
Local Community Detection in Social Networks

Sahar Bakhtar

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

July 2022

© Sahar Bakhtar, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Sahar Bakhtar

Entitled: Local Community Detection in Social Networks

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Ahmed Soliman

External Examiner
Dr. Muthucumaru Maheswaran

Examiner
Dr. Lata Narayanan

Examiner
Dr. Tristan Glatard

Examiner
Dr. M. Reza Soleymani

Supervisor
Dr. Hovhannes A. Harutyunyan

Approved by
Lata Narayanan, Chair
Department of Computer Science and Software Engineering

September 1, 2022
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Local Community Detection in Social Networks

Sahar Bakhtar, Ph.D.

Concordia University, 2022

Recent years have witnessed the rapid growth of social network services and consequently

research problems investigated in this area. Community detection is one of the most important

problems in social networks. A good community can be defined as a group of vertices that are

highly connected and loosely connected to the vertices outside the group. Community detection

includes exploring the community partitioning in social networks. Regarding the fact that social

networks are huge, having complete information about the whole network is almost impossible. As

a result, the problem of local community detection has become more popular in recent years. This

problem can be defined as the detection of a community for a given node by using local information.

It is noteworthy that the focus of this study is on the problem of local community detection.

One major question to the problem of community detection is how to assess different commu-

nities. The most widely used technique to evaluate the quality of communities is to compare them

with ground-truth communities. However, for many networks, the ground-truth communities are

not known. As a result, it is necessary to have a comprehensive metric to evaluate the quality of

communities. In this study, a local quality metric noted as GDM is proposed, several local commu-

nity detection algorithms are compared by assessing their detected communities. The experimental

results, illustrate that the local community detection algorithms are fairly compared using GDM. It

is also discussed how GDM covers the drawbacks of other existing local metrics. Moreover, it is

shown that the judgment of GDM is almost the same as that of the F-score, i.e. the metric which

compares the community with its ground-truth community.

Furthermore, a new metric, called P , and a new local community detection algorithm, AlgP

are proposed. To detect communities locally, researchers mostly utilize an evaluation metric along

iii

with an algorithm to explore communities. The proposed algorithm includes three different steps

in which relevant nodes are added in the first step and irrelevant nodes are removed in the second

and third steps. It should be mentioned that at each iteration, more than one node is added to the

community. Thus, the algorithm is terminated faster than the other algorithms with near-complexity.

Regarding the experimental results, it is shown that the proposed algorithm outperforms state-of-

the-art local community detection algorithms.

Real-world social networks are dynamic and change over time. In order to model dynamic

social networks, network history is partitioned into a series of snapshots, each one of which shows

the state of the network at a time. Regarding dynamic networks, the problem of local community

detection is not widely investigated. In this concern, a dynamic local community detection algorithm

noted as DevDynaP , is proposed. The main feature of the proposed algorithm is that it starts

from a given node, explores the network incrementally, and detects communities simultaneously at

each snapshot. The experimental results show that the community partitioning resulting from the

proposed dynamic algorithm outperforms that of the other compared algorithm. Also, the proposed

algorithm explores the network faster than the compared algorithm.

Many networks contain both positive and negative relations. A community in signed networks

is defined as a group of nodes that are densely connected by positive links within the community

and negative links between communities. Considering the problem of local community detection

in signed networks, a new algorithm, noted as AlgSP , is developed by extending the metric P for

signed networks. Experimental results show that the proposed algorithm can detect the ground-truth

communities independently from the starting nodes.

iv

Acknowledgments

First and foremost, I am extremely grateful to my supervisor, Prof. Hovhannes A. Harutyunyan

for his invaluable advice, continuous support, and patience during my Ph.D. study. His immense

knowledge and experience have encouraged me all the time in my academic research. I would like

to thank my committee members, Dr. Lata Narayanan, Dr. Tristan Glatard, and Dr. M. Reza Soley-

mani for their time, effort, and willingness to serve on my Ph.D. committee throughout my Ph.D.

program. I would also like to extend my appreciation to the external examiner Prof. Muthucumaru

Maheswaran for his willingness to read through the thesis and serve on my defense committee.

Finally, I would like to express my gratitude to my family members. My deepest and endless grat-

itude goes to my husband for his endless support. Without their tremendous understanding and

encouragement over the past few years, it would be impossible for me to complete my study.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Literature Review and Motivation 6

3 A Local Quality Metric for Communities 21

3.1 Introduction . 21

3.2 Related Works . 23

3.3 The Proposed Metric . 26

3.3.1 Definitions . 26

3.3.2 Propositions and proofs . 27

3.3.3 The Proposed Metric . 31

3.4 The Experiments . 32

3.4.1 dataset . 33

3.4.2 Small Graphs . 35

3.4.3 Two Textbook Experiments . 39

3.4.4 Experimental Results . 45

3.4.5 Discussion . 51

3.5 Conclusion and Future Work . 52

vi

4 A New Fast Local Community Detection Algorithm 53

4.1 Introduction . 53

4.2 Related Works . 55

4.3 The Proposed Algorithm . 57

4.3.1 Complexity . 61

4.4 Experimental Results . 63

4.5 Conclusion and Future Works . 67

5 A Dynamic Local Community Detection Algorithm 69

5.1 Introduction . 69

5.2 Related Works . 71

5.3 Dynamic Algorithms . 74

5.3.1 A Simple Dynamic Structure . 74

5.3.2 Developed Dynamic P (DevDynaP) . 74

5.4 Experimental Results . 78

5.4.1 Benchmarks . 78

5.4.2 Experimental Results on Section 5.3.1 . 81

5.4.3 Experimental Results on Section 5.3.2 . 83

5.5 Conclusion and Future works . 89

6 A Local Community Detection Algorithm in Signed Networks 91

6.1 Introduction . 91

6.2 Related Works . 94

6.3 The Proposed Algorithm . 96

6.3.1 Definitions . 96

6.3.2 Signed AlgR and Signed AlgM . 97

6.3.3 The Proposed Algorithm . 97

6.3.4 Complexity . 99

6.4 Experimental Results . 102

6.4.1 Dataset . 102

vii

6.4.2 Evaluation Metrics . 104

6.4.3 Experimental Results . 104

6.5 Conclusion and Future Works . 106

7 Conclusion 108

7.1 Conclusion and Future works . 108

7.2 Publications . 110

Bibliography 111

viii

List of Figures

Figure 2.1 The taxonomy of proposed methods for community detection 6

Figure 2.2 An example of overlapping communities 7

Figure 2.3 An example of a dendogram tree . 8

Figure 2.4 The red link is the edge with the highest betweenness 9

Figure 2.5 The first iteration of propagation of labels in COPRA (Gregory, 2010) . . . 11

Figure 2.6 The rest of iteration of propagation of labels in COPRA with v = 2 (Gregory,

2010) . 12

Figure 2.7 An example of label propagation algorithm (LPA) (Raghavan, Albert, &

Kumara, 2007) . 13

Figure 2.8 Local community C, its boundary nodes B, and the neighbors of the com-

munity U (Clauset, 2005) . 14

Figure 3.1 An arbitrary tree Td . 28

Figure 3.2 An arbitrary tree Td+1 . 28

Figure 3.3 Zachary Karate Club network with the two ground-truth communities . . . 33

Figure 3.4 First simple example community . 34

Figure 3.5 Second simple example community . 35

Figure 3.6 Third simple example community . 37

Figure 3.7 Fourth simple example community . 39

Figure 3.8 The status of node 9 in Karate Club network 41

Figure 3.9 The status of node 3 in Karate Club network 41

Figure 3.10 The status of node 20 in Karate Club network 41

ix

Figure 3.11 An example of wrong assessment of communities by R modularity 42

Figure 3.12 The values of F-score for several communities detected by AlgR, AlgM , and

AlgL, regarding a number of random starting nodes on American FC network . . . 48

Figure 3.13 The values of GDM for a number of communities detected by AlgR, AlgM ,

and AlgL, regarding a number of random starting nodes on American FC network . 48

Figure 3.14 An example of two detected communities Ca and Cb, for a given node v0

versus its ground-truth community Cg . 51

Figure 4.1 The local community detection problem 54

Figure 4.2 The higher illustration of the proposed algorithm 58

Figure 4.3 How to calculate z while node v is added to the community C 62

Figure 4.4 Standard deviation on the values of F-score obtained by the algorithms on

the four small real-world networks . 65

Figure 5.1 Average GDM on switch, expand/contraction, merge/split, and birth/death

networks . 84

Figure 5.2 Modularity, Q on switch, expand/contraction, merge/split, and birth/death

networks . 85

Figure 5.3 The average number of explored nodes on switch, expand/contraction, merge/split,

and birth/death networks . 86

Figure 6.1 Four possible conditions for a triad in signed networks 93

Figure 6.2 How to calculate z+ while node v is added to the community C 101

Figure 6.3 Illustrative network 1 (IN1) (J. Chen, Zhang, Liu, & Yan, 2017) 103

Figure 6.4 Illustrative network 2 (IN2) (J. Chen et al., 2017) 104

x

List of Tables

Table 3.1 Metrics’ scores for communities C1, C2 and C3 in Figure 3.4 36

Table 3.2 Metrics’ scores for communities C4 and C5 in Figure 3.5 36

Table 3.3 Metrics’ scores for communities C6 and C7 in Figure 3.6 38

Table 3.4 The result of the first textbook experiment on the Karate Club network 40

Table 3.5 The number of wrong evaluations by the four metrics on Dolphins network

concerning the first textbook experiment . 42

Table 3.6 The number of wrong evaluations by the four metrics on American FC net-

work concerning the first textbook experiment . 42

Table 3.7 The result of the second textbook experiment on American FC network . . . 44

Table 3.8 The number of wrong evaluations by the four metrics on American FC net-

work concerning the second textbook experiment 44

Table 3.9 The values of F-score for some communities detected by AlgR, AlgM , and

AlgL regarding some random starting nodes on Karate Club network 46

Table 3.10 The values of GDM for some communities detected by AlgR, AlgM , and

AlgL regarding some random starting nodes on Karate Club network 46

Table 3.11 The values of F-score for some communities detected by AlgR, AlgM , and

AlgL regarding some random starting nodes on Dolphins network 47

Table 3.12 The values of GDM for some communities detected by AlgR, AlgM , and

AlgL regarding some random starting nodes on Dolphins network 47

Table 3.13 The results of the comparison of F-score and GDM on Karate club, Dolphins

and American FC networks . 49

xi

Table 3.14 The results of the comparison of F-score and GDM on LFR synthetic network 49

Table 3.15 The results of the comparison of F-score and GDM on DBLP network 50

Table 3.16 The results of the comparison of F-score and GDM on Amazon network . . . 50

Table 4.1 Average F-score (ratio) on real-world networks 64

Table 4.2 Average F-score (ratio) on real-world networks 65

Table 4.3 Average GDM on real-world networks . 66

Table 4.4 Execution time (s) . 66

Table 5.1 Average results on LFR switch network . 79

Table 5.2 Average results on LFR expand/contraction network 80

Table 5.3 Average results on LFR merge/split network 81

Table 5.4 Average results on LFR birth/death network 82

Table 5.5 Execution time (s) . 83

Table 5.6 Average scores of GDM , Q, and the number of explored nodes for IncL and

DevDynaP on switch, expand/contraction, merge/split, and birth/death networks

(snapshots 1 to 8) . 87

Table 5.7 Average scores of GDM , Q, and the number of explored nodes for IncL and

DevDynaP on switch, expand/contraction, merge/split, and birth/death networks

(snapshots 9 to 15) . 88

Table 5.8 Execution time (s) . 89

Table 6.1 Average F-score (ratio) on real-world networks 105

Table 6.2 Execution time (s) . 106

xii

Chapter 1

Introduction

Real-world networks can be categorized into four main types: social networks, information

networks (or knowledge networks), technological networks, and biological networks (Newman,

2003). Social networks can be defined as networks of interactions or relationships, where the nodes

play the role of actors or users, and the relationships or interactions are modeled using links or edges.

Formally speaking, social networks could be represented as a graph G = (V,E) in which V is the

set of entities and E is the relationships among them. Online social networks have revolutionized

the way people interact and share information over the Internet; social networking applications such

as YouTube, Twitter, Facebook, Snapchat, etc., have millions of active users. Multiple terabytes

of information are generated daily as a result of user interactions in such networks. The ability to

collect and analyze such data provides unique opportunities to understand the underlying principles

of social networks, their formation, evolution, and characteristics.

The underlying structure of social networks is the object of the study of social network analysis.

Social network analysis methods and techniques are designed to discover patterns of interaction

between entities in social networks. The focus of social network analysis is on the relationships

among actors rather in the actors themselves. In other words, the main goal of these techniques is

to investigate both the contents and patterns of relationships in social networks to understand the

relations among actors and the implications of these relationships (Oliveira & Gama, 2012). There

are several critical and challenging problems in social networks that need to be investigated. Some

important examples of these problems are the identification of the most influential or central actors,

1

the identification of hubs and authorities, trust inference, influence maximization, detection of com-

munities, and predicting future links that might be generated regarding the dynamic characteristic

of the social networks. These issues are extremely useful in the process of extracting knowledge

from social networks. Because of the appealing nature of such issues, social network analysis has

become a popular approach in different fields, from biology to business. For instance, some compa-

nies use social network analysis to maximize the positive reputation of their products by targeting

the customers with higher network influence (Leskovec, Adamic, & Huberman, 2007). Also, mobile

telecommunications companies employ social network analysis methods for phone call networks.

They try to recognize customers’ profiles and then, recommend personalized mobile phone tariffs,

according to their profiles (Dasgupta et al., 2008).

Interactions among people through social networks are rather complex because they involve

interactions with others who may be strangers (W. Jiang, Wang, Bhuiyan, & Wu, 2016). Thus,

it is crucial to study the critical problems in social networks. Addressing these problems helps

to construct a safe, efficient, and practical environment through social networks. One problem of

great interest in this domain is community detection in which the ultimate objective is to find dense

communities within such networks. More precisely, a community is defined as a set of nodes in a

graph that have many connections with each other and is loosely connected to other nodes of other

communities (Girvan & Newman, 2002). In this regard, the problem of community detection tries

to find such structures in networks. Community is an important structure that can be considered

a summary of the whole network, thus making the network easy to comprehend (Bedi & Sharma,

2016). Communities include, but are not limited to, three sub-categories (Chakraborty, Dalmia,

Mukherjee, & Ganguly, 2017):

• Disjoint (Non-overlapping) communities: a node of the graph could only belong to one com-

munity at a time,

• Overlapping communities: some nodes belong to more than one community,

• Hierarchical communities: there is a hierarchical structure in terms of the belonging of nodes

to communities.

2

Being able to explore these sub-structures within social networks has many applications in var-

ious fields. It is useful where group decisions are being taken, e.g. multicasting a message of

interest to a community instead of each one in the group or recommending a set of products to a

community. As an example of community detection applications, citation networks are constructed

by citation relationships among papers and researchers. Communities in a citation network indicate

either related papers on a single topic or researchers working on the same topic. Identifying these

communities in citation networks can provide knowledge about various core topics. Moreover, rec-

ommender systems utilize data of similar users or items to create recommendations. This is similar

to the detection of groups of similar nodes in a graph. As a result, community detection can improve

recommendation algorithms (Cao, Ni, & Zhai, 2015).

Furthermore, detecting communities in social networks lets network providers understand the

hidden structures of the user populations, dig into people’s views, analyze the information dissem-

ination, and grasp the control of the public sentiment. It allows focusing on regions having some

degree of autonomy within the graph. It helps to classify the vertices, based on their roles con-

cerning the communities they belong to. Community detection has major applications in sociology

(Sizemore, Phillips-Cremins, Ghrist, & Bassett, 2019), computer science (Kwon et al., 2019), econ-

omy (Shao, Yu, & Feng, 2019), and network security (Lee & Huh, 2019), to name a few. As a result,

it is essential to detect communities efficiently.

Since the emergence of this problem, several algorithms to detect community partitioning, have

been proposed (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; F. Wang, Zhang, Chai, & Xia,

2018; J. Yang, McAuley, & Leskovec, 2013). However, with the growth of social networks and

their corresponding data size, handling the whole structure of the network seems to be impossible.

Consequently, the local community detection problem has attracted a great deal of attention from

researchers in recent years. This problem includes detecting a community for a given node, v0,

starting from v0 and only using local information. In this problem, the main goal is to find a high-

quality community for a given node v0. The detection process starts from node v0 and at each step,

one or more nodes from the network (neighboring nodes) are merged into the community. It is

noteworthy that the main focus of this study is on the local community detection problem and also,

the issue of how to assess communities locally.

3

The relationships among nodes in real-world social networks are dynamic and change over time.

Co-authorship between scholars and email interactions between employees in an organization are

two examples. To model dynamic social networks, network history is partitioned into a series of

snapshots, each one of which shows the state of the network at a time. In this regard, dynamic

networks can be represented in two models: (1) Snapshot network which is a series of snapshots

of the network at a time, and (2) Temporal network which is the series of atomic changes of the

network. In this way, it is possible to analyze the network’s structure over time, explore how the

network evolves, and finally anticipate the future topology of the network. A large number of studies

have been conducted to address the problem of community detection in dynamic networks (J. He

& Chen, 2015; Rossetti, Pappalardo, Pedreschi, & Giannotti, 2017; Zhuang, Chang, & Li, 2019).

However, the local community detection problem is not widely investigated in dynamic networks.

Moreover, many networks contain both positive and negative relations. In such networks, a

negative link from node A to B indicates A “dislikes” B and a positive relation shows A “likes” B.

Negative relations in signed networks cause different structures than in unsigned networks. In this

regard, a community in signed networks is defined as a group of nodes with maximum (minimum)

positive (negative) interaction within the group and minimum (maximum) positive (negative) rela-

tion between groups. The problem of community detection in signed networks tries to find such

communities. This problem in signed networks is not widely investigated compared to unsigned

networks. Also, the problem of local community detection, i.e. detecting a community for a given

node, is not addressed independently.

In this study, the problem of local community detection in unsigned networks, dynamic unsigned

networks, and signed networks is addressed. In this concern, the main contributions of this study

are itemized as follows:

• Employing geodesic distance, a new local metric to evaluate the quality of detected commu-

nities, called GDM, is proposed.

• A new local community detection algorithm, called AlgP , using the number of common

neighbors, is proposed.

• Employing AlgP , a dynamic local community detection algorithm, called DevDynaP , is

4

presented.

• Finally, AlgP is extended to detect communities in signed networks. The extended algorithm

for signed networks is called AlgSP .

The remainder of this thesis is structured as follows: Chapter 2 includes an overview of pre-

sented methods on the problem of community detection. In chapter 3, the proposed metric, GDM,

to evaluate communities, is presented and evaluated. In chapter 4, the proposed local commu-

nity detection algorithm, AlgP , is introduced, analyzed, and the experimental results are reported.

The dynamic local community detection algorithm, DevDynaP , is presented and experimented in

chapter 5. Also, chapter 6 discusses the problem of local community detection in signed networks

and presents the extended version of algorithm AlgP , noted as AlgSP , for signed networks. Finally,

chapter 7 indicates the conclusion and several interesting directions for future works.

5

Chapter 2

Literature Review and Motivation

Since community structure is an important attribute of social networks, the problem of detect-

ing communities has become one of the most important problems in this area. In this regard, during

the last two decades, several methods have been proposed to solve the community detection prob-

lem in social networks. C. Wang, Tang, Sun, Fang, and Wang (2015) categorized the methods for

the community detection problem into three groups including traditional algorithms, overlapping

community detection algorithms, and local community detection algorithms. Figure 2.1 shows the

Traditional
Algorithms

Overlapping
Detection

Local Commu-
nity Detection

Partitional
Clustering

Hierarchical
clustering

Newman’s al-
gorithm

Graph Partition

Infomap

Clique percola-
tion

LINK Algorithm

COPRA

Label Propaga-
tion Algorithm

Local Optimiza-
tion

Local Node
Expansion

Clauset’s Algo-
rithm

Figure 2.1: The taxonomy of proposed methods for community detection

6

Figure 2.2: An example of overlapping communities

taxonomy of the different proposed methods respecting (C. Wang et al., 2015). Traditional algo-

rithms tend to detect disjoint community partitioning in social networks. It is well understood that

people (nodes) in social networks may belong to multiple communities. Thus, many researchers

tend to study overlapping community detection. Figure 2.2 demonstrates 4 communities with over-

lapping nodes. The inference of community structures can generally be reduced to identifying a

partitioning of the graph that maximizes some quantitative notions of community structure. How-

ever, when global knowledge of the graph’s topology is lacking, a measure of community structure

must necessarily be independent of those global properties. The measures independent of global

properties are called local measures. Detecting communities according to maximizing local mea-

sures is local community detection (Clauset, 2005). With the development of social networks, the

networks are getting much more complicated and huge. Thus, collecting the whole global informa-

tion in some networks is almost impossible. As a consequence, some researchers tend to study local

perspectives to detect communities. The rest of this section includes brief explanations of some of

the most important algorithms belonging to the three mentioned categories in Figure 2.1.

Partitional clustering is a traditional method to detect disjoint community partitioning. This

algorithm assumes there are k clusters in the network and the goal is to separate the borders between

the k clusters to maximize/minimize a given objective function. Some of the most used functions are

minimum k-clustering, k-clustering sum, k-center, and k-median. However, partitional clustering

algorithms are easy to implement and have reasonable performance, but the number of communities

7

needs to be specified in advance (C. Wang et al., 2015). Walktrap algorithm (Pons & Latapy, 2005)

uses a random-walk-based similarity between vertices and communities. This algorithm employs

a modularity optimization clustering scheme to obtain an optimal clustering structure. Modularity,

known as Q, is introduced later in this chapter. In a community detection problem, there is no

information about the number of communities. That is why researchers proposed methods to detect

communities hierarchically.

The hierarchical clustering methods include agglomerative algorithms and divisive algorithms.

The basic idea of agglomerative algorithms is that clusters are iteratively merged bottom-up if their

similarities are high enough. Also, divisive algorithms’ basic idea is that clusters are iteratively split

top-down by removing edges that connect vertices with low similarity. The hierarchical clustering

method aims to obtain a dendrogram tree and extract communities by cutting the tree. Figure 2.3

shows an example of a dendrogram tree. In this method, there is no need to know any prior knowl-

edge of communities. However, if the cutting or merging positions are not appropriate, low-quality

communities might be extracted. Girvan and Newman (2001) developed a divisive algorithm that

made great contributions to the problem of community detection. Girvan and Newman (2001) pro-

posed the concept of edge betweenness which is the number of shortest paths between all vertex

pairs that run along the edge. The basic idea of this algorithm is to remove edges with the highest

betweenness. According to the definition of edge betweenness, the edge with the highest between-

ness is the most between edge among communities in the network. Figure 2.4 shows an edge with

Figure 2.3: An example of a dendogram tree

8

the highest betweenness which is the best edge to be removed to separate communities. The general

structure of Newman’s algorithm is presented as follows:

(1) Calculate the betweenness for all edges in the network.

(2) Remove the edge with the highest betweenness.

(3) Recalculate betweennesses for all edges affected by the removal.

(4) Repeat from step 2 until no edges remain.

However, there is no need to know the number of clusters in advance, calculation of edge be-

tweenness is time-consuming. In other words, the principal disadvantage of this algorithm is the

high computational demands it makes. The time complexity of this algorithm in the worst-case is

O(m2n) on a network with m edges and n vertices, or O(n3) on a sparse network. In order to

obtain a better complexity, Newman (2004) proposed Newman’s fast algorithm.

Newman (2004) proposed the quality function or “modularity”, known as Q, to test whether a

particular division is meaningful. Q is defined as follows:

Q =
1

2m

∑
ij

(aij −
didj
2m

)σ(i, j) (1)

In (1), m represents the total number of edges in the network. Considering i and j two nodes in

the network, di and dj are the degrees of i and j. aij is 1 if i and j are adjacent and 0 otherwise.

Figure 2.4: The red link is the edge with the highest betweenness

9

Also, σ(i, j) is 1 if i and j belong to the same community and 0 otherwise. The algorithm starts

with a state in which each vertex is the only member of a community. Communities repeatedly

join together in pairs, choosing at each step the join that results in the greatest increase (or smallest

decrease) in Q. The worst-case running time of the algorithm is O((m + n)n) or O(n2) on a

sparse graph. Since the exact modularity optimization is a problem that is computationally hard,

approximation algorithms are necessary when dealing with large networks.

Blondel et al. (2008) proposed a very fast heuristic algorithm, called Louvain, to detect commu-

nities while optimizing modularity, Q. The first phase of the Louvain algorithm assigns each node

a unique label as its community. Then, each node is transferred to its neighbors’ community. If

this transaction results in an increase of the score of the modularity, Q, the node is removed from

its own community and merged into its neighbor’s community. This process is repeated until no

improvement in the score of modularity is gained. In the second phase of this algorithm, a network

is constructed by considering each community as a node. Then, the first phase is reapplied on the

newly generated network. The two phases are repeated until no change happens in the structure of

the detected communities. This algorithm is capable of identifying communities in a 118 million

node network that took only 152 minutes.

Graph partition aims to divide nodes in a graph into a plurality of predetermined size com-

munities which satisfies some objective functions by removing edges. Kernighan-Lin algorithm

(Kernighan & Lin, 1970) is a greedy optimization algorithm. The main idea is the maximization

of the modularity Q by exchanging nodes in communities. Kernighan-Lin algorithm is a heuristic

algorithm. The main drawback of this algorithm is that the size of communities needs to be set in

advance. Also, Yuan (2014) proposed a method to try all possible sizes using the Kernighan-Lin

algorithm, but its time complexity is quite high, which makes it infeasible for complex networks.

Infomap (J. Chen et al., 2017) was proposed to comprehend the multipartite organization of

large-scale biological and social systems. The basic idea of this method is to use the probability flow

of random walks on a network as a proxy for information flows in the real system and decompose

the network into modules by compressing a description of the probability flow.

The clique percolation method (CPM) (Derényi, Palla, & Vicsek, 2005) is the first proposed

method to identify overlapping communities. This algorithm starts by finding all k−cliques. Then,

10

it considers the detected k−cliques as nodes of the network. Each two k−cliques are adjacent if

they share k − 1 vertices. In the end, the connected parts are the communities.

CPMd (Palla, Derényi, Farkas, & Vicsek, 2005) is an improvement of the CPM algorithm that

detects overlapping communities in directed graphs. CPMd presents a new definition of k−clique in

directed networks as follows: the directed links in a k−clique are all from a node with a relative high

out-degree to a node with a relative low out-degree; where the directed closed loop in k−clique does

not exist. A node may exist in multiple k−cliques, so CPM and CPMd algorithms could identify

overlapping communities.

