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ABSTRACT

Additive Combinatorics

An Extension of the Eventown Theorem

A set family F that is a subset of 2^[n], [n]={1,...,n} is said to have the Eventown
property if all its component sets are even sized and the intersection of any two of
these sets is even sized. The Eventown theorem states a bound for the size of F in
this  case, namely |F| ≤ 2^[n/2]. The aim of the thesis is to discuss a generalization of
the Eventown theorem through the lens of additive combinatorics.
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1 Introduction

We consider a set family F ⊂ 2[n]. Here, [n] just denotes the set of natural num-

bers {1,2,3, ...,n} and 2[n] being its power set. We impose on this set family the

property that the intersection of any two members of F has size divisible by l. In

symbols, ∀ A,B ∈ F , we have l | | A∩B |. We are interested in bounds on the set

F . The well-known Eventown theorem states the following with respect to the

case l = 2.

Theorem 1.1. When l = 2, we have | F |≤ 2⌊n/2⌋.

Following the reference [1], the aim of this document is to show that in the

general case for l, i.e | F |≤ 2⌊n/l⌋, we may establish the following theorem.

Theorem 1.2. Let l be a positive integer. Then there exists k=k(l) such that for ev-

ery positive integer n, the following holds. Let F ⊂ 2[n] such that the intersection

of any k distinct elements of F is divisible by l. Then | F |≤ 2⌊n/l⌋+c, where c =

c(l,k) is a constant, and c = 0 if l | n and n is sufficiently large.

Thus we aim to establish a bound that is dependent on l but is ultimately

independent of l when l divides n and n is chosen appropriately.
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2 Preliminaries

We establish defintions that will be useful.

• A family F is atomic, if there exist disjoint sets A1, . . . ,Ad ∈ [n] such that

F is the family of all sets F satisfying any of the two following conditions:

1) Ai ∈ F 2) Ai ∩F = φ for every i ∈ [d] and F contains no element not

covered by the set Ai. The sets A1 . . .Ad are called the atoms of F .

• S(n, l) is the atomic family such that d = ⌊n/l⌋ and all Ai such that i ∈ [d]

have size l.

• We also need to establish a measure on the size on a set family F , for which

we assign the dimension of the subspace ⟨F ⟩ spanned by the characteristic

vectors of the sets in F over some field F.

• Given i, j ∈ [n], i and j are twins for F if 1) every F ∈ F either contains

both i, j or neither of them, and 2) there is at least one F ∈ F such that

i, j ∈ F . A set of coordinates T ⊂ [n] is called a set of twins if 1) any pair of

elements in T are twins, or | T |= 1. Being twins is an equivalence relation,

and T is a maximal set of twins if it is a complete equivalence class of the

twins relation.

We also establish some notation that is useful.

• Zl is the ring of integers modulo l, and if p is a prime, we write the field Fp.
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• R is a commutative ring with unity.

• For any vector v ∈ Rn, v(i) denotes the ith coordinate of v.

• The support of v = {i ∈ [n] : v(i) ̸= 0}

• ⟨F ⟩ is the span, where F ⊂ Rn

• If A ⊂ [n] and F ∈ Rn, then F |A is the restriction of F to the coordinates in

A.

• For vectors v,w ∈ Rn, let v.w be the vector in Rn defined as (v.w)(i) =

v(i)w(i) for i ∈ [n].
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3 Atomicity and k closed families

Here, we establish a stronger form of Theorem 1.2 which will eventually help us

prove it. To this end, we consider some more definitions. F is non-reducible if F

does not vanish on any of the coordinates, i.e ∄ i such that v(i) = 0 for all v ∈ F .

Define F ·F = {v ·w : v,w ∈ F}, where v ·w is the coordinate-wise product,

i.e. v.w = (v1w1, . . . ,vnwn). Define vk = v · ... · v and F k = F · ... ·F , where the

products contain k terms. Also define a norm ||v||= ∑
n
i=1 v(i). Note here that we

do not mean a norm in the regular sense, but as a convenient way of describing

the sum of coordinates. A set F ⊂ Zn
ℓ is k-closed if ||v|| = 0 for every 1 ≤ i ≤ k

and v ∈ F i. Thus a coordinate wise product gives us new vectors if you take the

product of the vector space with itself up to k times. If the sum of the coordinates

of the vectors is 0, the vector space is k-closed.

