
Nullification,
a coercion-resistance add-on for e-voting protocols

Mahdi Nejadgholi

A Thesis
in

The Concordia Institute
for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Master of Applied Science (Information and Systems Engineering) at
Concordia University

Montréal, Québec, Canada

August 2022

© Mahdi Nejadgholi, 2022

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mahdi Nejadgholi
Entitled: Nullification,

a coercion-resistance add-on for e-voting protocols

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Amr Youssef
Chair and Examiner

M. Mannan
Examiner

Jeremy Clark
Thesis Supervisor

Approved by
Z. Patterson, Graduate Program Director

August 1, 2022
Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Nullification,
a coercion-resistance add-on for e-voting protocols

Mahdi Nejadgholi

Coercion is one of the remaining issues on internet voting. Many developing

countries are prone to this problem due to lower income rate. In this study, a novel

coercion-resistant protocol has been proposed that can be integrated with previously

proposed e-voting systems. We call it nullification. We present it as a part of the Vo-

teXX e-voting protocol that has been designed and implemented through this study.

Nullification gives the voter a strategic advantage over the coercer. The voter can

share her keys with a trusted proxy, called a nullifier, for later flipping that vote.

Integrity and ballot secrecy are provided simultaneously through the use of zero-

knowledge proofs, specifically Σ-protocols. We show how our approach is different

from (and potentially composable with) re-voting or panic password techniques that

have been previously proposed in the academic literature.

Through designing this protocol, we solve several issues, design new Σ-protocols

and protocols for the secure evaluation of basic logic functions like exclusive-or (xor)

under encryption: True XOR and Online XOR have been proposed that improves

the previously proposed Mix and Match protocol for secure multi-party computation

of an arbitrary function under constrained input domain.

iii

Acknowledgments

To

Roya, the meaning of my life, who would always be with me. Whatever that I emanate,

would be her, shining through me.

Ghasem, my kind and generous father, Vahedeh, Amin, Sara and Sam who were

the joy of my life and that bright dot that kept me fighting forward.

Mj, whom the words would shatter her perfection and peacefulness. She tripped me to

corners of being, showed me the secrets of life, death and the vast world in between.

The House Farahanis1, family members, brothers who had fought beside me in this

dark era. North remembers.

Nafise, Bahar and Arash, kind friends that I could not survive without them.

Sir Jeremy Clark, a family member, a safe haven, a genius and a decent mentor.

Researching under his supervision was a unique, delightful and adventurous journey.

Sir Mohammad Mannan and Sir Amr Youssef, kind, trustworthy and understand-

ing faculties who have showed me, there is still hope in Academia.

Sir David Chaum, a beautiful mind, a kind soul who proved me that I know almost

nothing, contained my wild spirit and believed in me.

SirAlan Sherman, a keen researcher and the rook of the castle, and Sir Bart Preneel,

a master-mind and a master-piece. I was so fortunate to learn from them weekly.

Dear Rick Carback, who is a colorful rainbow of various talents and emotions and

dear Mario Yaksetig, my kind, knowledgeable and “dope” friend and colleague.

1except Jalal; Ali Agha included.

iv

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 A Brief History of Voting . 1

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Publications . 3

1.5 Structure . 4

2 Background 5

2.1 Foundations of Security . 5

2.1.1 Availability . 6

2.1.2 Integrity . 6

2.1.3 Confidentiality . 6

2.1.4 Usability . 6

2.2 E-voting Requirements Glossary . 6

2.2.1 Functionality . 7

2.2.2 Usability and Deployability . 7

2.2.3 Correctness . 7

2.2.4 Secrecy . 8

v

2.2.5 Malfeasance Resistance . 8

2.2.6 Coercion and Deception Resistance 8

2.3 A Pinch of Cryptography . 9

2.3.1 Intractable Problems . 10

2.3.2 ElGamal Cryptoscheme . 11

2.3.3 Secure Multi-Party Protocols . 12

2.3.4 PET, Plain Equality Test . 13

2.3.5 Knowledge Proofs . 14

2.3.6 Sigma Protocols . 15

2.4 Threats to Online Voting Systems . 19

2.4.1 Untrusted Platforms . 19

2.4.2 Online Denial-of-Service Attacks . 20

2.4.3 Unauthorized Intervention . 20

3 VoteXX 24

3.1 Definitions . 24

3.2 Entities . 26

3.3 Assumptions and Thread Model . 28

3.4 Phases . 28

3.5 Protocol . 29

3.6 Security Analysis (Sketch) . 34

3.6.1 Registration . 34

3.6.2 Voting . 37

3.6.3 Provisional Tally . 37

3.6.4 Nullification . 38

3.6.5 Final Tally . 39

3.7 Implementation . 39

vi

4 Nullification 42

4.1 Design . 43

4.1.1 Initial State . 43

4.1.2 Single-Voter Construction . 44

4.1.3 Receipt Verification . 54

4.1.4 Expanding to N Voters . 56

4.1.5 Aggregation . 57

4.1.6 Complexity . 61

4.2 Proof Sketch . 62

4.2.1 Terminology . 62

4.2.2 Completeness . 66

4.2.3 Special Soundness . 67

4.2.4 Special Honest Verifier Zero-Knowledge 70

4.2.5 Fiat-Shamir Heuristics . 73

4.3 Improvements . 73

4.3.1 Caveats . 73

4.3.2 Secure Nullification . 75

4.3.3 Efficient Nullification . 81

5 Wrap-up 83

5.1 Discussions . 83

5.1.1 Generalization . 83

5.1.2 Nullification or Voting . 85

5.1.3 Nullification, not Revoting. 85

5.1.4 Nullification and Liquid Democracy 85

5.1.5 Game Theoretic Analysis . 86

5.2 Future Works . 87

5.2.1 Improving the Design and Implementation 87

5.2.2 Compulsory Lubrication . 87

vii

5.2.3 Literature Disambiguation . 88

Bibliography 90

viii

List of Figures

1 Phases of VoteXX e-voting Protocol . 31

2 Nullification Receipt Construction . 45

3 Interactive version of Nullification Protocol 65

4 Nullification protocol using Single-bit Random Oracle 71

5 Optimizing mix and match XOR. 76

6 Mixing phase of Mix and Match protocol 78

7 True XOR. (a) initial-state (b) after a sample mixing 79

8 The inner structure of Online XOR function 79

9 Proof of shuffle of Online XOR evaluation table 80

10 The process of Topic Extraction over academic e-voting papers 88

11 WordCloud of the extracted topics . 89

ix

List of Tables

1 Bulletin Board Nullification table . 58

2 Bulletin Board Nullification sub-table of encryption 59

3 Nullification Lookup table, a closer look . 61

4 Number of exponentiations for each Nullification phase 62

x

Chapter 1

Introduction

“Fear is the path to the Dark Side. Fear leads to anger, anger leads to hate, hate leads to

suffering.”

- Yoda

1.1 A Brief History of Voting

Surowiecki in Wisdom of Crowds [75] collected various exmaples of the benefits of

Collective Decision Making. We observe the concept has been utilized in various

fields of study; from genetic algorithms [30] to artificial brains [67] to take advantage

of those benefits. A close term to collective decision making is democracy. Although

the word literally means the governance of people, it has been misused to either

empower or enslave nations, according to Graeber [31]. He argues that we are still

far from a democratic world, where all lives matter. This study is a small effort in

that direction.

The most common voting practice is still paper-based voting. However, there

have been flaws in this voting method that pushed countries to try electronic voting

systems [41]. Haitian elections is an example of corruption in paper-based voting,

1

where the 2015 presidential election was invalidated due to fraudulent paper ballots

used to stuff the ballot boxes [11]. The fraud led to lack of trust in Democratic process

in Haiti [46]. This attack that is called Ballot Stuffing is still being used to exploit

the integrity of nation-wide paper-based elections [7, 22].

Due to these evident vulnerabilities, pioneering countries such as Estonia, Switzer-

land and United States have moved forward to electronic voting1 or even online vot-

ing2 to reduce costs, generate faster tallies, improve usability, accommodate disable

voters, and, in their view, implement better security model over the whole election

process.

However, there is another problem even with the electronic or online voting pro-

cess. Without a private ballot booth to cast their ballots, voters can get bribed or

forced to vote in a particular way. In elections with a small margin of victory3, an

attacker could change the result of the election by buying a few hundred votes or

coercing this amount of voters. Developing countries are more prone to vote buying

due to the lower minimum wage [74]. Mass vote buying patterns have been observed

in Nigeria [10], Argentina [74], Kenya [47, 55], Philippines [62]. The coercion problem

is still an active concern and an open field of study.

1.2 Motivation

To promote democracy— that is author’s main motivation— online voting is an

interesting approach that allows inexpensive and more flexible elections. However,

online voting has three big problems: Denial of Service, coercion, and untrusted
1or E-voting
2or Internet Voting
3For instance, Al Gore versus George W. Bush presidential election in 2000 that a five-week war

over the result of U.S. presidential election in Florida ended up with a margin less than six hundred
votes. Also, Minnesota Senate election in 2008 where Al Franken won the election with less than
% 0.01 of the votes. In these cases, flipping of a few hundred votes could change the result of the
election.

2

platforms. Without mitigating these three issues, online voting will be hindered

in deployment or controversial if used. Of the three problems, we study the second

because it is the furthest from being solved. Also we found use cases for fully coercion-

free online election systems in developing countries and narrowly-margined elections

(see Section 1.1). We will argue in this thesis that currently proposed solutions either

do not work very well or assume too much of voters. We intended to propose a more

usable and simple approach like re-voting (tell a friend to help) but lets you evade

coercion at any time (unlike revoting) and works even if the adversary steals all your

keys which is a realistic threat with malware or physical possession of devices.

1.3 Contributions

The key novel contributions of this study are:

1. Proposing the Nullification Σ-protocol that enables a voter’s representative (i.e.,

the Nullifier) to flip a vote without revealing any information about the voter.

2. Full implementation of the nullification protocol as a phase of VoteXX e-voting

protocol.

3. Improving an existing generic protocol (Mix and Match) for the specific task of

computing binary XORs under encryption.

1.4 Publications

Through this program, three peer-reviewed have been published which are listed

below. This thesis is an expansion of the third paper with some references to the

second paper.

3

1. A study of oracle approximation over deep learning test suites that was fo-

cused on measuring the test codes’ mathematical errors in famous deep learn-

ing frameworks such as Tensorflow, Pytorch and Keras [52]. This appeared at

IEEE/ACM ASE 2019.

2. A study of the ballot secrecy problem in liquid democracy systems where we pin-

pointed some theoretical limits to performing a secret-ballot liquid election [53].

This appeared at VOTING co-located with Financial Cryptography 2021.

3. A proposed coercion-resistant voting system called VoteXX [17]; accepted and

to appear at E-VOTE-ID 2022. This thesis emphasizes my contributions to the

project, as listed in Section 1.3.

1.5 Structure

Thesis structure is as follows. In Chapter 2, a brief introduction over the security

and cryptographic background has been presented. Chapter 3 is to explain the Vo-

teXX voting system design as a coercion-resistant e-voting system. In Chapter 4, the

construction of the baseline nullification module has been proposed, analyzed and

improved. Finally Chapter 5 has been devoted to future works in different directions

on subjects around security improvements of online voting systems.

4

Chapter 2

Background

“Cryptography is typically bypassed, not penetrated.”

- Adi Shamir

First, let’s look through the primary concepts of Voting Security and Cryptography

and also some of the academic and real-world attempts to design a secure e-voting

system.

2.1 Foundations of Security

Looking at the big picture, hacking an election is an attack with minimal casualties

and huge influence. Insecure elections can lead to an incorrect result, in the case

that it can not be detected or proven. Even in the case of detection, it would end up

causing a scandal and discredit of both the election and the election authorities.

There have been different enumerations of the properties of a secure system, often

demonstrate security as a triangle. In this study, we have used Bishop’s security

requirements [6] which are Availability, Confidentiality and Integrity. Let’s have a

short review of these crucial concepts.

5

2.1.1 Availability

Availability provides assurance that a system can be accessed in a timely manner

when it is needed.

2.1.2 Integrity

Integrity is one of those umbrella terms in cryptography and hence there are various

definitions of system integrity proposed by security experts over the years, all referring

to the trustworthiness of the data and data origin. Also verifiability is another close

term for integrity, We say a process is verifiable if there exists a way for users or

public observers to ensure the different properties of the system, specifically integrity.

2.1.3 Confidentiality

Confidentiality or secrecy is a system property that ensures whether the secret infor-

mation stays hidden for the promised period of time from unauthorized access.

2.1.4 Usability

Bishop’s [6] reduction misses one critical concept. Until recently, usability has been

often been neglected is the fundamental property of an interactive system. The scope

of this study is to design a usable e-voting system that is ‘secure-enough’ in other

aspects.

2.2 E-voting Requirements Glossary

Although there have been various proposed internet voting protocols, there is still

debate on whether internet voting can be a good choice for implement a decision

making process [59]. Different studies mentioned different sets of requirements to

6

define a secure voting system. Here, we mention the most used terms with a small

description and relationship with the three main security properties.

2.2.1 Functionality

Putting it simple, the e-voting system should work. There should be decisive and

indisputable as Chaum mentions in his random sample voting paper [16].

2.2.2 Usability and Deployability

Chaum [16] also payed attention to different aspects of usability and deployability in

the modern world: High voter turnout, well-informed voters, effectiveness of results

and low-cost systems all are well-defined sub-categories. Accessibility—particularly

support for voters with disabilities—is another related property that NIST mentioned

in its 5 essential voting system requirements.

2.2.3 Correctness

The voting result must be accurate. It must be tamper-proof, transparent and

auditable. The correctness requirement has been partitioned into two requirements,

namely capture correctness and counting correctness by Rubin et al. in [68]. Popove-

niuc et al. [65] went one step further and defined correctness for each phase of the

election: named as well-formed presented ballots, well-formed cast, recorded as cast,

and tallied as recorded. Also Popoveniuc mentioned consistency and “recorded as

cast” check as other requirements that imply correctness. Being able to verify each

voter’s eligibility can also be categorized as a correctness property.

7

2.2.4 Secrecy

No one should be able to tell how a voter voted. Note that not all voting systems

use ballot secrecy. Some e-voting systems are being designed to work for open-ballot

systems. Others might hide how voters voted individually, but allow anyone to see a

running-tally of the results as the ballots are coming in. For this thesis, we focus on

strong ballot secrecy and no running tally.

2.2.5 Malfeasance Resistance

The system must be resistant to insider attacks. For this thesis, the main strategy is

to decentralize the power over the election among mutually untrusted parties (e.g.,

the candidate parties).

2.2.6 Coercion and Deception Resistance

We define coercion as a sequence of actions by an arbitrary player that forces the

voter to vote in a particular way that the coercer dictates. Also, we define deception

as the weaker version of coercion that the coercer incentives the voter to vote against

her decision. The incentive might be positive (e.g., in the form of financial benefit),

negative (e.g., harm), or neutral (e.g., propaganda). Both coercion and deception

can lead to the discredit of the election. We categorize coercion into four different

categories:

• Complete Coercion. This is the situation that the coercer has a complete

control for the total period of the election, giving the voter no chance to freely

act. Hirt et al. [37] prove that such a coercer is indistinguishable from the voter

and coercion resistance is not possible under this strong adversarial model.

• Coercion With a Window. In this case, voter would have a time window

8

where they could take an action without coercion (e.g., nullify their vote). The

timing of this window is crucial and impacts the design of a coercion resistance

mechanism.

• No Coercion but Deception. In this case we assume that the voter is not

willing to sell a vote but based on some social or financial problems and a

provided incentive from the coercer, they will cooperate with the coercer. In

the literature it has been called vote-buying.

