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Abstract

Tracking Control of Autonomous Vehicles

Tianqi Yang

This thesis intends to design new tracking schemes to enhance the performance and

stability of general autonomous vehicles (AVs). Three main types of controllers used for

tracking control are investigated.

The geometric controller cannot meet high tracking requirements, and control param-

eters significantly affect its performance. Therefore, an observer-based nonlinear control

combined with a particle swarm optimization (PSO) algorithm is developed for low-speed

vehicles to track the pre-determined trajectory accurately. A control law featured with self-

tuning gains is designed using the backstepping control technique, for which global asymp-

totic stability is validated. The PSO evaluates tracking performance through the proposed

fitness function and generates optimized tuning parameters with fewer iterations, reducing

tuning efforts. Velocity and steering tracking could also be rapidly realized by modifying

the error weights of the performance evaluation criterion. Based on the proposed yaw error

observer (YEO), the problem of the angle measurements being temporarily inaccurate or

unavailable is tackled effectively with the given information.

Further, existing methods can suffer from complex control algorithms and a lack of

tracking stability at high speed. The vehicle’s motion is decoupled by considering the

Frenet frame. A lateral control law based on the linear-quadratic-regulator (LQR) imposes

the tracking errors to converge to zero stably and quickly, providing the optimal solution
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in real-time due to adaptive gains. Regarding the steady-state errors, they are eliminated

through the correction of the feedforward term. Besides, the designed double proportional-

integral-derivative (PID) controller realizes not only the longitudinal control but also the

velocity tracking.
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Chapter 1

Introduction and Literature Review

1.1 Tracking Control in Autonomous Vehicles

Car-like vehicles, characterized by excellent adaptability and high flexibility, have be-

come more commonplace both in military and commercial domains with the rapid devel-

opment of sensing and computing technologies [1, 2]. The car-like vehicle has become

increasingly popular in academia and industry because it is a handy and applicable tool

for verifying localization, perception, planning, prediction, control, artificial intelligence,

machine learning, and other advanced self-driving concepts [3, 4]. It can be broadly com-

posed of four main categories, namely a controller, power system, sensors, and actuators, of

which the controller subsystem as a critical component enables the vehicle executes control

commands in order to track a pre-defined trajectory provided from the trajectory planning

stably. According to [5–7], under nonholonomic constraints, no doubt that utilizing differ-

ent controller, control laws, or control gains may exhibit remarkable differences in tracking

performance and results. Existing gain tuning methods can lead to some shortcomings for

the vehicle, such as slow response, poor transient, robustness, etc. Control gains are sup-

posed to upgrade automatically online for fitting in the current tracking state to get optimal

tracking. Nonetheless, the adaptive control gains have not yet been widely implemented.
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Furthermore, without precise positioning, the data from sensors may disable the tracking.

In practice, there are indeed some inevitable errors between sensor-based and real value,

especially when only one type of positioning sensor is available. Motivations for using an

observer to estimate unknown information are given in [8–10], where the observer-based

controllers are able to compensate for disturbances and uncertainties. However, few stud-

ies have considered the situation when the yaw angle of car-like vehicles is temporarily

unmeasurable.

In retrospect, although vehicle trajectory tracking has been a mature field emerging with

a plethora of control methodologies, it remains hard to achieve a trade-off between track-

ing performance and stability. Another challenge stems from how to reach a compromise

between control complexity and modeling error since the control law is derived from the

vehicle’s mathematical model, such as geometric, kinematic, and dynamic configuration.

Some valuable properties and assessments of different tracking controllers are discussed

in [11–14]. Two prevalent geometric controllers, namely Pure Pursuit (PP) and Stanley, are

easy to implement due to simple configurations and less needed parameters [15,16]. Never-

theless, the unsystematic parameter tuning method hinders the reliability and efficiency of

the algorithm, leading to cutting-corner behavior or oscillations during tracking [17–19].

Lee et al. [20] proposed a dynamic-based controller with an adaptive regulator that pro-

vides better tracking performance in decreasing lateral and heading offset than the PP and

Stanley method. Despite increasing the robustness as vehicle speed changes, the relevant

parameters and equations in adaptive design are selected manually. The LQR control is

widespread in tracking control because it optimally provides feedback gains for the entire

time domain to ensure better tracking performance [21]. To optimally tune the gains of

the nonlinear controller, Alcala et al. [22] reformulated the closed-loop system in a linear

parameter varying form. Despite presenting satisfactory results by a real test, the heuristic

algorithm can only ensure a locally optimal solution instead of a global counterpart on a
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kinematic level. It is noted that implementing online tuning for LQR is not straightfor-

ward due to the offline determination of optimal gains, and the linear structure of LQR

imposes restrictions like linearization approximations on the utilized model. Recent re-

search indicates a Frenet frame which enables the vehicle’s motion to be decoupled into

the longitudinal and lateral direction, simplifying tracking control complexity [23]. By in-

corporating LQR and PID control, trajectory tracking is achieved without the heavy control

law’s design work. The former, generally integrated with the feedforward control, regulates

the steering and the latter for the velocity. The classical tracking controllers such as PID

and sliding model controllers have the virtue of robustness and simpleness, whereas their

parameters are not readily to tune [24–26]. To remedy this problem, the PSO based con-

trollers were built [27–29]. The PSO, having a flexible and well-balanced mechanism, is

extensively employed to optimize various controller parameters to enhance the tracking

performance. The supervised controller tuned by PSO offered a slight deviation during the

tracking, which was verified by a wheel mobile robot in [30]. Amer et al. [31] developed

a PSO-tuned Stanley controller based on a sophisticated vehicle model which decreased

lateral cross tracking error and acceleration. Although these PSO-tuned controllers reduce

the tuning efforts and time, they are suffered from the problem of the extended computing

time spent and premature convergence. Further, only is it reasonable to get optimal tuning

values considering the complete state of the utilized vehicle, as well as the error posture

dynamics. In contrast, the aforementioned studies did not take these elements into account.

Dai et al. [32] explored a PSO-tuned backstepping controller to minimize posture errors.

The simulation results revealed apparent oscillations, given that the optimized parameters

as a fixed form may be inappropriate for the controller during the tracking period, and the

fitness function has not associated with the control inputs of the kinematic model. Up till

now, few studies have sought to link PSO with adaptive control gains.

Apart from the studies introduced above, there have been numerous notable controllers.
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Using the Lyapunov theorem to prove the global asymptotic stability of the tracking sys-

tem was initially raised and verified on a non-holonomic vehicle by Kanayama et al. [7].

Through this means, massive nonlinear backstepping tracking controllers have emerged,

refer to [33–36]. However, the choice of control gains or parameters poses an intractable

matter which would be detrimental to the development and stability verification of the con-

trol law. Hu [37] proposed an adaptive backstepping controller with the consideration of

input constraints to realize an accurate tracking of the car-like vehicle, where partial control

gains were automatically adjusted. When slipping occurs, pure rolling constraints are no

longer satisfied. Thereby, a robust adaptive controller which integrated the sliding effects

as extra unknown arguments was constructed against deterioration of smooth movement

and guidance [38]. Because of fast decision ability, fuzzy sets and neural networks (NN)

are also applied to adaptive controllers. A fuzzy logic control strategy for trajectory track-

ing was presented in [39], in which the tracking errors were redefined and encoded simply.

In [40], the position’s convergence rate of the car-like robot running two NNs was speeded

up while gains were upgraded online. Nonetheless, these two kinds of controllers need to

be programmed or trained more to make suitable decisions with their expertise to improve

tracking performance. Traditional control methods through an offline manner lead to a

fixed control law which may not be suitable for all driving scenarios or the whole track-

ing time. In contrast, the basic idea of model predictive controller (MPC) is to solve the

issue of online open-loop optimization and obtain the optimal solution for tracking. An

additional advantage of MPC is that it can add constraints to the future input, output, and

state variables of the tracking system, which complies with the requirements in real appli-

cations [41–43]. However, MPC would lead to a more complex control algorithm, adding

the computing burden [44].

Furthermore, observer-based controllers are becoming increasingly popular in trajec-

tory tracking control because uncertainties, disturbances, modeling errors, sensor faults,
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and noise are inevitable in real-time tracking control [45–48]. Cui [49] designed an im-

proved linear extended state observer integrating with a sliding mode controller to estimate

the total uncertainties of the differential-driving mobile robots. The experimental results

show that the proposed method significantly compensates for external disturbance and pa-

rameter perturbation. Huang et al. [50] regarded unknown parameters in the dynamic

model and external disturbance as a lumped disturbance and thus designed an observer-

based adaptive torque controller to ensure a feedforward compensation. The simulation

results indicate that the wheeled mobile robot employing this control scheme can converge

to the intended trajectory with zero steady-state error. Zou [51] proposed an output feed-

back scheme together with an observer and estimator to compress the effects resulting from

sensor faults and realize formation control with uniformly ultimately bounded stability.

Autonomous vehicles, also known as self-driving cars, have become an attainable real-

ity because of the rapid development of sensors, high precision maps, computing technolo-

gies, etc [11, 52]. The global Cartesian coordinate frame is commonly used to describe the

position of the vehicle. Nevertheless, this coordinate frame does not facilitate trajectory

planning and tracking, given that it is tough to know how far the vehicle has driven and

whether it deviates from the center of the lane. By contrast, the Frenet frame, as an alterna-

tive method, can use the position based on the road center lane to determine the longitudinal

displacement along the road and the lateral offset perpendicular to the road center [53,54].

Another merit is that the motions of the vehicle based on the dynamic model are able to

be decoupled in the Frenet frame, which signifies that the control difficulties are remark-

ably reduced [55]. Furthermore, there are numerous path and trajectory planning methods

by means of the Frenet frame to optimize trajectory smoothness and promote passenger

comfort [56–58]. The Frenet-based method can treat the trajectory planning problem as a

quadratic program, meeting the real-time and computational requirements [59].

In retrospect, Duan et al. [23] implemented the vehicle trajectory tracking by utilizing
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the LQR and MPC, where the tracking errors were defined in the Frenet frame. However,

the PID control offers apparent delays and unstable velocity tracking for the actual vehi-

cle. The oscillations emerging from lateral and orientational errors may also deteriorate the

system stability and even automatic guidance performance. For the lateral control of the

vehicle, extensive literature cooperated LQR with the feedforward control for the purpose

of acquiring superior steering performance [60–63]. Even though this combined control ap-

proach ensures that the steady-state error is removed, the optimal solutions are only derived

in an offline manner [64]. The offline gains lead to fixed control law, which is unfavorable

to all the driving scenarios. To overcome this issue, Lee et al. [20] investigated an adap-

tive regulator on the basis of a dynamic bicycle model. In this way, the self-tuning gains

could be updated online to boost the tracking accuracy without overshooting. Still, exces-

sive control parameters need to be determined, adding the control uncertainties and human

intervention. Moreover, some valuable assessments and properties of multiple tracking

controllers are discussed in [5, 14, 21, 65], from which optimized tracking results are pre-

sented. However, it is still hard to tackle the problem between tracking performance and

system stability. Another challenge results from the selection of the weight of Q and R.

1.2 Scope and Objectives of the Thesis Research

Based on the review of the reported studies, it is clear that the developments in the

control module for car-like vehicles and AVs can suffer from undesirable transient and

steady-state performance, as well as the unreasonable tuning of control parameters, which

directly results in the effectiveness, applicability, and practicability of the designed con-

troller. The scope of this thesis research mainly concentrates on designing and developing

trajectory tracking strategies to enhance the tracking performance of the vehicle. In this

work, specific research objectives can be summed up below:
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(1)Deploy the geometric-based tracking control algorithm (PP and Stanley) into the

practical application and observe how different control parameters affect tracking

performance under different driving scenarios and driving speed.

(2)Develop a backstepping control law on a kinematic level for low-speed vehicles so

as to enhance the tracking performance and system stability.

(3)Develop a yaw error observer for low-speed vehicles to resolve the problem of sensor

faults.

(4)Design a systematic way to optimize the control parameters, aiming at reducing hu-

man intervention and tuning efforts.

(5)Design a new performance evaluation criterion for the tracking performance of AVs.

(6)Decouple the motion of AVs based on a dynamic vehicle model with the aim of

decreasing control complexity.

