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Design and Experimental Validation of Deep
Reinforcement Learning-based Fast Trajectory

Planning and Control for Mobile Robot in
Unknown Environment

Runqi Chai, Member, IEEE, Hanlin Niu, Member, IEEE, Joaquin Carrasco, Member, IEEE, Farshad Arvin, Senior
Member, IEEE, Hujun Yin, Senior Member, IEEE, Barry Lennox, Senior Member, IEEE

Abstract—This paper is concerned with the problem of plan-
ning optimal maneuver trajectories and guiding the mobile robot
toward target positions in uncertain environments for exploration
purposes. A hierarchical deep learning-based control framework
is proposed which consists of an upper-level motion planning
layer and a lower-level waypoint tracking layer. In the motion
planning phase, a recurrent deep neural network (RDNN)-based
algorithm is adopted to predict the optimal maneuver profiles for
the mobile robot. This approach is built upon a recently-proposed
idea of using deep neural networks (DNNs) to approximate the
optimal motion trajectories, which has been validated that a fast
approximation performance can be achieved. To further enhance
the network prediction performance, a recurrent network model
capable of fully exploiting the inherent relationship between pre-
optimized system state and control pairs is advocated. In the
lower-level, a deep reinforcement learning (DRL)-based collision-
free control algorithm is established to achieve the waypoint
tracking task in an uncertain environment (e.g., existence of
unexpected obstacles). Since this approach allows the control
policy to directly learn from human demonstration data, the time
required by the training process can be significantly reduced.
Moreover, a noisy prioritized experience replay (PER) algorithm
is proposed to improve the exploring rate of control policy.
The effectiveness of applying the proposed deep learning-based
control is validated by executing a number of simulation and
experimental case studies. The simulation result shows that
the proposed DRL method outperforms vanilla PER algorithm
in terms of training speed. Experimental videos are also up-
loaded and the corresponding results confirm that the proposed
strategy is able to fulfill the autonomous exploration mission
with improved motion planning performance, enhanced collision
avoidance ability, and less training time.

Index Terms—Mobile robot, Optimal motion planning, Motion
control, Recurrent neural network, Deep reinforcement learning,
Unexpected obstacles, Noisy prioritized experience replay.
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THE development of unmanned ground vehicles (UGVs)
or mobile robots has received considerable attention over

the last two decades due to its potential benefits in terms
of sensing the unknown environment, alleviating urban traffic
congestion, reducing harmful emissions, and enhancing road
safety. Generally speaking, four key modules are involved
in a robotic system: environmental perception [1], motion
planning [2], motion control [3], [4], and vehicle-to-vehicle
communication [5]. Among them, the planning and control
modules are mainly responsible for navigating the route and
making maneuver decisions. Consequently, it is usually recog-
nised as a key indicator to reflect the intelligence level of a
robotic system. However, there are challenges when it comes
to planning and steering the motion of mobile robots in an
optimal and timely way, considering the complexity of the
environment and various physical limitations of the robot.
These challenges, together with other mission-dependent re-
quirements, have stimulated both scholars and engineers to
explore promising solutions to this kind of problem.

A. Related Works

The mission investigated in this research work focuses on
applying the mobile robot to explore unknown target regions.
Numerous research works have been carried out in developing
advanced path planning and control algorithms for dealing
with this problem [6]–[9]. For instance, in [7] the authors
proposed a two-level path planning scheme incorporating the
standard A-star method and an approximate policy iteration
algorithm to generate smooth trajectory for mobile robots.
Similarly, Kontoudis and Vamvoudakis [8] proposed a hybrid
path planning approach combining rapidly-exploring random
tree and Q-learning techniques to achieve collision-free navi-
gation. In [9], a trajectory planner without the time-consuming
process of building the Euclidean Signed Distance Field
is proposed. EGO-planner explicitly constructs an objective
function that keeps the trajectory away from obstacles while
ESDF-based methods have to calculate collision information
with a heavy computation burden. Although EGO-planner
reduces a significant amount of computing time comparing
with ESDF-based planners [10] [11], it still needs to param-
eterize trajectory by a uniform B-spline curve first and then
optimize it using smoothness penalty, collision penalty, and
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feasibility penalty terms. Moreover, it needs an additional
time re-allocation procedure to ensure dynamical feasibility
and generate a local optimal collision-free path for unknown
obstacle. In this paper, we propose an end-to-end DRL method
to deal with unknown obstacle and our DRL method uses lidar
sensor data as input of neural network and generates collision
avoidance command directly and it does not need manually
designed optimization approach like EGO-planner. The DRL
method is also integrated with our proposed global optimal
path planning method for known obstacles.

These works belong to the class of sample-and-search
methods where a finite set of mesh grids is firstly applied to
discretize the searching space. Then a satisfactory connection
between the initial pose and the target pose is selected.

Another potentially effective strategy is to construct
an optimal control model consisting of the vehicle dy-
namics, and other vehicle-related constraints. Subsequently,
well-developed optimization-based control algorithms such
as swarm intelligence-oriented algorithms [12], dynamic
programming-based methods [13]–[15], and nonlinear model
predictive control (NMPC)-based approaches are utilized to
plan and steer the motion trajectories [16], [17]. Specifically,
by taking into account public traffic restrictions, a model
predictive navigation and control framework was established
in [16] to plan and steer the UGV trajectory. Besides, the
authors of [17] proposed an MPC-scheme, which is capable
of anticipating the motion of the front vehicle such that the
autonomous car following control task can be successfully
fulfilled. Compared to sample-and-search methods, the appli-
cation of optimization-based planning/control approaches has
several advantages: (i) Different mission/environment-related
requirement (e.g., constraints) can be explicitly considered;
(ii) Since the motion trajectory is directly planned, the path
velocity decomposition becomes non-necessary. Hence, these
types of algorithms have received an increasing attention in
the context of autonomous exploration.

B. Motivations
Different from the aforementioned research works, this

paper aims to design, test and validate a fast yet optimal
motion planning and control architecture for mobile robot
operating under an unstructured and partly unknown environ-
ment (e.g., target region exploration, rapid rescue, autonomous
parking, etc.). For the considered mission scenarios, the main
challenges may result from three aspects:

• Convergence failures can frequently be detected in the
optimization process with the consideration of mechan-
ical limitations, nonlinear path/dynamic constraints and
non-convex collision avoidance constraints.

