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Abstract

Lower Bound for the Duration of Event Sequences of Given Length in Timed Discrete
Event Systems

Viraj Vinod Mestry

The Supervisory Control Theory (SCT) of Discrete Event Systems (DES) provides a framework

for synthesizing a DES supervisor to ensure a DES plant satisfies its design specification. In SCT,

supervisor synthesis is performed offline before the functioning of plant. Generally, the size of

the plant and the specifications models are large resulting in supervisors that need huge computer

memory for storage – usually unavailable in embedded systems. A solution to this problem proposed

in the literature is Limited Lookahead Policy (LLP). In LLP, the supervisory control commands are

calculated online during the plant operation. After the occurrence of each event, the next control

command is calculated based on the plant behaviour over a limited number of events into the future.

In practice such frequent LLP computation would not be feasible as multiple events can occur

consecutively over a short duration, not leaving enough time for LLP computation between them.

To tackle this issue, a method is proposed called LLP with Buffering where the supervisory control

commands are calculated online and buffered in advance for a predefined window of events in future.

Determining the correct size of the buffer is crucial in order to achieve a trade-off between the on-

board memory requirement and the computational resources and also ensuring that new supervisor

commands are computed before the buffer runs out empty.

The size of the buffer primarily depends on (1) the execution time of the code for supervisor

calculation and (2) the (fastest) rate of event generation in the plant. This thesis focuses on the

second factor. Previously, the minimum execution duration of event sequences have been calculated

experimentally. The experimental approach is not exhaustive and thus results in an overestimate
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in the value of the minimum execution duration of event sequences. In this thesis, a model-based

approach to the computation of the minimum duration is proposed which begins by transforming the

untimed model of the plant under supervision to a timed automaton (TA) by incorporating timing

information to the events. Next, an exhaustive symbolic matrix-based search algorithm is proposed

where all the event sequences from every mode of the TA model are traversed to determine the

minimum execution duration of the event sequences. The proposed method avoids the reachability

analysis of TA needed to determine the reachable clock regions for each mode. The number of these

regions is exponential in the number of events. Instead the method uses a reachability on the graph

of the untimed model (polynomial in the number of events). This algorithm runs faster but provides

an underestimate for the minimum execution duration of event sequences.

Next, a two-degree-of-freedom solar tracker system is used as plant to analyse the timing be-

haviour of the events and the implementation of LLP with buffering. In this study, the model-based

and experimental methods have been used together to choose a suitable buffer size. The resulting

LLP supervisor with buffering has been successfully implemented.
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Chapter 1

Introduction

A Continuous Variable Dynamic System (CVDS) is a system that is described using differ-

ential equations. Generally, man-made dynamic systems with complex behaviour are difficult to

describe using differential equations [7]. Examples of such systems are queuing systems, com-

puter/communication systems, manufacturing systems, traffic systems, where the state evolution of

the system depends upon the occurrence of the iscrete events over time. Such systems are called

Discrete Event Systems (DES). Contrary to the CVDS, DES have a discrete state space and event-

driven state transition mechanism.

The supervisory control theory (SCT) of the DES [8] provides a formal approach for auto-

matically synthesizing a supervisor for controlling the behaviour of a plant modelled as DES. The

supervisor is synthesized offline on the basis of the DES model of the plant and its design specifi-

cations. One of the major problems in SCT is state space explosion. Large plant and specification

models result in a supervisor with a large state space, requiring computer memory larger than what

is usually unavailable in embedded system applications. An alternative approach known as Lim-

ited Lookahead policies (LLP) [2] has been proposed in the literature where the supervisory control

commands are computed online (or on-the-fly) after every event occurrence during the functioning

of the plant. Implementing LLP requires less memory since only at every iteration it needs a sub-

model of plant and specifications. However, this approach imposes unrealistic timing constraints

where every supervisory commands must be computed before the occurrence of the next event.

1



This issue of timing constraint is resolved by an innovative approach called LLP with Buffer-

ing [3] where the supervisory commands are calculated online and buffered. However, in this ap-

proach an important decision is to choose the buffer size which affects the reliability of this ap-

proach. In this thesis, we specifically focus on this step of design of LLP with Buffering.

In this chapter, we briefly review the SCT for DES. Then, a detailed literature review of LLP fol-

lowed by timed automata is provided. Finally, an overview of the thesis objectives and contributions

is discussed.

1.1 Supervisory Control of Discrete Event Systems

DES is a dynamic system which contains a discrete state space where transition from one state

to another follows the occurrences of discrete events. Similar to other types of systems, a complex

DES plant can be easily modelled by first modeling the components of the plant as DES. These com-

ponents can be integrated together based on their interactions to describe the complete behaviour of

the plant. One of the common formalisms of modelling DES is using finite state automaton.

The plant does not necessarily generate safe event sequences (safe behaviour). To prohibit a

plant from generating unsafe event sequences, Ramadage and Wonham introduced a formal ap-

proach for supervisory control of DES in [8]. To ensure the safety of the plant, safety specifications

are designed as a set of safe event sequences which can also be modelled as automaton. A super-

visor ensures that the plant behaviour does not go outside its design specifications. The supervisor

observes the events that are generated in the plant (Fig. 1.1). It is assumed that the supervisor can

only control a subset of plant events called controllable events in the form of enabling or disabling

the controllable events. Example of such controllable events are issuing a command to open a

value, motor actuation and broadcasting a message. The events which the supervisor cannot dis-

able are referred to as the uncontrollable events. For instance, sensor data readings, emergency

startup/shutdown operator commands and failure emergency signals are some of examples of un-

controllable events.

In addition to the safety properties of the plant, the supervisor must also ensure that the plant is

non-blocking i.e. free from livelocks or deadlocks [9].

2



Figure 1.1: Interaction between plant and supervisor.

Similar to the supervisory control of DES, model-based programming for supervisory control

and decision of autonomous systems in space based on different supervisor synthesis approach is

studied in [10] and [11]. [10] describes Livingstone which is a kernel for model-based reactive self-

configuring autonomous system demonstrated in flight on the Deep-Space One mission. In [11],

model-based executive called Titan is used to calculate control commands based on the plant ob-

servations and configuration goals. Titan is a superset of the Livingstone system which focuses

particularly on insufficient modularity and the property of robustness in space applications.

1.2 Literature Review

1.2.1 Limited Look-ahead Policies

Ramadage and Wonham framework [8] has proven to be essential in terms of computing a

supervisor that is minimally restrictive and non-blocking. The supervisor is synthesized offline

based on the DES models of the plant and specifications. As stated previously, an offline supervisor

will be very large for real-world systems. Embedded systems consist of limited on-board memory

and although not impossible, it would be usually infeasible to store such large supervisor in the

on-board memory. In addition, the plant itself can be time varying (since the behaviour of the

components changes time to time) and in such cases computing an offline supervisor would be

impractical since the entire model of the plant is not available at the time of supervisor synthesis.

3



To overcome these problems, Chung et al. devised an approach called Limited Lookahead Poli-

cies (LLP) in [2]. In LLP, the supervisory commands are computed online during the functioning of

the plant. In this way only the models of components and specifications are stored in the on-board

memory of the system, thus reducing the memory consumption. The online memory requirement

is reduced at the expense of higher online computation. In addition, LLP supervisory computa-

tion does not require complete information of the plant thereby resolving the issue of supervisory

computation when the plant is time varying.

In order to synthesize a supervisor in LLP, only a portion of the plant model is explored for

calculating control commands. After the occurrence of every event, the plant model will be ex-

plored from the current state up to Nw events into the future. Here, Nw is called the look-ahead

window. The next supervisory control commands is chosen based on the plant window within the

LLP window. In LLP, two different attitudes can be chosen for the unexplored region of the plant

to compute the LLP supervisor: optimistic and conservative. The LLP supervisory commands as

well as the size of LLP supervisor are greatly influenced by the attitude selected during the LLP su-

pervisory computation. The LLP supervisor is said to be optimal if the LLP supervisory commands

matches the optimal offline supervisory commands at any given moment. The look-ahead window

must explore the plant sufficiently enough into the future in order to guarantee optimality of the

LLP supervisor.

LLP reduces memory consumption while providing optimal supervisory commands [2]. Two

major concerns of LLP are the following: (1) the supervisory computation is repeated after the oc-

currence of each event, and (2) the supervisory commands must be available before the occurrence

of the next event. In other words, the LLP approach increases the online computational (time) com-

plexity along with imposing a timing constraint for completing the LLP supervisory computations

(i.e. the occurrence of next event). Therefore, attempts have been made to reduce the computation

time of LLP supervisor in [12], [13] and [14].

In [13], a recursive computational method which uses backward dynamic programming to com-

pute the LLP supervisor is proposed. This method uses the results of the previous lookahead win-

dow for the computation of the current lookahead window thereby reducing the computation time.

4



In [12], an approach called Variable Lookahead policy (VLP) is implemented to improve the ef-

ficiency of online supervisory calculations. The VLP algorithm uses a forward search technique

which can terminate whenever the control decision is made explicitly even before completely ex-

ploring the portion of the plant for the window of Nw. Therefore, computation time of a VLP

supervisor is definitely less than the computation time of an LLP supervisor. VLP is further im-

proved in [14] by including state information to reduce the computations. This new approach of

including state information in variable lookahead policy is named VLP-S. In [14], the VLP-S algo-

rithm assigns a cost to each state and does not explore the states again whose cost is already known

thus reducing the exploration of repeated states and loops. Both LLP and VLP take a linguistic

approach to synthesize valid online supervisors, however, VLP-S take a state-based approach to

synthesize valid online supervisors.

Further improvements in the area of LLP using different LLP supervisory calculation are as

follows. In LLP, a conservative or an optimistic attitude is required to be selected by the supervisor

for the pending traces. The supervisor with a conservative attitude may result in a restrictive control

policy and the supervisor with an optimistic attitude may result violating the design specifications.

In [15] an approach called Extension based Limited Lookahead Policy (ELL) is proposed. The

main advantage of this approach is that ELL avoids the notion of pending traces and the need to

select an attitude for the supervisor. In ELL, the supervisory commands are computed by extending

the behaviour of the plant by adding all finite length event sequences beyond the N-step projection

of the plant behaviour. In [16] an estimate-based Limited Lookahead policy is proposed which

studies the case when the specification is described as a closed language. In [17], a method is

presented for estimating the state-space of the LLP lookahed tree based on the window size Nw.

The authors in [18] synthesized an optimal LLP supervisor based on reinforcement learning by

using several local systems where the supervisor learns the evaluation for control pattern from the

rewards obtained from the local systems.

In addition to the theoretical developments, the framework of LLP is incorporated in numerous

applications solving specific problems. In [19], the authors synthesized an LLP supervisor using

Petri-nets model of the robot system in order to chose a “qualitative” supervisory command for

navigating the mobile robot in a building. In [20], the framework of LLP is used to dynamically
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allocate task assignments in real-time to a team of robots. In [21], LLP is used to actively monitor

software to predict possible faults in advance and take appropriate actions in order to prevent the

software from violating some given property. In [22], a symbolic version of LLP is used for dynamic

Computing Resource Management.

LLP and VLP approaches for computing supervisory commands are very promising to be im-

plemented for controlling DES; these approaches however will surely fail if events occur back to

back in rapid succession. Therefore, to tackle this situation, in [3], LLP with Buffering is intro-

duced where supervisory commands are calculated online and buffered in advance for a predefined

window size. The control commands will be always available as required, and sufficient time will

be available to perform the forthcoming LLP supervisory computations. In LLP with Buffering, se-

lecting an appropriate buffer size greatly impacts the reliability of the approach. Smaller buffer size

results in an LLP supervisor with smaller state space, while larger buffer size may result in an LLP

supervisor with state space equal to the offline supervisor. The buffer size mainly depends on two

factors: (1) the computation time of the LLP supervisor, and (2) the minimum execution duration of

event sequences. In [5], LLP with Buffering is further improved by implementing all supervisory

control algorithms in C language for faster computation time.

1.2.2 Timed Discrete Event System

A DES model describes event sequences without necessarily providing any information about

the time at which the event occurs. These models can be enriched to provide timing information.

Such systems are referred to timed discrete event systems (TDES) where the models posses temporal

information. TDES is generally partitioned into two categories depending upon how the time is

modelled:

(1) discrete time models where the passage of time is presented as discrete clock tick events;

(2) continuous time models where the time is traced using real-valued clock variables.

The Timed transition Model (TTM) described in [23] is a more common formalism for modelling

discrete-time models in TDES. In TTM, a special event tick is introduced which represents the pas-

sage of time. In [23], each event is associated with an upper time bound and a lower time bound in
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terms of tick restricting the time of occurrence of the events in the system. The passage of time be-

tween two consecutive events is calculated by counting the number of tick events between them [24].

One of the advantages of using discrete time model is their simplicity as existing algorithms for un-

timed DES can be extended to these discrete-time models. However, the major disadvantage is that

continuous time is approximated with the error depending on the resolution chosen for the tick size

a priori. In practice, choosing smaller resolution for tick size may represent the real-time system

accurately but can in turn result in blow up in the state space of the model.

Timed automata (TA) introduced by Alur and Dill in [25] and [26] are well established as

continuous-time models for TDES. TA models employ auxiliary real valued variables called clocks.

The value of each clock increases at a constant rate as time progresses. A state of the TA consists

of a discrete state and the valuation of the clocks. Therefore, TA is a dense-time model which can

accurately represent a real-time system.

Model Checking

Model checking algorithms are used to verify properties of DES systems. Existing model check-

ing algorithms can be easily extended to discrete-time models of TDES. As mentioned previously,

despite their simplicity, these models are not very accurate for modeling real-time systems [27].

On the other hand, TA models are extensively used in automatic verification (model checking) of

real-time systems especially in the area of hardware and software verification. Model checking is

one of the most successful methods of automatic verification to check whether the finite state model

of a system satisfies a given specification (or property). The specification is generally a safety re-

quirement or a liveliness requirement for the system given as temporal logical formula. In [24], the

model checking methods are extended to check real-time systems modelled by TA. The state space

of the TA is infinite and it would be impractical to check whether the specification is satisfied by all

states in the reachable subgraph of the system. Therefore, using a clever method a TA is abstracted

into a finite automaton (FA) known as region automaton based on the abstraction described in [26].

The model checking algorithm is performed on the reachable states of the region automaton in [24]

since region automaton has a finite state space. However, the complexity of the model checking

algorithm is exponential in the number of clocks and the largest time constant in region automaton,
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and exponential in the number of discrete states resulting through the parallel composition of the

component models [28] [27]. In [28] and [27] symbolic model checking techniques are proposed

where the set of states that satisfy the specification are computed symbolically instead of construct-

ing the region automaton (region graph). Symbolic model checking algorithms are successfully

implemented in model checking tools such as UPPAAL [29] and Kronos [30] with TA at the core

in these model checking tools. Although finite, the state space of the region automaton can be very

large and further abstraction to minimize the state space is possible (if finite partitioning of the state

space of region automaton is not necessary in determining the correctness of the system) by using

zone-based abstraction [26]. Such zone-base abstraction of the TA is implemented in the verification

algorithm of real-time system described in [31] and in the model checking tool UPPAAL.

Supervisory Control of TDES

Enormous research has been conducted in the area of supervisory control using TDES models.

Brandin and Wonham [32] used the discrete-time TTM [23] to synthesis a supervisor based on

the Ramadage and Wonham framework. As previously mentioned, TTM models suffers from the

problem of “state space explosion” due to the introduction of tick events. Therefore, even for a

moderate sized plant, the size of the supervisor can be extremely large. In addition, the discrete-

time models limit the accuracy of modeling real-time systems due to the discretization of continuous

time. In an effort to reduce the state space of the supervisor, a minimization algorithm is proposed

in [33].

TA for synthesizing a supervisor in supervisory control was first proposed by Wong-Toi and Hoff-

mann in [34]. Since the state space of TA is infinite, in [34], the authors synthesized the supervisor

based on the region automaton of the plant and the specifications. Finally, timing details are in-

corporated in the supervisor to transform the supervisor into a TA. The complexity of the timed

supervisor synthesis algorithm is exponential in the number of clocks and the largest clock constant

of region automaton. Zone-based abstraction of the TA definitely minimizes the state space but does

not provide the information required to synthesize a supervisor [35]. A state of the region automaton

corresponds to a discrete state (mode) and a clock region. In region automaton, the state transition

occurs when there is an execution of a discrete event or when the clock region changes as time
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progresses while dwelling in a discrete state. Therefore, the region automaton is non-deterministic

since from every state an event transition can occur at different time moments [36]. To overcome

this problem, in [36] two events tock and tack are introduced to make the region automaton deter-

ministic and refer to region automaton as τ -region automaton. In a τ -region automaton, the tock

event is defined at a state when there are no forcible events active at the state, while the tack event

is defined at a state if there are forcible events active at the same state. In a sense, the tock event

is uncontrollable and tack event is controllable. Based on the Ramadage and Wonham framework,

the supervisor is synthesized for the τ -region automaton. The approach described in [36] however

is applied only to particular type of problems.

In order to minimize the state space explosion caused by performing the untiming operation

of a TA into a region automaton, a method is proposed in [37], which transforms the TA into a

minimal FA called SetExp Automaton by using two special events Set and Exp in additions to the

events of the TA. The event Set corresponds to the set and reset of the clock and the event Exp

corresponds to the expiration of the clock. The procedure to synthesize a supervisor based on

the SetExp Automaton of the plant and the specification is described in [38] by using the concept

of forcible events of TDES. Forcible events are the events that can preempt time and other events

eligible at that time [9]. The concept of forcible events provides the model a complete description of

the real-time system. One setback of the supervisor synthesis procedure in [38] is that the computed

supervisor takes the form of a SetExp Automaton and it is not known so far how to transform the

SetExp automaton back to a TA.

In all of the above-mentioned approaches, for synthesizing a supervisor based on the Ramadage

and Wonham framework, region-based abstraction of the TA is necessary which suffers from the

state space explosion. So far only in [35] an attempt is made to synthesize a supervisor without any

abstraction to cope with the problem of state space explosion. [35] uses an approach to synthesize a

supervisor according to the Ramadage and Wonham framework of SCT to avoid bad-states, which

are referred to as blocking states and the states that uncontrollably lead to a bad state. In the work

of [35], a timed supervisor is synthesized (without any abstraction) by modifying the invaraints and

the guards in the semantics of the TA. Modification to the guards of the edges labeled by controllable

events results in the supervisor that prevents bad states. In addition, modification to the invariants
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of the states in the TA results in the supervisor which uses forcible events to preempt time whenever

needed to prevent bad states.

Apart from the Ramadage and Wonham framework, there is another framework called game-

based synthesis for synthesizing a supervisor based on a winning strategy for certain timed game

automaton modelled by a TA as described in [39–41]. A strategy for the supervisor is supposed to

be winning if the game stays in a subset of winning states. In a timed safety game, there are two

players who can perform some actions: supervisor (referred to as controller in the literature) and

environment. In game-based synthesis, the consequence on the timed game is not only influenced

by the action taken by the supervisor and the environment but also by the time at which the actions

are taken. The objective is to design a winning strategy which informs the supervisor to take an

appropriate action so that regardless of the environment performing any action at any time, the

timed game stays in a subset of winning states. While the Ramadage and Wonnham framework

focuses on synthesizing a minimally restrictive supervisor, the game-based synthesis synthesizes a

supervisor based on a winning strategy which might not be always minimally restrictive.

1.2.3 Execution Time of Program

As mentioned in Section 1.2.1, in order to determine suitable buffer size in LLP with Buffering,

two things are needed: (1) the (worst-case) execution time of supervisory control computations, and

(2) the fast rate of event generation in the DES plant. Estimation of these two values is similar to

the estimation of the execution time of programs for hard real-time systems. In the following, we

briefly review the main approaches for estimating a program’s execution time.

In practice dynamic timing analysis is used to determine the best-case execution time (BCET)

and the worst-case execution time (WCET) of a program, where these bounds are estimated by end-

to-end execution time of the program for a subset of test cases [42]. The estimates are usually an

overestimate for BCET and an underestimate for WCET which in most cases are not a right choice

for hard real-time systems. Moreover, there are other better methods used such as the static methods

and measurement-based methods for determining the BCET and WCET for a program [42]. In static

method, the program is not executed on the hardware or the simulator to determine the BCET or

WCET, but instead the code of the program is combined with the abstract model of the system
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along with some annotations to determine BCET or WCET. The static method results in bounds on

the execution time that can underestimate BCET and overestimate WCET. Another method is the

measurement based method where the program is executed on the hardware or the simulator, for

some set of inputs and the execution time is measured. This method results in the estimate of the

BCET and WCET which sometimes can be unsafe for hard real-time systems. The static method

prioritizes safety of the system. On the other hand, the measurement method prioritizes the ease of

determining the estimates for the execution time. As mentioned in [42], the static method always

predicts the bounds on the execution time far lower than the ones produced by measurement-based

method.

1.3 Research Objectives and Contributions

In this section we will explain the objectives and the contributions of this thesis.

1.3.1 Objectives

In this thesis we focus on bridging the gap between theoretical results and practical implemen-

tation of LLP on a real-time system by further studying the practicality of LLP with Buffering. To

the best of our knowledge, there has not been any practical implementation of LLP on any physical

system yet. This may be, in part, due to the unrealistic constraints of computing the LLP supervisor

commands after the occurrence of each event in the system. In LLP with Buffering, however, the

supervisory commands are calculated online in a timely fashion for a certain window of events in the

future and buffered. In this way, the supervisory commands are readily available in the buffer after

the execution of every event in the system. Determining the accurate size of the buffer is extremely

important for two reasons: (1) if the size of the buffer is very small, then there will be frequent LLP

supervisory computation requiring high computation resources and (2) if the size of the buffer is

large, then the computed LLP supervisor will be large thus requiring higher computer memory. The

buffer size depends upon the minimum duration (i.e. fastest execution rate) of event sequences in

the plant. In addition, it is absolutely necessary that the computation time of the LLP supervisor

must be completed before the buffer runs empty in order to avoid supervisor falling behind plant
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event sequences.

Previously, the minimum duration of the event sequences has been determined experimentally

by time stamping every occurring event. However, it is not possible to perform exhaustive experi-

mental tests to search for all event sequences that transpires in the system. A theoretical method is

proposed in [5] where the TTM of the solar tracker system is used to extract the timing information

of the event sequences. However, due to the issue of state space explosion caused by the tick events,

the search of the timing details of event sequences is restricted only to the partially explored TTM

of the system.

In this thesis, our objective is to make the LLP with Buffering to be a feasible control strategy

for any real-time system. Moreover, our objective is to develop a theoretical method for performing

timing analysis by using continuous-time model (particularly TA) which can exhaustively search all

the event sequences and extract the minimum execution duration from every mode of the TA model

of the system while avoiding state space explosion.

1.3.2 Contributions

This thesis proposes a method to transform the untimed automaton of the system to a TA in

order to extract the timing information of the event sequences. Most of the work done so far is to

transforming a TA to FA as reported in the literature [1, 26, 34, 36, 37]. An algorithm is proposed to

determine the minimum execution duration of the event sequences in the timed model using matrix-

based symbolic analysis introduced in [4]. This algorithm performs exhaustive search by traversing

all the event sequences up to any given length from every state of the timed automaton.

