-horizon dollar returns, but not because they embed the same

information about the skewness of long-horizon dollar returns.
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7 Conclusion

While recent theoretical and empirical asset pricing research suggests that the skewness of

a stock’s future dollar return distribution prices stocks, it is notably silent on the identity

of the return horizon(s) over which skewness is priced. Whereas theoretical studies examine

two-period models with an unspecified horizon, empirical studies generally rely on proxies for

the skewness of shorter-horizon returns. However, as skewness does not scale with the time

horizon, it is unclear whether the stock pricing ability of those skewness proxies comes from

capturing the expected skewness of future short-horizon returns, the same skewness of future

long-horizon returns, and/or information unrelated to expected skewness.

In this study, we comprehensively examine why the skewness proxies advocated in the

empirical asset pricing literature price stocks. To do so, we first propose a new bootstrap

estimator for the skewness of the dollar return over an arbitrary horizon. Using a Monte Carlo

simulation exercise, we confirm that the estimator is less biased than the recent estimators of

Fama and French (2018), Neuberger and Payne (2021), and Farago and Hjalmarsson (2022),

with reasonable standard errors. Relying on the estimates obtained from our estimator, we next

show that some of the skewness proxies from the literature are relatively better in predicting

the skewness of short-horizon dollar returns, whereas others are relatively better in predicting

the skewness of long-horizon dollar returns. Most importantly, we follow Hou and Loh (2016)

in decomposing each skewness proxy into components that reflect the expectation of skewness

over alternative horizons and orthogonal components. Using those components, we find that

most skewness proxies are priced because they embed information about skewness over short

horizons but not because they embed information about skewness over longer horizons.
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Table 2.
Descriptive Statistics
The table offers descriptive statistics including the number of observations (Obs), the mean,
the standard deviation (StD), the first percentile (Pct1), the first quartile (Q1), the median, the
third quartile (Q3), and the 99th percentile (Pct99). While Panel A focuses on sample skewness
or block bootstrap based estimates of the realized skewness of the daily (DailySkew), monthly
(MonthlyBSSkew), quarterly (QuarterlyBSSkew), and annual (AnnualBSSkew) dollar return,
Panel B focuses on the skewness proxies OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew,
and MaxRet (see Table D.1 in Appendix D for more details about those proxies). We calculate
the realized skewness estimates from daily data over the period from month t+ 1 to t+ 60
and the skewness proxies from data until the end of month t. The sample excludes stocks with
non-complete data on the realized skewness estimates and skewness proxies.

Descriptive Statistics

Obs Mean StD Pct1 Q1 Median Q3 Pct99

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Realized Skewness

DailySkew 641,528 0.41 0.60 −0.61 0.00 0.30 0.68 2.06
MonthlyBSSkew 641,528 0.47 0.64 −0.56 0.11 0.35 0.68 3.07
QuarterlyBSSkew 641,528 0.71 0.66 −0.18 0.32 0.56 0.90 3.42
AnnualBSSkew 641,528 1.47 1.22 0.30 0.78 1.14 1.72 6.80

Panel B: Skewness Proxies

OLSSkew 641,528 0.83 0.50 −0.22 0.49 0.79 1.12 2.17
QuantileSkew 641,528 0.96 0.56 −0.50 0.60 0.97 1.34 2.21
HistoricalSkew 641,528 0.39 0.96 −1.79 0.01 0.30 0.64 4.20
LogitSkew 641,528 1.06 0.85 0.17 0.49 0.87 1.39 4.08
MaxRet 641,528 5.97 5.28 1.02 3.02 4.68 7.36 23.64
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Table 3.
Spearman Rank Correlations
The table offers Spearman rank correlations between sample skewness and block bootstrap
based realized skewness estimates and the skewness proxies. The realized skewness estimates are
the realized skewness of the daily (DailySkew),monthly (MonthlyBSSkew), quarterly (Quarterly-
BSSkew), and annual (AnnualBSSkew) dollar return. The skewness proxies are OLSSkew,
QuantileSkew, HistoricalSkew, LogitSkew, and MaxRet (see Table D.1 in Appendix D for more
details about those proxies). We calculate the realized skewness estimates from daily data
over the period from months t+ 1 to t+ 60 and the skewness proxies from data until the end
of month t. The sample excludes stocks with non-complete data on the variables.