• The (re)optimization process requires a large amount of
onboard computing power.

• The actual operation environment of the mobile robot
is uncertain, meaning that there may exist obstacles
suddenly appear within the sensing range of the robot.
This will certainly create a hazard and lead to significant
safety risks.

These three issues become more prominent when it comes
to real-time applications.

C. Main Contributions

The main contribution of the present work lies in dealing
with the three challenges stated previously and developing a
hierarchical deep learning-based control framework for the
autonomous exploration problem. To be more specific, for
the first two issues, we make an attempt to address them by
exploring the idea of planning the optimal motion trajectory
via deep neural network (DNN)-based direct recalling. This
type of strategy aims to train DNNs on a pre-optimized state-
action dataset. Following that, the trained networks will be
applied as an online motion planner to iteratively predict
optimal maneuver actions. Such a direct recalling strategy can
acquire near-optimal motion planning performance and better
real-time applicability in comparison to other optimization-
based techniques such as NMPC and dynamic programming
[18]–[22]. However, most of the them assumed the network
inputs are independent to each other and applied a fully-
connected network structure to learn the optimal mapping
relationship. This indicates that the inherent relations between
the optimized state and control action pairs may not be
sufficiently exploited. Therefore, building upon our previous
studies [23], we enrich the power of the DNN-based motion
approximator by using a gated recurrent unit recurrent deep
neural network (GRURDNN) model.

As for the third issue, we make an attempt to address it by
taking advantages of deep reinforcement learning (DRL)-based
techniques [24], [25]. More precisely, DRL has been used on
autonomous vehicles for collision avoidance using lidar [26]
or camera data [27]. However, previous research works rely
heavily on the training data and the exploration usually starts
on random action to gather experience data for replaying. This
random action is likely to result in low quality training data
and slow convergence speed. In this research, we proposed
a noisy prioritized experience replay (PER) algorithm to
improve the training speed of the standard PER algorithm.
The proposed noisy PER algorithm is integrated into the Deep
Deterministic Policy Gradient (DDPG) algorithm. Compared
to the vanilla PER algorithm implemented in our previous
work [28], this modification can introduce more exploring
actions in early training stage and perform higher training
speed. The effectiveness of this approach will be validated
in the experimental section of this paper.

D. Organization

The remainder of this article is arranged as follows. In
Section II, a constrained trajectory optimization model is firstly
formulated so as to describe the mobile robot autonomous
exploration mission profile. Following that, Section III con-
structs the designed GRURDNN optimal trajectory approx-
imator, while the DRL-based collision avoidance approach
is presented in Section IV such that unexpected obstacles
can be avoided during the maneuver process. Simulation
verification analysis, along with experimental validation results
on a real-world test platform, are demonstrated in Section V to
confirm the effectiveness and appreciate the advantages of the
proposed design. Some concluding remarks are summarised
and presented in Section VI.
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II. PROBLEM FORMULATION

For the considered autonomous exploration task, we are
interested in transferring a mobile robot from its current
position to an unknown target position for an exploration
purpose. During the movement, it is required that the collision
risk between the mobile robot and obstacles (e.g., expected
objects on the environmental map as well as the unexpected
ones) can be removed, while simultaneously minimizing the
mission complete time. To formulate this problem, a con-
strained nonlinear trajectory optimization model is established
in this section.

A. Dynamic Model and System Constraints of a Mobile Robot

The kinematic equations of motion for the mobile robot are
characterized as [13]:

ṗx(t) = v(t) cos(θ(t))
ṗy(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)
v̇(t) = av(t)
ω̇(t) = aω(t)

(1)

Eq. (1) can be abbreviated as ẋ(t) = f(x(t),u(t)), in which
the state and control variables of the mobile robot are defined
as x(t) = [px(t), py(t), θ(t), v(t), ω(t)]T ∈ R5×1 and u(t) =
[av(t), aω(t)]T ∈ R2×1, respectively. (px, py) stands for the
position of the mobile robot, and θ is the orientation angle. The
linear and angular velocities are denoted as v and ω, whereas
av and aω are the corresponding accelerations.

Based on Eq. (1), one can derive the nonholonomic con-
straint ṗx(t) sin(θ) − ṗy(t) cos(θ) = 0, indicating that the
mobile robot cannot perform lateral movement [29]. However,
forward maneuvers can be performed as one has ṗx(t) cos(θ)+
ṗy(t) sin(θ) = v(t).

For the exploration problem, the boundary conditions for
the mobile robot states at t0 = 0 and tf can be specified as:

x(t0) = x0,
x(tf ) = xf ,

(2)

where x0,xf ∈ R5×1 are scenario-dependent. Due to the ex-
istence of mechanical/environmental limitations, system state
and control variables must vary in their allowable ranges
during the entire movement. This can be written as:

x(t) ∈ X, u(t) ∈ U,
X = {x(t) ∈ R5×1 : |x(t)| ≤ x̄max},
U = {u(t) ∈ R2×1 : |u(t)| ≤ ūmax},

(3a)

(3b)

(3c)

where x̄max = [pxmax , pymax , θmax, vmax, ωmax]T and ūmax =
[amax
v , amax

ω ]T are, respectively, the maximum allowable values
for the state and control variables.
Remark 1. Note that in Eq. (1), the last two dynamic equations
are introduced such that the continuity and smoothness of θ(t)
and v(t) can be improved. Meanwhile, it is relatively simple
to consider the linear and angular acceleration constraints by
imposing explicit constraints on the system control variables
(see e.g., (3c)). Note that the continuity and smoothness of the
velocity vector can be further improved by considering higher
time derivatives of position after acceleration, namely “jerk”
or “snap”, as used respectively in [30], [31].