Moreover, LINK (Ahn, Bagrow, & Lehmann, 2010) is a link partitioning algorithm based on

hierarchical clustering that detects overlapping communities. In the LINK algorithm, if two links

share the same node belonging to different communities, the vertex must be a node in the over-

lapping area. It treats each edge as a separate community. Then, it merges the two most similar

communities until all the link communities become a single community. Ahn et al. (2010) employ

Jaccard similarity to calculate the similarity of pairs of links.

Community Overlap PRopagation Algorithm (COPRA) (Gregory, 2010) is a multi-label prop-

agation algorithm that explores overlapping communities. This algorithm is an improvement of

single-label propagation to detect overlapping communities, which is described in the local com-

munity detection category. In these methods, each label indicates a community.

COPRA labels each vertex x with a set of pairs (c, b), where c is a community identifier and

b is a belonging coefficient. The belonging coefficient indicates the strength of x’s membership to

the community c, such that all belonging coefficients for x sum to 1. Each propagation step sets x’s

Figure 2.5: The first iteration of propagation of labels in COPRA (Gregory, 2010)

11

label to the union of its neighbors’ labels, sums the belonging coefficients of the communities over

all neighbors, and normalizes them. Figure 2.5 shows the result of the first iteration of COPRA. In

the first iteration (Figure 2.5), each vertex gets the labels of its neighbors with an equal belonging

coefficient for each. For example, node a has 4 neighbors b, d, e and g. Thus, it takes all these

labels with a belonging coefficient of 1/4 for each. During each propagation step, the algorithm

first constructs the vertex label as above and then, deletes the pairs whose belonging coefficient

is less than some threshold. This threshold is expressed as a reciprocal, 1/v, where v represents

the maximum number of communities to which any vertex can belong. Running COPRA on the

network in Figure 2.5, where v = 2, gives the results in Figure 2.6. In the first iteration, vertex

c is labeled with community identifiers b and d, each with belonging coefficient 1/2. Since the

belonging coefficients are not less than the threshold (1/2), both are retained. Similarly, f is labeled

with e and g. All the other five vertices have at least three neighbors, and their belonging coefficients

are all below the threshold (1/3). Figure 2.6 shows the rest of iterations. For example, b is labeled at

first with (a, 1/3), (c, 1/3), (d, 1/3): c is randomly chosen, a and d are deleted, and the belonging

coefficient is re-normalized to (c, 1). The labels for a, d, e and g are similarly randomly chosen.

Before the final iteration, a has two neighbors labeled c and two labeled e, and so, it retains both

community identifiers: (c, 1/2), (e, 1/2). The final solution, therefore, contains two overlapping

communities: a, b, c, d and a, e, f, g.

Figure 2.6: The rest of iteration of propagation of labels in COPRA with v = 2 (Gregory, 2010)

12

Local community detection methods are described as follows: Label propagation algorithm

(LPA) (Raghavan et al., 2007) is a community detection algorithm that uses local information of

nodes to explore communities. LPA works as follows:

(1) To initialize, every vertex is given a unique label.

(2) Then, repeatedly, each vertex x updates its label by replacing it with the label used by the

greatest number of its neighbors. If more than one label is used by the same maximum

number of neighbors, one of them is chosen randomly. After several iterations, the same label

tends to become associated with all members of a community.

(3) All vertices with the same label are added to a separate community.

The algorithm terminates when every vertex has a label that is one of those that is used by a maxi-

mum number of neighbors. However, this method has a low time complexity and is easy to operate,

the algorithm has great uncertainties. Raghavan et al. (2007) suggested that the number of required

iterations is independent of the number of nodes. Also, it is reported that after five iterations, 95%

of the nodes are accurately clustered. Also, according to some analysis in (Leung, Hui, Lio, &

Crowcroft, 2009), it came to view that this algorithm without any optimization is able to detect

communities on a graph with 1×109 edges in less than 180 minutes, in a magnitude similar to Lou-

vain algorithm (Blondel et al., 2008). Figure 2.7 depicts an example of the process of community

detection using LPA.

Order Statistics Local Optimization Method (OSLOM) (Lancichinetti, Radicchi, Ramasco, &

Fortunato, 2011) is a local optimization method that locally optimizes the statistical significance

of communities. The statistical significance is defined as the probability of finding the cluster in a

random null model, i.e. a class of graphs without community structures. OSLOM consists of three

Figure 2.7: An example of label propagation algorithm (LPA) (Raghavan et al., 2007)

13

phases: first, it looks for significant clusters, until convergence; Second, it analyzes the resulting set

of clusters, trying to detect their internal structure or possible unions thereof; Third, it detects the

hierarchical structure of the clusters. OSLOM is the first method capable of detecting overlapping

communities in directed, weighted, and dynamic networks.

Local node expansion is a local algorithm that starts from a number of nodes. The starting nodes

can be selected randomly or by employing some criteria. Then, the selected nodes are expanded to

discover a community for each while optimizing a local metric. Seed set expansion (Whang, Gleich,

& Dhillon, 2013) is one of the most popular algorithms in the category of local node expansion

methods.

In order to employ a local method to detect community partitioning in social networks, it is

required to develop a local metric. A local metric evaluates communities independent of the global

properties of the network. Clauset (2005) firstly discussed the problem of local community detection

i.e. exploring a community for a given node using local information. Clauset (2005) proposed a

metric, known as R, by defining 3 types of nodes in a graph (Figure 2.8): C is the set of nodes

inside the community, B, boundary (or border) nodes, is the set of nodes in the community that have

connections with nodes outside C, and U is the set of unknown nodes with at least one connection

inside the community. According to the definition of the local community detection problem, only

the introduced nodes are known to be used to evaluate the quality of the detected community. Let

us denote the boundary adjacency matrix for B as follows, where vi, vj ∈ V :

Figure 2.8: Local community C, its boundary nodes B, and the neighbors of the community U
(Clauset, 2005)

14

Algorithm 1 The Clauset’s Algorithm (Clauset, 2005)
1: Input: G, v0, and n
2: Output: C: v0’s local community
3: C = {}, U = {}
4: R = 0
5: add v0 to C
6: add all neighbors of v0 to U
7: add v0 to B
8: while |C| < n do
9: for v ∈ U do

10: Compute ∆Rv if v is added to C
11: end for
12: vmax = find v such that its ∆Rv is maximum
13: add vmax to C
14: update U , B, and R
15: end while

Bij =

 1 if vertices vi and vi are connected, and either vertex is in B;

0 otherwise.
(2)

In this regard, the local modularity R is defined as follows:

R =

∑
ij Bijδ(i, j)∑

ij Bij
=

I

T
(3)

In (3), δ(i, j) is 1 when vi, vj ∈ B or vi ∈ B and vj ∈ C, or vice versa, and is 0 otherwise.

Here, T is the number of edges with one or more endpoints in B, while I is the number of those

edges with neither endpoints in U and at least one endpoint in B. In Clauset’s algorithm, initially,

the starting node is placed in the community, C = {v0}, and also, its neighbors in U . At each

step, the algorithm adds to C and to B if necessary, the neighboring vertex that results in the largest

increase or smallest decrease in R, breaking ties randomly. For each vertex vj ∈ U , the ∆Rj that

corresponds to the change in local modularity as a result of joining vj to C is calculated. Clauset’s

algorithm is shown in Algorithm 1. In this algorithm, n is the size of the final community. Clauset’s

algorithm is simple and efficient but needs to set the community size in advance. Following this

method, several studies have been done and a number of local metrics along with their algorithms

15

have been developed to detect local communities (J. Chen, Zaı̈ane, & Goebel, 2009; Q. Chen, Wu,

& Fang, 2013; F. Luo, Wang, & Promislow, 2006; W. Luo, Zhang, Jiang, Ni, & Hu, 2018). These

local community detection algorithms are discussed in Sections 3.2 and 4.2.

As it was mentioned before, real-world networks are dynamic and change over time. In this re-

gard, several methods to detect communities in dynamic networks are proposed. During the past few

years, different classifications for dynamic community detection methods are presented (S. Bansal,

Bhowmick, & Paymal, 2011; Giatsoglou & Vakali, 2013). The most recent classification introduced

by Dakiche, Tayeb, Slimani, and Benatchba (2019) is represented in this chapter. This classification

of existing methods for tracking community evolution is based on their functioning principles and

algorithmic techniques. Unlike static community detection, in the dynamic detection problem, the

evolution of communities during time is very important. That is why, in dynamic community detec-

tion methods, the changes in the lifetime of communities are detected and analyzed. There are four

main classes of methods as follows:

• Independent Community Detection and Matching includes methods that first detect com-

munities at each time step and then, match them across different time steps. The basic idea

is to detect communities at each time step (snapshot) independently and then, match those

communities with the ones found in the previous step based on their similarity. For example,

Y. Sun, Tang, Pan, and Li (2015) applied the Louvain algorithm (Blondel et al., 2008) to find

the communities in each snapshot. Then, a correlation matrix is built to describe the relation-

ship between communities in snapshot t and t + 1 concerning snapshot t. In this regard, the

rules to detect evolution events according to the matrix are defined.

• Dependent Community Detection includes methods that detect communities at time t based

on the topology of the graph at t and also, the previously found community structures. In other

words, the detection of communities at a particular time t depends on the ones detected at time

t− 1. This avoids the need to match communities, and consequently, provides smoothness in

the community identification process. J. He and Chen (2015) improved the Louvain algorithm

(Blondel et al., 2008) by including the concept of dynamism when forming communities. In

this algorithm, the community structures of the network at time step 1 are initialized by using

16

the Louvain algorithm. Then, starting time 2 to tτ and according to the changes during each

time interval, a new graph is constructed. In this phase, the Louvain algorithm is applied to

detect communities.

• Simultaneous Community Detection on All Snapshots includes methods that firstly, con-

struct a single graph by adding changes to the network in different time steps and then, run

a classic community detection on this graph. This category includes algorithms that consider

all network evolution stages simultaneously. The idea of using snapshots is preserved, but

they are all considered at the same time to discover coherent communities. Jdidia, Robardet,

and Fleury (2007) built one network from different snapshots by binding the similar nodes

appearing in different time steps. Also, they linked nodes connected to at least one common

neighbor in two consecutive time-steps and then, employed a community detection algorithm,

Walktrap (Pons & Latapy, 2005), to detect communities.

• Dynamic Community Detection on Temporal Networks, known as online methods, in-

cludes methods that do not detect communities from scratch each time but instead modify the

previously found communities according to the network changes. The basic idea is to build

and modify communities in an online fashion following the addition and suppression of nodes

and edges. Algorithms falling into this category start by finding communities for the initial

state of the network and then, update the communities for each incoming change. Rossetti

et al. (2017) proposed Tiles, an algorithm that tracks the evolution of communities through

time. In this algorithm, every time a new interaction emerges in the network, Tiles employ a

label propagation process to propagate the changes to the node’s surroundings, adjusting the

neighbors’ community memberships.

Regarding the local community detection in snapshot and temporal networks and according to

the presented classification for dynamic networks, tracking local communities in dynamic networks

can briefly be investigated in four different categories as follows:

(1) Snapshot networks: There are several changes at each time step.

• Independent methods: Any local community detection algorithm can simply be used

17

at each time step to detect a community independently.

• Dependent methods: A method must be able to maintain and update the local commu-

nity at each snapshot according to the given changes, and the current structure of the

community. Takaffoli, Rabbany, and Zaı̈ane (2013) use static AlgL algorithm (J. Chen

et al., 2009) and the structure of the detected communities in the previous snapshots to

find local communities in dynamic networks. This algorithm is described and discussed

in Section 5.2.

(2) Temporal networks: There are streams of atomic changes.

• Independent methods: Local methods can be used after each atomic change.

• Dependent methods: The goal in this category is to update the structure of a local

community after every atomic change without recalculations. Rigi, Moser, Farhangi,

and Lui (2019) proposed the Derivative-based Community Detection (DCD) method

inspired by geometric active contours (Caselles, Kimmel, & Sapiro, 1997). Geometric

Active Contours are used extensively for detecting objects in 2D images in the field of

machine vision. This study tried to address some shortcomings of the existing methods,

especially efficiency and the ability to trace dynamic communities.

Finally, the problem of community detection in signed networks tries to find groups of users

that are densely connected by positive links within the group and negative links between groups.

Based on the classification presented by J. Tang, Chang, Aggarwal, and Liu (2016), there are four

different methods to solve this problem in signed networks as follows:

• Clustering-based methods: In these methods, a positive link or a negative link indicates

whether two nodes are similar or not similar. In this regard, community detection in signed

networks is simplified to the clustering problem (N. Bansal, Blum, & Chawla, 2004; Sharma,

Charls, & Singh, 2009).

• Modularity-based methods: These algorithms detect communities by optimizing signed

modularity i.e. that is described in Section 6.4, called Qs, or its variants for signed networks.

Anchuri and Magdon-Ismail (2012) presented two new approaches dividing a signed network

18

into two sub-communities while minimizing frustration and maximizing signed modularity,

Qs. Then, the approaches are extended to detect all communities in signed networks. Frustra-

tion is proposed by Doreian and Mrvar (1996) that is described in Section 6.2. Also, Amelio

and Pizzuti (2013) tried to find communities in signed networks while minimizing frustration

and maximizing modularity, Qs at the same time.

• Mixture-model-based methods: These methods detect the communities based on generative

graphical models. This model has two advantages. First, providing soft-partition solutions in

signed networks, and second, providing soft memberships that indicate the strength of a node

belonging to a community. Algorithms in this category use two different approaches to iden-

tify communities. Stochastic block-based models create a network from a node perspective

in which each node is assigned to a community and links are independently generated for

pairs of nodes (J. Q. Jiang, 2015). While probabilistic mixture-based models generate a

network from the link perspective (Y. Chen, Wang, Yuan, & Tang, 2014).

• Dynamic model-based methods: Dynamic-model-based algorithms detect community par-

titioning in dynamic signed networks. J. Chen, Liu, Hao, and Wang (2020) adopted the dif-

ferential equations to evaluate the intimacy evolutionary behaviors. During the interactions in

dynamic networks, intimacy between two nodes is calculated and updated. Nodes with higher

intimacy gather into the same community and nodes with lower intimacy get away. Then, the

community structure is formed in dynamic networks.

In this thesis, the problem of local community detection in static networks, unsigned dynamic

networks, and signed networks are analyzed and investigated. Moreover, the issue of local evalua-

tion of communities is addressed and a new local metric is presented. Since social networks have

become huge in size and complex in structure, the local evaluation and exploration of communities

are popular and efficient. In this regard, efficient algorithms employ a local perspective to detect

communities while optimizing an objective function (Blondel et al., 2008). It can be concluded that

the local community detection problem, i.e. detecting a community for a given node is the core

issue of any community detection algorithm that uses local perspectives. Having fast and efficient

algorithms to detect a community for a given node only using local information can significantly

19

enhance the quality of the resulted community partitioning. As a consequence, fast local commu-

nity detection algorithms that can detect a high-quality community for any randomly given node,

regardless of the degree and importance of the starting node in the network, are the main goals of

such algorithms. In this thesis, a comprehensive study on the problem of local community detection

is conducted. In this concern, a local quality metric to assess communities is proposed and exam-

ined. Moreover, three local community detection algorithms are developed to detect a community

for a given node in static networks, dynamic networks, and signed networks, respectively.

20

Chapter 3

A Local Quality Metric for Communities

3.1 Introduction

One major question to the problem of community detection is how to assess different community

detection algorithms. Normally, two community detection algorithms are compared via comparing

their resulted community partitioning. Since there is not a shared and universally accepted definition

of a community, evaluating the results provided by a community detection algorithm is a hard task.

In literature, each study provides its own definition of communities, which is often maximizing a

specific quality function, e.g. modularity (Newman, 2004), density, conductance (Andersen, Chung,

& Lang, 2006). Since the communities, identified by a given algorithm, are based on their quality

function, it is not guaranteed that they are able to capture the real sub-topology (community) of the

network. For this reason, a common methodology to assess the quality of a community detection

algorithm is to compare the resulted community partitioning with the ground-truth communities of

the analyzed network. F-score and Normalized Mutual Information (NMI) (Friggeri, Chelius, &

Fleury, 2011) are two widely used indexes for measuring the performance of community detection

algorithms by comparing their resulted community partitioning with the ground-truth data. How-

ever, for a big number of networks, the ground-truth communities are not known. As a result, a

comprehensive quality metric to evaluate the quality of the resulted communities and consequently,

compare the community detection algorithms is required. Modularity (Newman, 2004), Q, is prob-

ably the most widely used quality function for the classic community detection problem. As can be

21

understood from equation (1), modularity Q needs global information to measure the quality of a

community partitioning.

However, several studies have tried to compare different community detection algorithms via

comparing their resulted community partitioning (Dao, Bothorel, & Lenca, 2018; Ghasemian, Hos-

seinmardi, & Clauset, 2019; Jebabli, Cherifi, Cherifi, & Hamouda, 2018), this issue is not widely

investigated for local community detection algorithms. In this regard, a new local metric to evaluate

the quality of communities using geodesic distance is proposed only by employing local informa-

tion. To this aim, the shortest distance among all pairs of nodes in a given community is normalized

and employed. In summary, the main contributions of this chapter are as follows:

• The minimum and maximum values of geodesic distance for a fixed number of nodes are

presented and proved.

• A new metric to evaluate the quality of communities only using local information is proposed.

• Using some small graphs as communities, the deficiencies of other local metrics are discussed,

• Introducing two textbook experiments, the proposed metric is compared with the existing

local metrics.

• The proposed metric has been used to compare three local community detection algorithms.

• The performance of the metric is compared with the performance of the F-score, i.e. the

metric which compares the community with its ground-truth community.

The remainder of this chapter is structured as follows: Section 3.2 represents the literature

review and discusses three famous local community detection algorithms. Section 3.3 introduces the

metric, while Section 3.4 presents the experimental results and evaluation of the proposed metric.

Finally, this study is concluded in Section 3.5 and also some ideas for possible future works are

presented.

22

3.2 Related Works

During the last few years, many studies have tried to compare different community detection

algorithms through evaluation of their detected communities (Dao et al., 2018; Ghasemian et al.,

2019; Jebabli et al., 2018). Dao et al. (2018) tried to estimate similarities between two detected

community partitionings by using the size distributions of the detected communities. In this regard,

two community partitionings detected from two algorithms are compared to calculate how much the

partitionings look alike. This approach can be used to calculate how much a community partitioning

is similar to the ground-truth communities. Also, Jebabli et al. (2018) proposed a new technique

to compare the detected community partitioning with the ground-truth communities. However, the

two aforementioned studies (Dao et al., 2018; Jebabli et al., 2018) considered comparing commu-

nities with ground-truth data, the ground-truth communities are not available for several real-world

networks.

In this regard, modularity Q (Newman, 2006) evaluates community partitionings without using

the ground-truth data. As can be seen from (1), modularity Q still needs global information (m) to

evaluate communities.

This chapter tries to compare local community detection algorithms by evaluating their de-

tected communities. In this concern, a new metric to evaluate communities without considering the

ground-truth data is proposed. Accordingly, only local information about detected communities is

available which makes the process of evaluation and comparing more challenging. In the follow-

ing, several famous local metrics along with their corresponding algorithms are presented. Usually,

local community detection algorithms detect local communities, optimizing a local metric. Clauset

(2005) firstly proposed the local metric, R, to detectc a community for a given node optimizing R.

The metric (refer to (3)) and algorithm (refer to Algorithm 1) are described in Chapter 2.

Following (Clauset, 2005), F. Luo et al. (2006) proposed another metric, namely M , as follows:

M =
Ein

Eex
(4)

In (4), Ein is the number of edges within the community, and Eex is the number of crossing edges,

i.e. the edges that only have one endpoint in the community. The proposed algorithm in (F. Luo et

23

al., 2006) uses two steps to find the local community: addition and deletion steps. In the addition

step, the algorithm iteratively adds vertices from U into the community C which results in the

greatest increase in the value of M . In the deletion step, the algorithm iteratively removes vertices

from C that their removal increases the score of M but does not separate the community. The

addition and deletion steps are repeated until no vertex can be added into the community C.

Moreover, J. Chen et al. (2009) proposed another modularity, namely L, to overcome some

drawbacks of the previous metrics:

L =
Lin

Lout
(5)

Lin =
Ein

|C|
, Lout =

Eex

|B|
(6)

In (6), |C| is the number of nodes inside community C and |B| is the number of border nodes. The

algorithm proposed in (J. Chen et al., 2009), contains two phases called discovery and examination.

In the discovery phase, nodes incrementally are added to the community while maximizing L, and

in the examination step, some irrelevant nodes are removed from the community. Regarding this

algorithm, there are three different cases in which modularity L increases after adding one node into

the local community. Assume L′
in, L′

out and L′ are corresponding scores after merging a node v

into C. The three cases that result in L′ > L are:

(1) L′
in > Lin and L′

out < Lout,

(2) L′
in < Lin and L′

out < Lout,

(3) L′
in > Lin and L′

out > Lout.

In the first case, the node belongs to the community. However, nodes in the second case are outliers

and do not belong to the community. Outliers are nodes that do not change the number of crossing

edges but weaken the density inside the community. However, the decision regarding adding the

third case nodes is made in the modification phase of the algorithm.

Furthermore, Conductance (Andersen et al., 2006) is probably the most widely used metric to

evaluate communities locally. Equation (7) defines Conductance as follows:

Conductance =
Eex

2 ∗ Ein + Eex
(7)

24

It is noteworthy that some studies have tried to detect local communities while optimizing Conduc-

tance (Gao, Zhang, & Zhang, 2019; Van Laarhoven & Marchiori, 2016).

Also, W. Luo, Zhang, Ni, and Lu (2019) tried to define a local modularity, called LQ. LQ is

defined as follows:

LQ =
ec
S

− (
dc
2S

)2 (8)

In (8), ec is the number of edges within the detected community, while dc is the summation of

degrees of all nodes belonging to that community. Also, S is the number of edges that have one or

two endpoints in the community.

In addition, several local community detection algorithms detect communities, using different

strategies (Liu & Xia, 2020; W. Luo et al., 2018; Y. Zhang, Wu, Liu, & Lv, 2019). However, the

local metrics employed in these studies, cannot be used as a separate quality metric for communities.

Although the five aforementioned metrics are quite well-known in the literature, they all have

their own drawbacks when they are considered as a general quality metric for communities. Regard-

ing the definition of communities in social networks, it is apparent that a community with a denser

connection within C and a sparser connection with its neighbors in U is a high-quality community.

Modularity R employs the number of edges with at least one endpoint in B and no endpoints in U

to control the density of a community (refer to (3)). This information cannot represent the density of

the whole community. Because edges within C that do not have any endpoints in B are the valuable

information ignored by R. Considering that the ignored information can be helpful to recognize the

density of a community, neglecting it reduces the generality of the modularity R.

Also, modularity M uses the number of edges inside the community to represent the density

(refer to (4)). However, the number of nodes in the community is neglected. In other words, only

employing the number of edges inside the community, Ein, without considering the number of

community nodes, |C|, cannot perfectly demonstrate the density of the community. Assume two

communities of size n and n′ with the same number of edges, where n > n′. It can be concluded

that the community with n′ nodes is the denser one. As a result, in addition to the number of edges,

considering the number of nodes is crucial to represent the density of a community. Moreover, Con-

ductance follows the same pattern as metric M in which the impact of internal density is increased

25

by adding a coefficient to the number of internal edges (refer to (7)).

Furthermore, metric L represents the density of the community by using the number of internal

edges concerning the number of nodes in the community (refer to (5)). In metric L, Lin cannot

perfectly show the density of the community, because the distribution of edges among nodes is

neglected.

Also, it is proved that LQ is equivalent to modularity M by W. Luo et al. (2019). As a result,

LQ suffers from the same drawbacks as M . Considering all the limitations of the above-mentioned

metrics, it is proposed that the shortest path length between nodes inside the community can per-

fectly capture the density inside communities.

To overcome the above-mentioned drawbacks, several research papers tried to propose different

modularities. However, only a few considered the shortest path length between pairs of nodes (Wu

et al., 2013; Zhen-Qing, Ke, Song-Nian, & Jun, 2012) and to the best of our knowledge, all such

metrics use global information. In this chapter, using geodesic distance, a new local metric to

evaluate communities is proposed. This new metric is compared with the four aforementioned

metrics, R, M , L and Conductance and also, used to compare the three algorithms proposed in

(Clauset, 2005), (F. Luo et al., 2006) and (J. Chen et al., 2009).

3.3 The Proposed Metric

Considering the limitation of local information, this section proposes a new metric, which uses

local information to evaluate the quality of communities. In this section, the definition of geodesic

distance, its minimum and maximum scores for fixed numbers of nodes, and the proposed metric

are presented.

3.3.1 Definitions

To introduce the proposed metric, some definitions must be presented as follows: in an undi-

rected and unweighted graph G = (V,E), V is the set of nodes and E is the set of edges. A path

in graph G is a sequence of edges that connects a sequence of nodes. The length of a path is the

number of edges in the path. The shortest path between vi ∈ V and vj ∈ V is a path connecting

26

these two nodes, and shorter than any other paths connecting vi and vj , in terms of length. By

definition, if vi, vj ∈ V are two nodes and (vi, vj) ∈ E is an edge between vi and vj , the length of

the shortest path between vi and vj is 1. Furthermore, if there is no path connecting vi and vj , the

length of the shortest path is infinite. A connected graph (or connected component) is a (sub-)graph

in which the length of the shortest path between every pair of nodes is not infinite.

In addition, geodesic distance between nodes vi and vj , gd(vi, vj), is the shortest path length

between vi and vj . Moreover, the sum of the geodesic distances between every pair of nodes in a

given graph G is denoted as GDg and described as follows:

GDg =
∑

i<j, vi,vj∈V
gd(vi, vj) (9)

Also, GDmin and GDmax show the minimum and maximum possible GD on graph G with n

nodes, respectively.

Additionally, a diametral path in graph G is the shortest path between two nodes with the max-

imum length. The diameter of a graph G is the length of the diametral path. A complete graph

Kn (or a clique) is a graph with n nodes and n(n− 1)/2 edges where every pair of nodes are con-

nected by an edge. In a complete graph, the geodesic distance between every pair of nodes is 1.

Furthermore, Pn, is a path with n nodes in which the diameter is n− 1.

Also, Td is a graph with n nodes, n− 1 edges, and the diameter d with no cycles, called a tree.

In this regard, GDTd
is the sum of geodesic distances between every pair of nodes in Td and VTd

is

the set of nodes in Td.

3.3.2 Propositions and proofs

In this section, two propositions corresponding to the main idea of this work are presented and

proved. In this regard, two propositions to indicate the minimum and maximum values of GDg on

graph G with n nodes, are presented.

To determine the minimum and maximum scores of GD for a graph with n nodes, it is claimed

that GD is minimized in a complete graph, Kn, and maximized in a path Pn.

27

Proposition 3.3.1. Among all graphs on n nodes, GDmin is achieved in a complete graph Kn, and

GDmin = n(n−1)
2 = n2−n

2 .