Realized Skewness Skewness Proxies

Daily Monthly Quar. Annual OLS Quantile Hist. Logit
Skew BSSkew BSSkew BSSkew Skew Skew Skew Skew

(1) (2) (3) (4) (5) (6) (7) (8)

MonthlyBSSkew 0.51
QuarterlyBSSkew 0.44 0.81
AnnualBSSkew 0.34 0.63 0.79
OLSSkew 0.18 0.24 0.23 0.20
QuantileSkew 0.17 0.27 0.36 0.44 0.40
HistoricalSkew 0.15 0.17 0.19 0.19 0.35 0.33
LogitSkew 0.25 0.38 0.45 0.50 0.59 0.65 0.31
MaxRet 0.08 0.22 0.30 0.37 0.22 0.51 0.18 0.52
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Table 4.
The Forecasting Power of the Skewness Proxies: Portfolio Sorts
The table offers the average future realized skewness of portfolios univariately sorted on the
skewness proxy OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew, or MaxRet (see Table D.1
in Appendix D for more details about those proxies). At the end of each sample month t, we
sort stocks into portfolios according to the tenth, 20th, 40th, 60th, 80th, and 90th percentiles
of a skewness proxy’s distribution on that date. We then compute a portfolio’s future realized
skewness by taking an average over the sample skewness or block bootstrap based realized skew-
ness estimates of all stocks in the portfolio, where we separately consider the realized skewness
of the daily (DailySkew; Panel A), monthly (MonthlyBSSkew; Panel B), quarterly (Quarterly-
BSSkew; Panel C), and annual (AnnualBSSkew; Panel D) return. We calculate the realized
skewness estimates from daily data over months t+ 1 to t+ 60. We also calculate the spread
in average future realized skewness across the extreme portfolios (LS9010). Plain numbers
are the time-series means of average portfolio realized skewness and the spreads, while the
numbers in parentheses are Newey-West (1987) t-statistics with a 60 month lag length.

Skewness Proxy Percentiles

00–10 10–20 20–40 40–60 60–80 80–90 90–100 LS9010

(1) (2) (3) (4) (5) (6) (7) (7)–(1)

Panel A: Daily Skewness

OLSSkew 0.23 0.27 0.29 0.35 0.47 0.60 0.72 0.49 [15.53]
QuantileSkew 0.22 0.29 0.34 0.38 0.45 0.54 0.65 0.43 [8.33]
HistoricalSkew 0.31 0.30 0.33 0.37 0.44 0.51 0.62 0.30 [12.02]
LogitSkew 0.16 0.24 0.29 0.39 0.50 0.58 0.70 0.54 [11.54]
MaxRet 0.35 0.33 0.34 0.38 0.43 0.48 0.56 0.21 [5.71]

Panel B: Monthly Skewness

OLSSkew 0.26 0.29 0.31 0.41 0.56 0.69 0.83 0.57 [20.71]
QuantileSkew 0.21 0.27 0.33 0.42 0.54 0.70 0.87 0.66 [10.55]
HistoricalSkew 0.35 0.35 0.38 0.43 0.50 0.59 0.72 0.37 [14.78]
LogitSkew 0.14 0.23 0.30 0.44 0.59 0.72 0.91 0.77 [22.90]
MaxRet 0.33 0.32 0.35 0.43 0.52 0.63 0.75 0.42 [9.12]

(continued on next page)
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Table 4.
The Forecasting Power of the Skewness Proxies: Portfolio Sorts (cont.)

Skewness Proxy Percentiles

00–10 10–20 20–40 40–60 60–80 80–90 90–100 LS9010

(1) (2) (3) (4) (5) (6) (7) (7)–(1)

Panel C: Quarterly Skewness

OLSSkew 0.50 0.53 0.55 0.64 0.80 0.91 1.04 0.55 [10.83]
QuantileSkew 0.38 0.46 0.54 0.65 0.81 0.97 1.17 0.79 [11.35]
HistoricalSkew 0.58 0.58 0.61 0.66 0.74 0.84 0.96 0.37 [10.59]
LogitSkew 0.32 0.43 0.52 0.67 0.84 0.98 1.20 0.88 [15.72]
MaxRet 0.49 0.50 0.56 0.66 0.78 0.91 1.06 0.57 [8.19]

Panel D: Annual Skewness

OLSSkew 1.15 1.20 1.24 1.35 1.63 1.74 1.96 0.81 [10.82]
QuantileSkew 0.84 1.00 1.15 1.37 1.67 1.98 2.31 1.47 [11.53]
HistoricalSkew 1.29 1.25 1.28 1.38 1.52 1.69 1.88 0.58 [7.68]
LogitSkew 0.77 0.97 1.15 1.41 1.69 1.94 2.33 1.56 [14.11]
MaxRet 0.99 1.06 1.19 1.39 1.63 1.87 2.15 1.16 [7.20]
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Table 5.
The Forecasting Power of the Skewness Proxies: Regressions
This table shows the results from the cross-sectional regression:

RealizedSkewt+1,t+60 = α + β SkewnessProxyt + εt+1,t+60,

where RealizedSkew is a sample skewness or block bootstrap based estimate of the real-
ized skewness of the daily (DailySkew; Panel A), monthly (MonthlyBSSkew; Panel B),
quarterly (QuarterlyBSSkew; Panel C), or annual (AnnualBSSkew; Panel D) return, and
SkewnessProxy is OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew, or MaxRet (see Ta-
ble D.1 in Appendix D for more details about those proxies). We calculate the realized skewness
estimates using daily data over months t+ 1 to t+ 60 and the skewness proxies using data
until the end of month t. We estimate the regressions separately by sample month t. The table
entries are the time-series mean of each estimate (the plain numbers), the t-statistic of the
mean (computed using Newey-West (1987) standard errors with a 60 month lag length; in
square parentheses), and the time-series means of the adjusted R-squared (bottom row of each
panel) and the number of sample observations (final row of table).