B. Collision Avoidance for Expected Obstacles

In real-world scenarios, certain constraints should be im-
posed to avoid the collision risk of the mobile robot and
obstacles existing on the exploration map. Suppose that the
position information of the on-map obstacles is available for
the motion planner [21], [22], [32]. We can define the region
occupied by the mobile robot and obstacles as A(x) ∈ R2

and O(m) ∈ R2 with m = 1, 2, ...No being the obstacle index.
Then, a collision-free trajectory should satisfy the following
condition:

O(m) ∩ A(x) = ∅, ∀m = 1, ..., No, (4)

where the full dimensional mobile robot A(x) and on-map
obstacles O(m) are modeled as convex polytopes:{

A(x) = A(x)W +B(x),

O(m) = {z ∈ R2|P (m)z ≤ q(m)}.
(5a)

(5b)

with W being an initial compact set regulated by (G, g) (e.g.,
W = {z ∈ R2|Gz ≤ g}) and similarly, (P (m), q(m)) regulates
the shape of the m-th known obstacle. Besides, A(x) and
B(x) are the rotation matrix and the translation vector that
determine the orientation and position of the mobile robot.
By introducing a safety margin parameter dmin, the collision
between the robot and m-th obstacle can be avoided if the
following inequality holds true:

dist(A(x),O(m)) > dmin ≥ 0. (6)

with dist(A(x),O(m)) defined by:

dist(A(x),O(m)) : = min
r(m)
{‖r(m)‖ : (A(x) + r(m)) ∩O(m) = ∅}.

(7)
Eq. (6) can be directly adhered to the mobile robot trajec-
tory optimization model as path constraint during the entire
mission t ∈ [0, tf ]. However, it may result in computational
issues such as numerical difficulties and convergence failure
for gradient-based optimization algorithms. Thanks to the
proposition established in [21] and validated in [22], condition
(6) can be transformed to a smoother form such that the
computational complexity of the optimization process can be
alleviated significantly. To be more specific, imposing Eq. (6)
is equivalent to:

Find λ(m) ≥ 0,µ(m) ≥ 0
subject to ∀t ∈ [0, tf ]

(P (m)B(x)− q(m))Tλ(m) − gTµ(m) > dmin

AT (x)P (m)T λ(m) +GTµ(m) = 0

‖P (m)T λ(m)‖ ≤ 1

(8)

in which (λ(m), µ(m)) denotes the dual variables.

C. Trajectory Optimization Formulation

According to the mobile robot dynamic model, mechani-
cal constraints, boundary conditions and collision avoidance
constraints introduced previously, we are now in a place to
establish a finite-horizon constrained trajectory optimization
formulation to describe the overall exploration mission. That
is, a collision-free optimal exploration trajectory for the mobile
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robot can be obtained by addressing the following optimization
model:

min
x,u,λ(m),µ(m)

J = Φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t))dt

subject to ∀m ∈ {1, ..., No}, ∀t ∈ [0, tf ]
ẋ(t) = f(x(t),u(t))

(P (m)B(x)− q(m))Tλ(m) − gTµ(m) > dmin

AT (x)P (m)T λ(m) +GTµ(m) = 0

‖P (m)T λ(m)‖ ≤ 1
x(t0) = x0, x(tf ) = xf
x(t) ∈ X, u(t) ∈ U
λ(m) ≥ 0, µ(m) ≥ 0

(9)
in which J stands for the objective function consisting of
a terminal cost term Φ(x(tf ), tf ) and a process cost term
L(x(t),u(t)). Since we are aiming to fulfill the exploration
mission in the shortest time, the objective function is set to
J = tf . Note that tf is not given in advance and is included
in the constraints of optimization model (9).

Remark 2. Certain advantages can be obtained if the optimiza-
tion model (9) is applied to plan the exploration trajectory
of mobile robots: (i) Since ‖P (m)Tλ(m)‖ ≤ 1 is a convex
constraint, an improved solution time and convergence rate can
be expected; (ii) This formulation considers convex obstacles
and no further assumptions are applied to the geometric
shape of obstacles; (iii) Additional mission-dependent condi-
tions/requirements can be easily considered in (9) by modeling
them as algebraic inequalities or equalities; (iv) Though we
are aiming for time-optimal exploration motions, it is simple
to modify this optimization model to consider other mission
objectives.

III. GRURDNN-BASED OPTIMAL MOTION PLANNING

A GRURDNN-based real-time motion planner capable of
approximating the optimal exploration trajectories is con-
structed in this section. This approach can be viewed as an
extended version of the fully-connected DNN-based motion
planner advocated in our previous work [23]. The main novelty
of the proposed one is that it implements a recurrent net-
work structure with gated recurrent unit mechanism to further
exploit the inherent relationships between different network
inputs (e.g., state variables of the mobile robot). To form the
GRURDNN-based optimal motion planner, four main steps are
required, which will be discussed in later subsections.

A. Forming the Exploration Trajectory Dataset

Prior to construct the network model, a trajectory dataset E
containing Ne optimized vehicle state and control evolution
histories is pre-generated for a particular mobile robot explo-
ration scenario (e.g., ‖E‖ = Ne). This can be achieved by
utilizing the Markov chain Monte-Carlo (MCMC) sampling
method. That is, the trajectory optimization model (9) is
iteratively solved with x(t0) = x0 + ∆x. Here ∆x is a
random noise value. Note that in real-world applications, it
is reasonable to assume the initial configuration of the mobile
robot is noise-perturbed due to the existence of localization
errors.

Algorithm 1 Optimal parking maneuver dataset generation
1: procedure
2: Initialize E = ∅;
3: Form a set of temporal node {tk}Nk

k=1;
4: Apply MCMC to sample a set of noise value {∆i

x}Ni
i=1;

5: /*Main loop*/
6: for i := 1, 2, ..., do
7: while ‖E‖ < Ne do
8: (a) Specify

x0 = x0 + ∆i
x

9: (b) Use {tk}Nk
k=1 to construct the discrete-time

10: optimization model of (9):

min
xk,uk,λ

(m)
k

,µ
(m)
k

J =

Nk∑
k=0

L(xk, uk) + Φ(xNk
, tk)

s.t. ∀m ∈ {1, ..., No}, ∀k ∈ {0, ..., Nk}
xk+1 = f(xk,uk,∆tk)

(P (m)B(xk)− q(m))Tλ
(m)
k − gTµ(m)

k > dmin

AT (xk)P (m)T λ
(m)
k +GTµ

(m)
k = 0

‖P (m)T λ
(m)
k ‖ ≤ 1

x0 = x0 + ∆i
x

xNk
= xf

xk ∈ X, uk ∈ U
λ

(m)
k ≥ 0, µ

(m)
k ≥ 0

(10)
11: (c) Perform Algorithm 2 to generate an initial feasible
12: guess trajectory history (x(0),u(0));
13: (d) Address the static nonlinear programming problem
14: (10) via numerical optimization algorithm [33] with
15: (x(0),u(0)) as the initial guess;
16: if optimization tolerance is satisfied then
17: (e) Output the optimal time history and perform