Proof. In any connected graph on n nodes, there are
(
n
2

)
= n(n−1)

2 number of paths between every

pair of nodes. For every pair of nodes vi and vj in any connected graph G, gd(vi, vj) ≥ 1. As a

consequence, GDg =
∑

i<j,vi,vj∈V gd(vi, vj) ≥ n(n−1)
2 . As a result, because gd(vi, vj) = 1 for

every pair of nodes in Kn, n(n−1)
2 is achieved in complete graph Kn.

Proposition 3.3.2. Among all graphs on n nodes, GDmax is achieved in a path Pn, and GDmax =

n(n−1)(n+1)
6 = n3−n

6 .

Proof. The maximum value of GD is achieved in a connected graph with no cycles (or a tree).

Otherwise, removing one edge from an existing cycle increases GD. The following intermediate

Lemma is required to complete the proof of Proposition 3.3.2:

v0 v1
· · ·

vi−1 vi = ul vi+1

· · ·
vd−1 vd

ul−1

...

u1

u0
Td

Figure 3.1: An arbitrary tree Td

v0 v1
· · ·

vi−1 vi = ul vi+1

· · ·
vd u′0

ul−1

...

u2

u1
Td+1

Figure 3.2: An arbitrary tree Td+1

28

Lemma 3.3.1. For any tree on n nodes and diameter d, Td, where 2 ≤ d ≤ n − 2, there exists

another tree on n nodes, Td+1, such that GDTd
< GDTd+1

.

Proof. Figure 3.1 shows tree Td. Regarding this figure, assume P = v0, v1, · · · , vi, · · · , vd is a

diametral path in Td. Consider a node with degree 1, u0 /∈ P , in Td. Since d ≤ n − 2, there is

at least one such node. Suppose the unique path from u0 to ul = vi, with length l, intersects path

P at node vi (Figure 3.1). Denote this path as S = u0, u1, · · · , ul−1, ul(= vi). Without loss of

generality, assume that the length of the path from v0 to vi is less than or equal to the length of the

path from vi to vd (or gd(v0, vi) ≤ gd(vi, vd)).

A new tree Td+1 is constructed from Td by cutting edge (u0, u1) and adding the edge (vd, u
′
0)

as follows: remove the edge (u0, u1) from Td. Add a new edge from vd to a new node u′0. Denote

the new tree as Td+1, where Td+1 = Td\(u0, u1) ∪ (vd, u
′
0). Figures 3.1 and 3.2 illustrate Td and

Td+1, respectively. It must be shown that GDTd
< GDTd+1

.

As it can be seen from Figures 3.1 and 3.2, the geodesic distance length between many pairs of

nodes in two trees Td and Td+1 are the same. As a result, the only unequal distances are the lengths

of u0 to all nodes in Td versus the lengths of u′0 to all nodes in Td+1. It should be shown that the

latter value is greater than the first one. More formally, It must be proved that:

GDTd+1
−GDTd

=
∑

v∈VTd+1

gd(u′0, v)−
∑

v∈VTd

gd(u0, v) > 0 (10)

Note that paths Sd = u0, u1, · · · , ul−1, vi, · · · , vd in Td and Sd+1 = u1, · · · , ul−1, vi, · · · , vd, u′0

in tree Td+1 have the same length, and since both u0 and u′0 are leaves, then:

∑
v∈Sd

gd(u0, v) =
∑

v∈Sd+1

gd(u′0, v) (11)

It remains to consider the geodesic distances lengths from node u0 to nodes v0, v1, · · · , vi−1 in

Td and also, from node u′0 to v0, v1, · · · , vi−1 in Td+1. Note that in Td, gd(u0, vk) ≤ gd(vd, vk)

for all k = 0, 1, · · · , i − 1. If not, then in Td the path u0, u1, · · · , ul−1, vi, vi−1, · · · , vk is longer

than the path vd, vd−1, · · · , vi, vi−1, · · · , vk. This means that the path u0, u1, · · · , ul−1, vi is longer

than the path vd, vd−1, · · · , vi, and as a result, the path u0, u1, · · · , ul−1, vi, vi−1, · · · , v0 is longer

29

than the diametral path P = vd, vd−1, · · · , vi, vi−1, · · · , v0, which is a contradiction. Therefore,

gd(u0, vk) ≤ gd(vd, vk) for all k = 0, 1, · · · , i− 1 in Td. It is clear that in tree Td+1, gd(u′0, vk) =

gd(vd, vk) + 1 and so, gd(u0, vk) < gd(u′0, vk) for all k = 0, 1, · · · , i− 1.

Now, combining the latter with Equation 10 and 11, we get:

GDTd+1
−GDTd

=
∑

v∈VTd+1

gd(u′0, v)−
∑

v∈VTd

gd(u0, v)

=
∑

v∈Sd+1

gd(u′0, v) +

i−1∑
k=0

gd(u′0, vk)−
∑
v∈Sd

gd(u0, v)−
i−1∑
k=0

gd(u0, vk)

=

(∑
v∈Sd+1

gd(u′0, v)−
∑
v∈Sd

gd(u0, v)

)
︸ ︷︷ ︸

=0 (By Equation 11)

+

(
i−1∑
k=0

gd(u′0, vk)−
∑
v∈Sd

gd(u0, v)

)
︸ ︷︷ ︸

>0

> 0

(12)

This completes the proof of Lemma 1.

To continue the proof of Proposition 3.3.2, from Lemma above, the GD is maximized when the

diameter of a tree is maximized. Since the diameter in any tree (and any connected graph) on n

nodes is upper bounded by n− 1, and there is a single tree with diameter n− 1, then the maximum

GD is achieved in Pn. To complete the proof, the value of GDmax is calculated. In Pn, there are

exactly n− 1 pair of nodes with distance 1 (all pairs of neighboring nodes). Also, there are exactly

n − 2 pairs of nodes with a distance of 2. In general, there are n − i pairs of nodes with distance i

for all 1 ≤ i ≤ n− 1 Thus, it is concluded that:

30

GDmax =
n−1∑
i=1

i(n− i)

= n

n−1∑
i=1

i−
n−1∑
i=1

i2

= n
(n(n− 1)

2

)
−
(n(n− 1)(2n− 1)

6

)
=

n(n− 1)(n+ 1)

6
=

n3 − n

6

(13)

Therefore, the proof of proposition 3.3.2 is completed.

3.3.3 The Proposed Metric

Regarding the definition of a community, a quality metric must be able to capture the density

inside and the sparsity from the outside of the community. In this regard, a new metric for locally

evaluating the quality of a community in social networks is proposed. Equation (14) represents the

proposed geodesic distance metric GDMC , by using NGD for the community C as follows:

GDMC =
X

NGDC
(14)

In (14), NGDC is the Normalized Geodesic Distance of C. Here, the geodesic distance of commu-

nity C is normalized to be used in GDMC , as follows:

NGDC =
GDC − (GDCmin − 1)

GDCmax − (GDCmin − 1)
(15)

In (15), GDC is the sum of the geodesic distances of community C, GDCmin and GDCmax are the

minimum and maximum values for the geodesic distance of community C of size |C|. Regarding

(15), the value of geodesic distance for any community is normalized between 0 and 1. It is clear

that for a complete community, a community with all possible edges among its nodes, the geodesic

distance gives its minimum value, GDCmin . As a result, the normalized geodesic distance for such

communities is 0. To avoid having 0 values, instead of GDCmin , we use GDCmin −1. Furthermore,

31

in (14), X is the parameter that controls the number of crossing edges and is described as follows:

X =
Ein

Ein + 4 ∗ Eex
(16)

Equation (16) represents the parameter X as a function of the number of internal edges Ein and the

number of crossing edges Eex. In GDM, both Ein and NGD are employed to capture the density

inside the community. As a result, the impact of the density is more than the number of external

edges. To make the number of crossing edges as important as the density inside the community,

coefficient 4 is multiplied by Eex in X . In this regard, different coefficients have experimented and

4 seems to make the best balance.

In GDM , both X and NGD range between 0 and 1, which makes them comparable to be used

together in a formula. Also, NGD perfectly captures the density inside a community and shows

how dense a community is, only using its local information. Besides, the parameter X represents

how much a community is separated from its neighbors. Thus, it is expected that the proposed metric

performs well while maximizing the density inside the community and minimizing the number of

crossing edges. In terms of complexity, the proposed GDM is more complex than the other local

metrics. The complexity of the calculation of GDM for a community of size n is O(n3). Since the

proposed GDM is a comprehensive quality metric that is used only once to assess the quality of

detected communities, its complexity does not raise any additional concerns.

3.4 The Experiments

In this section, GDM is employed to compare three local community detection algorithms

by comparing their detected communities. Also, the performance of GDM is compared with the

performance of the F-score, i.e. the metric which compares a given community with its ground-

truth community. In addition, using some simple graphs as sample communities and two textbook

experiments, it is demonstrated how GDM covers the deficiencies of other local metrics.

32

3.4.1 dataset

In order to conduct the experiments, several social networks with ground-truth communities are

employed which are used by many research studies (Hric, Darst, & Fortunato, 2014; W. Luo et al.,

2018). The employed datasets in this chapter are as follows:

• Zachary Karate Club (Zachary, 1977) is a 34-node network with 78 edges which represents

the club members and the friendship among them. By arising a problem between the masters,

the club splits into two smaller communities of sizes 16 and 18. These two groups are con-

sidered two ground-truth communities. Figure 3.3 shows the Karate Club network with the

two ground-truth communities in two colors.

• Dolphins (Lusseau et al., 2003) is a network of frequent association between 62 dolphins.

This network contains 62 nodes and 159 edges along with two ground-truth communities of

sizes 20 and 42.

• American Football College (American FC) (Girvan & Newman, 2002) consists of 115 nodes

and 616 edges which represent football teams and regular games among them respectively.

Normally, games are more frequent between teams of the same conference than between

teams of different conferences. As a result, each conference can be considered as one ground-

truth community of the network.

• Lancichinetti-Fortunato-Radicchi (LFR) benchmark (Lancichinetti, Fortunato, & Radicchi,

2008) is a synthetic network generator in which the ground-truth communities are known. To

Figure 3.3: Zachary Karate Club network with the two ground-truth communities

33

generate a network using LFR, some parameters need to be set. The parameters include the

number of nodes n, the average degree of nodes d, the maximum degree of nodes maxd, the

minimum size of communities minSize, the maximum size of communities minSize and

the mixing parameter 0 < µ < 1. The mixing parameter indicates the quality of the ground-

truth communities in the network. In this regard, (1 − µ)% of a nodes degree belong to the

same community as the node, and µ% of a nodes neighbors must belong to other communities

than the node’s community, (n = 1000, d = 15,maxd = 50,minSize = 20,maxSize =

50 and µ = 0.1, · · · , 0.8).

• DBLP1 computer science bibliography provides a comprehensive list of research papers in

computer science. In this network, two authors are linked if they publish at least one paper

together. Since each publication venue is considered a ground-truth community, authors who

published in a certain journal or conference form a community. This network has 317070

nodes and 1049866 edges.

• Amazon co-purchasing network2 was collected from Amazon website3 and the ground-truth

communities are defined by each products category. This is a 334863-node network with

O1

O2

O3

C1
C2

C3

. . .

. . .

Figure 3.4: First simple example community

1http://snap.stanford.edu/
2http://snap.stanford.edu/
3https://www.amazon.com/

34

925872 edges.

3.4.2 Small Graphs

This section describes the drawbacks of the four metrics, R (Clauset, 2005), M (F. Luo et al.,

2006), L (J. Chen et al., 2009) and Conductance (Andersen et al., 2006), using some small graphs as

communities. In this regard, some small communities are created, and the best community among

them is selected in advance. Complete graphs are chosen to be considered the best communities.

Then, the communities are compared with each other using the metrics and it is expected that the

best scores of the metrics go to the selected best community. It is noteworthy that R, M , L, and

GDM are maximization metrics and Conductance is a minimization metric. Also, since W. Luo

et al. (2019) proved that modularity LQ (refer to (8)) is equivalent to metric M and has the same

performance as M , it is removed from this evaluation.

Figure 3.4 demonstrates the first example which is a small sub-graph of a bigger graph. Regard-

ing this figure, it is considered that three communities C1, C2, and C3 are detected by three different

algorithms. The purpose of this analysis is to compare three communities C1, C2 and C3, using R

(Refer to (3)), M (Refer to (4)), L (Refer to (5)), Conductance (Refer to (7)) and GDM (Refer

X

C4

C5

.

Figure 3.5: Second simple example community

35

Table 3.1: Metrics’ scores for communities C1, C2 and C3 in Figure 3.4

Community R M L Conductance GDM NGD X

C1 0.75 5 1.6 0.090 11.46 0.048 0.55

C2 0.77 5.3 2.3 0.085 3.43 0.166 0.57

C3 0.78 5.6 2.1 0.081 1.98 0.298 0.59

Table 3.2: Metrics’ scores for communities C4 and C5 in Figure 3.5

Community R M L Conductance GDM NGD X

C4 0.8 11.2 2.25 0.04 90.24 0.0082 0.74

C5 0.9 23.5 4.45 0.02 15.68 0.0542 0.85

to (14)). Since C1 is the most compact community, i.e. because it is a complete graph, among the

three with the same number of external edges as C2 and C3, it is clear that C1 is by far the best

community in comparison with the other two. Thus, it is expected that the highest (best) scores of

metrics go to C1, then C2, and finally C3. Table 3.1 summarizes how different metrics, including

GDM , assess the three communities. As is clear in Table 3.1, community C3 is the best commu-

nity in comparison with the other two communities, according to metrics R, M , and Conductance.

Also, if we consider L as a general quality metric, community C2 would be selected as the best

among C1, C2 and C3. However, GDM assigns its highest score to C1 and after merging O1 to the

community C1, the value for GDM decreases remarkably. Afterward, by joining O2, GDM drops

slightly. It is reasonable to have a huge decrease in the quality of the community after adding O1

to the community since the density inside the community weakens considerably. As a result, unlike

the other metrics, the proposed metric GDM can compare the aforementioned communities very

well.

Figure 3.5 shows the second example graph analyzed in this section. In this figure, a complete

10-node graph (or a 10-clique) is considered as a community C4 that has 4 external edges which

makes it a high-quality community. There is a neighboring node x, which is connected to the

community by 2 edges. Thus, merging x into the community decreases the number of crossing

edges by 2 while weakening the density of the community C4. In this example, C4 is considered

36

a better community than C5. In this regard, it is expected that the best scores of the metrics are

given to C4. Table 3.2 shows different metrics’ results for two communities of Figure 3.5 (C4 and

C5). However, metrics R, M , L, and Conductance welcome node x into the community C4, the

proposed metric GDM prefers to keep x outside the community. It is due to the fact that merging

node x profoundly damages the density of a complete 10-node community while decreasing the

number of crossing edges only by 2. Increasing the number of crossing edges by 1 or 2 does not

considerably decrease the quality of a complete 10-node community. Thus, GDM works precisely

based on the definition of communities in social networks. Since C4 is a clique, node X needs to

be connected to all nodes in the community to be allowed by GDM to be added into C4. However,

usually, communities in the social networks are less dense than C4 and there is no need for a node

like X to be connected to all node to make the community denser. In this regard, a trade off between

the density inside and the number of crossing edges lets node like X into the community.

Figure 3.6 indicates the third example. This figure is an extension of Figure 3.5 in which instead

of a single node x, there is a complete 6-node community (K6). In Figure 3.6, the best practice is

to consider C6 as a separate community and keep the K6 outside of C6. As a result, it is expected

that the best scores of the metrics go to C6 rather than C7. Table 3.3 represents the calculation of

different metrics regarding communities C6 and C7 in Figure 3.6. It can be seen from Table 3.3

C6

C7

.

Figure 3.6: Third simple example community

37

Table 3.3: Metrics’ scores for communities C6 and C7 in Figure 3.6

Communities R M L Conductance GDM NGD X

C6 0.8 11.25 2.25 0.04 90.24 0.008 0.74

C7 0.9 31 6.872 0.01 6.24 0.141 0.88

that all four metrics R, M , L and Conductance give higher scores to C7 rather than C6. However,

it is crystal clear that keeping K6 outside of C7 and considering it as a separate community result

in better community partitioning. As a result, it can be concluded that for metrics R, M , L, and

Conductance, minimizing the number of crossing edges is much more important than the level

of density of the community. This conclusion is more prominent in the next community example

when we have a disconnected graph as a community. Furthermore, according to Table 3.3, it can

be concluded that GDM to some extent, can solve the problem of resolution limit. In this regard,

however, in Figure 3.6, the most obvious sub-graphs (cliques) are chosen as communities and the

number of crossing edges is small, metrics R, M , L, and Conductance are unable to correctly

compare the communities. As a result, we can claim that GDM , to a very high extent, can solve the

resolution limit problem in local community evaluation. In this regard, in the same way as Fortunato

and Barthelemy (2007), by considering some restrictions for a group of nodes to be a community,

the exact bound for the resolution limit of GDM can be found.

Finally, the example graph in Figure 3.7 shows a disjoint community. For such communities,

the proposed metric GDM results in 0, while the other four metrics may give rather high scores.

Regarding the community in Figure 3.7, the metric scores for R, M , L and Conductance are 0.7,

2.5, 1.7 and 0.16, respectively. These results indicate that the number of external edges is much

more important than the density inside the community for the above-mentioned metrics.

It is noteworthy that the purpose of using complete graphs as best communities is to recognize

the best community by observation and without any calculation. In this regard, non-complete graphs

with high qualities could be used as well.

38

3.4.3 Two Textbook Experiments

In this section, two experiments are designed and implemented. The structures of both experi-

ments are according to the fact that the ground-truth communities must be given the highest scores

in comparison with any other detected communities for the same given node.

The First Experiment

In the first experiment, assume that there is a ground-truth community RCn of size n in a given

dataset. Regarding ground-truth communities, at each step, one node y from RCn is chosen to be

removed. Here, the removed node is still in the network but not in the community. The resulted

community after removing node y is denoted as RCn−{y}. Considering RCn = {a1, a2, · · · , an},

the resulted communities from removing each member ai, 1 ≤ i ≤ n, are RCn−{a1}, RCn−{a2},

· · · , and RCn − {an}. Also, at each step, one node from all over the network outside of RCn

is chosen to be merged into it. The resulted communities are RCn + {b1}, RCn + {b2}, · · ·

and RCn + {bs}, where S = {b1, b2, · · · , bs} is the whole network outside of RCn. In order to

compare the above-mentioned communities with RCn, the metrics R, M , L, Conductance and

GDM are calculated and compared. It is expected that RCn is given the highest scores from all

four mentioned metrics. The purpose of this experiment is to capture the most similar communities

to the ground-truth communities and compare them with the ground-truth communities. If a metric

can give higher scores to the ground-truth communities in comparison with the values it is given to

the most similar communities, the metric is judged as a good metric.

Table 3.4 summarizes the results of the experiment on two ground-truth communities of the

Figure 3.7: Fourth simple example community

39

Table 3.4: The result of the first textbook experiment on the Karate Club network

RC Community R M L Con GDM

RC16 0.714 3.3 1.0312 0.1315 2.5877
RC16 − {a3} 0.687 2.8 1.12 0.1515 2.1582
RC16 − {a5} 0.675 2.308 1.077 0.1781 1.9398
RC16 − {a6} 0.658 2.071 1.105 0.1944 1.7679

RC16 RC16 − {a7} 1.7679 2.071 1.105 0.1944 3.495
RC16 − {a11} 0.675 2.308 1.077 0.1781 1.9398
RC16 − {a13} 0.676 2.583 1.033 0.1622 2.1301
RC16 − {a17} 0.7 2.583 1.205* 0.1621 2.3858
RC16 + {b9} 0.710 3.4* 1.2 0.1358 2.6699*
RC16 + {b10} 0.722* 1.470 0.784 0.1282* 2.5233

RC18 0.756* 3.5 1.555* 0.125 2.7628
RC18 RC18 + {b3} 0.730 4* 1.053 0.1111* 3.1699*

RC18 + {b20} 0.744 3.273 1.550 0.1325 2.7802

Zachary Karate Club network (RC16 and RC18). It is noteworthy that Conductance is referred

to as Con in the tables. This table includes two categories for two ground-truth communities of

this network. The first row of each category represents the metrics’ scores for RC16 and RC18

and the other rows contain the additions or deletions which are given higher scores than RC16 or

RC18 at least by one of the metrics. It is noteworthy that the scores which are higher than that of

ground-truth communities are shown in bold and the maximum scores are denoted by an asterisk.

According to this table, since modularity R has only one wrong evaluation, i.e., it gave a higher

score to RC16 + {b10} rather than RC16, it has the best performance. Regarding Table 3.4, GDM

gives higher score to RC16+{b9} rather than RC16. For more illustration, adding node 9 into RC16

increases GDM by 0.082 (from 2.5877 to 2.6699). Fig. 3.8 demonstrates the position of b9 in the

network. In the figures, node a9 is shown by using the node number. Regarding this figure, node

9 belongs to the community RC18 with three connections to nodes 31, 33, and 34 in which node

34 is a core node for RC18. On the other hand, node 9 is connected to RC16 with two edges to

nodes 1 and 3 (with node 1 being a core node for RC16). By comparing the connections of node

9 to the two ground-truth communities, it will be known that node 9 must belong to RC18 since

removing 9 from RC18 increases the number of crossing edges by 1 and also weaken the density

40

inside. However, it does not mean that if node 9 is added to RC16, it would negatively affect RC16.

Because adding node 9 into RC16 increases the number of edges and nodes inside the community

by 2 and 1, respectively. The reason is that node 9 is connected to the core node which does not

let the density decline. All the above-mentioned reasons imply that the presence of node 9 in both

communities can help them to be better communities But removing node 9 from RC18 decreases

the metric GDM more than 0.202 (It is decreased by 0.451, which is not mentioned in the table.).

Thus, one may conclude that node 9 can be considered as an overlapping node, which can belong to

both communities. This implies that GDM is able to recognize overlapping communities as well.

In the same way, RC18 + {b3} and RC18 + {b20} are given higher scores than RC18 by GDM .

Fig. 3.9 and 3.10 illustrate the status of nodes 3 and 20 in the network and because of the same

reasons as RC16 + {b9}, they can also be referred to as overlapping nodes.

According to Table 3.4, in 8 cases, metric L results in higher values than that of RC16. So, it

9

31

33

34

3

1

RC16 RC18

. . .

. . .

. . .

. . .

Figure 3.8: The status of node 9 in Karate Club network

3

9

10

28

29

33

1

2

4

8

14

RC16 RC18

. . .

. . .

. . .

. . .

. . .

. . .

Figure 3.9: The status of node 3 in Karate Club
network

20

341

2

RC16 RC18

. . .
. . .

. . .

Figure 3.10: The status of node 20 in Karate
Club network

41

Table 3.5: The number of wrong evalua-
tions by the four metrics on Dolphins net-
work concerning the first textbook experi-
ment

RC Metric Adding Removing

R 0/42 5/20
RC20 M 1/42 0/20

L 6/42 13/20
Con 1/42 0/20

GDM 1/42 1/20

R 0/20 38/42
RC42 M 0/20 0/42

L 4/20 26/42
Con 1/20 0/42

GDM 1/20 0/42

Table 3.6: The number of wrong evaluations
by the four metrics on American FC network
concerning the first textbook experiment

RC Metric Adding Removing

R 2/102 0/13
RC13 M 2/102 0/13

L 2/102 0/13
Con 2/102 0/13

GDM 1/102 0/13

can be concluded that the proposed metric can evaluate the quality of communities at least better

than the L metric. Additionally, the same experiment is carried out on Dolphins and American FC

networks. Table 3.5 indicates the number of wrong evaluations of the four metrics in the Dolphins

network. In this table, the first column shows the name and size of the ground-truth communities

and the second and third columns indicate the number of wrong evaluations of adding one node

into and removing one node from the ground-truth community. As can be seen from the table,

metrics R and L have the worst performance in comparison with the other two metrics. Regarding

Table 3.5, deletion is the most challenging part of this experiment for R and L. Fig. 3.11 shows an

52 5

RC42

. . .

. . .

Figure 3.11: An example of wrong assessment of communities by R modularity

42

example of removing one node from one ground-truth community of Dolphins network in which

metric R cannot correctly assess the communities. Concerning this figure, removing node 5 from

the community will make node 52 a new border node. Thus, this increases the number of crossing

edges by 1 and also increases the number of edges with at least one endpoint in border nodes by

10. As a result, metric R is wrongly increased remarkably. Consequently, we can conclude that

metric R is not a quality metric to be used independently to assess communities. However, metrics

M , Conductance and GDM perform satisfactorily for this network as well. Moreover, the same

experiment is done on the American FC network which does not arise any challenge for any of

the metrics. This network has 11 ground-truth communities in which only in one real community

of size 13, metrics have wrong evaluations in addition steps, which can be taken into account as

overlapping nodes. Table 3.6 summarizes the number of wrong evaluations of metrics for this

specific ground-truth community.

The Second Experiment

To show the effectiveness of the proposed metric another experiment is designed and applied

to the American FC network. In this experiment, two ground-truth communities are merged, and

then the joint community is compared with each of the two ground-truth communities. The purpose

of this experiment is to show that the three metrics R, M , L, and Conductance cannot perfectly

capture the density inside the community. In this experiment, a wrong evaluation happens when a

metric gives a joint community, a score higher than the two real communities which were used to

construct the joint community. In this regard, Table 3.7 shows the wrong evaluation of metrics R,

M , L, and Conductance, only for two ground-truth communities of Football College network. In

this table, the first column indicates the community, and the other four columns denoted the metrics

scores for the corresponding communities. It should be mentioned that the ground-truth communi-

ties of American FC network are numbered from 0 to 10. So, RC09 is denoted as the ground-truth

community of number 0 and size 9. As it can be understood from the table, metrics R, M , L,

and Conductance give the combined community higher scores than the ground-truth communities.

Moreover, however, the combined community, RC18 + RC312 , results in a disconnected commu-

nity, it earned higher scores than DC18 by the four metrics. Furthermore, the total number of wrong

43

Table 3.7: The result of the second textbook experiment on American FC network

Community R M L Conductance GDM

RC09 0.59 1.44 1.44 0.2577 22.5
RC09 +RC18 0.605 1.533 1.533 0.2459 2.2736
RC09 +RC312 0.598 1.491 1.491 0.2511 1.4998
RC09 +RC613 0.6 1.5 1.5 0.25 1.5172
RC09 +RC912 0.65 1.89 1.89 0.2088 2.5304

RC09 +RC109 0.592 1.451 1.451 0.4074 0.7252

RC18 0.483 0.933 0.933 0.3488 10.7837
RC18 +RC312 0.543 1.187 1.187 0.2963 0.0
RC18 +RC49 0.542 1.185 1.185 0.3367 0.0
RC18 +RC613 0.625 1.666 1.666 0.2307 2.4314
RC18 +RC78 0.487 0.95 0.95 0.3448 0.9528
RC18 +RC810 0.543 1.19 1.19 0.2959 1.2005
RC18 +RC912 0.551 1.226 1.226 0.2897 0.0

RC18 +RC109 0.516 1.066 1.066 0.4834 0.3466

Table 3.8: The number of wrong evaluations by the four metrics on American FC network concern-
ing the second textbook experiment

Dataset R M L Conductance GDM

American FC 77/110 78/110 78/110 68/110 0/110

evaluations of the combined community experiment is indicated in Table 3.8 for the five metrics.