Skewness Proxy

OLS Quantile Historical Logit Max
Skew Skew Skew Skew Ret

(1) (2) (3) (4) (5)

Panel A: Daily Skewness

Coefficient 0.34 0.23 0.10 0.23 0.02
[9.32] [6.05] [7.54] [8.65] [7.79]

Constant 0.12 0.19 0.37 0.18 0.31
[2.45] [3.87] [13.57] [5.04] [10.34]

Mean Adj. R2 0.07 0.05 0.03 0.08 0.02

Panel B: Monthly Skewness

Coefficient 0.40 0.36 0.11 0.32 0.03
[13.38] [5.96] [8.51] [16.24] [9.24]

Constant 0.13 0.13 0.42 0.14 0.29
[2.92] [3.22] [13.56] [4.58] [12.52]

Mean Adj. R2 0.09 0.11 0.03 0.14 0.05

(continued on next page)
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Table 5.
The Forecasting Power of the Skewness Proxies: Regressions (cont.)

Skewness Proxy

OLS Quantile Historical Logit Max
Skew Skew Skew Skew Ret

(1) (2) (3) (4) (5)

Panel C: Quarterly Skewness

Coefficient 0.38 0.44 0.11 0.36 0.04
[13.62] [6.06] [8.22] [18.15] [8.37]

Constant 0.38 0.29 0.65 0.34 0.48
[7.51] [4.74] [17.43] [11.93] [13.12]

Mean Adj. R2 0.09 0.15 0.03 0.18 0.08

Panel D: Annual Skewness

Coefficient 0.56 0.82 0.18 0.62 0.07
[13.01] [6.21] [7.70] [18.83] [7.91]

Constant 0.99 0.68 1.38 0.82 1.02
[9.08] [5.04] [15.54] [13.82] [11.03]

Mean Adj. R2 0.07 0.18 0.03 0.18 0.10

Mean Observations 2,210 2,210 2,210 2,210 2,210
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Table 6.
The Skewness Proxy Premiums: Portfolio Sorts
The table presents mean excess returns and alphas for portfolios univariately sorted on the
skewness proxy OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew, or MaxRet (see Table D.1
in Appendix D for more details about those proxies). At the end of each sample month t, we
sort stocks into portfolios according to the decile breakpoints of a skewness proxy’s distribution
on that date. We value-weight the portfolios and hold them over month t+ 1. We also form a
spread portfolio long the highest skewness proxy portfolio and short the lowest. To adjust such
a portfolio for risk, we regress its return on the excess market return (MKT; CAPM alpha) or
MKT, SMB, and HML (FF3 alpha) and report the intercept. The plain numbers are the mean
value-weighted monthly portfolio returns or spread portfolio alphas (in %), while the numbers
in square parentheses are Newey-West (1987) t-statistics with a twelve month lag length.

Sorting Variable

OLS Quantile Historical Logit Max
Decile Skew Skew Skew Skew Ret

(1) (2) (3) (4) (5)

1 (Low) 1.43 0.95 0.91 0.93 0.93
2 0.99 1.01 1.03 1.04 0.91
3 0.95 0.92 0.94 1.04 0.91
4 0.79 1.08 0.97 1.00 0.99
5 0.80 1.04 1.00 1.19 1.03
6 0.75 1.02 0.88 0.85 1.17
7 0.63 1.09 0.98 1.08 1.00
8 0.72 0.80 1.14 0.76 0.89
9 0.47 0.61 1.05 0.77 0.84
10 (High) 0.40 0.13 0.91 0.09 0.41

Spread Return −1.03 −0.82 0.00 −0.83 −0.51
t-statistic [−2.50] [−1.50] [0.00] [−2.28] [−1.90]
CAPM Alpha −1.10 −1.35 −0.02 −1.17 −0.86
t-statistic [−2.88] [−2.67] [−0.09] [−3.35] [−2.86]
FF3 Alpha −1.28 −1.16 −0.13 −1.07 −0.76
t-statistic [−3.23] [−3.81] [−0.91] [−4.09] [−3.38]
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Table 7.
The Skewness Proxy Premiums: Fama-MacBeth Regressions
The table offers the results from Fama-MacBeth (1973) regressions of single-stock returns
over month t+ 1 on each skewness proxy OLSSkew, QuantileSkew, HistoricalSkew, LogitSkew,
or MaxRet calculated using data until the end of month t (see Table D.1 in Appendix D
for more details about those proxies). While the regressant in Panel A is a stock’s dollar
return, the regressant in Panel B is that same dollar return minus the dollar return of the
double-sorted value-weighted size and book-to-market portfolio to which the stock belongs
(“DGTW Return”). We form the double-sorted portfolios as in Fama and French (1993). Plain
numbers are monthly premium estimates (in %), while the numbers in square parentheses are
Newey-West (1987) t-statistics with a twelve-month lag length.