E = E ∪ {(x∗k,u∗k)}

18: else
19: (f) Discard the unconverged solution and perform

E = E ∪ ∅

20: end if
21: (g) Update the index i← [ i+ 1;
22: end while
23: end for
24: Divide E into subsets via Eq.(17);
25: Output E, Etr, Ete and Ev.
26: end procedure

To present the process of forming E in detail, a pseudocode
is established (see e.g., Algorithm 1). The final output dataset
is divided into three subsets which will be used to train, test
and validate the designed GRURDNN network. That is,

E = Etr ∪ Ete ∪ Ev (17)

Here, Ntr, Ntr and Ntr denote the training, testing and vali-
dation sets with Ntr = ‖Etr‖, Nte = ‖Ete‖ and Nv = ‖Ev‖
being the size of Etr, Ete, and Ev, respectively. Note that in
(10), the state and control variables at time instant tk are
denoted as xk and uk, respectively. The time step is defined
as ∆tk = tk+1 − tk, with t1 = 0 and tNk

= tf .

Remark 3. Compared to the trajectory dataset generation strat-
egy designed in [23], [35], an improved reference trajectory
generation strategy is designed and embedded in Algorithm
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Algorithm 2 Initial feasible trajectory generation
1: procedure
2: Create the exploration map based on (pxmax , pymax ) and ex-

pected obstacle information;
3: Grid the exploration map uniformly with specific resolution

level;
4: Dilate the irregular obstacle to meet the safety margin dmin

[34];
5: Apply the A-star algorithm to explore a shortest collision-

free trajectory X(0)
p = (p

(0)
x , p

(0)
y ) between the initial and target

points;
6: for k := 0, 1, ..., Nk do
7: (a) calculate other state profiles via

θ(0)(k) = sin−1
( p

(0)
x (k+1)−p(0)x (k)

‖X(0)
p (k+1)−X

(0)
p (k)‖2

)
v(0)(k) =

‖X(0)
p (k+1)−X

(0)
p (k)‖2

∆tk

ω(0)(k) = ‖θ(0)(k+1)−θ(0)(k)‖2
∆tk

(11)

8: (b) Modify the oriental angle via

θ(0)(k) =

{
θmax if θ(0)(k) > θmax,

−θmax if − θ(0)(k) < −θmax.
(12)

9: (c) Modify the linear velocity via

v(0)(k) =


v̄(0)(k) if v(0)(k+1)−v(0)(k)

∆tk
> amax

v ,

v(0)(k) if v(0)(k+1)−v(0)(k)
∆tk

< −amax
v ,

vmax if v(0)(k) > θmax,

−vmax if − v(0)(k) < −θmax.

(13)

10: with

v̄(0)(k + 1) = v(0)(k) + amax
v ∆tk

v(k + 1)(0) = v(0)(k)− amax
v ∆tk

(14)

11: (d) Modify the angular velocities via

ω(0)(k) =


ω̄0(k) if ω(0)(k+1)−ω(0)(k)

∆tk
> amax

ω ,

ω(0)(k) if ω(0)(k+1)−ω(0)(k)
∆tk

< −amax
ω ,

ωmax if ω(0)(k) > ωmax,

−ωmax if − ω(0)(k) < −ωmax.
(15)

12: with

ω̄(0)(k + 1) = ω(0)(k) + amax
ω ∆tk

ω(0)(k + 1) = ω(0)(k)− amax
ω ∆tk

(16)

13: end for
14: Output the initial collision-free trajectory

x(0) = [p(0)
x , p(0)

y , θ(0), v(0), ω(0)]T ∈ R5×Nk+1

15: end procedure

1 (see Algorithm 2 for a detailed illustration). This strategy
adopts the A-star algorithm to find the initial reference trajec-
tory. It guarantees that the gradient-based numerical optimizer
can quickly start the searching process at a collision-free path.
As a result, the success rate of optimal solution detection,
along with the time required to form the optimized trajectory
dataset, is likely to be further improved. Note that designs in
[23], [35] are likely to take longer computational time, as a
pre-optimization process has to be applied.

Remark 4. Performing Lines 6-14 is to generate the initial
reference trajectory for θ(0), v(0) and ω(0) such that they

can satisfy the dynamic inequality constraints (3b). This is
achieved by re-shaping θ(0), v(0) and ω(0) according to (12),
(13) and (15). This modification may make the trajectory fail to
meet system dynamics. It is worth noting that the primary aim
of this initial trajectory generation strategy is to quickly find
a collision-free maneuver path to warmly start the gradient-
based optimization process. It does not need to exactly satisfy
the system dynamics at all time nodes.

Remark 5. Note that the exploration trajectory dataset is
generated from known static obstacle locations and is therefore
environment-specific. However, datasets generated in this way
have the possibility to be applicable to other scenarios through
methods such as transfer learning.

B. Structuring and Training the Network

RDNN motion planning networks with GRU mechanism are
structured and trained on the pre-generated training dataset
Etr such that the mapping relations between the optimized
states and control actions can be approximated. The motivation
for the use of DNN with a recurrent structure relies on its
capability to dig the dynamic temporal behaviour of the time
series data, as it introduces memory block in neurons. More-
over, compared to the widely-used long-short term memory
(LSTM) mechanism, the implementation of GRU can result in
less number of network structural parameters, thereby easing
the training process to some degree. As for the mobile robot
autonomous exploration mission, two GRURDNNs, including
a linear acceleration control network Nav and a angular accel-
eration control network Naω , are built in order to approximate
the time-optimal actions u∗

k with xk as the network input.
More precisely, we have

a∗v(tk) :≈ Nav (xk),
a∗ω(tk) :≈ Naω (xk).

