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Abstract— This paper addresses the problem of ‘quickest 

possible’ online transient stability assessment, by minimizing the 

decision time of combined event detection that might lead to a 

system split and unstable generator group prediction, from real-

time wide area power system measurements. More importantly it 

does so by respecting predefined probabilistic error constraints for 

the prediction. The statistical theory of optimal detection is applied, 

firstly to choose the detection threshold and secondly to select a 

flexible assessment time, after using probabilistic neural networks 

to provide a temporal representation of the data. On simulated 

wide area measurements from the interconnected New England 

test system and New York power system this approach is between 

two and three times faster on average than strategies based on 

fixed assessment times, despite having comparable error rates. 

 
Index Terms—dynamic security assessment, optimal detection, 

phasor measurement units, probabilistic neural network, 

transient stability assessment, risk. 

I. INTRODUCTION 

UE to various social, environmental, economic and 

technical reasons, power systems may be driven to operate 

closer to their stability limit. New techniques and algorithms 

need to be implemented which will facilitate close to real-time 

identification of impending instability and will enable 

corrective control measures, such as controlled islanding, 

generator tripping, load shedding, and so on. Considering also 

the increasing uncertainty in such systems, reliance on 

traditional preventive control may not suffice and the focus 

should shift to corrective control. For effective corrective 

control it is essential that an action is taken as fast as possible 

and also that adequate information on the transient stability 

status of the system are available to reduce the possibility of 

system instability or cascading failures that could lead to 

blackouts [1], [2].  

The combined time when a distrubance is detected and 

transient stability status evaluated are key to successfully 
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address the above-mentioned problems. If the transient stability 

status is evaluated/predicted with a long delay, the system may 

be already in an unstable situation with excessive operational 

risk. On the other hand, if the transient stability status prediction 

is quick but the control is not adequate (possibly because of 

limited understanding or observation of the contingency) or 

alternatively not deployed quickly enough, system instability 

may not be avoided resulting again in compromised system 

security. This follows because in some  cases and contingencies 

the appropriate corrective actions could be identified and taken 

sooner, while in the other  it is more appropriate to observe the 

response of the system for a longer period,  rather than to risk 

deploying a potentially inappropriate corrective measure (this 

may also vary depending on the complexity of the dynamic 

response). In addition, it is also important to provide additional 

flexibility to system operators to make automated decisions as 

soon as possible according to the desired level of risk. For 

example, an unstable contingency wrongly classified in real 

time as a stable contingency might have more significant 

consequences, and therefore the corresponding risk constraint 

could be tightened. Consequently, both the appropriate 

minimisation of the decision time is essential as well as the 

ability to implement predefined risk constraints rather than 

using fixed times.  

Both the fault detection and the transient stability assessment 

problems have received considerable attention in the literature. 

This has been mainly due to the possibility of collecting real-

time and near real-time data from phasor measurement units 

(PMUs) [3]-[5]. Methods utilizing data from dynamic state 

estimators have been proposed for local out-of-step protection 

of individual generators [7]. In addition, many alternative 

classification techniques have been used for global instability 

prediction, including decision trees [2], [3], [8]-[11], support 

vector machines [12]-[14] and artificial neural networks [15]-

[18]. Binary classification (i.e. prediction of stable or unstable 

system) is most widely studied in the literature. Multiclass 

instability classification has also been introduced [2], [17], [19], 
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[20] providing additional information considering the type of 

instability (e.g. groups of generators losing synchronism). In [6], 

recurrent neural networks are used to reduce the prediction time 

for binary classification. However, in all these methods the 

input to the machine learning proxy are post-disturbance 

measurements after the fault is cleared, which assumes that the 

time the fault happens and is cleared is known. In reality, this 

time when the instability prediction method should be triggered 

is generally unknown and can also influence the decision time 

if triggered with a delay, a challenge which this paper addresses. 

In addition, [6] and [21] are aiming to decrease decision time 

by evaluating the output of a recurrent neural network or an 

ensemble classifier at each time step and deciding to proceed 

with the prediction when a pre-set threshold of the classifier is 

exceeded. This highlights the importance of the balance 

between faster decision time and accuracy. However, both 

methods do not offer the ability to define and ensure 

probabilistic error constraints are met for the prediction, an 

aspect this paper is addressing. In addition, they address binary 

(stable/unstable) and not multiclass (prediction of unstable 

generator group) classification.  

Very recently [22] and [23] highlight another important 

aspect related to providing some confidence in the prediction 

when applying machine learning based methods, further to just 

using performance metrics (e.g. accuracy). In particular, [22] 

has suggested a framework for Dynamic Security Assessment 

to provide a confidence interval along with the prediction and  

[23] a method for neural network verification (i.e., for specific 

input regions, ensure that the classification of the neural 

network does not change). In this context, the method proposed 

in this paper ensures predefined probabilistic error constraints 

are not violated while at the same time minimizing the 

combined event detection and prediction time. 