Skewness Proxy

OLS Quantile Historical Logit Max
Skew Skew Skew Skew Ret

(1) (2) (3) (4) (5)

Panel A: Dollar Return

Premium −0.53 −0.18 0.01 −0.20 −0.08
[−2.63] [−0.64] [0.28] [−2.35] [−5.84]

Constant 1.45 1.30 1.11 1.38 1.57
[4.29] [3.97] [4.71] [6.06] [7.42]

Panel B: DGTW Return

Premium −0.54 −0.07 −0.02 −0.22 −0.07
[−2.62] [−0.41] [−0.79] [−6.24] [−7.99]

Constant 0.52 0.16 0.02 0.29 0.44
[2.83] [0.59] [0.64] [3.97] [5.95]
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Table 8.
Decomposing the Skewness Proxy Premiums in Dollar Returns
The table presents the results from Fama-MacBeth (1973) regressions of single-stock returns
over month t+ 1 on the component of each skewness proxy capturing the expectation of future
realized skewness (columns (1) to (2)) or the residual (columns (3) to (4)) calculated using
data until the end of month t. The table further shows the results from splitting the total
skewness proxy premium from Table 7 (repeated in the panel headings) into parts related to
the two components (columns (5) to (8)). Panels A to E focus on OLSSkew, QuantileSkew,
HistoricalSkew, LogitSkew, and MaxRet, respectively (see Table D.1 in Appendix D for more
details about those proxies). We construct the components by sorting stocks into 50 portfolios
according to each skewness proxy at the end of month t. We then run a cross-sectional regression
of a portfolio’s average skewness proxy value on its average future realized skewness. To calculate
average future realized skewness, we average over the estimates of the realized skewness of
the daily (DailySkew), monthly (MonthlyBSSkew), quarterly (QuarterlyBSSkew), or annual
(AnnualBSSkew) return of all stocks in the portfolio, calculating the estimates using daily
data from month t+ 1 to t+ 60. We assign the fitted value from the regression to each stock in
a portfolio, interpreting it as the component of the skewness proxy predicting future realized
skewness. The plain numbers in columns (1) and (3) are monthly premium estimates (in
%), while those in columns (5) and (7) are the proportions of the skewness proxy premium
attributable to each component. The numbers in square parentheses in columns (2), (4), (6),
and (8) are Newey-West (1987) t-statistics with a twelve-month lag length.

Premium Premium
Skewness Proxy Skewness Proxy
Component Component Decomposition of
Predicting Orthogonal Skewness Proxy Premium
Skewness to Skewness Fitted Value Residual

est. t-stat. est. t-stat. est. t-stat. est. t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLSSkew (Premium: –0.528; t-statistic: –2.63)

DailySkew −0.57 [−2.90] −0.38 [−1.72] 0.70 [7.03] 0.30 [2.97]
MonthlyBSSkew −0.50 [−2.37] −0.37 [−1.78] 0.65 [5.80] 0.35 [3.15]
QuarterlyBSSkew −0.40 [−1.49] −0.35 [−1.68] 0.61 [4.92] 0.39 [3.20]
AnnualBSSkew −3.19 [−1.34] −0.35 [−1.75] 0.51 [4.20] 0.49 [3.97]

(continued on next page)
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Table 8.
Decomposing the Skewness Proxy Premiums in Dollar Returns (cont.)

Premium Premium
Skewness Proxy Skewness Proxy
Component Component Decomposition of
Predicting Orthogonal Skewness Proxy Premium
Skewness to Skewness Fitted Value Residual

est. t-stat. est. t-stat. est. t-stat. est. t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel B: QuantileSkew (Premium: –0.182; t-statistic: –0.64)

DailySkew −0.77 [−1.78] 0.18 [0.79] 1.49 [1.18] −0.49 [−0.39]
MonthlyBSSkew −0.28 [−0.86] 0.19 [1.20] 1.21 [2.31] −0.21 [−0.41]
QuarterlyBSSkew −0.27 [−0.81] 0.25 [1.53] 1.14 [3.15] −0.14 [−0.39]
AnnualBSSkew −0.26 [−0.77] 0.15 [0.93] 1.08 [4.06] −0.08 [−0.30]

Panel C: HistoricalSkew (Premium: 0.013; t-statistic: 0.28)