(18)

For simplicity reasons, the above equation is abbreviated as
uk :≈ Nu(xk) for the rest of the paper. As shown in Fig. 1,
supposing the GRURDNN network has NL layers and Nn
neurons at each layer, then at time node tk, the output of the
g-th neuron in the j-th layer oj,g,tk can be written as:

zj,g,tk = σs(Wzxj,g,tk + Uzoj,g,tk−1
+ bz)

hj,g,tk = σs(Whxj,g,tk + Uhoj,g,tk−1
+ bh)

ĥj,g,tk = σh(Wĥxj,g,tk + Uĥ(oj,g,tk−1
� hj,g,tk ) + bc)

oj,g,tk = zj,g,tk � ĥj,g,tk + (1− zj,g,tk )� hj,g,tk−1

(19)

where j = {1, ..., Nl} and g = {1, ..., Nn}. � stands for the
Hadamard product operator. (z(·),h(·), ĥ(·),o(·)) represents,
respectively, the update gate, reset gate, activation, and output
vectors. (W(·), b(·)) denotes the weight matrices and bias
vectors. σs(·) and σh(·) are the activation functions, which
can be written as:

σs(x) = ex

1+ex ,

σh(x) = ex−e−x

ex+e−x .
(20)

To train the network and update the weight matrices as well
as bias vectors, a performance index should be defined. As
suggested in [36], the mean squared error (MSE) measure is
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applied to evaluate the performance of the network approxi-
mation ability:

L(W(·), b(·)) =
1

Ntr

Ntr∑
i=1

1

Nk

Nk∑
j=1

[
o(tjT )− x(tjT )

]2
(21)

in which T =
tf
Nk

, whereas o(tjT ) and x(tjT ) are, respec-
tively, the actual and target network outputs. To train the
network, the stochastic gradient descent (SGD) algorithm,
incorporating the adaptive learning rate technique [37], is used.

Fig. 1: The architecture of GRURDNN

C. Approximating the Optimized Exploration Trajectory

It should be noted that the construction of the optimized
trajectory dataset and GRURDNN networks, along with the
training process, can all be performed offline. Subsequently,
the trained network can serve as the motion planner to approx-
imate the optimal trajectory in real-time. General procedures
of this online approximation process are detailed in the next
pseudocode (see Algorithm 3).

Algorithm 3 Approximating time-optimal exploration trajectory

1: procedure
2: At each time point tk, k = 0, 1, ...; do
3: (a) Measure the actual state of the mobile robot xk;
4: (b) Approximate the optimal motion command uk via

uk :≈ Nu(xk)

5: (c) Apply Nu(xk) to propagate the nonlinear dynamics:

xk+1 = f(xk, Nu(xk),∆tk)

6: (d) Update the time point tk ← [ tk+1, and go back to (a).
7: end procedure

IV. COLLISION-FREE DRL-BASED ONLINE CONTROL

In order to avoid unexpected collision risk when the mobile
robot is following the optimal trajectory planned by the pro-
posed GRURDNN-based algorithm, we proposed a collision-
free DRL-based online control algorithm. The proposed algo-
rithm is a DRL-based mapless collision avoidance algorithm
that does not need accurate map information and also has
the fast computing speed that can cope with the unexpected
obstacles. The proposed training method enables the control
policy to learn from human demonstration data instead of
exploring random data. A simple yet efficient noisy weight
method is also proposed to improve the training speed.

A. State and Action Space

To differ the upper motion planning level, the state space at
time step t is denoted by vector st that consists of lidar data
vector lt, velocity data vector vt−1 at previous time step, and
relative target position vector pt. The lidar data is normalized
to the range of [0, 1]. pt is represented in the polar coordinate.
The action space at time step t is denoted by vt and consists
of linear velocity vlt and angular velocity vat.

B. Reward Space

Mobile robot is controlled to follow the designed optimal
trajectory while also taking into account the unexpected obsta-
cles. Reward function is designed to navigate mobile robot to
next waypoint whilst avoiding unexpected obstacles. Reward
function is defined as

rsum = rgd + rsc + rv (22)

where rsum represents the sum reward, rgd describes the
goal distance reward, rsc is the safety clearance reward, rv
represents velocity control reward. rgd can be calculated by

rgd =

{
ra if drg < drgmin

kp∆dp otherwise
(23)

where mobile robot receives arrival reward ra when the
distance between robot and goal drg is less than threshold
drgmin. Otherwise, rgd is proportional to ∆dp that represents
the distance robot moves towards the goal at the last time step.
kp is a user-configurable parameter. Safety clearance reward
rsc can be calculated by

rsc =

{
−rcp if dro < dromin

0 otherwise
(24)

When the distance between robot and obstacle dro is less than
threshold dromin, negative reward/punishment −rcp is applied.
The velocity control reward rv , angular velocity reward rav
and linear velocity rlv reward are given by

rv = rav + rlv (25)

rav =

{
−rap if |va| > vamax

0 otherwise
(26)

rlv =

{
−rlp if vl < vlmin

0 otherwise
(27)

where vamax denotes the angular velocity threshold and vlmin
represents the linear velocity threshold. As we want mobile
robot to move to goal waypoint at high linear speed and low
angular speed, if angular velocity va is bigger than vamax
or linear velocity vl is less than vlmin, robot will receive
punishment value −rap or −rlp, respectively.

C. Actor/Critic Network Structure

The architectures of actor network and critic network are
shown in Fig. 2 and Fig. 3, respectively. In Fig. 2, the input
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Fig. 2: Actor network architecture: the input layer concatenates laser scanner
data, relative target position and velocity, followed by three dense layers. The
number in each block means the corresponding dimensional number of each
vector or layer.

Fig. 3: Critic network architecture: the input layer concatenates laser scanner
data, relative target position data, velocity data and action data, followed
by three dense layers. The number in each block means the corresponding
dimensional number of each vector or layer.

layer concatenates laser scanner data (24-dimensional vector),
relative target position (2-dimensional vector) and velocity
data (2-dimensional vector). The input layer is followed by
three dense layers and each layer includes 512 nodes and
rectified linear unit function (ReLU). The output layer is
the velocity command, including linear velocity generated
by a sigmoid function and angular velocity generated by a
hyperbolic tangent function. The input layer and output layer
of the actor network architecture are merged and used as the
input layer of critic network, as shown in Fig. 3. Critic network
also includes three dense layers and each dense layer includes
512 nodes and ReLU function. Q-value is finally generated by
a linear activation function.

D. Human Teleoperation Data Collection

Instead of making robot to learn from scratch, this method
allows robot to learn from human demonstration data in the
beginning. The human demonstration data is received by
recording the teleoperation data of one user. The user can
control robot to navigate around obstacles and arrive at goal by
using keyboard to change the speed and heading of turtlebot
under simulated environment. The state data st at time step t
consists of lidar data lt, velocity data vt, relative position data
pt. Velocity command vt is sent by using keyboard. After one
time step, next state st+1 can be recorded. The reward value

r is evaluated using (22). Then (st, vt, st+1, rt) is stored in
experience dataset for later sampling.