In this thesis, timing analysis of the previously implemented LLP with Buffering on the two-degree-

of-freedom solar tracker system is studied. The objective of this system is to search for the light

source in the surrounding. The minimum execution duration of the events sequences in the solar

tracker system is obtained using the proposed theoretical method by transforming the untimed model

of the solar tracker system to a TA. Numerous experiments are performed on the solar tracker

system to acquire the minimum duration of the event sequences experimentally. The minimum

execution duration of event sequences of different length obtained through the theoretical method

and experimental method are compared and in all of the cases the theoretical method proves to be
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more effective and reliable in determining the size of the buffer.

In several tests performed on the solar tracker system, the buffer size determined theoretically results

in the LLP supervisor with Buffering in which all supervisory commands are calculated without

missing the deadlines.

1.4 Organization

The thesis is organized as follows. In Chapter 2, we review the details of DES along with the

supervisory control of DES, followed by a detailed review of Limited Lookahead Policies with

Buffering, followed by formal definitions of TA together with the relevant concepts. The procedure

of transforming the DES model to a TA and the methodology to extract the minimum execution

duration of the event sequences from the TA is proposed in Chapter 3. To verify the results, the pro-

posed theoretical methodology is applied on the TA model of the solar tracker system. In Chapter 4,

the modelling of the solar tracker system (used in the thesis) as DES, design and implementation of

the offline method of SCT. In Chapter 5, the method proposed in Chapter 3 is applied to the design

of an LLP supervisor with Buffering for the solar tracker system. The results for this case study is

used to refine the procedure for choosing the buffer size for LLP supervisor. In Chapter 6, the thesis

is summarized and the direction for future research is suggested.
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Chapter 2

Background

In this chapter, we will review some of the required preliminaries. Section 2.1 introduces lan-

guages and automaton. In Section 2.2, the supervisory control theory is discussed. In Section 2.3 the

Limited Look-ahead Policies (LLP) with Buffering (proposed in [3]) is reviewed. In Sections 2.4

and 2.5, the timed automaton (TA) model and clock regions of TA are discussed. Finally, in Sec-

tion 2.6, the clock zones of TA and their representation as difference bound matrices (DBM) along

with some operations on DBM are discussed.

2.1 Discrete Event System (DES)

A Discrete Event System (DES) has a discrete state set and its dynamics are described in terms

transitions among states. A DES is an event-driven system where the occurrence of discrete events

over time causes transitions from one state to another. Thus, these sequences of events show the

behaviour of the system represented by DES. There are many formal ways that can a represent DES,

for example, Petri-nets [43] and automatons [1]. In this section, DES models are represented using

languages and finite-state automatons as discussed in [1].

2.1.1 Languages

A finite non-empty set of distinct symbols each representing an event in DES forms an alphabet,

denoted here by Σ. A sequence of events over Σ is called as a word, string or trace. The symbol ϵ
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denotes an empty string which contains no events. A language is a set of strings over an alphabet

Σ. The language Σ+ contains the set of all finite strings excluding the empty string over the an

alphabet Σ. In other words

Σ+ := {λ1λ2 . . . λi | i ≥ 1, λi ∈ Σ}.

The set of finite strings over the alphabet Σ including the empty string ϵ is denoted by Σ∗:

Σ∗ := Σ+ ∪ {ϵ}.

The length of a string s is shown by |s|. If s = ϵ, then |s| = |ϵ| = 0. Moreover, if s = pqr with

p, q, r ∈ Σ∗, then p is a prefix of s, q is a substring of s and r is the suffix of s.

2.1.2 Operation on Languages

Let M and P be two languages over Σ.

The union of the two languages M and P is the set of strings that either belongs to M or P :

M ∪ P := {u | u ∈ M or u ∈ P}.

The intersection of the two languages M and P is the set of strings common to M and P :

M ∩ P := {u | u ∈ M and u ∈ P}.

The complement of the language M denoted by M co contains the strings present in Σ∗ but not in

M :

M co := Σ∗ −M = {u ∈ Σ∗ | u /∈ M}.

The concatenation of the two languages M and P denoted by MP contains the strings which is the

concatenation of a string in M with a string in P :

MP := {uv ∈ Σ∗ | u ∈ M and v ∈ P}.

The prefix-closure of the language M , denoted by M , consists of all the prefixes of every string in

M :
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M := {u ∈ Σ∗ | ∃v ∈ Σ∗ [uv ∈ M ]}.

Generally, M ⊆ M ; however, if M = M , then M is known as prefix-closed.

The Kleene-closure of the language M denoted by M∗ is formed by the concatenation of all the

finite strings of M , including the empty string, and is given as

M∗ := {ϵ} ∪M ∪MM ∪MMM ∪ . . . .

Definition 2.1 ([2]). The post-language of M after u is denoted by M/u is the set of all suffixes of

the string u contained in M :

M/u := {∃v ∈ Σ∗ | uv ∈ M}.

□

Definition 2.2 ([2]). The truncation of M up to N ∈ N denoted by M |N , is the set that consists of

all strings in M which have a length not more than N

M |N := {u ∈ Σ∗ | |u| ≤ N}.

□

2.1.3 Automata

The languages discussed in Section 2.1.1 can be represented by finite state deterministic au-

tomatons. A deterministic automaton takes the form of a five-tuple

G = (X,Σ, η, x0, Xm),

where X is the finite state set, Σ is the finite set of events of G, η : X×Σ −→ X is a partial transition

function, x0 is the initial state (x0 ∈ X) and Xm is the set of marked states (Xm ⊆ X).

Consider the automaton G = (X,Σ, η, x0, Xm). The language generated by the automaton G is

called the closed language: L(G) := {s ∈ Σ∗ | η(x0, s)!} (η(x0, s)! means string “s" can be occur

starting from state x0). It follows from the definition that L(G) is a prefix-closed language L(G) :=

L(G). The marked language by the automaton G is Lm(G) := {s ∈ L(G) | η(x0, s) ∈ Xm}. The

marked language Lm(G) is the set of strings whose execution from the initial state ends in some

marked state. Therefore, it is obvious that Lm(G) ⊆ L(G).
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2.1.4 Operations on Automatons

Modelling a complex DES using a single automaton is difficult as it would be cumbersome to

capture the interactions between all the components of the system operating concurrently. An al-

ternative approach is to model, the components of the complex system as automatons that can be

interconnected together to form the complex system. Therefore, product and synchronous prod-

uct (parallel composition) operations are defined for automatons to model these interconnections

between the component automatons.

Definition 2.3 ([1]). Consider G = (X,Σ, η, x0, Xm). The reachable part of G is the state set Xr

defined as

Xr = {x ∈ X | ∃s ∈ L(G) such that η(x0, s) = x}.

□

The reachable states are the states in G that can be reached from the initial state x0 by at least one

string s ∈ L(G). The reachable sub-automaton of G is denoted as reach(G) = (Xr,Σ, ηr, x0,

Xmr), where ηr : Xr × Σ −→ Xr and Xmr = Xm ∩Xr.

Definition 2.4 ([1]). Consider the two automatons G1 = (X1,Σ1, η1, x01 , Xm1) and G2 = (X2,

Σ2, η2, x02 , Xm2), the product of G1 and G2 is defined as follows:

G1 ×G2 := reach(X1 ×X2,Σ1 ∩ Σ2, η, (x01 , x02), Xm1 ×Xm2).

The transition function η is defined as follows. For x1 ∈ X1 and x2 ∈ X2, and λ ∈ Σ

η((x1, x2), λ) :=


(η1(x1, λ), η2(x2, λ)) if η1(x1, λ)! and η2(x2, λ)!

not defined otherwise .

□

Definition 2.5 ([1]). Consider the two automatons G1 = (X1,Σ1, η1, x01 , Xm1) and G2 = (X2,

Σ2, η2, x02 , Xm2). The synchronous product of G1 and G2 is defined as follows:

G1||G2 = reach(X1 ×X2,Σ1 ∪ Σ2, η, (x01 , x02), Xm1 ×Xm2),
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where for x1 ∈ X1, x2 ∈ X2 and λ ∈ Σ

η((x1, x2), λ) :=



(η1(x1, λ), η2(x2, λ)) if λ ∈ Σ1 ∩ Σ2 and η1(x1, λ)! and η2(x2, λ)!,

(η1(x1, λ), x2) if λ ∈ Σ1 − Σ2 and η1(x1, λ)!,

(x1, η2(x2, λ)) if λ ∈ Σ2 − Σ1 and η2(x2, λ)!,

not defined otherwise .

□

The synchronous product of automatons can also be obtained by the product operation. Consider

the two automatons G1 and G2. Let G′
1 denote the automaton obtained by adding the self-loops of

events in Σ2 − Σ1 G1 and let G′
2 denote the automaton obtained by adding the self-loops of events

in Σ1 − Σ2 to G2. Then the synchronous product of G1 and G2 is given as

G1||G2 = G′
1 ×G′

2.

2.2 Supervisory Control Theory (SCT)

Ramadge and Wonham first introduced the supervisory control theory (SCT) of DES [8, 44].

SCT provides a modeling framework for automatically synthesizing a supervisor based on the mod-

els of plant and design specifications (also called legal behavior). The plant and the specifications

are modeled as DES and the resulting supervisor is also modelled as a DES. The objective of the

supervisor is to prevent illegal behavior in the plant avoiding blocking (i.e. deadlocks and livelocks)

in the plant. It is assumed that the supervisor can only disable and prevent a subset of events referred

to as the controllable. However, it cannot prevent the rest of events, referred to as uncontrollable

events. The supervisor representing the control logic for the operation of the plant can be calculated

before the operation starts. This “offline” calculations results in the supervisor which we refer to

as the conventional supervisor. In another approach, supervisory control commands can be calcu-

lated “online” when the plant is operational and events occur one after the other. The resulting

supervisory policy is called LLP. We will review both conventional and LLP supervisory control.
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Figure 2.1: Supervisory control feedback loop [1].

2.2.1 Conventional Supervisory Control

Let G and H denote the DES models of the plant and the specification respectively. Let Σ be

the event set of G. The alphabet Σ has the partition

Σ = Σc ∪̇ Σuc,

where the disjoint subsets Σc and Σuc denote the controllable and uncontrollable events respectively.

Let L(G) and Lm(G) be the closed and the marked language of the plant G respectively. The

supervisory control (S) for G is any map

S : L(G) −→ 2Σ.

Definition 2.6 ([1]). Consider the automaton G = (X,Σ, η, x0, Xm). The set of defined (active)

events at a state x is given by

Γ(x) := {σ ∈ Σ | η(x, σ)!}.

□

As illustrated in Fig. 2.1, string s ∈ L(G) is generated by the plant and at the current state x =

η(x0, s) the supervisor permits a subset of events, S(s), to occur in the plant. Therefore, the set of
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events that remain active at the current state of x of G is

S(s) ∩ Γ(x).

At state x, the supervisor S can disable some controllable events; however, it cannot disable uncon-

trollable events defined at x. Consequently, the supervisor must include the set of uncontrollable

events defined at x in S(s):

Σuc ∩ Γ(η(x0, s)) ⊆ S(s).

Such a supervisor is known as an admissible supervisor. The plant G under the supervision S is

denoted by S/G.

Definition 2.7 ([1]). For the plant G, the language generated by S/G is denoted by L(S/G) and is

defined as

(1) ϵ ∈ L(S/G),

(2) [s ∈ L(S/G) and sσ ∈ L(G) and σ ∈ S(s)] ⇐⇒ [sσ ∈ L(S/G)].

□

Definition 2.8 ([1]). For the plant G, the language marked by S/G is denoted by Lm(S/G) and is

defined as

Lm(S/G) := L(S/G) ∩ Lm(G).

□

Now, let us define the supervisory control problem.

Problem 2.1. Consider the DES G and the marked legal language K ⊆ Lm(G) and K ̸= ∅. Find

a supervisor such that

(1) Lm(S/G) ⊆ K (safety property),

(2) Lm(S/G) = L(S/G) (non-blocking property).

□
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The solutions to Problem 2.1 are characterized using the properties of controllability and Lm(G)-

closure.

Definition 2.9 ([1]). Consider the DES G and the language K ⊆ L(G). Then K is said to be

controllable with respect to L(G) and Σuc if

KΣuc ∩ L(G) ⊆ K.

□

The class of controllable sub-languages of K is given as

C(K) = {L | L ⊆ K and LΣuc ∩ L(G) ⊆ L}.

It can be shown that C(K) ̸= ∅ and has a supremal element denoted by K↑:

K↑ = supC(K).

Definition 2.10 ([1]). Consider a language K ⊆ Lm(G). K is said to be Lm(G)-closed if K =

K ∩ Lm(G). □

The theorem below gives the necessary and sufficient conditions for the existence of a solution to

Problem 2.1.

Theorem 2.1 ([1]). Consider the DES G and a non-empty sub-language K ⊆ Lm(G). If K satisfies

the following conditions:

(1) K is controllable with respect to G and Σuc, and

(2) K is Lm(G)− closed.

Then there exists a solution S to the supervisory control problem such that Lm(S/G) = K and

L(S/G) = K and vice versa.

Note that if all states of G are marked, then Lm(G) = L(G) and condition 2 will be satisfied.
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Figure 2.2: Limited lookahed N−level tree [2].

2.2.2 Limited Lookahead Policy Based Supervisory Control

A conventional supervisor is a monolithic supervisor which is synthesized offline on the basis of

the plant and the specification models [45]. A conventional supervisor, although guaranteed to be

correct, can be infeasible to be implemented in some real-world applications. For instance, the plant

and the specification could have a large state space or be time-varying, or the specifications may not

be described as a DES model easily. In [2] Chung et al. address these problems by providing a

formal methodology known as Limited Look-ahead Policies (LLP) to synthesize a supervisor, i.e.

online decision making.

In LLP supervisory control, the supervisory control action is computed based on the behavior of

the N-level expansion of DES from the current state which takes a form of an N-level tree (Fig. 2.2).

In the N-level expanded tree of the DES, the traces at the Nth level are assumed to be pending if

they depend on the future behavior. In [2], in order to compute the supervisory control action, the

pending traces can choose either one of the two different attitudes: (1) a conservative attitude, where

the pending traces are assumed to be illegal and (2) an optimistic attitude, where the pending traces

are assumed to be legal. Further improvements in LLP can be found elsewhere [13, 15, 16].

In this section we shall review LLP. Only the conservative attitude will be discussed. Consider the

DES G over the alphabet Σ. Suppose, during the online LLP computation the trace s has been

executed and the current state of G is η(x0, s) = x. The control action γN (s) that must be taken at

x is given by the following steps.
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Step (1) : Initially G is expanded N steps beyond trace s.

Step (2) : The supervisor then determines the illegal traces in the N -level tree obtained in Step

(1).

Step (3) : The supervisor with conservative attitude modifies all pending traces of length N ob-

tained in Step (2) as illegal.

Step (4) : Then, the supremal controllable sub-language of the marked language obtained in Step

(3) with respect to the marked language Lm(G)/s|N and Σuc is calculated.

Step (5) : Finally, the supervisory control action γN (s) is calculated at the current trace s by

just allowing the first level of the tree output obtained in Step (4) and the active set of

uncontrollable events that can be executed in G after the trace s.

There are two notions validity and run-time error (RTE), which are needed to be examined for the

implementation of the above-mentioned algorithm.

Definition 2.11 ([2]). A control policy γN for a LLP supervisor is said to be valid if

L(G, γN ) = K↑.

□

The above definition states that the valid LLP supervisor has the same effect as a minimally restric-

tive conventional supervisor.

Definition 2.12 ([2]). For any trace s ∈ L(G, γN ) during LLP computation, if fN (s) = ∅, then

there is a RTE at trace s in L(G, γN ). A special case, if s = ϵ, then RTE is called starting error

(SE). □

There will be a RTE or SE, when at the current state of the system the LLP supervisor cannot

guarantee safe action such that blocking or driven uncontrollably to an illegal region cannot be

avoid.
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As seen in Step (3) of LLP supervisor algorithm, the control action depends on the conservative

attitude adopted by the supervisor for the pending traces. Therefore, for conservative attitudes it is

necessary to determine the bounds on the look-ahead window N that can guarantee validity and no

RTE in the resulting LLP supervisor. [2] provides sufficient conditions under which there exists a

minimum length for the expansion window, to guarantee LLP supervisor validity. Here, we denote

this number by Nmin. It should be noted in some cases that these sufficient conditions do not hold

and no finite expansion can result in a valid supervisor. In such cases, a state-based LLP can resolve

the problem.

(a) Plant automaton G. (b) Two-level expansion of G.

Figure 2.3: Plant and two-level expansion.

Example 2.1. Consider the automaton of plant G shown in Fig. 2.3a. The two-level lookahead

window at the empty string for plant G is shown in Fig. 2.3b. Notice that in LLP each node of the

expanded tree corresponds to exactly one trace. □

2.2.3 State-based Limited Look-ahead Policy

The LLP supervisor in [2] is an event-based LLP, since the plant model is expanded in a N−level

tree into the future from the current state and is used to calculate supervisory commands. As men-

tioned previously, in some cases no finite length window can result in an optimal supervisor. (For

instance, when the plant contains a loop of uncontrollable events). Consequently, in such cases,

it would not be feasible to obtain a valid supervisor. To solve this problem, an alternate approach
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known as variable lookahead policies with state information (VLP-S) is proposed in [14]. In VLP-

S, the tree expansion in LLP is replaced with expansion of the subautomaton of the plant model

reachable from the current state. This approach is is called variable. A window of N in these cases

contains all reachable states with a sequence with at most N events. In this case, if the offline su-

pervisory control is solvable, then the state-based online will also be solvable and gives an optimal

solution with window Nmin ≤ |X| − 1 (|X| is the number of plant’s states), i.e. validity will be

guaranteed.

Figure 2.4: VLP-S expansion.

Example 2.2. Consider the automaton of plant G shown in Fig. 2.3a. The two-level VLP-S expan-

sion for the plant G is a reachable subautomaton of G at the empty string (state 1 in Fig. 2.4). □

Note that the expansion of VLP-S always terminates since the number of plant’s states is finite

2.3 Limited Look-ahead Policy With Buffering

In LLP [2], the supervisory commands are calculated online based on the N-step truncated be-

haviour of the plant and the legal behaviour [46]. However, computing the supervisory commands

online requires some time (and high computation power). Such frequent computation might not be

feasible in practical implementations. Since multiple events could transpire in the system consecu-

tively at a very rapid pace, there might not be enough time available between two successive events

to calculate the control decision online.

Therefore to tackle this issue, in [3] an innovative methodology is proposed called LLP with

Buffering. In LLP with Buffering the supervisory commands are calculated online in a timely

fashion for finite horizon of ∆ events into the future and buffered, to be used in the next event and
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the following few events in the future. Here, similar to LLP, the model of the plant is expanded for

the lookahead window of length but with a length Nw ≥ Nmin + δ + ∆ (Fig. 2.5). Nmin is the

minimum window length for the LLP supervisor to become valid.

2.3.1 Validity of Supervisor for LLP With Buffering

In this thesis we only focus on state-based LLP since in this case, validity of the online su-

pervisor can be achieved for a finite window. Let G = (X,Σ, η, x0, Xm) denote the plant and

H = (XH ,Σ, ηH , x0, XmH) denote the finite-state automaton marking the design specification.

Without loss of generality we assume H is a subautomaton of G.

The lookahead window size should be at least Nmin for the LLP supervisor to be a valid super-

visor. Nmin is be always bounded and Nmin ≤ N , where N is the number of states of the plant

(when the specification is the sub-automaton of the plant) [5].

In LLP with Buffering the supervisory commands are calculated for the immediate next event and

∆ events in the future. The computations of ∆ commands must be performed before the commands

Figure 2.5: LLP with expanded window size [3].
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Figure 2.6: Tree Expansion [3].

are needed. Suppose these calculations start δ events before they are needed. Thus for LLP with

Buffering the minimum window size is Nw = Nmin + δ + ∆. The plant is expanded is by Nw to

compute the supervisor which provides the control policy up to ∆+δ events in the future (Fig. 2.7).

It is known that for the window size Nmin the supervisor is valid and optimal for immediate sub-

sequent event. However, in LLP with Buffering the look-ahead window is expanded by additional

δ + ∆ events in order to have the supervisory commands available for δ + ∆ events in the future.

Therefore, it is imperative to have these δ + ∆ commands valid. To discuss the validity of these

buffered events, let us consider the following theorem.

Theorem 2.2 ([3]). If s ∈ K↑, then

(K↑)/s = (K/s)↑.

In the above theorem, K↑ is the supremal controllable sub-language with respect to L(G) and

Σuc. Theorem 2.2 states that, the post-language of the supremal controllable sub-language (K↑) is

equivalent to the supremal controllable sub-language of the post language (K/s).

Let us consider an example where a small portion of the expanded plant tree is shown in the

Fig. 2.6. Suppose, from the initial state x0 in plant G, the string s0 is executed transitioning to the

current state x. The string s0 is permitted by the optimal supervisor. According to Theorem 2.2,

after i steps permitted by the supervisor, any event σi also belongs to the supremal controllable
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sub-language of the post language of s0 [3].

Plant Depth

Plant Depth (PD) is defined as the minimum size of the look-ahead window for which the

expanded model of the plant is equal to the plant model [3]. The value of PD depends on the state

where the expansion is performed. For a plant, PD is the maximum of PD of all reachable states.

In LLP with Buffering, the parameter Nw plays a very important role. If the parameter Nw is

small, then the size of the expanded plant model will be small which will result in a short available

computation time for LLP and small required memory. It is to be noted that PD depends on the

characteristics of the system and cannot be adjusted like a parameter. PD provides a measure of

efficiency for LLP with Buffering. If the parameter Nw has its value close to PD, then complete

model of the plant is explored in LLP and the computed LLP supervisor will be similar to the

conventional supervisor [5]. Thus in these situations, the efficiency of LLP implementation declines

(requiring longer computation time and larger computer memory).

In order to take full advantage of LLP, the ratio of Nw to PD should be as small as possible. The

efficiency of LLP is given as
Nw

PD
(Nw ≥ Nmin).

In [3], the PD for the solar tracker system is 11 and Nmin is 6. As a result the efficiency of LLP for

the solar tracker system is
Nmin

PD
=

6

11
= 0.54.

2.3.2 Buffer Size Selection

During LLP with Buffering, δ + ∆ number of events are buffered for future use, which takes

care of the situation when events transpire in the system at a very rapid pace. Meanwhile, the CPU

is available to perform another LLP with Buffering supervisory computation for the next window.

However, there is a time constraint such that the computation must be completed before the buffer

runs out empty. If the computation is not completed within the time constraint, then this could

induce some delay which could be unacceptable in some systems. This case is similar to the periodic
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Figure 2.7: Timeline of LLP with Buffering. Taken and reproduced from [3].

processes in the real-time systems where the execution of the code of periodic process must be

completed before the deadline or the period before the process repeats again. Let us first provide

two definitions which are used to find a suitable buffer size.