(7)Develop a dynamic-based controller to ensure steering tracking while designing a

longitudinal tracking controller to guarantee forward speed tracking for wide-speed

range AVs.

1.3 Thesis Layout

This thesis is prepared based on the manuscript-based format described in the “Thesis

Preparation, Examination and Regulation” guidelines of the School of Graduate Studies,

Concordia University. The thesis research is organized into 6 chapters, solving the research

objectives mentioned above and the problems in the introduction and literature review

(Chapter 1). Chapter 2 and Chapter 3 demonstrate geometric-based controllers, namely PP

and Stanley strategies, used for path tracking control. Chapter 4 presents a kinematic-based
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controller for low-speed car-like vehicles to realize trajectory tracking control. Chapter 5

describes a dynamic-based controller for wide-speed range AVs to achieve trajectory track-

ing. The major contributions and conclusions of this thesis research are summarized in

Chapter 6 together with recommendations for future research direction.

Chapter 4 presents the following article:

•Tianqi Yang, Youmin Zhang, and Juqi Hu, “Observer-based Adaptive Trajectory

Tracking Control of Car-Like Vehicles Using PSO,” IEEE Transactions on Indus-

trial Electronics. (To be submitted).

This study proceeds by first giving the problem statements in Section 4.1, including the

kinematic bicycle model, reference trajectory, error dynamics, and control gains. Next, the

detailed control strategy will be introduced in Section 4.2; a backstepping control law based

on YEO and PSO is derived. Global asymptotic stability is proven for the backstepping

control law, as well as YEO. Section 4.3 presents the simulation results. Comprehensive

comparisons and discussions of the experimental results are offered in Section 4.4.

Chapter 5 presents the following article:

•Tianqi Yang, Juqi Hu, and Youmin Zhang, “Trajectory Tracking for Autonomous

Vehicles based on Frenet Frame,” in 37th Youth Academic Annual Conference of

Chinese Association of Automation (YAC’22), May 27-29, 2022, Beijing, China.

This study investigates a closed-loop control system including the LQR, double PID,

and feedforward control to realize automatic tracking. A detailed dynamic bicycle model,

coordinate transformation, and error dynamics will be introduced in Section 5.1. The plan-

ning of the reference trajectory will be presented in Section 5.2. Section 5.3 contains the

procedure of the tracking control strategy, followed by the comprehensive simulation re-

sults in Section 5.4.
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Chapter 2

Tracking Control based on Pure Pursuit

Method

2.1 Introduction

The PP is an important precedent and the most basic control strategy for solving the

tracking control problem due to its simplicity and practicality. By this geometric path

tracker, the computed steering commands are able to drive the control target from its cur-

rent position to the look-ahead point ahead of the vehicle. With respect to the velocity

command, it could be regarded as a constant that can be changed at any waypoint. These

two control commands are calculated according to the vehicle’s pose (position and ori-

entation). In order to comprehend this tracking method, we can imagine that the vehicle

constantly pursues a moving goal point (look-ahead point) based on its current position

until the last point on the reference path.

There are several noteworthy tips before we explain how the PP algorithm enables

the vehicle to achieve tracking control. The PP controller acts only for the path tracking

purpose in comparison to traditional controllers, and this controller is unique to the pre-

defined path. Additionally, a critical precondition for successful tracking control is that the
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path should be designed reasonably, ensuring acceptable steering maneuvers and reducing

the oscillatory nature of the PP algorithm. By way of illustration, waypoint paths should

provide a series of tightly spaced waypoints, whose position also needs to be restricted to

satisfy approximate curvature constraints so as to generate a feasible path. According to

the specification of the used vehicle, the desired linear velocity and the saturation value of

the steering angle should also be taken into consideration. In this chapter, the controlled

vehicle is considered to be the absence of side slip.

2.2 Control Algorithm

The schematic of the PP method and the kinematic model are shown in Figure 2.1. The

core idea of this algorithm is to match a look-ahead point on the reference path. The length

between the look-ahead point C and the central control point A (center of the rear wheel)

is called the look-ahead distance Ld, which indicates that the vehicle how far along on the

reference path to track towards. In this case, the center of the rear wheel of the vehicle

will achieve the goal point C with the specific turning radius R. Note that Ld is the main

tuning parameter for the PP tracker. Two reference coordinate frames, namely the global

Cartesian coordinate frame and vehicle body counterpart, are built with a view to obtaining

the vehicle’s posture and deriving control law solutions. Hence, based on the geometric

relationships of the triangle OAC and OAB, the steering angle δc can be attained.

In order to enable the rear wheel to precisely track the path (red-dotted line) to the point

C, applying the law of sines to Figure 2.1 results in:

Ld

R
=

sin 2α

sin(π/2− α)
(2–1)

By simplifying, we have:
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Figure 2.1: PP method.

R =
Ld

2 sinα
(2–2)

With the Ackerman steering configuration, the simple mathematical equation describes

the geometric relations between the front wheel steering angle and the turning radius, which

can be formulated as:

R =
l

tan δc
(2–3)

Therefore, substituting (2–3) into (2–2) yields:

δc(t) = arctan
2L sin(α(t))

Ld

(2–4)

Next, the cross tracking error is defined as follows:

ec = Ld sinα (2–5)

Using the small angle approximation together with (2–4) and (2–5), the expression for

ec can be rewritten as:
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ec ≈
Ld

2

2L
δ(t) (2–6)

Once the value of the steering command remains stable, it can be identified that cross

tracking errors will be directly determined by the look-ahead distance. Consequently, the

PP is essentially a proportional controller, and the intuition convinces one that tracking

performance depends on the selection of theLd. With the purpose of enhancing the tracking

performance, the varying look-ahead distance is defined as a first-order polynomial of the

vehicle’s velocity, as:

Ld = kvV + Ldl (2–7)

where kv and Ldl are called the coefficient of look-ahead distance and the minimum thresh-

old of the look-ahead distance, respectively. A better understanding of the property of the

look-ahead distance can be gained by referring to Figure 2.2. It should be stressed that the

actual trajectory commonly does not match the straight line between waypoints due to the

nature of the PP tracker.

The look-ahead distance is a critical factor for the tracking performance and results,

thus rendering different tracking behaviors, as seen in Figure 2.2. It can be summarized

as follows: maintaining the path and regaining the path. In general, a large look-ahead

distance can maintain the vehicle’s tracking state, thus rendering larger curvatures near

the corner. A sufficient look-ahead distance may result in cutting corners, dramatically

reducing performance. On the contrary, a short look-ahead distance can guide the vehicle

to travel faster toward the reference path so that it can quickly regain the path between the

waypoints. As depicted in Figure 2.2, the vehicle overshoots the intended path and tends

to oscillate along the path.
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Figure 2.2: The property of look-ahead distance.

2.3 Simulation Results and Discussions
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Figure 2.3: The discontinuous reference path for simulation test.

To further analyze the characteristic of the PP method, a series of simulations have been

carried out in MATLAB/Simulink. An S-shape reference path featured with discontinuities

at the point Pr
′ = [2, 4]T was devised by fitting the well-spaced waypoints, as shown in

Figure 2.3. In which, straight lines and circular arcs are connected to construct driving

straight maneuvers and turning circle maneuvers. The initial position of the vehicle was

set as the same as the start point of the reference path, as Pc = [0.143, 0, 0]T , and the
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wheelbase was chosen as 0.256 m. The controlled car-like vehicle was tested at different

constant velocities, namely 0.5m/s, 1m/s, and 1.5m/s. Moreover, we use different control

gains in each case for the purpose of investigating how look-ahead distance influences

tracking performance. Finally, from (2–7), it is known that a large kv indeed corresponds

to a longer look-ahead distance and vice-versa. The value of Ldl was determined as 0.35 m

to ensure a minimum threshold to prevent failed path tracking.
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Figure 2.4: Simulation results (under low speed).

In Figure 2.4, it is clear that the car-like vehicle by PP method works surprisingly well

at low speed, resulting in marginal cross tracking error within 0.1 m and similar tracking

results. Specifically, the vehicle using the smallest control gain can realize path tracking

with the least offsets during the entire duration, as evident in Figure 2.4(b). However, it

seems that the steering commands have some tiny fluctuations, which should be concerned

with real-time control. Additionally, the vehicle cuts corners from the discontinuous point,

which may also be caused by unreasonable look-ahead distances.

The simulation tracking results based on moderate speed (1 m/s) are summarized in

Figure 2.5. Again, the car-like vehicle follows the reference path with the lowest value of

gain, obtaining highest accuracy, as shown in Figure 2.5(b). While employing the largest

look-ahead distance ensures the most stable and smooth steering, the vehicle apparently

cuts the corner in the latter part of the tracking, as seen in Figure 2.5(a).

Given in Figure 2.6 are the simulation results of the car-like vehicle at high speed.
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Figure 2.5: Simulation results (under moderate speed).
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Figure 2.6: Simulation results (under high speed).

Notably, cutting corner problems reoccur and cause the turning of the vehicle not wide

enough, particularly at the second corner, when the large kv is selected. Contrasted with

previous simulation results, the impact of look-ahead distance becomes greater on tracking

performance as the speed and control gains are increased. The property of look-ahead

distance is pointed out in Figure 2.6(b) and 2.6(c), from which we can observe that small

kv lead to smaller cross tracking error, but may make the vehicle suffer from unstable

steering. Intuition would leave one to believe that enough small look-ahead distance should

somehow cause the vehicle to steer quickly to regain its path between waypoints and render

a more accurate following, which will be pointed out and verified in further experimental

tests. By contrast, the vehicle can maintain its path in a stable way by utilizing a large look-

ahead distance in spite of bringing about larger cross tracking errors. From these results,

the vehicle successfully transits from the first circle to the second one regardless of the
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speed and look-ahead distance, which indicates the strong robustness of the PP approach

confronting the discontinuous path.

2.4 Experimental Results and Analysis

Comprehensive experiments, which include low, moderate, and high speed maneuvers

with different look-ahead distances, have been applied on the Quanser self-driving car

(QCar) platform to investigate the tracking performance of the PP controller, as well as

the effect of the look-ahead distance in tracking control. Opposite to simulation tests, we

directly specify the look-ahead distance at this stage without using the threshold in (2–7).

The reference path used in the following experimental tests is not very common for car-

like vehicles since it was designed to include the point Pr
′ = [1.5, 2.5]T with discontinuous

curvatures, as displayed in Figure 2.7. This reference path can help us to have an insight

into the robustness of the PP tracker.

Figure 2.7: The discontinuous reference path for experimental test.

2.4.1 Experimental Test Bench

The test bench is based on the Quanser self-driving car research studio. As the core

of this platform, the QCar is a 1/10 scaled model vehicle powered by an NVIDIA Jetson

TX2 supercomputer and equipped with a wide range of sensors, such as 360 degree vision,

16



QCar Ground control station PC
 Wireless router

5GHz band

Control algorithm

(Compiled by QUARC) 

Real-time

postureData

fusion

Measurements
from


IMU and Lidar

TX2

Figure 2.8: The schematic of the QCar experimental platform.

depth sensor, encoders, etc. The velocity measurement is available by an E8T optical

shaft encoder. Also, the 9-axis inertial measurement unit (IMU) and RPLIDAR A2M8

are supplied to localize the QCar. Concerning QCar’s motion, it is controlled by the drive

motor and steering servo. The Quanser real-time control software (QUARC) applied on

the Windows target generates C-code directly from the Simulink environment in which a

tracking system model is established. In an embedded Linux system, the algorithm could

be compiled and deployed into TX2. The connectivity and data transmission between the

ground control station PC and the QCar is via a WiFi network pre-configured by the Netgear

R7000 wireless router, which means that the PC receives the QCar’s current posture in

real-time. With respect to the forward (longitudinal) velocity and steering angle of the

QCar, they are confined within [-1.5,1.5] m/s and [-0.524,0.524] radians, respectively. The

wheelbase of QCar is 0.256 m. The whole structure of this test bench is shown in Figure 2.8.
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Figure 2.9: Experimental results (under low speed).

2.4.2 QCar Tests Results

Figure 2.9 illustrates the experimental tracking results of the QCar performing at a low

speed. It is evident that the QCar can constantly pursue the moving point and accomplish

path tracking precisely by the smallest look-ahead distance, as evident in Figure 2.9(a).