DailySkew −0.06 [−0.88] 0.07 [2.23] −1.46 [−0.16] 2.46 [0.26]
MonthlyBSSkew −0.03 [−0.43] 0.04 [1.28] −0.12 [−0.03] 1.12 [0.28]
QuarterlyBSSkew −0.04 [−0.49] 0.02 [0.73] 0.21 [0.08] 0.79 [0.29]
AnnualBSSkew −0.06 [−0.66] −0.02 [−0.64] 1.58 [0.39] −0.58 [−0.14]

Panel D: LogitSkew (Premium: –0.196; t-statistic: –2.35)

DailySkew −0.18 [−1.70] −0.18 [−2.67] 0.67 [5.36] 0.33 [2.68]
MonthlyBSSkew −0.16 [−1.56] −0.22 [−3.64] 0.69 [5.94] 0.31 [2.64]
QuarterlyBSSkew −0.15 [−1.47] −0.30 [−5.29] 0.61 [3.75] 0.39 [2.40]
AnnualBSSkew −0.15 [−1.38] −0.32 [−4.98] 0.57 [3.02] 0.43 [2.32]

Panel E: MaxRet (Premium: –0.080; t-statistic: –5.84)

DailySkew −0.23 [−3.10] −0.06 [−5.40] 0.47 [7.56] 0.53 [8.44]
MonthlyBSSkew −0.12 [−6.43] −0.05 [−5.04] 0.68 [11.54] 0.32 [5.49]
QuarterlyBSSkew −0.11 [−5.68] −0.06 [−6.43] 0.74 [15.70] 0.26 [5.61]
AnnualBSSkew −0.03 [−2.76] −0.06 [−7.22] 0.73 [15.83] 0.27 [5.79]
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Table 9.
Decomposing the Skewness Proxy Premiums in DGTW Returns
The table presents the results from Fama-MacBeth (1973) regressions of single-stock DGTW
returns over month t+ 1 on the component of each skewness proxy capturing the expectation
of future realized skewness (columns (1) to (2)) or the residual (columns (3) to (4)) calculated
using data until the end of month t. The table further shows the results from splitting the
total skewness proxy premium from Table 7 (repeated in the panel headings) into parts
related to the two components (columns (5) to (8)). A stock’s DGTW return is its dollar
return minus the value-weighted dollar return of the size and book-to-market portfolio to
which the stock belongs. Panels A to E focus on OLSSkew, QuantileSkew, HistoricalSkew,
LogitSkew, and MaxRet, respectively (see Table D.1 in Appendix D for more details about
those proxies). We construct the components by sorting stocks into 50 portfolios according
to each skewness proxy at the end of month t. We then run a cross-sectional regression of a
portfolio’s average skewness proxy value on its average future realized skewness. To calculate
average future realized skewness, we average over the estimates of the realized skewness of
the daily (DailySkew), monthly (MonthlyBSSkew), quarterly (QuarterlyBSSkew), or annual
(AnnualBSSkew) return of all stocks in the portfolio, calculating the estimates using daily
data from month t+ 1 to t+ 60. We assign the fitted value from the regression to each stock in
a portfolio, interpreting it as the component of the skewness proxy predicting future realized
skewness. The plain numbers in columns (1) and (3) are monthly premium estimates (in
%), while those in columns (5) and (7) are the proportions of the skewness proxy premium
attributable to each component. The numbers in square parentheses in columns (2), (4), (6),
and (8) are Newey-West (1987) t-statistics with a twelve-month lag length.

Premium Premium
Skewness Proxy Skewness Proxy
Component Component Decomposition of
Predicting Orthogonal Skewness Proxy Premium
Skewness to Skewness Fitted Value Residual

est. t-stat. est. t-stat. est. t-stat. est. t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLSSkew (Premium: –0.542; t-statistic: –2.62)

DailySkew −0.64 [−3.15] −0.43 [−2.03] 0.62 [8.39] 0.38 [5.04]
MonthlyBSSkew −0.54 [−2.83] −0.43 [−2.06] 0.62 [7.29] 0.38 [4.38]
QuarterlyBSSkew −0.47 [−2.50] −0.42 [−1.99] 0.57 [5.77] 0.43 [4.42]
AnnualBSSkew −3.94 [−1.27] −0.41 [−2.08] 0.46 [4.87] 0.54 [5.71]

(continued on next page)
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Table 9.
Decomposing the Skewness Proxy Premiums in DGTW Returns (cont.)