E. Noisy Prioritized Experience Replay Algorithm

To improve the training speed of Prioritized Experience
Replay (PER) algorithm, we proposed noisy prioritized ex-
perience replay algorithm to increase the exploration rate of
control policy. We integrated noisy PER algorithm and DDPG
to enable control policy to sample the human demonstration
data more frequently in the beginning and sample dataset
with higher priority more frequently afterwards. The noisy
prioritized experience replay algorithm is given as below.

Pi =
pαi∑
k p

α
k

(28)

where Pi represents the sampling probability of the ith tran-
sition, α is distribution factor and pi stands for the priority of
a set of transition data, formulated in (29).

pi = δ2i + λ
∣∣OaQ(si, ai|θQ)

∣∣2 + ε+ εD (29)

where the time difference (TD) error is denoted by δ, the
second term λ

∣∣OaQ(si, ai|θQ)
∣∣2 denotes the actor loss, λ is a

contribution factor, and ε represents a small positive sampling
probability for each transition that ensuring each transition
data can be sampled once. εD represents the extra sampling
probability of the demonstration data to improve the sampling
frequency of demonstration data. Each transition is evaluated
by:

ωcritic
i = (

1

N
· 1

Pi
)β (30)

ωactor
i = (

1

N
· 1

Pi
)β(1 + µ) (31)

in which ωcritic
i and ωactor

i represents the sampling weight for
updating the critic network and actor network, respectively,
indicating the importance of each transition data, N stands
for the batch size, and β is a constant value for adjusting the
sampling weight. The sampling weight of the actor network
has a noisy term µ which can be regarded as the probability
density function of the standard normal distribution. Different
with noisy parameter method [38], we added noisy term µ to
the weight of actor network directly and this will not increase
the computational complexity and yet ensure actor network to
explore more actions.

F. Overall framework

The processes of the proposed GRURDNN-based motion
planner and DRL-based online control algorithm are con-
cluded in Fig. 4 to better illustrate the hierarchical deep
learning-based control framework.

V. SIMULATION VERIFICATION AND EXPERIMENTAL
VALIDATION

In this section, simulation verification and experimental val-
idation results on different autonomous exploration test cases
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Fig. 4: The whole process of the proposed method

are displayed to evaluate the performance of the proposed
hierarchical deep learning-based control framework.

A. Parameter/Scenario Definitions

Three simulation test cases are executed in this study.
Table I demonstrates the physical parameters/constraints of the
mobile robot.

TABLE I: Physical parameters/constraints of the mobile robot

Parameter/Notation Values/ranges
Robot length, m 0.281
Robot width, m 0.306

px, m [−2, 2]
py , m [−2, 2]
θ, rad [−3.14, 3.14]
v, m/s [0, 0.26]
ω, rad/s [−0.576, 0.576]
av , m/s2 [−0.1, 0.1]
aω , rad/s2 [−0.576, 0.576]
tf , s [0, 100]

In terms of scenario-related parameters such as the initial
and terminal configurations of the mobile robot, they are
assigned in Table II. In addition, No = 8, 9, 12 obstacles are
randomly generated for scenarios 1-3, respectively.

TABLE II: Initial/Final configuration for different test cases

Scenario
No.

Initial configuration
(px, py, θ) v ω

1 (1.25,−1.5, 1.57) 0 0
2 (1.0,−1.3, 3.14) 0 0
3 (1.5,−1.25, 3.14) 0 0

Scenario
No.

Terminal configuration
(px, py, θ) v ω

1 (−0.5, 0.75, 3.14) 0 0
2 (0.8, 1.2, 1.57) 0 0
3 (−0.3, 0.8, 0.79) 0 0

Other GRURDNN-related parameters are specified as
Nk = 100, and dmin = 0.1m. Perturbations acting on
(px(0), py(0), θ(0)) of the three mission cases was supposed

to be normally distributed on [−1, 1m], [−0.5, 0.5m] and
[−0.0873, 0.0873rad], respectively. As investigated in [23], the
specification of network structural parameters such as Nl, Nn
and the number of sequential states Nse are likely to result in a
significant impact on the approximation performance. Hence,
extensive test trials and analysis were performed to determine
a proper combination of these parameters using the strategy
proposed in [35]. Based on the obtained results, we construct
the GRURDNN network with (Nl, Nn, Nse) = (5, 64, 4).
Network with more complex structure cannot bring apparent
improvement with respect to the approximation ability for
the considered problem. It should be noted that the best
combination of these parameters may vary among problems,
but same determination strategy can be applied.

B. Performance Verification of the motion planner

The performance of applying the proposed GRURDNN-
based motion prediction algorithm for the mobile robot au-
tonomous exploration problem is tested and verified in this
subsection. Due to the nature of the GRURDNN-based optimal
motion predictor, an exploration trajectory can always be
generated. Therefore, the solution feasibility as well as the op-
timality become two main aspects to evaluate the GRURDNN
approximation performance.

Fig. 5 to Fig. 8 illustrate the obtained exploration tra-
jectories, variation histories between the actual and pre-
planned optimal solutions (e.g., e = [ex, ey, eθ]

T ), and
velocity/acceleration-related profiles. First, attention is given
to the feasibility of the obtained GRURDNN solutions. From
the profiles shown in the left column of Figs. 5-8, a collision-
free maneuver trajectory can be produced by applying the
proposed method for all the three test scenarios. That is, the
mobile robot is able to move from its initial position to the
final target point without colliding with obstacles existing in
the exploration map. Besides, from the linear and angular
velocity/acceleration profiles, it it obvious that the variable
path constraints are satisfied during the entire maneuver pro-
cess, which further confirms the feasibility of the obtained
exploration solution.

Next, we focus on the optimality of the obtained exploration
solutions. It can be seen from the optimization formulation
(9) that the command controls (av, aω) appear in the mo-
tion dynamics linearly. Moreover, they do not appear in the
path constraint explicitly. As a result, a bang-singular-bang
mode can be expected in the command control profiles over
t ∈ [0, tf ] if a time-optimal solution is found. According
to the acceleration the corresponding linear velocity profiles
displayed in the right column of Figs. 5-8, we can see that the
proposed motion planner is able to generate a near-optimal
time-optimal exploration trajectory for all the test cases.