The QCar with other look-ahead distances, however, cannot guarantee enough tracking

accuracy, especially during 25-30 s. Also, the turn of the QCar at the first corner is not

wide enough, that is, the QCar moves not far enough forward before starting to turn the

wheel, which is also called cutting corner behavior.
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Figure 2.10: Experimental results (under moderate speed).

Presented in Figure 2.10 is the actual trajectory of the QCar at 1 m/s. Again, the small-

est look-ahead distance ensures minimum offsets, while the largest one contributes the
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smoothest steering commands. From Figure 2.10(b) and 2.10(c), the 1.5 m look-ahead dis-

tance can enable the QCar to stably track the path without compromising too much tracking

precision. Despite the fact that the cross tracking error is limited in the range [-0.1,0.1] by

selecting the shortest look-ahead distance, the steering commands start to be oscillatory

from t = 2.9 s.
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Figure 2.11: Experimental results (under high speed).

The QCar works at high-speed conditions, leading to apparently dissimilar experimen-

tal results, as shown in Figure 2.11. Opposite to previous experimental tests, the smallest

look-ahead distance no longer guarantees the minor cross tracking error for the reason that

the tracking speed is too fast and the Ld is too short for the QCar. As a result, the QCar

overshoots the path and oscillates along the intended path, as seen in Figure 2.11(a). Si-

multaneously, wild swings occur in the steering wheels, and this effect is amplified as the

curvature of the radius switches, as evident in Figure 2.11(c). Besides, the QCar with dis-

tinct look-ahead distances stops at different positions, which are not close to the endpoint

of the desired path. This is because the PP controller cannot stabilize the QCar at an exact

point. A distance threshold for the desired position can be applied to stop the QCar near

the goal location, as described in (2–7).

Noted that the measurements of cross tracking error cannot explicitly describe the exact

deviations between the QCar and reference path, given that the cross tracking error is sim-

ply computed through the definition of (2–5). For example, in Figure 2.11(a), some offsets
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are obvious, but the cross tracking errors are only capped within [-0.3,0.3]. In this case, it

will be challenging to judge the real performance of the QCar. As an alternative, the errors

defined in [7] can clearly portray the differences between the desired path and actual tra-

jectory. Based on tracking results in Figure 2.9–2.11, we notice that the PP controller has

a high level of robustness to the quick transient section, since (2–4) can directly derive the

steering commands via only one variable α. This implies that the QCar will immediately

execute turning whenever there is an angle error between the look-ahead vector and the

heading vector of the QCar. Further, in Figure 2.9(a), 2.10(a) and 2.11(a), the QCar by PP

controller can still follow and stay on the path as it moves to the last corner, which demon-

strates the strong robustness against discontinuity. It turns out that the QCar with suitable

look-ahead distances performs fairly well on constant curvature paths, whereas this per-

formance cannot be sustained with a different curvature or speed. This phenomenon is

attributable to the design of the PP algorithm, which ignores the curvature of the intended

path and calculates an arc founded on the geometric relationships in Figure 2.1. Under such

a circumstance, the actual trajectory of the QCar may deviate from the intended path due to

the incorrect model-predicted curvature. This problem will be more pronounced for high

curvature and high tracking speed.

20



Chapter 3

Tracking Control based on Stanley

Method

3.1 Introduction

As another sort of geometric tracking approach, the Stanley tracker has been a standard

benchmark to verify a new tracking control scheme proposed by active researchers because

of its simplicity and desirable tracking performance. Stanford University deployed the

Stanley algorithm, initially proposed by Hoffmann et al. [5] into AVs, and finally won the

Second DARPA Grand challenge in 2005 from the 195 participating teams. Even though

the stellar tracking performance of the Stanley vehicle in this race may be attributed to the

perception and planning module, the Stanley controller has been proved to be a handy tool

in AVs and robotics.

The Stanley method is essentially a nonlinear feedback function whose exponential

convergence characteristic was proved. Also, the Stanley controller can make the decay of

tracking errors to be independent of the speed. Three considerations form the basis of the

final steering control law. More concretely, the reference point of vehicles is switched to

the center of the front axle rather than the c.g. or the rear axle. Next, the heading errors
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are added with the aim of aligning the vehicle’s heading with the reference path, and the

cross tracking error is measured from the center of the front axle to the nearest point on

the reference path without using a look-ahead distance. Finally, the solutions of the control

law can be capped to fall within the maximum steering angle bounds.

3.2 Control Algorithm

Figure 3.1: Stanley strategy.

Now, we explain more details about the Stanley control algorithm. Figure 3.1 demon-

strates the geometric relationship between the pre-determined path and the kinematic bi-

cycle model. The steering angle of the controlled vehicle consists of two parts, which

are caused by the heading error and lateral error, respectively. Without considering the

cross tracking error, the direction of the front wheel should be consistent with that of the

path tangent so as to correct the misalignment between the vehicle and the reference path.

Therefore, the heading error can be set equal to the steering angle δh, such that:

δh = θr − θc = θe (3–1)
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Similarly, an appropriate steering command needs to be determined when the heading error

is assumed to be zero. In order to eliminate the cross tracking error, we suppose that the

intended trajectory of the vehicle intersects the path tangent of the closest point C at point

D, as displayed in Figure 3.1. Apart from this, a proportional control whose gain is set

inversely to the forward speed is introduced to estimate the distance of CD, which can be

expressed as:

d(t) = v/k (3–2)

According to the simple geometric relationship, we can derive:

δy = arctan
ec(t)

d(t)
= arctan

kec(t)

v(t)
(3–3)

Consequently, the total steering angle can be obtained as an intuitive way as follows:

δc = δh + δy = θe + arctan
kec(t)

v(t)
(3–4)

From (3–4), it is evident that the steering control objective can be realized. That is to

say; the steering angle tends to be small to keep driving safety as the speed of the vehicle is

high. If the vehicle is operating at a low speed, this control law will generate large steering

commands to quickly adjust the heading of the vehicle. Also, a larger steering command

can be attained by Stanley control law to correct the vehicle’s posture to guide it to move

towards the path as long as the cross tracking error increases.

According to the boundary between steering regions, the resulting control law can be

written as:
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δc =


δmax δc > δmax

δc |δc| ≤ δmax

−δmax δc < −δmax

(3–5)

Furthermore, it is easy to get the rate of change of the cross tracking error with the

geometric relationships displayed in Figure 3.1, which can be described as follows:

ėc = −v sin δy (3–6)

Using a trigonometric identity for seeking the explicit expression of sin δy, such that:

sin δy =
kec√

v2 + (kec2)
(3–7)

Then, by substituting (3–7) into (3–6), the variable ėc may be rewritten as:

ėc =
−kec√

1 + (kec/v)
2

(3–8)

With respect to small cross tracking error, equation (3–8) can be simplified by regarding

the quadratic term is negligible, such that:

ėc(t) ≈ −kec(t) (3–9)

As a consequence, it is easy to find that the solution for this first-order differential

equation is exponential. Since the value of control gain is positive, the cross tracking

error will finally converge to zero exponentially as time goes to infinity. An interesting

observation is that (3–9) does not associate with the speed term, which implies that vehicles

having the same initial posture will finally converge to the desired path with the same

amount of travel time regardless of the speed.
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When the vehicle is operated in a low-speed range, the Stanley controller confronted

with noisy velocity estimates may behave aggressively. The cross tracking errors tend

to be amplified in the steering commands due to the fact that the speed term is in the

denominator in (3–4). In order to avoid unreasonable steering and enhance the tracking

stability, a positive softening constant term should be added as:

δc = δh + δy = θe + arctan
kec(t)

ks + v(t)
(3–10)

Accordingly, the denominator has a minimum threshold to guarantee no wild swings

in the steering wheel. During the high speed operation, another problem comes up that

the vehicle’s steering should be changed slowly to ensure tracking stability. Thereby, we

can add a damping term on the heading rate to act essentially as a proportional-derivative

controller to reduce the overly aggressive response of Stanley tracker.

3.3 Simulation Results and Analysis

In this section, the tracking performance of the car-like vehicle by the Stanley approach

has been fully verified and evaluated via MATLAB/Simulink. Three simulation cases are

based on different constant driving speed and control gains, aiming to comprehend how

these variables affect the tracking results. The initial position for the car-like vehicle and

U-shaped reference path are Pc
′ = [0, 0]T and Pr

′ = [1, 0]T . The wheelbase was set as

0.256 m, which is the same as the parameter of QCar. In addition, side slip is not taken

into account during these simulation tests due to the relatively slow motion of the car-like

vehicle.

In the first instance, the car-like vehicle follows the U-shaped path at a low speed (0.5

m/s) from the start point. Obviously, the tracking results based on the smallest gain are
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Figure 3.2: Simulation results (under low speed).

unsatisfactory because of the overlarge deviation and delayed convergence of the head-

ing error. In contrast, the car-like vehicle with other control gains contributes to negligi-

ble cross tracking error, as well as fast adjustment of the vehicle’s heading, as evident in

Figure 3.2(a)–3.2(c). The evolution of the steering angle with time is illustrated in Fig-

ure 3.2(d), in which no unstable steering occurs during the whole tracking period.

Afterwards, the longitudinal velocity was tuned to 1 m/s as a moderate velocity for

the car-like vehicle. The corresponding simulation results are shown in Figure 3.3. Again,

despite resulting in the most stable steering, the vehicle with the smallest gain steers too late

and even does not converge to the U-shaped path at the ending time. The tracking results

by other control gains are similar, and they both enable the vehicle to converge to the path

without too much steady-state error. For this phase, it seems that increasing the value of

gain can reduce the cross tracking error and enhance the convergence rate of heading error,

as shown in Figure 3.3(b) and 3.3(c).
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Figure 3.3: Simulation results (under moderate speed).

Figure 3.4 demonstrates the high speed (1.5 m/s) simulation results of the car-like vehi-

cle. Compared with the simulation results in Figure 3.2 and 3.3, the tracking performance

deteriorates as the driving speed boosts. That is to say, the cross tracking error and the

heading error become larger than before, especially when the vehicle performs turning ma-

neuvers. Also, with k = 10, it should be noted that the steering signals tend to be oscillatory

during around 1.5-3 s, which does not occur in other simulation results. In other words,

even though the larger control gain ensures higher tracking precision and fast convergence

rate, the over-tuned gain may lead to unstable steering and oscillations in the tracking sys-

tem. On the other hand, under-tuned gains directly give rise to large errors in the vehicle’s

position and heading, as evident in Figure 3.2–3.4. Consequently, well-tuned gains play

a crucial role in Stanley control. An interesting point is that the Stanley tracker is better

suited to high-speed tracking for car-like vehicles compared with the PP method on the

condition that the control gain is chosen properly.
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Figure 3.4: Simulation results (under high speed).

3.4 Experimental Results and Analysis

To further investigate and verify the real-world performance of the Stanley method,

two extreme driving scenarios involving large initial cross tracking error and large initial

heading error are conducted based on the QCar platform. In this section, the measurements

of cross tracking error are replaced with that of absolute position tracking error due to the

fact that the pre-defined path is designed as a function of time. In this case, the latter is

more likely to clearly describe the exact extent of deviation between the desired position

and the current position.

3.4.1 Large Initial Cross Tracking Error

In the first case, the value of the large initial cross tracking error and the maximum

allowable steering angle were set to roughly 1.42 m and 0.52 radian, respectively. The
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Figure 3.5: Experimental results (large initial cross tracking error & low speed).

initial posture of the QCar is Pc = [−1,−1, π/2]T . Figure 3.5 illustrates the relatively

good experimental tracking results at 0.5 m/s. Despite the fact that the controller gain was

tuned from 5 to 10, the QCar works quite well and results in similar tracking performance.

Therefore, the tuning of gains in this region has a slight effect on tracking under low-speed

conditions. The experimental results under moderate speed (1 m/s) are similar to that of low

speed, as seen in Figure 3.5. During this state, the tracking performances by different gains

are still satisfied. Nonetheless, the gaps between the blue dashed line and the red solid line

are widened, which indicates that the effects of control gains become manifest as the speed

boosts. The high speed (1.5 m/s) tracking results of the QCar is provided in Figure 3.7,

where obvious discrepancies can be detected by comparison to previous low and moderate

counterparts. While the QCar with the over-tuned gain (k = 10) tracks the reference path

without obvious deviations, the steering signals varying too fast may result in excessive

lateral velocity, acceleration, and instability. In this way, the tracking performance may be
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degraded with more oscillations and instability, and the operational life of actuators will be

considerably reduced, as evident in Figure 3.7(c) and 3.7(d).
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Figure 3.6: Experimental results (large initial cross tracking error & moderate speed).