Consequently, the key contributions of the proposed method 

are as follows: i) It addresses optimality in the combined 

detection and prediction time for transient stability assessment 

while at the same time and more importantly ii) it ensures that 

probabilistic error constraints for the prediction are not 

violating a pre-defined acceptable threshold. The intertwined 

problems of detecting a disturbance that might lead to a system 

split combined with the consequent activation of transient 

stability prediction from wide area measurements have not been 

considered simultaneously in the past. The importance of 

combining the two steps is to enable a realistic approach where 

measurement data are continuously used as an input a method 

for transient stability prediction without assuming explicit 

knowledge of the time when an event requiring the activation 

of the prediction algorithm has happened This is an issue that 

has not been addressed in existing literature (including [20] 

where only the prediction time is considered).  

This paper is therefore addressing the significant challenge 

of answering when is the best time to take a decision and apply 

a corrective measure (e.g. controlled islanding). More 

importantly, the method provides the ability to a system 

operator to set a defined acceptable error threshold that 

eventually determines the optimal decision time for each 

specific contingency in real-time.  

II. METHODOLOGY 

The proposed method uses Probabilistic Neural Networks 

(PNNs) combined with theory of optimal detection to minimise 

the time required for the combined problem of disturbance and 

transient instability prediction. PNNs are propose to be trained 

offline and then used for the online (close to real time) 

prediction of upcoming instability as quickly as possible. This 

will be achieved using online measurement data and the 

proposed method would be utilized in order to activate 

corrective control measures or special protection schemes, once 

instability is predicted. 

PNNs are a type of artificial neural network suitable for 

classification problems. The MATLAB function ‘newpnn’ [25] 

was employed, which creates a two-layer network. The first 

layer computes the distance from the input to the classes of 

training data, while the second layer converts these distances to 

a probability distribution for the class of the input, represented 

as a vector of probabilities summing to 1. 

The input and training data were generated by dynamic 

simulation (as described in Section IV.B below). In particular, 

the measured responses used in the input and training data are 

the voltage observations V for event detection and rotor angle 

observations δ for the specific unstable generator group 

prediction. The use of voltage observations for the event 

detection was chosen, rather than using the rotor angles δ, 

because changes in electrical quantities (voltage magnitude) are 

observed immediately compared to the changes in rotor angles 

due to slower electromechanical phenomena. In a similar 

manner, current could also potentially be used as a variable. 

The PNNs are pre-trained to be used in an online manner as 

measurement data is streamed to them from PMUs as part of a 

Wide Area Monitoring System (WAMS) or from a dynamic 

state estimator [7], [24]. The event detection PNN receives 

voltage measurements V as input and creates a process of 

probabilities ρ(t), denoted in the paper as Process 1. Process 1 

is needed to identify that a disturbance has occurred. It is worth 

mentioning that Process 1 is trained to identify specifically 

large disturbances that might potentially lead to instability and 

it would therefore not be expected to be activated by small 

voltage fluctuations. Following event identification, the 

transient stability analysis PNN is triggered. This receives rotor 

angles δ as inputs and creates a process of probability 

distributions (vectors) π(t) which are denoted Process 2. Process 

2 is needed for the identification of the specific instability 

pattern. As new measurements continue to arrive, these 

processes continue to be updated and consequently they have a 

time varying output. It should be noted that Process 1 does not 

aim at substituting the event detection and activation of 

conventional protection devices. It rather aims at triggering 

Process 2, that is responsible for online stability prediction. The 

overall method therefore, aims at activating additional (to the 

conventional protection) corrective measures or special 

protection schemes. To highlight this distinction, the reference 

is made to an event or a contingency detection instead of fault 

detection throughout this paper. Therefore, Process 1 is a 

distinct and necessary mechanism that in a realistic setting will 

continuously monitor online measurement data and 
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automatically detect events that would require the activation of 

the online stability prediction algorithm. Process 1 is 

specifically trained to identify only such events that might lead 

to a system split and not merely to activation of traditional 

protection devices, since this would have implications on the 

needed training of the second stage of online transient stability 

assessment too. 

More specifically, to account for the dynamic nature of the 

considered problems, separate PNNs are created for each 

observation time t, as follows. Regarding the disturbance 

detection PNN, for each simulation in the training data, the 

class is 1 if the actual time of the disturbance θ is smaller than 

the current time step t and is 0 otherwise. Thus when the event 

detection PNN is provided with measurement data (i.e. voltages) 

at a single time t, it returns a probability ρ(t) that an event has 

occurred by time t. In the transient stability prediction PNN, for 

each simulation in the training data, the class is equal to the 

index i (with 1≤i≤I) of the instability class (as defined in Section 

II.A), or equal to 0 if the contingency is stable. Thus when the 

transient stability analysis PNN is provided with measurement 

data (i.e. rotor angles) at time t cycles, following event detection, 

it returns a probability distribution in the form of a vector π(t). 

Its ith entry πi(t) represents the probability that the contingency 

will ultimately result in specific unstable grouping pattern i. 

Note that unlike the event detection PNN, which takes the 

complete data (from time 0 onwards) as input, the transient 

stability analysis PNN takes only the post-fault detection data. 

This fact makes the event detection part of the proposed 

methodology essential. 