Definition 2.13 ([5]). Consider the automaton G = (X,Σ, η, x0, Xm). The function Tmin(n)

returns the minimum execution duration of any sequence in L(G) of length n ∈ Z+ and is given

as

Tmin := min{T (v) | |v| = n and (∃u ∈ Σ∗, uv ∈ L(G))},

where T (v) is the execution time of sequence v. □

Definition 2.14 ([5]). Cmax(Nw) is the maximum time required for LLP computation over the

window size of Nw. □

The computation of LLP with Buffering must be performed in a timely fashion and within the

time constraint in order to have the supervisory commands available whenever required without

causing any unnecessary delay. To better explain this statement, consider the timeline of LLP with

Buffering as illustrated in the Fig. 2.7.

Step (1) : In the initial step when n = 0 (shown by green arrow in the Fig. 2.7), the LLP super-

visor is computed for a window Nw = Nmin +∆ . Following Theorem 2.2, ∆ events

are valid and stored in the buffer.

Step (2) : Let us denote δ to be the number of events left in the buffer of ∆ events. After ∆− δ

events have passed (shown by blue arrow in the Fig. 2.7), the LLP supervisory compu-

tation commences for the window Nw = Nmin + δ + ∆, calculating δ + ∆ number
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of events for the interval n = ∆ − δ to n = 2∆. For this next LLP computation to

be successful, it is required that the LLP computation for the window size Nw must be

completed within δ number of events before n reaches ∆ in the timeline. Therefore,

the constraint

Cmax(Nmin + δ +∆) ≤ Tmin(δ) and ∆ > δ.

Step (3) : When n = ∆ (shown by orange arrow in the Fig. 2.7), the LLP supervisor is updated

by the newly computed LLP supervisor consisting of supervisory commands available

for the interval of n = ∆ to n = 2∆. Similar to the Step (2), the LLP supervisor is

again calculated at n = 2∆ − δ (blue arrow), pre-calculating the control commands

for next the interval followed by the Step (3) and so on.

In [3], LLP with Buffering is successfully implemented for two-degree-of-freedom solar tracker

system.

2.4 Timed Automata

Timed automata (TA) is a dense-time and well-established models for modelling real-time sys-

tems [25, 26]. A TA has a set of real-valued clocks that essentially express the timing behaviour of

the system. All clocks increase at an identical rate.

Let C = {c1, . . . , cne} be the finite set of clocks. Let R+ denote the set of non-negative real

numbers. A clock is a real-valued function R+ −→ R+ denoted by c. The dynamics of clock c is

dc(t)

dt
= 1.

Thus at current time t ∈ R+, c(t) is the value of c since the last time c was reset ti zero. The clock c

can be reset to zero whenever a certain transition occurs in TA, thus tracking the time elapsed since

the last time the clock was reset to zero.

A clock constraint is the conjunction of the atomic constraints over the clocks. Each constraint
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takes the form of c ∼ k, where c ∈ C, ∼ ∈ {<,>,≤,≥,=} and k is an non-negative integer

constant. Let ΦC denote the set of clock constraints over C.

2.4.1 Semantics of TA

In this section we will discuss the TA model as discussed in [1]. Our discussion of TA is not

concerned with the marking of the modes therefore we omit the marking of the modes. A TA takes

the form of a six-tuple

GTA = (X,Σ, C, Inv, T, x0),

where

• X is a finite set of modes;

• Σ is a finite set of events;

• C is a finite set of clocks;

• Inv : X −→ ΦC is a clock invariant function assigned to each mode x ∈ X;

• T ⊆ X × Σ× ΦC × 2C ×X is the set of transitions. A transition from a mode x to x′ upon

the occurrence of event σ ∈ Σ is represented as θ = (x, σ, g, u, x′) ∈ T , where g ∈ ΦC is the

guard for the transition θ and u ⊆ C is the set of clocks to be reset to zero with this transition;

• x0 ∈ X is the initial mode.

The value of the clocks at time t is denoted by vector c = {c1, . . . , cne}, c ∈ (R+)ne , where ne is the

total number of the clocks in GTA. The state of the TA at time t ∈ R+ is the pair q = (x(t), c(t)),

where x ∈ X is the mode at time t and c is the clock vector at time t. The ne-dimensional unit

vector is denoted by 1 = (1, 1, . . . , 1). Therefore, for c ∈ (R+)ne and d ∈ R, c + d · 1 is denoted

by c + d. In the initial mode x0 all clocks are set to zero at time t = 0. Therefore, the initial state

of GTA is q0 = (x0,0), where 0 is the zero vector. The transition θ = (x, σ, g, u, x′) from x to x′

is represented with the transition label as (σ, g, u), where σ ∈ Σ, g ∈ ΦC and u ⊆ C.

g is a clock constraint. If θ has no clock constraint, then the guard is omitted and replaced by “-” in

the figure. Similarly, if no clock is reset as the result of transition, u is empty and replaced with “-”.
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The absence of the Inv condition at a mode means that the invariant of the mode is always true at

any point of time when the control is at that mode and TA can halt its operation and remain at that

mode for an arbitrarily long time and remain indefinitely. For the sake of simplicity, the bounds on

the clocks that appear in the guard conditions and the clock invariant at the modes are non-negative

integers. It is to be noted that the state space of GTA is infinite (since the clock are real-valued).

In the expression of the invariant of mode x, the constraint on a clock c ∈ C is of the form

c < k (or c ≤ k) which specifies the upper time bound for c such that the mode x should be left

when c reaches k. On the other hand, the invariant of x with the constraint of the form c > k (or

c ≥ k) specifies the lower time bound on c such that the mode x can be left when c is greater than

(or greater than or equal to) k. Similarly, a guard condition g of a transition can take either of the

above forms for the clock constraints. Note that the guard condition can have the clock constraint

as c = k stating that the transition can occur at the particular moment when the value of the clock

c equals k. The TA model needed in the thesis is a subclass of the standard definition of the TA

in [26].

2.4.2 Execution of TA

Let us now discuss the dynamical evolution of TAs. For the rest of this section, consider a TA

GTA. GTA has two types of state change starting from the initial state q0 = (x0,0).

(1) Timed Action: In timed action, for a duration d ∈ R+, the time is progressed from c to

c′ = c + d, d > 0 and the state of GTA changes from (x, c) to (x, c′). Since, there is no

execution of event, the mode remains unchanged and only the time has progressed. Thus

updating the state of the GTA. The timed action is given as

(x, c)
d−→ (x, c′).

A timed action at mode x is admissible iff c′ satisfies Inv(x).

(2) Event transition: Consider the transition θ = (x1, σ, g, u, x2) ∈ T from mode x1 to x2.

Event σ is executed iff c1 ∈ g is evaluated to true (the guard of θ is satisfied). On taking the

transition, the set of clocks in u are reset to zero while leaving rest of the clocks unchanged

resulting in c2. The event transition is given as
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Figure 2.8: Timed Automaton Example G1
TA [4].

q1 = (x1, c1)
σ−→ q2 = (x2, c2).

Definition 2.15. A run (execution) of the TA GTA starting from the initial state q0 = (x0,0) is the

sequence of timed actions and event transitions of the form

(x0,0)
d1−→ (x0, c

′
1)

σ1−→ (x1, c1) · · ·
σn−→ (xn, cn).

□

Example 2.3. Let us take a simple example of TA illustrated in Fig. 2.8. In this system, there are

two modes x0 and x1, three events α, β and γ and two clocks c1 and c2. The invariant at x0 is

defined for c1 and the invariant at x1 is defined for both c1 and c2. In both modes, the constraint

on c1 is such that α is issued repeatedly with interval between two consecutive events being greater

than or equal to 1 and strictly less than 3. The constraint involving clock c2 in mode x2 is such that

as soon β event occurs, γ should occur within a duration of length strictly greater than 1 and less

than or equal to 2. The execution of system starts at mode x0 at time t = 0, with both clocks at

c1 = 0 and c2 = 0. It is to be noted that in both the modes there are two transitions and at any time

t only one transition can occur. In mode x0, β can occur anytime since its guard condition is always

true. Consider the following run of the G1
TA given below. The clock vector is shown as [c1, c2].
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(x0, [0, 0])
1.1−−→ (x0, [1.1, 1.1])

α−→ (x0, [0, 1.1])
0.6−−→ (x0, [0.6, 1.7])

β−→ (x1, [0.6, 0])

0.4−−→ (x1, [1, 0.4])
α−→ (x1, [0, 0.4])

0.8−−→ (x1, [0.8, 1.2])
γ−→ (x0, [0.8, 1.2]). (1)

In a run of TA, if we remove the information about the timed action and only keep the information

of event labels and their time of occurrence in the run, then the resulting sequence will be a timed

trace [1]. The timed trace for the run in 1 is

(α, 1.1), (β, 1.7), (α, 2.1), (γ, 2.9). (2)

□

2.5 Clock Regions

Most of the analysis algorithms performed on automaton require that the automaton have a finite

state space. However, the state space of TA is infinite and it is not possible to build an automaton

whose states are the states of the TA. However, if two states of the TA have the same mode that

agree on the integral part of all the clock values as well as on the ordering of the fractional part

of the clock values, then the run of the TA obtained from these two states is closely similar [25].

The integral part of the clocks is used to determine if any enabling condition is met whereas, the

fractional part of the clocks is used to determine which of the clock will reach its integral part first.

The values of the clocks are clustered into finitely many equivalence classes such that the states that

are equivalent behave similarly [4]. This equivalence is known as region equivalence.

Let ki denote the largest integer constant that the clock variable ci is compared with in the atomic

constraints that appears in the guards or invariant condition in TA GTA.

Definition 2.16 ([4]). Given a TA GTA, two clock valuations c and c′ of GTA are region-equivalent

if and only if:

(1) for every i ∈ {1, . . . , l}, and for any d ∈ Z+ with 0 ≤ d ≤ ki, ci = d iff c′i = d, and ci < d
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Figure 2.9: Clock Regions of G1
TA

iff c′i < d, and

(2) for every i, j = 1 . . . l, with ci ≤ ki and cj ≤ kj , the fractional part of ci is less than equal

to the fractional part of cj if and only if the fractional part of c′i is less than equal to the

fractional part of c′j .

□

If two clock valuations belong to the same partition, then they are region-equivalent. Region equiv-

alence is extended to the points in the space (R+)ne such that two states of the TA are region-

equivalent if their corresponding modes are same and the values of the clocks are region-equivalent.

A clock region is a partition that consist of all region-equivalent clock valuations. Note that there

are only a finite many regions. Specifically, the number of possible clock regions is at most

2|C| · |C|! ·
∏
c

(2kc + 2). (3)

(See Lemma 4.5 in [26]). This number increases exponentially with the number of clocks used in

the TA (i.e., |c|)and also increases proportionally to the number of constraint constants used (i.e.,

ki).

Example 2.4. Recall the TA G1
TA from Fig. 2.8. G1

TA consist of two clocks c1 and c2 with k1 = 3

and k2 = 2. The clock regions for G1
TA, shown in Fig. 2.9, are:
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• 12 Corner points: e.g. [(1, 0)];

• 30 Open line segments: e.g. [(0 < c1 < 1), (c2 = 0)];

• 18 Open regions: e.g. [(0 < c2 < c1 < 1)].

□

Using region-equivalence, the infinite space of clocks is partitioned into finitely many clock regions.

For example in [26], the clock regions are used to form the region automaton which describes the

behaviour of the TA using a finite state space. In [4] the search using the region-equivalence is used

to determine if a particular property is satisfied by the TA.

2.6 Clock Zones and Difference Bound Matrices

In this section we shall briefly discuss the concept of clock zones. More details can be found

elsewhere in [4, 31, 47, 48]. Until now, we have seen that for a TA, there are finitely many clock

regions and the number of clock regions is bounded by expression (3). Individual states are grouped

as clock regions and these clock regions are called abstract-states. However such abstract states can

grow exponentially in the number of clocks used and proportionally with the constants appearing

in atomic constraints. Further abstraction is possible by efficiently representing a cluster of clock

regions by a clock zone which provide a coarser and compact representation of clock regions.

A clock zone Z is any convex polyhedron in (R+)ne , where ne is the number of the clocks. A clock

zone is the set represented by a set of clock constraints each of which can take one of the following

forms [31]:

• c ∼ k where c ∈ C, ∼ ∈ {≤, <,≥, >} and k is an integer constant,

• c− c′ ≤ k or c− c′ < k where c, c′ ∈ C and k is an integer constant.

A clock zone Z consists of integer constraints on clock values and on difference between two clocks.

Suppose TA has ne clocks. Then we shall introduce a fictitious clock c0 that has the constant value

0. Thus the set of the clocks is C0 = C ∪{c0}. A fictitious clock is used for uniform representation

of clock constraints as upper bound on the difference between two clock values. For example, the
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clock constraint c ≤ 3 can be represented as c− c0 ≤ 3. A clock zone Z is represented by a square

matrix R of dimension (ne + 1) × (ne + 1) with rows and columns indexed from 0 to ne, with

index 0 used for c0. The upper bound on the difference between the clocks ci and cj (ci − cj) is

represented by the (i, j)th entry in the matrix R and denoted by Rij .

The entries in first column Ri0 provides the upper bound on the clocks ci and the entries in the first

row provides the upper bound on the clocks −ci. Thus, the clock zone Z is effectively represented

by the matrix R which is a data structure called difference bound matrices (DBMs) [49, 50].

Canonicalization of DBMs

Every clock zone can be represented by DBM. It is possible that many DBMs represent the

same clock zone because the upper bound entries in the DBM are not tight. Consider a DBM R that

represents a clock zone Z. The upper bound on the constraint (ci − cj) of Z is given by the entry

Rij and the upper bound on the difference between the clocks (ci − cm) and (cm − cj) is given

by the entries Rim and Rmj respectively. The sum of the entries (Rim + Rmj) is referred as the

inferred upper bound on the difference (ci− cj). If the sum (Rim+Rmj) is less than the entry Rij ,

then the upper bound Rij can be replaced with the inferred upper bound (Rim+Rmj) [4]. If all the

entries of the DBM R are tight then DBM R is a canonical matrix. This structure is important for

testing emptiness of a clock zone.

DBM R is canonical if and only if

∀i, j,m = 1, . . . , e, (Rim +Rmj) ≥ Rij .

The canonical matrix for Z can be obtained by applying an all-pairs shortest path algorithm on any

arbitrary matrix for Z [49]. Algorithm 2.1 is the classical Floyd-Warshall shortest-path algorithm

which is an all-pairs shortest path algorithm for computing the canonical matrix [51].

Consider an example, where ne = 3 and the clock zone is given by the constraints as follows

(2 ≤ c1 ≤ 4) ∧ (c2 ≥ 2) ∧ (0 ≤ c3 ≤ 4) ∧ (c2 − c3 = 2) ∧ (c2 − c1 ≥ 3) . (4)

The clock zone described above can be represented by DBM R as follows
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Algorithm 2.1 Algorithm for Canonicalization of DBMs [4]

1: procedure CANONICAL(R)
2: Input: (ne + 1)× (ne + 1) DBM R with entries in Z ∪ {∞}.
3: Output: Empty if R is empty, otherwise canonical version of DBM R.
4: for m = 0 to ne do
5: for i = 0 to ne do
6: for j = 0 to ne do
7: R[i, j] := min(R[i, j], R[i,m] +R[m, j]);
8: end for
9: end for

10: end for
11: if R[i, i] < 0 then
12: return Empty;
13: end if
14: return R.
15: end procedure

R =



0 −2 −2 0

4 0 −3 ∞

∞ ∞ 0 2

4 ∞ −2 0


.

Note that constraints on some ci − cj are absent. For example, no constraint on c1 − c3 is in (4).

Thus we can say c1−c3 ≤ ∞ and the corresponding entry in R is ∞. The canonical DBM obtained

by applying Algorithm 2.1 to the above DBM R through is given as:

Rcan =



0 −2 −5 −3

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

Here is the procedure to obtain the canonical DBM of a clock zone. Consider a clock zone Z with

the constraint ci ≤ k. Then DBM R representing the clock zone Z is constructed as follows

• For the constraint (ci − c0) ≤ k the entry Ri0 = k to reflect the upper bound on the clock

constraint;

• The difference between the clocks (cj − cj) is always 0 such that the entry Rjj = 0 for all

j = 0, . . . , ne;
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• The implicit assumption that all clocks are always positive (cj) ≥ 0 holds i.e (c0 − cj) ≤ 0

such that the entry R0j = 0 for all j = 0, . . . , ne;

• Finally, for all the remaining clock differences that are unbounded in Z the entries Rjm = ∞.

DBM R is converted to a canonical DBM R by using Algorithm 2.1.

2.6.1 Operations on DBMs

Clock zones are represented using DBMs. In order to use clock zones to study the dynamics of

TA, operation on clock zones and the corresponding DBMs are required. In this section we shall

review some of the operations performed on DBMs [4].

Intersection

Consider two canonical DBMs R and R′ representing clock zones Z and Z ′. The intersection

between two zones Z ∩ Z ′ represented by the DBM A is constructed by setting the entry of Aij to

the result of the minimum between Rij and R′
ij , i.e., for all 0 ≤ i, j ≤ ne, Aij = min(Rij , R

′
ij).

The resulting DBM A is tested for emptiness and is made canonical if it is not empty.

Time Elapse

Consider the canonical DBM R that represents the clock zone Z. The passage of time for the

clock zone Z due to the timed action is obtained by removing all the constraints of the form ci ≤ k

(since these upper bounds permits the passage of time indefinitely) by setting the corresponding

entry Ri0 = ∞ for all i = 1, . . . , ne. During timed action, the entries in R0i for each 1 ≤ i ≤ ne

and the entries in Rij for each 1 ≤ i, j ≤ ne remain the same.

Resetting of Clocks

Suppose there are ne clocks in the TA. Then the set of reset actions is U(ne), which are functions

from (R+)ne to (R+)ne corresponds to resetting some of the clocks to 0. For each u ∈ U(ne), there

is a set of indexes Iu ⊆ {1, . . . , ne} such that
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Algorithm 2.2 Algorithm for Resetting Clock Variables

1: procedure RESETCLOCK(DBM D,Iu)
2: Input: (ne + 1)× (ne + 1) DBM D with entries in Z ∪ {∞}.
3: Input: Iu reset index set.
4: Output: (ne + 1)× (ne + 1) canonical DBM R.
5: R := D;
6: for cσi ∈ Iu do
7: R[i, 0] = 0;
8: R[0, i] = 0;
9: for j := 1 to ne do

10: R[i, j] := R[0, j];
11: R[j, i] := R[j, 0];
12: end for
13: end for
14: return R.
15: end procedure

∀c ∈ (R+)ne , ∀i = 1, . . . , ne, u(ci) =


0 if i ∈ Iu,

ci otherwise .

For a canonical DBM R if clock ci is reset to zero, then Ri0 := 0, R0i := 0. Also, the constraints

of the form ci − cj ≤ Rij and cj − ci ≤ Rji are replaced with the upper and lower bounds of cj

such that

Rij := R0j , Rji := Rj0 ∀j ̸= i, 0.

Algorithm 2.2 performs the resetting of clocks. Consider a canoncal DBM R given below

R =



0 −2 −5 −3

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

After resetting the clock c2 = 0, R will be updated by applying Algorithm 2.2 to R. This results in

the DBM given below:

R =



0 −2 0 −3

3 0 3 −1

0 −2 0 −3

4 2 4 0


.
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Now, we shall discuss the transformation of a zone and its corresponding DBM as a result of

the timed action and transition from a mode. A symbolic state of the TA is a pair (x,R), where x

is the mode and R is DBM representing a zone Z. We will denote this symbolic state as zone to

avoid confusion with the state of the TA. For a zone (x,R) there are two possible successors: (1)

the effect of time elapse as a result of timed action in the mode, and (2) the successor clock zone to

Z as a result of transition from a mode.

In the first case, DBM R corresponding to clock zone Z is updated by setting Ri0 to ∞ except

R00 to reflect the time elapse. Then a separate DBM R′ is formed according to the Inv(x) (atomic

constraints at mode x). Next, intersection between R and R′ is taken. Finally, the resulting DBM is

tested for emptiness and is made canonical if not empty.

Let us consider our previous example. For our running example recall DBM Rcan. The canonical

DBM Rcan is updated by letting time elapse as shown by above matrix R.

R =



0 −2 −5 −3

∞ 0 −3 −1

∞ 4 0 2

∞ 2 −2 0


.

Suppose, the invariants at the mode only involves the clock constraint c1 ≤ 5. The entry R′
10 is set

to 5. Since, there are no clock invariants involving clocks c2 and c3, the corresponding entries R′
20

and R′
30 will be replaced with ∞ shown by the DBM R′.

R′ =



0 0 0 0

5 0 0 0

∞ 0 0 0

∞ 0 0 0


.

The DBMs R and R′ are intersected which results in the matrix given below.

R ∩R′ =



0 −2 −5 −3

5 0 −3 −1

∞ 4 0 2

∞ 2 −2 0


.
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Algorithm 2.3 Algorithm for time successors corresponding to clock invariant conditions

1: procedure CLOCKINVARIANT(DBM R, Inv(x))
2: Input: (ne + 1)× (ne + 1) DBM D with entries in Z ∪ {∞}.
3: Input: Inv(x) Clock Invariant conditions at mode x.
4: Output: (ne + 1)× (ne + 1) DBM R.
5: for i = 1 to ne do
6: if (cσi ∈ Inv(x)) then
7: R[i, 0] := uσi ;
8: else
9: R[i, 0] := ∞;

10: end if
11: end for
12: return R.
13: end procedure

Finally, the DBM is made canonical.

E =



0 −2 −5 −3

5 0 −3 −1

9 4 0 2

7 2 −2 0


.

We present a slight modification to capture the time elapse due to the invariants at the mode.

Instead of following the above mentioned procedure, in the DBM R the upper bounds on the clocks

in the first column are directly modified as

∀i = 1, . . . , ne, Ri0 :=


ki if ci ∈ Inv(x),

∞ otherwise ,

(5)

where ki is the integer constant appearing in the invariants of the mode. The rest of all the entries

in R remain same. Then R is checked for emptiness and if not empty, then R is made canonical.

Algorithm 2.3 performs the modification on R according to equation (5). Algorithm 2.3 combines

the two steps of forming a separate DBM for the invariants and then intersecting it with R.

For our running example, consider the same clock constraint c1 ≤ 5 and canonical DBM Rcan.

Suppose R is given as the matrix below with the modifications in the first column (shown in red)

when Algorithm 2.3 is applied.
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R =



0 −2 −5 −3

5 0 −3 −1

∞ 4 0 2

∞ 2 −2 0


.

It can be observed that the entry R10 is set to 5. Rest all the entries in the first column of R (except

the first entry in the first column of R) are ∞ due to the absence of clock constraints on their

corresponding clocks. Then R is canonicalized resulting in DBM E′. It can be noted that canonical

DBM E′ given by below matrix is the same canonical DBM E as seen previously.

E′ =



0 −2 −5 −3

5 0 −3 −1

9 4 0 2

7 2 −2 0


.

For the second case, the clock zone and its corresponding DBM are updated due to the transition

at a mode. Suppose R is the DBM at a mode and R′ is the DBM that captures clock constraint in

the guard of the corresponding transition. In the next step, DBMs R and R′ are intersected. If

the intersection is not empty, then the resulting DBM is made canonical. This also means that the

corresponding transition is taken. To illustrate this procedure, recall the canonical DBM Rcan from

our running example.