Premium Premium
Skewness Proxy Skewness Proxy
Component Component Decomposition of
Predicting Orthogonal Skewness Proxy Premium
Skewness to Skewness Fitted Value Residual

est. t-stat. est. t-stat. est. t-stat. est. t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel B: QuantileSkew (Premium: –0.072; t-statistic: –0.41)

DailySkew −0.54 [−1.78] 0.30 [2.11] 2.71 [0.61] −1.71 [−0.39]
MonthlyBSSkew −0.15 [−0.77] 0.25 [1.74] 1.72 [0.98] −0.72 [−0.41]
QuarterlyBSSkew −0.13 [−0.67] 0.23 [1.41] 1.48 [1.28] −0.48 [−0.42]
AnnualBSSkew −0.12 [−0.60] 0.11 [0.68] 1.34 [1.60] −0.34 [−0.41]

Panel C: HistoricalSkew (Premium: –0.024; t-statistic: –0.79)

DailySkew −0.10 [−2.22] 0.03 [1.23] 1.53 [0.98] −0.53 [−0.34]
MonthlyBSSkew −0.06 [−1.25] 0.01 [0.34] 1.20 [1.03] −0.20 [−0.17]
QuarterlyBSSkew −0.06 [−1.36] 0.00 [−0.01] 1.16 [0.98] −0.16 [−0.13]
AnnualBSSkew −0.07 [−1.45] −0.02 [−0.75] 0.85 [0.92] 0.15 [0.17]

Panel D: LogitSkew (Premium: –0.219; t-statistic: –6.24)

DailySkew −0.24 [−5.97] −0.20 [−4.00] 0.60 [8.16] 0.40 [5.53]
MonthlyBSSkew −0.20 [−5.34] −0.26 [−4.88] 0.65 [10.21] 0.35 [5.41]
QuarterlyBSSkew −0.19 [−5.17] −0.30 [−5.59] 0.64 [9.35] 0.36 [5.17]
AnnualBSSkew −0.19 [−5.16] −0.30 [−4.75] 0.63 [8.63] 0.37 [4.97]

Panel E: MaxRet (Premium: –0.073; t-statistic: –7.99)

DailySkew −0.16 [−2.52] −0.06 [−6.94] 0.45 [8.39] 0.55 [10.13]
MonthlyBSSkew −0.10 [−7.49] −0.04 [−6.00] 0.67 [12.28] 0.33 [5.93]
QuarterlyBSSkew −0.09 [−7.59] −0.04 [−6.61] 0.76 [16.61] 0.24 [5.27]
AnnualBSSkew −0.04 [−2.23] −0.05 [−7.71] 0.76 [16.93] 0.24 [5.35]
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A Neuberger and Payne’s (2021) Estimator

In this appendix, we give more technical details about Neuberger and Payne’s (2021) skewness

estimator. Assuming an asset’s value obeys a strictly stationary martingale, and approximating

the moments of the asset’s return, these authors show that the skewness of the dollar return

from time t− T to t is related to the skewness of the dollar return over each non-overlapping

subperiod q ∈ {t− T, t− T + 1, . . . , t} within the T − t to t period as follows:

skew(Rt−T,t) =
(
skew(Rq) + 3cov(yq−1, x

(2,E)(Rq))
varL(Rq)3/2

)
/
√
T , (A1)

where Rm is the gross return, with m ∈ {t− T, t; q}; skew(Rm) is the approximated skewness

coefficient E[x(3)(Rm)]/varL(Rm)3/2, with x(3)(Rm) = 6((Rm + 1) lnRm − 2(Rm − 1)); and

varL(Rm) is the approximated variance of Rm, E[2(Rm − 1− lnRm)]. Conversely, cov(., .) is

the covariance operator; yq = (1/T )∑T−1
u=0 (Rq−u,q − 1), where Rq−u,q is the gross return from

subperiod q − u to subperiod q; and x(2,E)(Rq) = 2(Rq lnRq + 1−Rq).24

Interpreting yq−1 as the geometric average return over the prior T subperiods and x(2,E)(Rq)

as an approximation of the squared net return over subperiod q, Equation (A1) neatly suggests

why return dependence affects the skewness of long-horizon returns. More specifically, when

higher past returns predict a higher (lower) volatility, the covariance in the equation is positive

(negative), raising (lowering) the skewness of the long-horizon return. The higher (lower)

skewness is caused by the fact that a positive (negative) past return-volatility relation can

create a hump in the right (left) tail of the long-horizon-return distribution, as can also happen

in other non-constant volatility models (e.g., Cox and Ross (1976) and Heston (1993)).
24To avoid bias, Neuberger and Payne (2021) advise that the covariance term should be calculated as the

time-series average of the product between yq−1 and x(2,E)(Rq) minus the time-series average of x(2,E)(Rq),
where the time-series average of x(2,E)(Rq) should, however, be calculated over some sample period ending
before the start of the sample period used to calculate the time-series average of the product.
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B Politis and White’s (2004) Optimal p Choice

In this appendix, we offer more technical details about Politis and White’s (2004) optimal

choice for the p parameter in Politis and Romano’s (1994) block bootstrap. Recalling that

the expected block length in that bootstrap is 1/(1− p), Politis and White (2004) prove that,

to minimize the theoretical mean-squared error of a block bootstrap based estimator of the

long-run variance of the underlying variable (in our case: the short-horizon dollar return),25 it

is optimal to choose p such that this length becomes equal to:

b̂opt = N1/3
(

2Ĝ2

D̂

)1/3

, (B1)

where N is the number of (original) short-horizon returns, and Ĝ and D̂ are, respectively:

Ĝ =
M∑

k=−M
λ(k/M)|k|R̂(k) and D̂ =

(
4ĝ2(0) + 2

π

∫ π

−π
(1 + cosw)ĝ2(w)dw

)
, (B2)

where the flat-top lag-window function, λ(t), is 1 if |t| ∈ [0, 1/2], 2(1− |t|) if |t| ∈ [1/2, 1], and

else zero, ĝ(w) = ∑M
k=−M λ(k/M)R̂(k) cos(wk), and R̂(k), the kth-order autocorrelation, is

N−1 ∑N−|k|
i=1 (Rq − R̄q)(Rq+|k| − R̄q), with R̄q the mean of the short-horizon return.

C Calculating True Skewness

In this appendix, we show how to analytically calculate the true skewness of dollar returns

under the GBM, SV, or SVJ stochastic processes in Section 2.3 from the moment generating

functions of those same processes. To do so, we first express the true skewness of the dollar
25To be specific, the estimator is the square root of the number of observations over the original sample

window times the variance of the sample mean of the variable calculated from block bootstrap samples.
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return from time t to t+ τ as a function of the moment generating functions:

TrueSkewnesst,t+τ = M
(3;x)
t,t+τ − 3M (1;x)

t,t+τM
(2;x)
t,t+τ + 2(M (1;x)

t,t+τ )3

(M (2;x)
t,t+τ − (M (1;x)

t,t+τ )2) 3
2

, (C1)

where M (n;x)
t,t+τ is the moment generating function for the nth moment of the dollar return from

time t to t+ τ of stochastic process x. As shown in, for example, Bates (2006), the moment

generating functions M (n;x)
t,t+τ associated with the three processes are given by:

M
(n;GBM)
t,t+τ = e(ατ− 1

2σ
2τ)n+ 1

2σ
2τn2

, (C2)

M
(n;SV )
t,t+τ = eατn+φSV (n,τ)+ψ(n,τ)V (t), (C3)

M
(n;SV J)
t,t+τ = eατn+φSV J (n,τ)+ψ(n,τ)V (t), (C4)

where ψ(n, τ), φSV (n, τ), and φSV J(n, τ) are defined as:

ψ(n, τ) = Q(n)α+(n)− α−(n)eP (n)τ

Q(n)− eP (n)τ , (C5)

φSV (n, τ) = κvθv

(
α+(n)τ + α−(n)− α+(n)

P (n) ln
Q(n)− eP (n)τ

Q(u)− 1

)
, (C6)

φSV J(n, τ) = κvθv

(
α+(n)τ + α−(n)− α+(n)

P (n) ln
Q(n)− eP (n)τ

Q(n)− 1

)
+ λE(n), (C7)

and:

Q(n) = α−(n)
α+(n) , (C8)

α±(n) = κv − nρσv ± P (n)
σ2
v

, (C9)

P (n) =
√

(κv − σvρn)2 + σ2
v(n− n2), (C10)

E(n) = eµzn+ 1
2σ

2
zn

2 − (1 + µ̄n). (C11)
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D The Variables Underlying the Skewness Proxies

In this appendix, we offer more details on the calculations of the variables underlying OLSSkew,

QuantileSkew, andLogitSkew. Starting withOLSSkew, Boyer et al. (2010) use historical volatility

(HistoricalV olatility) and the historical skewness coefficient (HistoricalSkew) calculated

from the 60 months of daily data directly before month t− 59, the compounded stock return

over months t−71 to t−61 (Momentum), and the average of daily share volume to daily shares

outstanding over month t− 60 (ShareTurnover) as their continuous underlying variables. They

further add several dummy variables, including a NASDAQ dummy equal to one if a stock is

traded on the NASDAQ at the end of month t − 60 and else zero (NASDAQ), 16 industry

dummies indicating whether a stock operates in one of the 17 Fama-French industries at that

time, and two market size dummies, the first (second) dummy equal to one if a stock’s market

size is in the bottom (middle) tercile of the market size distribution at that time and else zero.

In our calculations of QuantileSkew, we choose the same underlying variables as Boyer et

al. (2010), with the minor difference that we use the log of market size (MarketSize), and not

the market size dummies, to capture size effects. In line with Conrad et al. (2014), we further

add the number of years since a stock became publicly traded (CompanyAge), the log ratio of

gross property, plant, and equipment to total assets (AssetTangibility), and log sales growth

over the prior year (SalesGrowth). We finally also use a stock’s log book-to-market value ratio

(BookToMarket), log share issuances (ShareIssuances), log total assets growth (AssetGrowth),

and profitability (Profitability). ShareIssuances is the annual change in split-adjusted shares

outstanding, AssetGrowth the annual change in total assets, and Profitability is the ratio of

sales net of costs of goods sold, selling, general, and administrative expenses, and interest

expenses to the book value of equity. Heeding Fama and French (1992), we compute the book

equity value as total assets less total liabilities plus deferred taxes less preferred stock.
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To compute LogitSkew, Conrad et al. (2014) also choose MarketSize, Momentum, Compa-

nyAge, AssetTangibility, and SalesGrowth as underlying variables. They further also consider

historical volatility, historical skewness, and share turnover, but calculate those differently

from HistoricalVolatility, HistoricalSkew, and ShareTurnover. To be specific, Conrad et al.