From an overall perspective, these experimental results point out how the Stanley con-

troller eliminates a large cross tracking error and drives the QCar to the intended path. At

the early stage of tracking, the large cross tracking error results in large steering signals

that adjust the direction of QCar to that of the reference path, and then there is an equilib-

rium achieved between θe and ec terms. Before the QCar travels into the first corner, the

cross tracking error decays to zero in an exponential way, as shown in Figure 3.5(b), 3.6(b)

and 3.7(b). Simultaneously, the heading error has been reduced to zero so that the QCar

continues in a straight line towards the reference path, as shown in Figure 3.5(c), 3.6(c)

and 3.7(c). When the vehicle turns into the first corner, the QCar tracks the intended path

as the principle that we explained before. That is, the QCar using the Stanley controller can

correct the misalignment in heading and errors in position to realize path tracking.

30



-1 0 1 2 3
X(m)

-1

0

1

2

3

Y(
m

)

QCar Start Point

QCar End Point

Reference
Start Point Reference

Actual (k=5)

Actual (k=10)

(a)

0 2 4 6 8
Time (s)

0

0.5

1

1.5

Ab
so

lu
te

 P
os

iti
on

 E
rro

r (
m

)

k=5
k=10

(b)

0 2 4 6 8
Time (s)

-1

-0.5

0

0.5

H
ea

di
ng

 E
rro

r (
ra

d)

k=5
k=10

(c)

0 2 4 6 8
Time (s)

-0.5

0

0.5

St
ee

rin
g 

An
gl

e 
(ra

d)

k=5
k=10

(d)

Figure 3.7: Experimental results (large initial cross tracking error & high speed).

3.4.2 Large Initial Heading Error

For the second case, this scenario involving a large initial heading error was regenerated

based on case one. The parameters and the settings of velocity were chosen as the same

in the first case. The initial posture error Pe = [0, 0, π/2]T , however, allows for the QCar

to point quite a wrong direction at the start point. The low-speed experimental tracking

results are given in Figure 3.8. Although there exist some minor cross tracking errors dur-

ing the turning stage, the QCar utilizing Stanley control performs well in heading tracking

and maintains the heading error around zero from around 5 s until the end, as shown in

Figure 3.8(c). In Figure 3.8(b), as the value of control gain is increased from 5 to 10, the

tracking precision is enhanced due to the smaller absolute position tracking errors. The

experimental tracking results based on moderate speed (1 m/s) are displayed in Figure 3.9,

where apparent differences in contrast with the low-speed experimental results is that the
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Figure 3.8: Experimental results (large initial heading error & low speed).

effect of control gain becomes more visible. It seems that there exist some control gains

between 5 and 10, which could balance the problem between smooth steering and poor

tracking precision. The experimental results of the high speed tracking of the QCar, given

in Figure 3.10, are the worst compared with other results. While these tracking results are

not desirable, it is worth mentioning that path tracking is still realized in some respects.

Despite having oversteering behaviors at around point Pr
′ = [0, 1.5]T , the QCar utilizing

large gain can generate large steering commands to rapidly regain its path and mitigate

the tracking accuracy deterioration arising from high speed. From Figure 3.8(a), 3.9(a)

and 3.10(a), there is an interesting point that the QCar with higher speed drives farther

before completely reaching the reference path. In spite of this, the QCar costs the same

amount of time to make the error convergence to zero in each test. This high speed maneu-

ver is simply treated as an analysis tool for tuning gains, and the tracker does not need to

complete it.
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Figure 3.9: Experimental results (large initial heading error & moderate speed).

Overall, these experimental results show how the Stanley control eliminates the large

initial heading error. Firstly, the value of steering angle surges the maximum limits within

1.5 s as the heading error increases. At the same time, the value of absolute position

tracking error and cross tracking error reaches a peak, followed by a dramatic drop to

zero. Then, the steering commands continuously correct the heading of the QCar so that

it can remove misalignment with the path. As a result, the QCar exponentially converges

to the reference path, which reflects on the experimental results that the QCar travels on

the line segments before turning into the first corner. From Figure 3.8–3.10, it turns out

that the effect of control gain becomes more and more influential as the speed grows. This

phenomenon can also be observed in PP control. So it is crucial to select control parameters

to avoid tracking instability and guarantee tracking precision based on some trial and error

testing before we do real-time control.
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Figure 3.10: Experimental results (large initial heading error & high speed).
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Chapter 4

Observer-based Adaptive Trajectory

Tracking Control of Car-Like Vehicles

Using Particle Swarm Optimization

4.1 Problem Statements

4.1.1 Vehicle Kinematic Model and Reference Trajectory

To investigate the trajectory tracking control, a kinematic model has been formulated to

describe the vehicle’s motion. The model configuration with reference trajectory is shown

in Figure 4.1. In this research, four assumptions have been imposed on the development of

this car-like vehicle’s model:

(1)The vehicle’s body and suspension systems are rigid, ignoring the front and rear axle

load transfer.

(2)The kinematics is deduced purely from geometric relationships without relating the

force that affects the motion.
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(3)No slipping occurs between wheels and ground surface for low-speed vehicles, and

z-axis motion is not considered.

(4)Speed and steering angle of the left and right wheels are assumed to be identical for

this front-wheel-only steering model. The rear wheels are fixed and parallel to the

body.

Reference trajectory

Current posture

Figure 4.1: Kinematic model, reference trajectory, and posture errors.

In order to analyze the 2D planar motion of this model, the global Cartesian coordinate

frame Fi(Oi Xi Yi) (a right-handed one) is used as a reference for the current vehicle’s

posture Pc = [Xc Yc θc]
T , where the variable Pc

′ = [Xc Yc]
T denotes the vehicle’s location

of the c.g., and θc is called the yaw angle of the vehicle whose negative direction is taken

clockwise from the orientation of vehicle’s body toXi-axis. Also, body frame Fb(ObXb Yb)

attached to the vehicle is established so as to facilitate kinematic analysis. In other words,

this frame translates and rotates with the vehicle. The axis of Xb and Yb indicate forward
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speed and lateral error direction, respectively. The central control point Ob is at the c.g.

because of the short wheelbase l = 0.256 m.

Due to Assumption 4, this model could be treated as a bicycle model. The front and

rear turning radius AOr and BOr can be acquired respectively by separately building ver-

tical lines in the direction of the wheels. The bicycle model turns about the instantaneous

rotation point Or with a rear turning radius R (BOr). Referring to the Ackerman model

and low-speed hypothesis [5], it is reasonable to reckon that the radius of a vehicle’s trajec-

tory varies slowly. That is, the vehicle’s angular velocity ωc and yaw (orientation) change

rate θ̇c are equivalent. As a result, the radius R of curvature and angular velocity ωc of the

kinematic model can be described as:

R = l/ tan δc ωc = θ̇c = vc × tan δc/l (4–1)

in which qc = [vc δc]
T is actual control commands for the tracking system. The forward

speed command vc ≥ 0 governs the vehicle’s translational motion, while rotational motion

is controlled by the steering command δc. After rigorously analyzing the motion features

of the vehicle model based on multiple assumptions, the entire kinematics may be deduced

by geometric relationships, as shown in (4–2).

Ṗc =


Ẋc

Ẏc

θ̇c

 =


cos θc 0

sin θc 0

0 1


vc
ωc

 (4–2)

The goal of trajectory tracking control is for the car-like vehicle to follow the reference

trajectory. The desired reference information can be derived according to the predetermined

reference position and corresponding derivatives as following:
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
θr = atan2 (Ẏr, Ẋr)

vr =

√
Ẋr

2
+ Ẏr

2

ωr = θ̇r = (ẊrŸr − ẎrẌr)/v
2
r

(4–3)

where vr > 0, ωr, θr are the linear velocity, angular velocity and yaw angle of the de-

sired trajectory concerning the inertia frame, respectively. The desired steering angle is

expressed as δr. The actual output of trajectory planning is qr = [vr δr]
T rather than ve-

locity information qr
′ = [vr ωr]

T . The reference posture Pr = [Xr Yr θr]
T represents

the posture of the set-point. The reference signals and their relevant derivatives should be

bounded, continuous, and persistently excited. Once the above conditions hold, the trajec-

tory planning problem can be transferred to design time functions Xr(t) and Yr(t). Thus,

together with proper control law, the car-like vehicle is supposed to achieve the desired

pose introduced by (4–3).

4.1.2 Posture Error

After defining the car-like vehicle kinematics, reference trajectory, fixed and moving

coordinate frame with detailed descriptions, we introduce a posture error concept intend-

ing to figure out the tracking distance. Tracking errors are transformed from the fixed

coordinate frame to the moving counterpart, which is depicted in Figure 4.1 and defined as:


xe = (Xr −Xc) cos θc + (Yr − Yc) sin θc

ye = (Xc −Xr) sin θc + (Yr − Yc) cos θc

θe = θr − θc

(4–4)

where Pe = [xe ye θe]
T is a state-tracking error implying the difference between Pr and Pc

at a certain moment. Specifically, xe and ye are the longitudinal and lateral error, and θe

represents the yaw error inside the interval (−π, π).
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Assumptions 2 and 3 suggest nonholonomic constraints subject to the car-like vehicle,

which leads to:

0 = Ẋc sin θ − Ẏc cos θ (4–5)

Substituting (4–1), (4–2) and (4–5) into the time derivative of (4–4), so the tracking

error dynamics can be attained:


ẋe = yeωc − vc + vr cos θe

ẏe = −xeωc + vr sin θe

θ̇e = ωr − ωc = θ̇r − θ̇c

(4–6)

4.1.3 Control Gains

For the sake of explaining simply and explicitly, the classical control law proposed

in [7] is a typical example of a tracking method that can be used for giving details on the

effect of control gain. The suggested control inputs are expressed as:


vc = vr cos θe +K1xe

ωc = ωr + vr(K2ye +K3 sin θe)

(4–7)

where K = [K1 K2 K3] is a set of positive control gains.

Generally, gain determines the convergence characteristics of the error. Even though a

well-designed controller plays a pivotal role in the tracking system, different combinations

of gains contribute directly to the value of control input qc′ = [vc ωc]
T . In other words,

a valid set of gains are conducive to stable, smooth and effective tracking results with

moderate convergence rates. In contrast, irrational gain selection may lead to oscillations

or instabilities emerging from the control system. Sometimes even bring about a vehicle’s

stuck state or failed trajectory tracking. Consequently, how to choose the gain is of the
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essence of the control law.

4.2 Control Strategies

Reference
trajectory
planning

Posture
errors


Kinematic model

or


 QCar platform

Fitness
function

 Backstepping
controller &


Adaptive gains
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observer

Particle swarm
optimization


algorithm

Steering
angle 


calculation

Optimal

tuning


parameters

Reasonable gains determined by PSO algorithm

 Backstepping controller based on YEO

Figure 4.2: The schematic of the proposed kinematic-based tracking strategy.