• No Coercion, Weak Deception and Voter’s Compliance. Under this

circumstance, the vote would be sold by the voter as she wants to discredit the

election as a part of a protest or movement.

An ideal e-voting system would be resiliant toward voter fraud, social manipulation

through advertisement and protect against voter corruption, coercion, vote buying and

vote selling.

2.3 A Pinch of Cryptography

Cryptography uses the science of designing sound and complete procedures over

machines—procedures called algorithms. Algorithm is a broad term but we will use

it here as set of instructions that can be run on a tape. The steps must be precise,

easy to follow, and must reach a termination state.

Complexity theory is the science of comparing algorithms and how efficient they

are. Through the history of the complexity theory, in the 19th century, the notation

of Big-O, O() has been proposed by Bachmann [51] and today, after more than a

century we are still using it in computer science as a measurement of the essential

time or/and space requirements grow when the input size grows. We compute the

time requirement based on behaviour of the algorithm and space based on the growth

9

of the amount of needed memory (in terms of bits, bytes or kilobytes). Efficient

algorithm is an algorithm that solves the problem in probabilistic polynomial time

(PPT-bounded) .

2.3.1 Intractable Problems

Intractable problems or computationally hard problems are the problems that there

is no efficient algorithm to solve them. Intractable problems have a non-negligible

role in cryptography such as designing one-way functions. One of the most famous

Intractable problems, used as the mathematical basis of this thesis, is the discrete

logarithm problem (DLP).

The problem is to find x given y = gx mod p. As it has been well-described by

Boneh[8], Diffie-Hellman key exchange protocol was the beginning of a journey into

morphing Discrete Logarithm problem into various cryptographic applications. Let

g ∈ Gq be a generator and a, b, z ∈r Zq be random exponents. The DL-Problem is

to compute a given < g, ga >. The DDH-Problem is to distinguish < g, ga, gb, gab >

from < g, ga, gb, gz >.

< g, ga, gb, gab > (1)

We assume the computational intractability of the DDH-Problem within Gq , which

implies the intractability of the DL-Problem. It is a fascinating fact that if you start

counting from zero up to infinity, some numbers would show properties out of thin

succession. For instance, given a positive integer n and an integer a co-prime to a,

the multiplicative order of a modulo n is the smallest positive integer k such that

ak ≡ 1modn and this is the basis of the Elgamal crypto-system.

10

2.3.2 ElGamal Cryptoscheme

In 1985, Elgamal [26] has presented a crypto-system based on the Diffie-Helmann

key-exchange [25] based on the intractibility of DDH-problem. The protocol has

been shown below.

ElGamal Crypto-scheme on DL problem

Initial state

• Alice and Bob both know and agreed upon a set of parameters {p, q, g}, where

p is a large prime and p = α · q + 1 and g ∈ Gq generates a finite cyclic group of

prime order q.

• Bob has chosen a random secret x and computes hb where hb = gx mod p. Bob

has also shared hb with Alice previously using a integrity-preserving channel.

• Alice intends to send an encrypted message m to Bob where m is in the form of

{0.1}t bit string of length t.

• There is a channel to share information with satisfactory availability properties.

The bandwidth and memory are sufficient to transfer {0.1}2t bit string of length

2t.

Protocol steps

1. Alice chooses a random value r ∈ Gq and computes a pair of ciphertexts (c1, c2),

where c1 = gr and c2 = m · hbr. Alice sends (c1, c2) to Bob.

2. Bob decrypts the message m using m = cq−x1 · c2 mod p

11

Exponential ElGamal

In the Exponential version, the message m would be blinded using the predefined

generator g. So that, the encryption function Enc(), would be described as

Enc(m, r) ≡ Enc(m) = 〈C1, C2〉 = 〈gr, gm · hr〉 (2)

and decryption function Dec() would be in the form of

Dec(C1,C2) = (C1
sk)−1 · C2 = gm (3)

where h = gsk. The Exponential Elgamal is additively homomorphic, meaning that

Enc(m1) · Enc(m2) = Enc(m1 +m2) (4)

We would use that property to perform calculations under encryption. From now

on, all protocols would be based on the same initial state on Exponential ElGamal

Crypto-Scheme. We will not re-iterate basic assumptions of common knowledge and

satisfactory availability between the involved parties.

2.3.3 Secure Multi-Party Protocols

In [34], Hazay and Lindell explained secure multi-party computation techniques and

constructions. Multi-party protocols is a set of protocols that has have been designed

to perform a secure computation among mutually untrusted parties. In many appli-

cations, we do not want to trust on a central authority, such as electronic auctions,

lotteries and foremost the elections. In these cases, there could be a corrupted au-

thority that would try to damage the system’s fundamental security requirements.

Therefore, We split the power among the parties with the assumption that there is

12

no established trust among them. A secure multi-party protocols would be applied

to ensure 1

1. Privacy; no party should access any information more than its own generated

output.

2. Correctness; each party would receive a correct output of other parties.

3. Independence of Inputs; every corrupted party must choose their inputs inde-

pendently from honest parties’ inputs.

4. Guaranteed Output Delivery; corrupted parties should not be able to interrupt

the honest parties from generating and delivering their outputs. In broader se-

curity domain, this property is commonly known as Denial-of-Service resistance

property.

5. Fairness; in multi-party computation protocols, there should be a fairness de-

fined on the distribution of received outputs.

2.3.4 PET, Plain Equality Test

Juels et al. in [39] described the PET protocol as a multi-party protocol that enables

the parties compare two different encryptions to determine whether they contain the

same plaintext or not. Given two encryption, Enc(m1) and Enc(m2), n trustees, T1

to Tn would follow the below protocol:

1. All the trustee calculates Enc(m1 −m2) by

Enc(m1 −m2) = Enc(m1) · Enc(m2)−1 (5)
1There have been several lists of properties for secure multi-party computation. In this article,

the Hazay and Lindell list have been used.

13

Note that if m1 and m2 are equal, then Enc(m1−m2) would be equal to Enc(0).

2. Each trustee Ti chooses a random value ri and calculates

(Enc(m1 −m2))ri =
ri∏
j=1

Enc(m1 −m2) (6)

Note that Enc(0) does not change by homomorphic addition to itself. So by

doing this, if m1 equals to m2, the result would stay as Enc(0). Ti sends

(Enc(m1 −m2))ri to the Election Authority.

3. The Election Authority multiplies the received values and then decrypt it. More

formally,

gm = Dec(
n∏
i=1

(Enc(m1 −m2))ri) (7)

where i ∈ {1, n} and n is the total number of the trustees. If m equals to 0,

it means that m1 and m2 are equal. Otherwise, a random number would be

spitted out and does not reveal any information about m1 or m2.

2.3.5 Knowledge Proofs

Knowledge

We say a machine knows a witness ω if it can compute ω in polynomial time.

Generally speaking, there are two basic proofs around the concept of knowing.

proof-of-knowledge protocols are interactive cryptographic protocols that through it,

a party can prove knowing a piece of information. On the other hand, Zero-knowledge

protocols are cryptographic primitives that are there to prove a statement without

revealing any secret information. To dive deeper, first we have to formally define a

new concept e.g., Knowledge and Relation.

14

Relation

Let R be a binary relation in the form R ⊂ {0, 1}∗×{0, 1}∗ , where the only restriction

is that if (x, ω) ∈ R, then the length of ω is at most p(|x|), for some polynomial p().

For some (x, ω) ∈ R, we may think of x as an instance of some computational problem,

and ω as the solution to that instance. We call ω a witness for x.

2.3.6 Sigma Protocols

Sigma protocols are interactive zero-knowledge proof protocol. Before the Sigma

protocols, life was so hard for cryptographer to propose a zero-knowledge protocol and

prove it formally. Σ-protocols made it really simple to design complicated functions.

Sigma protocols (Σ-protocols) are interactive games that prover P will win if she

can prove the statement S to an honest verifier V without revealing any information

the statement 2. We will talk about the mathematical proof of Zero-knowledge and

Proof-of-knowledge in Chapter. Here, we briefly introduce some basic Σ-Protocols.

Σ-Protocol
A protocol is a Σ − protocol for relation R if it is a three-round public-coin protocol

and the following requirements hold:

1. Completeness: If P and V follow the protocol on input x and private input ω to

P where (x, ω) ∈ R, then V always accepts.

2. Special soundness: There exists a polynomial-time algorithm A that given any x

and any pair of accepting transcripts (a, e, z), (a, e′, z′) for x where e 6= e′, outputs

ω such that (x, ω) ∈ R.

2except the validity of the statement.

15

3. Special honest Verifier zero knowledge: There exists a probabilistic polynomial-

time simulator M , which on input x and e outputs a transcript of the form

(a, e, z) with the same probability distribution as transcripts between the honest

P and V on common input x. Formally, for every x and ω such that (x, ω) ∈ R

and every e ∈ {0, 1}t it holds that

{M(x, e)} ≡ {〈P(x, ω),V(x, e)〉}

where M(x, ω) denotes the output of simulator M upon input x and e, and

P (x,w), V (x, e) denotes the output transcript of an execution between P and V

, where P has input (x, ω), V has input x, and V ’s random tape (determining

its query) equals e.

Schnorr Proof-of-Knowledge

Schnorr protocol[71] is one of the efficient ways to prove knowing a secret without

revealing it.

Non-interactive Schnorr Protocol on DL problem

Initial state

• P and V both know and agreed upon a set of parameters {p, q, g}, where p is a

large prime and p = αq + 1 and g ∈ Gq generates a finite cyclic group of prime

order q. Both parties agreed upon the construction of a statement S where

S = {gω, {p, q, g}} for witness ω.

• P intends to prove knowledge of ω ∈ Gq to V without revealing its value. She

constructs a statement S in the above mentioned structure.

• There is a channel to share information with satisfactory availability properties.

The bandwidth and memory are sufficient to transfer {0.1}t bit string of length

t.

16

Protocol steps

1. P chooses are random value r ∈ Gq and calculates b where b = gr mod p. She also

calculates a strong Fiat-Shamir heuristics enabled challenge c = H(S‖b) mod p

where H is a secure one-way function with no known efficient backdoor with t-bit

length of output. Then, She calculates d = (r + ωc) mod q and sends {b, c, d} to

V.

2. V checks the validity of these two statements:

2.1. c == H(S‖b)

2.2. gd == b ∗ (gω)c mod p

Chaum-Pedersen Proof-of-Membership

Chaum-Pedersen commitment[60]3 is a type of commitment that can fit in additively

homomorphic encryption scheme.

Non-interactive Chaum-Pedersen Protocol on DL problem

Initial state

• P and V both know and agreed upon a set of parameters {p, q, g, h} describing an

Exponential ElGamal Crypto-Scheme. Both parties agreed upon the construction

of a statement S where S = {gω, {p, q, g}} for witness ω.

• P intends to prove knowledge of ω ∈ Gq to V without revealing its value. She

constructs a statement S in the above mentioned structure.

• There is a channel to share information with satisfactory availability properties.

The bandwidth and memory are sufficient to transfer {0.1}t bit string of length

t.

3In the literature it has been often call Pedersen commitment, however it is worth mentioning
that David Chaum had a non-negligible role in the construction of the idea.

17

Protocol steps

1. P chooses are random value r ∈ Gq and calculates b where b = gr mod p. She also

calculates a strong Fiat-Shamir heuristics enabled challenge c = H(S‖b) mod p

where H is a secure one-way function with no known efficient backdoor with t-bit

length of output. Then, She calculates d = (r + ωc) mod q and sends {b, c, d} to

V.

2. V checks the validity of these two statements:

2.1. c == H(S‖b)

2.2. gd == b ∗ (gω)c mod p

Fiat-Shamir Heuristics

Fiat-Shamir Heuristics is a trick to convert an interactive protocol to an non-interactive

protocol that has been proposed by Amos Fiat and Adi Shamir in 1987 [29]. In the

case of Σ-protocols, P would be able to prove S to V in only one single interaction.

Strong Fiat-Shamir heuristics is the case that the P commits to the whole

parameters that involved in constructing the statement.

Conjunction and Disjunction

based on the Cramer et al.’s studies [23], more complicated Σ-protocols can be con-

structed by performing logical AND and OR over smaller Σ-protocols such as Schnorr

and Chaum-Pedersen.

18

2.4 Threats to Online Voting Systems

Although some countries have already forged ahead despite security and privacy vul-

nerabilities, some leading computer scientists such as MIT’s Ronald Rivest admon-

ished 4 that, given current limitations of technology, Internet voting is akin to “drunk

driving.”

Widely used mail-in ballots are not susceptible to malware attacks at the voter’s

end, but they too are vulnerable to undue influence. For instance, a dishonest or

coerced voter might take a video of them filling out, sealing in an envelope, and

mailing the ballot. Similarly, a voter could also covertly take a video of them voting

in a precinct—curiously, in some precincts such videos are even permitted. It should

not be possible for a voter to prove how they voted.

Nonetheless, there are still some extra challenges the make the design of a secure

internet voting system difficult:

2.4.1 Untrusted Platforms

Malware on the voter’s device (e.g., phone) might undetectably modify votes and spy

on voters. Internet voting relies on each voter having an uncompromised device to

vote from. A general framework for this literature is to assume voters have at least

two independent communication channels with the election authority and at most

one is compromised. For example, the task of ballot casting and verification might

be split between the paper-based postal system and a computer [15, 36, 40, 69, 78],

between a computer and a mobile device [35], or assume a single computer cannot

read what is communicated (e.g, via CAPTCHAs [58, 64]).
4At a special workshop on Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA),

EVT/WOTE, 2010.

19

2.4.2 Online Denial-of-Service Attacks

A third issue with online voting is ensuring the vote submission system remains online

and responsive, thwarting both a natural increase in traffic and deliberate subterfuge

through denial of service attacks. Determined adversaries might try to launch an

online attack, including causing outages. For instanse It is also important to mitigate

Flooding attacks on the bulletin board.

2.4.3 Unauthorized Intervention

The lack of a secure physical voting precinct facilitates Coercion, Undue Influence,

including Vote Selling and Vote Buying. There are some occasions that the user may

be under duress or pressure to interact with the system based on the coercer’s intent

and benefit.

Of these challenges, the most elusive has been mitigating Unauthorized Intervention.

Coercion resistance is an extremely important and strong property that is difficult to

achieve, especially for remote voting, where there is no physically-secure voting place

and the machines used to interact with the voting system are untrusted. In the next

section, we will

Coercion Resistance

Coercion Resistance property is to ensure that the user of the system interacts freely

and express her own intent. Informally, a voting system is coercion resistant if and

only if no voter can prove to any coercer that the voter cast a counted ballot according

to the coercer’s instructions. For example, voter Alice cannot prove to a coercer that

Alice cast a ballot that was counted for Trump.

Coercion resistance is at least as strong as receipt freeness. Receipt freeness [5, 57]

usually means that the voter cannot prove how she voted, simply by following the

20

voting protocol. For example, an adversary might contact a voter only after the voter

finishes voting. Coercion resistance [42, 50, 48] is stronger in that the coercer may in

advance instruct the voter to carry out (or not carry out) certain additional actions

that are outside of the voting protocol.

Haines and Smyth [32] surveyed four definitions of coercion resistance and found

that “coercion resistance has not been adequately formalized.” Three of the definitions

are too weak, and the general definition by Kösters [48] is complex and too strong.

To date, researchers have attempted to address vote selling and coercion using three

main approaches.