Respecting this table, among 110 possible comparisons, GDM has no wrong evaluation. However,

the other four metrics R, M , L, and Conductance have 77, 78, 78, and 68 wrong assessments,

respectively. This experiment shows that the three above-mentioned metrics are designed to com-

pare the same communities with only one node difference. However, the proposed metric in this

paper is capable of comparing every community for a given node. This metric is aimed to assess the

quality of detected communities instead of only comparing them with ground-truth communities.

Since ground-truth communities of some real-world networks are unknown, there is a need for a

comprehensive local quality metric to evaluate the quality of detected communities.

44

3.4.4 Experimental Results

In this experiment, three local community detection algorithms, AlgR (Clauset, 2005), AlgM

(F. Luo et al., 2006) and AlgL (J. Chen et al., 2009), are compared with each other via comparing

their detected communities. After randomly choosing one node as the starting node for the commu-

nity detection algorithms, each algorithm gives one community corresponding to the starting node.

Among the three communities detected by the three algorithms, the one with the maximum F-score

is the best community compared to the ground-truth one. F-score is a measure of a model’s accuracy

on a dataset which is defined as follows:

F1score = 2 ∗ precisions ∗ recalls
precisions + recalls

(17)

recalls =
|Cfound ∩ Ctrue|

|Ctrue|
(18)

precisions =
|Cfound ∩ Ctrue|

|Cfound|
(19)

Equations (18) and (19) show the formula of recall and precision for sets, respectively. In these

equations, Cfound is the set of nodes of the community found by an algorithm, and Ctrue is the

set of nodes that belong to the ground-truth community. In (18), Cfound ∩ Ctrue is the intersection

of sets Cfound and Ctrue which shows the set of correctly detected nodes (true positive) by the

algorithm. As a result, recalls indicates the fraction of the number of true positive nodes over the

number of nodes that must be detected as positive. Also, equation (19) shows the fraction of the

number of true positive nodes over the whole number of detected nodes. In other words, precisions

deals with the nodes which are correctly detected as negative (true negative). A perfect model (or

community) has an F-score of 1 which means the detected community is identical to its ground-

truth community. In this experiment, the final judgment of the F-score is compared with the final

judgment of GDM and it is shown how much the results of GDM are similar to that of the F-score.

It is expected that GDM compares the communities, in the same way as F-score. In other words,

both metrics choose the same community as the best in the same comparison.

45

Table 3.9: The values of F-score for some communities detected by AlgR, AlgM , and AlgL regard-
ing some random starting nodes on Karate Club network

Starting node AlgR AlgM AlgL Starting node AlgR AlgM AlgL

2 0.90 0.73 0.58 11 0.96 0.47 0.22

3 0.84 0.73 0 28 0.971 0.973 0.36

4 0.90 0.73 0.54 26 0.97 0.36 0.36

Table 3.10: The values of GDM for some communities detected by AlgR, AlgM , and AlgL regard-
ing some random starting nodes on Karate Club network

Starting node AlgR AlgM AlgL Starting node AlgR AlgM AlgL

2 2.40 1.61 0.39 11 2.52 0.60 0.059

3 1.88 1.61 0 28 2.60 3.16 0.20

4 2.40 1.61 0.47 26 2.61 0.20 0.20

Table 3.9 shows the values of the F-score for several communities detected by the three algo-

rithms AlgR, AlgM , and AlgL on the Karate Club network. In this table, the first column shows

the name of the randomly selected starting node and the next three columns illustrate the values

of the F-score for the detected local communities by three algorithms AlgR, AlgM , and AlgL for

the corresponding starting node. As can be seen from the table, the community with the maximum

F-score is indicated in bold. Also, Table 3.10 shows the values of the GDM metric for the same

communities as in Table 3.9. As in Table 3.9, in Table 3.10, the best community among the three is

bold. It can easily be seen from the two tables that the best communities according to F-score are

identical to the best communities from the perspective of GDM.

The same experiment has been done on the Dolphins network and the values of F-score and

GDM are shown in Tables 3.11 and 3.12. In these tables, 10 nodes are chosen randomly as starting

nodes and in all cases, the judgments of GDM are the same as F-score. Moreover, Figures 3.12 and

3.13 are the bar charts that show the values of F-score and GDM regarding the same experiment

on the American FC network. According to these figures, in 6 out of 7 cases, the judgments of

GDM are the same as F-score. It can also be seen from the figures that in some cases, e.g. starting

node = 35, AlgL does not provide any community. As it was mentioned before, algorithm AlgL

46

Table 3.11: The values of F-score for some communities detected by AlgR, AlgM , and AlgL re-
garding some random starting nodes on Dolphins network

Starting node AlgR AlgM AlgL Starting node AlgR AlgM AlgL

27 0.69 0.26 0.26 26 0.68 0.26 0.26

3 0.44 0.35 0.17 21 0.44 0.98 0.47

6 0.69 0.80 0 38 0.44 1.0 0.50

28 0.69 0.53 0.26 47 0.44 0.46 0.09

19 0.44 0.47 0.28 16 0.44 0.47 0.41

Table 3.12: The values of GDM for some communities detected by AlgR, AlgM , and AlgL regard-
ing some random starting nodes on Dolphins network

Starting node AlgR AlgM AlgL Starting node AlgR AlgM AlgL

27 0.77 0.26 0.26 26 0.77 0.26 0.26

3 0.428 0.425 0.09 21 0.96 7.10 1.37

6 1.41 1.91 0 38 0.80 7.20 1.27

28 0.77 0.70 0.26 47 0.43 1.64 0.11

19 1.20 1.26 1.16 16 1.12 1.26 0.97

includes two phases: discovery and examination. In the examination phase, some irrelevant nodes

are removed from the community. In cases, where AlgL has no detected communities, the starting

node is mistakenly removed from the community in this phase.

Table 3.13 shows the overall information regarding the three networks Karate Club, Dolphins,

and American FC. In this table, the first column indicates the name of the networks, the second

column, noted as N , shows the number of randomly selected starting nodes, and the third column,

denoted by S, illustrates the success percentage. Success percentage is the percentage of cases in

which GDM and F-score have chosen the same community as the best among the three communities.

The more the success percentage is, the better the judgment of GDM is. Moreover, columns 4,

5, and 6 show the percentage of cases in which the best community (among the three detected

communities) according to the F-score, is created by AlgR, AlgM , or AlgL, respectively. Similarly,

columns 7, 8, and 9 show the percentage of cases in which the best community according to GDM

47

is created by AlgR, AlgM , and AlgL, respectively. Regarding Table 3.13, in some cases, e.g.

American FC, the sum of three percentages is greater than 100, e.g. 32 + 70 + 40 = 142. The

reason is that different algorithms with the same starting node might create the same communities.

As a result, in some cases, two communities among the three are the same and also the best. Thus,

the percentages for both algorithms grow. It can be seen from Table 3.13 that both metrics F-

score and GDM choose AlgM as the best in comparison with the other two algorithms. Also, it is

understandable that by 100%, 96.66%, and 70%, the judgments of GDM are the same as that of the

F-score for three networks Karate Club, Dolphins, and American FC, respectively.

Table 3.14 shows the same values as Table 3.13 for LFR synthetic network. In LFR, the best

86 35 47 107 65 42 61

10−1

100

Starting node

F-
sc

or
e

AlgR AlgM AlgL

Figure 3.12: The values of F-score for several communities detected by AlgR, AlgM , and AlgL,
regarding a number of random starting nodes on American FC network

86 35 47 107 65 42 61

10−0.5

100

100.5

Starting node

G
D

M

AlgR AlgM AlgL

Figure 3.13: The values of GDM for a number of communities detected by AlgR, AlgM , and AlgL,
regarding a number of random starting nodes on American FC network

48

Table 3.13: The results of the comparison of F-score and GDM on Karate club, Dolphins and
American FC networks

Dataset N S (%)
F-score (%) GDM (%)

AlgR AlgM AlgL AlgR AlgM AlgL

Karate club 20 100 35 65 0 35 65 0

Dolphins 30 96.66 16.66 83.33 0 13.33 86.66 0

American FC 50 70 32 70 40 16 88 42

Table 3.14: The results of the comparison of F-score and GDM on LFR synthetic network

Dataset N S (%)
F-score (%) GDM (%)

AlgR AlgM AlgL AlgR AlgM AlgL

LFR(µ = 0.1) 100 100 83 100 47 83 100 47

LFR(µ = 0.2) 100 100 69 100 51 69 100 51

LFR(µ = 0.3) 100 100 63 100 44 63 100 44

LFR(µ = 0.4) 100 98 48 97 35 46 95 37

LFR(µ = 0.5) 100 94 26 92 26 23 95 24

LFR(µ = 0.6) 100 87 31 77 11 26 87 5

LFR(µ = 0.7) 100 70 28 61 13 20 75 7

LFR(µ = 0.8) 100 41 34 40 28 50 49 1

community partitioning is obtained when µ = 0.1. As the score of µ increases, the quality of

ground-truth communities decreases. According to Table 3.14, when µ = 0.1, · · · , 0.7, the success

percentage is over 70% and the best and the second-best algorithms are the same based on F-score

and GDM. However, when µ = 0.8, we can barely call the partitioning communities. As a result,

the success percentage decreases to 40%.

Furthermore, Tables 3.15 and 3.16 show the same values for DBLP and Amazon networks,

respectively. In these tables, the same experiment with different numbers of random starting nodes

is conducted and the results are reported. It is shown in Table 3.15 that by over 70%, the GDM has

the same judgment as F-score in the DBLP network. Also, according to the values of F-score and

GDM, the best and the second-best community detection algorithms are the same. In Table 3.16,

49

Table 3.15: The results of the comparison of F-score and GDM on DBLP network

Dataset N S (%)
F-score (%) GDM (%)

AlgR AlgM AlgL AlgR AlgM AlgL

DBLP 200 74.5 28.5 70 7.5 13.5 85.5 6.5

DBLP 500 74.5 29 69.6 6.66 10.59 89.21 4.71

DBLP 800 73.5 29.9 68.8 6.4 11.7 88.3 6.5

DBLP 1000 72.5 31.7 68 6.4 12.3 88.5 6.2

DBLP 1500 71.63 32.70 65.67 6.60 12.60 87.61 5.68

Table 3.16: The results of the comparison of F-score and GDM on Amazon network

Dataset N S (%)
F-score (%) GDM (%)

AlgR AlgM AlgL AlgR AlgM AlgL

Amazon 200 86.5 10.5 87 8 9.5 87 8

Amazon 500 85.9 11.6 88.8 6.6 10 87.2 5.6

Amazon 800 84.2 11.1 87.3 6.7 10.2 87.2 4.8

Amazon 1000 83.1 11.6 85.6 7.7 10.3 86.0 6.1

Amazon 1500 83.0 11.0 85.9 7.6 10.8 86.4 5.9

the success percentage is over 83% and the best and the second-best algorithms are chosen the same

for the Amazon network as well.

It needs to be mentioned that the three algorithms have their drawbacks. In this regard, the most

important deficiency of AlgR is that this algorithm does not have a termination condition and it

must be determined before running. In this experiment, the termination condition of AlgR for small

networks e.g. Karate Club, Dolphins, and American FC, is considered the maximum degree of

the network, for LFR and DBLP, is equal to the size of the corresponding ground-truth community

and for Amazon network is the average ground-truth communities sizes. As it can be understood

from the results, in all cases, AlgR performs better than AlgL while worse than AlgM . Also,

the employed information for the three termination conditions is not local. In addition, the most

remarkable drawback of AlgM in comparison with the other two is that this algorithm is more time-

consuming. Moreover, regarding AlgL, as was mentioned before, this algorithm cannot detect any

50

v0

. . .

. . .

. . .
. . .
. . .
. . .

Ca CbCg

Figure 3.14: An example of two detected communities Ca and Cb, for a given node v0 versus its
ground-truth community Cg

community for some starting nodes. This problem is even more prominent in bigger networks such

as DBLP, where it cannot find any communities in more than 50% of cases. As a result, according

to the experimental results and the drawbacks of the algorithms, we can conclude that AlgM can be

considered the best among the three algorithms.

3.4.5 Discussion

As it is obvious from the experimental results, in some samples, the community which is chosen

as the best by GDM is different from that of the F-score. Figure 3.14 shows a simple example of such

cases. In this figure, consider two different algorithms, Alga and Algb, detected two communities,

Ca and Cb, for the same starting node, v0. The ground-truth community of v0 is also shown in

the figure as Cg. If Fscorea is the value of F-score for Ca and GDMa is the score of GDM for

Ca, comparing two communities, Ca and Cb, it will be known that F1scorea > Fscoreb while

GDMa < GDMb. The reason is that F-score evaluates the detected communities, Ca and Cb,

based on Cg. Since Cb includes a greater number of irrelevant nodes compared to Ca, it is given

less F-score value than Ca. However, GDM or any other local quality metrics evaluate the quality

of the detected community without considering the starting node. Consequently, since Cb contains

more edges and also has better density rather than Ca, it is given greater GDM.

51

3.5 Conclusion and Future Work

This chapter presents a local evaluation metric to evaluate the quality of communities using

the geodesic distance. In this chapter, proposing a new evaluation metric, several local community

detection algorithms are compared via evaluation of their detected communities. Also, the GDM

is compared with several local metrics and the drawbacks of the existing metrics are discussed.

Therefore, based on the results, analyses, and discussions, the contributions of this work could be

summarized as follows:

• Considering geodesic distance as an auxiliary element to show the density inside a commu-

nity, the proposed metric, GDM , comprehensively evaluates the quality of a given commu-

nity.

• GDM can recognize overlapping nodes of communities.

• GDM is capable of measuring the quality of communities without using any global informa-

tion.

• GDM is able to handle some important deficiencies of previous well-known metrics includ-

ing R, M , L, and Conductance.

• To evaluate the quality of detected communities, GDM can be used as an alternative instead

of comparing them with ground-truth communities.

• GDM can be used to compare different local community detection algorithms.

Considering the advantages of GDM compared to the other metrics and also the experimental

results, the following directions are interesting for future works:

• Working on the resolution limit problem using GDM ,

• Expanding GDM for directed, weighted, and/or signed networks.

52

Chapter 4

A New Fast Local Community Detection

Algorithm

4.1 Introduction

Social networks are rapidly expanding in the virtual world. The advantages of the virtual world

have allowed people to easily communicate with their friends and relatives regardless of geograph-

ical distances and temporal constraints. This area, which has attracted the interest of many re-

searchers over the last few years, provides an appropriate description of how individuals commu-

nicate with one another. One of the fields that can improve these descriptions is the formation and

detection of communities in social networks (Tabarzad & Hamzeh, 2017).

Since the emergence of the problem of community detection, a large number of algorithms have

been proposed to detect community partitioning (Blondel et al., 2008; F. Wang et al., 2018; J. Yang

et al., 2013). Most studies on community structures in social networks have focused on the classic

detection problem which is not local. In the problem of global community detection, the information

of the whole network is available in advance. Detection methods based on global perspectives try

to detect communities of nodes by exploring the structure information of the entire network. Thus,

their running time is positively correlated with the scale of the input complex network. For large-

scale complex networks, global community partitioning demands higher performance on computer

hardware systems and the efficiency of the algorithm.

53

However, with the growth of social networks and their corresponding data size, handling the

whole structure of the network seems to be impossible. Consequently, local community detection

problem has attracted a great deal of attention from researchers in recent years. Several studies

(Blondel et al., 2008; Bouyer & Roghani, 2020; Ding, Zhang, & Yang, 2020; Li, Tang, Tang, Zhao,

& Huang, 2018; Z. Tang et al., 2021) showed that community detection methods based on local

perspectives are easier to detect high-quality communities in complex networks. The local commu-

nity detection methods can easily solve the problems which block global clustering methods. This

problem includes exploring a community for a given node or a group of nodes only using local

information. This approach does not need the information of the entire network or any prior knowl-

edge of the network. Therefore, in large-scale complex networks, community detection methods

based on local optimization have certain advantages in speed and scalability. In other words, the

formation of a community is only based on the local information of the network instead of the entire

network.

In this thesis, the main goal of a local community detection problem is to find a high-quality

community for a given node v0. The detection process starts from node v0 and at each step, one or

more nodes from the network (neighboring nodes) are merged into the community. Figure 4.1 shows

a sample community with 4 nodes detected for the given node v0. In the next step, the community

can be extended only by using the 6 neighboring nodes.

In this chapter, a new fast local community detection algorithm is presented. This algorithm tries

to detect communities by optimizing a new metric, called P . Also, the proposed metric, P , evalu-

ates communities employing the number of common neighbors. The proposed algorithm contains

v0

Figure 4.1: The local community detection problem

54

three steps to add relevant nodes into and also, remove irrelevant nodes from the detected commu-

nity. The main goal of the proposed algorithm is to find high-quality communities regardless of the

importance of the starting nodes in the network, as fast as possible. Experimental results show that

the proposed algorithm outperforms state-of-the-art local community detection algorithms. Further-

more, the proposed algorithm is considerably faster than other compared algorithms.

The remainder of this chapter is structured as follows: Section 4.2 represents the literature

review and some local community detection algorithms. Section 4.3 proposes the algorithm, while

Section 4.4 discusses the experimental results. Finally, this study is concluded in Section 4.5 and

also, some ideas for possible future works are presented.

4.2 Related Works

During the last few years, several algorithms have been proposed to locally detect communities

in social networks (J. Chen et al., 2009; Q. Chen et al., 2013; F. Luo et al., 2006; W. Luo et al., 2018;

T. Zhang & Wu, 2012). Generally, local community detection algorithms detect local communities

by optimizing a local metric. Some algorithms, including (J. Chen et al., 2009; Clauset, 2005; F. Luo

et al., 2006), cannot capture the density inside the community good enough. These algorithms try

to evaluate the quality of communities by only using the number of internal and external edges. As

it is concluded in Chapter 2, using the number of internal and external edges alone, cannot give fair

scores for the density inside the community. Furthermore, some algorithms are dependent on the

starting point of the algorithm (Q. Chen et al., 2013; Su, Wang, & Zhang, 2017; Whang et al., 2013;

T. Zhang & Wu, 2012). In this regard, firstly, they search for nodes with specific features, i.e. nodes

with high degrees, and then apply the local community detection algorithm to such nodes. It can be

concluded that the quality of the detected communities is significantly dependent on the importance

of the starting nodes. Also, some algorithms which use more information to capture the density

inside the community can still be improved (Q. Chen et al., 2013; W. Luo et al., 2018; T. Zhang &

Wu, 2012).

In this section, several local community detection algorithms are presented. Concerning the

local community detection problem, the three important local community detection algorithms AlgR

55

(Clauset, 2005), AlgM (F. Luo et al., 2006), and AlgL (J. Chen et al., 2009) are discussed in Chapter

2 and Section 3.2.

T. Zhang and Wu (2012) proposed a new method by finding core nodes of the community

and then expanding the core node’s clique to detect the local community for a given node. In

this algorithm, the core node is detected based on the nodes’ degrees and the number of common

neighbors. Also, Q. Chen et al. (2013) propose a new algorithm, called LMDR, using the same

perspective as (T. Zhang & Wu, 2012). In this algorithm, at first, two local degree central nodes for a

given node are discovered. Then, starting from those central nodes and using the R metric, the local

community is detected. The main limitation of these algorithms is that in some cases, the algorithm

needs to walk through all nodes in the network to find the core nodes. For more illustration, the

complexity to find the local degree central nodes in (Q. Chen et al., 2013) is O(nd), where n is the

number of nodes and d is the average degree of nodes in the community. In the worst case, n is the

number of nodes and d is the average degree of nodes in the network.

Furthermore, W. Luo et al. (2018) proposed two algorithms, DMFM and DMFR, which have

three different stages. In the initial stage of DMFM , a number of nodes are added to the community

while maximizing metric M (refer to (4)) and a new metric, called µM1 tot. µM1 tot(vi) for node vi

is defined as follows:

µM1(vi) =

maxvj∈NC

|N(vi)∩N(vj)|+1
|N(vj)| ∆M ≥ 0

0 ∆M < 0

µM1 sl(vi) =

maxvj∈NC

|N sl(vi)∩N sl(vj)|+1
|N sl(vj)| ∆M ≥ 0

0 ∆M < 0

(20)

In (20), N(vi) is the set of neighbor nodes of vi, and NC is the set of neighbors of vi that are inside

community C. Also, N sl(vi) is the set of second-layer neighbors of vi. ∆M can be calculated by

(4). In the middle stage, more nodes are added to the community while maximizing M . Further-

more, in the closing stage, optimizing a new metric, called µM3, final nodes are inserted into the

56

community. µM3(vi) for node vi is defined as follows:

µM3′(vi) = max
vj∈NC

|N(vi) ∩N(vj)|+ 1

|N(vi)|

µM3′′(vi) =
|{n|n ∈ N(vi), n ∈ C}|

|N(vi)|

µM3(vi) =max {µM3′(vi), µM3′′(vi)}

(21)

DMFR follows the same pattern as DMFM , only using metric R (refer to (3)) instead of

M . In these algorithms, the number of common neighbors between nodes is the key parameter to

evaluate communities. As a result, DMFM and DMFR try to evaluate and incrementally explore

the communities using the number of common neighbors and metrics M and R. It is also reported

that the complexities of these algorithms are O(n2d2 log d), where n and d are the number of nodes

and the average degree of nodes in the community, respectively. It is noteworthy that the major

limitation of these algorithms is that they are quite time-consuming.

In this chapter, a fast local community detection algorithm using the number of common neigh-

bors is presented. The algorithms AlgR (Clauset, 2005), AlgM (F. Luo et al., 2006), LMDR

(Q. Chen et al., 2013), DMFR, and DMFM (W. Luo et al., 2018) are implemented and compared

with the proposed algorithm.

4.3 The Proposed Algorithm

In this section, a local community detection algorithm is presented. This algorithm detects a

community for a given node using local information while optimizing a local metric. In this regard,

a new local quality function is presented to evaluate communities. This local metric tries to capture

the quality of communities using the number of common neighbors between every pair of nodes in

the community. Following GDM (refer to (14)), it is shown that the geodesic distance can perfectly

capture and evaluate the density inside the communities locally. Due to the high complexity of the

calculation of the shortest-path lengths, it is not efficient to use it in a metric that is optimized in

an algorithm. In this regard, the number of common neighbors is used to examine the density of

communities. Common neighbors are the key factors for a group of nodes (graph or community) to

57

1: while more nodes can be added to the community do
2: step 1: from neighboring nodes, add nodes to the community that increase P .
3: step 2: from nodes that are added in Step 1, remove those whose removal increase P .
4: end while
5: while more nodes can be removed do
6: step 3: from nodes in the community (i.e. except for the starting node), remove those that

their removal increase metric M .
7: end while

Figure 4.2: The higher illustration of the proposed algorithm

have lower scores of geodesic distance. Using the number of common neighbors, it is expected that

the proposed metric captures the density inside the community in the same pattern as the geodesic

distance while demanding less calculation complexity.

The proposed metric is defined as follows:

P =
NCNC + Ein

NCNC + Ein + Eex
(22)

In (22), NCNC is the sum of the number of common neighbors that are inside the community C,

between every pair of nodes. It is noteworthy that only the common neighbors that are inside the

community C are taken into consideration. Also, Ein is the number of edges in the community,

and Eex is the number of crossing edges. It is concluded in Chapter 3 that only using the number

of internal and crossing edges is not enough to evaluate communities. As a result, the number of

common neighbors (NCN) is used to evaluate the density inside the community. As can be seen

from (22), Ein is used along with the number of common neighbors in this metric. Ein is employed

to cover the limitation of the number of common neighbors in small communities. For more details,

in a community with two nodes and one edge, NCN = 0. As e result, to avoid having P = 0, Ein

is added to the metric. Furthermore, Eex is employed to evaluate how separate the community is

from the rest of the network.

The remaining of this section presents the proposed local community detection algorithm. The

proposed local community detection algorithm discovers a community for a given node while in-

creasing P and using only local information. Figure 4.2 is a high-level illustration of the proposed

58

algorithm. As it can be seen from Figure 4.2, the proposed algorithm has three different steps. In the

first step, it selects nodes whose addition into the community increases the metric P . In the second

phase, the algorithm checks all the nodes that were added in phase 1 and removes the nodes that

increase P by their removal. The two above-mentioned steps are repeated until no more nodes can

be added to the community. In the first two steps, a significant number of correct nodes are added

to the community. Metric P is a looser metric in comparison with other existing local metrics, e.g.

R, M , L, Conductance, LQ. In this concern, metric P allows more nodes to be added to the

community. If the addition of such nodes results in the exploration of more nodes that can help to

detect a better community, it is worth adding them. However, some irrelevant nodes along with the

correct nodes may be inserted into the community as well. As a result, a tighter metric is needed

to remove the extra nodes. Thus, there is a third step in which nodes are removed, if their removal

increases metric M (refer to (4)).

The detailed illustration of the proposed algorithm (AlgP) is presented in Algorithm 2. The

input of the algorithm is the network G, and the starting node v0. Also, C is the discovered local

community for the starting node v0, and N is the set of neighboring nodes of C. According to

Algorithm 2, in the initialization phase, the given node (v0) is added to the community C. Con-

sequently, all its neighbors are inserted into the neighboring set, N . In the first step, all nodes in

the neighboring set, v ∈ N , are examined and metric P is calculated if v is added to C. If this

movement increases the score of P , node v is added to C and Q1, and removed from N . Q1 keeps

the nodes that are inserted into the community in the current iteration of the algorithm. Then, in

the second step, each node v in Q1 is checked and metric P is calculated if v is removed from C.

If this transition increases the score of P , v is removed from C and Q1. Then, the neighboring set

N is updated regarding the added nodes in the community and their neighbors that are not in the

community. The first two steps are repeated until no more nodes can be inserted into the commu-

nity. In this regard, the size of the community of the last iteration is kept in Cl and is compared

with the current community size. Thus, under two conditions the algorithm terminates. The first

condition is that no node is added to the community in the first step and Q1 is empty. The second

condition is that the same nodes that are added in the step 1, are removed in the step 2. As a result,

the algorithm terminates at some point. In the final step, metric M decides to keep or remove nodes.