Furthermore, to highlight the advantages of applying
GRURDNN, comparative studies were carried out. The meth-
ods selected for comparison are the fully-connected DNN-
based motion planner established in [23], and the NMPC
tracking scheme constructed in [18], [20]. The corresponding
results are demonstrated in Fig. 5 to Fig. 8, from where it is
obvious that all the methods studied in this paper can produce
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Fig. 5: Autonomous exploration results: Scenario 1
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Fig. 6: Autonomous exploration results: Scenario 2
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Fig. 7: Autonomous exploration results: Scenario 3
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Fig. 8: Autonomous exploration results: Scenario 4

feasible exploration solutions for the considered mission cases.
In terms of the algorithm performance, although differences
can be identified among obtained solutions, the GRURDNN
is more likely to produce an exploration trajectory closer
to the pre-planned optimal solution. To further evaluate the
performance of different algorithms, we pay attention to the

objective function value, the accumulation of variation (e.g.,∫ tf
t0
e(t)dt), and the average execution time required for each

time step tcpu. These results are tabulated in Table III.

It can be seen from Table III that the proposed method
can better approximate the pre-planned optimal solution than
the fully-connected DNN-based method suggested in [23], as
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TABLE III: Performance evaluation of different algorithms

Method Scenario 1
J∗

∫ tf
t0
e(t)dt tcpu

GRURDNN 15.440s 0.0044 12.6ms
DNN 15.510 0.0950 10.6ms

NMPC 16.016 0.2200 727.7ms

Method Scenario 2
J∗

∫ tf
t0
e(t)dt tcpu

GRURDNN 20.526 0.0520 13.2ms
DNN 20.669 0.3135 10.6ms

NMPC 21.812 0.6967 841.2ms

Method Scenario 3
J∗

∫ tf
t0
e(t)dt tcpu

GRURDNN 20.851 0.0262 13.7ms
DNN 20.974 0.0556 10.8ms

NMPC 21.211 0.1444 956.4ms

Method Scenario 4
J∗

∫ tf
t0
e(t)dt tcpu

GRURDNN 12.667 0.0021 12.5ms
DNN 12.876 0.0131 9.87ms

NMPC 12.975 0.0467 653.2ms

lower values of J∗ and
∫ tf
t0
e(t)dt are obtained. This can

be attributed to the recurrent network structure with GRU
mechanism. However, the price we paid for this performance
enhancement is that the computation time required for each
step tends to experience a slight increase, which is still in an
acceptable level. On the contrary, the performance of NMPC
algorithm is much worse than the two DNN-based direct re-
calling strategies. Due to the consideration of different system
constraints and multiple collision avoidance constraints, some
NMPC online re-optimization process might not be maturely
solved. Thus, the control performance is likely to become
worse and the required computation time tends to increase. In
summary, the above results and discussions not only confirm
the feasibility of the proposed GRURDNN motion planner,
but also appreciate its enhanced approximation performance.
Consequently, it is advantageous to implement the proposed
GRURDNN-based approach to guide the mobile robot to fulfill
the time-optimal autonomous exploration problem.

C. Experimental Setup

It is worth noting that simply considering collision-free
constraints for expected obstacles might result in significant
safety issues for the mobile robot. This is because in real-world
scenarios, an object can suddenly appear around the robot
due to the uncertainty of the environment or inaccurate map
information. Therefore, we perform the real-world experiments
in an uncertain environment where unexpected obstacles will
suddenly appear around the robot.

In the real world experiment, we used Turtlebot3 Waffle Pi
mobile robot, as shown in Fig. 9, to validate the proposed
hierarchical GRURDNN-DRL control framework. Turtlebot3
supports open-source robot operating system (ROS). The pro-
posed algorithms were implement under ROS. The computing
platform of Turtlebot3 is Raspberry Pi 3 board, which receives
and executes the command from the host computer with

Nvidia GTX 1080 GPU and Intel Core i9 CPU (2.9 GHZ).
Turtlebot3 is equipped with a 360◦ laser scanner for sensing
the environment. The lidar detecting range was configured as
1 meter in this experiment.

Fig. 9: Experimental mobile robot: TurtleBot3 Waffle Pi.

D. Validation of the Collision-Free DRL-based Control

The DRL-based collision avoidance algorithm was trained
in Gazebo simulator with two environments, as shown in
Fig. 10 and Fig. 15. The turtlebot mobile robot needs to
reach target while avoiding all the obstacles illustrated via
cubes, cuboids, cylinders, etc. The target is represented by
red ball in the top-right corner. The laser detection range was
shown as the blue rays. It was assumed that mobile robot
will only detect the obstacles in front of it and its detection
range is 180 degree. In environment 1, the target is placed at
a fixed position, as shown in Fig. 10. In environment 2, when
mobile robot collides with collision, the red ball position will
be reset randomly outside of the maze and mobile robot will
be placed in the middle of maze by default. In terms of the
reward function parameters, the threshold values drgmin = 0.2
m, dromin = 0.20 m, vamax = 0.8 rad/s, vlmin = 0.052 m/s
are set according to the geometry and capacity of Turtlebot3.
Note that these values can be reconfigured for other robotic
platforms. We set N = 512, λ = 0.2, ε = 0.2 and εD = 0.4
in DRL algorithm based on empirical experience. The reward
and Q value of proposed algorithm are compared with vanilla
PER algorithm in both environment, as shown in Fig. 11,
Fig. 12, Fig. 16 and Fig. 17, respectively. In environment
1, the proposed algorithm achieve average reward value 5 in
less than 10000 steps, however, using the vanilla PER needs
around 20000 training steps. The Q value has the same trend of
reward. In environment 2, it is found that the average reward of
the proposed algorithm arrives at 6 only using 16000 steps and
the vanilla PER algorithm needs 31000 steps. The reason is
that the proposed algorithm introduces more exploring action
by using noisy term in the sampling weight in order to improve
the training speed of PER algorithm. The Q value has the same
trend of reward. It can be found that the proposed algorithm
outperforms the vanilla PER algorithm in terms of training
speed.
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Fig. 10: Gazebo environment 1.

Fig. 11: Reward comparison in environment 1: DDPG+PER versus the
proposed algorithm.

Fig. 12: Q value comparison in environment 1: DDPG+PER versus the
proposed algorithm.