1. Re-voting5 schemes. VoteAgain [49, 77] makes Revoting schemes more ef-

ficient. This approach is simply letting voters to vote again, nullifying any

previously cast ballots [77, 73, 49]. This assumes the adversary does not co-

erce the voter at the end of the election period, or cannot otherwise lock the

voter out from re-voting (e.g., retain their ID smartcard or change their voting

credential).

2. Panic Passwords also has been call Fake Credential by [42] strategies are

focusing on preparing a voting interface for the voter to have a secret way to

signal EA about being under duress. This approach allows voters to create

fake credentials they can use when voting under coercion [42, 21, 20, 4, 3,

28]. Fake ballots are verifiably removed from the tally without revealing which

ballots were fake, and much academic effort has been devoted to linearizing the

computational cost of this filtering process.

3. Decoy Ballots Random Sample Voting mitigates coercion in part by keeping

secret who are the voters. [16].
5In some studies of the literature, it has been dubbed Multiple Voting schemes.

21

Previous approaches to coercion depend on very strong assumptions. For instance,

some systems assume that the voter cannot be coerced during registration [43]. Others

allow the voter to vote multiple times but assume that the voter can vote freely the

last time. Our nullification approach does not have these limitations. Some systems

attempt to achieve coercion resistance by allowing the voter to modify her vote up

to the end of the voting interval, with a rule that only the last vote counts (e.g.,

see [77]). Others assume the presence of an untappable channel [5, 70]. Depending

on the rule that only the last vote counts is problematic because the coercer could

physically interfere during the final moments of the voting interval. In contrary, in

our system, we assume the voter has atleast a single opportunity at an arbitrary

time during the election period, before or after coercion, to alert a nullifier of their

intention and authorize them to void their ballot.

An important aspect of strong incoercibility is the ability for a voter to use an

untappable channel. It is generally believed that without an untappable channel,

the coercer and voter are indistinguishable and therefore incoercibility is impossible

to achieve [38]. Re-voting assumes the channel is present after a coercive action,

while the use of fake credentials assumes registration is conducted over an untappable

channel.

To prove coercion resistance, it is helpful to consider the strongest possible at-

tack, which involves the voter providing to the coercer all of the voter’s information,

including cryptographic keys. Coercion resistance is challenging because the voter

must be convinced that her vote was correctly cast, collected, and counted, yet she

must be unable to transfer this proof to the coercer.

The system cannot distinguish between different entities that know the voter’s

secrets. Therefore, once the coercer learns the voter’s secrets, the only mitigation

remaining is for the voter to Nullify their vote.

22

Our strategy for resisting coercion involves three ideas.

• First, we introduce the concept of a Nullifier, a covert entity trusted by the voter

to act on the voter’s behalf, and to whom the voter provides certain secrets.

• Second, since we assume the coercer has all of the voter’s secrets (except for

the complete list of the voter’s Nullifiers), we consider the post-casting actions

of the voter, Nullifier, and coercer indistinguishable.

• Third, after casting her ballot, we permit the voter to modify or nullify her

vote, up to the end of the voting interval.

23

Chapter 3

VoteXX

“One of the penalties for refusing to participate in politics is that you end up being governed

by your inferiors.” - Plato

As we have seen in the previous section, one of the most suppressed voting prop-

erties is coercion-resistant. To tackle that issue, we introduce a new internet voting

system, designed by a team of researchers including myself [17].

3.1 Definitions

Since no protocol can be satisfactory to hold in any and every election, we focused

on the elections with the following properties.

1. For simplicity and without losing generality, we assume that it is a binary

election, where there are only two valid choices: “YES” and “NO”. Through the

paper, We have used Y and N subscripts to denote variables and calculations

that are related to “YES” vote and “NO” respectively.

2. The number of voters are less than 10,000. This again does not affect the gen-

erality, as in real world, elections would be broken into geological sub-elections.

24

3. The election consists of five main phases [Setup, Registration, Voting, Nullifica-

tion, Tally] and that authorities have time to sign the previous phase to ensure

the correctness of the protocol.

4. There are two available channels. One is through CMix network with strong

privacy preserving mechanisms that provide network-level anonymity. We refer

to this as the anonymous communication channel (ACS). The other one is secure

connection over TLS. Depending on the entity and the level of privacy if the

action, one of these two would be chosen.

5. There is a secure public key encryption scheme available as a cryptographic

primitive to preserve confidentiality. We used three different symbols to denote

Encryption, JxK, Enc(x) and Enc(x, α), where x is the plaintext and α is the

random value using for encryption.

The signed version of election definition1, SignedElectionConfiguration would be

posted on a public website by the election authority. The election definition should

contain

1. ProtocolVersion. First the version of the protocol would be defined in the con-

figuration file

2. ElectionIdentity. The election process starts by broadcasting ElectionIdentity, a

relatively short (20 characters) human readable string, only including English

capital letters and numbers.

3. ElectionDescription. The Election Description must include the election question

and the possible vote choices. In the case of this study a binary voting system

has been assumed, the vote choice or VoteCode would be in the same format of

the Election identity.
1signed by the Election Authorities

25

4. ElectionTimetable. The UNIX timestamp of start and end of every phase.

5. Cryptoscheme definition. The definition of the applied cryptoscheme would

be mentioned here. In Exponential Elgamal case, the values p, q, g, h must be

included, where p, q, g defines an Elgamal encryption scheme and h is the EA’s

public key.

6. Registrars’ public keys.

7. Addresses. Any address that must be used during the election would be men-

tioned here. Also Election authorities can publish new addresses in case of

Denial of Service attacks. Addresses includes, boot-strapping ledger and bul-

letin board addresses, also the Mixnet endpoint for the Election authorities.

To start generating our own set of election entities based on our requirements, we

have to have a baseline glossary of what is going on in a voting system. For that

purpose, we double-checked the list with NIST E-voting glossary [54] to ensure that

no entity has been missed and no known problem’s sub-space is untouched.

3.2 Entities

There are different roles and entities in VoteXX protocol to let the game to go on.

Here, we enumerate them with a short description.

• Bootstrapping public ledger.would be used for initiating the election. Since

it would be crucial for starting the election, availability of this step is more

important than the privacy. So, the design choice is to use a public memory

to broadcast the initial configuration of the election. Also non-repudiation is a

feature that we cover. So append-only ledger will public read access must be

used. Fortunately, we are living in an era that blockchains have been invented.

26

• Public Bulletin board. Denoted as BB, Bulletin Board would be used to

publish all public information and all the information that is needed for the

further auditing. It will be using strong integrity-preserving mechanisms.

• Anonymous Communication Channel (ACS). We would be using Chaum’s

CMix [18] as a private channel. Mixnets make the communications almost un-

traceable. The CMix version is one of the fastest implementation due to heavy

precomputation.

• Election Authorities. Denoted by EA = {EA1,EA2, ...,EAnEA}, authorities

are a set of authenticated mutually untrusted key-holders that are collectively

responsible for

– Initiating the election.

– holding the election and ensuring the correctness of execution of the written

protocol by properly signing players’ packets.

– Performing Threshold Elgamal key-exchange protocol.

– Performing multi-party Nullification protocol

– Sign the result of the election and approve the process to accumulate the

public trust.

• Voters Denoted by V = {V1, V2, ..., VnV
} is the set of eligible The person that

is freely choosing to vote and what to vote.

• Nullifiers Denoted by N = {N1, N2, ..., NnN
}, Nullifiers are responsible to flip

votes to mitigate voting under duress situations. The full functionality would

be explained in Chapter 4.

• Observers 2 Denoted by O = {O1, O2, ..., OnO
}, auditors are responsible to

2The term is coming from European Voting systems such as Estonian i-vote

27

assure that authorities do not collude together and break the Integrity or cor-

rectness of the system.

3.3 Assumptions and Thread Model

We classify the assumptions into three categories: assumptions of the underlying

cryptographic building blocks; trust assumptions and assumptions of the coercer’s

ability.

For the first one, we assume that the Zero-knowledge proofs are complete, sound

and zero-knowledge; the ElGamal encryption scheme is IND-CPA secure; the signa-

ture scheme is secure against existential forgery; and during the Registration phase,

we assume that Discrete Logarithm problem is hard.

For the second one, we assume that at least one hedgehog is honest; at least one

party of the mixnet is honest (Anonymous Communication Channel); and no more

than t− 1 parties of the EA are corrupted.

For the third one, we assume that a voter can establish an undetected channel

with his Nullifiers that will be explained in Section 4. This is realistic because we

consider it impossible to coerce a party all the time during his lifetime. In other

words, a voter can generate his public-private key pair and share it with his Nullifiers

even before the election. When a voter is coerced during the voting phase, he will use

the undetected channel to let his Nullifier to nullify the vote, where the undetected

channel can be failing to contact the Nullifier until some deadline. This is a realistic

assumption and captures the real world scenario.

3.4 Phases

VoteXX election phases have been described as followed.

28

• Setup phase will ensure that it is impossible to stop the election from initiating.

All that is needed for a correct election is prepared. Otherwise, it will generate

a report containing the warnings about future complications.

• Registration. During registration, the voter presents the public key but never

reveals the private key to the system. To flip a vote, the voter engages in a

zero-knowledge proof with the system to prove that they know the private key,

without revealing the private key.

• Voting. [A moment of silence, showing respect to whoever sacrificed their time

and health to make the voting systems running safe and sound.]

• Nullification would be used to publish all public information and all the in-

formation that is needed for the further verification.

• Tally would be counting the total votes and nullifications that had been splitted

into two phases: Provisional Tally and Final Tally to avoid Running Tally

problem.

3.5 Protocol

Protocol Boxes 1–3 explain the main phases of the VoteXX protocols: setup and

registration (presented together), voting, and nullification and tallying (presented to-

gether). In Figure 1, a summarized version of the whole protocol has been illustrated.

There have been previously proposed Coercion Resistant Registration mechanisms

in the E-voting literature. For instance, [43] uses randomly generated passphrase

splits (by a set of trustees) to create the first voter identification key. Another ap-

proach by Clark and Hengartner [20] is to set a panic password. Here, we are propos-

ing a new technique that focuses on multiple identity verification without revealing

29

Registration Set-up. Registration uses a trapdoor commitment scheme. The commitment
aspect allows the voter to present her passphrase in a hidden form to the EA and answer queries
about specific characters within it. The trapdoor is revealed after registration closes and allows
each voter to convert the format of their commitments into the format of a public key.

1. The generator g0 is a parameter of the election.

2. The EA computes a generator g1 as follows: each EA trustee EA1,EA2, . . . privately
chooses one random value a1, reveals ga1

0 , and proves knowledge of a1 with a Schnorr
Σ−Protocol. Then g1 = g

(a1+a′2+a′′3 +...)
0 .

3. This process is repeated, with new random ai values, to complete a set of N generators:
base← 〈g0, g1, g2, . . . , gN−1〉. The same base is used for all voters in a registration period.

4. Call the set of all a values (split across the trustees): trapdoor.

Registration.

1. Each voter generates two N -character passphrases (for YES and NO). Steps 2-4 describe
the process for the first passphrase and are repeated for the second.

2. The voting client parses the passphrase as a sequence of Base64 characters
〈c0, c1, c2, . . . , cN 〉 and computes its deterministic commitment using base:
passCommit←

〈
gc0

0 · g
c1
1 · g

c2
2 · . . . · g

cN−1
N−1

〉
.

3. The voting client sends passCommit to the EA.

4. The EA officer issues a challenge like: “Reveal Character 4.” The voter responds “F.”
The EA client computes disclosedChar ← (passCommit/gF

4). The voting client proves
knowledge of a representation of disclosedChar using a Σ−Protocol. This step is repeated
to build confidence that the voter knows the passphrase, but bounded in repetitions to
protect the passphrase.

5. The EA client posts 〈VoterID, JpassCommitYK, JpassCommitNK〉 to the BB, where
JpassCommitK is an encryption of passCommit under the EA’s threshold encryption
scheme. Finally the EA client proves to the voter client the correctness of the encryptions
using the Chaum-Pedersen Σ−Protocol.

Registration Finalization.

1. After the registration period, the EA takes the list of
〈VoterID, JpassCommitYK, JpassCommitNK〉 entries, removes the VoterID component,
and verifiably shuffles, threshold-decrypts, and posts
〈passCommitY, passCommitN〉 for each (now anonymous) voter.

2. Each trustee T, T ′, T ′′, . . . reveals their values producing trapdoor.

3. Each voter uses trapdoor to reformat their two passCommit values into key pairs 〈sk, pk〉
such that pk = passCommit = gsk

0 as follows. Consider generator gi and let αi = ai +a′i +
. . .. With this notation, sk = c0 + α1 · c1 + α2 · c2

4. Given that 〈passCommitY, passCommitN〉 = 〈pkY, pkN〉, the EA holds an anonymized list
(Roster) of 〈pkY, pkN〉 keys for each registered voter.

Protocol 1: Registration Protocol.

30

Figure 1: Phases of VoteXX e-voting Protocol

Voting. Each voter completes voting online. At completion, each voter will have submitted
their ballot using a passphrase from registration.

1. The nonce nonce is a parameter of the election.

2. To mark a ballot for YES, the voter uses their YES passphrase to generate skY and uses
this key to sign n0: σY ← Sig(nonce). Corresponding values are used to vote NO.

3. The voter uses the EA’s threshold encryption scheme to compute ballot ←
〈JpkYK, JσYK, πppk〉, where each group element of σ is individually encrypted and πppk
is a proof of plaintext knowledge using the Chaum-Pedersen Σ−Protocol.

4. The voter submits ballot over the ACS to the BB. The EA marks it as invalid if it is an
exact duplicate or if the proofs are invalid.

Protocol 2: Voting Protocol.

the password, Registration is an in-person ceremony between the voter, using a voting

client device, and an officer for the EA. At completion, the voter registers two public

keys 〈pkY, pkN〉, which are not learned by the EA officer and will be used to vote

YES and NO, respectively. The keys are for a digital signature. They are based on

a passphrase that can be regenerated from any voting client. The EA additionally

does not learn the passphrase but has high assurance through the protocol the human

voter knows the passphrase.

31

Provisional Tally. After the voting period is over, the EA produces a verifiable provisional
tally.

1. The EA takes the list of 〈JpkK, JσK〉, then verifiably shuffles and threshold-decrypts them:
〈pk, σ〉.

2. For each ballot, the ballot is marked invalid if σ does not verify under its corresponding
pk.

3. For each valid signature, pk is matched to its entry on the Roster. The EA determines if it
is a YES or NO key, and counts the vote only if it is the only ballot cast that corresponds
to that roster entry. (Since ballots are not shuffled, other policies are feasible such as
counting the most recent vote.)

Nullification. The goal of nullification is to allow voters to modify their cast ballots, particu-
larly in the case of coercion. Unlike other protocols, voters can enlist the help of others parties,
called hedgehogs. The nullification period runs after the provisional tallying. If the provisional
tally contains pkN, it can be nullified using skY (the “opposite” key). In other words, casting
a YES and nullifying a NO vote use the same key, as these two actions are aligned in their
intention.

1. At any convenient time, before or after voting, the voter covertly communicates with a
hedgehog to develop a coercion-resistant strategy. Assume the following strategy: the
voter wants to vote YES and reveals skY to the hedgehog, along with 〈pkN, pkN〉. They
request the hedgehog engage in nullification if pkN is in the provisional tally.

2. Using the Roster and set of valid signatures from the provisional tally, the EA reformats
the election data into two lists. The first list establishes, in arbitrary order, the set of pkN
keys from voters who cast valid votes for YES (call it yesVotes). The second list contains
pkY from voters who voted NO.