Based on these definitions, we have the following observations: If F ⊂ Zn
l

is k-closed, then ⟨F ⟩ is also k-closed. Also, if F ,F ′ ⊂ Zn
l , then ⟨F ·F ′⟩ =

⟨F ⟩ · ⟨F ′⟩.

We note some important properties of twins. Let F ⊂ {0,1}n.

If F is non-reducible, then the maximal sets of twins for F form a partition

of [n]. Also, for every k ≥ 1, the family
⋃k

i=1 F i has the same sets of twins as F .

We now show that if F ⊂ 2[n] is such that the intersection of any k not neces-

sarily distinct elements of F has size divisible by ℓ, then |F | ≤ 2⌊n/ℓ⌋, given k is

sufficiently large with respect to ℓ. We also show that if F is close to being ex-

tremal, then F must be a subfamily of (an isomorphic copy of) S(n, ℓ), i.e. equal
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up to a permutation of [n].

Theorem 3.1. Let ℓ be a positive integer, then there exists k such that the following

holds. Let F ⊂ {0,1}n such that F is k-closed over Zℓ. Then |F | ≤ 2⌊n/ℓ⌋. Also,

if |F | > 2⌊n/ℓ⌋−1, then [n] can be partitioned into sets A1, . . . ,Ad,A′ such that Ai

is a maximal set of twins for F for i ∈ [d], |Ai|= ℓ, |A′| ≤ ℓ−1, and F vanishes

on A′.

The Eventown theorem is based on sets has an analogous vector space ver-

sion, where set intersection has vector space dot product as described above as

the analogue.We consider an extension of this where scalar products are replaced

with bilinear forms.

Lemma 3.2. (Bilinear form lemma) Let F be a field, let b1, . . . ,bn ∈ F, let z be

the number of coefficients among b1, . . . ,bn that are zero, and let b : Fn ×Fn → F

be the bilinear form defined as b(v,w) = ∑
n
i=1 biv(i)w(i) where v = (v1 . . .vn),w =

(w1 . . .wn). Let V < Fn such that b(v,w) = 0 for every v,w ∈ V . Then dim(V ) ≤
1
2(n+ z).

Proof. Consider a linear transformation T : Fn → F with T (v) = (b1v1, . . . ,bnvn).

Let M be the n×n diagonal matrix with diagonal entries b1, . . . ,bn. Let W = {Mv :

v,∈V}<Fn. Then, dim(kerM) = z, since T makes precisely z coordinates vanish.

Hence, dim(W )≥ dim(V )− z. By definition, W = Im(T ), and W is orthogonal to

V . Therefore, dim(V )+dim(W )≤ n, which implies dim(V )≤ 1
2(n+ z).

We now show that if ℓ = pα is a prime power, and F ⊂ {0,1}n is k-closed
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over Zℓ for some large constant k, then most sets of maximal twins for F must

have size divisible by ℓ, provided that the dimension of ⟨F ⟩p is large. First, we

consider ℓ to be prime.

Lemma 3.3. (Prime lemma) Let V < Fn
p, let A1, . . . ,Ad be a partition of [n] into

twins for V , and suppose that V is 2-closed. If dim(V ) = d−h, then at least d−2h

of the numbers |A1|, . . . , |Ad| are divisible by p.

Proof. For i ∈ [d], let bi = |Ai| and let b be the bilinear form defined as in Lemma

3.2. Let φ : V → Fd
p be the linear map defined as φ(v)(i) = s if v|Ai is the constant

s vector. Thus every vector in V takes the same value on every ’block’. Then φ is

an injection, so dim(φ(V )) = dim(V ) = d −h. Also, for every u,v ∈ V , we have

||u · v|| = b(φ(u),φ(v)), so we have b(x,y) = 0 for every x,y ∈ φ(V ), since V is

2-closed. But then by Lemma 3.2, if z is the number of zeros among b1, . . . ,bd ,

then dim(φ(V ))≤ 1
2(d + z), so z ≥ d −2h.