Representative trajectories of processes 1 and 2 are 

illustrated in Figure 1. When the output of Process 1 reaches a 

certain threshold, the occurrence of a contingency is declared 

and the first component of the output of Process 2 (denoted π0) 

is then monitored. When in turn, the output of π0 crosses a time-

varying boundary (explained in detail in subsequent Sections) 

and visualised in Fig. 1, the specific instability pattern defined 

as the predicted unstable generator groupings, is identified. It is 

given by the largest of the remaining elements of Process 2 

(namely πi, 1≤i≤I, one for each instability class). This approach 

may be interpreted that the PNNs first provide a temporal 

representation of the data (from WAMS), then statistical 

optimisation theory guides the selection of the decision rules.  

The proposed methodology described in this Section has 

been applied to the transient stability prediction problem. 

However, the method can be extended to any stability 

prediction algorithm (for different types of stability) in a similar 

manner, to optimally define the time required for a decision. 

A. Problem formulation and definition of instability classes 

It is assumed that at some random time θ (which is generally 

unknown) a transient disturbance occurs and a fixed length of 

time T immediately following the disturbance is then 

considered, by which time possible loss of synchronisation is 

assumed to have occurred. Hierarchical clustering is applied at 

time T to define unstable generator grouping patterns as in [24]. 

The agglomerative (bottom up) method is used with a cut-off 

value of 360 degrees, since exceeding this limit between any 

two generators points to loss of synchronism. This results in 

generator groupings where generators belonging to one group 

have less than 360 degrees difference in rotor angles. 

Consequently, in the case where only one group exists, the case 

is stable. By applying consecutively this procedure up to time 

T, the order of unstable groups is also derived (more details on 

this process can be found in [24]). An illustration of how 

unstable groups are defined, is presented in Fig. 2. 

 

 
 
Fig. 1.  Illustration of optimal decision rules for the RQP and RSP. 

 

Following a probabilistic approach and simulating a number 

of contingencies (more details provided in Section IV) a list of 

possible unstable generator groupings is obtained and each one 

of them is assumed to fall into one of I different instability 

classes, represented as C={0,1,...,I}, where 0 is the stable 

contingency class and the positive integers are labels for the I 

unstable contingency classes. It should be noted that the 

definition of instability classes, originally introduced in [24], is 

provided here for completeness of discussion only and it is not 

a new contribution of this paper. 

B. Decision rules 

In this setup decision rules are selected for three variables τ1, 

τ2, d, where: 1) τ1 > 0 is the time at which a transient disturbance 

is detected; 2) τ2 > τ1 is the time at which the transient stability 

assessment is made; 3) d ∈ C is the contingency class predicted 

at time τ2.  

Consider a power system with g generators labelled by i = 

1,…,g and denote by Vi(t) the voltage at generator terminal i, 

and by δi(t) the rotor angle at generator i, at time t≥0. 

Additionally let us write V(t) = (V1(t),...,Vg(t)) and δ(t) = 

(δ1(t),…,δg(t)), i.e. the vectors of all voltages and rotor angles 

respectively at time t. 

To be suitable for real-time applications the decision rule 

must be non-anticipative. That is, τ1 must be chosen based only 

upon observation of the generator voltages (Vi(t)) and rotor 

angles (δi(t)) up to time τ1 inclusive, and similarly for τ2. Further, 

in this paper the problems of event detection and transient 

stability assessment are temporally separated. That is, τ2 and d 

are chosen using only observations between time τ1 and time τ2 

inclusive. This is one of the main contributions of the paper 

which, alongside the explicit consideration of risk constraints, 

differentiates the proposed method from the approach followed 

in most such methods (e.g. [2]-[4], [6], [8]-[11], [24]) that do 

not consider the event detection. The mathematical implications 

of, and justification for, this decomposition are discussed in 
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Section III. 
 

 
Fig. 2. Example of instability class. 

C. Objectives 

The aim in this work is to assess power system transient 

stability status as quickly as possible following a contingency 

which is not directly observable, subject to probabilistic error 

constraints. Decision rules for τ1, τ2 and d will therefore be 

selected which aim to minimise the average total delay 

𝐽=𝔼[(𝜏2 − 𝜃)+] (1) 

(see below for the definition of 𝔼). Recall that θ is the actual 

time of the disturbance (as also shown in Fig. 1). The 

application of the function (a)+ := max(0; a) in (1) ensures that 

any classifications occurring before the event itself do not make 

a negative contribution to the average in (1), thus artificially 

reducing the average delay, but are instead counted as zero and 

hence make no contribution to (1). Since corrective actions 

taken on the basis of an incorrect transient stability assessment 

may cause unnecessary operational disruption and cost, four 

kinds of error are considered: 

• If τ1 < θ (a false alarm), error A0 occurs; 

• If the contingency is predicted stable (d = 0) when it is 

actually unstable of any class, error A1 occurs; 

• If the contingency is predicted unstable (d > 0) when it is 

actually stable, error A2 occurs; 

• If the contingency is predicted unstable of type d1 > 0 but 

the contingency is actually unstable but of a different class 

d2 ≠ d1, error A3 occurs. 

The probability pi of error Ai for a given decision rule and 

dataset is interpreted simply as the proportion of samples in the 

dataset for which error Ai occurs under that decision rule. For 

example, when Process 1 identifies that a disturbance has 

happened (process ρ(t) crossing threshold A as visualised in Fig. 