Rcan =



0 −2 −5 −3

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

Now, suppose that the transition consist of a guard which involves the clock constraint c1 ≥ 3. This

clock constraint is translated to the DBM R′
can.

R′
can =



0 −3 ∞ ∞

∞ 0 ∞ ∞

∞ ∞ 0 ∞

∞ ∞ ∞ 0


.
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The intersection of Rcan and R′
can results in the matrix:

Rcan ∩R′
can =



0 −3 −5 −3

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

After canonicalization:

F =



0 −3 −6 −4

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

There is an alternate way to simplify the above operation. Consider a DBM R. The entry in R

corresponding to the clock constraint that appears in the guard of the transition can be replaced as

R0i := min(R0i,−ki) (6)

where ki is the integer constant corresponding to the clock ci appearing in the guard of a transition.

After this modification, R is made canonical if not empty. This eliminates the step of forming

another DBM just to capture the guard of the transition. We illustrate this modification with an

example. Recall canonical DBM Rcan and the guard condition c1 ≥ 3. The modifications according

to equation (6) is performed directly on DBM Rcan (highlighted in red in the matrix below) resulting

in the DBM R shown by the matrix below.

R =



0 −3 −5 −3

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

It can be observed that only R01 is set to -3 and rest all the entries in R remain same. After

canonicalization:
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F ′ =



0 −3 −6 −4

3 0 −3 −1

6 4 0 2

4 2 −2 0


.

It can be observed that canonical DBM F ′ is same as canonical DBM F . These modifications are

conducted with the objective to eliminate the formation of another separate DBM that captures the

clock constraints and to eliminate the step of carrying intersection of the two DBMs. Operations

on clock zones (and the corresponding DBM operations) can be used in the reachability analysis of

TAs. This is an important tool for us in the next chapter.

2.7 Summary

In this chapter we reviewed DES, supervisory control of DES, LLP and LLP with Buffering.

We also reviewed TA, clock regions, clock zones and their DBMs and operations on DBM. In the

next chapter we will present a transformation procedure to augment an untimed automaton to a TA.

We will also present specific clock adjustments made to the TA in order to calculate Tmin(δ) and an

algorithm to calculate Tmin(δ).
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Chapter 3

Model-Based Estimation of the Duration

of Event Sequences

As discussed in Section 2.3 and following the procedure described there, in order to choose a

suitable buffer size for LLP, the fastest rate of event generation in the plant is needed. Specifically,

for any positive integer δ, the shortest duration of generation of δ events in the plant, Tmin(δ), is

required. The function Tmin(δ) can be obtained experimentally by running tests on the plant. The

tests cannot be exhaustive and therefore, can provide an upper bound for Tmin(δ)

If the timing information of the plant events is available, then one could incorporate this in-

formation in the plant model to obtain a timed automaton model (TA) and then use the TA to find

Tmin(δ). This procedure, however, entails enumerating through all the clock regions from every

mode of the TA, a process which has a time complexity exponential in the number of events. In

this chapter we propose an algorithm which involves a reachability analysis linear in the number of

plant events; however, the algorithm provides a lower bound for Tmin(δ).

In Section 3.1, presents the problem formulation. Section 3.2 discusses a procedure to transform

an untimed automaton to TA when the timing details of the events is available. In Section 3.3

develops a matrix-based symbolic analysis algorithm that finds a lower bound value for Tmin(δ). In

Section 3.4 presents an example to illustrate the calculation of Tmin(δ).
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Figure 3.1: LLP with Buffering for the window size Nw [3].

3.1 Problem Formulation and Solution Overview

In Section 2.3, we reviewed LLP with Buffering. Fig. 3.1 illustrates the calculation of supervi-

sory commands in LLP with Buffering with Nw denoting the window size. It can be observed that

the model of the plant is expanded from the current state for the window size of Nw = Nmin+∆+δ,

where Nmin is the minimum depth of the plant that should be expanded for the validity of the LLP

supervisor. ∆ is the number of command events to be buffered and δ is the number of events left in

the buffer (δ < ∆).

In a plant certain events can be generated at a very rapid pace such that there might not be

sufficient time available between two successive events to calculate the supervisory commands.

Therefore, in LLP with Buffering, ∆ number of supervisory commands are precalculated online in

a timely fashion and are buffered for future use. In order to calculate the supervisory commands,

it is sufficient to respect the constraint Cmax(Nw) ≤ Tmin(δ). In other words, the supervisory

computation for the window size of Nw must be completed within the time for the fastest generation

of δ events in the system.
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Tmin(δ) can be calculated experimentally by running tests on the physical system. One major

issue in calculating Tmin(δ) experimentally is the impossibility of performing exhaustive test to

determine Tmin(δ). Generally, the experimentally calculated Tmin(δ) is an overestimate of the

actual Tmin(δ). Alternatively, if information regarding the time bounds of the events, namely, lower

time bound and upper time bound is available, then one other possible solution is to incorporate this

timing information into the untimed model and construct a TA model for the physical system. In

this TA, each mode corresponds to a state of the untimed model and each clock corresponds to an

event of the untimed model. This TA model of the system can then be used to determine Tmin(δ)

theoretically (i.e. a model-based approach).

A straightforward approach to determine Tmin(δ) theoretically is by exploring δ number of

events from each mode of the TA and then determining which mode has the minimum execution

time (of δ events). This approach, although straightforward, is nevertheless challenging the set of

clock values reachable at every mode needs to be found to determine the minimum execution time

of δ events. The required calculations are very complex as explained in the following. One possible

approach is to use the region-based abstraction of the TA which permits partitioning of the infinite

space of clock values into finitely many clock regions [4]. A region specifies a mode and a clock

region. Using regions, one can perform region-based search algorithm for determining minimum

execution duration of δ events from every reachable regions of the TA. Although, clock regions

for the TA are finite, the number of clock regions grow exponentially with the number of events

and proportionally to the product of the largest constant appearing in the guards or invariants of

the TA [4]. In addition, the search algorithm would require to perform two tasks: (1) enumerate

through all the reachable regions from the initial mode of TA and then explore δ events through

those reachable regions, and (2) find a particular reachable region (which consist of a specific mode

and a specific clock region) such that exploring δ events from that particular reachable region would

result in the minimum execution of δ events and hence theoretical Tmin(δ). Therefore, calculating

Tmin(δ) using the region-based abstraction (could become very complex) since the number of clock

region are exponential in the number of the events.

To better illustrate this point, let us discuss an example Example 3.1. To avoid region-based

abstraction, in Section 3.3 we propose a specific setting for the clock variable of each event at each
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Figure 3.2: TA A1.

mode based on which a lower bound for Tmin(δ) is calculated. In Section 3.5 we propose a zone-

based search algorithm for calculating Tmin(δ) which uses the modifications made to the clock

variables at every mode of the TA. In Section 3.6, we show that the proposed zone-based search

algorithm requires time complexity which is polynomial in the number of modes of TA (as a result

of the modifications made to the clock variables) for calculating the lower bound for Tmin(δ).

Example 3.1. Consider a TA A1 shown in Fig. 3.2. TA A1 consists of four modes and two events.

Mode x0 is the initial mode. The time bounds of the events are given as (α, 1, 2) and (β, 1, 2). The

clocks for events α and β are c1 and c2 respectively. Edges labelled with the symbol τ corresponds

to the successor regions due to timed actions. Fig. 3.3 illustrates all the reachable clock regions

for TA A1. In this example, there are four modes and 46 clock regions resulting in a total of 184

possible regions. However, a depth-first search shows only 21 regions are reachable (Fig. 3.3). In

order to calculate Tmin(δ) from every reachable region; δ number events must be explored. If the

initial region [x0, c1 = c2 = 0] is selected, then δ number of event sequences are required to be

explored with the clock setting as (c1 = c2 = 0) and minimum execution duration amongst all event

sequences should be selected. Similarly, this process must be repeated for every reachable region

in Fig. 3.3. Finally, a particular region from all the reachable regions with minimum execution

duration of δ events provides Tmin(δ). In this example, the Tmin(δ) is obtained from initial region
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Figure 3.3: Reachable clock regions of TA A1.

which results from the event sequences αββ∗ and is given as

Tmin(δ) =


0, δ = 1, 2

δ − 2. δ ≥ 3

□

It can be observed from the Fig. 3.3 that just for a four state TA A1 there are 21 regions. The regions

increases drastically if a TA consists of large number of modes. In addition, the number of clock

regions increases in the worst case, exponentially in the number of clocks. Even though, Tmin(δ)

obtained using region-based abstraction can be very accurate, the time complexity for calculating

Tmin(δ) is exponential in the number of clocks and thus becomes infeasible when the TA has a large

number of modes and events.
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Figure 3.4: Transition from mode x to x′

3.2 Adding Timing Information to the Untimed Model

In this section, we will discuss a procedure to transform the untimed automaton model of the

plant to a TA. Here we will assume that lower and upper time bounds for the events of plant are

available. The resulting TA will have specific guard conditions, invariants and clock update rules

and hence will form a subclass of TA discussed in Chapter 2.

Consider an untimed automaton G = (X,Σ, η, x0, Xm). Suppose, the timing information of

the events is known. For each event σ ∈ Σ a lower time bound lσ ∈ N and an upper time bound

uσ ∈ N ∪ {∞} are known.

The untimed automaton is enriched to a specific type of TA by including the timing information

of the events. The following discussion is not concerned with the marked states of the untimed

automaton and therefore, we do not consider the marking of states in the TA. The TA takes the form

of a six-tuple given as

GTA = (X,Σ, C, Inv, T, x0). (7)

Each mode x ∈ X of GTA corresponds to a state of the untimed automaton G. The initial mode x0

of GTA is the same as initial state in G. The finite event set Σ of GTA is the event set of the untimed

automaton G. For each event σ ∈ Σ, there exists a unique clock cσ ∈ C. For any event σ, cσ is a

function from R to R and at any time t, cσ(t) is the time elapsed since the last time clock cσ was

initialized. (Clock initialization will be discussed shortly). In every mode, the dynamics of cσ is:

dcσ(t)

dt
= 1.

Suppose there are ne events in Σ and thus ne clocks in C. We arrange the clock variable in a fixed

order and represent them as a vector c = (c1, . . . , cne) where each ci is the clock variables of a

unique event. The state q of GTA at time t is a pair (x(t), c(t)), where x ∈ X is the mode at time
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t and c(t) is the clock vector at time t. In mode x0 and initially at t = 0, the values of clocks are

ci(0) = 0 and therefore the initial state of GTA is q0 = (x0,0), where 0 is the zero vector. It is to

be noted that the state set of the TA is infinite.

T is the set of transitions of GTA. A transition in TA from mode x to mode x′ with event σ (Fig. 3.4)

is of the form θ = (x, σ, g, u, x′), where g and u are the guard condition and the set of clocks that

are reset after transition. For a transition with event σ, the guard condition g is of the form

g := cσ(t) ≥ lσ.

The transition can occur only when g is satisfied (i.e., the clock of σ is at or larger then its lower

time bound). From now on,for simplicity, we remove time t and write the guard as cσ ≥ lσ. In this

transition, u is the set of clocks that are reset when the transition occurs. Next, we explain which

clocks are reset to zero and then we will provide a formal description of the set u.

Once again consider transition θ = (x, σ, g, u, x′) shown in Fig. 3.4. Whenever an event occurs, the

corresponding clock is reset to zero. Therefore, for transition θ = (x, σ, g, u, x′), u includes cσ.

Next consider an event λ ̸= σ. Four cases with respect to transition θ = (x, σ, g, u, x′) are possible.

Case (1) λ is not defined at x but becomes defined at x′: cλ is reset to zero.

Case (2) λ is defined at x but becomes undefined at x′: cλ is reset to zero.

Case (3) λ is defined in both x and x′: cλ is not reset to zero.

Case (4) λ is defined neither in x not in x′: cλ is reset to zero.

The clock update set u in transition θ is formally defined as follows:

- cσ ∈ u.

- For λ ̸= σ

(1) not η(x, λ)! and η(x′, λ)! =⇒ cλ ∈ u,

(2) η(x, λ)! and not η(x′, λ)! =⇒ cλ ∈ u,

(3) η(x, λ)! and η(x′, λ)! =⇒ cλ /∈ u,

(4) not η(x, λ)! and not η(x′, λ)! =⇒ cλ ∈ u.
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Figure 3.5: Untimed automaton G example.

The maximum allowable time that can be spent at a mode is specified by the clock invariant condi-

tions. The clock invariant conditions are assigned to each mode of the TA and are the conjunction

of the expressions on the upper bounds of clocks of the events that are defined at the corresponding

state of G. For uσ = ∞, the expression is cσ ≤ uσ. For uσ = ∞, the expression is cσ < uσ.

But since the clock invariant condition cσ < uσ is always true, it can be omitted. At a mode x, if

there is no event with finite upper time bound defined at x, then the clock invariant condition is true.

Formally the clock invariant condition for each x ∈ X is defined as:

Inv(x) :=


true if {σ | σ ∈ Γ(x) and uσ ̸= ∞} = ∅,

∧{cσ ≤ uσ | σ ∈ Γ(x) and uσ ̸= ∞} otherwise.

For the TA GTA constructed from the above procedure, we can make the following observations.

(P1) : GTA does not have any input or output channels.

(P2) : Since G is assumed deterministic, GTA is deterministic in the sense that for two transitions

θ1 = (x, σ1, g1, u1, x
′
1) and θ2 = (x, σ2, g2, u2, x

′
2) originating from a mode x, if x′1 ̸=

x′2, then σ1 ̸= σ2 and thus the guard conditions g1 and g2 are on different events.

It is possible that in GTA, consecutive transitions occur back to back instantaneously (no elapsed

time in between transitions). However, we assume only a finite number of such consecutive transi-

tions can occur. More generally we assume GTA is non-zeno:
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Figure 3.6: Timed automaton GTA for G

(A1) : In TA GTA, over any finite interval of time, only a bounded number of transitions can take

place.

A sufficient condition for (A1) to hold that is relatively easy to verify is as follows.

Proposition 3.1. If in the untimed automaton G, for any cycle, there exists a transition x
σ−→ x′ in

the cycle for some σ ∈ Σ such that the lower time bound of σ is non-zero: lσ ̸= 0, then in the TA

GTA, assumption (A1) holds.

Proof. By contradiction, suppose assumption (A1) does not hold. Since the lower time and upper

time bound bounds on events are integers, the only trajectories that can occur over a finite interval

of time and contain an infinite number of transitions must have a tail of transitions from mode to

mode with zero duration. But since the set of modes is finite, this tail includes a cycle of mode with

transitions of zero duration. But this contradicts the assumption of Proposition 3.1.

Consider the untimed automaton G shown in Fig. 3.5. G contains five states, with x0 as the ini-

tial state. The event set is Σ = {α, β, γ}. Suppose, the timing information for the events is

(α, 2,∞), (β, 2, 4) and (γ, 3, 5). Then TA GTA for G is obtained according to the above-mentioned

procedure and is illustrated in Fig. 3.6. In the examples for TA, the modes are represented by circles

and the transition from the source mode to the destination mode is represented by arrows, labelled
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with the event, the guard condition and the clock update set. The invariants of each mode are

indicated inside the mode.

3.3 Calculating a Lower Bound for Tmin(δ)

As previously discussed in Chapter 2, Tmin(δ) is the minimum execution time for the occur-

rence of δ consecutive events. To determine Tmin(δ) in a timed system obtained by transforming an

untimed automaton to a TA, one needs to explore all the regions in the TA by performing a reach-

ability analysis on regions. Performing reachability analysis has exponential time complexity in

the number the events (even though the clock regions are finite) since the number of clock regions

grows exponentially with the number of clocks in the TA (see Lemma 4.5 in [26]). The reacha-

bility analysis is needed to find the range of clock variables reachable in each mode. To avoid the

reachability, we will determine a particular clock setting for each mode such that starting from that

particular clock setting results in the shortest time for generation of δ events. As will be shown, this

can be used to find a lower bound for Tmin(δ). Before presenting the modifications to the clock

variables, let us provide some useful definitions.

Definition 3.1. Consider a TA GTA = (X,Σ, C, Inv, T, x0). The set of eligible events at a state

q = (x, c) of the TA is defined as

Γelig(q) := {σ | σ ∈ Γ(x) and (lσ ≤ cσ ≤ uσ (if uσ ̸= ∞) and lσ ≤ cσ (if uσ = ∞))}.

□

In Def. 3.1 the set of eligible events at a state of the TA are the events defined in the current mode

that have the clock variables satisfying the invariants at the mode and the guard condition in the

respective transitions.

Definition 3.2. A state trajectory involving p transitions (p ∈ Z+) starting from a state q is a

sequence of the form

T := q = q0
(σ1,t1)−−−−→ q1

(σ2,t2)−−−−→ q2 · · ·
(σp,tp)−−−−→ qp
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where for i = 1, . . . , p, σi ∈ Σ and ti ∈ R+ ∪ {0} is the time dwelt in qi−1 before the occurrence

of event σi. The trajectory is assumed to satisfy all the invaraints and transition guard conditions.

That is for 0 ≤ i ≤ p, Inv(xi) are satisfied for the duration of time TA is at mode xi and also for

transition θi = (xi−1, σi, gi, ui, xi), gi is satisfied. □

A state trajectory starting from a state q in the TA is the sequence of events along with their dwell

times in each corresponding mode. If the state trajectory T includes p transitions till state qp, then

the length of the state trajectory T is p.

Definition 3.3. Consider a state trajectory T with the length p ≥ 1 and dwell times t1, . . . , tp, from

a state q to another state q′. The duration of the state trajectory is

D(T ) :=
p∑

i=1
tp.

□

The duration of the state trajectory is the total time taken for the execution of the state trajectory.

The amount of dwell time in the final state of trajectory T q′ is not included in D(T ).

Definition 3.4. Consider a TA GTA and a state q = (x, c). Then for p ∈ Z+, S(q, p) denotes the

set of state trajectories of length p starting from state q. □

Definition 3.5. Consider a TA GTA. For a state q = (x, c) and a positive integer δ ∈ Z+, the

minimum execution duration of state trajectories of δ events starting from q is

tmin(q, δ) := min{D(T ) | T ∈ S(q, δ)}.

□

According to Def. 3.5, tmin(q, δ) is the minimum execution time over the set of trajectories of length

δ, δ ∈ Z+ starting from state q .

Definition 3.6. Consider a TA GTA. For every reachable state q and positive integer δ ∈ Z+, the

minimum execution duration is of δ events starting from q is

Tmin(δ) := min{tmin(q, δ) | q is reachable in GTA}.
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□

It is to be noted that Tmin(δ) obtained for the TA depends on the set of reachable modes and the

values of the clock variables when a mode is reached each time. Since each mode may be entered

with different clock values, direct calculation of Tmin(δ) becomes complex. Theorem 3.1 shows that

a particular choice of clock variables, as defined in the theorem, results in the smallest tmin(q, δ)

which can later be used to obtain a lower bound for Tmin(δ). Before presenting Theorem 3.1, we

need the results of Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Consider the TA GTA and a state q = (x, c). Suppose for some σ∗ ∈ Σ, the clock

variable at state q satisfies lσ∗ ≤ cσ∗ ≤ uσ∗ . Let q′ = (x, c′) be another state corresponding to the

same mode x with a different clock vector c′. Assume all clock variables of c and c′ are the same

except for σ∗ where c′σ∗ = lσ∗ . Then for any δ ∈ Z+, tmin(q
′, δ) ≤ tmin(q, δ).

Proof. Consider a state trajectory T of length p = δ starting from q.

T : q = (x, c)
(σ1,t1)−−−−→ q1 = (x1, c1)

(σ2,t2)−−−−→ · · · (σp,tp)−−−−→ qp = (xp, cp),

We show by induction that there exists another state trajectory T ′ containing the same sequence of

events σ1 . . . σp that can be executed from q′ with the same dwell times t1, . . . , tp. Furthermore,

at any time t the corresponding clock vectors ci and c′i are identical except for event σ∗ where

c′σ∗ ≤ cσ∗ at each state qi and q′i on the state trajectories T and T ′.

T ′ : q′ = (x, c′)
(σ1,t1)−−−−→ q′1 = (x1, c

′
1)

(σ2,t2)−−−−→ · · · (σp,tp)−−−−→ q′p = (xp, c
′
p).

• Induction Base: At the initial state q, σ1 occurs after a duration of t1 in state trajectory T .

◦ If σ1 = σ∗, since c′σ∗ = lσ∗ , σ1 = σ∗ can also occur from q′ after a duration of t1. Upon

transition, the clock of σ∗ is reset to zero in both state trajectories. Thus c1 = c′1.

◦ If σ1 ̸= σ∗, still σ1 can occur in T ′ starting from q′ after the same duration of t1 since

all clock variables in c′ at q′ other than cσ∗ have the same initial value as clock variables

in c at q. Furthermore, since initially c′σ∗ ≤ cσ∗ and at time t1, σ∗ did not preempt σ1

in trajectory T , then in trajectory T ′, σ∗ does not have to preempt σ1 at t1 either.
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• Induction Step: Suppose state trajectory T ′ can occur for the first k steps, with 1 ≤ k < p.

We show that step k + 1 can also occur in T ′. We consider two cases.

Case (1) : Over the first k steps of state trajectory T , the clock of σ∗ has not been reset to

zero. In this case, the corresponding clock variables of T and T ′ at step k are all

identical, except for σ∗ for which

lσ∗ ≤ c′σ∗ ≤ cσ∗ ≤ uσ∗ . (8)

In this case, using an argument similar to the base case, we can show that σk+1

can occur at state q′k in T ′ after a time tk+1.

Case (2) : If after some k′ transitions, with 1 ≤ k′ ≤ k, the clock of σ∗ resets to zero, then

after σk′ : c′σ∗ = cσ∗ . This means that the clock variables on both trajectories

will become identical: c′k′ = ck′ . Since after σk′ the state of the TA is the same

on both state trajectories, the rest of events σk′+1 . . . σp can occur on T ′ with

dwell times tk′+1, . . . , tp.

Thus by induction we showed that if a state trajectory T starting from q can occur in the TA GTA,

then the state trajectory T ′ which has the same events and dwell times as T can also occur in TA

GTA from q′. Thus D(T ) = D(T ′). Then if follows from Def. 3.5 that tmin(q
′, δ) ≤ tmin(q, δ).

According to Lemma 3.1, suppose at q = (x, c) the clock variables of the events whose values

are above the lower time bound are reduced to the lower time bound values (while leaving other

clocks values same), resulting in a new state q∗ with the same mode x. Then by repeatedly applying

Lemma 3.1, we can conclude that tmin(q
∗, δ) ≤ tmin(q, δ).

Consider a TA GTA = (X,Σ, C, Inv, T, x0). Let q = (x, c) be a state of GTA satisfying the

invariants at mode x. We would like to obtain a lower bound for tmin(q, δ) (δ ∈ Z+). We begin by

examining events defined at mode x and find the one with the largest lower time bound

lσ,max := max{lσ | σ ∈ Γ(x)}. (9)
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Next we raise the clock values of the events defined at mode x by lσ,max and obtain a state q′ =

(x, c′). That is the clock variables at c′

c′σ =


cσ + lσ,max σ ∈ Γ(x),

cσ σ /∈ Γ(x).