3. For example, assume YES received six votes in the provisional tally. yesVotes consists
of six pkN keys. If the hedgehog wants to nullify the fourth key, it prepares a list of
encrypted “requests” marking the ballot it wants to nullify: 〈J0K, J0K, J0K, J1K, J0K, J0K〉.
See section 4.1.5.

4. The first encrypted flag corresponds to the first pkN in yesVotes. The hedgehog adds
a proof to this list using the nullification Σ−Protocol. Concisely, the proof statement
is: [(this flag is an encryption of 0) or (this flag is an encryption of 1 and I know skN
corresponding to this pkN)]. This is detailed in section 4.1.2.

Final Tally. After the nullification period is over, the EA produces a verifiable final tally.

1. The EA takes all the encrypted flags for the first pkN key in yesVotes and computes its xor
under encryption (described in section 4.1.5). It repeats this process for the remaining
pkN keys.

2. The EA takes the list of encrypted xored flags, sums them under encryption, and verifia-
bily threshold-decrypts the result. The EA subtracts this value from the number of YES
votes in the provisional tally to produce the final tally for YES votes.

3. The EA repeats Steps 1-2 for each pkY key in noVotes.

Protocol 3: Tallying Protocol (including nullification).

32

The VoteXX protocol assumes a number of cryptographic primitives that are

common in the voting literature. All operations are performed in the same elliptic

curve group, where the decisional Diffie-Hellman (DDH) problem (and by extension,

the discrete logarithm problem) is hard. Digital signatures are performed with the

Schnorr signature scheme. Encryption is performed with ElGamal [26], which can

be augmented with distributed key generation (DKG) and threshold decryption (for

m out of n key holders [61]). We use standard Σ−Protocols to prove knowledge

of discrete logarithms (Schnorr [71]), knowledge of Diffie-Hellman tuples (Chaum-

Pedersen [19]), which also corresponds to ElGamal re-randomizations and decryp-

tions, and knowledge of representations (Okamoto [56]). We also use techniques to

allow the trustees to compute jointly and verifiably (i.e., produce Σ−Protocol proofs),

and to compute privately, on ElGamal ciphertexts the following: (i) a random shuffle

of ciphertexts (Verificatum), and (ii) the evaluation of an exclusive-or (xor) operation

based on its logic lookup table (mix and match [39]).

Protocol 1 describes registration. Registration can be re-opened by re-running set-

up. Once a voter key is registered, it can be used in later registration periods. Voting

performs a straightforward signature, using a registered key (see Protocol 2). At the

end of registration, voter keys are unlinked from their identity. Until the election

closes, votes are encrypted to preserve the secrecy of the tally, and ballots are sub-

mitted through the ACS to unlink them from the voter network and communication

metadata.

The tallying process (Protocol 3) includes our novel nullification technique. Con-

sider a list of public keys that voted YES and assume the hedgehog wants to nullify

one of them. It cannot point out which key it wants to nullify or the coercer will

know the voter is working with (or is personally acting as) a hedgehog to intervene.

So the hedgehog must hide its flag (J1K) in a set of false flags (J0K) for each YES key

33

in the tally. We could allow the hedgehog to choose a fixed-sized subset of β keys at

random to serve as an anonymity set, which improves performance but sacrifices full

anonymity (cf. [20]).

As the nullification procedure is the main contribution of this thesis, we will

describe how it works and why step-by-step in the next chapter. The core idea is the

nullification Σ−Protocol that lets a hedgehog hide its intent (see Section 4.1.2) and

the aggregation of nullification requests (see Section 4.1.5)

Once a set of flags (each real or false with its own proof Π) is computed and

submitted by a hedgehog, Protocol 3 simplifies the description by having the EA wait

to perform Steps 1–2 after the nullification period. In practice, it should not wait—it

is quadratic work (number of hedgehogs times number of voters) and subject to “board

flooding” attacks [45]. It must process the nullifications as they arrive (“concurrent

authorization” [28]). Doing so is possible. When a new set of flags arrives, each proof

is checked and the xor between the submitted flag and the accumulation of previous

flags is computed (both are parallelizable for each flag). Thus, when nullification

closes, the only remaining task is to threshold decrypt the accumulation of flags,

which is linear in number of votes.

3.6 Security Analysis (Sketch)

In this section, we sketch a security analysis for the major security concerns of the

system.

3.6.1 Registration

For the Registration phase:

• Proof-of-knowledge of the passphrase. The voter is challenged by the

34

EA to reveal partial information about her committed passphrase, PassCommit,

such as the character at a particular location. The EA’s challenges are based

on any information that can be disclosed with an efficient Σ−Protocol including

character ranges, conjunctions/disjunctions of characters, etc. The challenges

build confidence but reduce the entropy of the passphrase, so a balance must be

struck. For example, say a voter is given a passphrase to register by a coercer

but only told 10 of the 20 the characters in it, which the adversary believes is

enough to respond to challenges but not enough to use it to vote. The EA asks

for three characters at random. The voter will be caught 87.5%. The security

of the passphrase is reduced to 17 characters.

Additionally, assuming one honest trustee, the relative discrete logarithms in

the base of the commitment are not known, resulting in a commitment that is

binding. Opening such a commitment (a Pedersen multi-commitment) to two

different passphrases is exactly equivalent to breaking the discrete logarithm

problem [61]. So, the voter cannot provide answers that correspond to a different

passphrase than the one they know.

• Passphrase confidentiality. The commitment scheme is computationally hid-

ing under the discrete logarithm assumption. However, as it is deterministic,

passphrases can be broken through exhaustive search once they are decrypted

and posted on the bulletin board. Human-chosen passwords are known to be

weak [9, 76] and even if a small percentage (e.g., 5%) of voters chose weak pass-

words, it could be well-within the margin of victory to exploit them. Adding

randomness to the commitment improves its hiding property but the random-

ness would have to be remembered by the voter and it effectively reduces to the

voter using a key instead of passphrase. Thus this is a theoretical limitation: the

security of any passphrase-derived key is the unguessability of the passphrase.

35

We do not affirm the use of passphrases in every situation, but we believe our

registration protocol is an interesting option to have documented in the litera-

ture. Any protocol that allows a public key to be stored on the bulletin board

is sufficient for VoteXX (e.g., voter generates one with their device, stores it,

and uses it during voting).

• Registration Disruption by the EA trusties. A non-cooperative trustee

can be eliminated from the registration set-up process however we rely on every

trustee that participates in set-up to return and finish the registration finaliza-

tion step, otherwise voters cannot convert their passphrase into a signing key

pair. A single trustee can disrupt the registration process which is not ideal.

Future work will explore enabling recovery of the values when only a smaller

threshold of trustees participate. This seems possible to implement directly

from a distributed key generation protocol [61]. All other aspects of the voting

system require only a threshold of trustees to participate. So non-colluding

trustees cannot disrupt the registration process.

• Voters’ anonymity. Voter’s registration public keys would be only decrypted

after the mix. Assuming one honest trustee (mixing), it is computationally

infeasible to determine which public key corresponds to which voter.

• Ballot Stuffing attack. We assume the EA only registers voters that are

eligible to participate in the election, like most cryptographic voting systems.

Ballot stuffing in our system could be conducted by signing a ballot with an

unregistered public key. However any ballot stuffing attack would be detectable

as all keys are made public, and the mixing of the keys proves that the outputs

match the inputs (in both the number of them, as well as the plaintext contents

under encryption).

36

3.6.2 Voting

For the Voting phase:

• Impersonation. The system avoids impersonation by using digital signatures.

• Replay/modification Attack. Two different levels of replay attacks can be

considered. The votes can not be replayed for the next election, because each

election has a unique nonce. However the replay attack inside an election can

cause denial-of-service of the bulletin board. For mitigating this, the EA should

only accept ballots that have a new (fresh) signature. Modification of a ballot

would be infeasible due to the use of the digital signature.

• Anonymity. We assume that a coercer can know that a voter voted, however

for other passive adversaries, the network-level anonymity of the voter is being

preserved by the ACS channels. The unlinkability between a voter and their

key is protected by the verifiable shuffle after registration.

• Running tally. Assuming at least one honest trustee, the ballots are only

decrypted (by threshold decryption scheme) after the voting period has finished.

So the tally will not be visible to anyone before the provisional tally phase.

• Disruption. We assume a widely-used ACS channel that is not possible to

disrupt at scale for a long period of time.

3.6.3 Provisional Tally

For the Provisional Tally phase:

• EA cannot perform timing attacks. Due to mixing, decrypted ballots have

no order, assuming at least one honest trustee.

37

• E2E Verifiability. Voters can check the bulletin board to see their ballot (en-

crypted) in included unmodified. Even if all trustees collude, the zero knowledge

proof of a correct shuffle and decryption assure anyone of the result.

• Provisional Tally Disruption. Since we are using a threshold encryption

scheme, EA members can not disrupt the calculation of tentative tally, unless

they collude and compromise the threshold.

3.6.4 Nullification

For the Nullification phase:

• Eligibility. Nullifier can nullify if and only if she knows the key. For that

purpose a Σ−Protocol has been designed and implemented that it would be

described in the next chapter.

• Replay attack resistance. We are using non-interactive zero-knowledge

proofs that are not divertable. The freshness of the random value that has

been used to generate nullification proofs would be checked by the decentral-

ized auditable bulletin board.

• Disruption resistance. The decryption of the encrypted signal can not be

disrupted as long as a threshold number of the trusties are honest.

• Coercion resistance. The coercer can act as a nullifier but does not have a

dominant strategy—how many times should it nullify? No, number is guaran-

teed to yield the coercer’s preference because it does not know if the voter has

one or more other nullifier simultaneously nullfiying the ballot.

38

3.6.5 Final Tally

For the Final Tally phase:

• E2E integrity. Hedgehogs can check the bulletin board to see their requests

(encrypted) are included unmodified. Even if all trustees collude, the zero

knowledge computation is publicly verifiable by any observer. The next chapter

will prove the nullification proof is sound.

• Nulification secrecy. Due to the final mixing and non-interactive zero-knowledge

proof, which ballot to hedgehog is modifying remains secret. We prove the zero

knowledge property of the proof (where the ballot is a witness) in the next

chapter.

• Final Tally Disruption. Because of threshold decryption, the final tally can-

not be disrupted by a single or small set of non-colluding trustees.

3.7 Implementation

The VoteXX protocol has been fully implemented with four main objectives in mind:

1. The software must be open-source, period.

2. Software Maintenance was a crucial priority in the choices that have been made

over the implementation language, package selection and design.

3. Modules have been partitioned based on the Principle of Least Privilege.

4. Test-Driven implementation to reduce corner case bugs. The Cryptographic

core has been implemented in both Mathematica and Java and the random test

set have been checked and verified on both implementations.

39

There have been nine modules that have been designed.

1. Mixnet Bridge Library. This library has be used in all the softwares in the

system and is responsible to connect to a mixnet gateway.

2. TCP/IP Bridge Library. As as previous library, this library works as a bridge

to Web as secondary communication channel between the election entities.

3. CryptoCore Library. Every cryptography-related functions have been packaged

in this library. The functions have been enumerated below.

(a) Sig(msg, secretKey) is the Elgamal digital signature function with message

recovery and Verifysig(signature, publicKey) is the corresponding verification

function.

(b) Enc() and Dec(), Exponential Elgamal encryption and decryption functions

that has been already explained in Section 2.3.2.

(c) PrfSch() is the function to construct a fiat-shamir Schnorr proof (Section

2.3.6) and VerifySch() is the verification function.

(d) PrfCha() is the function to construct a fiat-shamir Chaum-Pedersen proof

(Section 2.3.6) and VerifyCha() is the verification function.

(e) PrfShuffle() is Σ-protocol proof-of-shuffle construction function.Verifyshuffle()

is the verification function that will be described later in Section 4.3.2.

4. Bulletin Board software. This software will be launched on the public, im-

mutable and unstoppable mechanism 3 and based on the Election Timetable, it

will grant write access to different election entities. The integrity checks have

been implemented in this software including verification of the signatures and
3such as Ethereum

40

proofs. It is also responsible to deliver election’s public information to election

entities.

5. Registrars’ software. This is a thin piece of code to allow registrars to sign the

registration packets and send it toward the bulletin board software.

6. Election Authority software. This software is responsible to handle EA’s actions,

such as signing the votes and tally and also performing multi-party processes

such as Threshold Elgamal and Plaintext Equality Test.

7. Voting software. This software lets the voter to generate new keys for the

election, participate in the registration and voting phases and also to export

her keys for the Nullification phase.

8. Nullification software. Constructing Nullification proofs occurs here. We will

talk more about nullification in Chapter 4.

9. Observer software. This software is to retrieve any public information from the

bulletin board.

41

Chapter 4

Nullification

“He that has eyes to see and ears to hear may convince himself that no mortal can keep

a secret. If his lips are silent, he chatters with his fingertips; betrayal oozes out of him at

every pore.” - Sigmund Freud

Nullification is the novel idea to give the voter a trust-worthy re-voting opportunity

to flip her vote. Two main consequences of this situation would be

• voter will be able to flip the vote in the case of strong (but not full) coercion

during the voting period.

• voter will be able to gain money from deceiving a Coercer. This property

incentivizes the voters to guard the integrity of the election.

In this chapter, we will look into the rationale, design, proof sketch and discussions

on the Nullification add-on—the main contribution of this thesis—and we would apply

it to the VoteXX voting protocol that has been explained in the previous chapter.

42

4.1 Design

In this section, the details of the Nullification Protocol have been described. For that,

we assume that all the previous phases of the election, namely Setup, Registration

and Voting, have been completed without any issue. First, we formally and shortly

describe the initial state of the nullification.

4.1.1 Initial State

We assume that at the time tnul,

• The tentative tally has been published. So that, The Bulletin board contains

(and not limited to):

{BBreg,BBTT,BBnul} (8)

where BBreg includes two sets of public keys, BBY and BBN. BBY is the list of

registered voters’ Y public keys. Formally,

BBY = {pk(v1,Y), pk(v2,Y), · · · , pk(vi,Y)} (9)

Similarly, BBN is the list of N public keys of all registered voters.

BBN = {pk(v1,N), pk(v2,N), · · · , pk(vi,N)} (10)

where pk(vi,Y) is the ith voter’s identity (public key) that had registered to the

election. Also, BBTT contains the signed tentative tally and BBnul would be an

empty set, since no Nullification packet has been submitted yet.

• Depending on the voter’s choice, voter vi has submitted the voting request

43

containing the ballot, ballot(vi), in the form of

ballot(vi) = Sig(EID, sk(vi,Y)) (11)

OR

ballot(vi) = Sig(EID, sk(vi,N)) (12)

where sk(v,Y) and sk(v,N) are the privatekey that v can use to sign the ballot

ballot(vi), depending on her choice.

• The voter, vi also has shared the corresponding secretkey the key she had signed

the ballot with (i.e. sk(v,Y) or sk(v,N)) with a trusted Nullifier1.

4.1.2 Single-Voter Construction

For the simplicity, we assume a single-voter voting system. Therefore, BBY and BBN

would be

BBY = {pk(v,Y)} (13)

Also, same as BBY, BBN contains only one public key.

BBN = {pk(v,N)} (14)

We want to design a cryptographic primitive to empower a voter’s proxy (Nullifier)

to anonymously flip 2 her vote when she is under coercion. We assume that the

coercion level is below Over-the-Shoulder and voter v had a small period of booth-

level privacy to contact a trustee (Nullifier) and share the voting secretkey sk(v,Y) or
1Note that the voter herself can play the role of the Nullifier.
2We will discuss different versions of Nullification that support other actions such as Cancel.

Here, for simplicity, we focus on the Flip nullification design.