1) at a given time that eventually ends up being smaller than the 

actual time that the disturbance has happened (θ), this counts as 

a case of false alarm and counts towards error A0. Expectations, 

denoted by 𝔼 (used in following part), are then simple averages 

over the samples in the dataset. From the definition of false 

alarms A0, the maximum potential false dismissal rate (i.e. a 

contingency not identified) is bounded theoretically to be 1-p0. 

It should be noted however, that in our test dataset the 

maximum detection delay time is 17 cycles, which means that 

all contingencies are detected and therefore the false dismissal 

rate is 0. This is expected as the delay in such a case of a false 

dismissal would be equal to the maximum delay and therefore 

heavily penalised during the optimisation process. 

D. Optimisation problems 

In order to address the minimisation of (1) two sub-problems 

are identified: first the event detection problem, then the 

transient stability unstable pattern identification problem. 

1) Risk-constrained quickest detection problem (RQP).  

Select a decision rule for τ1 to minimise the average detection 

delay 𝐽1=𝔼[(𝜏1 − 𝜃)+], subject to the probabilistic false alarm 

constraint 

ℙ[𝐴0]≤𝑝0 (2) 

Suppose that an optimal decision rule 𝜏1
∗ has been found for 

the RQP problem. The second problem is stated as follows: 

2) Risk-constrained sequential testing problem (RSP). 

Given 𝜏1
∗

 select decision rules for τ2 and d to minimise the 

average prediction delay 𝐽2=𝔼[(𝜏2 − 𝜏1
∗)] , subject to the 

probabilistic error constraints 

ℙ[𝐴1]≤𝑝1 (3) 

ℙ[𝐴2]≤𝑝2 (4) 

ℙ[𝐴3]≤𝑝3 (5) 

Note that if no event is declared by the end of the observation 

period (t=90 cycles) then the event detection time 𝜏1 is set to be 

equal to the maximum, i.e., 90 cycles. Similarly, if no transient 

stability prediction is made then the prediction time 𝜏2 is set 

equal to 90 cycles. This incurs the maximum possible 

penalisation for failure of detection during optimisation.  

The symbols 𝜏2
∗ and d* are used to denote optimal decision 

variables for the RSP. The parameters p0, p1, p2 and p3 are 

probabilistic risk constraints for the corresponding types of 

error (A0 through A3). They are set according to the level of error 

considered acceptable while trying to balance the decision time 

and are a design parameter of the proposed method that would 

be decided by the system operator using the proposed method. 

Section V.A provides practical suggestions on setting the error 

rate bounds. A lower error threshold is usually expected to lead 

to slower but more accurate decisions. These parameters also 

provide flexibility to be strict in specific types of error only. For 

example, a system operator might want to set a very low value 

for a false alarm (threshold p0) as it may be acceptable to happen 

only on very rare occasions. More information and numerical 

examples regarding this are provided in Section V.B and V.C. 

E. Detailed Description of Decision Rule Structure and PNN 

Processes 

The approach to event detection is to use Process 1 ρ(t) 

(describing the probability that an event occurred), described in 

Section II. Detection occurs when this probability is sufficiently 

high: that is, when an upper threshold A∈[0,1] is crossed by 

Process 1 (see also Fig. 1 for illustration).  

In turn, the RSP problem is addressed through the use of 

Process 2 π(t), providing a probability distribution for the 

transient stability status (stable/unstable and exact 

identification of unstable generator groups) based on the 

measurements at time t. The first component π0(t) of the vector 
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π(t) provides a temporal representation of the probability that 

the detected contingency is stable. In the same way, for each i 

with 1≤i≤I, the ith component πi(t) of the vector π(t) provides a 

temporal representation of the probability that the detected 

contingency is unstable of type i. An important contrast with 

the RQP above is that the optimal ‘free boundary’ is time 

dependent in the RSP, (shown in Fig. 1). This means that the 

probability threshold for a very quick decision, which is 

necessarily based on fewer post-contingency observations, can 

be higher. Recall that neither the threshold for the RQP nor the 

boundary for the RSP are updated online as measurements are 

coming in, but are generated offline from the training dataset 

(as described in Section III below). However, adding test cases 

in the training dataset, for example for additional operating 

conditions or different topologies, could lead to an updated 

threshold and boundary.  

Upper and lower free boundary functions, denoted u and l 

respectively, are optimised through dynamic programming and 

the use of Lagrange multipliers. If the upper boundary is 

crossed first by the process π0 then stability is immediately 

predicted (that is, τ2 is set equal to the time of the boundary 

crossing and d is set equal to 0). Conversely, if the lower 

boundary is crossed first by π0 at time τ2 then instability (d ≥1) 

is predicted. In this case the probability processes πi, 1≤i≤I, one 

for each instability class, are inspected. Their maximum at time 

τ2 indicates the most likely unstable class, so provides the value 

of d: that is, d=j where πj(τ2) = max1≤i≤I πi(τ2). It should be noted 

that the boundaries merge at some point to ensure a decision is 

made within a maximum time T, after a disturbance is detected 

(as shown in Fig. 1). Effectively this is imposing a maximum 

decision time. 

An example of the decision rules for both the RQP and RSP 

is provided in Fig. 1. Here Process 1 passes above the level A at 

time 𝜏1
∗, at which time an event is detected. (Note that since the 

actual time of the disturbance θ<𝜏1
∗ this is not a false alarm.) 