(10)

This increase may result in some clocks exceeding their upper time bounds. To resolve this, the

upper time bounds of the events defined at mode x are increased by lσ,max:

∀σ ∈ Γ(x) u′σ = uσ + lσ,max. (11)

Let us denote the TA with the new upper time bounds u′σ as G′
TA,x. G′

TA,x is identical to GTA

except for the time bounds. For simplicity we use the same labels for the modes of G′
TA,x (i.e. x).

Also, for G′
TA,x the shortest execution time function will be denoted by t′min.

Lemma 3.2. Consider state q = (x, c) in GTA and state q′ = (x, c′) in G′
TA,x as defined in

equations (10) and (11). For any δ ∈ Z+, t′min(q
′, δ) ≤ tmin(q, δ).

Proof. Consider a state trajectory T of length p = δ starting from q in GTA.

T : q = (x, c)
(σ1,t1)−−−−→ q1 = (x1, c1)

(σ2,t2)−−−−→ · · · (σp,tp)−−−−→ qp = (xp, cp).

We show that in G′
TA,x there exists a state trajectory T ′ of length p starting from q′ = (x, c′) which

has the same event sequence σ1 . . . σp with the same dwell times t1, . . . , tp.

T ′ : q′ = (x, c′)
(σ1,t1)−−−−→ q′1 = (x1, c

′
1)

(σ2,t2)−−−−→ · · · (σp,tp)−−−−→ q′p = (xp, c
′
p).

We will use induction to prove the claim.

• Induction Base: At state q′ for any event σ defined at x, the clock variable c′σ satisfies

lσ ≤ lσ,max ≤ c′σ and c′σ = cσ + lσ,max ≤ uσ + lσ,max = u′σ. (12)
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Therefore, the invariants of mode x are satisfied in q′ and all defined events are eligible. In

mode x, as time passes, since clock variables change at the same rate, the equality c′σ =

cσ + lσ,max will remain valid. Thus, if cσ satisfies its invariant in x in GTA (i.e. cσ ≤ uσ),

then c′σ will also satisfy its invariant in x in G′
TA,x (i.e. c′σ ≤ u′σ). Since on state trajectory

T , σ1 occurs from state q in GTA after dwell time t1, then σ1 can also occur from state q′ in

G′
TA,x after the same dwell time t1.

• Induction Step: Suppose in state trajectory T ′, k steps occur up to the transition σk with state

of G′
TA,x entering q′k. We show that σk+1 can occur in G′

TA,x after the dwell time of tk+1.

For event σk+1 there are two possible cases.

Case (1) : Event σk+1 was reset to zero (at least once) in the first k steps of T . Let k′

with 1 ≤ k′ ≤ k be the last transition where event σk+1 occurred in which

the corresponding clock variable was reset to zero. Since T and T ′ have the

same sequence of events and same corresponding dwell times up to step k, then

the clock variable corresponding to event σk+1 was also reset at step k′ in the

trajectory T ′. After that step the clock variable of event σk+1 will have identical

values in T and T ′ up to and including step k. Thus, σk+1 can occur at mode xk

in trajectory T ′ after the same dwell time tk+1 identical to T .

Case (2) : Event σk+1 was not reset to zero in the first k steps of T . In this case the clock

variable for this event in GTA and G′
TA,x will satisfy c′σk+1

= cσk+1
+ lσ,max

from the beginning of the trajectories up to mode xk and thus σk+1 can occur

from state q′k in G′
TA,x after the same dwell time of tk+1.

Therefore, for every T of length δ in GTA, there exists a trajectory T ′ from q′ in G′
TA,x with

D(T ) = D(T )′. Therefore, by induction t′min(q
′, δ) ≤ tmin(q, δ).

According to Lemma 3.2, we make two adjustments (1) we raise the clock values of all the

events defined at x by lσ,max and, (2) we increase the upper time bounds of the events defined at

mode x. With these two adjustments any sequence of events that can be generated in the GTA

can be generated in the new system with the same dwell times from the same mode. This results
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t′min(q
′, δ) is a lower bound for tmin(q, δ). Lemma 3.1 and Lemma 3.2 can be combined to prove

the final result which is Theorem 3.1. We need one more definition before proving the theorem that

provides a lower bound for Tmin(δ).

Consider the TA G′
TA,x. Next consider state ql,x = (x, cl,x) in G′

TA,x corresponding to mode x

and clock variable for events defined at x set to the respective lower time bounds and zero otherwise:

cl,x = (l1, . . . , lne), (13)

where Σ = {σ1, . . . , σne} and

li :=


lσi σi ∈ Γ(x)

0 σi /∈ Γ(x).

Definition 3.7. Consider the TA GTA in equation (7). For any mode x reachable in untimed au-

tomaton G, let G′
TA,x be the TA constructed as in equations (9) - (11). Also let clock vector cl,x be

defined as in equation (13). For any δ ∈ Z+, define

T ′
min,low(δ) := min{t′min((x, cl,x), δ) | x is reachable in G},

□

The following theorem summarizes the main result for this chapter. It will show that for any

mode x, t′min((x, cl,x), δ) provides a lower bound for shortest execution time of δ events out of x,

and thus T ′
min,low(δ) as defined in Def. 3.7 provides a lower bound for Tmin(δ).

Theorem 3.1. Consider the TA GTA. For any δ ∈ Z+, T ′
min,low(δ) ≤ Tmin(δ).

Proof. Let q = (x, c) be a state of GTA and q′ = (x, c′) be the corresponding state of G′
TA,x

described by equations (9) - (11). Also, let ql,x = (x, cl,x) be another specific state of G′
TA,x as

described in equation (13). Applying Lemma 3.1 to G′
TA,x and state q′ = (x, c′) and all events

defined at mode x results in:

t′min(ql,x, δ) ≤ t′min(q
′, δ). (14)
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Using Lemma 3.2

t′min(q
′, δ) ≤ tmin(q, δ). (15)

Using equation (14) and equation (15) results in:

t′min(ql,x, δ) ≤ tmin(q, δ). (16)

In other words, at any mode x, the shortest execution time calculated from a specific state ql,x in

G′
TA,x is a lower bound for the shortest execution time in GTA from any state q in mode x. By

Def. 3.7, T ′
min,low(δ) is the lowest value of t′min(ql,x, δ) over all the reachable modes of G′

TA,x. It

follows from equation (16) that

T ′
min,low(δ) ≤ min{tmin(q, δ) | q = (x, c) with c satisfying invaraints at x},

≤ min{tmin(q, δ) | q is reachable in GTA},

= Tmin(δ). (By Def. 3.6)

This completes the proof.

The following examples illustrates Theorem 3.1.

Figure 3.7: Example 3.2. TA GTA1 .
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Example 3.2. Consider the TA shown in Fig. 3.7. GTA1 contains four modes and three events.

Mode x0 is the initial mode. The time bounds of the events are (α, 4, 4), (β, 2, 3) and (γ, 5, 5).

The clocks for events α, β and γ are c1, c2 and c3 respectively. Suppose we would like to calculate

tmin(x1, δ). Initially the clock variables are zero: c1 = c2 = c3 = 0. At t = 0, the execution of

GTA1 starts. At t = 4, α occurs which resets clocks c1 and c2 according to the update set of the

transition. Event γ at state x0 requires at least 5 time units and therefore never occurs. After the α

transition, GTA1 enters mode x1 with c3 = 4. From this mode we want to calculate tmin((x, c1), δ)

with c1 = (0, 0, 4). Time passes and at t = 5, γ occurs and GTA1 enters mode x3 and generates

γ events only afterwards. At x1, β event never happens since at least 2 time units have to pass in

mode x1 before β can happen. While at mode x1:

c1(t) = c2(t) = t− 4 4 ≤ t ≤ 5,

c3(t) = t 4 ≤ t ≤ 5.
(17)

Equation (17) defines the set of reachable states in mode x1. Specifically, at t = 5 in mode x1 when

γ occurs at t = 5, the values of the clocks are c1(5) = c2(5) = 1 and c3(5) = 5. Let us denote this

state as q∗ = (x1, (1, 1, 5)). State q∗ yields the smallest values for tmin((x1, c), δ) for all states in

mode x. From q∗, tmin(q
∗, 1) = 0, tmin(q

∗, 2) = 5 (since lγ = 5) and more generally

tmin(q
∗, δ) = 5(δ − 1) (δ ≥ 1).

Next we find t′min(ql,x1 , δ) with ql,x1 = (x1, cl,x1) state. Consider G′
TA1,x1

which is essentially

same as GTA1 but with different upper bounds for the events defined at mode x1. In mode x1, β and

γ are defined. Therefore,

lσ,max = max{2, 5} = 5.

The upper time bounds of β and γ at mode x are increased by 5. Therefore the event time bounds

in G′
TA1,x1

are given as (α, 4, 4), (β, 2, 8) and (γ, 5, 10). Therefore, ql,x1 = (x1, (0, 2, 5)). At

ql,x1 , both β and γ are eligible to occur. Since β has a smaller lower time bound it will determine

t′min(ql,x1 , δ):

t′min(ql,x1 , δ) = 2(δ − 1) (δ ≥ 1).
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□

We see that t′min(ql,x1 , δ) is a lower bound for tmin(q, δ) = 5(δ − 1). As this example shows, the

difference between t′(ql,x1 , δ) and tmin(q, δ) could be large. t′min(ql,x, δ) is used in the calculation

of T ′
min,low(δ). It would be important to know how significant the difference between Tmin(δ) and

its lower estimate T ′
min,low(δ) is. It would be useful to have a way of assessing the difference.

Experimental measure of Tmin(δ) denoted by Tmin,exp(δ) provide an upper bound for Tmin(δ). If

Tmin,exp(δ) and T ′
min,low(δ) are not reasonably close, then further experiments or a more detailed

theoretical analysis are required. This will be explored in Chapter 5 in the application of the above

procedure to an experimental setup.

Example 3.3. Consider the TA GTA2 in Fig. 3.8. This example shows why it is necessary to raise

the upper time bounds of some events in Lemma 3.2. We see that if the upper time bounds are not

raised, some sequences could be eliminated in GTA2 . In this example there are five modes and three

events with their timing information as (α, 2, 4), (β, 2, 2) and (γ, 4, 5) along with the clocks c1, c2

and c3 respectively. In mode x0, at t = 2, β occurs. After the β transition, GTA2 transitions to

Figure 3.8: Example 3.3. TA GTA2 .
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mode x2 where c1 = c2 = 0 and c3 = 2. So at t = 4, either α or γ can occur in mode x2. Therefore

GTA2 can execute both βα and βγ.

If we want to find t′min(ql,x0 , δ) from mode x0, we set the clock of events β and γ to their lower

bounds c2 = 2, c3 = 4 and initialize c1 to c1 = 0. If at t = 0, β occurs in mode x0, then upon

entering x2, c3 = 4 and c1 = 0. Hence, event γ occurs between 0 ≤ t ≤ 1 and α cannot occur in

mode x2 because clock c1 never reaches the minimum value of 2 for α to occur. □

3.4 Finding Minimum Execution Duration of Event Sequences Using

DBM

In this section, we will explain how minimum execution duration of an event sequence is cal-

culated by setting the clock values according to Theorem 3.1 and by using DBMs for clock regions

when entering the first mode in the event sequence. Consider an example shown in Fig. 3.9 which

consists of a state trajectory T of length three with the event sequence αβα. We would like to cal-

culate the minimum execution duration of T . The timing information for events is (α, lα, uα) and

(β, lβ, uβ). The clocks for events α and β are c1 and c2 respectively. We introduce a fictitious clock

cfict in order to calculate minimum execution duration of event sequences. This fictitious clock cfict

is similar to the clock Now as mention in [52]. The clock cfict is never reset, except at the initial

mode x0 and in the update set of all the first transitions at the mode x from where t′min((x, cl,x), δ)

is required to be determined. It is to be noted that the clock cfict is included in DBM which changes

the dimension of DBM to (ne + 2). Extracting the lower bound value of cfict from DBM at δ tran-

sition results in t′min((x, cl,x), δ) value. We assume that DBMs for clock zones from R0 to R6 are

calculated and are not empty.

Initially, clock zone for R0 is represented according to Theorem 3.1 by the following DBM:

R0 =



0 0 −lα 0

∞ 0 ∞ ∞

lα ∞ 0 ∞

∞ ∞ ∞ 0


.
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Figure 3.9: Procedure for calculating minimum execution duration of event sequence using DBM.

Next, the DBM for clock zone R0 will be canonicalized in order to tighten the bounds of the matrix.

Notice that the entries (1, 0) and (0, 1) in DBM R0 correspond to the upper bound and lower bound

value of clock cfict respectively. The DBMs for the clock zones R1, R3 and R5 are to check whether

the clocks satisfy the invariants at the corresponding modes. The DBMs for the clock zones R2, R4

and R6 are to check whether the clocks satisfy the guard conditions in the respective transitions for

the corresponding event to occur. If DBMs for R1 and R2 are not empty then event α has occurred.

Following Def. 3.5, the calculation of minimum execution duration of event sequence starts after

the occurrence of first event which in this case is α transition from mode x0. After α transition from

mode x0; clock cfict is reset and the corresponding entries in DBM R2 are reset to zero. For rest of

the transitions in T , cfict is never reset. The value of the clock cfict will keep on increasing as the

event transitions of state trajectory T occurs. Finally, the minimum execution duration of the state

trajectory T is obtained by extracting and negating the lower bound value of cfict at entry R6(0, 1)

of DBM R6.

Following example explains above-mentioned procedure for calculating minimum executing dura-

tion of an event sequence.

Example 3.4. Consider GTA shown in Fig. 3.6. The timing information for the events is (α, 2,∞),

(β, 2, 4) and (γ, 3, 5). In this example suppose is δ = 3 and we want to calculate t′min((x0, cl,x0), 3).

To illustrate the procedure of calculating t′min((x0, cl,x0), 3), consider one of the state trajectories

T of length 3 of GTA shown in Fig. 3.10 that has the event sequence βγγ. In this case, despite

of the mode being x0, the clocks are not initialized to 0, on the other hand, they are initialized to

cl,x0 = (2, 2, 0). Notice that initially in x0, cfict is zero. In this example the upper time bounds of

the events that are defined at the mode x0 must be raised by lσ,max. Here, lσ,max = max(2, 2) = 2

and therefore, the new timing information for the events is (α, 2,∞), (β, 2, 6) and (γ, 3, 7).

66



Figure 3.10: State trajectory T of GTA.

Initially, the clocks are cl,x0 = (2, 2, 0) and then the clock zone is given by the following DBM R0

(which includes cfict as well).

R0 =



0 0 −2 −2 0

∞ 0 ∞ ∞ ∞

2 ∞ 0 ∞ ∞

2 ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ 0


.

The canonical DBM R0 is given as

R0 =



0 −2 −2 −2 0

∞ 0 ∞ ∞ ∞

2 2 0 0 2

2 2 0 0 2

∞ ∞ ∞ ∞ 0


.

Upon entry to the mode x0, the set of clocks are updated using timed action (i.e. passage of time) in

the mode x0 that results in canonical DBM R1 given below.

R1 =



0 −2 −2 −2 −2

6 0 0 0 0

6 0 0 0 0

6 0 0 0 0

6 0 0 0 0


.

R1 represents the clock zone while at mode x0.

DBM R2 is formed by updating the clock c2 in R1 according to the guard condition of the β tran-

sition. R2 describes the set of clock valuations upon entry to mode x2. It can be observed in DBM
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R1, that the entry corresponding to the clock c2 in the first row is −2. After taking the transition,

clocks c2 and c3 are reset. The dwell time at mode x0 does not contribute in the calculation of the

t′min((x0, cl,x0), 3). Canonical DBM R2 is given below.

R2 =



0 0 −2 0 0

0 0 −2 0 0

6 6 0 6 6

0 0 −2 0 0

0 0 −2 0 0


.

The DBM R3 given below captures the time elapse in mode x2.

R3 =



0 0 −2 0 0

5 0 −2 0 0

11 6 0 6 6

5 0 −2 0 0

5 0 −2 0 0


.

The value of c3 upon entering x2 is 0 and the guard condition on the γ transition is c3 ≥ 3. Thus

R3 is updated according to the guard condition and is tested for emptiness resulting in canonical

DBM R4.

R4 =



0 −3 −5 −3 −3

5 0 −2 0 0

11 6 0 6 6

5 0 −2 0 0

5 0 −2 0 0


.

Once γ transition occurs, all clocks (except cfict) are reset, thereby updating clock zone R4.

R4 =



0 −3 0 0 0

5 0 5 5 5

0 −3 0 0 0

0 −3 0 0 0

0 −3 0 0 0


.
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On entry to mode x1, clock zone R4 is updated according to the invariants at x1 resulting in clock

zone R5 which is represented by the following canonical DBM.

R5 =



0 −3 0 0 0

10 0 5 5 5

5 −3 0 0 0

5 −3 0 0 0

5 −3 0 0 0


.

For the final γ transition, R5 is updated according to the guard condition and is made canonical

resulting in clock zone R6.

R6 =



0 −6 −3 −3 −3

10 0 5 5 5

5 −3 0 0 0

5 −3 0 0 0

5 −3 0 0 0


.

As a result of timed actions at x1, the entry of c3 in first row in R6 will be updated from 0 to 3

to satisfy the guard condition. Consequently, the minimum duration of the trajectory is D(T ) =

−R6(0, 1) = 6. □

3.5 Algorithm for Calculating T ′
min,low(δ)

Based on Def. 3.7 we will provide an algorithm which calculates T ′
min,low(δ). For compu-

tational speed, we will use the operations performed on DBMs (as discussed in Section 2.6 of

Chapter 2) in the algorithm to calculate T ′
min,low(δ).

In order to determine t′min(ql,x, δ) from the state ql,x = (x, cl,x) of the TA it is necessary to

explore all the state trajectories in S(ql,x, δ). A graph traversing algorithm such as best-first search

(BFS) algorithm [53] can be used to explore all the state trajectories in S(ql,x, δ). Given a graph,

the BFS algorithm starts from root node and at each stage explores all the neighbouring unvisited

node along each branch before backtracking. In BFS algorithm all the vertices are visited at most
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Figure 3.11: Counter automaton Gev.

once. The BFS algorithm maintains a stack data structure to store the states during exploration. For

example, recall the untimed automaton G shown in the Fig. 3.5 which has the form of a directed

graph. Suppose BFS is used to find states reachable from the initial state x0. The BFS algorithm

starts from the root note which is state x0 and then explores state x1 and state x2 and adds them at

the top of the stack in the same order as they were explored. In the BFS algorithm, we are assuming

that all the states are explored depending upon the event label; then its corresponding target state is

explored first. Then state x2 is popped from the stack and state x4 is explored and added at the top

of the stack. Next state x4 is popped from the stack. There is no further exploration required from

state x4, since state x2 is already been explored. State x1 is popped from the stack and state x3 is

explored and added at the top of the stack. Now state x3 is popped from the stack, however, there

is no further exploration possible and hence the algorithm terminates. The traversing order for G

using BFS algorithm is given as

x0 −→ x1 −→ x2 −→ x4 −→ x3.

The BFS algorithm (explained above) just provides the information about the states which are reach-

able by some trajectory; however, it does not traverse through all of the trajectories from the root

state. Suppose, in an automaton one needs to traverse through all the trajectories of a length, say δ,

from the root state, then one must perform unfolding of all the event sequences up to the length δ.

In order to unfold all the event sequences, a counter automaton Gev shown in the Fig. 3.11 can be

built by having transitions for all events in Σ counting to δ events.

For our running example if the product of G and Gev is taken then an unfolded automaton is obtained

which is given as

Gun = product(G,Gev).

Fig. 3.12 illustrates the unfolded automaton Gun for G with δ = 3. The states of Gun are deliber-

ately not renamed just to show that the states of G can be visited again. Moreover, it can be observed
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Figure 3.12: Unfolded automaton Gun

that all the sequences of events have a length of at most 3 in Gun. Since all the sequences of events

of length up to δ are need to be explored, a state may be visited more than once. Therefore, to over-

come this problem we adjust the BFS algorithm such that the algorithm does not keep track of the

visited states and we call it modified BFS algorithm. To give a brief explanation for this algorithm,

suppose we start the exploration from the root state (x0, 1). Then the modified BFS algorithm will

explore states (x1, 2) and (x2, 2) and add them at the top of the stack in the same order as they were

explored. State (x2, 2) is popped from the stack and states (x4, 3) and (x1, 3) are discovered from

state (x2, 2) and they are added at top of the stack. State (x1, 3) is next to be explored and from here

state (x2, 4) and (x3, 4) are added at the top of the stack. In this way the two event sequences βγγ

and βγβ are completely explored. Since there are no further transitions from states (x2, 4) and (x3,

4), the algorithm backtracks and explores state (x4, 3). From state (x4, 3), state (x2, 4) is discovered

and added at the top of the stack. Notice that, state (x2, 4) is visited again for the second time. Since

there is no transition from state (x2, 4), there is no further exploration from state (x2, 4). In this

way, the sequence βαβ is traversed. Now, the algorithm backtracks to state (x1, 2) and traverses

through all the sequences in the left side of the unfolded automaton Gun (depicted in Fig. 3.12) in a

similar fashion until the stack is empty.
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Remark 3.1. Instead of performing modified BFS algorithm on an unfolded automaton; an al-

ternative way is to modify the unfolded automaton and then apply regular BFS algorithm. While

performing the unfolding of an automaton for δ number of events, for every state which has more

than one incoming transitions we split that state into mulitple identical states (depending upon the

number of incoming transitions) with identical outgoing transitions. For example in Fig. 3.12, state

(x2, 4) has two incoming transitions of event β. Then, state (x2, 4) can be split into two identical

states (x2, 4, 1) and (x2, 4, 2) with identical outgoing transitions. □

Suppose in a deterministic automaton with ne events. If the untimed automaton is unfolded for

the length of δ, then, in the worst-case Gun, has

(1) nδ+1
e −1
ne−1 states,

(2) nδ+1
e −1
ne−1 − 1 event transitions.

The unfolded automaton has the structure similar of a directed tree, resulting in exponential growth

of states in δ in G. However to avoid this complexity, such an unfolding operation is not performed

in the modified BFS algorithm because the states are explored on-the-fly. In other words, the graph

of unfolded automaton is explored piece by piece.

The modified BFS algorithm explained above is used to traverse through all the event sequences

in an untimed automaton while ignoring states already visited. Similarly, this algorithm com-

bined with the DBM operations for testing the emptiness of the clock zones can be used to obtain

t′min(ql,x, δ) from any mode x. Before explaining the resulting algorithm, let us first present a minor

adjustment made to the zones. Previously in Section 2.6 of Chapter 2, a zone is of the form (x,R)

but we will represent the zone as (x,R,D) where x ∈ X is the mode, R is the non-empty canonical

DBM that represents the clock zone Z and D is the depth of the mode which signifies the number

of transitions required to reach the mode x (from some initial mode).