44

Proof-of-Encryption(0)

Proof-of-Encryption(1)

Proof-of-Knowledge(secret)

Proof Encryption

Enc(1)

Enc(0)

Figure 2: Nullification Receipt Construction

sk(v,N).

By the functionality perspective, Nullifier ’s target is to flip the vote when needed.

Note that performing this action itself can reveal the voter’s identity. So we design the

Nullification logic circuit to enable the Nullifier to perform one of these two actions

in zero-knowledge fashion.

1. Nullifier can flip voter’s vote.

2. Nullifier can fake flipping voter’s vote.

In Section 2.3.6, basic Σ-protocols such as Schnorr and Chaum-Pedersen have

been described. We use these primitives to deliver the desired functionality.

To construct a valid Nullification receipt,Nv, (Figure 2), Nullifier sends an encryp-

tion of 0 or 1 beside the Nullification proof, Γ. We used Enc(x, [α]) notation for the

Exponential Elgamal encryption function, So for instance, Enc(0) would be

Enc(0, α) = 〈C1,C2〉 = 〈gα mod p , g0 · hα mod p〉 (15)

where x is the plaintext and α is the random value in Z{2, q−2} that has been used to

generate the ciphertext. Note a few points:

1. All encryptions would be under EA’s public key, h.

45

2. α would be used as the witness, ω that Nullifier will try to prove knowing it

through the Chaum-Pedersen part of nullification circuit.

3. Using Exponential Elgamal enablemulti-Nullifier-single-Voter andmulti-Nullification-

single-Nullifier mechanisms that give more freedom to voter/Nullifier to lure the

coercer3.

For the construction of the receipt, Nullifier must be able to prove to an arbitrary

honest Verifier whether

1. She had sent Enc(1) by constructing a valid Chaum-Pedersen proof of Enc(1)

AND she knows the voter’s secretkey by constructing a valid Schnorr proof-of-

knowledge of voter’s secretkey).

OR

2. She had sent Enc(0) by constructing a valid Chaum-Pedersen proof of Enc(0).

So we design the module so that a valid Nullification receipt would be in the form

of

Nv = 〈ΓOR, Enc(bnul)〉 (16)

where

ΓOR = PrfOR(sk, α) = 〈ΓAND, Γ0, eOR〉 (17)

and

ΓAND = PrfAND(sk) = 〈Γsch, Γ1, eAND〉 (18)

Since we want to hide the Nullifier ’s intent, we construct an OR circuit proof inside

the Nullification Σ-protocol. To construct a valid Nullification proof, Prf(), Nullifier
3There are other choices to design a additively homo-morphic cryptosystem and we will discuss

and compare them in the extension and also discussion sections.

46

follows the algorithm described below.

PrfOR(sk, bnul) =

for bnul = 1

1. Compute Enc(1, α)

2. Simulate Γ0

3. Compute eOR

4. Construct ΓAND

for bnul = 0

1. Compute Enc(0, β)

2. Simulate ΓAND

3. Compute eOR

4. Construct Γ0

(19)

Basically, Nullifier simulates the part that she wants to fake proving, computes

the overall challenge of the OR statement, eOR and then completes the other side of

the statement. In the other words, Nullifier commits to both of them in a way that

the Verifiercan just perceive that one of these two statements are correct, without

revealing which. Here the computational details of the Nullifier and Verifier have

been described for each of these two cases.

Usecase #1, Nullifying the vote

To flip Voter’s vote, a Nullifier, knowing voting secretkey skv, election’s public pa-

rameters 〈p, q, g, h〉 and the lists of all registered voters’ public keys constructs Nulli-

fication proof Γv by following these steps:

47

1. Calculating Enc(1, α)

Nullifier picks a random value α ∈ Z{2, q−2} and constructs Enc(1) in the form

of

〈C1,C2〉 = Enc(1, α) = 〈gα mod p , g1 · hα mod p〉 (20)

where the Nullification bit, bnul equals to 1, enciphering the intent of the Nullifier

to actually nullify the vote.

2. Simulating Γ0

Now, chosen α, since the Nullifier wants to fake encrypting 0, she simulates Γ0

by starting from a random challenge e0, a random response z0, and a random

value r0 such that e0, z0, r0 ∈ Z{2, q−2}. Formally,

Γ0 = PrfCha(C1,C2, α) = 〈a01, a02, e0, z0〉 (21)

Then she rewinds the construction algorithm to calculate a01 and a02, meaning

a01 = gz0 · (gα)−e0
mod p (22)

and

a02 = hz0 · (hα)−e0
mod p (23)

3. Committing to eOR

At this state, Nullifier has completed the simulation of PrfCha(0) proof by the

computation of all four needed values 〈a01, a02, e0, z0〉. We recall that for

binding two Σ-protocols in a conjunction form, Nullifier needs to simulate or

rewind one proof and then commit to a Fiat-Shamir commitment, eOR that

48

from Verifier ’s perspective, it would be in the from of

eOR = e0 + eAND (24)

where e0 is the Fiat-shamir challenge for the proof PrfCha(0) that Nullifier

has already simulated it, and eAND is the Fiat-shamir challenge for the proof

PrfAND(sk). However, this is not how Nullifier actually does it. After calculat-

ing a01, a02ande0, she computes eOR, the overall commitment for PrfOR(sk, bnul)

by

eOR = H(a01 | a02 | a11 | a12 | asch | p | q | g | h) mod q (25)

where a11, a12 would be blinded random values to complete Chaum-Pedersen in

the form of

a11 = gr1
mod p, a12 = hr1

mod p (26)

and asch is the blinded random value to construct the proof of knowing the

voter’s secretkey, skv,

asch = grsch
mod p (27)

where r1, rsch ∈ Z{2, q−2} are the same random value that will be used to con-

struct PrfCha(1).

To understand what really is happening, note that Nullifier has already injected

a fake blinded values a01 and a02 into the process of committing to eOR. Then,

she continues the rewinding process by injecting e0 into the overall commitment

of the Nullification Module as well. Therefore, to find a valid challenge for

PrfAND(sk), Nullifier uses the below equation.

eAND = eOR − e0 (28)

49

4. Constructing ΓANDTo remind, we are constructing a Σ-protocol that is a com-

position of one Chaum-Pedersen proof-of-encryption of One and one Schnorr

Proof-of-knowledge of the voter’s privatekey. Saying to more formally

PrfAND(sk) = 〈Γsch, Γ1, eAND〉 (29)

where eAND is strong fiat-shamir commitment of PrfAND(sk). Γsch is a strong

Fiat-Shamir heuristics powered Schnorr proof. We recap the calculation of

strong Fiat-Shamir heuristics powered Schnorr proof here.

Schnorr proof Construction

We recall that to construct a Fiat-Shamir powered Chaum-Pedersen proof the

Prover has to send a proof containing

〈a, e, z〉 (30)

where

a = gr mod p (31)

and

e = H(a | p | q | g | h) mod q (32)

is the strong Fiat-Shamir heuristics challenge and H is a secure hash function.

Also, the Σ-Protocol’s response, z is in the form of

z = r + ω · e (33)

Nullifier knowing the steps, constructs PrfSch(sk) in the form of

Γsch = 〈asch, esch, zsch〉 (34)

50

where asch has already been computed and zsch is the response to the challenge(or

fiat-shamir commitment) esch. For Composing two Σ-protocol, Nullifier uses the

same challenge for the both Σ-Protocols. Moreover, from equation 28, Nullifier

is forced to use eAND in order to construct a valid nullification receipt. Therefore,

Nullifier uses

esch = eAND (35)

in the construction of Γsch. Also, trivially, zsch would be

zsch = rsch + ω · esch = rsch + sk · eAND (36)

where ω is the voter’s secretkey that has been already shared with the Nullifier.

Also, Nullifier will construct the Chaum-Pedersen proof to prove that she is

sending an encryption of one in the nullification receipt, Γv. Here we recap

the normal construction of a single Chaum-Pedersen proof of knowledge with

Fiat-shamir heuristics commitment/challenge.

Chaum-Pedersen proof construction

To construct a Fiat-Shamir powered Chaum-Pedersen proof , the Prover, P has

to send a proof containing

〈a1, a2, e, z〉 (37)

where

a1 = gr mod p, a2 = hr mod p (38)

and

e = H(a1 | a2 | p | q | g | h) mod q (39)

is the strong Fiat-Shamir heuristics challenge where H is a hash function. Also,

51

the Σ-Protocol’s response z is in the form of

z = r + ω · e (40)

Nullifier has already computed a3 and a4. As we have explained earlier, she

uses eAND to compute z1 in the form of

z1 = r1 + ω · e1 = r1 + α · eAND (41)

At this point, Nullifier has finished the construction of Γv. �

Usecase #2, Faking the Vote Nullification

To fake the nullification, Nullifier follows the below steps.

1. Calculating Enc(0, β)

In this case, Nullifier constructs Enc(0, β) in the form of

Enc(0, β) = 〈C1,C2〉 = 〈gβ mod p , g0 · hβ mod p〉 (42)

where β ∈ Z{2, q−2} is a freshly chosen random value. Note that Nullifier is

sending Nullification bit, bnul equals to 0, encrypting the intent of the Nullifier

to fake the nullification.

2. Simulating ΓAND

Same as the previous case, Nullifier starts the construction of Γv by simulating

the side of disjunction that she does not want to complete, meaning PrfAND(sk).

For that purpose, she rewinds the construction protocol to calculate a11, a12 by

a11 = gzAND · (gβ)−eAND
mod p , a12 = hzAND · (hβ · g−1)−eAND

mod p (43)

52

where eAND, zAND ∈ Z{2, q−2} are two random numbers that respectively play the

role of the challenge and response to PrfAND(sk). Also, for simulating PrfSch(sk),

Nullifier computes asch by

asch = gzAND · (gsk)−eAND
mod p (44)

3. Committing to eOR

Same as previous usecase, here, Nullifier computes the overall Fiat-Shamir com-

mitment for PrfOR(sk, bnul) by

eOR = H(a01 | a02 | a11 | a12 | asch | p | q | g | h) mod q (45)

Contrary to the previous usecase, here Nullifier have computed a11, a12 and asch

and has to compute valid a01 and a02 values by

a01 = gr0
mod p, a02 = hr0

mod p (46)

where r0 ∈ Z{2, q−2} is the random value that will be used in the proof construc-

tion of PrfCha(0). In this case Nullifier has simulated PrfAND(sk) and wants to

construct a valid proof for PrfCha(0), she calculates a valid challenge, e0 in the

form of

e0 = eOR − eAND (47)

where eAND is the challenge she calculated in the previous step.

4. Constructing Γ0

53

In the last step, Nullifier constructs the receipt for PrfCha(0) in the form of

〈a01, a02, e0, z0〉 (48)

where a01, a02, e0 have already been calculated and z0 would be

z0 = r0 + ω · e0 = r0 + β · e0 (49)

At this point Nullifier has finished constructing a valid receipt to fake the vote

cancellation.�

4.1.3 Receipt Verification

At this state, assume an honest Verifier V , receiving Nv in the form of equation 16

verifies the validity of it by checking the conditions below.

1. Γ0 must be a valid Chaum-Pedersen proof in the form of

Γ0
?= 〈a01, a02, e0, z0〉 (50)

To check that, For that V must verify whether

a01
?= gz0 · C1

−e
mod p (51)

and

a02
?= hz0 · C2

−e
mod p (52)

2. ΓAND must be a valid Conjunction proof of one chaum-pedersen and one schnorr

54

Σ-protocol in the form of

ΓAND
?= 〈Γ1,Γsch, eAND〉 (53)

and these conditions must fulfilled.

(a) Γ1 must be another valid Chaum-Pedersen commitment in the form of

Γ1
?= 〈a11, a12, e1, z1〉 (54)

a11
?= gz1 · (C1)−e mod p (55)

and

a12
?= hz1 · (g−1 · C2)−e mod p (56)

(b) Γsch is a valid Schnorr proof in the form of

Γsch
?= 〈asch, esch, zsch〉 (57)

and

asch
?= gzsch · pk(vi,Y/N)−c mod p (58)

(c) To verify that the Nullifier has bound PrfCha(1) and Γsch in a proper way,

V check whether

e1
?= esch (59)

3. The commitment eOR must binding PrfCha(0) and PrfAND(sk) properly. Meaning,

V must check whether

eOR
?= eAND + e0 (60)

55

Also, V checks whether eOR is a valid Fiat-Shamir challenge or not. Therefore,

she will check

eOR
?= H(a01 | a02 | a11 | a12 | asch | p | q | g | h) mod q (61)

4.1.4 Expanding to N Voters

In the previous section, the Nullification circuit for a single-voter election has been

explained. We can see that there are still weak spots in the protocols.

1. The intent of the Nullifier of sending the Nullification receipt is still visible to

the Coercer.

2. Based on pre-tally and tally states of the bulletin board, the nullification bit

would be revealed to the Coercer.

A trivial way to anonymously nullify a vote is to send a Nullification receipt per

all the voters that had registered in the election. For N voter election, we assume that

the election with public values 〈p, q, g, h〉 and n registered voters has been completed

successfully to pre-tally state. Therefore the BBY would be in the state

BBY = {pk(v1,Y), pk(v2,Y), · · · , pk(vi,Y), · · · , pk(vn,Y)} (62)

Also, same as BBY, BBN contains only one public key.

BBN = {pk(v1,Y), pk(v2,Y), · · · , pk(vi,Y), · · · , pk(vn,Y)} (63)

We assume two cases

1. Nullifier knows the ith voter’s secretkey and intents to nullify her vote. To

56

nullify a vote, a Nullifier constructs an array of Nvi
in the form of

−→
N = {N1,N2, · · · ,Ni, · · · ,Nn} (64)

where she constructs

Ni = 〈Γvi
,Enc(1)〉 (65)

and Γvi
would be in the form of use-case#1. Also, Nullifier constructs

Nj 6=i = 〈Γvj
,Enc(0)〉 (66)

using the instruction that has been explained in usecase#2.

2. Nullifier wants to fake nullifying a voter’s vote. So, without any private knowl-

edge, she constructs
−→
N = {N1,N2, · · · ,Nn} (67)

where

Ni = 〈Γi,Enc(0)〉 (68)

for i ∈ {1, 2, ..., n} and sends −→N .

Note that each Nullifier may attempt to nullify more than one vote, if she knows the

corresponding secretkeys.

4.1.5 Aggregation

To this point we have explained how Nullifier can anonymously nullify the vote by

sending a Nullification request in the form of Eq.64. On the EA side, at the end

of voting, EA would sign and publish all the received Nullification requests on the

57

bulletin board, BBnul where

BBnul = {−→N 1,
−→
N 2, · · · ,

−→
Nm} (69)

wherem is the number of received Nullification packets. Note that all the Nullification

packets are in the same size and contain a list of −→N vi
in the same order. Therefore,

by expanding each Nullification packet, we get Table 1.