59

Algorithm 2 The proposed algorithm AlgP
1: Input: G and v0
2: Output: C: v0’s local community
3: C = {}, N = {}
4: P = 0
5: add v0 into C
6: add all neighbors of v0 into N
7: do
8: Cl = |C|, Q1 = {}
9: step 1:

10: for v in N do
11: calculate Pv if v is added to C
12: if Pv > P then
13: P = Pv

14: add v to C, add v to Q1, remove v from N
15: end if
16: end for
17: step 2:
18: for v in Q1 do
19: calculate Pv if v is removed from C
20: if Pv > P then
21: P = Pv

22: remove v from C, remove v from Q1
23: end if
24: end for
25: update N
26: while |C| > Cl

27: do
28: Q2 = {}
29: step 3:
30: for v in C do
31: calculate ∆M if v is removed from C
32: if ∆M > 0 and v is not v0 then
33: remove v from C, Add v into Q2
34: end if
35: end for
36: while Q2 is not empty

60

In this regard, each node v in C is examined and the value of M is computed if v is removed from

the community. If this transition increases the score of M and v ̸= v0, then v is removed from C

and added to Q2. Q2 keeps nodes that are removed in the current iteration of the last step of the

algorithm. The third step is repeated until no node can be removed from the community. Once the

algorithm stops, the community C is explored for the given node v0.

The proposed algorithm, AlgP , tries to find high-quality communities for the given nodes with-

out considering the importance of the node in the network. Normally, having nodes with higher

degrees as starting nodes, results in the detection of high-quality communities. However, walking

through the network to find such nodes for the algorithms is time-consuming and in some cases

costs O(n) where n is the number of nodes in the network. As a result, having a fast local commu-

nity detection algorithm that is capable of exploring communities regardless of the starting point of

the algorithm is required and also efficient. Moreover, it might be assumed that the calculation of

the number of common neighbors at each iteration of the algorithm in comparison with other local

metrics including R, M , and L, is time-consuming and complex. In this regard, the complexity of

the algorithm, AlgP , and the metric, P , are analyzed and described in the following section.

4.3.1 Complexity

In this section, the complexity analysis of the proposed algorithm AlgP and the metric P are

analyzed and presented. One of the limitations of using the number of common neighbors NCN to

evaluate and explore communities is that the computation of NCN is time-consuming and complex.

To explore communities, the proposed algorithm AlgP calculates NCN , at each iteration. To

overcome this limitation, the proposed algorithm AlgP reduces the number of iterations by adding

more than one node to the community, at each iteration. Usually, the local community detection

algorithms () add one node at each time to the community to explore the community. This method

is required for some metrics to have a better judgment of the selection of nodes to be merged into

the community. In this regard, AlgP reduces the number of iterations of the detection process and

consequently, the algorithm terminates faster than other near-complexity algorithms.

To analyze the complexity of the proposed algorithm it is assumed that at each iteration, only

one node is added to the community. Assuming n as the number of nodes in the local community,

61

v

e

e

e

a

a

a

a

a

C

Figure 4.3: How to calculate z while node v is added to the community C

and d as the average degree of nodes inside the community, in the first iteration, one node (the

starting node) is in the community. Thus, d neighboring nodes must be traversed. Similarly, in

the last iteration, n nodes are added and nd neighboring nodes must be traversed. Consequently,

it is required to traverse d + 2d + · · · + nd nodes. As a result, considering p as the required time

complexity to calculate metric P for each node, we have
∑n

i=1(i)dp = dp[n(n+ 1)/2].

Regarding the calculation of P , consider node v is added into the community C. The updated

value of P , P ′, after addition of node v, is calculated using formula 23 as follows:

P ′ =
(NCNC + z) + (Ein + x)

(NCNC + z) + (Ein + x) + (Eex + y − x)
(23)

On the other hand, assuming node v is removed from the community C, the updated score of P , P ′,

is calculated using formula 24 as follows:

P ′ =
(NCNC − z) + (Ein − x)

(NCNC − z) + (Ein − x) + (Eex − y + x)
(24)

In (23) and (24), x is the number of neighbors of node v that are inside the community, and y is the

number of v’s neighbors that are not inside the community. Moreover, z is the number of common

neighbors that node v adds into/subtracts from the community by its addition/removal. According

to these equations, for each node at each iteration, it is required to calculate x, y, and z. Since

x+ y = d, the complexity of the calculation of x and y is O(d). Moreover, Algorithm 3 shows how

to calculate z, when a new node v is added into the community C, in graph G. In this regard, two

62

Algorithm 3 count-added-common-neighbors(G,C, v)

1: Input: C and v
2: Output: z: the number of added common neighbors
3: Nv = Neighbors of v inside C
4: z = 0
5: for i in Nv do
6: Ni = All neighbors of i inside C except v
7: z = z + |Ni|
8: end for
9: z = z + |Nv| ∗ (|Nv| − 1)/2

groups of nodes are counted to compute z. Figure 4.3 shows the two groups of nodes while adding

node v to the community C. The first group of nodes includes those that are the neighbors of the

neighbors of node v. These nodes are shown with a tags. Regarding Algorithm 3, the first group of

nodes (a nodes in Figure 4.3) is calculated in lines 5-7. Moreover, node v is a common neighbor to

its instant neighbors inside the community. According Algorithm 3, the number of times that v is a

common neighbors itself is computed via |Nv| ∗ (|Nv| − 1)/2, where |Nv| is the number of instant

neighbors of v that are inside the community (e nodes in Figure 4.3).

Considering Algorithm 3, the complexity of the calculation of z is O(d2), where d is the average

degree of nodes inside the community C. As a result, considering p ≈ O(d2) and
∑n

i=1(i)dp =

dp[n(n+1)/2], the complexity of the proposed algorithm AlgP is O(n2d3). It should be mentioned

that in social networks, the average degree of nodes is not big and does not raise any concern in the

complexity of the algorithms. The number of nodes in the community n is the main parameter for

the complexity of such algorithms. Traversing the neighboring node is the step that takes O(n2) and

all such algorithms include this step. To the best of our knowledge all local community detection

algorithms such as AlgR, AlgM , LMDR, DMFR, and DMFM , have the complexity of at least

n2. Although algorithms using the same pattern as LMDR can have ever bigger complexity.

4.4 Experimental Results

In this section, a number of state-of-the-art local community detection algorithms including

AlgM (F. Luo et al., 2006), AlgR (Clauset, 2005), LMDR (Q. Chen et al., 2013), DMFM , and

63

Table 4.1: Average F-score (ratio) on real-world networks

Dataset Evaluation AlgM AlgR LMDR DMFM DMFR AlgP

Recall 0.7353 0.5527 0.6556 0.9226 0.9226 0.9781
Karate Club Precision 0.8784 0.9088 0.9228 0.6980 0.7035 0.8172

F-score 0.7570 0.6474 0.7369 0.7638 0.7669 0.8757

Recall 0.4362 0.2955 0.4677 0.6515 0.6386 0.8120
Dolphins Precision 0.9180 0.9528 0.9797 0.9892 0.9898 0.9422

F-score 0.5301 0.4204 0.6162 0.7428 0.7324 0.8326

Recall 0.5741 0.4357 0.7065 0.7319 0.7249 0.7583
Polbook Precision 0.7454 0.7785 0.7787 0.7821 0.7876 0.7777

F-score 0.5837 0.4971 0.7184 0.7291 0.7290 0.7350

Recall 0.9066 0.7343 0.8468 0.8954 0.8954 0.9045
American FC Precision 0.8428 0.6655 0.7745 0.8895 0.8895 0.7405

F-score 0.8604 0.6907 0.8045 0.8893 0.8893 0.7864

Recall 0.6630 0.5045 0.6691 0.8003 0.7954 0.8632
Average Precision 0.8461 0.8264 0.8639 0.8397 0.8426 0.8194

F-score 0.6828 0.5639 0.719 0.7812 0.7794 0.8074

DMFR (W. Luo et al., 2018) are implemented and compared with the proposed algorithm AlgP .

In order to conduct the experiment, Karate Club (Zachary, 1977), Dolphins (Lusseau et al., 2003),

US Political Book (Polbook) (Krebs, 2004), American FC (Girvan & Newman, 2002), Amazon,

and DBLP are employed. All the above-mentioned datasets are defined in Section 3.4.4 except for

Polbook. Polbook is described as follows:

• US political book (Polbook) (Krebs, 2004) is a co-purchasing network. Each node in the

dataset represents a book about US politics. An edge between two books indicates that they

are often purchased together by customers. This network has 105 nodes, 441 edges, and three

ground-truth communities.

In this experiment, every single node is chosen as a starting node, and the results are reported

in average scores. The detected communities are evaluated using Recall (refer to 18), Precision

(refer to 19), and F-score (refer to Equations (18)(19)(17)) and GDM (refer to Equation (14)).

Table 4.1 shows the resulted average Recall, Precision, and F-score for all algorithms on the

four small datasets including Karate Club, Dolphins, Polbooks, and American FC. It should be

64

Karate Club Dolphins PolBook American FC
Dataset

0.15

0.20

0.25

0.30

0.35

St
an

da
rd

 D
ev

ia
tio

n

Alg P
Alg M
Alg R
LMD R
DMF M
DMF R

Figure 4.4: Standard deviation on the values of F-score obtained by the algorithms on the four small
real-world networks

Table 4.2: Average F-score (ratio) on real-world networks

Dataset N Evaluation AlgM AlgR LMDR DMFM DMFR AlgP

Recall 0.8989 0.8276 0.8721 0.9250 0.9242 0.9275
Amazon 500 Precision 0.9289 0.9335 0.8589 0.9283 0.9331 0.9212

F-score 0.8906 0.8497 0.8204 0.9092 0.9091 0.9095

Recall 0.7209 0.5896 — — 0.6519 0.7516
DBLP 500 Precision 0.6025 0.6232 — — 0.4383 0.5992

F-score 0.5998 0.5610 — — 0.4988 0.6083

mentioned that in all tables, the bold numbers indicate the best scores in comparison to the other

scores in the same row. According to Table 4.1, the proposed algorithm, AlgP , has the highest F-

score on Karate Club, Dolphins, and Polbook networks. Also, the highest average Recall goes to the

proposed algorithm for all four datasets. However, the best average Precision is distributed among

LMDR, DMFM , and DMFR algorithms. Moreover, according to the results on the American FC

network, it turns out that the best score for F-score goes to the two algorithms DMFM and DMFR.

Although AlgP does not provide the best scores of Precision, values of Precision provided by the

65

Table 4.3: Average GDM on real-world networks

Dataset AlgM AlgR LMDR DMFM DMFR AlgP

Karate Club 2.0942 1.2617 2.0762 1.3148 1.3171 3.4062

Dolphins 1.9068 0.8330 1.4685 2.3116 2.2632 4.7298

Polbook 5.8061 3.7481 7.8627 7.9170 7.8380 8.1934

American FC 6.2799 3.7796 1.1399 6.9127 6.9127 6.0355

Amazon 4.522 4.0353 4.2205 4.7485 4.7818 4.7875

DBLP 4.0930 4.0295 — — 3.9324 4.3322

Table 4.4: Execution time (s)

Dataset AlgM AlgR LMDR DMFM DMFR AlgP

Karate Club 0.53 0.36 1.25 1.95 3.28 0.50

Dolphins 2.24 1.08 5.02 3.75 6.97 2.11

Polbook 15.22 13.21 53.71 53.05 84.24 10.21

American FC 3.23 4.99 8.27 5.60 9.28 3.71

Amazon 2712.87 892.42 153047.05 8241.88 5934.81 1096.07

DBLP 10113.68 3780.23 — — 123853.73 24366.76

proposed algorithm are big enough to result in the best values of the F-score. It should be mentioned

that a community detection algorithm must be able to improve F-score for all networks as much as

possible at the same time. As a result, the last three rows are added to Table 4.1 which indicate the

average of the obtained Recall, Precision, and F-score on the four networks. According to the

last three rows of Table 4.1, AlgP has the best average Recall and F-score. Figure 4.4 shows the

standard deviation of the values of F-score obtained by the algorithms on the four small networks.

Also, Table 4.2 shows the same results on the Amazon and DBLP networks with 500 starting

nodes that are selected randomly. In this table, N is the number of starting nodes. It should be

noted that the 500 starting nodes are chosen randomly from 500 distinct communities. Regarding

this table, the proposed algorithm has the best Recall and F-score on both networks, Amazon and

DBLP. Also, the best scores of Precision go to AlgR for Amazon and DBLP. As it can be seen from

Table 4.2, LMDM and DMFM do not give any result for DBLP in a reasonable amount of time.

66

Moreover, Table 4.3 illustrates the average GDM for the resulted communities from the six

algorithms on the same datasets. According to this table, the proposed algorithm has the highest

scores on Karate Club, Dolphins, and Polbook networks. Also, the judgment of GDM is the same

as that of the F-score, and DMFM and DMFR are given the highest scores on the American FC

network. Moreover, the proposed algorithm, AlgP , is given the best average GDM on the Amazon

and DBLP networks.

Furthermore, Table 4.4 shows the execution time of the algorithms for the same experiment.

All experiments in this thesis is done using python programming language and on a computer with

Intel(R) Core i7 processor and 16GB RAM. According to this table, comparing the execution time

of LMDR, DMFR, DMFM , and AlgP , which obtained comparable results, the execution time of

the proposed algorithm is faster on all datasets. It can be seen that however, the complexity of the

AlgP is more than the reported complexities for DMFM and DMFR, the execution time of the

proposed algorithm is faster. It is noteworthy that in the Amazon network, AlgP is more than twice

faster than AlgM , which is known to be a low-complexity algorithm. Since at each iteration of the

proposed algorithm more than one node is added into the community, the total number of iterations

decreases, and consequently, the algorithm is terminated faster.

4.5 Conclusion and Future Works

In this chapter, a new fast local algorithm to detect communities is proposed using the number

of common neighbors. In order to develop the proposed algorithm, a new metric, P , is proposed.

The proposed algorithm AlgP locally detects communities while optimizing the proposed metric

P . Moreover, several state-of-the-art algorithms are employed to be compared with the proposed

one. According to the experimental results, it can be concluded that AlgP outperforms the state-of-

the-art algorithms. For more illustration, the detected communities by AlgP have the best average

scores of Recall on all datasets and also, the best average scores of F-score on all datasets, except

for the American FC network. Furthermore, since at each iteration more than one node may be

added to the community, the execution time of the proposed algorithm is much faster than the

other algorithms with comparable results. In this regard, a fast and efficient community detection

67

algorithm is presented to detect a community for a given node without considering the importance

of the starting nodes in the network.

Considering the performance of the proposed algorithm, the following directions can be consid-

ered for future works:

• Employing networks without ground-truth data to evaluate the proposed algorithm using

GDM .

• Using AlgP in a community detection algorithm to detect the whole community partitioning

of networks.

• Employing the proposed algorithm in an evolutionary algorithm to detect local communities

in dynamic networks.

68

Chapter 5

A Dynamic Local Community Detection

Algorithm

5.1 Introduction

In terms of temporal changes, social networks can be divided into two different categories:

static and dynamic. The structure of static networks, unlike the structure of dynamic ones, does

not change over time. However, dynamic networks allow changes in the relations among nodes at

different time steps. Real-world social networks are dynamic and change over time. Co-authorship

between scholars and email interactions between employees in an organization are two examples. In

dynamic networks, time plays a crucial role in shaping network topologies. As a consequence, the

task of describing these time-evolving networks is extremely important. Traditionally, a network is

represented as a graph with nodes and their in-between links. But this definition of network needs

some modification to incorporate the other important dimension, time. The temporal dimension fa-

cilitates improvised understanding of the network by embedding valuable information to it (Mishra,

Singh, Mishra, & Biswas, 2021). To model dynamic social networks, two different approaches are

developed as follows:

• Snapshots network: In this model, network history is partitioned into a series of snapshots,

each one of them showing the state of the network at a time.

69

Definition 5.1.1. (Snapshot Network) A snapshot graph Gτ is defined by an ordered set

⟨G1, G2...Gt⟩ where at each snapshot 1 < i < t, Gi = (Vi, Ei) is the status of the network

which is denoted by the sets of nodes Vi and edges Ei (Rossetti & Cazabet, 2018).

• Temporal network: A temporal network models a dynamic structure in which both nodes

and edges may appear and disappear as time goes by. More formally, temporal networks can

be defined as follows:

Definition 5.1.2. (Temporal Network) A temporal network is a graph G = (V,E, T), where

V is a set of triplets (v, ts, te), with v is a vertex of the graph and ts, te ∈ T respectively

being the birth and death time of the corresponding vertex. Also, E is a set of quadruplets

(u, v, ts, te), where u, v ∈ V being vertices of the graph, and ts, te ∈ T respectively being

the birth and death timestamps of the corresponding edge (Rossetti & Cazabet, 2018).

By modeling dynamic social networks, it is possible to analyze the network’s structure over

time, explore how the network evolves, and finally anticipate the future topology of the network. Dy-

namic community detection includes finding a series of similar communities in different snapshots.

A dynamic community is represented by its constituent communities ordered by time snapshots.

Given a dynamic network Gd, a dynamic community Cd is represented by a series of community

partitioning denoted by Cd = {Ct0 , Ct1 , · · · , Ctτ }, where t0 < t1 < · · · < tτ and Cti represents

the corresponding community partitioning at time ti. If k communities are detected at time ti, then

Cti = {C1
ti , C

2
ti , · · · , C

k
ti}, where Cj

ti
is the j-th community detected at time ti (Dakiche et al.,

2019).

Dynamic community detection is a complicated problem because of rapid and unpredictable

changes in social networks (Z. Wang et al., 2018). A large number of studies have been conducted

to address the problem of community detection in dynamic networks (J. He & Chen, 2015; Rossetti

et al., 2017; Zhuang et al., 2019). However, the local community detection problem is not widely

investigated in dynamic networks. In this chapter, the problem of local community detection in

snapshot dynamic networks is addressed. First, a simple dynamic structure is introduced which

employs any local community detection algorithm. The goal of this dynamic structure is to analyze

70

different local community detection algorithms and evaluate their strengths in detecting commu-

nities in dynamic networks. To the best of our knowledge, no such analysis has been conducted

before. The reported results help to analyze the weaknesses and strengths of the existing algorithms

and consequently develop an efficient algorithm.

Secondly, a dynamic local community detection algorithm, called DevDynaP is proposed to

overcome the existing drawbacks. The main feature of the proposed algorithm is that it starts from

a given node, explores the network, and detects communities simultaneously at each snapshot. The

main goal of the proposed algorithm is to explore the network as fast as possible and detect commu-

nities at the same time to identify the whole community partitioning of the network in the upcoming

snapshots.

The remainder of this chapter is structured as follows: Section 5.2 presents the literature review.

Section 5.3 presents the dynamic structures, while Section 5.4 discusses the experimental results.

Finally, this chapter and the proposed dynamic algorithm are concluded in Section 5.5.

5.2 Related Works

During the last few years, a large number of studies have been conducted to address the problem

of community detection in dynamic networks (J. He & Chen, 2015; Rossetti et al., 2017; Zhuang et

al., 2019). In this section, some dynamic community detection algorithms are presented.

The linear time complexity of label propagation algorithms (LPA) (Garza & Schaeffer, 2019;

Sattari & Zamanifar, 2018; X.-K. Zhang, Ren, Song, Jia, & Zhang, 2017) proves its efficiency in

large and dynamic networks. Xie, Chen, and Szymanski (2013) proposed a deterministic variation

of the label propagation algorithm, called LabelRankT. Also, Boudebza, Cazabet, Azouaou, and

Nouali (2018) proposed an online clique percolation method (OLCPM) which amalgamates the

label propagation technique with the clique percolation algorithm.

Also, J. He and Chen (2015) proposed a simple dynamic community detection algorithm using

Louvain algorithm (Blondel et al., 2008). In their method, the Louvain algorithm is employed to de-

tect the community partitioning of the whole network in the first snapshot. Then, starting the second

71

snapshot, a network is generated using the information of the network and the community partition-

ing of the previous snapshot. Next, the Louvain algorithm is executed to detect the community

partitioning of the current snapshot.

Moreover, Rossetti et al. (2017) proposed Tiles algorithm to detect overlapping communities and

track their evolution in time using an online iterative structure. In this algorithm, the memberships

of nodes to communities are recalculated whenever a change occurs in the network. In other words,

if one single change happens in the network, Tiles runs a label propagation structure to diffuse the

changes to recalculate the neighbors’ community memberships.

Furthermore, Zhuang et al. (2019) proposed an incremental algorithm to maximize the mod-

ularity scores while updating the community structure of dynamic networks. In this regard, six

different types of change in the network are introduced, and a series of actions are taken for each.

Also, the Louvain algorithm (Blondel et al., 2008) is the employed community detection algorithm.

Also, Mishra et al. (2021) presented a tree-based community detection algorithm (TCD2) in dy-

namic social networks which exploits two important properties of social networks, connectedness,

and influence, for finding communities in the network. TCD2 uses a tree structure to maintain the

information on dynamically changing community structures of the network.

It is noteworthy that mostly the presented algorithms need the whole community partitioning

of the network at the first snapshot. In other words, however, the presented algorithms use a local

perspective to fasten the execution time, they are not local algorithms. Because they need global

information of the network, at some point. Also, proposed algorithms by (Rossetti et al., 2017),

(Zhuang et al., 2019), and (Mishra et al., 2021) are efficient in temporal networks. These algorithms

are triggered by every single change in the network.

Takaffoli et al. (2013) proposed a local dynamic community detection algorithm called Incre-

mental L (IncL) which only uses local information. This algorithm detects communities by captur-

ing connected components according to the explored communities at the previous snapshot, and the

structure of the network at the current snapshot. Then, new communities are detected at the current

snapshot by applying algorithm AlgL (J. Chen et al., 2009) on each captured connected component.

This algorithm explores as many communities at each snapshot based on the detected communities

at previous snapshots. Algorithm 4 shows the IncL algorithm. In this algorithm, Gi is the network

72

Algorithm 4 IncL Algorithm
1: Input: Gd = {G0, G2, · · · , Cn} and v0
2: Output: C = {C0, C1, · · · , Cn}
3: C0 = AlgL(G0, v0)
4: C = C ∪ C0

5: for each snapshot i = 1, 2, ..., n do
6: CPi = Ci−1 at snapshot i
7: for each connected component Cc in CPi do
8: Ci∪ AlgL(Gi, Cc)
9: end for

10: C = C ∪ Ci

11: end for
12: Return C

and Ci is the detected community partitioning at snapshot i. To the best of our knowledge, IncL

is the only local dynamic algorithm that starts from a single node and detects the community par-

titioning at the same time as exploring the network incrementally. One of the main drawbacks of

IncL is that the speed to explore the network is low. Another drawback of this algorithm is that it

keeps detecting repetitive communities.

In this chapter, algorithms AlgR (Clauset, 2005), AlgM (F. Luo et al., 2006), LMDR (W. Luo et

al., 2018), LMDM (W. Luo et al., 2018) and AlgP (refer to Algorithm 2) are implemented in a sim-

ple local dynamic structure to detect communities in dynamic networks. The results are compared

to evaluate the flexibility of different local algorithms being used in a dynamic structure. Moreover,

a dynamic local community detection algorithm, called DevDynaP , is developed and proposed,

regarding the drawbacks of the existing algorithms. The main focus of the proposed algorithm

(DevDynaP) is to explore the nodes of the network as fast as possible and detect the community

partitioning at the same time to identify the whole community partitioning of the network in the

upcoming snapshots. It is noteworthy that DevDynaP employs AlgP (refer to Algorithm 2) to

explore communities. In this regard, the results of the proposed algorithm are compared with that

of IncL (Takaffoli et al., 2013).

73

5.3 Dynamic Algorithms

This section presents a simple dynamic structure to detect a community for a given node at

each snapshot in dynamic networks. In order to explore a community in the current snapshot, this

structure improves the detected community in the previous snapshot. This dynamic structure can

employ any local community detection algorithm. In this regard, the flexibility of different local

community detection algorithms of being used in dynamic networks can be examined. Also, a

local community detection algorithm, called DevDynaP is presented. DevDynaP starts from

a given node and detects a community in the first snapshot, and by using the detected nodes and

communities, tries to capture community partitioning in the next snapshots.

5.3.1 A Simple Dynamic Structure

In this section, a simple dynamic structure is presented. In this dynamic structure, any local

community detection algorithm can be used to detect a community for a given node in a dynamic

network. It is noteworthy that the main focus of this dynamic structure is to detect a community for

a given node at each snapshot according to the current network structure and the detected commu-

nity at the previous snapshot. Algorithm 5 shows the dynamic structure. In this algorithm, Gi is the

network at i-th snapshot and Ci is the detected community for the given node v0 at snapshot i. Em-

ploying any local community detection algorithm, this dynamic structure explores a community at

the first snapshot. Starting the second snapshot, the detected community in the previous snapshot is

analyzed in the current network structure, Cc. If Cc is connected, the local community detection is

applied to it to explore the community in the current snapshot. If Cc is not connected, the connected

part of Cc that contains the given starting node v0, Cv is exploit. Then, the local community detec-

tion algorithm is applied on Cv to detect the community for the current snapshot. In this regard, one

community for each snapshot for the given node v0 is detected, C = {C0, C1, · · · , Cn}.

5.3.2 Developed Dynamic P (DevDynaP)

In this section, the proposed local dynamic algorithm (DevDynaP) is presented. The main

goal of DevDynaP is to start from a given node at the first snapshot and explore the network as

74

Algorithm 5 The dynamic structure
1: Input: Gd = {G0, G1, · · · , Cn} and v0
2: Output: C = {C0, C1, · · · , Cn}
3: C0 = Local-Detection-Algorithm(G0, v0)
4: C = C ∪ C0

5: for each snapshot i = 1, 2, ..., n do
6: Cc = Ci−1 at snapshot i
7: if Cc is still connected then
8: Ci = Local-Detection-Algorithm(Gi, Cc)
9: else

10: Cv = the connected part of Cc at snapshot i that includes v0
11: Ci = Local-Detection-Algorithm(Gi, Cv)
12: end if
13: C = C ∪ Ci

14: end for
15: Return C

fast as possible and detect community partitioning at the same time in the next snapshots.

As it was mentioned before, the other local community detection algorithm (IncL) (Takaffoli

et al., 2013) suffers from some drawbacks in dynamic networks. One of the drawbacks is the low

speed of networks’ exploration. In this regard, IncL is unable to explore the whole network even

after several snapshots. The other drawback is that repetitive communities or hierarchical commu-

nities are detected. Detection of repetitive communities results in spending more time detecting a

community that has been already detected. DevDynaP covers the drawbacks of the other algo-

rithm in which it explores the network faster and also, avoids detecting repetitive communities. The

experiments in Chapter 4 show that AlgP (refer to Algorithm 4.2) is a fair algorithm to detect com-

munities locally versus other compared algorithms. Therefore, AlgP is employed in DevDynaP

to explore communities locally in the network.