Now we discuss the elements used in our algorithm, Algorithm 3.1. First we present the Image

operator which will be used in our algorithm. Given a mode x and the transition set T , Image(x, T )

computes the set of modes (successor modes) that can be reached in one transition [54]

Image(x, T ) := {x′ ∈ X | (x, σ, g′, u′, x′) ∈ T}.
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The Image operator returns the set of modes successor to x or is empty if there are no outgoing

transitions from x.

Algorithm 3.1 relies on the following data structures:

(1) The variable Xs is of type set(mode); it stores the set of successor modes obtained by the

Image operator. Initially, the variable is initialized as EmptySet that corresponds to the set

being empty.

(2) The variable zoneStack is of type stack(zoneStack). It stores the reachable zones that are

explored during the on-the-fly modified BFS algorithm. As usual, the stack follows Last In

First Out (LIFO) principle. The operations that can be performed on the stack data structure

are: (1) The stack is initialized as an EmptyStack which corresponds to the stack being

empty; (2) the procedure pop takes the stack and removes the zone from the top of the stack

and updates the stack; (3) the procedure push updates the stack by adding the reachable zone

that has been explored to the top of the stack.

Algorithm 3.1 is explained as follows

(1) The input to the algorithm is the state ql,x = (x, cl,x), a timed automaton G′
TA,x and a positive

integer δ. In lines 6-8, the initial zone is pushed into zoneStack with mode x and DBM Rl.

DBM Rl has its (0, i)th entries in the first row as −lσ and (i, 0)th entries in the first column

as lσ only for the events defined at mode x. Rest all the entries of Rl are zero. A variable tp

is used to hold the duration of one state trajectory which is then used to compare the duration

with another state trajectory. Initially tp is initialized to ∞.

(2) The loop is iterated until zoneStack is empty. If zoneStack is not empty, then the last zone

in the stack is popped. In lines 11 and 12, all the successor modes of x are obtained by the

Image function and the depth of these successor modes is incremented by 1 to represent the

depth from the mode x. If there are no successor modes from x, then another zone is popped

from zoneStack and the process repeats. In line 11, T is the transition set of G′
TA,x.

(3) Lines 13-23 check if the successor modes are reachable from the current mode by forming

their corresponding DBMs and testing them for emptiness. For a zone (x,R,D), the effect of
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Algorithm 3.1 Algorithm for Calculating t′min(ql,x, δ)

1: procedure t′min(ql,x, G′
TA,x, δ)

2: Input: G′
TA,x A timed automaton, δ A positive integer, ql,x = (x, cl,x) state of the TA.

3: Output: t′min.
4: stack(zoneStack) := EmptyStack;
5: set(mode) xs := EmptySet;
6: D0 := 0;
7: tp := ∞;
8: push((x,Rl, D0), zoneStack);
9: while (not empty(zoneStack)) do

10: (x,R,D, t) := pop(zoneStack);
11: Xs := Image(x, T ); ▷ T is the transition set of TA G′

TA,x.
12: Ds := D + 1;
13: if (not empty Xs and Ds ≤ δ) then
14: R := ClockInvariant(R, Inv(x)); ▷ Calls Algorithm 2.3.
15: R := Canonical(R); ▷ Calls Algorithm 2.1.
16: if (not empty R) then
17: for every (x, σj , gj , uj , xsj ) : xsj ∈ Xs do
18: R[0, j] := min(R[0, j],−lσj );
19: Rsj := Canonical(R); ▷ Calls Algorithm 2.1.
20: if (not empty Rsj ) then;
21: Rsj := ResetClock(Rsj , Iuj ); ▷ Calls Algorithm 2.2.
22: push((xsj , Rsj , Ds), zoneStack);
23: if (Ds = δ) then
24: D(Tj) := −Rsj [0, 1];
25: t′min(ql,x, δ) = min(D(Tj), tp);
26: tp = t′min(ql,x, δ);
27: end if
28: end if
29: end for
30: end if
31: end if
32: end while
33: return t′min(ql,x, δ).
34: end procedure

time elapsed is captured by passing the DBM R and the Inv(x) through Algorithm 2.3 which

returns the updated DBM R according to Inv(x). As mentioned previously in Section 2.6.1

of Chapter 2, Algorithm 2.3 excepts DBM of dimension (ne + 1), however, in this case

Algorithm 2.3 is called by passing DBM of dimension (ne+2). This change in the dimension

of DBM does not affect output of Algorithm 2.3. DBM R is tested for emptiness and if not

empty is made canonical by using Algorithm 2.1. DBM R of dimension (ne + 2) is passed
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Algorithm 3.2 Algorithm for calculating T ′
min,low(δ).

1: procedure TMIN (G′
TA,x, δ)

2: Input: G′
TA,x = (X,Σ, C, Inv, T, x0) A timed automaton;

3: Input: δ A positive integer.
4: Output: T ′

min,low.
5: for all x ∈ X do
6: ql,x := (x, cl,x);
7: Tval[0, i] := t′min(ql,x, G

′
TA,x, δ); ▷ Calls Algorithm 3.1.

8: end for
9: T ′

min,low(δ) := min(Tval);
10: return T ′

min,low(δ).
11: end procedure

to Algorithm 2.1 which does not affect the output of the algorithm. In line 18, according to

the guard gj , DBM R is updated by setting the (0, j)th entry to min(R(0, j),−lσj ). DBM

R is tested for emptiness; if not empty, then G′
TA,x enters the mode xsj and the resulting

clock zone is made canonical and is denoted by Rsj ; otherwise (if R is empty) the clock

zones for other outgoing transitions from x to the successor modes are tested for emptiness.

Following Def. 3.3, the duration of the state trajectory up to the length δ is given in line 24.

Some or all of the entries of DBM Rsj are reset to zero according to the update set uj of

the corresponding transition. The resulting DBM Rsj , the corresponding successor mode xsj

and the depth of the successor mode Dj are pushed to the top of zoneStack. The DBM for

all transitions from x to the successor modes are formed and tested for emptiness. The search

continues by popping the last successor zone from zoneStack and repeating the same process

until zoneStack is empty.

(4) When the depth of the successor modes is equal to δ, the total duration of the state trajectory

is compared with the duration of the previous state trajectory and the minimum of the two is

stored. In this way, t′min(ql,x, δ) is calculated. Finally, the algorithm terminates when all state

trajectories of length δ are explored from the ql,x and provides t′min(ql,x, δ).

Algorithm 3.1 uses the framework of the modifided BFS algorithm because during the exploration

a mode can be visited more than once. Also, the algorithm will terminate as soon as all of the

trajectories in S(ql, δ) are explored.
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Algorithm 3.2 calculates T ′
min,low(δ) by applying Algorithm 3.1 to every mode of the TA. Fol-

lowing Def. 3.7, Algorithm 3.2 is easy to understand and calculates t′min(ql,x, δ) from each mode

x of G′
TA,x. The algorithm terminates when t′min(ql,x, δ) is calculated for every mode of G′

TA,x

(reachable in G) and returns T ′
min,low(δ), for the given δ ∈ Z+.

As previously discussed, a full blown reachability analysis over the timed system requires time

complexity exponential in the number of events. We shall see in the next section that polynomial

time complexity is required by the Algorithm 3.2 to calculate T ′
min,low(δ).

Example 3.4 Continued

Example 3.4 demonstrates the calculation of minimum execution duration for just one event

sequence. We shall continue the same example with δ = 3 for calculating T ′
min,low(δ) for GTA

shown in Fig. 3.6. Initially, Algorithm 3.2 calls Algorithm 3.1 for calculating t′min((x0, cl,x0), 3).

Then, Algorithm 3.1 unfolds all the event sequences of length 3 of GTA shown in Fig. 3.12. In

addition, Algorithm 3.1 performs the calculation of determining minimum execution duration of

all trajectories in Fig. 3.12 similar to the calculation demonstrated in Example 3.4 resulting in

t′min((x0, cl,x0), 3) = 2. Algorithm 3.2 repeats the process of calculating t′min(ql,x, 3) (by re-

peatedly calling Algorithm 3.1) for remaining modes of GTA resulting in:

• t′min((x1, cl), 3) = 4,

• t′min((x2, cl), 3) = 4,

• t′min((x3, cl), 3) = 4.

• t′min((x4, cl), 3) = 4.

Therefore, Algorithm 3.2 returns T ′
min,low(3) = 2 for GTA (Fig. 3.6).

3.6 Time Complexity

Computational complexity is the measure of the amount of computing resources such as time

and space required during the run-time of an algorithm on large inputs [55]. In this thesis, only time
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complexity is calculated. The time complexity is an aspect of the computational complexity which

is the measure of the amount of computer time taken to run an algorithm on large inputs. To obtain

the computational complexity of an algorithm, the asymtotic “big-O" notation is used. The “big-O"

notation describes the worst case run-time of an algorithm. We will use the concept of floating-

point operation (flop) for calculating O(·) [56]. A flop is the amount computer time required to

execute a statement. The flop includes the operations such as one addition, one subtraction, one

multiplication, one division and some subscript manipulation. A multiplication or division when

coupled with addition or subtraction is one flop. All DBM algorithms as discussed in Chapter

2 involve matrix manipulations. Therefore, to determine the time complexity of an algorithm, it

is necessary to determine the total flop count required in the matrix manipulations. Moreover,

during the asymptotic analysis for large inputs, we only consider the higher order term and we drop

the coefficient of this term and ignore the other lower order term because the higher order term

dominants other lower order terms.

The input to Algorithm 2.1 is a (ne + 1) × (ne + 1) square DBM which consists of three

loops which runs from 0 to ne to carry out the matrix manipulation such as the min operation that

calculates the minimum between two entries of a DBM. In the algorithm the loops m, i and j run

from 0 to ne and therefore it takes O((ne + 1)3) flops [4]. The highest order of the polynomial is

significant and therefore, the worst-case flops for the algorithm is given below

O(n3
e). (18)

Algorithm 2.2 for resetting DBM, consists of the input as (ne +1)× (ne +1) square DBM and the

index set Iu with ne elements. It is possible that there exists a transition in a TA, such that on taking

the transition all the clocks are reset to zero. Therefore the first loop i runs from 1 to ne. The second

loop j also runs from 1 to ne as well and therefore, the worst-case flop count for this algorithm is

O(n2
e). (19)

Algorithm 2.3 for determining the time elapse in the modes has a (ne +1)× (ne +1) square DBM

and the invariant condition Inv for a mode. To transform the DBM that represents the time elapse
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according to the invariants, the loop i runs from 0 to ne. Consequently, in the worst-case the total

flops required are

O(ne). (20)

Note that when Algorithm 3.1 calls Algorithm 2.1, Algorithm 2.2 and Algorithm 2.3, the DBM

passed through these algorithms has a dimension of (ne + 2). However, changes in the dimension

will not change the time complexity of Algorithm 2.1, Algorithm 2.2 and Algorithm 2.3.

Before moving on to the time complexity of Algorithm 3.1 and Algorithm 3.2, let us first discuss

the time complexity of the BFS algorithm. Consider a graph with |V | as the number of vertices and

|E| as the number of edges between the vertices. Then the time complexity of the BFS algorithm to

traverse the graph is O(|V |+ |E|) [57].

Consider the TA G′
TA,x = (X,Σ, C, Inv, T, x0). Let us define some notations:

• nX = |X| is the total number of modes of GTA;

• ne = |Σ| = |C| the number of events of GTA;

• |Tout| is the total number of outgoing transitions from a mode x ∈ X .

Algorithm 3.1 consists of two loops. The first loop is the while loop which is the outer loop and

the second loop is for loop which is the inner loop. The for loop terminates when all the successor

modes from the current mode x are explored. Within the for loop the push and the pop operation

on the zones in the stack data structure (in lines 11 and 27 of Algorithm 3.1 respectively) requires

O(1) flop each. In the worst case, if all the outgoing transitions to the successor modes from the

current mode x within the for loop are possible then pushing the zones of the successor modes of x

in the zoneStack requires |Tout| · O(1) flops. It is to be noted that |Tout| is not the same for every

x ∈ X . The image operator in line 12 of Algorithm 3.1 requires O(T ) flops. Suppose R is the clock

zone for the current mode x, then O(ne) flops is time required to update R using Algorithm 2.3

(ClockInvariant function). Next, the updated R requires O(n3
e) flops for its canonicalization. In

Algorithm 3.1, canonicalization operation is used again at line 21. This canonicalization operation

is repeated for Tout times from x in order to check the possibility of all the outgoing transitions to
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the successor modes, thus in worst case situation requiring |Tout| · O(e3) flops. If all the outgoing

transitions to the successor modes from x are possible, then resetting (ResetClock function at line

26 in Algorithm 3.1) of their corresponding DBMs requires |Tout| · O(e2) flops. Therefore, in the

worst case, the time complexity required by one mode of the TA is

O(1) +O(T ) +O(ne) +O(n3
e) + |Tout| ·O(n3

e) + |Tout| ·O(n2
e) + |Tout| ·O(1). (21)

The outer while loop terminates when the stack data structure is empty. Algorithm 3.1 traverses

through all the trajectories of length δ from the current mode x resulting in nδ+1
e −1
ne−1 modes. There-

fore, in the worst case, the time complexity for Algorithm 3.1 is given as (equation 21 is simplified

by dropping the asymptotic O notation)

Time complexity =

(
nδ+1
e − 1

ne − 1

)
· [(1) + (T ) + (ne) + (n3

e) + |Tout| · (n3
e) + |Tout| · (n2

e)

+ |Tout|],
(22)

=
1

ne − 1
(nδ+1

e [(1) + (T ) + (ne) + (n3
e) + |Tout| · (n3

e) + |Tout| · (n2
e)

+ |Tout|]− [(1) + (T ) + (ne) + (n3
e) + |Tout| · (n3

e) + |Tout| · (n2
e)

+ |Tout|]),

(23)

=
1

ne − 1
([(nδ+1

e ) + (T ) · (nδ+1
e ) + (nδ+2

e ) + (nδ+4
e ) + |Tout| · (nδ+4

e )

+ |Tout| · (nδ+3
e ) + |Tout| · (nδ+1

e )]− [(1) + (T ) + (ne) + (n3
e)

+ |Tout| · (n3
e) + |Tout| · (n2

e) + |Tout|]),

(24)

Substituting |Tout| = ne

=
1

ne − 1
([(nδ+1

e ) + (T ) · (nδ+1
e ) + (nδ+2

e ) + (nδ+4
e ) + (nδ+5

e ) + (nδ+4
e )

+ (nδ+2
e )]− [(1) + T + (ne) + (n3

e) + (n4
e) + (n3

e) + (ne)]).

(25)
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Substituting T = (nX) · (ne)

=
1

ne − 1
([(nδ+1

e ) + (nX) · (ne) · (nδ+1
e ) + (nδ+2

e ) + (nδ+4
e ) + (nδ+5

e )

+ (nδ+4
e ) + (nδ+2

e )]− [(1) + (nX) · (ne) + (ne) + (n3
e) + (n4

e) + (n3
e)

+ (ne)]).

(26)

Algorithm 3.2 calls Algorithm 3.1 for each mode of the TA. Therefore, equation (25) is multiplied

with (nX) and we get the following time complexity for Algorithm 3.2

Time Complexity =
(nX)

ne − 1
([(nδ+1

e ) + (nX) · (nδ+2
e ) + (nδ+2

e ) + (nδ+4
e ) + (nδ+5

e ) + (nδ+4
e )

+ (nδ+2
e )]− [(1) + (nX) · (ne) + (ne) + (n3

e) + (n4
e) + (n3

e) + (ne)]).

(27)

=
1

ne − 1
([(nX) · (nδ+1

e ) + (n2
X) · (nδ+2

e ) + (nX) · (nδ+2
e ) + (nX) · (nδ+4

e )

+ (nX) · (nδ+5
e ) + (nX) · (nδ+4

e ) + (nX) · (nδ+2
e )]− [(nX) + (n2

X) · (ne)

+ (nX) · (ne) + (nX) · (n3
e) + (nX) · (n4

e) + (nX) · (n3
e) + (nX) · (ne)]),

(28)

=
1

ne − 1
([(nX) · (nδ+1

e ) + (n2
X) · (nδ+2

e ) + 2 · (nX) · (nδ+2
e )

+ 2 · (nX) · (nδ+4
e ) + (nX) · (nδ+5

e )]− [(nX) + (n2
X) · (ne)

+ 2 · (nX) · (ne) + 2 · (nX) · (n3
e) + (nX) · (n4

e)]).

(29)

All the lower order terms and the coefficients of the higher order term are disregarded in the equation

(28) and we get the following equation in terms of (nX) and (ne) as

Time Complexity = O
(
(nX) · (nδ+5

e )
)
. (30)

Equation (29) is the time complexity for Algorithm 3.2. It can be observed that Algorithm 3.2 for
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determining T ′
min,low(δ) requires time complexity which is polynomial in the number of modes.

However, an algorithm for determining Tmin(δ) using clock regions would require much higher

(double exponential) time complexity, because the number of clock region are exponential in the

number of clocks (refer to Example 3.1).

3.7 Summary

In this chapter we presented the problem formulation and we discussed about exponential com-

putational complexity required in determining the minimum execution duration of event sequences

using clock regions. Then, we presented a transformation procedure to augment an untimed au-

tomaton to TA in order to calculate Tmin(δ). Then we discussed about specific adjustments that

should be made to the clock variables of TA in order to calculate Tmin(δ). This adjustment reduces

the computational complexity at the expense of lower bound for Tmin(δ). We developed an algo-

rithm using DBMs to calculate a lower bound for Tmin(δ) by adjusting the clock variables in DBM.

Finally, we provided the time complexity for the aforementioned algorithm. In the next section

we shall review in detail the hardware, modeling and designing a conventional supervisor for the

system of the solar tracker setup used in our case study.
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Chapter 4

Experimental Setup

Later in this thesis we will use the algorithm proposed in Chapter 3 to design and implement

LLP with Buffering for the supervisory control of solar tracker system.

In this chapter we will discuss the modelling of the solar tracker system. In Section 4.1 we

will discuss briefly the schematic diagram and the design requirements of the solar tracker system.

Section 4.2 provides a model of the solar tracker system as an untimed DES along with the synthesis

of a conventional supervisor according to the specifications. In Chapter 5 we will discuss control

using LLP with Buffering.

4.1 Dual Axis Solar Tracker System

The system chosen is a two degree-of-freedom solar tracker system shown in Fig. 4.1. The

system was developed in [6] to implement conventional supervisory control [58].

4.1.1 Schematic Diagram

The schematic diagram of the solar tracker system is depicted in the Fig. 4.2. The complete

system consists of two main subsystems:

(1) Remote station (Solar tracker system),

(2) Ground station (Computer).
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Figure 4.1: Two degree-of-freedom solar tracker system.

Remote Station

The remote station is the dual axis solar tracker system which can be thought of as a subsystem of

a satellite (e.g. a cubesat) with the responsibility of providing electrical energy. The solar tracker

system is equipped with a photovoltaic (PV) panel, two servo motors, a microcontroller, a battery,

and a communication module. The PV panel (PT15-300) is mounted on a pan-tilt assembly and is

maneuvered by two position controlled servo motors. The PV panel captures the solar energy and

converts it into electrical energy. The power provided by the PV panel is regulated by a maximum

power point tracker device (MPPT) to an appropriate operating voltage and then distributed to the

components of the system. Excess power that is produced by the PV panel is stored in the on-board
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Figure 4.2: Schematic diagram of solar tracker system [5].

Table 4.1: Legend for schematic diagram of solar tracker system.

Legend
Red line PWM signal

Green line I2C serial
Black line DC power
Yellow line Analog signal
Blue line UART serial voltage

Blue dotted line Wireless RF communication
Black dotted line Voltage measurement

battery of the system. The on-board battery used is a single cell 3.7 V LiPo battery with a capacity

of 2500 mAH supply. When insufficient power is generated by the PV panel, the on-board battery

is used to power the system components. We initially assume that the battery is fully charged.1

The two position controlled servo motors used are azimuth (HS-645MG servo motor) and elevation
1This adjustment is made to simplify the tests on the system. In a practical setting this can be adjusted such that the

system can start from any initial charge.

84



(HS-805BB servo motor) servo motors providing two degrees of freedom (2-DOF) for moving the

PV panel. Both the servo motors are capable of moving in clockwise (CW) and counterclockwise

(CCW) direction with an operating range of 180◦. Fig. 4.3 illustrates the coordinate system for the

solar tracker system. Azimuth is measure along the X axis and elevation is measured along the

Y axis of the transverse plane of the PV panel. The rotation of the azimuth motor in the CCW

direction around the positive X axis corresponds to the PV panel turning left and the rotation of

the azimuth motor in the CW direction around negative X axis corresponds to the PV panel turning

right. Similarly, the rotation of the elevation motor in the CCW direction around the positive Y axis

corresponds to the PV panel moving in upwards and the rotation of the elevation motor in the CW

direction around the negative Y axis corresponds to the PV panel moving in downwards.

The elevation angle θEL is measured with respect to horizon. The elevation motor is mechanically

restricted, resulting in a range of −45◦ ≤ θEL ≤ 45◦. Initially, θEL is set to 45◦ (fully CCW). The

azimuth motor provides a range of 90◦ to either left or right, resulting in a total 180◦ range. The

initial angle for azimuth is chosen to θAZ = 90◦. Thus the range of θAZ will be 0◦ ≤ θAZ ≤ 180◦.

Both motors are controlled by a microcontroller sending pulse width modulation (PWM) control

signals. The servomotors are capable of rotating at a very high speed and could induce damage

to the system. Therefore, for the safe operation of the system, the servomotors are limited to a 2◦

rotation for a single step rotation followed by a 2 seconds wait time after every single step rotation.

There are four sensors employed for monitoring the state of system. A voltage sensor measures the

voltage generated by the PV panel (which depends on to the illumination level of the PV panel).

There are two current sensors employed to monitor the current consumption by the servomotors

after every movement command from the microcontroller. If and when a current sensor senses that

a motor is continuously drawing current, then that motor is assumed to have failed. For simplicity,

in this implementation only the elevation motor is assumed to have failure condition. A fuel gauge

monitors the state of charge (SOC) of the battery and reports the SOC in percentage to the micro-

controller. All sensor data is polled at 50 ms intervals (i.e. 50 ms sampling time) and stored in the

local memory of the microcontroller.

The microcontroller used in the solar tracker system is EFM32TM Leopard Gecko which is a 32-bit
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Figure 4.3: Coordinate system for solar tracker system.

ARM Cortex-M3 processor with 48 MHz, 256 kB flash memory and 32 kB RAM. This micro-

controller is ideal for low energy consumption battery operated applications. The microcontroller

acts as an interface between the remote station and the ground station and is responsible for perform-

ing data acquisition and communication. The micro-controller sends and receives control signals

from the ground station through a serial communication port (wireless transceiver).

Ground Station

The ground station is a computer equipped with a wireless serial communication port for com-

municating with the remote station. The ground station receives the sensor data from the microcon-

troller and performs the supervisory computations and then transmits the appropriate supervisory

commands to the remote station. The computer has Intel(R) Core(TM) i5-2400 processor operating

at 3.10 GHz and 8 GB RAM.