The complete closed-loop structure of the tracking control system is depicted in Fig-

ure 4.2. In the first step, we design a backstepping controller considering input boundaries

based on Lyapunov functions, which guarantees posture errors converge to zero states in

a global asymptotically stable way. A robust yaw error observer (YEO) is proposed to

estimate yaw error-related variables accurately, namely sin θe and cos θe, solving measure-

ment difficulty and integration drift problem of sensor techniques. Finally, optimal tuning

parameters are obtained employing a novel method: particle swarm optimization (PSO)

algorithm combined with the proposed controller and YEO to minimize posture errors by

using the fitness function. With the tuning parameters, the design of self-updating gains are

realized. The reader is referred to the following sections for more details.
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4.2.1 Backstepping Controller and Adaptive Gains

The objective of the controller is to design a control law subjected to input saturation,

which forces the tracking errors to converge to zeroes asymptotically as t → ∞. Conse-

quently, the car-like vehicle realizes trajectory tracking stably. Observe equations of error

dynamic (4–6), it is obviously not able to control ye directly. Nevertheless, this obstacle can

be addressed by making use of the backstepping control strategy. We decompose the non-

linear system into cascaded subsystems. The following related Lyapunov-like equations

are set up on the Lyapunov direct method, meaning that functions are positive definite (PD)

and their derivatives are negative definite (ND). The first candidate Lyapunov function is

chosen based on the definitions as:

L1 =
1

2
xe

2 +
1

2
ye

2 (4–8)

Taking the time derivative of (4–8) along (4–6), such that:

L̇1 = xeẋe + yeẏe = xe(−vc + vr cos θe) + yevr sin θe (4–9)

Since we wish xe → 0 and ye → 0 as t → ∞, an auxiliary error function sin θev =

−K2ye/vr is designed, where sin θev is taken as a virtual control input and we assume sin θe

is identical to sin θev at this stage. For the foward speed, it is chosen as vr cos θe +K1xe to

keep L̇1 ND. Hence, we obtain:

L̇1 = −K1xe
2 −K2ye

2 (4–10)

From (4–8) and (4–10), we know that L̇1 and its derivative satisfy in PD and ND sta-

tus by choosing appropriate gains, respectively. This reveals xe and ye can approach the

equilibrium point 0 asymptotically as time goes to infinity.

As we mentioned in Section 4.1.3, the combination of controller gains determines the
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overall properties of convergence, thereby affecting system stability and comprehensive

tracking performance of the car-like vehicle. Compared to K1, overlarge K2 makes the

tracking system unstable and slow longitudinal tracking down, while a low value of K2

causes conspicuous lateral deviation on tracking results. For these reasons, K2 is designed

as a function of K1 with the aim of using one gain term to control xe and ye convergence

rate. On top of that, vr is considered to be another argument in the function so that K2

compensates for the effects from lateral error convergence rate and forward speed. The

gain K1 is replaced by τ to avoid confusion, and thus vc is rewritten as:

vc = vr cos θe + τxe (4–11)

K2 can be formulated as:

K2 = K1ϕvr = τϕvr (4–12)

then the virtual input becomes:

sin θev = −τϕye (4–13)

where τ and ϕ represent postive tuning parameters, and they are all bounded constants.

Because vr is a function of time, K2 is converted to an adaptive form. Not only can K2

enhance robustness of controller by introducing speed term but also make connections be-

tween xe and ye convergence rate. Substituting (4–11) and (4–12) into (4–9) yeilds:

L̇1 = −τxe2 − τϕvrye
2 (4–14)

It should be noted that above analysis and equation are valid on the basis of one prereq-

uisite, which depends on sin θe = sin θev. Now, the control objective is to ensure that sin θe

tracks desired virtual input precisely, such that sinθe → sin θev. To achieve this goal, an
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error variable ˜sin θe describing the error between sin θe and sin θev is defined as:

sin θ̃e = sin θe − sin θev (4–15)

Taking the time derivative of (4–15) along (4–6) and (4–13), which can be calculated

as:

sin ˙̃θe = cos θeθ̇e + τϕẏe

= cos θe(ωr − ωc) + τϕ(vr sin θe − xeωc)

(4–16)

Only when sin θ̃e and ye converge to zero concurrently as t → ∞ can guarantee

sin θe → 0, which implies θe → 0. Next, define the Lyapunov-like function as follows:

L2 =
1

2
xe

2 +
1

2
ye

2 +
1

2
sin(θ̃e)

2 (4–17)

The time derivative of (4–17) along (4–9), (4–13) and (4–15) is:

L̇2 = −τxe2 − τϕvrye
2 + sin θ̃e(yevr + sin ˙̃θe) (4–18)

Equation (4–18) is supposed to follow a ND format, such that:

−K3 sin θ̃e = (yevr + sin ˙̃θe) (4–19)

Imagine that lateral error is able to converge to zero rapidly. This situation is apparently

caused by a larger steering command, leading to a quick change of vehicle’s orientation.

For these reasons, we set K3 proportional to K2 in order that vehicle adjusts to desired

orientation with a reasonable yaw error convergence rate based on K2, that is:

K3 = ηK2 = τϕηvr (4–20)
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The parameter η represents a postive constant similar to τ and ϕ. After substituting

(4–16) and (4–20) into (4–19), ωc is derived as:

ωc =
vrye + ωr cos θe + τϕvr sin θe + τϕηvr(sin θe + τϕye)

cos θe + τϕxe
(4–21)

and the steering input is calculated as:

δc = arctan (ωc × l/vc) (4–22)

From (4–18), L̇2 may be rewritten as:

L̇2 = −τxe2 − τϕvrye
2 − τϕη(sin θe + τϕye)

2 (4–23)

The stability of the closed-loop system is proven by LaSalle’s Invariance Principle.

Equation (4–17) shows L2 is PD and bounded while (4–23) reveals that L̇2 is negative

semi-definite when −τxe2 − τϕηsin θe may be zero. Considering error dynamics, L̇2 = 0

only if xe = 0, ye = 0 and sin θ̃e = 0. Futher, yaw error will converge to zero due to

the fact that ye → 0 and sin θ̃e → 0 simultaneously. Therefore, the control system is

globally asymptotically stable at equilibrium point 0 by implementing control law (4–11)

and (4–21), which also indicates the control goal Pe → 0 as t→ ∞ is achieved.

Given that the implementation capacity of the drive motor and steering servo, control

constraints are imposed in order to limit overlarge velocity commands. To this end, the

final velocity and steering control law within saturations are:

vc =


Vmax vc > Vmax

vc vc ≤ Vmax

(4–24)
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δc =


δmax δc > δmax

δc |δc| ≤ δmax

−δmax δc < −δmax

(4–25)

where Vmax = 1 m/s and δmax = 0.5 rad are maximum values of control commands.

4.2.2 Yaw Error Observer Design

This subsection solves the obstacle of measuring yaw angle by replacing the real sensor

with an observer-controller combination method. Compared with the vehicle’s yaw angle

measurement, the current position measurements are relatively accurate and more acces-

sible. In real applications, yaw angle receiving from a positioning system is not infallible

and occasionally unavailable owing to sensor noises, external disturbances, uncertainties

and especially integration drift from IMU. Besides, in (4–6),(4–11) and (4–21), it is clear

that yaw error only appears in the form of sin θe and cos θe rather than θe. Hence we de-

sign an observer, which serves as a sensor to provide angle variables to the backstepping

controller.

Now, set λ = sin θe and its estimation is λ̂ = ˆsin θe. Similarly, µ = cos θe and µ̂ =

ˆcos θe. In this case, the explicit expression of xe and ye can be written as:

xe =(Xr −Xc)(cos θrµ̂+ sin θrλ̂) + (Yr − Yc)(sin θrµ̂− cos θrλ̂)

ye =(Xc −Xr)(sin θrµ̂− cos θrλ̂) + (Yr − Yc)(cos θrµ̂+ sin θrλ̂)

(4–26)

We define a second-order observer state variable as:

m1 = sin θe −K4ye

m2 = cos θe −K5xe

(4–27)
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where Ko = [K4, K5] is postive observer gain. The derivative of (4–27) along (4–6) is

given by:

ṁ1 = cos θe(ωr − ωc)−K4(−xeωc + vr sin θe)

ṁ2 = sin θe(ωc − ωr)−K5(yeωc − vc + vr cos θe)

(4–28)

then the yaw error obersver can be designed as:


˙̂m1 = µ̂(ωr − ωc)−K4vrλ̂+K4xeωc

˙̂m2 = λ̂(ωc − ωr)−K5(−vc + vrµ̂+ yeωc)

(4–29)

where


λ̂ = m̂1 +K4ye

µ̂ = m̂2 +K5xe

(4–30)

Next, we verify the stability of the YEO using the Lyapunov direct method. With

observer errors λ̃ = λ− λ̂ and µ̃ = µ− µ̂, a candidate Lyapunov is chosen as:

L3 =
1

2
λ̃2 +

1

2
µ̃2 (4–31)

The derivatives of observer errors along (4–29) and (4–30) are:

˙̃λ = (ωr − ωc)µ̃−K4vrλ̃

˙̃µ = (ωc − ωr)λ̃−K5vrµ̃

(4–32)

Differentiating L3 with respect to time along the (4–32) yields:

L̇3 = λ̃ ˙̃λ+ µ̃ ˙̃µ = −K4vrλ̃
2 −K5vrµ̃

2 (4–33)

We find L3 is PD and L̇3 is ND because Ko and the value of vr are both non-negative.
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This implies that observer errors will converge to zero asymptotically as t→ ∞. Therefore,

the problem of unmeasurable yaw information is settled by using known reference variables

and available position measurements. We shall transfer the estimated variables from YEO

into the entire closed-loop controller so that actual control commands in (4–24) and (4–25)

may be rewritten as follows:


vc = vrµ̂+ τxe

δc = arctan
[vrye + ωrµ̂+ τϕvrλ̂+ τϕηvr(λ̂+ τϕye)]l

(µ̂+ τϕxe)vc

(4–34)

Remark 1. Note that xe and ye in (4–34) are computed instantly from (4–26) instead of

errors defined in (4–4), when λ̂ and µ̂ are estimated by means of YEO. The posture error is

redefined as Pe
′ = [xe ye λ̂ µ̂]

T .

Remark 2. This design of observer-controller combination, differing vastly from conven-

tional observability problems, means that we construct observer and controller separately.

4.2.3 Optimal Tracking System based on PSO

In nature, for a swarm of birds, the most effective and simplest foraging strategy is

to explore the surrounding space where a leader is closest to the food. PSO algorithm is

inspired by the simulation of the abovementioned intelligent behavior characteristics of

birds flocking, and it is used to solve optimization problems. Each bird in the swarm is

regarded as a particle, representing a candidate solution and maps a fitness value computed

from the fitness function. Regarding the moving direction and distance of a particle, it is

decided by its velocity that is dynamically adjusted with the moving experience of itself and

its neighbor so as to seek the optimal solution for an individual in the search space. Hence,

the PSO algorithm is introduced into the tracking system for the purpose of accomplishing

optimal tracking, as shown in Figure 4.3. In other words, the best solution for control gain

(particle) can be determined by deploying PSO.
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Figure 4.3: The flow chart of the proposed PSO.

Futhermore, each particle i possesses a current velocity vector Vi = [Vi1, Vi2, Vi3] and a

current position vector Xi = [Xi1, Xi2, Xi3]. The update of particle’s velocity and position

in each iteration are according to best position of particle Pb and that of whole swarm Gb,

which are given as follows:

Vi+1 = WVi + C1R1(Pb −Xi) + C2R2(Gb −Xi) (4–35)

Xi+1 = Xi + Vi+1 (4–36)

A linear decreasing inertia weight method is introduced in PSO, where it maintains

the extensive global exploration at the early stage and significantly strengthens the local

search ability during the latter part. The mathematical formula of this method is given in

the following form:

W = Wmax − (Wmax −Wmin)Iter/Itermax (4–37)
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where C1 and C2 are the acceleration coefficients, and R1 and R2 denote random numbers

in the range [0,1]. The term W within [Wmin,Wmax] interval is inertia weight factor, and

Iter and Itermax are the current and maximum iteration number.

After generating an initial population, the tuning parameter of ψ = [τ ϕ η] should be

obtained by a zoom factor f = [f1, f2, f3] so that all particles fly in a limited searching

space, which can be formulated as follows:

ψ = Xi × f (4–38)

The process of deploying PSO can be described as:

(1)Generate the initial population, each particle in the swarm has a random velocity and

position, and particles assign the value to the controller gains in order.

(2)Running the Simulink model. Meanwhile, the fitness of particles is evaluated by the

fitness function designed in advance. Thus, Pb and Gb are obtained.

(3)Compare the fitness value of each particle with that of Pb. If a smaller value of

fitness exists, the best position is updated by this particle. A similar comparison of

each particle and the whole swarm is carried out. The best global position remains

the same, on condition that it corresponds to the minimum fitness value.

(4)Update the velocity and position for the particle through (4–35) and (4–36).

(5)Judge the termination condition. The procedures mentioned above are repeated until

the maximum iteration is reached.