Algorithm 6 shows the proposed local dynamic algorithm (DevDynaP). In this algorithm

different spanshots of the network Gd = {G0, G2, · · · , Cn}, and also, a starting node, v0, are

given as inputs of the algorithm. The output of DevDynaP includes a community partitioning

for each snapshot C = {C0, C1, · · · , Cn}. In this regard, Gi is the network at snapshot i, and

Ci is the community partitioning detected by DevDynaP at snapshot i, which contains several

communities.

75

Algorithm 6 The proposed dynamic algorithm (DevDynaP)
1: Input: Gd = {G0, G1, · · · , Cn} and v0
2: Output: C = {C0, C1, · · · , Cn}
3: At snapshot 0:
4: C0 = AlgP (G0, v0)
5: CRN = nodes which are removed from the third step of AlgP
6: C = C ∪ C0

7: for each snapshot i = 1, 2, ..., n do
8: Step 1:
9: RN = CRN

10: CRN = []
11: CP = Ci−1 at snapshot i
12: for each connected component Cc in CP do
13: if Cc is not a sub graph of any communities in Ci then
14: Ci = Ci∪ AlgP (Gi, Cc)
15: CRN = CRN∪ nodes which are removed from the third step of AlgP (Gi,Cc)
16: end if
17: end for
18: Step 2:
19: for each node v in RN do
20: for each community com in Ci do
21: if v is a neighbor of com & validate(v, com) then
22: com = com ∪ v
23: RN = RN\v
24: end if
25: end for
26: end for
27: Step 3:
28: if RN is not empty then
29: for each node v in RN do
30: if v does not exist in any communities of Ci then
31: Ci = Ci∪ AlgP (Gi, v)
32: CRN = CRN∪ nodes which are removed from the third step of AlgP (Gi, v)
33: end if
34: end for
35: end if
36: C = C ∪ Ci

37: end for
38: Return C

76

Algorithm 7 The validation algorithm (validate(v, com))
1: Input: community com and v
2: Cv = com ∪ v
3: if MCv >= Mcom & PCv >= Pcom then
4: return True
5: else
6: return False
7: end if

As can be seen from Algorithm 6, DevDynaP consists of three different steps. Before the

steps start, one community, C0, for the starting node is detected at snapshot 0 (first snapshot). Then,

the removed nodes from the third step of AlgP are added to the current removed nodes list, CRN .

These removed nodes are employed to explore the network as fast as possible. In the first step, and

starting snapshot 1, the nodes in CRN , are moved to the removed nodes list, RN . Next, the com-

munity partitioning detected at the previous snapshot is analyzed at the current snapshot, CP , and

the connected components are extracted. Then, each one of the extracted connected components,

Cc, is checked if it is a sub-graph of any detected community at the current snapshot. If not, AlgP

is executed on Cc, AlgP (Gi, Cc), to explore a community for the current snapshot. This condition

is inserted to avoid the detection of repetitive communities. As a result, the number of execution of

AlgP is decreased, which results in reducing the execution time of the whole algorithm. Moreover,

the removed nodes in the third step of AlgP are stored in CRN .

In the second step, some nodes in RN that meet some criteria are joined to their corresponding

communities and removed from RN . The criteria for a node, v, is to be a neighbor of the community

com and validate by validate(v, com). The purpose of this step is to avoid running AlgP for nodes

that can belong to an existing community. validate(v, com) is presented in Algorithm 7. In this

algorithm, MC and PC show the scores of metrics M and P for community C.

In the final step, the remaining nodes in RN are considered new starting nodes for the commu-

nity detection algorithm AlgP . In this regard, if v ∈ RN in the third step, AlgP is executed on v,

and a new community is added to Ci. Also, the removed nodes from the third step of AlgP are added

to CRN . This step may increase the execution time of the algorithm due to some extra execution

of AlgP . This is justified by the reduction of the execution time of the algorithm at the first step by

77

taking out several executions of AlgP . In other words, some execution of AlgP which results in the

detection of repetitive communities are removed, and instead, some runs of AlgP which cause fast

exploration of the network are inserted. The three steps are repeated for all snapshots.

In this regard, DevDynaP explores the network and detects the whole community partitioning

of the network as fast as possible in the upcoming snapshots. To analyze the complexity of the

algorithm, the number of times that AlgP is executed is the key parameter. The number of times

that DevDynaP executes algorithm AlgP is significantly based on the structure of the network and

the evolution of the network through snapshots. Considering s as the number of snapshots, np as the

number of times that DevDynaP executes AlgP , and α as the complexity of AlgP , the complexity

of DevDynaP is approximately O(snpαβ). β indicated the complexity of line 13 of Algorithm 6

for each connected component Cc.

5.4 Experimental Results

In order to evaluate the strengths of local community detection algorithms in dynamic networks,

some local detection algorithms are implemented and used in the dynamic structure (refer to Algo-

rithm 5). The experimental results are presented in Section 5.3.1. Also, DevDynaP is compared

with IncL (Takaffoli et al., 2013), and the results are reported in Section 5.3.2. To conduct the

experiments, dynamic Lancichinetti-Fortunato-Radicchi (LFR) benchmarks (Lancichinetti et al.,

2008) are employed.

5.4.1 Benchmarks

Lancichinetti-Fortunato-Radicchi (LFR) benchmark (Lancichinetti et al., 2008) is a synthetic

network generator in which the ground-truth communities are known. To generate a network using

LFR, some parameters need to be set. The parameters include the number of nodes n, the average

degree of nodes d, the maximum degree of nodes maxd, and the mixing parameter 0 < µ < 1.

Also, Greene, Doyle, and Cunningham (2010) designed the dynamic version of the LFR network

generator in which different types of networks are created according to events in dynamic networks.

A short description of the most common events includes (Dakiche et al., 2019): (1) Birth: a new

78

Table 5.1: Average results on LFR switch network

Snapshots Metrics AlgM AlgR DMFM DMFR AlgP

1 Recall 0.956 0.7801 1.0 1.0 1.0
Precision 0.9301 0.7816 1.0 1.0 0.9918
F-score 0.9400 0.7791 1.0 1.0 0.9950
GDM 3.5110 3.0237 3.8250 3.8250 3.7985

2 Recall 0.9682 0.8958 1.0 1.0 0.9861
Precision 0.9541 0.8905 0.9165 0.9165 0.9825
F-score 0.9586 0.8910 0.9470 0.9470 0.9838
GDM 3.8405 3.2381 3.4134 3.4134 4.0125

3 Recall 0.984 0.9335 0.9962 0.9962 0.9853
Precision 0.9721 0.9259 0.8961 0.8961 0.9853
F-score 0.9763 0.9292 0.9314 0.9314 0.9852
GDM 3.5523 3.3200 3.2941 3.2941 3.6381

4 Recall 0.972 0.9263 0.9963 0.9963 0.9892
Precision 0.9593 0.9155 0.9041 0.9041 0.9875
F-score 0.9638 0.9202 0.9328 0.9328 0.9881
GDM 3.4411 3.2391 3.3035 3.3035 3.5860

5 Recall 0.98 0.9368 0.9964 0.9964 0.9891
Precision 0.9698 0.9277 0.9113 0.9113 0.9878
F-score 0.9737 0.9315 0.9410 0.9410 0.9883
GDM 3.3532 3.1140 3.1432 3.1432 3.4352

community emerges at a snapshot. (2) Death: a community disappears. All nodes belonging to

this community lose their membership. (3) Expand: a community gets some new members. (4)

Contraction: a community loses some of its members. (5) Merging: several communities merge to

create a new community. (6) Splitting: a community is divided into several communities.

In this regard, four different types of LFR dynamic networks are created in different numbers of

snapshots including:

• Switch: in this network, the nodes flip memberships between communities at each snapshot

(n = 250, d = 10, maxd = 20, µ = 0.2 and pr = 0.1). pr is the probability of a node

switching community membership between snapshots.

• Expand/Contraction: in this network, communities are expanded/contracted at each snap-

shot (n = 250, d = 10, maxd = 20, µ = 0.2, expand = 5, contract = 5 and r = 0.1).

79

Table 5.2: Average results on LFR expand/contraction network

Snapshots Metrics AlgM AlgR DMFM DMFR AlgP

1 Recall 0.956 0.7801 1.0 1.0 1.0
Precision 0.9301 0.7816 1.0 1.0 0.9918
F-score 0.9400 0.7791 1.0 1.0 0.9950
GDM 3.5110 3.0237 3.8250 3.8250 3.7985

2 Recall 0.944 0.8719 0.98 0.98 0.9587
Precision 0.9092 0.8606 0.8603 0.8603 0.9543
F-score 0.9218 0.8653 0.9014 0.9014 0.9559
GDM 3.7692 3.4860 3.6124 3.6124 4.0016

3 Recall 0.952 0.8832 0.98 0.98 0.9727
Precision 0.9435 0.8812 0.8983 0.8983 0.9724
F-score 0.9468 0.8815 0.9281 0.9281 0.9725
GDM 3.2390 3.0574 3.07915 3.0791 3.3876

4 Recall 0.964 0.9277 0.98 0.98 0.9725
Precision 0.9556 0.9237 0.9167 0.9167 0.9668
F-score 0.9587 0.9252 0.9352 0.9352 0.9687
GDM 3.8528 3.7151 3.8165 3.8165 3.9337

5 Recall 0.96 0.9057 0.972 0.972 0.9646
Precision 0.9491 0.9041 0.8958 0.8958 0.9536
F-score 0.9534 0.9042 0.9126 0.9126 0.9569
GDM 3.4229 3.2545 3.6608 3.6608 3.4812

expand is the number of expansion events per snapshot, contract is the number of contrac-

tion events per snapshot and r is rate of expand/contract.

• Merge/Split: in this network, communities are merged/split at each snapshot (n = 250,

d = 10, maxd = 20, µ = 0.2, merge = 5 and split = 5). merge is the number of merge

events per snapshot and split is the number of split events per snapshot.

• Birth/Death: in this network, communities are permanently added/removed at each snapshot

(n = 250, d = 10, maxd = 20, µ = 0.2, birth = 3 and death = 3). birth is the number

of community birth events per snapshot and death is the number of community death events

per snapshot.

80

Table 5.3: Average results on LFR merge/split network

Snapshots Metrics AlgM AlgR DMFM DMFR AlgP

1 Recall 0.956 0.7801 1.0 1.0 1.0
Precision 0.9301 0.7816 1.0 1.0 0.9918
F-score 0.9400 0.7791 1.0 1.0 0.9950
GDM 3.5110 3.0237 3.8250 3.8250 3.7985

2 Recall 0.952 0.8619 0.9964 0.9964 0.9928
Precision 0.9073 0.8553 0.9392 0.9392 0.9487
F-score 0.9225 0.8515 0.9580 0.9580 0.9638
GDM 3.5058 3.3129 3.5409 3.5409 3.6938

3 Recall 0.964 0.8649 0.9925 0.9925 0.9851
Precision 0.9462 0.8691 0.9279 0.9280 0.9648
F-score 0.9533 0.8614 0.9509 0.9510 0.9720
GDM 3.5602 3.2124 3.4373 3.4373 3.7082

4 Recall 0.9648 0.8643 0.9928 0.9928 0.9927
Precision 0.9026 0.8432 0.8955 0.8955 0.9184
F-score 0.9247 0.8376 0.9335 0.9335 0.9453
GDM 3.7741 3.4127 3.6636 3.6637 3.9750

5 Recall 0.9547 0.8405 0.9912 0.9912 0.9873
Precision 0.9237 0.8438 0.8694 0.8694 0.9424
F-score 0.9353 0.8270 0.9169 0.9169 0.9566
GDM 3.6322 2.9666 3.8480 3.8480 3.9062

5.4.2 Experimental Results on Section 5.3.1

In this experiment, algorithms AlgR (Clauset, 2005), AlgM (F. Luo et al., 2006), LMDR

(W. Luo et al., 2018), LMDM (W. Luo et al., 2018) and AlgP (Algorithm 2) are implemented

and used in the dynamic structure (refer to Algorithm 5). The dynamic structure detects a com-

munity for a given node at each snapshot. In this regard, four different datasets including switch,

expand/contraction, merge/split, and birth/death in five snapshots are generated. Every single node

of the first snapshot is selected as a starting node for the algorithms, and the results are reported as

average values per snapshot. Then, the detected communities at each snapshot are evaluated using

F-score (refer to (17)) and GDM (refer to (14)).

Table 5.1 shows the average results of running the dynamic structure in Algorithm 5 by em-

ploying the five algorithms AlgR (Clauset, 2005), AlgM (F. Luo et al., 2006), LMDR (W. Luo et

81

Table 5.4: Average results on LFR birth/death network

Snapshots Metrics AlgM AlgR DMFM DMFR AlgP

1 Recall 0.956 0.7801 1.0 1.0 1.0
Precision 0.9301 0.7816 1.0 1.0 0.9918
F-score 0.9400 0.7791 1.0 1.0 0.9950
GDM 3.5110 3.0237 3.8250 3.8250 3.7985

2 Recall 0.86 0.7859 0.9045 0.9045 0.8800
Precision 0.8230 0.7689 0.7954 0.7954 0.8622
F-score 0.8352 0.7748 0.8328 0.8328 0.8681
GDM 3.2337 2.9136 3.0601 3.0601 3.4720

3 Recall 0.852 0.7789 0.88 0.88 0.8692
Precision 0.8289 0.7757 0.7785 0.7785 0.8577
F-score 0.8368 0.7757 0.8120 0.8120 0.8616
GDM 3.0383 2.7556 2.7693 2.7693 3.1904

4 Recall 0.788 0.7660 0.8124 0.8124 0.7984
Precision 0.7734 0.7344 0.6614 0.6616 0.7829
F-score 0.7792 0.7457 0.7059 0.7062 0.7891
GDM 3.0555 2.8360 2.8240 2.8228 3.1385

5 Recall 0.72 0.6726 0.74 0.74 0.7274
Precision 0.7024 0.6331 0.6358 0.6359 0.7079
F-score 0.7084 0.6470 0.6637 0.6639 0.7141
GDM 2.5455 2.2561 2.4250 2.4180 2.6110

al., 2018), LMDM (W. Luo et al., 2018) and AlgP (refer to Algorithm 2) on the dynamic LFR

switch network. It should be mentioned that in all tables, the bold numbers indicate the best scores

in comparison to the other scores in the same row. According to Table 5.1, algorithms DMFR and

DMFM have the best average results in the first snapshot. Also, the scores of AlgP are very close

to scores of DMFR and DMFM in snapshot 1. In the next four snapshots, AlgP results in the best

average scores of Precision, F-score, and GDM . Comparing DMFR and DMFM with AlgP ,

it turns out that DMFR and DMFM result in the best Recall in all cases. However, algorithm

AlgP has the best scores of Precision in all cases which results in the best scores of F-score in

all snapshots. Also, the best GDM scores go to algorithm AlgP in snapshots 2, 3, 4, and 5. As

it can be seen from Table 5.1, almost in all cases, AlgM has better average results in comparison

with AlgR. Furthermore, in snapshots 2, 3, and 4, AlgM results in higher averages of Precision,

82

Table 5.5: Execution time (s)

Dataset AlgM AlgR DMFM DMFR AlgP

LFR Switch 28.8986 32.74205 54.4883 95.1228 19.24631

LFR Expand/Contraction 31.1020 36.384 75.0148 133.3144 20.1922

LFR Merge/Split 102.9329 150.6100 272.0781 496.4822 64.5965

LFR Birth/Death 23.4686 28.5201 62.6446 109.4156 15.7374

F-score, and GDM in comparison with DMFR and DMFM .

Also, tables 5.2, 5.3 and 5.4 illustrate the average results of the same experiment on the same

algorithms for LFR expand/contraction, merge/split, and birth/death networks, respectively. As it

can be seen, the results of these tables follow the same pattern as Table 5.1 and AlgP results in the

best average scores of Precision, F-score, and GDM in snapshots 2, 3, 4, and 5. As it can be

understood from tables 5.1, 5.2, 5.3 and 5.4, AlgP is the best local community detection algorithm

to be used in a dynamic structure in comparison with the other four algorithms.

Since real-world networks are huge in size and change over time, the execution time of the

algorithms is important. In this regard, Table 5.5 shows the execution time of the implemented al-

gorithms in the first experiment on the four aforementioned networks. Regarding this table, AlgP

is the fastest algorithm in the proposed dynamic structure in comparison with the other four algo-

rithms. Moreover, algorithms AlgM and AlgR are the next fastest algorithms, respectively. As can

be seen, DMFR is by far the slowest algorithm in this experiment.

5.4.3 Experimental Results on Section 5.3.2

In order to conduct the experiment, the proposed algorithm DevDynaP and IncL (Takaf-

foli et al., 2013) are executed on the four generated datasets including switch, expand/contraction,

merge/split, and birth/death in fifteen snapshots, and the results are reported.

In this respect, three metrics are employed to evaluate the resulted communities in dynamic

networks. The first metric is GDM (refer to (14)). It is noteworthy that the score of GDM for a

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

2.8

3.0

3.2

3.4

3.6

3.8
GD

M

Switch
Incremental L
DevDynaP

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

2.8

3.0

3.2

3.4

3.6

3.8

4.0

GD
M

Expand/Contraction
Incremental L
DevDynaP

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

2.5

3.0

3.5

4.0

4.5

GD
M

Merge/Split
Incremental L
DevDynaP

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GD
M

Birth/Death

Incremental L
DevDynaP

(d)

Figure 5.1: Average GDM on switch, expand/contraction, merge/split, and birth/death networks

community partitioning is calculated as follows:

GDM =
1

s

s∑
i=1

GDMi (25)

In (25), s is the number of detected communities and GDMi is the score of GDM for i-th commu-

nity. The second metric is modularity Q (Newman, 2006) (refer to (1)). Furthermore, the average

number of explored nodes in each snapshot is considered the third evaluation metric. Since the

purpose of the proposed algorithm is to explore the network as fast as possible, the average number

of detected nodes at each snapshot is calculated and reported.

In this experiment, each node of the network is considered a starting node for the algorithms,

84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
M
od
ul
ar
ity

Switch

Incremental L
DevDynaP

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
od

ul
ar

ity

Expand/Contraction

Incremental L
DevDynaP

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
od

ul
ar
ity

Merge/Split
Incremental L
DevDynaP

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

0.0

0.1

0.2

0.3

0.4

0.5

M
od

ul
ar
ity

Birth/Death

Incremental L
DevDynaP

(d)

Figure 5.2: Modularity, Q on switch, expand/contraction, merge/split, and birth/death networks

and consequently, the results are calculated as average scores for each snapshot. It is noteworthy

that in this experiment, AlgP is employed to detect the community in the starting snapshot. Then,

algorithms IncL and DevDynaP are executed, starting the second snapshot from the same com-

munities. In this regard, the results of the algorithms are compared in equal circumstances. As it

was mentioned before, IncL explores repetitive and hierarchical communities which makes it unfair

to compare with other community partitionings. That is why the resulted communities from IncL

are trimmed. In this regard, the repeated and hierarchical communities are removed. However,

communities that are almost the same might still exist.

Figure 5.1, 5.2, and 5.3 demonstrates the average results of the execution of IncL (Takaffoli

et al., 2013) and DevDynaP on four generated datasets Switch, Expand/Contraction, Merge/Split,

85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

50

100

150

200

250

of
 n

od
es

Switch

Incremental L
DevDynaP
Graph size

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

50

100

150

200

250

of
 n
od

es

Expand/Contraction

Incremental L
DevDynaP
Network Size

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

50

100

150

200

250

of
 n
od

es

Merge/Split

Incremental L
DevDynaP
Network Size

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Snapshots

50

100

150

200

250

of
 n
od

es

Birth/Death
Incremental L
DevDynaP
Network Size

(d)

Figure 5.3: The average number of explored nodes on switch, expand/contraction, merge/split, and
birth/death networks

and Birth/Death, respectively. As can be seen from Figures 5.1a, 5.1b, 5.1c and 5.1d, the average

scores of GDM for DevDynaP outperform that of IncL, almost in all snapshots. More specif-

ically, in later snapshots of Merge/Split and Birth/Death, the differences in the results are more

significant.

Moreover, considering Figures 5.2a, 5.2b, 5.2c and 5.2d, DevDynaP results in higher val-

ues of modularity in all four datasets and almost in all snapshots. In datasets Switch and Ex-

pand/Contraction, there are a couple of snapshots in which the scores of modularity for IncL are

higher than that of DevDynaP . Since the modularity results are the summation of the scores of

modularity for each community, and concerning the fact that the average values of GDM are higher

86

Table 5.6: Average scores of GDM , Q, and the number of explored nodes for IncL and
DevDynaP on switch, expand/contraction, merge/split, and birth/death networks (snapshots 1 to
8)

Snapshots Metrics
IncL DevDynaP

Switch Expand Merge Birth Switch Expand Merge Birth

1 GDM 3.7985 3.7985 3.7985 3.7985 3.7985 3.7985 3.7985 3.7985
Q 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203
of nodes 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94

2 GDM 3.3936 3.3836 2.8598 3.1478 3.7008 3.8897 3.4009 3.4766
Q 0.0318 0.0341 0.0398 0.0387 0.0436 0.0452 0.0597 0.0513
of nodes 21.92 23.06 27.792 25.884 29.244 29.488 40.616 33.14

3 GDM 2.9905 2.8394 2.9580 2.9611 3.2575 3.1309 3.1001 3.2378
Q 0.0559 0.0631 0.0784 0.0884 0.0870 0.1016 0.1225 0.1278
of nodes 40.364 43.812 55.736 52.94 61.204 67.084 85.292 74.74

4 GDM 3.3231 4.1249 2.4769 3.1186 3.5134 4.0630 3.1230 3.3338
Q 0.0969 0.1285 0.1356 0.1511 0.1605 0.1988 0.2134 0.2130
of nodes 67.42 83.268 103.896 89.328 108.768 126.012 156.212 125.132

5 GDM 2.7326 3.3848 3.4046 3.1617 3.2945 3.4104 3.2946 3.0701
Q 0.1481 0.2016 0.2583 0.2270 0.2426 0.3017 0.3349 0.3229
of nodes 104.84 127.244 168.472 124.08 162.4 184.244 214.9 163.952

6 GDM 3.0386 2.7904 2.7062 2.9585 3.3025 3.4604 3.0558 2.9133
Q 0.2374 0.2614 0.3392 0.3009 0.3360 0.3588 0.4094 0.3491
of nodes 159.692 159.376 208.888 137.108 224.744 217.392 239.476 161.852

7 GDM 2.9940 3.4137 2.3140 3.3124 3.1701 3.4057 2.6690 3.5868
Q 0.3076 0.3383 0.3822 0.3555 0.3615 0.3846 0.4331 0.4140
of nodes 199.752 216.228 226.54 150.48 240.964 238.452 248.176 161.968

8 GDM 2.9270 3.5660 2.9188 3.3522 3.0468 3.6946 3.2968 3.3622
Q 0.3135 0.3601 0.4499 0.3495 0.3658 0.3919 0.4806 0.4198
of nodes 209.664 223.732 241.76 142.68 246.868 243.544 249.34 147.736

for DevDynaP in the same snapshots, it seems that there are still communities in the resulted com-

munity partitioning of IncL which are almost the same. These communities are different only in a

small number of nodes, which still is not good to have almost the same communities in a community

partitioning.

Also, Figures 5.3a, 5.3b, 5.3c and 5.3d illustrate the average number of explored nodes at each

snapshot, in four datasets. In these figures, the black line shows the actual number of nodes in the

corresponding snapshot for each dataset. As can be observed from the figures, in all four datasets,

DevDynaP reaches the actual number of nodes of the network. Moreover, the average explored

87

Table 5.7: Average scores of GDM , Q, and the number of explored nodes for IncL and
DevDynaP on switch, expand/contraction, merge/split, and birth/death networks (snapshots 9 to
15)

Snapshots Metrics
IncL DevDynaP

Switch Expand Merge Birth Switch Expand Merge Birth

9 GDM 2.7593 3.1738 2.7762 2.6004 2.8744 3.1043 3.4626 2.5686
Q 0.3348 0.3809 0.4207 0.3543 0.3717 0.3821 0.4993 0.3964
of nodes 229.232 229.98 244.48 138.292 248.736 243.344 250.0t 141.0

10 GDM 2.8495 3.0653 2.3445 2.0451 3.1016 3.1813 2.7574 2.1871
Q 0.4108 0.3931 0.5115 0.3261 0.3848 0.3826 0.5601 0.4216
of nodes 238.076 235.604 247.996 119.372 249.776 246.0 250.0 120.0

11 GDM 3.0506 3.0679 2.6955 1.8100 3.1132 3.1758 3.7860 2.0205
Q 0.3815 0.3860 0.5061 0.3179 0.3779 0.3838 0.5196 0.3614
of nodes 241.788 236.956 245.76 106.204 249.808 244.0 250.0 109.0

12 GDM 3.1448 3.3442 2.7415 1.6607 3.2072 3.6140 3.9702 1.7691
Q 0.3852 0.4186 0.4882 0.3444 0.3874 0.3888 0.5816 0.4736
of nodes 244.736 239.088 246.572 100.68 250.0 244.0 250.0 106.0

13 GDM 3.0194 3.0183 2.4501 1.0749 3.2238 3.1055 4.0207 1.3103
Q 0.4132 0.3856 0.5899 0.3005 0.3974 0.3893 0.6612 0.4873
of nodes 245.868 239.36 246.66 95.448 250.0 244.0 250.0 98.0

14 GDM 3.0871 2.8296 2.7923 0.8228 3.2913 3.0029 4.6516 1.9152
Q 0.4177 0.4064 0.4670 0.3189 0.3746 0.3852 0.5909 0.5103
of nodes 246.5 239.252 248.672 87.52 250.0 244.0 250.0 90.0

15 GDM 3.0489 2.9465 2.7103 0.5946 3.1796 3.1133 4.7244 3.3310
Q 0.3727 0.3690 0.4709 0.3092 0.3730 0.4092 0.5698 0.3707
of nodes 245.016 241.092 248.588 77.092 250.0 245.0 250.0 82.0

nodes by DevDynaP is more than that of IncL at all snapshots in the four datasets. In this regard,

from the moment the network is fully explored by DevDynaP , there is no limitation of lack of

information on the network, and any dynamic algorithm which needs the whole information of the

network can be employed to detect communities.

Furthermore, Tables 5.6 and 5.7 show the same results more specifically. The name of the

datasets are shortened in the table and referred to as Switch, Expand, Merge, and Birth, respectively.

Table 5.6 shows the results on snapshots 1 to 8 and Table 5.6 reports the results on snapshots 9 to

15. Regarding these tables, DevDynaP explores the whole network at snapshots 12, 10, 9, and

9 for Switch, Expand/Contraction, Merge/Split, and Birth/Death networks, respectively. However,

algorithm IncL cannot explore the whole network even in fifteen snapshots for all four networks.