Table 1: Bulletin Board Nullification table

v1 v2 · · · vi · · · vn
−→
N 1 N[1,1] N[1,2] · · · N[1,i] · · · N[1,n]

−→
N 2 N[2,1] N[2,2] · · · N[2,i] · · · N[2,n]

· ·
−→
N j N[j,1] N[j,2] · · · N[j,i] · · · N[j,n]

· ·
−→
Nm N[m,1] N[m,2] · · · N[m,i] · · · N[m,n]

Here, we describe the naive Nullification Aggregation idea; However, various ag-

gregations can be implemented that have been explained in Section 4.3.2. Each Nj(vi)

contains an Exponential ElGamal encryption is the form of

Nj(vi) = 〈Γ(j, i) , Enc(flip[j,i])〉 (70)

where flip[i,j] ∈ {0, 1} is the nullification bit that has been sent by jth Nullifier for the

ballot corresponding to vi. Note that the bit is concealed through the Nullification

58

phase. Also, by the new indexing, Enc(flip[j,i]) would be

Enc(flip[j,i]) = 〈C1(j, i),C2(j, i)〉 = 〈grand(j,i) , gflip[j,i] · hrand(j,i)〉 (71)

Table 2: Bulletin Board Nullification sub-table of encryption

v1 · · · vi vn
−→
N 1 〈C1(1, 1),C2(1, 1)〉 · · · 〈C1(1, i),C2(1, i)〉 〈C1(1, n),C2(1, n)〉
−→
N 2 〈C1(2, 1),C2(2, 1)〉 · · · 〈C1(2, i),C2(2, i)〉 〈C1(2, n),C2(2, n)〉

· · · · · · · · · · · · · · ·
−→
N j 〈C1(j, 1),C2(j, 1)〉 · · · 〈C1(j, i),C2(j, i)〉 〈C1(j, n),C2(j, n)〉

· · · · · · · · · · · · · · ·
−→
Nm 〈C1(m, 1),C2(m, 1)〉 · · · 〈C1(m, i),C2(m, i)〉 〈C1(m,n),C2(m,n)〉

The unwrapped Nullification table has been shown in Table 4.1.5. Based on

additively homomorphism of Enc(), we know that by multiplying C1 and also C2 we

get valid encryption of the summation of all bits that have been sent by any Nullifier.

Formally
−→
N total =

m∏
j=1

−→
N j = 〈

m∏
j=1
N[j,1],

m∏
j=1
N[j,2], · · · ,

m∏
j=1
N[j,n]〉 (72)

59

So, we will have

Enc(total, i) = 〈C1(total, i),C2(total, i)〉

= 〈
m∏
j=1

C1(vi),
m∏
j=1

C2(vi)〉

= 〈
m∏
j=1

grand(j,i)
mod p,

m∏
j=1

gflip[j,i] · hrand(j,i)
mod p〉

= 〈g

m∑
j=1

rand(j,i)

mod p, g

m∑
j=1

flip[j,i]

· h

m∑
j=1

rand(j,i)

mod p〉

= 〈grand(total,i)
mod p, gflip[total,i] · hrand(total,i)

mod p〉

(73)

where i ∈ {1, 2, · · · , n}. Enc(total, i) is a valid Exponential ElGamal output and

flip[total] is the summation of number of successful flip per voter. The decryption

would happen in the Tally phase.

Dec(〈C1(total, vi),C2(total, vi)〉) = gflip[total,vi]
mod p (74)

Since there is no efficient way to find flip[total,vi] from the above equation, the

system would fail to compute the real number of total flips per that specific voter.

The problem is the decrypted value would be gtotal and there is no known efficient

way to compute total from gtotal as it has been described in Decisional Diffie Helman

problem, Section 2.3. Note that this is a general issue with additively homomorphic

Elgamal and the solution is to ensure any additions do not get too large to find through

exhaustive search (e.g., a trillion or less). Our bounds the value by the number of

hedgehog nullifications which we can assume in practice to be small enough.

One approach is to pre-compute a Lookup table in the form of Table 3, before

the election. In the table, we can see that every encryption has been paired with a

plaintext. In Table 3, the computation of the number of the flips for each voter has

been described. For each voter, vi, a check would be performed per each row of the

60

Table 3: Nullification Lookup table, a closer look

IF [gflip[total,i] ?= g0] THEN flip[total,i] = 0 ⇒ NO

IF [gflip[total,i] ?= g1] THEN flip[total,i] = 1 ⇒ YES

· · · · · · · · · · · · · · · · · ·

IF [gflip[total,i] ?= gj] THEN flip[total,i] = j ⇒ YES (j ∈ Nodd)

· · · · · · · · · · · · · · · · · ·

IF [gflip[total,i] ?= gk] THEN flip[total,i] = k ⇒ NO (k ∈ Neven)

look-up table. Note that the size of the look-up table is a constant k, denoting the

limitation on the number of flips for a voter. More formally,

k = max[flip[total,vi]] where i ∈ {1, 2, ..., n} (75)

where n is the number of the registered voters. So this design would be vulnerable to

Denial-of-Service attack when a voter or Nullifier tries to send successful Nullification

packet for an arbitrary voter for an unusually number of times. We will discuss the

possible mitigations in the following sections.

4.1.6 Complexity

To calculate the complexity of each phase of the nullification protocol, we count the

number of modular exponentiations, the most expensive operation through all the

proposed processes. In Table 4, we have listed the complexity for each sub routines.

61

Table 4: Number of exponentiations for each Nullification phase

Phase # of exponentiations

Construction of flipping nullification packet O(Nvoter)

Construction of non-flipping nullification packet O(Nvoter)

Verification of Nullification packet O(Nvoter)

Aggregation of Nullification Packets O(1)

4.2 Proof Sketch

In the previous section, we have described the basic design of the Nullification Pro-

tocol. In this section, we prove that the proposed Nullification module is an Honest-

Verifier Zero-Knowledge Proof-of-knowledge protocol. In order to formally prove that,

we have to prove the designed nullification module is a Σ − protocol. We followed

Lindell’s Efficient secure two-party protocols [34] notation.

4.2.1 Terminology

First, we prove the interactive version of the Nullification Protocol, dubbed ˆPrf() is a

Σ-protocol. To prove that, we have to prove three basic properties in designed protocol

that have been explained in Section 2.3, namely, Completeness, Special Soundness and

Special Honest Verifier Zero-knowledge. To start the journey, we have to translate

some notations.

Prover

Prover, P , would be the Nullifier that is constructing the package. Malicious prover

has been denoted by P∗.

62

Verifier

Verifier, V , would be the Election Authorities or a third trusted party to handle the

received Nullification Packets. We denoted the malicious verifier by V∗.

Problem

Problem, x, would be proving to the Verifier, V that the sent Nullification Packet is

a valid packet.

xnul = 〈p, q, g, h,BBY,BBN,Enc(flip[vi])〉 (76)

where BBY,BBN have been described in Eq.9 and Eq.10 respectively. flip[vi] ∈ {0, 1}

shows the bit that has been sent by the Nullifier.

Witness

Witness, ω, the information that P wants to prove knowing it without revealing any

additional information. ω would be voter’s secretkey, sk(vi, chc(vi)), flip[vi] and α.

ωnul = 〈sk(vi, chc(vi)), flip[vi], α〉 (77)

where chc(vi) ∈ {Y,N} denotes the voter key of choice for voting.

Relation

Relation, Rnul, would be a relation over {0, 1}t to {0, 1}t where includes x to ω.

Rnul = {R | (xnul, ωnul) ∈ R} (78)

63

Random Oracle

In cryptography, a random oracle is an oracle (a theoretical black box) that responds

to every unique query with a (truly) random response chosen uniformly from its

output domain. If a query is repeated, it responds the same way every time that query

is submitted. It is equivalent to flipping n ideal coins, in response to a challenge, to

generate a n-bit unique response per challenge.

Σ-Protocol

Σ-Protocol that we are proving would be the interactive version of the Nullification

protocol. So we replace the prover-generated fiat-shamir commitment with a Verifier-

generated challenge eV to convert the protocol to a standard public-coin interactive

protocol. So in the step 3 of the construction of the Nullification receipt Γ, the

prover commits to the blinded random values (a01, a02, a11, a12, asch) by sending them

to the Verifier. Then, Verifier sends back a random value eV which would be used

to complete the proof by the Prover. The interactive version has been depicted in

Figure 3.

Transcript

Transcript, Γ would be in the form of

Γnul = (anul, enul, znul) (79)

where anul would be

anul = (a01, a02, a11, a12, asch) (80)

64

P V

Computes anul

anul = (a01, a02, a11, a12, asch)
anul−→

Generates challenge enul
enul←−

Generates the response znul

znul = (z0, z1, zsch)
znul−→

Verifies (anul, enul, znul)

Figure 3: Interactive version of Nullification Protocol

where a01 and a02, the blinded values for PrfCha(0) and would be in the form of

a01 = gr0
mod p , a02 = hr0

mod p (81)

Also, a11 and a12 are the blinded values needed to construct PrfCha(1) in the form

of

a11 = gr1
mod p , a12 = hr1

mod p (82)

asch would be the Schnorr’s blinded value in the form of

asch = grsch
mod p (83)

and enul would be the challenge of the overall disjunction in the Nullification

circuit.

enul = eOR (84)

65

The response znul would be

znul = (z0, z1, zsch) (85)

Algorithm

Algorithm, A, would be a polynomial-time algorithm that given any xnul and any pair

of accepting transcripts (anul, enul, znul) and (anul, e
′
nul, z

′
nul) for xnul where enul 6= e′nul,

outputs ωnul such that (xnul, ωnul) ∈ Rnul.

Simulator

Simulator,M, a probabilistic polynomial-time simulatorM , which on input xnul, enul

outputs a transcript Γ with the same probability distribution as transcripts between

the honest P and V on common input xnul. Formally, for every x and ω such that

(x, ω) ∈ R and every e ∈ {0, 1}t it holds that

{M(xnul, enul)} = {〈P(xnul, enul),V(xnul, enul)〉} (86)

whereM(x, ω) denotes the output of simulatorM upon input x and e, and P(x, w),V(x, e)

denotes the output transcript of an execution between P and V , where P has input

(x, ω), V has input x, and V ’s random tape (determining its query) equals e.

To prove that the interactive version of theNullification Protocol is a Σ-protocol, we

have to prove that it suffices Completeness, Special Soundness and Special Honest

Verifier zero knowledge.

4.2.2 Completeness

As we have described in section 4.1.2, by following the steps. honest V has not choice

but accepting the transcript that has been constructed properly. It is complete based

66

on the Group theories that have been explained in section 2.3. So the Nullification

Protocol will always accept If P and V follow the protocol on input problem xnul and

private input ωnul to P where (xnul, ωnul) ∈ Rnul, then V always accepts.

4.2.3 Special Soundness

We propose a polynomial algorithm A for the problem xnul that given two valid

transcript (anul, enul, znul) and (anul, e
′
nul, z

′
nul) where

enul 6= e′nul (87)

would be able to extract ωnul such that (xnul, ωnul) ∈ Rnul. Two challenges enul and

e′nulwould be

enul = eAND + e0

e′nul = e′AND + e′0

(88)

From the two valid transcripts, we have

a01 = gz0 · C1
−e0

a01 = gz
′
0 · C1

−e′0

⇒ gz0 · C1
−e0 = gz

′
0 · C1

−e′0

⇒ g(z0−z′0) = (gα)(e0−e′0)

⇒ α = e0 − e′0
z0 − z′0

(89)

67

where z0 and z′0 are given and for the challenges, we have

e0 = enul − eAND

e′0 = e′nul − e′AND

(90)

So, an equation for missing values would be

α = (enul − e′nul)− (eAND − e′AND)
z0 − z′0

(91)

Similarly, from the other side of the disjunction, we have

a11 = gz1 · C1
−e1

a11 = gz
′
1 · C1

−e′1

⇒ gz1 · C1
−e1 = gz

′
1 · C1

−e′1

⇒ g(z1−z′1) = (gα)(e1−e′1)

⇒ α = e1 − e′1
z1 − z′1

(92)

By the design, we know that, for a transcript to be valid,

eAND = e1 (93)

So the second equation on α would be

α = eAND − e′AND
z1 − z′1

(94)

68

By Eq.91 and Eq.94 α can be computed by

α = (enul − e′nul)− (α · (z0 − z′0))
z1 − z′1

⇒ α = enul − e′nul
z0 − z′0 + z1 − z′1

(95)

By here, A has extracted α successfully. To validate the other equations of PrfCha(0)

and PrfCha(1) the algorithm checks

a02
?= hz0 · C1

−e0
mod p

a12
?= hz1 · (g−1 · C2)−e1

mod p

(96)

To extract flip[vi], we use C2.

C2 = gflip[vi] · hα mod p

⇒ flip[vi] = C2

hα

(97)

Here, A has extracted flip[vi] too. If flip[vi] = 0, it means that the secretkey is not part

of ωnul so the design of A is finished. However to check that, A iterates through the

bulletin board to find a public key pk matching below equations.

asch = gzsch · pk−esch

asch = gz
′
sch · pk−e′sch

⇒ gzsch · pk−esch = gz
′
sch · pk−e′sch

⇒ g(zsch−z′sch) = pk(esch−e′sch)

⇒ pk = g
(

esch−e′sch
zsch−z′sch

)

(98)

69

In the case of finding the matching pk, sk can be calculated through

sk = esch − e′sch
zsch − z′sch

(99)

At this point A has extracted all the members of ωnul set. �

4.2.4 Special Honest Verifier Zero-Knowledge

The idea behind the special honest Verifier zero knowledge proof is that an honest

Verifier can achieve no information except the intent of sending a valid nullification

packet4. Note that if a P can generate a valid nullification packet by using only a valid

challenge (with the same probability distribution of normal conversations between the

P and the V5), it means that P is sharing no private information; Thus, the protocol

would be Zero-knowledge.

However, proving the Zero-knowledge property would be infeasible for real-sized

challenge that is needed for Special Soundness. To get the idea, we show that for a

single-bit challenge, the interactive version of Nullification protocol is Zero-knowledge.

Then extend the challenge and end up proving special honest Verifier Zero-knowledge

property. So sit tight.

In Figure 4, we expanded Verifier concept and utilized a Random Oracle Obit,

where by any request anul, it replies a unique random challenge ebit ∈ {0, 1} and

stores (anul, ebit) for the next identical requests. In the figure, the single-bit-challenge

Interactive Nullification protocol has been depicted. In this case, for each anul, V just

honestly forwards the value to the ideal Random Oracle and delivers the response as

challenge, ebit.

Imagine the P wants to guess the challenge ebit ahead of time. Since ebit carries
4and of course some side channel information such as computational power that is out of the

scope of this study
5Because the probability distribution itself could leak some information about the Prover

70

P V Obit

Computes anul
anul−→

forwards ebit honestly to O
anul−→

Checks if (anul, ebit) ∈ dictO
IF YES

sends stored ebit

IF NO

flips a coin ebit ∈ {0, 1}

dictO ← dictO ∪ {(anul, ebit)}

sends stored ebit
ebit←−

Sends back ebit honestly to P
ebit←−

Computes znul

send znul to V
znul−→

Verifies (anul, ebit, znul)

Figure 4: Nullification protocol using Single-bit Random Oracle

71

only single bit of information, the guessed challenge, eP would be correct half of the

time. More formally,

Pr[eP = ebit] = 0.5 (100)

By guessing ebit ahead of time, P would be able construct the full nullification packet.

For that purpose, P starting from a random bit ebit, flips a coin to simulate the decision

of completing on side of the conjunction. If the coin is head, it generates a random

value eAND. Then, it computes e0

e0 = ebit − eAND (101)

Otherwise, it generates a random value e0. Then, it computes eAND by

eAND = ebit − e0 (102)

Then, by choosing random values z0, z1, zsch ∈ Z{2, q−2} and computes anul in the

form of Eq.80 where

a01 = gz0 · C1
−e0

mod p

a02 = hz0 · C2
−e0

mod p

a11 = gz1 · C1
−e1

mod p

a12 = hz1 · (C2 · g−1)−e1
mod p

asch = gzsch · pk−esch
mod p

(103)

where pk is a random public key from the bulletin board. So, at this point M has

completed a transcript in the form of Eq.79 with the same probability distribution.