In order to evaluate the tracking performance, we design a fitness function as a criterion

as following:
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f(z) =
t∑

i=0

zi =
∑

ka[kb(|xe|+ |ye|+
∣∣∣λ̂∣∣∣+ |µ̂|) + kc |vr − vc|+ kd |δr − δc|]

(4–39)

where ka represents the scaling factor. The constants kb, kc, kd stand for the posture, veloc-

ity, and steering error weight respectively. The parameter t is the simulation or experiment

time duration of the tracking. The fitness function computes the sum of the fitness value at

each sampling time. Afterwards, the minimum of f(z) and the corresponding best combi-

nation of controller gains are obtained by implementing the PSO algorithm. Accordingly,

the optimal global tracking performance is ultimately fulfilled. Equation (4–39) implies

that not only do we judge the tracking performance based on the posture error, but also

velocity and steering error are taken into account, serving as a performance criterion in an

effort to guarantee the least tracking error and minimum control inputs simultaneously.

Remark 3. The particle (controller gain) and output performance index can provide a

bridge to make connections between the PSO algorithm and the Simulink model.

Remark 4. The tracking performance evaluation criterion can be redefined by simply tun-

ing the error weights in (4–39).

4.3 Simulation Results

In this section, simulations were carried out through MATLAB/Simulink to evaluate the

tracking performance. To illustrate the advantages of the suggested approach, comparative

simulations were conducted with three different controllers. The well-regarded controller

mentioned in (4–7) was marked as controller A, while a robust nonlinear backstepping

controller introduced in [38] and a recently developed adaptive controller proposed in [37]

were labeled as B and C, respectively. A smooth circular reference trajectory is applied as:
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Xr =1.8 sin(0.35t+ 0.2) + 0.8

Yr =− 1.8 cos(0.35t+ 0.2)

(4–40)

where the sampling time and t are 0.002 s and 16 s. The initial conditions of the vehicle and

reference trajectory are Pc = [0, 0, 0]T and Pr = [1.16,−1.76, 0.2]T . The observer gain was

set as Ko = [7, 7]. The parameter of fitness function was chosen as k = [ka, kb, kc, kd] =

[0.1, 0.74, 0.13, 0.13]. In addition, parameters of PSO are listed as follows: Wmin = 0.82,

Wmax = 1.18, C1 = C2 = 1.5, Itermax = 10, Vi ∈ [−0.15, 0.15], Xi ∈ [1, 4], and

f = [1, 0.6, 0.4]. Following the steps of Section 4.2.3, we obtain the optimal gain as K =

[1.19, 0.75, 1.2]. For the sake of fair comparisons, the control gain for other controllers was

chosen as 1.5 to get acceptable tracking results. Also, threshold distance dx and tuning

parameter α in Controller C are as the same as in [37].

The simulation results of PSO are shown in Figure 4.4. The initial population (circle)

with fitness distributed randomly over the searching space, as seen in Figure 4.4(a), where

the best position (hexagram) having the lowest fitness is found effortlessly by the PSO, at

nearly Gb = [1.19, 1.67, 4]. It can be observed that fitness depends to a great extent on

the value of K2 and K3, which signifies that they play a dominant role in tracking. Noted

that we still present the optimization results from the 0th to 100th iterations so that we

can explicitly describe how does the proposed PSO model find the optimal solution in a

short time. Provided in Figure 4.4(b) is information about optimizing tuning parameters,

revealing that the PSO is constantly seeking an optimal position. We detect the values of

τ , ϕ and η all changed marginally after the sixth iteration, standing at ψ = [1.19, 1, 1.6].

This can also be proved in Figure 4.4(c), where the value of f(z) is on a downward trend

and reaches a trough of only 263.36 fitness (hexagram) at the 6th iteration, at which point it

leveled off until the last iteration. The reasons for this phenomenon can be attributed to: we

specify small-scale boundaries of Xi and design a fitness function to output performance
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Figure 4.4: Results of particle swarm optimization.
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Figure 4.5: The outputs of the yaw error observer.
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Figure 4.6: Results for tracking a circular trajectory.
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index at each sampling time so as to considerably differ fitness values at each particle’s

position, which hastens the progress of the PSO and therefore facilitates exploration of

superior space in the early phase. From Figure 4.5, the estimated value [λ̂, µ̂] converges

quickly to the actual value [sin θe, cos θe], which implies that YEO meets the requirement

of asymptotical stability.

The simulation results are summarized in Figure 4.6. From an overall perspective, all

controllers enable the car-like vehicle to realize trajectory tracking (Pe → 0) but with di-

verse performance. Figure 4.6(a) displays the actual and reference trajectory. The proposed

controller drives the vehicle near the target point at t = 2 s (square), while the results by

other controllers are not ideal because of too late steering. At t = 4 s (diamond), Controller

B and C lead the vehicle to track inside the reference trajectory, and Controller A makes it

outside. However, given in Figure 4.6(a)–4.6(d), the deviations and posture errors neither

exist nor appear in the tracking period (during 4-16 s) by utilizing the proposed controller.

Figure 4.6(b)–4.6(d) present the posture error versus time, indicating that the proposed

controller offers a much faster response and convergence rate than other controllers. A

striking improvement is that lateral error converges swiftly to zero at t = 3.5 s and keeps

steady until the end. By contrast, Controller C requires 6.7 s and Controller A about 13 s

to achieve this stable status. Despite having a minor magnitude of yaw error (during 0-2.7

s), Controller B results in the worst tracking on account of the slowest convergence rate.

For Controller C, it adjusts the vehicle to track at a moderate convergence rate due to the

design of adaptive gains. Nonetheless, selecting of the value of dx and α is a challenge,

which directly influences the longitudinal error and velocity tracking.

The commanded velocity and steering angle within bounds, as well as desired com-

mands, are presented in Figure 4.6(e) and 4.6(f). At time t ∈ [0, 4], the proposed controller

outputs a larger velocity command so that the vehicle approaches the desired point at a fast

pace. Simultaneously, the steering angle command has a dramatic change, especially in
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the first 0.27 s, which quickly regulates vehicle’s orientation for lateral error to converge

speedy to zero, as evident in Figure 4.6(a) and 4.6(c). However, it takes more than 8 s

for other controllers to control the vehicle to follow the circular trajectory with the desired

velocity and steering angle commands.

Remark 5. In spite of the fact that the gains in YEO are chosen at random, we can obtain

optimized observer gains by expanding the dimension of Vi and Xi.

Remark 6. Compared with conventional PSO, fewer iterations have remarkably reduced

the high computational cost.

4.4 Experimental Results

A series of experimental tests were performed on the QCar platform so as to examine

and evaluate the tracking performance of the four proposed controllers. To further illustrate

the superiority of the proposed control strategy, we contrasted and analyzed experimental

results. The test video is available in https://www.youtube.com/watch?v=6VmLnf0X288.

After operating the Simulink model, the optimized tuning parameters were attained as ψ =

[1.5225, 1.6551, 1.2] for Scenario I and ψ = [2.0306, 2.4, 1.6] for Scenario II.

4.4.1 Scenario I

A circular-like trajectory providing slightly varied velocity and steering angle was

adopted, which was designed as:

Xr =1.1 sin(0.5t− 0.2)

Yr =1.165 cos(0.5t− 0.2)

(4–41)

The initial states of the desired and current posture are Pr = [−0.2185, 1.1418, 0.211]T

and Pc = [−1.165, 0, 0]T . The observer gain was chosen as Ko = [6.669, 7.051]. The
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fitness parameters were designed as k = [0.1, 0.5, 0.25, 0.25], and f = [1, 0.5, 0.3]. The

suitable gain for the compared controllers was set to 1.5525, and dx and α were selected

as 1.5 and 1. Finally, t was tuned to 11.6 s. The remaining parameters are the same as in

Section 4.3.

Figure 4.7 illustrates the tracking results of a circular-like trajectory. In general, the

QCar by the proposed controller has the slightest deviation, particularly at the early stage,

exemplified by two tracking moments at t = 2 s (diamond) and t = 4 s (square). The

Controller A is less desirable due to more oscillations and the significant deviation during

2-8 s, guiding the QCar tracking outside the reference target. A distinct phenomenon is that

all controllers, except for the proposed one, give rise to a late steering and slower conver-

gence rate in the first six seconds, as evident in Figure 4.7(a)–4.7(d); where the proposed

controller makes the stable times of the condition (Pe → 0) are reduced considerably to

2.9, 3.8 and 5 s compared to relatively good Controller C corresponding to 6, 8 and 6 s.

As shown in Figure 4.7(e) and 4.7(f), the proposed control scheme is able to implement

velocity and steering tracking expeditiously since the performance evaluation criterion is

revised by turning up the error weights in (4–39). Figure 4.7(g) presents the results of YEO,

which demonstrates that accurate estimations are rapidly acquired. Despite existing large

initial differences between estimated values and sensor-based measurements, the former

fastly approaches the latter. So, exact estimations are obtained from the time t = 2 s.

The evolutions of adaptive gains are depicted in Figure 4.7(h), where the value of gains is

tuned automatically to boost tracking performance. For example, there is an increase of

K2 at time t ∈ [0, 2], which is beneficial to accelerate the convergence of the lateral error.

As expected, ye slumps quickly, and this is fulfilled because of a larger steering angle, as

seen in Figure 4.7(f). Meanwhile, a similar trend of K3 can be observed, which results

in a faster convergence rate of yaw error. For these two reasons, the value of θe declines

dramatically to -0.96 at 1.13 s, with a sharp surge from this moment to t = 2 s. That
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Figure 4.7: Tracking results of Scenario I (under large initial position errors).
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is to say, the QCar rapidly narrows position errors through a large steering and regulates

its orientation, such that θe → 0. Consequently, the K2 and K3 can compensate for each

other so that the proposed controller offers the fastest overall convergence rate and the most

precise tracking.

4.4.2 Scenario II

Another S-shape trajectory with higher tracking requirements was considered as a ref-

erence trajectory, formulated as:

Xr =2.2− 2.5 cos(0.2t+ 0.15)

Yr =0.7 + sin(0.4t+ 0.15)

(4–42)

where the changed parameter settings are listed as follows: t = 19, dx = 0.75, α = 1.5, k =

[0.1, 0.35, 0.3, 0.3], and Ko = [6.65, 6.01]. The initial condition Pe = [0.73, 0.85, 1.39]T

provides a large yaw error. The rest of the parameters were set the same as those in Section

4.3. Note that the error weights are similar, implying that the velocity and steering tracking

are deemed as equally important as posture tracking.

The results of tracking an S-shape trajectory are shown in Figure 4.8, where the QCar

with the proposed controller realizes tracking with the fastest convergence rate, highest ac-

curacy and minimum cutting corner. Controller A shows the worst tracking performance,

while Controller B and C have similar properties. Figure 4.8(a) presents the actual tra-

jectory of the QCar. When the QCar utilizing other methods drives from its start point to

the position at t = 3 s (marked as diamond), cutting-corner errors are noticeably widened.

This may have a detrimental impact on the control stability because the reference posture

moves ’behind’ the real posture. From an algorithmic view, it only executes Pe → 0 and

is unable to contemplate the vehicle’s current state, which sometimes makes unreasonable

vehicle control, such as overlarge steering, non-stop steering, etc. Apart from the proposed
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Figure 4.8: Tracking results of Scenario II (under large initial yaw errors).
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method, all controllers lead to insufficient steering, which means the QCar cuts corners or

drives not far enough. By contrast, almost no deviation emerging after the QCar with the

proposed controller moves to the reference start point. Besides, a conspicuous feature is

that ye is eliminated quite rapidly to avoid cutting-corner errors. These tracking character-

istics can be attributed to the proposed controller offering rapid convergence rates, that is,

the posture errors converge to zero at approximately 4, 1.3, and 4.6 s, whereas it spends

more than 7.2, 7.3, and 8 s for other controllers, as evident in Figure 4.8(b)–4.8(d).

The commands of velocity and steering angle are depicted in Figure 4.8(e) and 4.8(f).

Using the proposed controller, the QCar makes full use of the driving and steering capabil-

ity during the early stage to drive to desired positions and regulates orientation simultane-

ously in a short time. See Figure 4.8(g) for the estimations and sensor-based measurements.