88

Table 5.8: Execution time (s)

Algorithms LFR Switch LFR Expand LFR Merge/Split LFR Birth/Death

IncL 5108.59 5141.62 36747.18 1137.47

DevDynaP 947.36 1139.26 6073.24 684.52

Also, Table 5.8 reports the execution time of IncL and DevDynaP . Regarding this table,

DevDynaP is much faster than IncL in all four LFR networks. IncL detects repetitive commu-

nities which increases the execution time of the algorithm while no more parts of the network are

being discovered.

5.5 Conclusion and Future works

In this chapter, the problem of dynamic local community detection is addressed. In this regard,

several existing local community detection algorithms are implemented and employed in a dynamic

structure to detect communities locally in dynamic networks. Experimental results show that AlgP

outperforms other compared algorithms. Furthermore, the execution time of AlgP is less than other

algorithms in all cases. The importance of the results is to show the strengths and weaknesses of

the existing algorithms when applied to dynamic networks. Also, by analyzing the reported results,

a more efficient algorithm can be improved to detect local communities in dynamic networks.

As a result, a local dynamic community detection algorithm, DevDynaP is proposed. The

main goal of DevDynaP is to explore the network as fast as possible and detect communities at

the same time. Starting from a single node, and employing a local community detection algorithm

(AlgP), DevDynaP incrementally detects communities. Moreover, using a simple structure, it

explores the network faster than the compared algorithm. Also, the experimental results show that

the community partitioning resulting from the proposed algorithm outperforms that of the other

compared algorithm.

In order to further investigate the problem of dynamic local community detection, the following

directions can be considered for future works:

• Employing big real-world networks to evaluate the proposed algorithm in dynamic networks.

89

• Analyzing and employing AI/ML techniques to tackle this problem. Since AI/ML techniques

are not widely investigated in the dynamic local community detection problem, it is an inter-

esting direction for future work.

• Analyzing the local community detection problem is temporal networks.

90

Chapter 6

A Local Community Detection

Algorithm in Signed Networks

6.1 Introduction

Many networks contain both positive and negative relations. Positive relations in signed net-

works denote positive links, such as ”friend”, “trust”, “like”, “support” and “cooperative” relation-

ships. On the contrary, negative links denote negative relationships, such as “enemy”, “distrust”,

“dislike”, “oppose”, and “hostile” relationships. Signed networks are ubiquitous in the real world,

such as social networks containing trust and distrust relationships, protein interaction networks

containing activation and inhibition relationships, and international relationship networks contain-

ing cooperation and hostility relationships. In addition to these naturally formed signed networks,

we can also artificially construct signed networks from interactions among data objects by using

specific algorithms. For example, Hassan, Abu-Jbara, and Radev (2012) applied linguistic analy-

sis techniques to identify attitudes (support or oppose) from online discussion texts and then built

a debater-signed network. Also, Maniu, Cautis, and Abdessalem (2011) inferred a trust-signed

network by aggregating various user interactions on Wikipedia content. Hoang and Lim (2017)

computed the cosine similarities of all pairs of documents and then constructed a document-signed

network by treating the similarities as the weights of the corresponding links.

Signed networks are represented as a graph Gs = (V,E+, E−) in which V is the set of nodes,

91

E+ and E− show the positive and negative relations, respectively. In such networks, a negative

link from node A to B indicates A “dislikes” B and a positive relation shows A “likes” B. To some

certain theoretical approaches in network analysis, negative relations are fundamental. In the past

few years, some important negative interactions such as bullying and social exclusion have been the

subject of extensive research (DeWall, 2013).

Negative relations in signed networks cause different structures than in regular networks. For

instance, however, high levels of transitivity in positive tie networks are expected (e.g., the friends of

friends are often friends), but levels of transitivity in signed networks are very low (e.g., enemies of

enemies do not tend to be enemies). As a result, the definition of communities is different in signed

networks. The challenge of community detection in networks with positive and negative links was

firstly addressed by social balance theory (Heider, 1946). This theory is based on the notion that if

two people are positively related, their attitudes toward a third person should match. For example,

if Bob and Mary are positively related as friends, and both of them are related to John, they should

both be related to him either positively or negatively. In either case, their triad is said to be socially

balanced.

Definition 6.1.1. A complete signed graph G is structurally balanced whenever all triads are bal-

anced.

Theorem 6.1.1. (Structure theorem) If the graph G is structurally balanced, then it can be parti-

tioned into two clusters such that there are only positive links within each cluster and negative links

between them (Harary et al., 1953).

Figure 6.1 shows two possible conditions for a balanced triad in signed networks. There are

four possible configurations for having positive or negative links between a triad. Here, a solid

line represents a positive link and a dashed line shows a negative link. The upper two triads are

structurally balanced because the product of their signs is positive. Similarly, the lower two triads

are not structurally balanced because the product of their signs is negative. If all triads (in a complete

network) are structurally balanced, the network can be partitioned into two factions such that they

are internally positively linked, with negative links between the two factions, as illustrated on the

right. The definition of balanced triads can be extended for cycles. A cycle is balanced if its sign is

92

Figure 6.1: Four possible conditions for a triad in signed networks

positive. If a cycle contains m negative edges, then sgn(C) = (−1)m. In other words, a cycle is

balanced if it contains an even number of negative links.

Definition 6.1.2. A signed graph G is called balanced if all its cycles C are balanced.

However, it was later proved that it is not necessary to determine the structural balance of all cy-

cles, and the balance of chord-less cycles would make the network balanced as well, the conditions

to make a network structurally balanced are still strict and almost unlikely to happen. As a result,

the definitions of weakly balanced cycles and graphs are defined as follows:

Definition 6.1.3. A cycle C is termed weakly balanced if it does not contain exactly a single nega-

tive link.

Theorem 6.1.2. Let G be a signed network. Then G is weakly structurally balanced if and only if

all chordless cycles are weakly balanced.

Similar to structural balance, a weakly structurally balanced graph can be partitioned, but now

in possibly more than two clusters. This is called the second structure theorem by Doreian and

Mrvar (1996). Therefore, according to the aforementioned definitions, a community in signed net-

works can be defined as groups of nodes with positive links with each other and negative links

between groups. In this regard, the community detection problem in signed networks tries to find

groups of users that are densely connected by positive links within the group and negative links

93

between groups. Anchuri and Magdon-Ismail (2012) represents a comprehensive analysis of signed

networks.

In this chapter, by extending algorithm AlgP for signed networks, a new fast local community

detection algorithm for signed networks is developed. The main contribution of this chapter is

summarized as follows:

• A new signed local community detection algorithm is proposed.

• Algorithms AlgR (Clauset, 2005) and AlgM (F. Luo et al., 2006) are extended for signed

networks to be compared with the proposed algorithm.

• Several local community detection algorithms for signed networks are implemented, com-

pared, and the results are reported.

The remainder of this chapter is structured as follows: Section 6.2 presents the literature review.

Section 6.3 represents the signed local community detection algorithm, while Section 6.4 discusses

the experimental results. Finally, this chapter is concluded in Section 6.5.

6.2 Related Works

However, compared to unsigned networks, the problem of community detection in signed net-

works is not widely investigated, several algorithms have been proposed to detect community parti-

tioning in signed networks (Che, Yang, & Wang, 2020; J. Chen, Wang, Wang, & Liu, 2016; R. Sun,

Chen, Wang, Zhang, & Wang, 2020). Mostly, algorithms and their objective functions employ

information that is dependent on the global properties of the network to detect communities.

C. He et al. (2021) proposed a similarity preserving overlapping community detection (SPOCD)

method. Firstly, SPOCD computes node similarity information and geometric structure information

from the link topology. Then, it uses a graph regularized binary semi-nonnegative matrix factoriza-

tion (GRBSNMF) model to utilize these two sources of information to detect communities.

Also, Xia, Luo, Wang, and Li (2021) proposed a signed modularity-based community detection

algorithm to explore community partitioning. This algorithm includes two phases. In the first phase,

each node is considered a community. Then, the communities are iterated so that the community

94

is merged into its neighboring community to obtain the larger value of modularity, which will be

increasingly improved. This iteration process will be ended until no improvement can be made to

the value of modularity. In the second phase, all nodes within the same community given by the

first phase are folded as a new node, and then all new nodes are used to reconstruct the network.

The two steps are repeated until no changes happen. This algorithm uses the same pattern as the

Louvain algorithm (Blondel et al., 2008).

Moreover, some studies have been conducted to detect polarized communities (Bonchi, Galim-

berti, Gionis, Ordozgoiti, & Ruffo, 2019; Tzeng, Ordozgoiti, & Gionis, 2020; Xiao, Ordozgoiti, &

Gionis, 2020). Polarized communities are two communities that are opposed to each other. In this

regard, the metrics used in these algorithms are based on two communities.

To the best of our knowledge, the problem of local community detection is not independently

investigated in signed networks. However, there are some studies in which employing a local per-

spective and using a local metric, tried to address the community detection problem (Anchuri &

Magdon-Ismail, 2012; Doreian & Mrvar, 1996; Su, Wang, Cheng, et al., 2017).

Doreian and Mrvar (1996) proposed an objective function for communities in signed networks,

called Frustration. Also, they present a community detection algorithm in signed networks optimiz-

ing Frustration. Frustration, Frus, is defined as follows:

Frus = E−
in + E+

ex (26)

In (26), E−
in is the number of negative edges inside the community and E+

ex is the number of positive

bordering edges. In this regard, the network is partitioned into k random communities. Then, by

examining the neighbors of each community, if merging a node into the community decreases Frus,

the node is added to the community. The algorithm continues until no change happens.

Also, Anchuri and Magdon-Ismail (2012) proposed a community detection algorithm in signed

networks optimizing a metric based on the definition of Frustration as follows:

Cri = E+
in + E−

ex − E−
in − E+

ex (27)

In (27), E+
in and E−

in are the number of positive and negative edges inside the community. Moreover,

95

E+
ex and E−

ex are the number of positive and negative bordering edges. The algorithm proposed in

(Anchuri & Magdon-Ismail, 2012), employs a local community detection algorithm optimizing Cri,

to improve its community partitioning.

Furthermore, Su, Wang, Cheng, et al. (2017) used negative and positive probability functions

based on positive and negative similarities to improve communities locally. The positive similarity

is defined as follows:

Similarity(u, v)+ =
|N+

u ∩N+
v |

|N+
u | ∪ |N+

v |
(28)

In (28), N+
u is the number of positive neighbors of u, where u ∈ V . Also, the negative similarity

can be defined using the same pattern as the positive similarity.

In this chapter, three local community detection algorithms from (Doreian & Mrvar, 1996),

(Anchuri & Magdon-Ismail, 2012), and (Su, Wang, Cheng, et al., 2017), are implemented and

their results are compared with the proposed algorithm. The implemented algorithms are named

FrusOpt (Doreian & Mrvar, 1996), CriOpt (Anchuri & Magdon-Ismail, 2012), and SimOpt (Su,

Wang, Cheng, et al., 2017).

6.3 The Proposed Algorithm

In this section, the proposed local community detection algorithm is presented. Also, the ex-

tended version of algorithms M and R are presented. Moreover, some definitions regarding signed

networks are introduced.

6.3.1 Definitions

In order to extend metric P for signed networks, it is required to introduce the definition of

positive common neighbors. Positive common neighbors in signed networks are defined as follows.

Definition 6.3.1. In an undirected and signed graph Gs = (V,E+, E−), V is the set of nodes, E+ is

the set of positive edges, and E− is the set of negative edges. u, v ∈ V are two nodes. If (u, v) ∈ E,

where E = E+ ∪ E−, is an edge between u and v, then Suv is the sign of link (u, v) which can be

positive or negative. By definition, if (u, x), (x, v) ∈ E+ or (u, x), (x, v) ∈ E− where x ∈ V , x

96

is a positive common neighbor of u and v. In other words, (u, x) and (x, v) should have the same

signs.

6.3.2 Signed AlgR and Signed AlgM

The extended version of metric R for signed networks, named SR, is described as follows:

SR =
B+

in +B−
ex

B+
in +B−

ex +B+
ex +B−

in

(29)

In (29), B+
in and B−

in are the number of positive and negative links respectively from bordering

nodes to the nodes which are inside the community and also, other bordering nodes. Moreover, B+
ex

and B−
ex are the number of positive and negative links from bordering nodes to the nodes that are

outside of the community, respectively. This metric is employed in the same algorithm as AlgR

(Clauset, 2005) and the new algorithm for signed networks is named AlgSR. AlgSR is implemented

and the results are compared with the proposed algorithm.

Also, the extended version of metric M for signed networks, name SM , is described as follows:

SM =
E+

in + E−
ex

E−
in + E+

ex
(30)

In (30), E+
in and E−

in are the number of positive and negative edges inside the community. Fur-

thermore, E+
ex and E−

ex are the numbers of positive and negative edges from the community to the

outside. SM is used in the same algorithm as AlgM (F. Luo et al., 2006), called AlgSM , and the

results are reported.

6.3.3 The Proposed Algorithm

In this section, a local community detection algorithm for signed networks, denoted as AlgSP ,

is presented. AlgSP is an extension of AlgS for signed networks. In this regard, the extension of

metric P , called SP , is presented and used in AlgSP to explore a community for a given node in

signed networks.

97

The extension of metric P , named SP , is defined as follows:

SP =
NCN+

C + E+
in + E−

ex

NCN+
C + E+

in + E−
in + E+

ex + E−
ex

(31)

In equation (31), E+
in and E−

in are the number of positive and negative links inside the commu-

nity. Also, E+
ex and E−

ex represent the number of positive and negative bordering links. Moreover,

NCN+
C is the number of positive common neighbors between every pair of nodes inside the com-

munity.

Also, another metric, named As, is proposed as follows:

As =
E+

in + E−
ex

E+
in + E−

in + E+
ex + E−

ex
(32)

Algorithm 8 presents the proposed local community detection algorithm (AlgSP) in signed

networks. This algorithm follows almost the same pattern as AlgP , only using metrics SP and

A instead of P and M respectively. As it can be seen from Algorithm 8, the proposed algorithm has

three different steps. In the first step, it selects nodes whose addition into the community increases

metric SP . It is noteworthy that the addition process starts from positive neighbors. Then, neighbors

with both positive and negative links to the community are evaluated and added. Finally, neighbors

with only negative links to the community are considered. In this regard, at each iteration, the

neighboring nodes are traversed three times. In the second step, the algorithm checks all the nodes

that were added in phase 1 and removes the nodes that increase SP . The above-mentioned two steps

are repeated until no more nodes can be added to the community. Lastly, in the third step, nodes

are removed, if their removal increases metric As (refer to (32)). In comparison with the other local

signed metrics, metric SP is a loose metric. That is why it allows more nodes to be added to the

community. However, this increases the opportunity to capture all possible nodes for the community

detection process, some irrelevant nodes may be merged into the community. As a result, a tighter

metric As is used to remove irrelevant nodes added in step 1. It should be mentioned that the

tightness of metrics SM and As are the same. To avoid having zero values in the denominator of

SM , metric As is improved and employed.

98

Algorithm 8 The extension of AlgP (Algorithm 2) for signed networks, AlgSP
1: Input: Gs and v0
2: Output: C: v0’s local community
3: C = {}, N = {}
4: SP = 0
5: add v0 to C
6: add all neighbors of v0 to N
7: do
8: Q1 = {}
9: step 1:

10: for v in N (starting from +, then + and −, and finally − neighbors) do
11: calculate SPv if v is added to C
12: if SPv > SP then
13: SP = SPv

14: add v to C, add v to Q1, remove v from N
15: end if
16: end for
17: step 2:
18: for v in Q1 do
19: calculate SPv if v is removed from C
20: if SPv > SP then
21: SP = SPv

22: remove v from C, remove v from Q1
23: end if
24: end for
25: update N
26: while Q1 is not empty
27: do
28: Q2 = {}
29: step 3:
30: for v in C do
31: calculate ∆As if v is removed from C
32: if ∆As > 0 and v is not v0 then
33: remove v from C, Add v into Q2
34: end if
35: end for
36: while Q2 is not empty

6.3.4 Complexity

In this section, the complexity analysis of the proposed algorithm AlgSP is presented. To

explore communities, the proposed algorithm calculates NCN+ at each iteration which is time-

consuming. To overcome this limitation, the proposed algorithm reduces the number of iterations

99

Algorithm 9 count-added-positive-common-neighbors(Gs, C, v)

1: Input: C and v
2: Output: z+: the number of added positive common neighbors
3: Nv = neighbors of v inside C
4: z+ = 0
5: for i in Nv do
6: if Svi is positive then
7: N+

i = positive neighbors of i inside C
8: z+ = z+ + |N+

i |
9: else

10: N−
i = negative neighbors of i inside C

11: z+ = z+ + |N−
i |

12: end if
13: end for
14: z+ = z+ + |N+

v | ∗ (|N+
v | − 1)/2

15: z+ = z+ + |N−
v | ∗ (|N−

v | − 1)/2

by adding more than one node to the community, at each iteration.

To analyze the complexity of the proposed algorithm it is assumed that at each iteration, only

one node is added to the community. Assuming n as the number of nodes in the local community,

and d as the average degree of nodes inside the community, in the first iteration, one node (the

starting node) is in the community. Thus, d neighboring nodes must be traversed. It should be

mentioned that d neighboring nodes are traversed 3 times to first capture positive neighbors, then

neighbors with both positive and negative links to the community, and finally negative neighbors.

As a result, 3d nodes are traversed at the first iteration. Similarly, in the last iteration, n nodes

are added, and 3nd neighboring nodes must be traversed. Consequently, it is required to traverse

3(d+2d+ · · ·+nd) nodes. As a result, considering ps as the required time complexity to calculate

metric SP for each node, we have
∑n

i=1 3(i)dps = 3dps[n(n+ 1)/2].

To calculate SP at each iteration and using the same perspective as metric P , consider node v is

added into the community C. The updated value of SP , SP ′, after addition of node v, is calculated

using formula (33) as follows:

SP ′ =
(NCN+

C+z+)+(E+
in+x+)+(E−

ex+y−−x−)

(NCN+
C+z+)+(E+

in+x+)+(E−
in+x−)+(E+

ex+y+−x+)+(E−
ex+y−−x−)

(33)

On the other hand, assuming node v is removed from the community C, the updated score of SP ,

100

SP ′ is calculated using formula (34) as follows:

SP ′ =
(NCN+

C−z+)+(E+
in−x+)+(E−

ex−y−+x−)

(NCN+
C−z+)+(E+

in−x+)+(E−
in−x−)+(E+

ex−y++x+)+(E−
ex−y−+x−)

(34)

In (33) and (34), x+ (x−) is the number of positive (negative) neighbors of node v that are inside

the community, and y+ (y−) is the number of v’s positive (negative) neighbors that are not inside

the community. Moreover, z+ is the number of positive common neighbors that node v adds into

(subtracts from) the community by its addition (removal). According to these equations, for each

node at each iteration, it is required to calculate x+, x−, y+, y−, and z+. Since x++x−+y++y− =

d, the complexity of the calculation of x+, x−, y+, and y− is O(d). Moreover, Algorithm 9 shows

how to calculate z+, when a new node v is added into the community C, in graph Gs. In this

algorithm, Svi is the sign of the link (v, i) and |N+
v | is the number of positive neighbors of node

v that are inside C. Two groups of nodes are counted to compute z+. Figure 6.2 shows the two

groups of nodes while adding node v to the community C. In this figure, dashed links indicate

negative, and solid links illustrate positive relations. The first group of nodes includes those that

are the second layer neighbors of node v that have the same signs as its first layer neighbors. These

nodes are shown with the a letter in them. Regarding Algorithm 9, the first group of nodes (a nodes

in Figure 6.2) is calculated in lines 5-12. Moreover, node v is a positive common neighbor to its

same sign instant neighbors inside the community. According Algorithm 9, the number of times that

v

e

e

c

a

a

a

a

C

Figure 6.2: How to calculate z+ while node v is added to the community C

101

v is a positive common neighbors to its same sign neighbors itself is computed via |N+
v | ∗ (|N+

v | −

1)/2 + |N−
v | ∗ (|N−

v | − 1)/2, where |N+
v | is the number of instant positive neighbors of v (e nodes

in Figure 6.2) and |N−
v | is the number of instant negative neighbors of v (c nodes in Figure 6.2) that

are inside the community (lines 14-15). Regarding Algorithm 9, the complexity of the calculation

of z+ is O(d2). As a result, the complexity of the proposed algorithm is O(n2d3).

6.4 Experimental Results

In this section, the proposed community detection algorithm (AlgSP) is compared with five

other algorithms and the results are reported. In this regard, the community development algorithms,

FrusOpt (Doreian & Mrvar, 1996), CriOpt (Anchuri & Magdon-Ismail, 2012), and SimOpt (Su,

Wang, Cheng, et al., 2017) are extracted from their community partitioning detection algorithms,

implemented, and compared with AlgSP . Also, two more algorithms are developed to be compared

with the proposed algorithm. In this concern, algorithms AlgR (Clauset, 2005) and AlgM (F. Luo

et al., 2006) are extended for signed networks.

6.4.1 Dataset

To conduct the experiment, two illustrative signed networks and four real-world networks are

employed as follows:

• Illustrative Network 1 (IN1) (B. Yang, Cheung, & Liu, 2007): A synthetic network with 28

nodes that are partitioned into three communities. This network is partitionable and balanced.

Figure 6.3 shows this illustrative network with three ground-truth communities. In this figure,

dashed links indicate negative relations and solid links indicate positive relations.

• Illustrative Network 2 (IN2) (B. Yang et al., 2007): A synthetic network with 28 nodes that

are partitioned into three communities. This network is partitionable and not balanced. IN2 is

modified from IN1 by adding 7 negative links to unbalance the network. Figure 6.4 shows this

illustrative network with three ground-truth communities. In this figure, dashed links indicate

negative relations and solid links indicate positive relations.

102

Figure 6.3: Illustrative network 1 (IN1) (J. Chen et al., 2017)

• Slovene Parliamentary Party (SPP) (Ferligoj & Kramberger, 1996): The network contains

10 Slovene Parliamentary parties which shows the relationships among the 10 political par-

ties in 1994. The positive and negative links separately represent the similar and dissimilar

relationships between the parties. This network is partitioned into three communities.

• U.S. Supreme Court (USC) (Doreian & Mrvar, 2009): This network describes the voting

behavior of nine justices in the supreme court of the United States between 2006 and 2007.

The positive and negative links mean whether one justice supports the other one or not. The

U.S. supreme court justices’ network is divided into two communities.

• Gahuku-Gama Subtribes (GGS) (Read, 1954): This network demonstrates the political

alliance and enmities among the 16 Gahuku-Gama subtribes, which were distributed in a

particular area in 1954. The positive and negative links of the network represent the positive

and negative political arrangements, respectively. GGS is partitioned into three communities.

• Congress (Thomas, Pang, & Lee, 2006): In this network, nodes are politicians who speak

in the United States Congress. An edge denotes that a speaker mentions another speaker.

The sign of an edge (positive or negative) denotes whether the mention is in support of or

opposition to the mentioned politician. Congress contains 219 members and 521 positive and

negative links. There are no ground-truth communities for this network.

103

Figure 6.4: Illustrative network 2 (IN2) (J. Chen et al., 2017)

6.4.2 Evaluation Metrics

In this experiment, each node of the network is selected as a starting node for the algorithms and

the results are reported in average. The detected communities are evaluated using F-score (refer to

(17)) and Signed Q (Qs) (Gómez, Jensen, & Arenas, 2009).

Gómez et al. (2009) generalized the modularity Q for networks with positive and negative links.

The modularity is generalized for signed networks, Qs as follows:

Qs =
1

2m+ + 2m−

∑
ij

[wij − (
w+
i w

+
j

2m+
−

w−
i w

−
j

2m−)]σ(i, j) (35)

In equation (35), m+ and m− are the numbers of positive and negative links in the network. Consid-

ering w as the adjacency matrix of the signed network, w = w+−w−. In this regard, w+
i =

∑
j w

+
ij

and w−
i =

∑
j w

−
ij . Also, σ(i, j) is 1 if i and j belong to the same community and 0 otherwise.

The main property of equation (35) is that the standard modularity Q is recovered when there are

no negative weights.

6.4.3 Experimental Results

Table 6.1 shows the average results of Recall, Precision, F-score, and Qs for the algorithms

FrusOpt (Doreian & Mrvar, 1996), CriOpt (Anchuri & Magdon-Ismail, 2012), SimOpt (Su, Wang,

104

Table 6.1: Average F-score (ratio) on real-world networks

Dataset Evaluation FrusOpt CriOpt SimOpt AlgSR AlgSM AlgSP

Recall 0.2928 0.7428 0.2357 1.0 0.8178 1.0
IN1 Precision 1.0 1.0 1.0 1.0 1.0 1.0

F-score 0.4416 0.7922 0.3516 1.0 0.8690 1.0
Qs 0.0195 0.0740 0.0104 0.1025 0.0817 0.1025

Recall 0.2928 0.8535 0.1821 1.0 0.7857 1.0
IN2 Precision 1.0 1.0 1.0 1.0 1.0 1.0

F-score 0.4416 0.8928 0.2916 1.0 0.8333 1.0
Qs 0.0172 0.0736 0.0057 0.0904 0.0667 0.0904

Recall 0.3600 1.0 0.2600 1.0 0.9 1.0
SPP Precision 1.0 1.0 1.0 1.0 0.9 1.0

F-score 0.4666 1.0 0.4047 1.0 0.9 1.0
Qs 0.0209 0.1088 -0.0013 0.1088 0.0983 0.1088

Recall 0.2222 0.9111 0.3111 1.0 0.8889 1.0
USC Precision 1.0 0.9111 0.3444 0.5062 0.8889 1.0

F-score 0.3629 0.9111 0.3132 0.6703 0.8889 1.0
Qs 0.0 0.1016 0.0273 0.0029 0.0912 0.1020

Recall 0.2892 1.0 0.4196 1.0 1.0 1.0
GGS Precision 1.0 0.9453 0.9375 0.6354 1.0 1.0

F-score 0.4232 0.9708 0.5466 0.7562 1.0 1.0
Qs 0.0065 0.0751 0.0153 0.0791 0.0730 0.0730

Recall - - - - - -
Congress Precision - - - - - -

F-score - - - - - -

Qs 0.0008 0.0034 0.0040 0.0087 0.0137 0.0318

Cheng, et al., 2017), AlgSR, AlgSM , and AlgSP on the six introduced datasets. As can be seen

from Table 6.1, AlgSP has the best possible results on the five datasets with ground-truth data. In

other words, AlgSP obtains an average score of 1 for metrics Recall, Precision, and F-score. In

this regard, AlgSP explored the ground-truth communities for all five datasets including IN1, IN2,

SPP, USC, and GGS. It is noteworthy that AlgSP obtains the ground-truth data, independent of the

starting nodes. This is a valuable feature for the proposed algorithm. Because this feature makes

it possible for AlgSP to be used in any global community detection algorithm to detect and extend

the communities without considering the starting points of the detection.