Lemma 3.4. (Prime power lemma) Let p be a prime and α ∈ Z+. Let F ⊂

{0,1}n be 2(p+α)-closed over Zpα , let dim(⟨F ⟩p) = d, and let A1, . . . ,Ad,B be

a partition of [n] such that Ai is a set of twins, and dim(⟨F |B⟩p)≤ h. Then at least

d −2αh of the numbers |A1|, . . . , |Ad| are divisible by pα .

Proof. Let V = ⟨F ⟩p. We use induction on α . The case α = 1 follows from

Lemma 3.3. Let α > 1. Then by our induction hypothesis, at least k = d −

(2α − 2)h of the sets A1, . . . ,Ad have size divisible by pα−1. Without loss of

generality, let these sets be A1, . . . ,Ak. Also, let B′ = Ak+1∪·· ·∪Ad ∪B. Note that
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dim(V |B′)≤ dim(V |B)+(d−k)≤ h+d−k. Therefore, V contains a subspace W

such that dim(W )≥ d −dim(V |B′)≥ k−h and W vanishes on B′.

We remark that for every w∈W there exists some w′ ∈ ⟨F ⟩pα such that w′≡w

(mod p). Let β be the smallest number such that β > α and β = 1 (mod p−1),

then β <α+ p. As F is 2β -closed, for every u,v∈W we have that ||(u′)β ·(v′)β ||

is divisible by pα . However, note that (w′)β ≡ w (mod p), and if w(i) = 0 (over

Fp) for some i ∈ [n], then pα | (w′)β (i).

For i ∈ [k], let A′
i be a set of size |Ai|/pα−1, and let A′ =

⋃k
i=1 A′

i. Define the

linear map φ : W → FA′
p as follows. If w ∈ W , i ∈ [k], and w|Ai is the constant s

vector, then φ(w)|A′
i

is the constant s vector. Then we see that φ is an injection,

so dim(W ) = dim(φ(W )). Also, for every u,v ∈ W , we have ||(u′)β · (v′)β || ≡

pα−1||φ(u) ·φ(v)|| (mod pα). So we must have ||x ·y||= 0 for every x,y ∈ φ(W ).

Let z be the number of sets among A′
1, . . . ,A

′
k, whose size is divisible by p. We can

apply Lemma 3.3 to conclude that z ≥ k−2(k−dim(φ(W )))≥ k−2h ≥ d−2αh.

As z is also the number of sets among A1, . . . ,Ak whose size is divisible by pα .

This concludes the proof.

For the next lemma, we admit the following theorem from [1].

Theorem 3.5. Let F ⊂ {0,1}n, let F be a field, and suppose that dim⟨F ⟩ = d

and dim⟨F ·F ⟩= d+h. Then [n] can be partitioned into d+1 sets A1, . . . ,Ad,B

such that Ai is a maximal set of twins for F for i ∈ [d], and dim⟨F |B⟩ ≤ 2h.

Lemma 3.6. (Small dimension lemma) Let p be a prime, and α, t ∈ Z+. Let

F ⊂ {0,1}n such that F is non-reducible and 2t+1(p+α)-closed over Zpα . Let
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A1, . . . ,Ad be the unique partition of [n] into maximal sets of twins, and let

B =
⋃

i∈[d]
|Ai |̸≡0 (mod pα )

Ai.

Then dim(⟨F |B⟩p)≤ 6nα

t .

Proof. Let F0 = F , and for i = 1,2, . . . , t, let Fi = Fi−1 ·Fi−1. Remark that

Fi−1 ⊂ Fi and Fi is 2t+1−i(p+α)-closed over Zpα , and A1, . . . ,Ad is also the

unique partition of [n] into maximal sets of twins for Fi. As dim(⟨Fr⟩p) is mono-

tone increasing, there exists 0 ≤ r < t such that

dim(⟨Fr+1⟩p)≤ dim(⟨Fr⟩p)+
n
t
.