Despite an initial error, the YEO quickly estimated the relevant inputs required for the pro-

posed controller. The adaptive control gains can further minimize the cutting-corner error

due to the fact they are tuned to match current velocity and reduce inappropriate steering

responses at corners, as evident in Figure 4.8(e) and 4.8(h).
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Chapter 5

Trajectory Tracking for Autonomous

Vehicles based on Frenet Frame

5.1 Problem Formulation

5.1.1 Dynamic Bicycle Model

Figure 5.1: Dynamic bicycle model.

While most geometric and kinematic controllers neglect dynamic effects, the internal
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forces, accelerations, and tire deformation problem should be taken into account at high

speed. The control objective is to develop a tracking system for AVs in a wide-speed

range, so a bicycle model with a simplified configuration for providing dynamic responses

and vehicle states is utilized, as shown in Figure 5.1. In this study, the steering angle δc

governed by the front wheel is assumed to be small, while the rear wheel is set to be fixed.

Consequently, it is reasonable to deem that cos δc ≈ 1, tanϕ ≈ ϕ, and tanα2 ≈ α2. The

equation of lateral translational motion and yaw dynamics are obtained as:

may = Fyf cos δc + Fyr = C1α1 + C2α2

Iψ̈ = l1Fyf cos δc − l2Fyr = l1C1α1 − l2C2α2

(5–1)

After analyzing the geometric relationship of velocity vectors and using small-angle

approximations, the slip angle of the front and rear wheels are expressed by:

α1 = ϕ− δc = (vy + ψ̇a)/vx − δc

α2 = (vy − ψ̇b)/vx

(5–2)

where

ψ̇a = l1ψ̇

ψ̇b = l2ψ̇

vx = vc cos β

vy = vc sin β

(5–3)

Substituting from (5–2) and (5–3) into (5–1), with the Frenet formula ay = ÿ + vxψ̇,

the state space model is given by:

 ÿ
ψ̈

 =


C1 + C2

mvx

l1C1 − l2C2

mvx
− vx

l1C1 − l2C2

Ivx

l21C1 + l22C2

Ivx


 ẏ
ψ̇

−

 C1

m
l1C1

I

 δc (5–4)
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where ay represents the inertia acceleration of the vehicle at c.g. along the lateral axis of

the vehicle body frame, β the sideslip angle, y the lateral position, ψc the yaw angle, vx the

longitudinal velocity, vy the lateral velocity (same as ẏ), and vc the velocity at the c.g. of

the vehicle. The terms v1, Fyf , and C1 stand for the velocity, lateral force, and cornering

stiffness of the front tire, while v2, Fyr, and C2 are those of the rear tire. The vehicle mass

and yaw moment of inertia is denoted by m and I respectively. The distances from the

c.g. to the front and rear tires are l1 and l2. The intersection Or is the instantaneous rolling

center for the vehicle, and OrB describes the turning radius.

5.1.2 Coordinate Transformation based on Frenet Frame

Reference trajectoryCurrent position

Actual trajectory

Figure 5.2: The motions of the vehicle under the Frenet frame.

The longitudinal and lateral control are connected together and influence each other on

a kinematic level. Nonetheless, the motions of the vehicles are able to be decoupled by in-

tegrating the Frenet frame with the utilized dynamic model. Consider the vehicle’s motion

under the global and Frenet frame, as depicted in Figure 5.2. From which, the reference tra-

jectory as the road centerline determines the s-axis, describing the driving distance s from

the initial reference point, and d-axis maps the lateral offset d. Point M(xc, yc) represents

63



the vehicle’s current position, and N(xr, yr) is the projected position on the reference tra-

jectory. The unit vectors of the current vehicle position, namely λ⃗c and µ⃗c, are constructed

along the Frenet frame to analyze the vehicle motion. Note that the projection point is

assumed to coincide with the reference point at this stage. The direction of λ⃗c and vc are

the same, but µ⃗c is perpendicular to λ⃗c. Similarly, the vector λ⃗r and µ⃗r are established for

the projected point, of which exact coordinates can be described by the definition of the

orthonormal basis as:

µ⃗r = (− sin θr, cos θr)

λ⃗r = (cos θr, sin θr)

(5–5)

and the coordinate of the vector q⃗ can be written as:

q⃗ = N⃗M = (xc − xr, yc − yr) (5–6)

The variable ṡ, having the same direction as λ⃗r, describes the velocity of the projection

point in the Frenet frame. The term θc is called the course angle of the vehicle, whereas

θr denotes the angle between the X-axis and tangent of the projection point. By means of

vector methods, the projection distance from the point N to M may be defined as:

d = (X⃗c − X⃗r) · µ⃗r (5–7)

then take the derivative of (5–7) yields:

ḋ = (X⃗c − X⃗r) · ˙⃗µr + (
˙⃗
Xc −

˙⃗
Xr) · µ⃗r (5–8)

where the derivatives of the real vehicle’s position vector ˙⃗
Xc(s, d) and projective counter-

part can be expressed as:
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˙⃗
Xc = |vc| λ⃗c
˙⃗
Xr = ṡλ⃗r

(5–9)

Next, we introduce the 2-dimensional Frenet equations so as to derive the differential

equation of the lateral deviation, which is given by the following equation:

dµ⃗r/ds = −krλ⃗r (5–10)

which upon closer inspection is seen to be:

dµ⃗r/dt = dµ⃗r/ds× ds/dt = −krṡλ⃗r (5–11)

where the curvature for the reference trajectory is kr. After applying the vector operations,

the explicit expression for ḋ and ṡ can be written as:

ḋ = vx sin(ψ − θr) + vy cos(ψ − θr)

ṡ = [vx cos(ψ − θr)− vy sin(ψ − θr)]/(1− krye)

(5–12)

5.1.3 Tracking Error Dynamics

Defining the difference between the actual and the pre-determined trajectory is essential

for evaluating the proposed controller’s tracking ability. In Figure 5.3, according to the

definition of the Frenet frame, the longitudinal and lateral tracking errors shall be defined

as:

xe = q⃗ · λ⃗r
T

ye = d = q⃗ · µ⃗r
T

(5–13)

More specifically, the longitudinal error is the arc length from the point N to P , re-

garded as approximately equal to the projection of q⃗ along the direction of λ⃗r. With respect
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Reference trajectory

Desired point

Projection point

 Current vehicle position

Figure 5.3: Tracking errors in the Frenet frame.

to the lateral error, it is roughly equivalent to the projection of q⃗ in the direction of µ⃗r. Com-

monly the value of ψ − θr is considered to be small. Besides, the second derivative of θr

is negligible because the curvature of roads changes gradually in the real world. Upon the

foregoing premises, the lateral error, course error, and their derivatives can be formulated

as:

ẏe = ẏ + ψevx

ÿe = ÿ + ψ̇evx

ψ̇e = ψ̇ − θ̇r

ψ̈e = ψ̈

(5–14)

where

ψe = ψ − θr (5–15)

Note that ψe is the virtual course error rather than the real counterpart. Substituting (5–14)

and (5–15) into (5–4), the state space model for lateral dynamics is rewritten in a compact

form as:
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L̇e = ALe +Bu+ Cθ̇r (5–16)

where

Le =



ye

ẏe

ψe

ψ̇e


B =



0

−C1

m

0

− l1C1

I


C =



0

l1C1 − l2C2

mvx
− vx

0

l21C1 − l22C2

Ivx



A =



0 1 0 0

0
C1 + C2

mvx
−C1 + C2

m

l1C1 − l2C2

mvx

0 0 0 1

0
l1C1 − l2C2

Ivx

l2C2 − l1C1

I

l21C1 − l22C2

Ivx



(5–17)

5.1.4 Problem Statement

The tracking control problem has now transferred to design an appropriate control law

to guide the vehicle to precisely track the pre-defined trajectory, that is, the proposed tra-

jectory tracking scheme needs to guarantee that the tracking errors converge to zero stably

as time goes to infinity.

5.2 Trajectory Planning

The fifth-order polynomial featured with the constraints of the curvature, position, ve-

locity, and acceleration is adopted for planning a feasible reference trajectory as:

xr(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

yr(xr) = b0 + b1xr + b2x
2
r + b3x

3
r + b4x

4
r + b5x

5
r

(5–18)
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Figure 5.4: The architecture of the proposed dynamic-based tracking scheme.

where ai and bi are unknown coefficients of the polynomial. The desired trajectory requires

boundary conditions, which can be formulated as follows:

xr(0) ẋr(0) ẍr(0)

xr(T ) ẋr(T ) ẍr(T )

yr(0) ẏr(0) ÿr(0)

yr(xT ) ẏ(xT ) ÿ(xT )

(5–19)

where the ending time is represented by T and (xr,yr) is the ending coordinate. Once the

boundary conditions are set, the unknown coefficients can be derived. Based on these, the

time function of yr(t) and its derivatives can be written as:

yr(t) = y[xr(t)]

ẏr(t) = y′r[xr(t)]ẋr(t)

ÿr(t) = y′′r [xr(t)]ẋr(t)
2 + y′[xr(t)]ẍr(t)

(5–20)
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Differentiating (5–18) and its derivatives, the desired course angle and the road curva-

ture versus time can be expressed as:

θr(t) = arctan (y′r[xr(t)])

kr(t) = y′′rxr(t)/(1 + y′r[xr(t)]
2)1.5

(5–21)

In regard to the desired velocity, acceleration, and the velocity tracking error, they can

be described as:

vr =
√
ẋr(t)2 + ẏr(t)2

ar =
√
ẍr(t)2 + ÿr(t)2

ve = vr − ṡ

(5–22)

Based on the geometric relations in Figure 5.3, the estimated course angle function

of projected points is designed to mitigate the chattering phenomena and achieve smooth

steering, which is:

θre = θr + krxe (5–23)

5.3 Tracking Control Strategy

The schematic of the closed-loop tracking system is displayed in Figure 5.4. Due to the

decomposition of vehicle motions, it is clear that we can take advantage of different sorts of

controllers to complete the tracking mission. In this study, the conventional PID and LQR

controls are chosen to systematically govern the vehicle’s longitudinal and lateral motions.
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5.3.1 LQR Control

The LQR control, characterized by stable control performance, can find the optimal

solution for the control law. The state feedback law u = −Kx minimizes the quadratic

cost function, which is defined as:

J(u) =
1

2

∫ ∞

0

[LT
e (t)QLe(t) + uT (t)Ru(t)]dt (5–24)

subject to the tracking system dynamics:

L̇e = ALe +Bu (5–25)

where Q and R stand for positive definite matrices and off-diagonal elements, t the time,

and K = [k1, k2, k3, k4] the control gain of the LQR controller. From (5–16) and (5–17),

it is obvious that the term vx is the only variable in the lateral error dynamics. Therefore,

by utilizing the simulation software, all the solutions of LQR under various velocity can be

computed in an offline manner and stored in a matrixKv. That is, each value of the velocity

corresponds to a specific set of K. As a result, with the associated Riccati equations, the

LQR gives the optimal steering command with the minimal cost in real-time by indexing

the matrix elements. The computational time and tuning efforts are considerably reduced

due to the fact that the control gains can tune automatically. However, there is a challenge

that stems from selecting the weights of Q and R: a larger Q corresponds to a superior

performance while sacrificing stability. Compared to a smallQ, the high value ofR ensures

driving safety, ride comfort, and smooth steering, but the cost is the deterioration of the

tracking effect.
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5.3.2 Feedforward Control

From (5–16), the term Cθ̇r will bring the steady-state error, thus rendering the instabil-

ity of the control system apparently. The lateral tracking errors and their derivatives fail to

be zero simultaneously irrespective of the value of K. However, the lateral position error

ye can be ensured to be zero at a steady state by reasonably choosing the feedforward input

δa. The feedback control law becomes:

u = δc = −KLe + δa (5–26)

Substitute (5–26) into (5–16) and simplify the tracking errors, such that:

Le =



δa
k1

− θ̇r
k1vx

[l − k3l2 −
mv2x
l

(
l2
c1

+
l1k3 − l1

c2
)]

0

− θ̇r
vx

(l2 +
l1mv

2
x

lc2
)

0


(5–27)

where

θ̇r = krṡ ≈ krvx (5–28)

If the lateral steady-state error can be made zero, the feedforward steering angle is

chosen as:

δa = kr[l − k3l2 −
mv2x
l

(
l2
c1

+
l1k3 − l1

c2
)] (5–29)

After employing the mass equivalent method and considering the geometric relation-

ship of the used model, it can be deduced that ψe is approximately equal to −β. By (5–15),

the real course error can be calculated as:
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ψer = β + ψ − θr = θc − θr = 0 (5–30)

Consequently, the real tracking error Ler = [ye, ẏe, ψer, ψ̇e]
T eventually converges to 0

without steady-state error.