By here, we have proven that the single-bit-challenge interactive nullification pro-

tocol is zero-knowledge. Note that, by reducing the size of the challenge to a single

72

bit, we have weaken the soundness property. Meaning that a malicious Prover P∗ can

fake knowing the witness, ωnul by guessing the challenge with %50 probability. Also,

the protocol will not be zero-knowledge with t-bit challenge, where t is sufficiently

large, because it would be infeasible to guess the challenge ahead of time and classi-

cal rewinding techniques would fail to extract the witness, looking from the view of

a malicious Verifier, V∗. Therefore, we relax Zero-knowledge to Honest Verifier Zero

Knowledge.

�

4.2.5 Fiat-Shamir Heuristics

To this point, we have proved that the interactive version of Nullification protocol is

Σ-protocol. To prove the non-interactive version, we rely on studies of [12], that by

the assumption that H() is an ideal hash function, the constructed proof will have

three basic properties of a sigma protocol that has been mentioned in the previous

sections. Also in [14], it has been thoroughly explained how to a non-interactive

Σ-protocol works in the absence of an ideal random oracle.

4.3 Improvements

In the previous section, a baseline design for Nullification protocol has been described.

In this section, we talk about the trade-offs and more complex designs.

4.3.1 Caveats

There were a few caveats in the baseline design that have been enumerated here.

73

Bounded number of flips per voter

In the baseline aggregation method, we are taking advantage of the additively ho-

momorphic property of the Exponential Elgamal crypto-scheme and using a simple

lookup table to solve discrete log problem.

Vulnerable to Pattern voting

Pattern Voting [66] is the act of sending a pattern through voting phases that make

the ballot distinguishable. By fingerprinting a ballot, a coercer can check whether

a voter followed his instruction or not. This attack has been mentioned, studied

and mitigated in other proposed voting systems e.g., [72] and [27]. This attack in

our system would be interpreted to The coercer could identify the coerced voter by

observing the number of Nullifications for that voter after the tally.

Vulnerable to Denial of Service

Other problem of this system is the vulnerability to denial-of-service attacks. Since,

the is no strong authentication mechanism for the nullification phase, a malicious

Nullifier or voter can send nullification packet containing Enc(0) per each voter only

using the public information of the crypto-system. So by repeating sending the same

packet, the malicious Nullifier can force the election authority (EA) to verify the

whole Nullification packet.

Vulnerable to Forced Abstention

We don’t solve "forced abstention" which means the coercer makes sure you never vote

by checking that your key never shows up. On another case, if a voter isn’t going to

vote anyways, then they can be bribed and they probably won’t nullify (since they

weren’t going to vote anyways). They just take the money happily. In this case,

74

our designed nullification enables the voter to sell to both parties but if only one

candidate is paying for votes, this won’t happen.

4.3.2 Secure Nullification

We propose three improvements to mitigate the aforementioned vulnerabilities:

Decentralizing the Election Authority

There are a few practical and well-studied solutions to decentralize the Election Au-

thority’s power to avoid malfeasance vulnerabilities.

• Threshold Cryptoscheme Since [24], there have been many researches to

share the decryption keys in a distributed fashion. In a (k−n)-threshold scheme,

message (here, nullification bit) is encrypted using a public key, where the corre-

sponding private key is partitioned among the participating parties. The reason

is to decentralize the authority to decrypt and pre-mature tally. With a thresh-

old cryptosystem, in order to decrypt an encryption, k out of n parties must

participate in the decryption protocol.

• Self-Tallying systems Initially proposed by Kiayias and Yung [44], Self-

tallying voting systems are those that without needing any central authority

to act, it can generate the election results. The idea have been improved by

various studies e.g., [33] and [2].

True XOR

A solution for both Pattern attack and bounded flips caveats would be designing

an Exclusive OR function that could perform over Exponential Elgamal encrypted

values. Here, we propose two multi-party functions named True XOR, TXOR and

75

Input #1 Input #2 Output

Enc(b1) Enc(b2) Enc(b1 ⊕ b2)

Enc(0) Enc(0) Enc(0)

Enc(0) Enc(1) Enc(1)

Enc(1) Enc(0) Enc(1)

Enc(1) Enc(1) Enc(0)

Input Output

Enc(b1) + Enc(b2) Enc(b1 ⊕ b2)

Enc(0) Enc(0)

Enc(1) Enc(1)

Enc(2) Enc(0)

(a) (b)

Figure 5: Optimizing mix and match XOR. (a) Baseline Mix-n-Match XOR evaluation
table. (b) True XOR evaluation table

Online XOR, OXOR that each has its own advantages. Both functions have been

inspired by Mix and Match protocol by Juels et al.’s [39]. Mix and Match protocol

constructs and executes an arbitrary function over encrypted values by multi-party

shuffling and re-randomization techniques.

Note that we do not need the exact value of nultotal at the end and only the parity

of it would be enough to encode whether to flip the vote or not. Based on this ob-

servation, we design various XOR implementation over the arriving Nullification bit

bitnul and current aggregated bit, bitagg. Figure 5 illustrates two different implemen-

tations of XOR function. On the left side, the evaluation table of the baseline XOR

function has been shown and on the right side, using the additively homo-morphic

properties of Exponential Elgamal cryptosystem, we proposed a new function with

the same functionality, named True XOR.

Figure 5 shows a baselineXOR function over encrypted values Enc(b1) and Enc(b2)

where both are 0 or 1. As it has been mentioned, any function could be implemented

to work under encryption using Mix-n-match technique. Therefore this baseline XOR

could be a Using the additively homo-morphic properties of Exponential Elgamal, we

can convert the function to TXOR that can be see in part (b). Later, we will see that

76

it reduce the number of needed Plaintext Equality Test, PET, that has been described

in Section 2.3.4, in the matching phase.

We define True XOR function, TXOR() in the form of

TXOR : C2
{0,1} → C{0,1} (104)

where C{0,1} is the set of all chipertexts in the predefined Exponential Elgamal crypto-

system, 〈p, q, g, h〉 that is an encryption of 0 or 1. Formally,

C{0,1} : {〈C1,C2〉 | ∀ r ∈ Z{2, q−2},m ∈ {0, 1}, 〈C1, C2〉 = Enc(m, r)} (105)

where Enc(m, r) is the Exponential Elgamal encryption function. In Figure 5, in the

left side, the evaluation table of TXOR function has been illustrated.

We define TXOR’s functionality as an exclusive OR over two ciphertext and out-

puts a new well-formed ciphertext. Formally,

TXOR[Enc(m1, r1),Enc(m2, r2)] = Enc(mX, rX)

= 〈CX1,CX2〉

= 〈grX
mod p, g

(m1⊕m2) · hrX
mod p〉

(106)

where XOR is binary exclusive OR operator. Note the TXOR function’s input and

output has been designed to be used at the arrival of every new nullification packet.

To participate in Mix-and-match protocol, trustees that have read/write access to

a shared memory, follow two steps

• Mixing. In Figure 6, the mixing phase of Mix and Match protocol has been

illustrated. Each trustee, reads the current version of the function’s evaluation

table, shuffle rows are re-randomize input and output encryptions. We define

77

Memory T1 Tt

RR(Table)
RR(Table)−→

RR(RR(Table))
RR2(Table)←−

RR2(Table)

· · · · · ·

RRt−1(Table)

RR(RRt−1(Table))

RRt(Table)

new Table

Figure 6: Mixing phase of Mix and Match protocol

RR() function as shuffling of row of the TXOR function’s evaluation table and

also re-randomization of encrypted values inside it.

• Matching. In this phase, trustees perform PET test per each Input cell of

the evaluation table. In Figure 5, the input cells have been annotated with

purple color. Per each row, trustees run two PETs and if for a row, both PETs

returns true, the output of of the TrueXor would be the output of that row. In

practice, the mixed evaluation table would be pre-computed before the election

and the only online computation needed for this design on TXOR is executing

three multi-party PETs.

Online XOR

Another proposed implementation of XOR over encryption is Online XOR, OXOR,

where it would be less expensive but without pre-computation. The key idea is to

78

Enc(0) Enc(0)

Enc(1) Enc(1)

Enc(2) Enc(0)
Mixing phase

RRt(Enc(1)) RRt(Enc(1))

RRt(Enc(0)) RRt(Enc(0))

RRt(Enc(2)) RRt(Enc(0))

(a) (b)

Figure 7: True XOR. (a) initial-state (b) after a sample mixing

Input Output

Enc(bagg) + Enc(bnul) Enc(bagg ⊕ bnul)

Enc(bagg) + Enc(bagg) Enc(0)

Enc(1) Enc(1)

Figure 8: The inner structure of Online XOR function

use the entropy of the input random variables inside the evaluation table. OXOR’s

domain, range and functionality would be identical to TXOR that have been explained

in Eq.105 and Eq.106.

In Figure 8, the design of OXOR has been depicted. The idea was to detect that

Enc(bagg)+Enc(bagg) is encoding Enc(bagg)+Enc(bnul) when Enc(bagg) = Enc(bnul). The

advantage of OXOR over TXOR is that it is computationally cheaper (2 PET worst

case, 1 PET expectation). The only drawback is the trustees, should participate in the

mixing phase after each arrival of new nullification packet; Instead of pre-cumputing

the evaluation table before election. Because the OXOR’s evaluation table includes

Enc(bagg) + Enc(bagg) that depends on the on-going state of the nullification board.

Now that we reduced the problem to be solved with two-row evaluation table Mix

and Match, we reduced the mixing phase by Zero-knowledge proof of shuffles using

previously explained circuit construction using Σ-protocols.

A generic binary proof-of-shuffle has been shown in Figure 9. The perform OXOR’s

79

a b

c d

w x

y z

Input Output

,[]Proof-of shuffle

Proof-of shuffle

Proof-of a = w

Proof-of b = x

Proof-of c = y

Proof-of d = z

Proof-of a = y

Proof-of b = z

Proof-of c = w

Proof-of d = x

Figure 9: Proof of shuffle of Online XOR evaluation table

mixing phase, each trustee given the online version of the OXOR evaluation table (Fig-

ure 8) as [a, b, c, d], computes the proof-of-shuffle receipt that contains proof of dis-

junction of proofs of all the possible permutations 6 and the rerandomized evaluation

table as [w, x, y, z]. Formally

Mixing input Mixing output
a = 2 · Enc(bagg) b = Enc(0)

c = Enc(1) d = Enc(1)

w = RR(2 · Enc(bagg)) x = RR(Enc(0))

y = RR(Enc(1)) z = RR(Enc(1))

(107)

The matching phase would be exactly the same as the classic Mix and Match

protocol. Trustees perform PET tests (2 worst case, 1 expectation) on the reran-

domized evaluation table’s inputs. We reduced a PET with the expense of losing the

advantage of Re-randomized evaluation table pre-computation.
6Note that the number of permutations for n objects is n!, so that this technique will be drastically

less efficient for larger evaluation tables.

80

4.3.3 Efficient Nullification

We have mentioned that TXOR and OXOR technique in the previous sections that

would lead to more efficient nullification design. In this section we will compare the

efficiency of various extensions of the protocol. larger concurrent work is better than

smaller one-shot calculation at the end (a comparison is needed).

Efficient Lookup table using Pollard’s Rho

As it has been shown in Section 4.3.1, the baseline aggregation design misses an

efficient way to get flip[total,vi] from gflip[total,vi] where i is the index of an arbitrary voter

in Nullification Bulletin board table, BBnul. Here we discuss some solutions with

different characteristics that can be used in different scenarios. Pollard’s RHO

method [63] is a randomized algorithm for computing the discrete logarithm. It

generates a pseudo-random sequence by an iteration function . It is a way to pseudo-

random walk in p space looking for a collision to break the a Discrete Log problem

from that intersection. The expected number of evaluations before a match is π|Gp|/2,

where Gp is the finite syclic group over p. This approach fully exponential in the

problem size and would be more efficient than the naive look-up table design.

Concurrent Nullification Verification

In the design of Cobra [28] partitioning work over time, linear amount of work on

each entry, concurrent ballot authorization. (COBRA) [23]

Anonymity sets

Anonymity is being defined in sets, where the actor of an action could not identified by

efficient algorithms. However, in our case, since the total number of voters would be

relatively large, smaller subsets could be used to offer sufficient but faster anonymity.

81

Clark et al. in [20] uses the concept of anonymity sets to speed up the designed e-

voting system, Selections. For that purpose, Nullifier would select a set of nset voters’

public keys and construct the nullification proofs for that set, where nset would be

predefined in the SignedElectionConfiguration.

82

Chapter 5

Wrap-up

“The world can be such an unsparingly savage place. One can be forgiven for believing that

evil will triumph in the end.” - Red Reddington

In this study we tried to take one step further to solve insecure e-voting systems

problem.

5.1 Discussions

5.1.1 Generalization

The idea of Nullification can get generalized through:

Compatibility

A key feature of the nullification approach is to separate the mechanism for mitigat-

ing the influence of from the main voting mechanisms namely, casting and counting

the ballots. Consequently, our approach can be applied to a wide variety of voting

systems, including precinct voting with paper ballots, voting by mail, and Internet

voting; for instance, the Helios internet voting system [1] and Scantegrity [13] mail

83

voting system.

K-Candidate Election

Based on Nullification system, each voter has an option to flip their vote using a “flip

code,” which they establish during registration. In a two-candidate race, flipping

means computing the modulo-two sum of the original vote and any flipped votes for

that ballot question. The idea can be generalized to a modulo-k sum for a k-candidate

race.

Desired Actions

Nullification can be interpreted into two parts: signalling and the desired action.

After the signal has been received privately to the Bulletin board, then it can be

interpreted into three different actions1:

• Flip. In this case, vote gets flipped to other party if an odd number of nullifying

nullification packets for a particular voter gets to BBnul.

• Cancel-toggle. Vote gets cancelled if an odd number of nullification packets

on BBnul nullifies the targeted voter’s vote.

• Cancel-nil. In this case, vote gets cancelled if one or more entities cancel it,

meaning that only one of the nullification packets should include Enc(1) for the

targeted voter.
1The model comes from voting procedure. Casting a ballot can be assumed as signalling and

how to count it can be the action.

84

5.1.2 Nullification or Voting

The difference between the nullification-only voting2 and the proposed VoteXX pro-

tocol would be on efficiency. Nullification is so expensive, comparing to just signing

the ballot. On the other hand, the coercion (hopefully) will not happen at scale.

So just the opportunity to nullify would be sufficient to guard the voting system

against tally-altering coercion situations. Therefore we have chosen a simpler and

faster mechanism for voting.

5.1.3 Nullification, not Revoting.

Nullification is different from multiple voting. In multiple voting, only the voter can

vote, and the coercer might be able to coerce the voter at the end of the voting period.

By contrast, in nullification, there might be one or more hedgehogs, and the coercer

does not know who they are or how many there are.

5.1.4 Nullification and Liquid Democracy

Nullification idea in practice would get into Liquid Democracy. Consider a binary

voting situation that would decide for a two-party presidential election. We call the

parties Red and Blue. Assume that there is an activist, Alice, that is campaigning

for Red party. Putting the nullification protocol under scrutiny, Alice finds out that

through this protocol, she can nullify all the votes of people who trust her in just one

single nullification packet. So she starts advertising her contact for the other Red

party supporters to become a mass Blue-vote-Nullifier. Red Supporter would share

their Blue key with Alice. It can work as a proof of support to party’s candidate.

One of the main objectives of the Liquid Democracy concept is to mitigate the
2meaning that the voting itself would be sent as a Nullification packet.

85

Voter Fatigue problem. The problem can be addressed by Nullification too for repet-

itive elections e.g., internal party voting. As long as Alice plays fair and acts in

the desired manner, party members continue trusting her and delegating the vote to

her. We can consider a voting system that works without voting and only by the

nullification.