From time 𝜏1
∗ onwards the post-detection probability process π0 

is observed, and a prediction of the unstable class is made when 

π0 crosses the boundary at time 𝜏2
∗. Since in this example it is 

the upper boundary u which is crossed first, stability (d=0) is 

predicted. Alternatively had the lower boundary l been crossed 

first, the most likely unstable class at time 𝜏2
∗ would have been 

predicted. 

The optimisation problem formulations introduced in Section 

II.D and the above decision rule structures are derived from the 

theory of optimal detection [26], which provides guarantees of 

optimality in problems of rapid detection under probabilistic 

uncertainty. The theory of quickest detection addresses change 

point detection problems, while sequential testing concerns the 

choice between two or more hypotheses as quickly as possible 

on average. 

III. SOLVING THE RISK-CONSTRAINED QUICKEST DETECTION 

AND SEQUENTIAL TESTING PROBLEMS 

In this Section, the detailed process to solve the described 

RQP and RSP is presented. We use the method of Lagrange 

multipliers to determine the optimal threshold A for the RQP 

and boundary  υ=(l,u) for the RSP, as illustrated in Fig. 1. A 

threshold or boundary will be called feasible if the decision rule 

constructed from this threshold or boundary satisfies the risk 

constraints of the problem when applied to the training data. In 

the RQP, for each threshold  A and nonnegative multiplier λ0 the 

Lagrangian is  

𝐿1(𝐴; 𝜆0) = 𝔼[(𝜏1 − 𝜃)+ + 𝜆0(𝟏𝛢0
− 𝑝0)] (6) 

where the function 𝟏𝛢0
 takes the value 1 if the error A0 (as 

described in Section II.C) occurs and the value 0 otherwise. 

Similarly the same indicator function is used in (9) and (10) for 

the remaining Ai.  

By the saddle point theorem (see for example Proposition 

5.1.6 of [27]), (𝐴∗, 𝜆0
∗ )  is an optimal threshold-Lagrange 

multiplier pair if and only if A* is feasible, 𝜆0
∗ 0, and (𝐴∗, 𝜆0

∗ ) 

is a saddle point of the Lagrangian (6), that is: 

 

𝐿1(𝐴∗; 𝜆0) ≤ 𝐿1(𝐴∗; 𝜆0
∗ ) ≤ 𝐿1(𝐴; 𝜆0

∗ ) (7) 

for any other feasible threshold 𝐴 and multiplier 𝜆00.  All 

solutions to the RQP may therefore be found by searching 

numerically for such pairs (𝐴∗, 𝜆0
∗ ). Similarly, the Lagrangian 

for the RSP is 

𝐿2(𝜐; 𝜆) = 𝔼[𝜏2 − 𝜏1
∗ + ∑ 𝜆𝑖(𝟏𝛢𝑖

− 𝑝𝑖)

3

𝑖=1

] (8) 

where υ = (l, u) jointly denotes the lower and upper 

boundaries described above, λ = ( 𝜆1,  𝜆2, 𝜆3 ), and 𝜏1
∗  is an 

optimal solution to the RQP. Again by the saddle point theorem, 

solutions to the RSP correspond to saddle points (𝜐, 𝜆∗) with 𝜐 

feasible and 𝜆∗0 . However since the space of all possible 

boundaries 𝜐 =  (𝑙, 𝑢)  is high dimensional, for the RSP we 

employ a dynamic programming procedure. In particular, for 

each nonnegative multiplier λ = (𝜆1,  𝜆2, 𝜆3) we determine an 

optimal boundary 𝜐𝜆 = (𝑙𝜆, 𝑢𝜆) as follows. 

As noted above, the boundaries must merge by the terminal 

time 𝑇  to ensure that a decision is made. We thus impose 

𝑙𝜆(𝑇) = 𝑢𝜆(𝑇) = 𝑥  and take the value of 𝑥  ∈ [0, 1] which 

minimises the Lagrangian 𝐿2 when observations are started at 

time T.  

Then for each  time 𝑡 with 𝜏1
∗ ≤ 𝑡 < T, employing backwards 

dynamic programming, we suppose knowledge of the 

boundaries (𝑙𝜆(𝑠), 𝑢𝜆(𝑠))  for all times  t < 𝑠  < T. When 

observations are started at time t, the Lagrangian 𝐿2 is then a 

function of (x, y) = (𝑙𝜆(𝑡), 𝑢𝜆(𝑡)) ∈ [0, 1] × [0, 1], which we 

minimise over (x, y) with the condition that x≤ y. This procedure 

is continued backwards in time until t = 𝜏1
∗  to obtain the 

boundary functions 𝜐𝜆 = (𝑙𝜆 , 𝑢𝜆). To search for saddle points we 

then maximise over the multiplier λ.  