5.3.3 Longitudinal Control

As seen in Figure 5.4, the longitudinal control is implemented through a double PID

controller. A brief statement of this approach is presented because the PID control has been

mature and it is readily to be deployed into the tracking system. The calibration table of the

throttle and brake is established in advance, where a set of velocity and acceleration signals

corresponds to an exact value of the throttle opening or the brake pressure tr. According to

the model of the electric motor, the total drive torque at the wheel is:

T =


Tmaxtr wmax > w > 0

Tmaxtrwc/w w > wmax

(5–31)

where

wc = Pmax/Tmax (5–32)

The terms w, P , and T denote the speed, power, and torque of the motor. Similarly, the

maximum values of the aforementioned variables are represented bywmax, Pmax, and Tmax.

The motor will run the peak torque before reaching the maximum power. If the motor’s

speed reaches the maximum power point, it will be operated at constant power.

As indicated in Figure 5.4, the PID position controller regulates the vehicle’s longitu-

dinal motion to make xe → 0, whereas the PID velocity controller enables the velocity

tracking that ṡ → vr. The position tracking is further enhanced in light of the fact that
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the velocity controller takes the signals tuned from the position controller as the input. As

a result, the double PID controller indirectly determines the torque and brake pressure to

fulfill the longitudinal position and velocity tracking. Also, it is suggested that longitudinal

tracking could be improved by tuning the PID gains.

5.4 Simulation Results

To further verify the effectiveness of the proposed tracking control scheme, the simu-

lations under the different scenarios have been carried out in MATLAB/Simulink and Car-

Sim. An E-Class vehicle (Sedan) was chosen as the mathematical model to mimic tracking

behavior. The key parameters of the mathematical model and electric motor are listed as

follows: l1 = 1.4 m, l2 = 1.65 m, C1 = C2 = −118857 N/rad, m = 1830 kg, I = 3234

kg·m2, Pmax = 180 kw and Tmax = 380 N·m. The gains of the double PID controller

were all selected as kP = 3 and kI = kD = 0.1. Regarding the parameters of the planning

module, it can be summarized as xr(T ) = 100 m and yr(xT ) = 30 m for Scenario I, while

xr(T ) = 200 m and yr(xT ) = 80 m for Scenario II. In addition, Q was set as a 4 × 4

identity matrix, whereas R was chosen as 15 for Scenario I and 100 for Scenario II.

5.4.1 Scenario I

The tracking results of Scenario I is summarized in Figure 5.5. From an overall per-

spective, the vehicle automatically tracks an S-shape trajectory with satisfactory tracking

performance. Provided in Figure 5.5(a) are the reference and actual trajectories. It can

be seen that almost no deviation exists during the whole tracking duration, revealing the

accurate and stable tracking ability. The desired and projected velocity ṡ are shown in

Figure 5.5(b), which reflects that the double PID method successfully controls the throttle
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Figure 5.5: Tracking results of Scenario I.
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or brake to accomplish velocity tracking. As seen in Figure 5.5(c) and 5.5(d), the longi-

tudinal error is confined within [−0.04, 0.04] despite slight fluctuations, while the lateral

error rapidly converges to and stabilizes around 0. This phenomenon can be attributed to

the LQR integrated with the feedforward control guaranteeing Ler → 0 while offering

adaptive gains against speed variation. Apart from this, the PID position controller has

the potential to further strengthen the longitudinal tracking of the vehicle by adding the

velocity controller. The lateral velocity in Figure 5.5(e) and the steering angle input in Fig-

ure 5.5(f) indicate that oscillations or improper driving behaviors barely appear when the

vehicle operates automatically at a low speed. This phenomenon can be attributed to the

superiority of the proposed tracking control scheme.

5.4.2 Scenario II

Since the proposed algorithm is designed for the wide-speed range control objective,

another testing scenario with more stringent tracking requirements is applied to evaluate

the control performance; the tracking results under high speed are displayed in Figure 5.6.

Overall, the proposed steering control law is highly effective and stable so that the lateral

error levels off at nearly zero without any oscillations during the whole tracking period.

While the maximum forward speed is extended to 23.5 m/s at time t = 10 s, the AVs could

still track the pre-defined trajectory at a high accuracy level, as evident in Figure 5.6(a).

From Figure 5.6(b) and 5.6(c), the proposed double PID control shows strong robustness

regardless of the change of current velocity since the longitudinal error only changes in the

range of [−0.1, 0.05]. The proposed steering control law greatly benefits driving safety and

ride comfort due to the smaller value and slow change of the lateral velocity, as evident in

Figure 5.6(e). Even though raising the value of R from 15 to 100 may sacrifice the perfor-

mance of the algorithm, the instability of lateral control can be eliminated significantly by

the smaller steering angle, as evident in Figure 5.6(d) and 5.6(f).
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Figure 5.6: Tracking results of Scenario II.
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Chapter 6

Contributions, Conclusions and

Suggestions for Further Studies

6.1 Major Contributions and Highlights

The first contribution of this thesis research is the design, analysis, and verification of

a novel backstepping control strategy for low-speed AVs to realize more speedy, accurate,

and smooth trajectory tracking. More specifically:

(1)A control law, characterized by online self-tuning gains, was derived via the back-

stepping technique, which results in superior tracking performances, including quicker

convergence rate, response, higher tracking precision, etc.

(2)The yaw error observer is designed as a parallel system to provide data, aiming at

replacing the sensor when the vehicle’s orientation is unmeasurable.

(3)Obtain the approximately optimal tuning parameters in fewer iterations by merging

the PSO algorithm with the proposed backstepping control law, reducing tuning ef-

fort, time, and human intervention.
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(4)A fitness function containing full vehicle variables is created to evaluate the track-

ing performance. The velocity and steering tracking can be swiftly achieved on the

posture tracking foundation by simply adjusting the error weights.

Another contribution of this thesis research is that a novel trajectory tracking control

scheme is proposed for wide-speed range AVs, which can be summarized as follows:

(1)Decouple the vehicle motion into longitudinal and lateral motions by using the Frenet

frame and Frenet equations. This means that the vehicle planar motion could be

decomposed into two one-dimensional motions, reducing control complexity.

(2)Develop a composed control method for trajectory tracking, that is, the LQR control

is integrated with the double PID controller to realize lateral and longitudinal tracking

control, respectively.

(3)Introduce feedforward control into the closed-loop tracking system in order that lat-

eral steady-state errors can be effortlessly eliminated and tracking stability is in-

creased.

(4)The optimal steering could be guaranteed during the whole tracking period due to

the design of adaptive gains, which implies that the proposed steering controller can

utilize the optimal control gains as long as the forward speed of the vehicle changes.

6.2 Major Conclusions and Recommendations for Future

Studies

The major conclusions drawn from various aspects of this thesis research and recom-

mendations for future studies are listed below:
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•There is a trade-off between tracking performance and stability for the PP controller,

which is challenging to resolve and may cause course-dependent problems. This is

because the PP approach does not consider the reference path’s curvature and ignores

the vehicle’s lateral dynamics. Further, over tuning the value of control parameters

may result in wide discrepancies with expected tracking, which is more and more

influential as the curvature and speed increase. While the PP algorithm has these

shortcomings, a superior characteristic worth highlighting during experimental tests

is that the PP method has strong robustness against discontinuity in the reference

path. For future research directions, we should explore a systematic way to tune the

control parameters or devise an adaptive control gain that is related to either the path

curvature or forward speed to match reasonable look-ahead distance with the aim of

optimizing the tracking performance and ensuring the vehicle to converge to the path

over time.

•The Stanley method is a valuable asset for tracking control. Based on the simula-

tion and laboratory tests, it can be summarized that the Stanley control is able to

correct the vehicle’s heading and finally drive the vehicle converging to the path, no

matter what the initial condition is. This should be attributed to the global exponen-

tially convergence properties of the Stanley controller. Still, the Stanley controller is

only a geometric tracking controller, similar to the PP controller, without consider-

ing many aspects of real life self-driving conditions, such as tire force effect, noisy

measurements, and actuator dynamics. Moreover, the Stanley tracker may fail to

track discontinuous paths or paths with high curvature because it only focuses on the

current tracking state rather than making use of look-ahead distance to predict path

curvatures, and the reference dynamics are not taken into account in the derivation

process. These may cause undesirable rider comfort and tracking characteristics dur-

ing maneuvers and sometimes even affects driving safely. Regarding the tuning of
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control gains, it can be summarized as follows: Increasing the value of gains leads

to more extensive and oscillatory steering commands but higher tracking accuracy,

whereas decreasing the gains results in smaller and smooth steering commands but

poor tracking accuracy. Hence, how to make further enhancements (e.g., gain tuning,

adding other tuning terms) are of vital importance in Stanley control.

•In Chapter 4, the car-like vehicle kinematics, error dynamics, and control laws were

derived and applied to a cutting-edge experimental testing bench featured with a

Quanser QCar. The tracking control problems that appear in Chapter 2 and Chapter

3 have been successfully solved. The proposed YEO as an alternative system esti-

mates yaw error, replacing the real sensors to provide data. For comparison purposes,

the other three control strategies also have been investigated. Although all controllers

successfully regulate the QCar to accomplish tracking, the proposed nonlinear back-

stepping control law combined with optimized tuning parameters from PSO offers

the best performance and results. Another noticeable improvement is that the pro-

posed controller enhances steering capacity to eliminate cutting corners. Finally, the

experiment results reveal that not only can the proposed control strategy significantly

boost the error convergence rate but also enhances the tracking precision and robust-

ness, and the adaptive gains have the potential to further strengthen steering capacity

and compensate for each other. This research gives insight into future work regard-

ing trajectory tracking of car-like vehicles. Far more efforts, however, are desirable

in controlling the transient performance and obtaining optimized tuning parameters

in real-time. Therefore, it is recommended that the prescribed performance control

could be applied to car-like vehicles. In this manner, the controller is designed to

make the tracking error of the closed-loop system converge to a prescribed allowable

range and ensures that the convergence rate, overshoot, and undershoot of control

signals or control inputs meet the prescribed conditions, that is, the transient and
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steady-state performances are satisfied at the same time so as to improve the perfor-

mance of the tracking. Moreover, the pick of control gains become less significant,

given that the tracking control problem of the original constrained system is trans-

formed into the uniformly ultimately bounded problem of the states of the mapped

unconstrained system.

•In Chapter 5, a trajectory tracking control scheme based on Frenet frame and Frenet

equations was presented for wide-speed range vehicles to autonomously track the

reference trajectory generated from the planning module in real-time, leading to

marginal tracking errors and higher system stability. Also, with the reduced dimen-

sions of the vehicle’s motion, different control strategies, namely the double PID

control and LQR control with adaptive gains, were utilized for the longitudinal and

lateral tracking. By doing so, the complexity of the tracking control problems is de-

creased. The feedforward control was introduced into the steering control law, thus

rendering the lateral position error zero at a steady state. The simulation results re-

vealed the robustness and superiority of the proposed method under different driving

scenarios. This research offers insight into the future work concerning trajectory

tracking of AVs. Regarding the selection of control parameters of PID and LQR in

this proposed tracking method, it is suggested that these parameters can be optimized

and obtained by the PSO mechanism proposed in Chapter 4. Also, the constraints on

steering rate and accelerations of AVs should be considered in real-world driving.
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[13]B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion

planning and control techniques for self-driving urban vehicles,” IEEE Transactions

on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

83



[14]A. Eskandarian, C. Wu, and C. Sun, “Research advances and challenges of au-

tonomous and connected ground vehicles,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 22, no. 2, pp. 683–711, 2019.

[15]H. Ohta, N. Akai, E. Takeuchi, S. Kato, and M. Edahiro, “Pure pursuit revisited:

field testing of autonomous vehicles in urban areas,” in 2016 IEEE 4th International

Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pp. 7–

12, 2016.

[16]M. Cibooglu, U. Karapinar, and M. T. S öylemez, “Hybrid controller approach for
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