E. Validation of the Proposed Algorithms in Real Environment

The trained model was transferred to the real robot directly
without fine-tuning and tested in a living room environ-
ment. Both static environment (environment 1) and suddenly
changed environment (environment 2) are tested. Turtlebot
published its velocity, heading, laser data to ROS master that
is a laptop running deep reinforcement learning model and
ROS master publishes the velocity and heading command to
mobile robot. The living room map was pre-scanned using
gmapping ROS node, and an optimal path was calculated by
the proposed deep learning algorithm. The mobile robot will
follow the pre-planned path to reach it. If an obstacle appears
around the robot and blocks the way to the target position, the

Fig. 13: Algorithm validation in real environment 1.

Fig. 14: Final trajectory of environment 1.

Fig. 15: Gazebo environment 2.

DRL-based algorithm will be triggered to avoid collision and
navigate the robot to the next target waypoint.

As shown in Fig. 13 and Fig. 18, the rviz software, third
person view and on-board camera view were recorded. The
robot localization was realized using ROS built-in adaptive
Monte Carlo localization (AMCL) algorithm. The turtlebot
mobile robot needs to avoid all the static obstacles and also
an unexpected obstacle which is manually placed during the
mission. The static obstacles are pre-scanned using ROS built-
in gmapping algorithm and they are represented as black area
on the map. The red dots represent laser points. As we can see,
only a certain range of the obstacle can be scanned around the
turtlebot during the mission. The final target was illustrated as
green circle.
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Fig. 16: Reward comparison in environment 2: DDPG+PER versus the
proposed algorithm.

Fig. 17: Q value comparison in environment 2: DDPG+PER versus the
proposed algorithm.

Fig. 18: Algorithm validation in real environment 2.

In environment 1, all the obstacles were static and obstacles
positions were similar with the Scenario 4 in Section V.B. The
path was generated by the proposed path planning algorithm
and mobile robot followed the path to avoid the static obsta-
cles. As shown in Fig. 14, the final path was similar to the
path generated in Scenario 4 which validated the proposed path
planning algorithm. In environment 2, after the mobile robot
avoided the fourth obstacle, we manually placed one obstacle
in front of the robot and the obstacle edge was scanned as
a red line, as shown in Fig. 19. It is worth noting that the
placed obstacle was not marked as black area, indicating
that the placed obstacle was unknown to the mobile robot.

Fig. 19: Manually placed obstacle during the mission.

Fig. 20: Exploration trajectory of the mission in environment 2.

Fig. 21: Comparison between GRURDNN path and real trajectory in envi-
ronment 2.

Deep reinforcement learning algorithm was then triggered to
navigate the robot so as to reach the final target. Note that
due to the limitation of rviz software, the turtlebot path was
originally recorded as light and thin green line, as shown in
Fig. 19. For better illustration, we highlighted the actual robot
trajectory in green as shown in Fig. 20.

The odometry data of turtlebot was also recorded and
shown in Fig. 21. The real trajectory is shown as blue line
and the pre-planned GRURDNN path is represented as green
line. The maximum distance between the planned path and
the real trajectory is around 4.5 cm that is acceptable for
the mobile robot to operate in the 25 m2 size area. When
unknown obstacles occurs in the map, shown as red rectangle,
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DRL algorithm was triggered to navigate the mobile robot
to avoid it finally. As the DRL method is end-to-end based
method and doesn’t need to compute ESDF information and
optimization equation, its computing time is only 1.2 ms, that
is comparable with the state-of-art EGO-planner that is 0.81
ms. Note that all of our codes are developed under python as
the deep learning library tensorflow is also developed using
python. EGO-planner is developed using C++ that is much
more computationally efficient than python. We believe that
our DRL method can be equivalent or even faster than EGO-
planner if it is re-developed under C++ code in the future.
In total, it can be observed that the mobile robot was able to
avoid both pre-scanned and unexpected obstacles throughout
the way to the destination.

Comparing with conventional control algorithm that needs
a specific rule for mobile robot to follow, for example, we
could specify that the translational velocity is proportional to
the inverse of angular velocity, deep reinforcement learning
algorithm does not need a specific rule to follow and it can
explore the optimal control policy by itself. For instance, in
the experimental video, we can notice that when we placed
the unexpected obstacles in front the turtlebot, it slowed down
immediately and made a big turn to avoid the obstacle by itself
and we didn’t design a specific control law of translational
velocity and angular velocity.

Experimental video was also recorded to support this con-
clusion. Interested readers can find it at supplementary material
or via the link: https://youtu.be/Wbpj8RxhsmA.

VI. CONCLUSION

In this article, the problem of time-optimal autonomous
exploration for mobile robot operating in an unknown envi-
ronment has been investigated. An upper-lower hierarchical
deep learning-based control framework is designed which
leverages a GRURDNN motion planning algorithm and a
DRL-based online collision avoidance approach. The proposed
GRURDNN motion planning scheme was trained offline on a
pre-generated optimized maneuver trajectory dataset such that
it can predict the optimal motion in real-time. In this way, the
time-consuming online optimization process can be omitted.
Subsequently, the DRL-based online control scheme is applied
to deal with unexpected obstacles which are frequently iden-
tified in real-world scenarios. After performing a number of
simulation and experimental studies, some concluding remarks
can be summarised:

(i) It is advantageous to embed the GRU mechanism in the
DNN-based motion planner, as the inherent relationships
between optimized robot state and control time histories
are better exploited.

(ii) The designed DRL-based online control scheme is able
to directly learn the control policy from human demon-
stration data and generate more exploration than vanilla
PER algorithm, thereby reducing the time required by
the training process.

(iii) The proposed hierarchical deep learning-based control
framework has the capability of fulfilling different au-
tonomous exploration cases effectively and efficiently in
the presence of both expected and unexpected obstacles.

Consequently, we believe the proposed control scheme
can serve as a promising tool for solving the mobile robot
autonomous exploration problem. In the future work, the
proposed strategy can be extended to address multi-mobile
robot trajectory planning problems, where the collision
avoidance among the mobile robots should be considered.
Moreover, transfer learning can be used to extend the network
as a motion planner for different scenarios. In terms of deep
reinforcement learning, 2D lidar data can be extended to
3D point cloud data that can be used as input of the neural
network to perceive the 3D environment. To improve the
training efficiency, federated learning using multiple agents
can also be applied.
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