IV. TEST NETWORK AND PRESENTATION OF CASE STUDY 

The case study uses the IEEE 68-bus reduced order 

equivalent model of the interconnected New England test 

system and New York power system (NETS-NYPS) as detailed 

in [28] and [29]. The test network, consists of 16 synchronous 

generators (G1-G16) in five interconnected areas. Standard 

sixth order models are used for all synchronous generators. G1-
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G16 are equipped with either slow IEEE DC1A DC exciters or 

fast acting static exciters of type IEEE ST1A, and G9 is 

equipped with a power system stabiliser. All generators are also 

equipped with generic governors, representing gas, steam and 

hydroelectric turbines. Dynamic RMS simulations are 

performed using DIgSILENT/PowerFactory software. 

A. Modelling of uncertainty 

Each of the loads in the test network is varied by scaling 

according to a daily load curve taken from UK National Grid 

data [24]. The hour of day is then sampled randomly following 

a uniform distribution to determine the per unit (p.u.) values for 

all loads. An independent random scaling factor is also applied 

to each hour of the day and to each load, drawn from a normal 

distribution with mean value 1 p.u. and standard deviation 3.33% 

as in [2]. An optimal power flow (OPF) problem is then solved 

to determine the output and disconnection of synchronous 

generators. Three phase self-clearing faults are considered in 

this study as contingencies that can happen  with equal 

probability at any point of any line. A normal distribution with 

mean value of 13 cycles and standard deviation of 6.67% is used 

to model the fault duration [2]. The actual time at which each 

disturbance occurs (θ) is drawn independently at random from 

the uniform distribution between 10 and 30 cycles. The 

methodology could, however, include any additional uncertain 

parameters, including any additional types of contingencies that 

can be simulated using any simulation framework, as long as 

they are sampled and included in the training dataset that will 

calculate the optimal threshold and boundary. 

B. Description of datasets 

The above mentioned probability distribution functions (for 

system loading, fault location and fault duration) have been 

randomly sampled to generate 5971 simulations, a 

representative enough sample to keep the error of the sample 

mean lower than 5% as described in [24]. Monte Carlo 

simulations are used to generate the dataset in this paper, 

however efficient or importance sampling techniques have also 

been proposed in the literature and can be utilized to make this 

process more effective [31]-[33].  

For each of these simulations the responses of each generator 

(voltage and rotor angle) to a single contingency are recorded 

with a 1/60s=1cycle sampling rate. Consequently, this is also 

the assumed sampling time of a PMU in this paper. The 

hierarchical clustering method presented in Section II.A is used 

to determine the groups of generators exhibiting instability in 

the obtained dataset. The post-fault time at which the clustering 

methodology is applied and, consequently, for which the 

predictions of unstable generator groupings are made, is chosen 

as T=90 cycles (1.5s). In general T is a parameter to be defined 

by the system operator and could vary depending on the specific 

network and time frame for the application of corrective 

measures. The choice T=90 cycles in this case study is a 

reasonable time frame for generators to exhibit transient 

instability, since the aim is to apply corrective control actions 

as quickly as possible (before time T).  

After classification these samples were then divided into 

three disjoint datasets: 2000 samples for the PNN training 

dataset, 2000 samples for the boundary training dataset and the 

remaining 1971 samples for the test dataset. The PNN training, 

boundary training and test datasets contained 222, 220 and 197 

unstable contingencies respectively (1778, 1780 and 1774 

stable contingencies respectively). There were in total 15 

contingency classes including the stable class, and all were 

represented in each dataset.  

V. NUMERICAL RESULTS 

A. Error rate bounds pi considerations 

Before specification of the probabilistic bounds pi, a general 

discussion is first provided on the choice of these parameters. 

In principle the probabilistic bounds pi may be chosen freely, 

according to the user's desired accuracy requirements for event 

detection and transient stability assessment from wide area 

measurements which link to the level of risk a system operator 

is willing to take. However this comes with the caveat that in 

practice the user will be faced with a restricted choice of these 

bounds, for two reasons. Firstly if the error bounds are set too 

low then they may be impossible to satisfy because of the 

uncertainty inherent in the problem. Secondly the discrete 

nature of the training sample means that the set of bounds which 

yield feasible solutions is typically not continuous. 

In this case study the speed of flexible prediction times is 

compared to that of fixed prediction times under equivalent 

error constraints. The choices of p1, p2 and p3 can be therefore 

guided by the error rates achieved by fixed prediction times on 

the training data. More precisely, the choice of p1, p2 and p3 can 

be based on the lowest levels achieved for these error rates 

using fixed times, which can then be progressively relaxed (that 

is, increased) if necessary to obtain feasible solutions, as in [20]. 

In the present paper there is additional complexity since the 

RQP and RSP are intertwined. Indeed the optimal decision rule 

𝜏1
∗ of the RQP depends on the level of the constraint p0 and is 

then passed as input to the RSP (described in Section II.D), 

which also depends on p1, p2 and p3. 

To address this, a list of values for p0 was first identified 

which yielded feasible solutions to the RQP. These values were 

p0=0.25%, 0.3%, 7%, 12.5% and 36.75%. The error rates p1, p2 

and p3 selected as above (according to the error rates achieved 

by fixed prediction times) were then progressively relaxed until 

a combination was found which yielded feasible solutions for 

all values of p0 in the list. This combination was 

p1=6/220=2.73%, p2=6/1780=0.34% and p3=24/220=10.9%. 