(2014) calculate historical volatility from daily dollar returns over the previous three months

and historical skewness from daily log returns over that same three-month period, in each case

assuming that the expected daily return is equal to zero. They calculate share turnover as the

ratio of daily trading volume to daily shares outstanding averaged over the prior six months of

data minus that same ratio averaged over the prior 18 months of data.

See Table D.1 in this appendix for a concise summary of how we construct the underlying

variables, including the mnemonics used by the data providers.
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Table D.1.
Variable Construction
The table details the construction of our skewness proxies. We calculate those variables indexed
by an “M” on a monthly basis. Conversely, we calculate those indexed by an “A” on an annual
basis, using the calculated values from June of calendar year t to May of calendar year t+ 1.
We show the CRSP and Compustat database mnemonics in parentheses.

Name Description

Panel A: Skewness Proxies

OLSSkew (M) Prediction from a cross-sectional regression of the skewness coefficient of a stock’s daily dollar
return (ret) on predictor variables, where the coefficient is estimated over the prior 60 months and
the predictors are measured at the start of the 60-month period (see Boyer et al. (2010)).

QuantileSkew (M) Skewness coefficient calculated from the predictions of quantile regressions of a stock’s annual
dollar return (ret) on predictor variables, where the predictors are measured at the start of the
twelve-month return period and the regressions are run over the prior 20 years of monthly data.

HistoricalSkew (M) Skewness coefficient calculated from a stock’s daily dollar returns (ret) over the prior 60 months.
LogitSkew (M) Prediction from a logit model of a dummy variable equal to one if a stock’s twelve-month log

return (ret) exceeds 100% and else zero, on predictor variables, where the predictors are measured
at the start of the twelve-month period and the model is estimated recursively (starting in June
1951) and only on June values (see Conrad et al. (2014)).

MaxRet (M) A stock’s maximum daily dollar return (ret) over the month (see Bali et al. (2011)).

Panel B: Skewness Proxy Predictor Variables

MarketSize (M) Log of stock market capitalization (abs(prc) × shrout; see Fama and French (1992)).
BookToMarket (A) Log of the ratio of the book value to the market value of equity (abs(prc) × shrout), where the

book value of equity is total assets (at) less total liabilities (lt) plus deferred taxes (txditc, zero if
missing) less preferred stock (pstkl, pstkrv, prfstck, or zero, in that order of availability) and the
variables are from the fiscal year end in calendar year t− 1 (see Fama and French (1992)).

Momentum (M) A stock’s dollar return (ret) compounded over the prior twelve months of monthly data, but
excluding the most recent month (see Jegadeesh and Titman (1993)).

ShareIssuances (A) Log of the gross percent change in split-adjusted shares outstanding from the fiscal year end in
calendar year t− 2 to that in calendar year t− 1, where split-adjusted shares outstanding is
shares outstanding (csho) times the adjustment factor (ajex; see Fama and French (2008)).

AssetGrowth (A) Log of the gross percent change in total assets (at) from the fiscal year end in calendar year t− 2
to that in calendar year t− 1 (see Cooper et al. (2008)).

Profitability (A) Ratio of sales (sale) net of costs of goods sold (cogs), selling, general, and administrative expenses
(xsge), and interest expenses (xint) to the book value of equity, where the book value of equity is
total assets (at) less total liabilities (lt) plus deferred taxes (txditc, zero if missing) less preferred
stock (pstkl, pstkrv, prfstck, or zero, in that order of availability) and the variables are from the
fiscal year end in calendar year t− 1 (see Fama and French (2008)).

ShareTurnover (M) Average of the ratio of share volume (vol) to shares outstanding (shrout), where the average is
taken over all trading days over the month (see Boyer et al. (2010)).

CompanyAge (M) Number of years since a stock first appeared in CRSP (see Conrad et al. (2014)).
AssetTangibility (A) Log of the ratio of gross property, plant, and equipment (ppegt) to total assets (at), where both

variables are taken from the fiscal year end in calendar year t− 1.
SalesGrowth (A) Log of the gross percent change in sales (sale) from the fiscal year end in calendar year t− 2 to

that in calendar year t− 1 (see Conrad et al. (2014)).
HistoricalV olatility (M) A stock’s annualized volatility derived from daily dollar returns (ret) over the prior 60 months.
HistoricalSkew (M) A stock’s skewness coefficient derived from daily dollar returns (ret) over the prior 60 months.
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