Let d′ = dim(⟨Fr⟩p). Applying the theorem above, we get that [n] can be par-

titioned into d′+ 1 sets A1, . . . ,Ad′,C such that Ai is a maximal set of twins for

Fr, and dim(⟨Fr|C⟩p) ≤ 2n
t . But then as Fr is 2(p + α)-closed, we can ap-

ply the Primepower lemma to conclude that at least q = d′− 4nα

t of the numbers

|A1|, . . . , |Ad′| are divisible by pα . Without loss of generality, let A1, . . . ,Aq be the

sets of twins whose sizes are divisible by pα . Let D =C∪Aq+1 ∪ ·· ·∪Ad′ . Then

B ⊂ D, and noting that dim(⟨Fr|D\C⟩p) ≤ d′−q, and F ⊂ Fr, we get the chain

of inequalities

dim(⟨F |B⟩p)≤ dim(⟨Fr|D⟩p)≤ (d′−q)+dim(⟨Fr|C⟩p)≤
4nα +2n

t
≤ 6nα

t
.

8



This finishes the proof.

We admit a final lemma we need for the proof of Theorem 3.1 by Odlyzko [4].

Lemma 3.7. Let p be a prime and V < Fn
p. Then |V ∩{0,1}n| ≤ 2dim(V ).

Proof of Theorem 3.1. Write ℓ= pα1
1 . . . pαs

s , where p1, . . . , ps are distinct primes.

We show that k = 2t+1 maxr∈[s](pr+αr) suffices, where t = 12ℓ∑
s
r=1 αr. We want

to show the following. Let F ⊂ {0,1}n such that F is k-closed over Zℓ.

(1) Then |F | ≤ 2⌊n/ℓ⌋.

(2) If |F |> 2⌊n/ℓ⌋−1, then [n] can be partitioned into sets A1, . . . ,A⌊n/ℓ⌋,A′ such

that Ai is a maximal set of twins for i ∈ [⌊n/ℓ⌋], |Ai| = ℓ, |A′| ≤ ℓ− 1, and

F vanishes on A′.

We use induction on n. Let n ≤ 6sℓ. Let A1, . . . ,Ad,A′ be a partition of [n]

such that Ai is a maximal set of twins for F for i ∈ [d], and F vanishes on A′.

Then |F | ≤ 2d . As k ≥ n, the characteristic vector of Ai is contained in (⟨F ⟩ℓ)k.

Take v ∈ F such that v|Ai is the all 1 vector 1, and let J be the set of j ∈ [d]\{i}

such that v|A j is 1. For each j ∈ J, since Ai,A j are maximal sets of twins, there is

u j ∈F such that either u j|Ai = 1 and u j|A j = 0, or the other way around. Let J1 be

the set of j of the first type, and J2 the set of j of type two. Then the product of u j

over j ∈ J1 and (v−u j) over j ∈ J2 is the characteristic vector of Ai, as required.

Now, since F is k-closed, ℓ divides |Ai| for i ∈ [d]. But then d ≤ ⌊n/ℓ⌋, and we

are done with (1). Also, if |F |> 2⌊n/ℓ⌋−1, we must have d = ⌊n/ℓ⌋, which is only

possible if all the sets A1, . . . ,Ad have size ℓ. Therefore, (2) also holds.
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Now, on the other hand, let n> 6sℓ. First, suppose ∃ A⊂ [n] such that ℓ divides

|A| and A is a set of twins for F . Then the family F ′ = F |[n]\A is also k-closed

over Zℓ and |F ′| ≥ 1
2 |F |. By our induction hypothesis, we have |F ′| ≤ 2⌊(n−ℓ)/ℓ⌋,

so we get |F | ≤ 2⌊n/ℓ⌋, and (1) indeed holds. If |F | > 2⌊n/ℓ⌋−1, then |F ′| >

2⌊(n−ℓ)/ℓ⌋−1, so by our induction hypothesis there exists a partition of [n]\A into

sets A1, . . . ,A⌊(n−ℓ)/ℓ⌋,A′ satisfying (2) with respect to F ′. Setting A⌊n/ℓ⌋ = A, the

sets A1, . . . ,A⌊n/ℓ⌋,A′ satisfy (2) with respect to F . So to to finish the proof, it is

enough to show that if |F |> 2⌊n/ℓ⌋−1, then F has a set of twins of size divisible

by ℓ. Next, we show that if I ⊂ [n] is large, then the dimension of ⟨F |I⟩p cannot

be too small for any prime p.