The values p1, p2 and p3 specified above are therefore driven by 

both the comparison with fixed prediction times (are 

comparable to the values obtained with fixed times) and the 

requirements of the sensitivity analysis for p0. It should be noted 

that relatively high values of p3 are also observed for the fixed 

prediction times investigated in Section VI.D below. Indeed 

this could be expected a priori since some instability classes had 

very few representatives in the training data. 

The above procedure followed in this paper is a suggestion 

in defining error rates and ensuring the existence of feasible 

solutions. However, in practice the system operator may choose 
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the error bounds pi freely (subject as above to the existence of 

feasible solutions). Lower values for these bounds are more 

conservative and so tend to give rise to slower but more 

accurate predictions, and conversely for higher bounds. 

B. Optimal boundaries 

A numerical calculation of the optimal boundary for the RSP 

for the case study presented here, is shown in Fig. 3, to highlight 

the information we can get by observing the boundary itself. 

Since the first component of Process 2 is the calculated 

probability that the system is stable, crossing the relatively high 

probability upper threshold would trigger the decision that the 

system is stable (recall that the required accuracy for this 

decision is 100 - p1 = 97.27%). In contrast, a very low value for 

the first component of Process 2 crossing the lower boundary 

would trigger the decision that the system is unstable. As 

mentioned earlier the probability threshold for identification as 

stable is generally higher for a quick decision (based on fewer 

post-contingency observations) and consequently the first 

component of Process 2 needs to be very high to cross the 

boundary. On the other hand, the probability needs to be 0 (in 

this case; recall that the corresponding error constraint is p2 = 

0.34%) to trigger a decision that the system is unstable for the 

first approximately 14 cycles after the event detection and the 

lower threshold increases as more post-contingency 

observations are gathered. 

The resulting in-sample error rates (that is, the error rates on 

the boundary training dataset) are presented in Table I. For each 

p0 the solution 𝜏1
∗ to the RQP was passed as input to the USP 

with the parameters p1 = 2.73%; p2 = 0.34% and p3 = 10.9% to 

obtain the solutions 𝜏2
∗ and d*. From this it can be seen that the 

conditions (2) and (5) are satisfied approximately in each case. 

The numerical error can be attributed to the discrete nature of 

the Monte Carlo sample, as discussed above. The 

corresponding decision rules 𝜏1
∗  and (𝜏2

∗, 𝑑) may therefore be 

considered as feasible for the RQP and RSP problems 

respectively. 

 
Fig. 3. Numerical optimal decision rule for the RSP in the case study of Section 

VI (time is measured relative to 𝜏1
∗). 

C. Test dataset performance and sensitivity analysis 

The out-of-sample performance of the optimal decision rules 

𝜏1
∗, 𝜏2

∗ and d* (that is, their performance on the test dataset) is 

shown in Table II. Performance measures  𝐽1
∗, 𝐽2

∗ and J* refer to 

the average delays to declare a contingency, declare that a 

specific unstable generator grouping will happen and to the 

overall delay for declaring both aforementioned events, 

respectively. They are computed for the test dataset, using the 

decision rules 𝜏1
∗ , 𝜏2

∗  and d* from Table I. The RQP optimal 

threshold A* and out-of-sample error probabilities  

ℙ[𝐴1], ℙ[𝐴2], ℙ[𝐴3] are also shown. Relaxing the false alarm 

constraint by increasing p0 gradually decreases the average time 

𝐽1
∗  taken for event detection (note that this relationship must 

hold in the training dataset, but is not guaranteed in the test 

dataset due to noise). In contrast there is no systematic 

reduction in the average time 𝐽2
∗ for event classification. Overall, 

and particularly since 𝐽1
∗ is an order of magnitude smaller than 

𝐽2
∗, there is also no systematic reduction in the total average 

delay J*.  

D. Comparison to pre-committed strategies 

The coupled RQP and RSP problems have been used in this 

paper to develop decision rules for transient stability prediction 

which both accommodate rapid event detection and are 

appropriately flexible, in order to be as quick as possible subject 

to probabilistic error constraints. The analysis of this approach 

is completed with a comparison to fixed or pre-committed 

prediction times, whereby one fixes beforehand the post-

disturbance time at which stability predictions are made. In 

order to focus on this comparison it is assumed in this section 

that the actual time of the disturbance θ is observable, and 

further we set θ=0 by temporarily removing pre-fault 

observations from each sample. 

 

 

 

 

 
TABLE I 

ERROR PROBABILITIES IN BOUNDARY TRAINING DATASET AND LAGRANGE 

MULTIPLIERS 

 p0(%) 0.25% 7% 12.5% 36.75% 

RQP 𝜆0
∗  9.75 2.98 2.23 2.09 

ℙ[𝐴0] 0.2% 6.95% 12.4% 36.75% 

RSP 𝜆1
∗  121 138.17 161.03 163.59 

𝜆2
∗  11 45.5 240.93 372.04 

𝜆3
∗  78.5 78.5 156 2.01 

ℙ[𝐴1] 0.91% 0.91% 2.73% 2.27% 

ℙ[𝐴2] 0.06% 0.06% 0.00% 0.06% 

ℙ[𝐴3] 10.45% 10.45% 10.91% 10.91% 

 