More details about the hardware implementation can be found in [6,58]. The implementation of

the LLP supervisor with Buffering along with software implementation can be found in [3]. More

details about the optimized code for the computations of LLP supervisor with Buffering imple-

mented in the computer can be found in [5].
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4.1.2 System Design Requirements

The main objective of the solar tracker system is to discover a sufficiently bright light source

by scanning the surrounding and holding that position in order to charge the on-board battery from

the solar power generated by the PV panel. In this implementation, the operator of ground station

acts a master controller (MC) which issues commands to tracker to perform maneuvers to discover

the bright light source. This set of maneuvers are initiated by the “Full Sweep" command. Upon

reception of this command, the solar tracker system initiates a predetermined path where both the

motors rotate in such a way that allows PV panel to sweep the entire surrounding hemisphere. Note

that the supervisory control algorithm are implemented in computer. Therefore control commands

are calculated in the computer and then transmitted to the solar tracker. During the full sweep, the

solar tracker system continuously monitors its voltage sensor to check the illumination levels of

the PV panel. The solar tracker system ceases its motor movements when a bright light source is

detected and indicates to the MC that the sweep was successful; otherwise, the motors continues to

rotate until both the motors reache their respective maximum positions. If no bright light source is

detected, then the solar tracker system indicates to the MC that the sweep was a failure. Moreover,

during the maneuver if there is an obstruction preventing the elevation motor from moving further

(i.e. failure), then the solar tracker system informs the MC that there is a failure in the elevation

motor. The responses provided by the solar tracker system to the MC as described above are:

• Bright Detected

• Sweep Failure

• Elevation Motor Failure.

The system has two other safety requirements that will be later discussed in Section 4.2.3.

4.2 Untimed DES Model

The solar tracker system described in the previous section is modelled as a discrete event system

(using finite automatons). Initially, all the components of the solar tracker systems along with their

interactions are modelled to form the plant. Next, the specifications for the solar tracker plant are
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formulated which specify the set of legal behaviours that the plant must adhere to in order to prevent

any unwanted behaviour. Finally, the set of controllable and uncontrollable events are defined for

the plant and the conventional supervisor is computed. The conventional supervisor is used later in

Chapter 5 for comparison with LLP supervisor.

4.2.1 Components

The block diagram of the solar tracker system containing various components of the system is

shown in Fig. 4.4.

Battery

The battery automaton illustrated in the Fig. 4.5 represents the battery SOC (measured by the

fuel gauge sensor interfaced with the microcontroller). The battery SOC changes when both the

servomotors actuate resulting in a drop in the battery voltage. To incorporate this, the battery SOC

model consists of three different states: Critical, Safe and Full. The state transition occurs when the

Figure 4.4: Block diagram for the solar tracker system.
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Figure 4.5: Battery SOC automaton [5].

Table 4.2: States of the battery SOC automaton.

State Number State
1 Full
2 Safe
3 Critical

Table 4.3: Event list of battery SOC with thresholds over events [5].

Event Battery SOC Threshold (%) Controllability
Full_to_Safe 90 Uncontrollable
Safe_to_Full 95 Uncontrollable
Safe_to_Crit 50 Uncontrollable
Crit_to_Safe 55 Uncontrollable

battery SOC increases while charging or decreases due to motor movements. Table 4.2 describes

the state number associated with the SOC of the battery.

In the battery SOC automaton, there are four uncontrollable events describing the crossing of spe-

cific thresholds defined in Table 4.3. The reason for these events to be uncontrollable is because the

charging and discharging of the battery cannot be controlled. When either motor or both move, a

sudden high amount of current is drawn from the battery and any noise in the sensor readings can

lead to unwanted triggering of the events when the readings is around threshold. Therefore, a 5%

hysteresis is included for each transition to prevent event triggering due to the noise. For example,

Safe_to_Full occurs at 95% threshold whereas Full_to_Safe occurs at 90%.

Photovoltaic (PV) Panel

The automaton for the PV panel component is illustrated in Fig. 4.6. The principle objective of

the solar tracker is to find a bright light source during one of its maneuvers. The PV panel generates

an output voltage depending upon the intensity and the incidence angle of the light coming from
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Figure 4.6: PV panel automaton [5].

Table 4.4: States of the PV panel automaton.

State Number State
1 Dark
2 Dim
3 Bright

Table 4.5: Event list of PV panel with thresholds voltages over events [5].

Event Threshold Voltage (V) Controllability
Dark_to_Dim 6 Uncontrollable
Dim_to_Dark 5 Uncontrollable

Dim_to_Bright 16 Uncontrollable
Bright_to_Dim 15 Uncontrollable

light source (which itself depends on the orientation of the PV panel). The maximum output voltage

is generated by the PV panel when the light source is perpendicular to the surface of the PV panel.

Table 4.4 shows three states of the PV panel automaton which are Dark, Dim and Bright. These

states corresponds to the illumination level of the PV panel measured by the voltage sensor by

measuring the output voltage generated by the PV panel.

There are total four uncontrollable events which are triggered when the output voltage measured

by the voltage sensor crosses a particular threshold voltage. The output voltage of the PV panel can

be effected by the noise in the measured voltage and as a result, undesired triggering of events can

occur when the output voltage fluctuates around the threshold value. Consequently, the thresholds

are separated by a hysteresis of 1 V to avert this undesired situation. Table 4.5 provides the events

along with the threshold voltage for triggering of them.
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Azimuth Motor

The azimuth motor automaton contains of three states and four events as illustrated in Fig. 4.7.

The states of the azimuth motor automaton are given in Table 4.6. The initial state is the Idle state

which corresponds to the azimuth motor being idle (i.e. not moving). The microcontroller can

command to move the motor in either CW or CCW direction when the motor is idle. To prevent any

damage to the PV panel, the movement of the motor is limited to 2◦ for each movement command.

Since these commands are issued by the supervisor, they are considered to be controllable events

(depicted in green). During the movement of the motor, the motor draws current from the battery

and as soon as the motor movement is complete, the current decreases below 500 mA. When the

current decreases below 500 mA, AZ_CW_OK or AZ_CCW_OK event occurs matching the motor

movement command issued by the microcontroller. Then the motor returns to the idle state. These

“OK" events are uncontrollable events since they depend on the sensor readings. For simplicity it is

assumed that the azimuth motor is fault free. All the events, along with their current readings, are

shown in Table 4.7.

Figure 4.7: Azimuth motor automaton [5].

Table 4.6: States of the azimuth motor automaton.

State Number State
1 Idle
2 Azimuth Turning CW
3 Azimuth Turning CCW
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Table 4.7: Event list of azimuth motor automaton with current readings (mA) [5].

Event Measured Current (mA) Controllability
AZ_CW_MOVE N/A Controllable

AZ_CCW_MOVE N/A Controllable
AZ_CW_OK ≤ 500 Uncontrollable

AZ_CCW_OK ≤ 500 Uncontrollable

Elevation Motor

The elevation motor automaton has a similar description as the azimuth motor automaton with

an additional “Elevation Motor Failed" state. The elevation motor enters the failed state whenever

there is a obstruction in the motion of motor shaft or due to some electrical problem in the motor.

The states of the elevation motor are given in Table 4.8.

As illustrated in Fig. 4.8, the elevation motor can either move in CW (CCW) direction through

Figure 4.8: Elevation motor automaton [5].

Table 4.8: States of the elevation motor automaton.

State Number State
1 Idle
2 Elevation Turning CW
3 Elevation Turning CCW
4 Elevation Motor Failed
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Table 4.9: Event list of elevation motor with current readings (mA) [5].

Event Measured Current (mA) Controllability
EL_CW_MOVE N/A Controllable

EL_CCW_MOVE N/A Controllable
EL_CW_OK ≤ 500 Uncontrollable

EL_FAIL_MOVE ≥ 500 Uncontrollable
EL_CCW_OK ≤ 500 Uncontrollable

the controllable event EL_CW_MOVE (EL_CCW_MOVE) followed by the uncontrollable event

EL_CCW_OK (EL_CCW_OK). After any of the motor motion events, if the average current over

a 2 second time frame still remains above 500mA, then EL_FAIL_MOVE event is triggered. The

elevation motor has entered the Elevation Motor Failed state. At the Elevation Motor Failed state,

the supervisor can issue a move command again for the elevation motor to move in CW or CCW

direction which may result in a successful motor movement. Therefore, the elevation motor failed

state could be temporary. The above-mentioned events are listed in Table 4.9.

Servomotor Delay Procedure

The safety measure of two-second delay is introduced after every motor movement is completed

to ensure that there is no damage to the PV panel and to ensure smooth operation of the system. The

delay is implemented in the control software and is modelled here as an automaton shown in Fig. 4.9

with the states for this automaton given in Table 4.10. After an azimuth or elevation motor rotation in

either CW or CCW direction is completed, a Wait_2_Sec event is triggered (by the microcontroller

software) which ensures that there is a two-second delay followed by a respective OK event for the

motor to guarantee that the motor motion is completed and the motors are in the Motor Idle state.

Table 4.10: States of the servomotor delay automaton.

State Number State
1 Motor Idle
2 In Waiting
3 Checking Current
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Figure 4.9: Servomotor delay automaton [5].

Table 4.11: Event list of servomotor delay automaton [5].

Event Controllability
AZ_CW_MOVE Controllable

AZ_CCW_MOVE Controllable
EL_CW_MOVE Controllable

EL_CCW_MOVE Controllable
Wait_2_Sec Uncontrollable

AZ_CW_OK Uncontrollable
AZ_CCW_OK Uncontrollable
EL_CW_OK Uncontrollable

EL_CCW_OK Uncontrollable

Azimuth Position

The azimuth motor operates over a range of 180◦ with the initial position of the motor at 90◦

(center). The current position of the azimuth motor shaft is tracked and stored within the microcon-

troller’s memory. When at the center position, the motor can move in the CW direction (respectively

CCW direction) which will increment (respectively decrement) the position by 2◦ after each motor

motion is completed. There is a software implemented in microcontroller that tracks the azimuth

position range. The DES model shown in Fig. 4.10 models the operation of this software. Ta-

ble 4.12 describes the states of the automaton. The position of the azimuth motor can be polled by

the controllable event AZ_POLL_RANGE, which returns the current position (θAZ) of the motor.

The uncontrollable events AZ_RANGE_OK or AZ_MAX_CW or AZ_MAX_CCW are triggered
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Figure 4.10: Azimuth position range automaton [5].

Table 4.12: States of the azimuth angle automaton.

State Number State
1 Azimuth in Range
2 Azimuth Polling Range
3 Azimuth Maximum CW
4 Azimuth Maximum CCW

Table 4.13: Event list of azimuth angle automaton in degrees [5].

Event Angle Range (◦) Controllability
AZ_POLL_RANGE N/A Controllable

AZ_RANGE_OK 0◦ < θAZ < 180◦ Uncontrollable
AZ_MAX_CW θAZ = 0◦ Uncontrollable

AZ_MAX_CCW θAZ = 180◦ Uncontrollable

depending on the value of θAZ . The four events along with their controllability and range are pro-

vided in Table. 4.13.

Elevation Position

The elevation motor is limited to operate over a range of 90◦, with the initial position at 45◦

(maximum CCW). The elevation position automaton is similar to the azimuth position automaton

and illustrated in Fig. 4.11. The states for this automaton are given in Table 4.14 and the event list is

provided in Table 4.15. Similar to the azimuth position automaton, the elevation position automaton

models a software code that tracks the elevation position.
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Figure 4.11: Elevation position range automaton [5].

Table 4.14: States of the elevation angle automaton.

State Number State
1 Elevation Maximum CCW
2 Elevation Polling Range
3 Elevation Maximum CW
4 Elevation in Range

Table 4.15: Event list of elevation angle automaton in degrees [5].

Event Angle Range (◦) Controllability
EL_POLL_RANGE N/A Controllable

EL_RANGE_OK −45◦ < θEL < 45◦ Uncontrollable
EL_MAX_CW θEL = −45◦ Uncontrollable

EL_MAX_CCW θEL = 45◦ Uncontrollable

Master Controller

The master controller models the human operator at the ground station that can issue commands

and also receive the feedback from the system. We assume that the human operator at the ground

station issues Full_Sweep commands upon which the supervisor is supposed to send appropriate

command sequences. Depending upon the result of the Full Sweep maneuver, the supervisor can

report back by issuing EL_MOTOR_FAIL or Bright_Detected or Sweep_Failure event. Therefore,

from the supervisor’s point of view, the Full_Sweep command is an uncontrollable event and the

rest of commands are controllable. The master controller automaton shown in Fig. 4.12 is used to

include the operator as part of the model of the plant from the supervisor’s perspective. The list of
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Figure 4.12: Master controller automaton [5].

Table 4.16: Event list of master controller automaton [5].

Event Controllability
Full_Sweep Uncontrollable

EL_MOTOR_FAIL Controllable
Bright_Detected Controllable
Sweep_Failure Controllable

these events, along with their controllability status are given in Table 4.16.

4.2.2 Component Interactions

Modelling the interactions between the components of the plant is extremely important since

the interaction automatons capture the physical attributes as well as the interactions of the physical

components of the plant. For instance, in the solar tracker system, the battery SOC will not increase

when the azimuth or elevation motor are in motion. As a result, this limitation of the system should

be represented in the interaction model in order to obtain an accurate model of the plant. It is imper-

ative to model these interaction automatons accurately, as removal of any possible state transition

will cause an inaccurate plant automaton and consequently, the plant automaton will not match the

system. Usually, the interactions describe restrictions on the events of one automaton as a function

of the states of other automatons. The DES model is constructed by adding appropriate self-loops

of the restricted events to the states of other automatons. The interaction automatons for the above

components of the solar tracker system are described in this section.
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Motor Motion as a Function of Battery SOC

In the solar tracker system for the successful movement of the servomotors, it is necessary

that the battery have a sufficient charge, i.e. the battery SOC should be at least above 50%. The

events related to the successful motor movement are permitted in only Full and Safe states of the

BATT-SOC automaton as shown in Fig. 4.13. This interaction blocks the CW and CCW successful

movement events of the azimuth and the elevation motor in the Critical state when the battery SOC

is below 50%.

Figure 4.13: Azimuth and elevation motion as a function of battery SOC.

Battery SOC as a Function of Motor Motion

In the solar tracker system, whenever the motors are in motion, they draw a significant amount

of current from the battery. According to the specifications of the PV panel, the maximum current

generated by the PV panel is less than the no load current operating currents of the azimuth and the

elevation motor. Thus, it is obvious that whenever the motors are moving, only the events related

to the decrease in the battery SOC are possible. When both motors are in the idle state or when

the azimuth motor is idle and the elevation motor is failed, all battery SOC events can occur; hence

the battery can either charge or discharge. To represent the battery SOC events as a function of

motor motion automaton, the synchronous product of the AZIMUTH automaton (Fig. 4.7) and the

ELEVATION automaton (Fig. 4.8) is formed with the appropriate battery related events added as

self-loops to the resulting automaton (Fig. 4.14).
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Figure 4.14: Battery SOC events as a function of azimuth and elevation motion [6].

Battery SOC as a Function of PV Panel Illumination

The charging of the battery depends upon the current generated by the PV panel. According to

the specifications of the PV panel, the PV panel can generate enough current to charge the battery

when it is in Dim or Bright state; thus the events related to the charging of the battery are permitted

in these states and in the Dark state. Moreover, motor movements of both motors are possible

when the PV panel illumination level is in any of the three states. Motor movement can result in the

discharging of the battery. Therefore all the events related to discharging of the battery are permitted

in the three states of the PV panel automaton. The automaton modeling battery SOC events as a

function of PV Panel Illumination is shown in Fig. 4.15.

The complete model of the solar tracker system (Plant) is formed by performing the syn-

chronous product of the component and the interaction automatons.

Plant = sync(BATT-SOC, PV-ILLUMINATION, AZIMUTH, ELEVATION, DELAY,

AZIMUTH-RANGE, ELEVATION-RANGE, MASTER,

AZIMUTH_ELEVATION_BATT-SOC,

BATT-SOC_AZIMTH_ELEVATION, BATT-SOC_PV-ILLUMINATION).
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Figure 4.15: Battery as a function of PV panel illumination automaton [5].

Plant contains 1584 states and 16800 transitions. In this thesis, only the safety property of the

solar tracker system is taken into the consideration. The non-blocking property of the solar tracker

system is not taken into consideration. Hence, all the states of Plant are considered marked.

4.2.3 Specifications

The specifications provide a formal description of the design requirements. In this thesis, only

the safety properties of the solar tracker system are taken into the consideration.

Servomotor Motion Range Specification

The servomotor motion range specification is defined to prevent any damage occurring to the

servomotors when they are in their maximum positions. The specification for azimuth motor is

given in Fig. 4.16. The specification for the elevation motor is similar to the specification for the

azimuth motor and is not shown for brevity. In this specification, whenever the azimuth motor

is in maximum CW (resp. CCW) state, further movement in the CW (resp. CCW) direction is

prohibited. For instance, when the azimuth motor is in the Azimuth Maximum CW state, then

only the command to rotate the azimuth motor in the CCW direction should be permitted which is

depicted by the AZ_CCW_Move event added as a self-loop in the Azimuth Maximum CW state in

Fig. 4.16.

100



Figure 4.16: Azimuth motor motion range specification [5].

Servomotor Polling Range Specification

The servomotor polling range specification provides restriction on the polling of motor angles.

The polling of the servomotors’ current position should be done after the events for successful motor

motion such as XX_CW_OK or XX_CCW_OK (XX = AZ or EL) transpires which causes the state

transition in the servo motor automatons to the Idle state (state 1 in Fig. 4.7 and Fig. 4.8). The

azimuth motor polling range specification is shown in Fig. 4.17. Polling should not be done while a

move is attempted. A similar specification is used for the elevation motor and is shown in Fig. 4.18.

Figure 4.17: Azimuth motor polling range specification [5].
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Figure 4.18: Elevation motor polling range specification.

Servomotor Full Sweep Specification

The previously defined specifications ensure the safety of the solar tracker system. In addition

to these specifications, it is required to have a specification that describes the sequence of steps

(maneuvers) the solar tracker system needs to perform to detect a bright light source. The main

design requirement of the solar tracker system is to sweep its front hemisphere to search for a

bright light source with sufficient intensity. This specification is referred to as “Full Sweep" and is

explained in details in [6].

The operator issues the Full_Sweep command to initiate Full sweep maneuver. Initially, the azimuth

motor and the elevation motor are at 90◦ and 45◦ respectively. When the solar tracker system

receives the Full_Sweep command, the following maneuvers are performed:

• The azimuth motor rotates in the CCW direction from its current position until it reaches

the maximum CCW position and then the elevation motor rotates in CCW direction from its

current position until it reaches the maximum CCW position.

• The azimuth motor rotates in the CW direction from the maximum CCW position until it

reaches the maximum CW position.
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• The elevation motor rotates from the maximum CCW position in the CW direction until it

reaches the maximum CW position.

• The azimuth motor rotates in the CCW direction from the maximum CW position until it

reaches he maximum CCW position.

During the above sequence of maneuvers, if a bright light source is detected, then a Bright_Detected

event is sent to the MC, otherwise, if no bright light source is detected at the end of the maneuver,

then Sweep_Failure event is generated. Moreover, during the maneuver if there is a failure in the

elevation motor, then EL_MOTOR_FAIL event is sent to the ground station, and thus aborting future

maneuvers. To prevent the battery from providing insufficient voltage during the motor movements,

only one motor is allowed to move at a time. This specification automaton has 58 states and 209

transitions and can be found in [6].

Finally, the complete specification automaton for the solar tracker plant is obtained by adding self-

loops of the irrelevant events to each of the specification automatons described above and taking

the product of the resulting self-looped automatons. The complete specification (K) automaton

contains of 416 states and 4216 transitions.

4.2.4 Supervisor

The Discrete Event Control Kit (DECK) [59] developed in MATLAB [60] is used to design the

supervisor using the supervisory control theory (SCT). The solar tracker plant models are repre-

sented in DECK as automaton objects (G = automaton(N,TL,Xm)) with the following proper-

ties

• N : Total number of States,

• TL: State Transition List,

• Xm : List of Marked States.

The procedure for obtaining the supervisor is given below
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Table 4.17: Plant, specification and supervisor automatons [3].

Automaton Number of States Number of
Transitions

Solar Tracker Sytem
(Plant)

1584 16800

Specification (K) 416 4216
Supervisor (S) 2061 9467

Solar Tracker System
Under Supervision

2061 9467

(1) The complete plant for the solar tracker system is formed by using the sync function ([Plant,

States] = sync(G1, . . . , Gn)) which obtains the synchronous product of the component

automatons and the interactions automatons of the solar tracker system.

(2) The complete specification for the solar tracker plant is formed by using the product func-

tion ([K,States] = product(K1, . . . ,Kn)) that performs the product of all the specification

automatons designed for the solar tracker system.

(3) Finally the supervisor is obtained using the supcon function (S = supcon(K,P lant,Σuc))

where G is the plant model, K is the complete specification model and Σuc is the list of

uncontrollable events.

The supcon function generates the supremal controllable sub-language of the intersection of

the marked language of the plant and the marked language of the specification (Lm(Plant) ∩

Lm(K)) with respect to the closed language of the plant (L(Plant)) and the uncontrollable events

Σuc [61]. The supervisor automaton (S) is obtained from the automaton Plant and the specification

automaton K. The supervisor S is the offline conventional supervisor for the solar tracker system.

S contains of 2061 states and 9527 transitions. Table 4.17 summarizes information about the above-

mentioned automatons. All of the states of Plant, K and S are marked since non-blocking property

is not considered in this thesis.
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4.3 Summary

In this chapter we reviewed the hardware of the solar tracker setup used in our case study. We

also discussed modeling the system and designing a conventional supervisor for the system. In the

next chapter, we will apply the algorithm proposed in Chapter 3 to design a supervisor based on

LLP with Buffering.
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Chapter 5

Case Study: A Solar Tracker System

In this chapter, we present the results of running the algorithms mentioned in Chapter 3 on

the timed model of the solar tracker system. The theoretical T ′
min,low(δ) value calculated for solar

tracker system results in a tighter lower bound value which is not suitable for LLP with Buffer-

ing. Therefore, we provide some necessary adjustments for calculating an appropriate value of

T ′
min,low(δ) such that this value can be used for determining the buffering parameters of LLP with

Buffering. Then we explain a practical method for obtaining Tmin,exp(δ) value experimentally for

solar tracker system. Comparisons between theoretical T ′
min,low(δ) and experimental Tmin,exp(δ)

shows that both the values are reasonably close. Finally, on the basis of the adjustments made to

T ′
min,low(δ); the values for buffering parameters of LLP with Buffering are selected.

The rest of this chapter is organised as follows. Section 5.1 reviews the details of the buffering

parameters of LLP with Buffering. The procedure for calculating the experimental Tmin,exp(δ) is

explained in Section 5.2. In Section 5.3, we present the timing information for all the events that

were explained in the Section 4.2 of Chapter 4 of the solar tracker system. Section 5.4 presents

the theoretical T ′
min,low(δ) value calculated using the timed model of the solar tracker system. Sec-

tion 5.5 presents the analysis of computation time for the LLP with Buffering implemented for the

solar tracker system. In Section 5.6 the values for the buffering parameters are selected for the solar

tracker system.
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5.1 LLP with Buffering parameters

In Chapter 4 we explained the modelling and the design specifications for the solar tracker

system. In this chapter we are going to explain the design of LLP with Buffering and discuss about

how the buffering parameters have to be chosen. In this section we review the buffering parameters

used in LLP with Buffering.