105

Table 6.2: Execution time (s)

Dataset FrusOpt CriOpt SimOpt AlgSR AlgSM AlgSP

IN1 0.003 0.11 0.04 0.24 0.08 0.09

IN2 0.005 0.14 0.03 0.28 0.12 0.12

SPP 0.008 0.03 0.02 0.06 0.02 0.02

USC 0.003 0.02 0.07 0.06 0.03 0.02

GGS 0.007 0.10 0.09 0.09 0.07 0.05

Congress 0.13 5.65 105.94 543.47 15.20 29.91

Considering the average scores of Qs, the best scores go to AlgSP for all networks except for

GGS. However, AlgSP reaches the ground-truth communities on GGS, AlgSR has the best score

of Qs. Since the value of Precision for AlgSR on GGS is low, a relatively big number of wrong

nodes are inside the resulted community. This increases the score of Qs.

Comparing other algorithms in Table 6.1, it can be observed that algorithms AlgSR and AlgSP

have better results than the other three algorithms. AlgSR obtains the best possible scores for

Recall, Precision, and F-score on IN1, IN2, and SPP. Also, AlgSM has F-score scores of greater

than 0.8 for all networks. After AlgSR and AlgSM , it can be concluded that CriOpt has higher

scores than FrusOpt and SimOpt.

Moreover, Table 6.2 represents the execution time of the algorithms for this experiment on

the six networks. Regarding this table, FrusOpt has the fastest algorithm among all algorithms.

Since the results of FrusOpt are not comparable with other algorithms, it is not participating in the

execution time comparison. As can be seen from Table 6.2, algorithms CriOpt, AlgSM , and AlgSP

are among the fastest algorithms. In contrast, regarding the time execution on the Congress network,

SimOpt and AlgSR are among the slowest algorithms.

6.5 Conclusion and Future Works

In this chapter, the extended version of the algorithm AlgP and metric P , called AlgSP and SP

for signed networks are presented. In this regard, the definition of positive common neighbors in

signed networks is introduced. Also, the extended version of algorithms AlgR and AlgM for signed

106

networks are discussed and introduced. The experimental results show that algorithm AlgSP obtains

the ground-truth communities of the employed real-world networks. Also, it shows that AlgSP

detects the ground-truth communities of the employed dataset, independent from the starting nodes.

Moreover, the execution time of the algorithm represents that AlgSP is among the fast algorithms

in community detection.

Regarding the reported experimental results and the efficiency of AlgSP , there are some inter-

esting directions for future works as follows:

• Employing big real-world signed networks to evaluate the proposed algorithm,

• Extending the proposed metric SP and AlgSP for weighted and also, directed signed net-

works and using directed weighted networks to analyze the efficiency of the proposed algo-

rithm.

• Using AlgSP in a community detection algorithm to explore the whole community partition-

ing of signed social networks.

107

Chapter 7

Conclusion

7.1 Conclusion and Future works

Community is an important structure of social networks that is defined as a group of well-

connected nodes. During the last two decades, several works and studies have been done to detect

different types of communities in social networks. Today, with increasing the size and complexity

of real-world social networks, working with the whole information of the networks seems almost

impossible. As a result, the problem of local community detection has become more popular. This

problem includes detecting a community for a given node only using local information. In this

regard, the best community partitioning algorithms employ local perspectives to explore the com-

munity partitioning of complex social networks. Accordingly, these algorithms need an efficient

algorithm to detect communities or improve already detected communities locally. It can be con-

cluded that the local community detection problem, i.e. detecting a community for a given node is

the core issue of exploring community partitioning in big real-world networks. That is why, a com-

prehensive study of community detection considering the local point of view, is conducted, in this

thesis. In this regard, having local community detection algorithms that can detect a high-quality

community for any randomly given node, regardless of the degree and importance of the node in

the network, is the main goal of this study.

The main focus of this thesis is on the problem of local community detection and how to locally

evaluate communities. In this concern, the problem of local community detection in static networks,

108

dynamic networks, and signed networks is analyzed and investigated.

In order to evaluate the quality of communities, a new metric, GDM , is proposed by employing

geodesic distance. Summing up the length of the shortest path between every pair of vertices, the

geodesic distance can accurately represent the density of a given community. According to the

experimental results, GDM fairly compares the communities resulting from different algorithms

only using local information.

Moreover, employing the number of common neighbors and proposing a new metric, a new

local community detection algorithm, AlgP , is presented. Also, several local community detection

algorithms are implemented to be compared with the proposed one. The experimental results show

that AlgP outperforms the above-mentioned algorithms. Furthermore, it has been shown that the

execution time of the proposed algorithm is faster than the other near-complexity algorithms.

As it was mentioned before, the problem of local community detection is addressed in dynamic

social networks. In this regard, a dynamic local community detection algorithm, DevDynaP , is

proposed, employing algorithm AlgP . This algorithm explores the network and detects communi-

ties at the same time. The main goal of DevDynaP is to explore the network as fast as possible and

detect high-quality communities simultaneously. Experimental results show that DevDynaP ex-

plores the network faster than the compared algorithm. Also, the community partitioning resulting

from DevDynaP outperforms that of the other compared algorithm.

Furthermore, the proposed local community detection algorithm, AlgP , is extended to explore

communities in signed networks. The extended algorithm for signed networks is called AlgSP .

AlgSP uses the same perspective as algorithm AlgP , only optimizing metric SP , instead of P .

Also, two classic local community detection algorithms AlgR and AlgM , are extended to explore

local communities in signed networks and be compared with AlgSP . The experimental results

indicate that AlgSP obtains the ground-truth communities of the employed real-world networks. It

can be concluded that algorithm AlgSP detects communities independent from the starting nodes. In

this regard, the goal of the thesis is fulfilled. Moreover, algorithm SP is among the fast algorithms

in community detection.

Finally, regarding all the reported results in this thesis, the most interesting directions for future

work are listed as follows:

109

• Extending metric GDM for directed, weighted, and signed networks.

• Employing algorithm AlgP in a community detection algorithm to detect the whole commu-

nity partitioning of the real-word networks.

• Employing big real-world networks to evaluate DevDynaP .

• Employing algorithm AlgSP in a community detection algorithm to detect the whole com-

munity partitioning of the real-word signed networks.

7.2 Publications

This PhD degree resulted in the following scientific publications:

• A conference paper (Bakhtar, Gholami, & Harutyunyan, 2020) and a journal paper (Bakhtar

& Harutyunyan, 2021b) are published considering the proposed metric GDM in Chapter 3.

• Moreover, another conference paper (Bakhtar & Harutyunyan, 2021a) is published regarding

algorithm AlgP and Chapter 4.

• Furthermore, a workshop paper (Bakhtar & Harutyunyan, 2022b) and a journal paper (Bakhtar

& Harutyunyan, 2022a) are published and and submitted, respectively regarding Chapter 5.

• Finally, a conference paper will be written and submitted considering Chapter 6 and algorithm

AlgSP .

110

References

Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity

in networks. nature, 466(7307), 761.

Amelio, A., & Pizzuti, C. (2013). Community mining in signed networks: a multiobjective ap-

proach. In Proceedings of the IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (pp. 95–99).

Anchuri, P., & Magdon-Ismail, M. (2012). Communities and balance in signed networks: A spectral

approach. In IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining (pp. 235–242).

Andersen, R., Chung, F., & Lang, K. (2006). Local graph partitioning using pagerank vectors. In

47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) (pp. 475–

486).

Bakhtar, S., Gholami, M. S., & Harutyunyan, H. A. (2020). A New Metric to Evaluate Com-

munities in Social Networks Using Geodesic Distance. In 9th International Conference on

Computational Data and Social Networks (CSoNet 2020) (pp. 202–216).

Bakhtar, S., & Harutyunyan, H. A. (2021a). A New Fast Local Community Detection Algorithm

Using the Number of Common Neighbours. In 8th International Conference on Social Net-

works Analysis, Management and Security (SNAMS 2021) (pp. 1–8).

Bakhtar, S., & Harutyunyan, H. A. (2021b). A new metric to compare local community detection al-

gorithms in social networks using geodesic distance. Journal of Combinatorial Optimization,

1–23.

111

Bakhtar, S., & Harutyunyan, H. A. (2022a). DevDynaP: A Dynamic Local Community Detection

Algorithm. Submitted to the Journal of Computational Social Networks.

Bakhtar, S., & Harutyunyan, H. A. (2022b). Dynamic Local Community Detection Algorithms. In

IEEE/IFIP Network Operations and Management Symposium (NOMS 2022) (pp. 1–6).

Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine learning, 56(1-3),

89–113.

Bansal, S., Bhowmick, S., & Paymal, P. (2011). Fast community detection for dynamic complex

networks. In Complex Networks (pp. 196–207). Springer.

Bedi, P., & Sharma, C. (2016). Community detection in social networks. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 6(3), 115–135.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of commu-

nities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10),

P10008.

Bonchi, F., Galimberti, E., Gionis, A., Ordozgoiti, B., & Ruffo, G. (2019). Discovering polarized

communities in signed networks. In Proceedings of the 28th ACM International Conference

on Information and Knowledge Management (pp. 961–970).

Boudebza, S., Cazabet, R., Azouaou, F., & Nouali, O. (2018). Olcpm: An online framework for

detecting overlapping communities in dynamic social networks. Computer Communications,

123, 36–51.

Bouyer, A., & Roghani, H. (2020). Lsmd: a fast and robust local community detection starting from

low degree nodes in social networks. Future Generation Computer Systems, 113, 41–57.

Cao, C., Ni, Q., & Zhai, Y. (2015). An improved collaborative filtering recommendation algo-

rithm based on community detection in social networks. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation (pp. 1–8).

Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International journal of

computer vision, 22(1), 61–79.

112

Chakraborty, T., Dalmia, A., Mukherjee, A., & Ganguly, N. (2017). Metrics for community analy-

sis: A survey. ACM Computing Surveys (CSUR), 50(4), 1–37.

Che, S., Yang, W., & Wang, W. (2020). A memetic algorithm for community detection in signed

networks. IEEE Access, 8, 123585–123602.

Chen, J., Liu, D., Hao, F., & Wang, H. (2020). Community detection in dynamic signed network: an

intimacy evolutionary clustering algorithm. Journal of Ambient Intelligence and Humanized

Computing, 11(2), 891–900.

Chen, J., Wang, H., Wang, L., & Liu, W. (2016). A dynamic evolutionary clustering perspec-

tive: Community detection in signed networks by reconstructing neighbor sets. Physica A:

Statistical Mechanics and its Applications, 447, 482–492.

Chen, J., Zaı̈ane, O., & Goebel, R. (2009). Local community identification in social networks.

In International Conference on Advances in Social Network Analysis and Mining (ASONAM

2009) (pp. 237–242).

Chen, J., Zhang, L., Liu, W., & Yan, Z. (2017). Community detection in signed networks based on

discrete-time model. Chinese Physics B, 26(1), 018901.

Chen, Q., Wu, T.-T., & Fang, M. (2013). Detecting local community structures in complex networks

based on local degree central nodes. Physica A: Statistical Mechanics and its Applications,

392(3), 529–537.

Chen, Y., Wang, X., Yuan, B., & Tang, B. (2014). Overlapping community detection in networks

with positive and negative links. Journal of Statistical Mechanics: Theory and Experiment,

2014(3), P03021.

Clauset, A. (2005). Finding local community structure in networks. Physical review E, 72(2),

026132.

Dakiche, N., Tayeb, F. B.-S., Slimani, Y., & Benatchba, K. (2019). Tracking community evolution

in social networks: A survey. Information Processing & Management, 56(3), 1084–1102.

113

Dao, V.-L., Bothorel, C., & Lenca, P. (2018). Estimating the similarity of community detection

methods based on cluster size distribution. In International Conference on Complex Networks

and their Applications (pp. 183–194).

Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A. A., &

Joshi, A. (2008). Social ties and their relevance to churn in mobile telecom networks. In Pro-

ceedings of the 11th International Conference on Extending Database Technology: Advances

in Database Technology (pp. 668–677).

Derényi, I., Palla, G., & Vicsek, T. (2005). Clique percolation in random networks. Physical review

letters, 94(16), 160202.

DeWall, C. N. (2013). The oxford handbook of social exclusion. Oxford University Press.

Ding, X., Zhang, J., & Yang, J. (2020). Node-community membership diversifies community

structures: An overlapping community detection algorithm based on local expansion and

boundary re-checking. Knowledge-Based Systems, 198, 105935.

Doreian, P., & Mrvar, A. (1996). A partitioning approach to structural balance. Social networks,

18(2), 149–168.

Doreian, P., & Mrvar, A. (2009). Partitioning signed social networks. Social Networks, 31(1),

1–11.

Ferligoj, A., & Kramberger, A. (1996). An analysis of the slovene parliamentary parties network.

Developments in statistics and methodology, 12, 209–216.

Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of

the national academy of sciences, 104(1), 36–41.

Friggeri, A., Chelius, G., & Fleury, E. (2011). Egomunities, exploring socially cohesive person-

based communities. arXiv preprint arXiv:1102.2623.

Gao, Y., Zhang, H., & Zhang, Y. (2019). Overlapping community detection based on conductance

optimization in large-scale networks. Physica A: Statistical Mechanics and its Applications,

522, 69–79.

114

Garza, S. E., & Schaeffer, S. E. (2019). Community detection with the label propagation algorithm:

a survey. Physica A: Statistical Mechanics and its Applications, 534, 122058.

Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019). Evaluating overfit and underfit in models

of network community structure. IEEE Transactions on Knowledge and Data Engineering.

Giatsoglou, M., & Vakali, A. (2013). Capturing social data evolution using graph clustering. IEEE

Internet Computing, 17(1), 74–79.

Girvan, M., & Newman, M. E. (2001). Community structure in social and biological networks.

Proc. Natl. Acad. Sci. USA, 99(cond-mat/0112110), 8271–8276.

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks.

Proceedings of the national academy of sciences, 99(12), 7821–7826.

Gómez, S., Jensen, P., & Arenas, A. (2009). Analysis of community structure in networks of

correlated data. Physical Review E, 80(1), 016114.

Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolution of communities in dy-

namic social networks. In International Conference on Advances in Social Networks Analysis

and Mining (pp. 176–183).

Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New

Journal of Physics, 12(10), 103018.

Harary, F., et al. (1953). On the notion of balance of a signed graph. The Michigan Mathematical

Journal, 2(2), 143–146.

Hassan, A., Abu-Jbara, A., & Radev, D. (2012). Extracting signed social networks from text. In

Workshop proceedings of textgraphs-7: Graph-based methods for natural language process-

ing (pp. 6–14).

He, C., Liu, H., Tang, Y., Liu, S., Fei, X., Cheng, Q., & Li, H. (2021). Similarity preserving

overlapping community detection in signed networks. Future Generation Computer Systems,

116, 275–290.

115

He, J., & Chen, D. (2015). A fast algorithm for community detection in temporal network. Physica

A: Statistical Mechanics and its Applications, 429, 87–94.

Heider, F. (1946). Attitudes and cognitive organization. The Journal of psychology, 21(1), 107–112.

Hoang, T.-A., & Lim, E.-P. (2017). Highly efficient mining of overlapping clusters in signed

weighted networks. In Proceedings of the 2017 acm on conference on information and knowl-

edge management (pp. 869–878).

Hric, D., Darst, R. K., & Fortunato, S. (2014). Community detection in networks: Structural

communities versus ground truth. Physical Review E, 90(6), 062805.

Jdidia, M. B., Robardet, C., & Fleury, E. (2007). Communities detection and analysis of their

dynamics in collaborative networks. In 2nd International Conference on Digital Information

Management (Vol. 2, pp. 744–749).

Jebabli, M., Cherifi, H., Cherifi, C., & Hamouda, A. (2018). Community detection algorithm

evaluation with ground-truth data. Physica A: Statistical Mechanics and its Applications,

492, 651–706.

Jiang, J. Q. (2015). Stochastic block model and exploratory analysis in signed networks. Physical

Review E, 91(6), 062805.

Jiang, W., Wang, G., Bhuiyan, M. Z. A., & Wu, J. (2016). Understanding graph-based trust eval-

uation in online social networks: Methodologies and challenges. ACM Computing Surveys

(CSUR), 49(1), 10.

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. The

Bell system technical journal, 49(2), 291–307.

Krebs, V. (2004). Political books network. Unpublished, retrieved from Mark Newman’s website:

www-personal. umich. edu/˜ mejn/netdata.

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2019). A survey of deep learning-

based network anomaly detection. Cluster Computing, 1–13.

116

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community

detection algorithms. Physical review E, 78(4), 046110.

Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Finding statistically signifi-

cant communities in networks. PloS one, 6(4), e18961.

Lee, S., & Huh, J.-H. (2019). An effective security measures for nuclear power plant using big data

analysis approach. The Journal of Supercomputing, 75(8), 4267–4294.

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM

Transactions on the Web (TWEB), 1(1), 5–es.

Leung, I. X., Hui, P., Lio, P., & Crowcroft, J. (2009). Towards real-time community detection in

large networks. Physical Review E, 79(6), 066107.

Li, C., Tang, Z., Tang, Y., Zhao, J., & Huang, Y. (2018). Community detection algorithm with

local-first approach in social networks. J. Front. Comput. Sci. Technol., 12(8), 1263–1277.

Liu, S., & Xia, Z. (2020). A two-stage bfs local community detection algorithm based on node

transfer similarity and local clustering coefficient. Physica A: Statistical Mechanics and its

Applications, 537, 122717.

Luo, F., Wang, J. Z., & Promislow, E. (2006). Exploring local community structures in large

networks. In IEEE/WIC/ACM International Conference on Web Intelligence (WI Main Con-

ference Proceedings)(WI’06) (pp. 233–239).

Luo, W., Zhang, D., Jiang, H., Ni, L., & Hu, Y. (2018). Local community detection with the

dynamic membership function. IEEE Transactions on Fuzzy Systems, 26(5), 3136–3150.

Luo, W., Zhang, D., Ni, L., & Lu, N. (2019). Multiscale local community detection in social

networks. IEEE Transactions on Knowledge and Data Engineering.

Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The

bottlenose dolphin community of doubtful sound features a large proportion of long-lasting

associations. Behavioral Ecology and Sociobiology, 54(4), 396–405.

117

Maniu, S., Cautis, B., & Abdessalem, T. (2011). Building a signed network from interactions in

wikipedia. In Databases and social networks (pp. 19–24).

Mishra, S., Singh, S. S., Mishra, S., & Biswas, B. (2021). Tcd2: Tree-based community detection

in dynamic social networks. Expert Systems with Applications, 169, 114493.

Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2),

167–256.

Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical

review E, 69(6), 066133.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the

national academy of sciences, 103(23), 8577–8582.

Oliveira, M., & Gama, J. (2012). An overview of social network analysis. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 2(2), 99–115.

Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community

structure of complex networks in nature and society. Nature, 435(7043), 814.

Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In

International symposium on computer and information sciences (pp. 284–293).

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community

structures in large-scale networks. Physical review E, 76(3), 036106.

Read, K. E. (1954). Cultures of the central highlands, new guinea. Southwestern Journal of

Anthropology, 10(1), 1–43.

Rigi, M. A., Moser, I., Farhangi, M. M., & Lui, C. (2019). Finding and tracking local communities

by approximating derivatives in networks. World Wide Web, 1–33.

Rossetti, G., & Cazabet, R. (2018). Community discovery in dynamic networks: a survey. ACM

Computing Surveys (CSUR), 51(2), 1–37.

Rossetti, G., Pappalardo, L., Pedreschi, D., & Giannotti, F. (2017). Tiles: an online algorithm for

community discovery in dynamic social networks. Machine Learning, 106(8), 1213–1241.

118

Sattari, M., & Zamanifar, K. (2018). A spreading activation-based label propagation algorithm for

overlapping community detection in dynamic social networks. Data & Knowledge Engineer-

ing, 113, 155–170.

Shao, L., Yu, X., & Feng, C. (2019). Evaluating the eco-efficiency of China’s industrial sectors: A

two-stage network data envelopment analysis. Journal of environmental management, 247,

551–560.

Sharma, T., Charls, A., & Singh, P. (2009). Community mining in signed social networks-an

automated approach. ICCEA09, Manila, 9, 163–168.

Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R., & Bassett, D. S. (2019). The importance of the

whole: topological data analysis for the network neuroscientist. Network Neuroscience, 3(3),

656–673.

Su, Y., Wang, B., Cheng, F., Zhang, L., Zhang, X., & Pan, L. (2017). An algorithm based on

positive and negative links for community detection in signed networks. Scientific reports,

7(1), 1–12.

Su, Y., Wang, B., & Zhang, X. (2017). A seed-expanding method based on random walks for

community detection in networks with ambiguous community structures. Scientific reports,

7(1), 1–10.

Sun, R., Chen, C., Wang, X., Zhang, Y., & Wang, X. (2020). Stable community detection in signed

social networks. IEEE Transactions on Knowledge and Data Engineering.

Sun, Y., Tang, J., Pan, L., & Li, J. (2015). Matrix based community evolution events

detection in online social networks. In IEEE International Conference on Smart

City/SocialCom/SustainCom (SmartCity 2015) (pp. 465–470).

Tabarzad, M. A., & Hamzeh, A. (2017). A heuristic local community detection method (hlcd).

Applied Intelligence, 46(1), 62–78.

Takaffoli, M., Rabbany, R., & Zaı̈ane, O. R. (2013). Incremental local community identification

in dynamic social networks. In IEEE/ACM International Conference on Advances in Social

119

Networks Analysis and Mining (ASONAM 2013) (pp. 90–94).

Tang, J., Chang, Y., Aggarwal, C., & Liu, H. (2016). A survey of signed network mining in social

media. ACM Computing Surveys (CSUR), 49(3), 1–37.

Tang, Z., Tang, Y., Li, C., Cao, J., Chen, G., & Lin, R. (2021). A fast local community detection

algorithm in complex networks. World Wide Web, 24(6), 1929–1955.

Thomas, M., Pang, B., & Lee, L. (2006). Get the Out Vote: Determining Support or Opposition

from Congressional Floor-Debate Transcripts. In Proc. Conf. on Empir. Methods in Nat. Lang.

Process. (pp. 327–335).

Tzeng, R.-C., Ordozgoiti, B., & Gionis, A. (2020). Discovering conflicting groups in signed net-

works. Advances in Neural Information Processing Systems, 33, 10974–10985.

Van Laarhoven, T., & Marchiori, E. (2016). Local network community detection with continuous

optimization of conductance and weighted kernel k-means. The Journal of Machine Learning

Research, 17(1), 5148–5175.

Wang, C., Tang, W., Sun, B., Fang, J., & Wang, Y. (2015). Review on community detection

algorithms in social networks. In IEEE International Conference on Progress in Informatics

and Computing (PIC 2015) (pp. 551–555).

Wang, F., Zhang, B., Chai, S., & Xia, Y. (2018). An extreme learning machine-based community

detection algorithm in complex networks. Complexity.

Wang, Z., Li, Z., Yuan, G., Sun, Y., Rui, X., & Xiang, X. (2018). Tracking the evolution of

overlapping communities in dynamic social networks. Knowledge-Based Systems, 157, 81–

97.

Whang, J. J., Gleich, D. F., & Dhillon, I. S. (2013). Overlapping community detection using seed

set expansion. In Proceedings of the 22nd ACM international conference on Information &

Knowledge Management (pp. 2099–2108).

Wu, L., Bai, T., Wang, Z., Wang, L., Hu, Y., & Ji, J. (2013). A new community detection algorithm

based on distance centrality. In The 10th International Conference on Fuzzy Systems and

120

Knowledge Discovery (FSKD 2013) (pp. 898–902).

Xia, C., Luo, Y., Wang, L., & Li, H.-J. (2021). A fast community detection algorithm based on

reconstructing signed networks. IEEE Systems Journal, 16(1), 614–625.

Xiao, H., Ordozgoiti, B., & Gionis, A. (2020). Searching for polarization in signed graphs: a local

spectral approach. In Proceedings of The Web Conference (pp. 362–372).

Xie, J., Chen, M., & Szymanski, B. K. (2013). Labelrankt: Incremental community detection

in dynamic networks via label propagation. In Proceedings of the workshop on dynamic

networks management and mining (pp. 25–32).

Yang, B., Cheung, W., & Liu, J. (2007). Community mining from signed social networks. IEEE

transactions on knowledge and data engineering, 19(10), 1333–1348.

Yang, J., McAuley, J., & Leskovec, J. (2013). Community detection in networks with node at-

tributes. In IEEE 13th International Conference on Data Mining (pp. 1151–1156).

Yuan, L. (2014). Research on community detection and graph partitioning.

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal

of anthropological research, 33(4), 452–473.

Zhang, T., & Wu, B. (2012). A method for local community detection by finding core nodes. In

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

(pp. 1171–1176).

Zhang, X.-K., Ren, J., Song, C., Jia, J., & Zhang, Q. (2017). Label propagation algorithm for com-

munity detection based on node importance and label influence. Physics Letters A, 381(33),

2691–2698.

Zhang, Y., Wu, B., Liu, Y., & Lv, J. (2019). Local community detection based on network motifs.

Tsinghua Science and Technology, 24(6), 716–727.

Zhen-Qing, Y., Ke, Z., Song-Nian, H., & Jun, Y. (2012). A new definition of modularity for

community detection in complex networks. Chinese Physics Letters, 29(9), 098901.

121

Zhuang, D., Chang, J. M., & Li, M. (2019). Dynamo: Dynamic community detection by incre-

mentally maximizing modularity. IEEE Transactions on Knowledge and Data Engineering,

33(5), 1934–1945.

122

	List of Figures
	List of Tables
	Introduction
	Literature Review and Motivation
	A Local Quality Metric for Communities
	Introduction
	Related Works
	The Proposed Metric
	Definitions
	Propositions and proofs
	The Proposed Metric

	The Experiments
	dataset
	Small Graphs
	Two Textbook Experiments
	Experimental Results
	Discussion

	Conclusion and Future Work

	A New Fast Local Community Detection Algorithm
	Introduction
	Related Works
	The Proposed Algorithm
	Complexity

	Experimental Results
	Conclusion and Future Works

	A Dynamic Local Community Detection Algorithm
	Introduction
	Related Works
	Dynamic Algorithms
	A Simple Dynamic Structure
	Developed Dynamic P (DevDynaP)

	Experimental Results
	Benchmarks
	Experimental Results on Section 5.3.1
	Experimental Results on Section 5.3.2

	Conclusion and Future works

	A Local Community Detection Algorithm in Signed Networks
	Introduction
	Related Works
	The Proposed Algorithm
	Definitions
	Signed AlgR and Signed AlgM
	The Proposed Algorithm
	Complexity

	Experimental Results
	Dataset
	Evaluation Metrics
	Experimental Results

	Conclusion and Future Works

	Conclusion
	Conclusion and Future works
	Publications

	Bibliography