TABLE II 

PERFORMANCE IN TEST DATASET  

 p0(%) 0.25% 7% 12.5% 36.75% 

RQP A* 0.72 0.47 0.37 0.2 

ℙ[𝐴0] 0.3% 5.63% 12.99% 37.09% 

RSP 𝐽1
∗ (cycles) 2.17 1.9 1.73 1.15 

𝐽2
∗ (cycles) 23.71 23.45 25.9 24.65 

J* (cycles) 25.85 25.28 27.38 24.11 

ℙ[𝐴1] 0.51% 3.05% 2.03% 3.05% 

ℙ[𝐴2] 0% 0% 0% 0% 

ℙ[𝐴3] 10.15% 10.15% 9.64% 8.63% 

 

Fixed prediction delays of τ2=1, 10, 20,..., 60 cycles are 
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considered. For each fixed delay a PNN model is applied 

directly to solve the contingency classification problem. Table 

III provides the rates of errors A1, A2 and A3 corresponding to 

each fixed (pre-committed) post-fault classification time. The 

lowest error rates, which are also comparable to the 

probabilistic bounds used in the case study (cf. Table I), are 

achieved by pre-committed times of at least 50 cycles. The RSP 

(setting 𝜏1
∗ = 𝜃 ) requires only one-third of this time (16.35 

cycles or 0.27 seconds) on average, a relative improvement 

comparable to that observed in [20]. Among the 197 unstable 

contingencies in the test dataset the average delay was 30.13 

cycles (0.50 seconds), while among the 1774 stable 

contingencies the average delay was 14.82 cycles (0.25s).  

On the other hand, the values reported for the total delay J* 

in Table II show that the combined RQP and RSP performed 

both event detection and classification within around 25 cycles 

on average (0.42s), which represents half of the approximately 

50 cycles taken for classification alone by the pre-committed 

strategies with comparable accuracy (even with the benefit of 

observable events). Further, 90% of predictions were made 

within 31 cycles (0.52s) and 95% within 40 cycles (0.67s) while 

the maximum prediction delay was 62 cycles (1.03s). It should 

also be noted, that the proposed method decides on the optimal 

time for each specific contingency which is an inherent 

advantage over previously used pre-committed strategies with 

fixed decision time. 

E. Discussion 

Although in this study the training dataset is obtained from 

Monte Carlo simulations, the methodology developed here is 

equally applicable to data obtained from actual WAMS 

measurements. In this case, however, the data may need some 

pre-processing to eliminate or reduce noise. In the presence of 

additional noise, the decision rules selected by the above 

methodology will naturally become more conservative and thus 

prediction times will tend to be increased. Further it is assumed 

above that each sample in the training and test data is labelled 

with its `true' contingency class. It is straightforward in the 

above setup to incorporate uncertainty in these labels by simply 

allowing them to be sampled from a probability distribution. In 

this case a larger dataset will generally be required in order to 

achieve a representative sample. The pre-processing of 

recorded data, choice of distribution for labels, and questions of 

sample size are, however, beyond the scope of this paper. 
TABLE III 

COMPARISON OF PERFORMANCE WITH FIXED PREDICTION TIME 

Time (cycles) Overall error ℙ[𝐴1] ℙ[𝐴2] ℙ[𝐴3] 
1 9.99% 100% 0% 0% 

10 9.99% 100% 0% 0% 

20 4.06% 32.49% 0.9% 0% 

30 2.44% 19.8% 0.51% 3.55% 

40 0.96% 9.64% 0% 5.58% 

50 0.2% 2.03% 0% 7.61% 

60 0.15% 1.02% 0% 6.6% 

RSP (avg. 16.35 

cycles) 

0.25% 2.53% 0% 7.61% 

The temporal problem decomposition, which was introduced 

in Sections II and III, also merits discussion. While the RQP 

takes as input the observations from time 0 until the 

contingency detection time τ1, for computational reasons the 

RSP has access only to observations from τ1 onwards. However, 

since τ1 is only approximately 2 cycles on average, the resulting 

information loss is negligible. 

VI. CONCLUSIONS 

In this paper we propose a method to address the question of 

risk-constrained optimality in the timing of the decision of 

online identification of transient instability (exact unstable 

generator grouping), by incorporating also the event detection 

prior to classification. The approach has been validated on the 

IEEE 68 bus test system, where it is proven to be between two 

and three times faster on average than strategies based on fixed 

decision times with comparable error rates. Additionally, the 

proposed method provides the ability to a system operator to set 

constraints based on the number of errors considered acceptable. 

Finally conclusions are drawn from the sensitivity analysis 

with respect to the error probability rates p0 (false alarm), p1 

(stable cases classified as unstable), p2 (unstable cases classified 

as stable), p3 (unstable cases that are misclassified as different 

unstable generator group). The rate of false detections in the 

RQP (related to disturbance detection) does not feature 

explicitly in the constraints of the RSP (related to specific 

unstable generator grouping identification). This means that for 

a given choice of the probabilistic constraints p1, p2 and p3 in 

the RSP, there is some freedom in choosing the value of p0 in 

the RQP. However, no systematic relationship between p0 and 

the speed or accuracy of the classification has been observed. 

Further, a priori it is rational to constrain the false alarm rate p0 

to be as low as possible (lowest value for which a feasible 

solution exists). 
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