We consider the following ’Coordinates’ lemma: Let p be a prime and I ⊂ [n]

such that |I| ≥ ℓ. Then

|I| ≤ ℓdim(⟨F |I⟩p)+3ℓ.

Proof. Let V = ⟨F |I⟩p and d = dim(V ). Then |V ∩{0,1}I| ≤ 2d by Lemma 3.7.

Hence ∃ v ∈ {0,1}I and F ′ ⊂ F such that w|I = v for every w ∈ F ′, and |F ′| ≥

|F |/2d . Let 0 ≤ m ≤ ℓ− 1 such that ||v|| ≡ m (mod ℓ), and in every w ∈ F ′,

replace the coordinates in I with m coordinates of 1 entries. This gives a family

F ′′ ⊂ {0,1}n−|I|+m such that F ′′ is k-closed over Zℓ and |F ′′|= |F ′| ≥ |F |/2d .

Therefore, by our induction hypothesis, we have

2⌊n/ℓ⌋−d−1 <
|F |
2d ≤ |F ′′| ≤ 2⌊(n−|I|+m)/ℓ⌋ < 2⌊n/ℓ⌋+2−|I|/ℓ.
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Comparing the left- and right-hand-side gives the required inequality |I| ≤ ℓd +

3ℓ.

Assume that F is non-reducible, because otherwise we are immediately done

by applying our induction hypothesis. Let A1, . . . ,Ad be the unique partition of

[n] such that Ai is a maximal set of twins for F . Let r ∈ [s], and apply the Small

dimension lemma to F with respect to the prime power pαr
r . Let

Br =
⋃

i∈[d]
|Ai |̸≡0 (mod pαr

r )

Ai.

As F is 2t+1(pr +αr)-closed, we get that dim(⟨F |Br⟩pr) ≤
6nαr

t . But then by

the Coordinates lemma we also have |Br| ≤ 6nαrℓ
t + 3ℓ. Let B =

⋃s
r=1 Br, then

|B| ≤ ∑
s
r=1 |Br| ≤ 3sℓ+ 6nℓ

t ∑
s
r=1 αr < n, where the last inequality holds by the

choice of t as well as the fact that n > 6sl. Note that B is the union of those

maximal sets of twins Ai where |Ai| is not divisible by ℓ. Therefore, as |B|< n and

A1, . . . ,Ad form a partition of [n], there must exists j ∈ [d] such that ℓ divides |A j|.

This concludes the proof.
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4 Proof of the Main Result

In this section, we show how to deduce Theorem 1.2 from Theorem 3.1. We start

with the following variant well-known Oddtown theorem.

Lemma 4.1. (Oddtown lemma) Let ℓ,m,n be positive integers.

Let A1, . . . ,Am,B1, . . . ,Bm ⊂ [n] such that ℓ ∤ |Ai ∩Bi| for i ∈ [m], but ℓ divides

|Ai ∩B j| for i ̸= j. Then m ≤ sn, where s is the number of distinct prime divisors

of ℓ.

Proof. Write ℓ = pα1
1 . . . pαs

s , where p1, . . . , ps are distinct primes. Let vi and wi

be the characteristic vectors of Ai and Bi over Q, respectively. Let t = ⌈m/s⌉,

then there exists r ∈ [s] such that for at least t of the indices i ∈ [m], we have that

|Ai ∩Bi| is not divisible by pαr
r . Without loss of generality let these t indices be

1, . . . , t. We show that v1, . . . ,vt are linearly independent (over Q), which then

implies t ≤ n and m ≤ sn.

Suppose this is not the case, then ∃ c1, . . . ,ct ∈ Z, not all zero, such that

∑
t
i=1 civi = 0. We can assume that at least one of c1, . . . ,ct is not divisible by

pr, otherwise we can replace ci with c′i = ci/pr for every i ∈ [t]. Let k ∈ [t] be an

index such that pr ∤ ck. Consider the equality

0 =

〈
t

∑
i=1

civi,wk

〉
=

t

∑
i=1

ci|Ai ∩Bk|.