5.1.5 Game Theoretic Analysis

The coercer can demand that the voter reveal all of the secret keys the voter possesses.

However, revealing the secrets to the coercer would not prevent the voter from flipping

their vote again. So by the existence of a coercion-free window, voter would be able to

send a signal to another trusted Nullifier to flip her vote on behalf of her. The signal

could be subtle and covert—such as moving a specified potted plant on a balcony or

posting a picture of a specific object on Twitter. As we can see, the multiple Nullifier

strategy are useful when a coercer closely monitors the voter. We assume that, at

some time after registration and before the nullification period, the voter is able to

communicate their flip code to their Nullifier(s) privately. We also assume that, at

some time after any coercion, and before the nullification period, the voter is able to

signal the hedgehog(s) privately.

To clarify the idea, Consider an election between Alice and Bob. The coercer

instructs the voter: "cast a vote for Bob in my presence. After the electron, I will flip

a coin. If it is heads, I will nullify your vote. If it is tails, I will do nothing."

From the voter’s perspective, say they are an Alice supporter. If the voter does

nullify, there is a 50% chance the coercer will do nothing and the vote will be nullified.

There is a 50% chance the coercer will also nullify, which cancels out the nullification

and the vote is cast for Bob. Now assume the voter doesn’t nullify. There is a 50%

chance the coercer will nullify which results in the vote being nullified. There is a

86

50% chance they do nothing which results in a vote for Bob. The probabilities are

identical if the voter nullifies or not, so the voter is indifferent to nullifying. From the

coercer’s perspective, if they coerce 1000 voters, 500 will be nullified and 500 will be

cast for Bob. So this does not stop coercion, it just doubles the price for the coercer.

5.2 Future Works

This study can evolve through

5.2.1 Improving the Design and Implementation

The efficiency of the parallel nullification receipts that would be sent all together by

a single Nullifier can be optimized by theory. A thread of future works can be diving

deeper into the ocean of Σ-protocols.

There is also an ongoing effort to fully implement the VoteXX voting protocol

over XX network. The baseline implementation of Nullification has been successfully

added. Future works on this direction would be implementing TXOR and OXOR

functions. Also, holding a real election is on the plan.

5.2.2 Compulsory Lubrication

As it has been described in the previous chapter, the designed system would end up

into a Liquid Democracy style game. So studying the game theoretic consequences is

a must. This study mapped the problem of coercion to a more fair vote buying game

but have not touched further. There is an open door for contributions to improve the

game itself.

87

Figure 10: The process of Topic Extraction over academic e-voting papers

5.2.3 Literature Disambiguation

The literature ambiguition is not limited to coercion resistance or even voting prob-

lem. Many terms has been used for the same concepts. Based on the initial motivation

of the author (Section 1.2), we tried to disambiguate the literature using Information

Extraction and Natural Language Analysis techniques. In Figure 10, the steps to

extract the most influential topics on the modern voting literature.

We started with 537 voting related academic papers using publicly available search

engines and personal repositories of voting domain experts 3. Figure 11 depicts four

found topics and their corresponding word cloud. We hypothesize that Having access

to a list of previously used terms would help the new academic writer to stick to the

literature. So, it would lead to disambiguation of the whole literature.

3The search was not exhaustive and there might be missing papers that presenting voting re-
quirements and protocols. The accuracy and fairness of this extraction must be verified in future
works. We used keywords such as “vote”, “voting”, “ballot” and an expert read the title and the
abstract to see whether it is roughly related to e-voting secure system design or not.

88

Figure 11: WordCloud of the topics extracted out of 537 voting paper, using LDA
over manually curated repository

89

Bibliography

[1] B. Adida. Helios: Web-based Open-Audit voting. In 17th USENIX Security
Symposium (USENIX Security 08), San Jose, CA, July 2008. USENIX Associa-
tion.

[2] M. Arapinis, N. Lamprou, L. Mareková, and T. Zacharias. E-cclesia: Universally
composable self-tallying elections. Cryptology ePrint Archive, Report 2020/513,
2020. https://ia.cr/2020/513.

[3] R. Araujo, S. Foulle, and J. Traoré. A practical and secure coercion-resistant
scheme for internet voting. Toward Trustworthy Elections, LNCS 6000, 2010.

[4] R. Araujo, N. B. Rajeb, R. Robbana, J. Traoré, and S. Yousfi. Towards practical
and secure coercion-resistant electronic elections. In CANS, 2010.

[5] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In ACM STOC,
1994.

[6] M. Bishop. Computer security : art and science. Addison-Wesley Pearson,
Boston, 2019.

[7] M. Bodner. Videos online show blatant ballot-stuffing in russia, 2018.

[8] D. Boneh. The decision diffie-hellman problem. In J. P. Buhler, editor, Algo-
rithmic Number Theory, pages 48–63, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[9] J. Bonneau, S. Preibusch, and R. Anderson. A birthday present every eleven wal-
lets? the security of customer-chosen banking pins. In Financial Cryptography,
2012.

[10] M. Bratton. Vote buying and violence in nigerian election campaigns. Electoral
Studies, 27(4):621–632, 2008.

[11] T. Bronack. The problems with a paper based voting system. 2000.

[12] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Roth-
blum, and D. Wichs. Fiat-shamir: From practice to theory. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC

90

https://ia.cr/2020/513

2019, page 1082–1090, New York, NY, USA, 2019. Association for Computing
Machinery.

[13] R. T. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Hernson, T. May-
berry, S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and P. L. Vora.
Scantegrity II municipal election at Takoma Park: the first E2E binding govern-
mental election with ballot privacy. In USENIX Security Symposium, 2010.

[14] P. Chaidos and J. Groth. Making sigma-protocols non-interactive without ran-
dom oracles. In Public Key Cryptography, 2015.

[15] D. Chaum. Surevote: Technical overview. In WOTE, 2001.

[16] D. Chaum. Random-sample voting, 2016.

[17] D. Chaum, R. Carback, M. Yaksetig, J. Clark, M. Nejadgholi, A. T. Sherman,
C. Liu, and F. Zagórski. Votexx: A solution to improper influence in voter-
verifiable elections. In 7th International Joint Conference, E-Vote-ID 2022, Lec-
ture Notes in Computer Science. Springer, 2022.

[18] D. Chaum, D. Das, F. Javani, A. Kate, A. Krasnova, J. de Ruiter, and A. T.
Sherman. cmix: Mixing with minimal real-time asymmetric cryptographic oper-
ations. In ACNS, 2017.

[19] D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO,
1992.

[20] J. Clark and U. Hengartner. Selections: Internet voting with over-the-shoulder
coercion-resistance. In FC, 2011.

[21] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting
system. In IEEE Symposium on Security and Privacy, pages 354–368, 2008.

[22] S. Coll. Directorate S: The C.I.A. and America’s Secret Wars in Afghanistan
and Pakistan. Penguin Random House, 2018.

[23] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO, 1994.

[24] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, STOC ’94, page 522–533, New York, NY, USA, 1994. Association
for Computing Machinery.

[25] W. Diffie and M. E. Hellman. New directions in cryptography, 1976.

[26] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

91

[27] A. Essex, J. Clark, and C. Adams. Aperio: High Integrity Elections for Devel-
oping Countries, page 388–401. Springer-Verlag, Berlin, Heidelberg, 2010.

[28] A. Essex, J. Clark, and U. Hengartner. Cobra: Toward concurrent ballot autho-
rization for internet voting. In EVT/WOTE, 2012.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology
— CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Hei-
delberg.

[30] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989.

[31] D. Graeber. Debt : the first 5,000 years. Brooklyn, N.Y. : Melville House, 2011.

[32] T. Haines and B. Smyth. Surveying definitions of coercion resistance. Cryptology
ePrint Archive, Report 2019/822, 2019. https://ia.cr/2019/822.

[33] F. Hao and P. R. P. Zieliński. Anonymous voting by two-round public discussion.
IET Information Security, 4:62–67(5), June 2010.

[34] C. Hazay and Y. Lindell. Efficient secure two-party protocols: Techniques and
constructions. Springer Science & Business Media, 2010.

[35] S. Heiberg, H. Lipmaa, and F. v. Laenen. On e-vote integrity in the case of
malicious voter computers. In ESORICS, 2010.

[36] J. Helbach, J. Schwenk, and S. Schage. Code voting with linkable group signa-
tures. In EVOTE, 2008.

[37] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-
tion. In Proceedings of the 19th International Conference on Theory and Appli-
cation of Cryptographic Techniques, EUROCRYPT’00, page 539–556, Berlin,
Heidelberg, 2000. Springer-Verlag.

[38] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic en-
cryption. In EUROCRYPT, 2000.

[39] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via
ciphertexts. In Proceedings of the 6th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’00, page 162–177, Berlin, Heidelberg, 2000. Springer-Verlag.

[40] R. Joaquim, C. Ribeiro, and P. Ferreira. Improving remote voting security with
CodeVoting. In Towards Trustworthy Elections, volume 6000 of LNCS. Springer,
2010.

92

https://ia.cr/2019/822

[41] D. W. Jones. problems with voting systems and the applicable standards. 2001.

[42] A. Juels, D. Catalano, and M. Jacobsson. Coercion-resistant electronic elections.
In ACM WPES, 2005.

[43] A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic Elec-
tions, page 37–63. Springer-Verlag, Berlin, Heidelberg, 2010.

[44] A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In
Public Key Cryptography, 2002.

[45] R. Koenig, R. Haenni, and S. Fischli. Preventing board flooding attacks in
coercion-resistant electronic voting schemes. In SEC, 2011.

[46] A. Kolbe, N. Cesnales, M. Puccio, and R. Muggah. Impact of perceived electoral
fraud on haitian voter’s beliefs about democracy. 2015.

[47] E. Kramon. Where is vote buying effective? evidence from a list experiment in
kenya. Electoral Studies, 44:397–408, 2016.

[48] R. Kusters, T. Truderung, and A. Vogt. Accountability: Definition and relation-
ship to verifiability. In ACM CCS, 2010.

[49] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. Voteagain: A scal-
able coercion-resistant voting system. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[50] T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In CRYPTO, 2006.

[51] A. A. Nasar. The history of algorithmic complexity. The Mathematics Enthusiast,
13(3):217–242, 2016.

[52] M. Nejadgholi and J. Yang. A study of oracle approximations in testing deep
learning libraries. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
pages 785–796. IEEE, 2019.

[53] M. Nejadgholi, N. Yang, and J. Clark. Short paper: Ballot secrecy for liquid
democracy. In M. Bernhard, A. Bracciali, L. Gudgeon, T. Haines, A. Klages-
Mundt, S. Matsuo, D. Perez, M. Sala, and S. Werner, editors, Financial Cryptog-
raphy and Data Security. FC 2021 International Workshops - CoDecFin, DeFi,
VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers,
volume 12676 of Lecture Notes in Computer Science, pages 306–314. Springer,
2021.

[54] NIST. NIST election terminology glossary - draft. Accessed: 2020-07-05.

93

[55] N. Nyagudi. Election Shenanigans - Kenyan Hybrid Warfare. 07 2020.

[56] T. Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In CRYPTO, 1992.

[57] T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In
Workshop on Security Protocols, 1997.

[58] R. Oppliger, J. Schwenk, and C. Lohr. Captcha-based code voting. In EVOTE,
2008.

[59] S. Park, M. A. Specter, N. Narula, and R. L. Rivest. Going from bad to worse:
from internet voting to blockchain voting. J. Cybersecur., 7, 2021.

[60] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, volume 576 of Lecture Notes in Computer Science, pages 129–140.
Springer, 1991.

[61] T. P. Pedersen. A threshold cryptosystem without a trusted party. In EURO-
CRYPT, 1991.

[62] J. Peralta and S. Gelera. ‘massive’ vote-buying continues on election day, 2019.

[63] J. M. Pollard. Monte carlo methods for index computation (). Mathematics of
Computation, 32:918–924, 1978.

[64] S. Popoveniuc. Speakup: remote unsupervised voting. In ACNS, 2010.

[65] S. Popoveniuc, J. Kelsey, A. Regenscheid, and P. Vora. Performance require-
ments for end-to-end verifiable elections. 2010 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE ’10), Washington,
DC, US, 2010-08-09 00:08:00 2010.

[66] S. Popoveniuc and J. Stanton. Undervote and pattern voting: Vulnerability and
a mitigation technique. In In Preproceedings of the 2007 IAVoSS Workshop on
Trustworthy Elections (WOTE 2007, 2007.

[67] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Cornell University, 1962.

[68] A. D. Rubin, D. S. Wallach, D. Boneh, M. D. Byrne, D. Dean, D. L. Dill, P. G.
Neumann, D. K. Mulligan, and D. A. Wagner. A center for correct , usable ,
reliable , auditable , and transparent elections (accurate). 2005.

[69] P. Y. A. Ryan and V. Teague. Pretty good democracy. In Workshop on Security
Protocols, 2009.

94

[70] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In EUROCRYPT, pages 393–403, 1995.

[71] C. P. Schnorr. Efficient identification and signatures for smart cards. In G. Bras-
sard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 239–
252, New York, NY, 1990. Springer New York.

[72] W. D. Smith. New cryptographic election protocol with best-known theoretical
properties. 2005.

[73] O. Spycher, R. Haenni, and E. Dubuis. Coercion-resistant hybrid voting systems.
In EVOTE, 2010.

[74] S. C. Stokes. Perverse accountability: A formal model of machine politics with
evidence from argentina. 2005.

[75] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[76] M. Vasek, J. Bonneau, R. Castellucci, C. Keith, and T. Moore. The bitcoin
brain drain: Examining the use and abuse of bitcoin brain wallets. In Financial
Cryptography, 2017.

[77] M. Volkamer and R. Grimm. Multiple casts in online voting: Analyzing chances.
In EVOTE, 2006.

[78] F. Zagórski, R. Carback, D. Chaum, J. Clark, A. Essex, and P. L. Vora. Re-
motegrity: Design and use of an end-to-end verifiable remote voting system. In
ACNS, 2013.

95

	List of Figures
	List of Tables
	Introduction
	A Brief History of Voting
	Motivation
	Contributions
	Publications
	Structure

	Background
	Foundations of Security
	Availability
	Integrity
	Confidentiality
	Usability

	E-voting Requirements Glossary
	Functionality
	Usability and Deployability
	Correctness
	Secrecy
	Malfeasance Resistance
	Coercion and Deception Resistance

	A Pinch of Cryptography
	Intractable Problems
	ElGamal Cryptoscheme
	Secure Multi-Party Protocols
	PET, Plain Equality Test
	Knowledge Proofs
	Sigma Protocols

	Threats to Online Voting Systems
	Untrusted Platforms
	Online Denial-of-Service Attacks
	Unauthorized Intervention

	VoteXX
	Definitions
	Entities
	Assumptions and Thread Model
	Phases
	Protocol
	Security Analysis (Sketch)
	Registration
	Voting
	Provisional Tally
	Nullification
	Final Tally

	Implementation

	Nullification
	Design
	Initial State
	Single-Voter Construction
	Receipt Verification
	Expanding to N Voters
	Aggregation
	Complexity

	Proof Sketch
	Terminology
	Completeness
	Special Soundness
	Special Honest Verifier Zero-Knowledge
	Fiat-Shamir Heuristics

	Improvements
	Caveats
	Secure Nullification
	Efficient Nullification

	Wrap-up
	Discussions
	Generalization
	Nullification or Voting
	Nullification, not Revoting.
	Nullification and Liquid Democracy
	Game Theoretic Analysis

	Future Works
	Improving the Design and Implementation
	Compulsory Lubrication
	Literature Disambiguation

	Bibliography