We have pαr
r | ci|Ai ∩Bk| if i ̸= k, and pαr

r ∤ ck|Ak ∩Bk|, so pαr
r ∤ ⟨∑t

i=1 civi,wk⟩,

contradiction.
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We consider the following definition. F ⊂ 2[n] is weakly k-closed over Zℓ if

the intersection of any k distinct elements of F is divisible by ℓ. Additionally,

F ⊂ 2[n] is k-closed over Zℓ if the family formed by the characteristic vectors of

the elements of F is k-closed over Zℓ. So F is k-closed over Zℓ if and only if the

intersection of any k not necessarily distinct elements of F is divisible by ℓ. We

admit following lemma, for which the case ℓ= 2 is found in [5].

Lemma 4.2. (Weakly closed lemma) Let ℓ,k be positive integers, and let s be the

number of distinct prime divisors of ℓ. Let F ⊂ 2[n] such that F is weakly k-

closed over Zℓ. Then there exists F ′ ⊂ F such that |F ′| ≥ |F |− sk2n, and F is

k-closed over Zℓ.

The Weakly closed lemma combined with Theorem 3.1 implies that if F ⊂

2[n] is weakly k-closed over Zℓ, then |F | ≤ 2⌊n/ℓ⌋+ sk2n. In order to improve the

term sk2n to a constant, we use the second part of Theorem 3.1

Proof of Theorem 1.2. Let d = ⌊n/ℓ⌋. Let F ⊂ {0,1}n such that F is weakly k-

closed over Zℓ. Then by Lemma 4.2, there exists F ′ ⊂F such that |F ′| ≥ |F |−

sk2n, and F is k-closed over Zℓ, where s is the number of distinct prime divisors

of ℓ. If |F ′| ≤ 2d−1, then |F | ≤ 2d−1+ sk2n < 2d, where the last inequality holds

if n is sufficiently large.

Suppose that |F ′| > 2d−1 and |F | ≥ 2d , otherwise we are done. Then by

Theorem 3.1, [n] can be partitioned into sets A1, . . . ,Ad,A′ such that Ai is a maxi-

mal set of twins for F ′ for i ∈ [d], |Ai| = ℓ, |A′| ≤ ℓ− 1, and F ′ vanishes on A′.
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Let S ⊂ {0,1}n be the atomic family containing all possible 2d sets C such that

C∩Ai ∈ { /0,Ai} for every i ∈ [d]. Then F ′ ⊂ S and |S \F ′| ≤ sk2n. Also, if n is

large enough, ∀ i ∈ [d] we can find k− 1 distinct sets Bi,1, . . . ,Bi,k−1 ∈ F ′ such

that Ai =
⋂k−1

j=1 Bi, j. F ′ contains a set of the form Ai ∪Aa ∪Ab for some a,b, as

the number of such sets in S is at least
(d−1

2

)
> sk2n, let this set be Bi,1. Also F ′

contains k−2 sets that contain Ai but do not contain Aa and Ab as the number of

such sets in S is 2d−3 > sk2n+ k. Let these k− 2 sets be Bi,2, . . . ,Bi,k−1. Then

Ai =
⋂k−1

j=1 Bi, j.

Let F ∈ F \ S. ∀ i ∈ [d], we have Ai ⊂ F or Ai ∩F = /0, as the size of Ai ∩

F = Bi,1 ∩ ·· · ∩Bi,k−1 ∩F must be divisible by ℓ. Now, as F /∈ S, we must have

F ∩A′ ̸= /0. But for any H ⊂ A′, where H ̸= /0, there are at most k− 1 elements

F ∈ F \ S such that F ∩A′ = H, else we would have k distinct F1, . . . ,Fk ∈ F

with |F1 ∩ ·· · ∩Fk| ≡ |H| ̸≡ 0 (mod ℓ), which is a contradiction. So we see that

|F \S| ≤ k2|A
′| ≤ k2ℓ−1, and if ℓ | n then F ⊂ S. This concludes the proof.
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