The three main parameters for LLP with Buffering are Nmin, δ and ∆, where Nmin is the

minimum depth of the plant that should be expanded for the validity of the LLP supervisor, ∆ is

the number of events to be buffered and δ is the number of events left in the buffer, provided that

δ < ∆. Therefore, the LLP supervisory commands are computed for the look-ahead window Nw

which is given as

Nw = Nmin + δ +∆.

Nmin is calculated based on the expansion of the product of Plant automaton (solar tracker system)

and K automaton (specifications for solar tracker system). From [3], Nmin for the solar tracker plant

is 6. Parameters Ω can be defined as Ω = ∆ + δ and thus Nw = Nmin + Ω. The PD size for the

Plant automaton of the solar tracker system is 12. When Nw = 25 (Nmin = 6 and Ω = 19)

the product of the expanded Plant and the expanded K specification automaton is equivalent to

the product of the complete Plant automaton and K automaton. If for a look-ahead window size,

the expanded model is the same as the complete model, then the window size is referred to as the

saturation point (SP ) for that model. The SP for the product of the plant and specification is given

as

SP = Nmin + 19 = 25.

Hence, using a window size Nw of larger than 25 will neither change the supervisor size nor the

computation time. If the value δ = 0 and ∆ = 0 (Ω = 0) are used, then the look-ahead window

size is Nw = Nmin and regular LLP (no buffering) will be performed since there are no events to

be buffered.
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5.2 Determination of Tmin(δ) Using Experiments

In this section we will explain numerous experimental tests that are performed on the solar

tracker system. Moreover we will explain the procedure to determine Tmin(δ) experimentally based

on the event timing information collected through numerous experimental tests performed on the

solar tracker system.

The micro-controller is used for interfacing the ground station (computer) and the solar tracker

system (more details can be found elsewhere in [3]). The sampling time for the system is set to

50 ms to measure the feedback from the sensors and detect the occurrences of events. All uncon-

trollable and controllable events which are detected in the solar tracker system are transmitted to

the computer; however, to reduce the effect of communication delay, only the controllable events

are transmitted back from the solar tracker system to the computer. In [3], the communication de-

lay is 20 ms. In [5] multi-threaded programming approach is implemented that has one separate

thread created for the LLP supervisory computation and another separate thread created for serial

communication. The main reason to use multi-threading is that the occurrence of the events in the

solar tracker system are sporadic and during the computation of the LLP supervisor if any data is

received by the computer then the control loop will miss this data. The events that are transmitted

or received are in the form of data packets which on reception in the computer is stored in a First In

First Out (FIFO) buffer. Universal Asynchronous Receiver/Transmitter (UART) is used to receive

and transmit the data packets. More details about the implementation of this communication link

can be found in [5].

5.2.1 Tests performed

In order to determine Tmin,exp(δ) experimentally; we perform some experimental tests on the

solar tracker system. However, it is infeasible to perform exhaustive experimental test since there

are many different possibilities of tests that can be performed. Therefore, we select certain specific

sets of tests which are reasonably large and cover the most important cases. First, we provide an

overview of the tests that are performed and later we discuss different values that are selected for the

buffering parameters for each tests in detail. In all the tests explained below, Full Sweep maneuver
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of the solar tracker system is performed and the PV panel is at its initial position (see Section 4.1 in

Chapter 4).

• Full Sweep maneuver tests of the solar tracker system are performed with some of the tests re-

sulting in successful maneuver i.e. light source detected and the rest resulting in unsuccessful

maneuver i.e. light source not detected (where the light source was removed).

• Different positions of the light source with respect to the PV panel are considered for the tests

that resulted in successful Full Sweep maneuver.

• Different initial values of buffering parameters are chosen for both successful and unsuccess-

ful Full Sweep maneuver.

• Initially the battery voltage is maintained at 4.2 V (fully charged) at the start of each Full

Sweep maneuver (resulting in successful and unsuccessful runs with different values of buffer-

ing parameters). Same tests are performed by maintaining the battery voltage between 4.0 V

to 4.2 V at the start of each Full Sweep maneuver.

Now, we describe in details the values selected for LLP buffering parameters during each unsuc-

cessful Full Sweep maneuver due to the absence of light source. Battery voltage is maintained at

4.2 V (fully charged) at the start of the each test runs described below. There are three different sets

of tests that are performed using LLP with Buffering by setting the buffering parameters as follows.

(1) In the first set of tests δ is incremented from 2 till 8, and for each δ, ∆ is set to ∆ = δ + 1 in

order to compute LLP supervisor.

(2) In the second set of tests δ increments from 2 to 9, and for each δ the value of ∆ = 10 is fixed

in order to compute LLP supervisor.

(3) In the third set of tests δ increments from 2 to 8 and for each δ the value of ∆ = SP−Nmin−δ

(SP = 25 and Nmin = 6) in order to compute LLP supervisor.

Next, we describe in details different positions selected for the light source with respect to the PV

panel. In the tests described below the LLP supervisor is computed each time for different buffering
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parameters values: δ takes the values 2, 5 and 9, and for each δ, ∆ is set at 10. The set of tests

performed for each combination of δ and ∆ are as follows.

(1) In the first set of tests; the elevation motor range is at θEL = 45◦ and the position light source

is fixed when the azimuth motor range reaches θAZ = 0◦.

(2) In the second set of tests; the elevation motor range is at θEL = 45◦ and the position of the

light source is fixed when azimuth motor range reaches θAZ = 90◦.

(3) In the third set of tests; the elevation motor range is at θEL = 45◦ and the position of the light

source is fixed when azimuth motor range reaches θAZ = 180◦.

(4) In the fourth set of tests; the elevation motor range is at θEL = −45◦ and the position of the

light source is fixed when the azimuth motor range reaches θAZ = 90◦.

(5) In the fifth set of tests; the elevation motor range is at θEL = 0◦ and the position of the light

source is fixed when the azimuth motor range reaches θAZ = 0◦.

All the above tests runs are repeated again except by maintaining the battery voltage initially be-

tween 4.0V to 4.2V. There are another set of tests which corresponds to the failure of elevation

motor, however, for brevity, these tests are not performed.

5.2.2 Procedure for Calculating Tmin,exp(δ)

In order to calculate Tmin,exp(δ), a function is developed in C language which time stamps the

events received by the computer. The time stamping is performed using CPU clock cycles.

The solar tracker system initiates its Full Sweep maneuver after receiving the Full_Sweep com-

mand from the computer. The events occurring in the solar tracker system are transmitted to the

computer which on the reception are time stamped using the CPU clock cycles. Thus, every event

is associated with its occurrence time. In this way, for the entire Full sweep maneuver, all the

events along with their occurrence time are obtained. To demonstrate the procedure of calculat-

ing Tmin,exp(δ), consider buffering parameters δ = 4, ∆ = 10 and Nmin = 6 resulting in the

look-ahead window Nw = 4+10+6 = 20. Table 5.1 shows first six events that follow after micro-

controller of the solar tracker system has received the Full_Sweep command. Only the first six
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Table 5.1: Example for procedure of calculating Tmin,exp(4).

Table 5.2: Experimental Tmin,exp(δ) for δ = 1, . . . , 9.

δ Tmin,exp(δ) (msec)
1 0
2 0
3 0
4 31
5 46
6 93
7 249
8 343
9 406

events are considered here to explain how Tmin,exp(δ) is calculated. Since δ = 4, we will calculate

the Tmin,exp(4) for this sequence. In Table 5.1 the total duration on the occurrence of four events is

calculated by sliding a window of length four from the first event to the fourth event, then from the

second event to the fifth event and so on which is shown by the arrows on the right side of the table.

The total duration from the first event Full_Sweep till the fourth event AZ_CCW_Move is calcu-

lated by adding the time duration of all intermediate events between these two events which results

in the duration of 189 ms (78 ms + 48 ms + 63 ms). Then from the second event AZ_Poll_Range to

the fifth event, Wait_2sec, the total duration is 2109 ms and so on. This procedure for calculating

the duration of four consecutive events is applied to the entire event sequence that are received in

the computer by sliding the window of length δ = 4. Finally, the minimum duration of four events

is determined.
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For each test runs described in Section 5.2.1, the timed sequences are recorded and the procedure

to determine experimental Tmin,exp(δ) (previously explained) is followed. Table 5.2 provides the

experimental Tmin,exp(δ) for δ = 1 . . . 9. Following Def. 3.6, it can be observed in Table 5.2,

Tmin,exp(1) = 0. From Table 5.2, it can be observed that for Tmin,exp(2) = 0 and Tmin,exp(3) = 0.

This is because information about one or more than one events that occur in the system rapidly can

be transmitted from the solar tracker system to the PC in one information packet.

5.3 Timing Information of the Events

The untimed automaton of the system does not include any timing information of the events. In

Chapter 3 a method is proposed to transform an untimed model of the system to a TA assuming the

timing information of the events is available. Each event is associated with a lower time bound and

a upper time bound. These bounds would usually represent a delay caused due to communication

or computation or physical necessity. It is crucial to accurately determine the timing information so

that the behaviour of the timed model of the system can match the physical system.

The solar tracker system consists of total 30 events. Out of these 30 events, nine events are

controllable and the rest are uncontrollable. The duty of the micro-controller of the solar tracker

system is to scan all the sensors periodically with a sampling time of 50 ms. At every sampling

time, all the events that are detected by the micro-controller are packed in an information packet

and sent to the PC in order to update the state of the component models and the LLP supervisor.

In [3], the communication delay from transmitting the events between the micro-controller and the

PC was found to be 20 ms. In the LLP implementation, the uncontrollable events, which are de-

tected by the micro-controller, are sent to the PC to be validated as uncontrollable event. Therefore,

the time bounds for the uncontrollable events are increased by the communication delay of 20 ms.

The controllable events are sent by the LLP supervisor in the PC to the micro-controller and then

the implementation of these events are reported back to the PC in order to be validated as control-

lable events. Consequently, the time bounds for the controllable events are increased by twice the

communication delay (40 ms). Note that the timing information for all the events is in seconds.
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5.3.1 Battery SOC Related Events

The on-board battery used for the solar tracker system is charged via the power produced by the

PV panel connected to the MPPT module. The charging of the battery through the MPPT module

and the consumption of the battery by the motors are used to determine the lower and the upper

time bounds of the BATT-SOC events (Fig. 4.5 and Table 4.3). The maximum current that the PV

panel can generate under full sun is 200 mA [62] which can be used for charging the battery. Under

no load the current consumption of the azimuth motor is 350 mA according to the datasheet in [63]

and the current consumption of the elevation motor is 700 mA according to datasheet in [64]. The

current generated by the PV panel depends upon the intensity and the incident angle of the light

source. We assume that the intensity of the light source is constant. In addition, the time required

for the Full Sweep maneuver in order to find the light source compared with the actual time to

charge the battery is small. Therefore, we assume that maximum current is generated by the PV

panel for charging the battery which is used to determine the time bounds for the Safe_to_Full and

Crit_to_Safe events. The no-load operating current of the motors for discharging the battery is used

for determining the time bounds for the Full_to_Safe and Safe_to_Crit events.1 In addition, we

assume that the charging and discharge curves of the LiPo battery are linear. The time bounds for

the BATT-SOC events are calculated by using the following formula:

charging/discharging time =
battery capacity

charging/discharging current
. (31)

The charging time for the battery is

charging time =
2500

200

= 12.5 hours

= 45000 sec.

(32)

There are two charging events in BATT-SOC: Safe_to_Full and Crit_to_Safe based on Table 4.3.
1Accurate time bounds for the battery SOC events related to the discharging of the battery can be calculated by using

the value of current drawn by the motors when the load is attached.
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Table 5.3: Battery SOC events time bounds.

Event Lower Time Bound (sec) Upper Time Bound (sec)
Full_to_Safe 642.62 2570.42
Safe_to_Full 2250.02 18000.02
Safe_to_Crit 642.62 10281.62
Crit_to_Safe 2250.02 24750.02

Minimum time for the occurrence of Safe_to_Full event at Safe state is when BATT-SOC enters Safe

from state Full with a SOC 90% and then SOC increases to 95% (resulting in Safe_to_Full), i.e. 5%

increase in the battery SOC from 90% to 95%. Thus, taking 5% of the charging time in equation

(32) (since the charging curve of Lipo battery is assumed to be linear) results in the lower time

bound for the Safe_to_Full event as 2250 sec. Suppose, the BATT-SOC automaton enters the Safe

state with the SOC as 55% as a result of the Crit_to_Safe event. Then the maximum time required

for the Safe_to_Full event to occur is when the battery charges from 55% until 95%. Therefore, by

taking 40% of the charging time in equation (32) results in the upper time bound to be 18000 sec.

Similarly, the time bounds for Crit_to_Safe event are calculated.

The discharging time for the battery when the azimuth motor is operating is calculated as

discharging time =
2500

350

= 7.14 hours

= 25704 sec.

(33)

The discharging time for the battery when the elevation motor is operating is calculated as

discharging time =
2500

700

= 3.57 hours

= 12852 sec.

(34)

Next, we shall calculate the time bounds for the discharging events Full_to_Safe and Safe_to_Crit.

Suppose, automaton BATT-SOC enters the Full state with a SOC of 95% following the occurrence
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of Safe_to_Full event. The minimum time for Full_to_Safe event to occur is when the battery dis-

charges from the 95% to 90% when only the elevation motor is operating (due to the higher current

consumption by the elevation motor) and azimuth motor is idle. Therefore, the lower time bound is

5% of the discharge time from equation (34) resulting in 642.6 sec. Initially, the battery is assumed

to be fully charged with SOC 100%, then the maximum time required for the Full_to_Safe event

to occur is when the battery discharges till 90% when only the azimuth motor is moving while the

elevation motor is idle. This results in 10% of the discharge time from the equation (33). There-

fore, the upper time bound for the Full_to_Safe event is 2570.4 sec. Similarly, the time bounds are

calculated for the Safe_to_Crit event. It is to be noted that during the modeling of the time bounds

for the events related to the discharging and charging of the battery, the power consumed by either

one or both motors are idle and the power consumed by the other components are much smaller as

compared to the discharging or charging power and hence are disregarded. The time bounds for the

BATT-SOC automaton events are given in Table 5.3. In addition, a communication delay of 20 ms

is added to the time bounds of all the events since they are uncontrollable.

5.3.2 PV Panel Related Events

The time bounds for the PV-ILLUMINATION events (Fig. 4.6 and Table 4.5) depend upon the

environmental conditions. Factors such as the orientation of the PV panel with respect to the light

source, relative motion of PV panel, and the speed of the motor play important roles in deciding the

time bounds of the events. The time bounds also depend on the intensity of the light source; if the

light source has a high intensity, then PV panel can generate high voltages even when the panel is

not facing directly the light source. Ideally, the time bounds for the events of PV-ILLUMINATION

must be modeled experimentally during the designing and assembling phase of the system.

The solar tracker system operates within laboratory environment and the ambient lighting of the

laboratory is considered in the estimating time bounds. Recall that in Section 4.2.1 of Chapter 4, in

the operation of the solar tracker system we assumed that solar tracker system always starts in the

Dark state. The lower time bounds for the PV panel events depends upon how fast the threshold

voltage is crossed and the speed at which the motor moves. Therefore we resort to experimental test

for determining the time bounds of PV panel events. The first event that can occur in the Dark state
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Table 5.4: PV Panel events time bounds.

Event Lower Time Bound (sec) Upper Time Bound (sec)
Dark_to_Dim 2.02 ∞
Dim_to_Dark 2.02 ∞

Dim_to_Bright 0.72 ∞
Bright_to_Dim 0.72 ∞

is the Dark_to_Dim event. Experimentally it is observed that only one step rotation of the motor is

enough for the PV panel to generate the voltage above the threshold of 6V in order to trigger the

Dark_to_Dim event. Therefore, the lower time bound for the Dark_to_Dim event is 2.02 seconds

resulting from a 2◦ motion of a motor: 2 seconds delay plus an additional 20 ms for communication

delay. If the system just enters the Dim state, then the PV panel voltage can drop below the threshold

of 5V when the motor moves in the opposite direction with just one step rotation. As a result, the

lower time bound for the Dim_to_Dark event is also 2.02 seconds.

The time bounds for Dim_to_Bright and Bright_to_Dim events is obtained experimentally. The

minimum time for the Dim_to_Bright event to occur is when the system is in the Dim state and the

slightest movement of the PV panel towards the light source causes the system to enter the Bright

state. In order to calculate the lower time bound for the Dim_to_Bright event; the PV panel is at

its initial position and the light source is fixed at a position directly facing the PV panel. Next, full

sweep command for solar tracker system is issued and the event sequence along with their timing

details are recorded in the PC. Then, after the occurrence of Dark_to_Dim event in the recorded

event sequence, the minimum time required for the Dim_to_Bright event to occur is measured.

Therefore, the lower time bound for Dim_to_Bright is 700 ms plus an additional 20 ms for the

communication delay. If the PV panel moves in the opposite direction then the Bright_to_Dim

event can occur with the same lower time bound of 720 ms. The Table 5.4 provides the time bounds

for all the PV-ILLUMINATION automaton events. It is to be noted that the upper time bound for all

the events in Table 5.4 is infinity. This is to account for the situation when an event may not occur or

occur after an arbitrarily long time. For instance, in the tests where there is an absence of the light

source and the solar tracker system is in a dark environment; then neither Dark_to_Dim and nor

Dim_to_Bright event will occur in full sweep manoeuvre of the system. However, these event will

not be prevented indefinitely when the ambient lighting conditions around the solar tracker system
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Table 5.5: Controllable events time bounds.

Event Lower Time Bound (sec) Upper Time Bound (sec)
AZ_CW_MOVE 0.09 ∞

AZ_CCW_MOVE 0.09 ∞
AZ_POLL_RANGE 0.09 ∞

EL_CW_MOVE 0.09 ∞
EL_CCW_MOVE 0.09 ∞

EL_POLL_RANGE 0.09 ∞
Bright_Detected 0.09 ∞
Sweep_Failure 0.09 ∞

EL_MOTOR_FAIL 0.09 ∞

changes.

5.3.3 Command Events

Table 5.5 provides the time bounds for all command events generated by the supervisor. These

events are controllable. As mentioned previously, the sampling time of the system is 50 ms and the

communication delay is 20 ms. Therefore, the lower time bound for all the controllable event is 90

ms (50 ms + 2× 20 ms), since anything happening within 50 ms cannot be detected in the system.

The upper time of the controllable event is infinity because no assumption is made on how quickly

the supervisor may issue a specific command.

5.3.4 Sensor Events

The events mentioned in Table 5.6 do not depend upon the environment. The lower time bound

for the successful motor movements and maximum motor range events is just one sampling time

plus the communication delay i.e. 70 ms (50 ms + 20 ms). According to data sheets [63] and [64],

the 2◦ rotation for the azimuth and elevation motors requires 6 ms and 4.6 ms respectively. However,

the event triggering logic for he successful motor movements as mentioned in [6] does not depend

upon the time required to complete 2◦ rotation but on the 2 sec wait time. Therefore, we do not

include the time required by the motors to complete 2◦ rotation. In addition, the time required to

complete 2◦ rotation is smaller than the sampling time of the system. In [3], during every sampling

time of the system, the occurrence of each event is checked twice. Once new events are detected by
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Table 5.6: Sensor events time bounds.

Event Lower Time Bound (sec) Upper Time Bound (sec)
AZ_CW_OK 0.07 0.07

AZ_CCW_OK 0.07 0.07
AZ_MAX_CW 0.07 0.07

AZ_MAX_CCW 0.07 0.07
AZ_RANGE_OK 0.07 0.07

EL_CW_OK 0.07 0.07
EL_CCW_OK 0.07 0.07
EL_MAX_CW 0.07 0.07

EL_MAX_CCW 0.07 0.07
EL_RANGE_OK 0.07 0.07
EL_FAIL_MOVE 0.07 0.07

the micro-controller, they are immediately reported to PC. Therefore, the upper time bound for the

successful motor movements and maximum motor range events is also 70 ms.

5.3.5 Other Remaining Events

There are two events that are not part of the events that are described above. Full_Sweep event

is related to the operator and Wait_2_Sec event is related to the hardware of the system.

The Full_Sweep event initiates the Full Sweep maneuver of the solar tracker system. The time

bounds of the Full_Sweep event completely depend on the operator. The lower time bound for this

event is taken as 5 seconds with an additional 20 ms for the communication delay, as it is assumed

the operator does not repeatedly initiate the command after every short interval of time interval. The

upper time bound is set to infinity to account for the situation as the operator may take a long time

to issue a Full_Sweep command.

The Wait_2_Sec event has a lower time bound and upper time bound of 2 seconds with ad-

ditional 20 ms of communication delay since the event represents 2 seconds delay after every 2◦

rotation of the motor.

The timing bounds for Full_Sweep and Wait_2_Sec events is given in Table 5.7.
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Table 5.7: Other remaining events time bounds.

Event Lower Time Bound (sec) Upper Time Bound (sec)
Full_Sweep 5.02 ∞
Wait_2_Sec 2.02 2.02

5.4 Theoretical Results

As mentioned in Section 3.3 of Chapter 3, the theoretical T ′
min,low(δ) is a lower bound for

Tmin(δ). To obtain T ′
min,low(δ), the untimed model of the solar tracker system under supervision

(see Table 4.17) is transformed to a TA using the guidelines mentioned in Section 3.2. Let us

denote the TA of the solar tracker system under supervision as TASTS . TASTS is the input for

Algorithm 3.1 and Algorithm 3.2, which calculates T ′
min,low(δ). However, T ′

min,low(δ) may result in

a very conservative value. This could lead to the selection of large value for buffering parameters for

LLP and thus, larger look-ahead window size Nw in turn resulting in an LLP supervisor equivalent

to the offline supervisor. Therefore, one must choose the buffering parameters meticulously in order

to utilize the advantages of LLP with Buffering. For this purpose we have imposed a threshold

criterion that permits disregarding t′min(q
′, δ) values calculated from some modes of the TA that

appear to be very conservative.

Typically, similar practice is followed when determining the BCET and the WCET for programs

as they may result in optimistic or conservative scheduling policies [42].

In a sense, Tmin(δ) can be viewed as BCET of δ number of events in a system. The algorithm

to compute T ′
min,low(δ) is similar to the static method which uses zone-based abstraction and thus

results in the lower bound for Tmin(δ) and the procedure to calculate Tmin,exp(δ) is similar to the

measurement-based method which results in an overestimate for Tmin(δ). In this case we will

consider the overestimate as the upper bound for Tmin(δ). To explain this better, consider Fig. 5.1

which illustrates the distribution of t′min(ql, 8) from each mode x of the TASTS . For each x ∈ X

of TASTS , ql,x = (x, cl,x). From Table 5.2, Tmin,exp(8) = 343 ms and therefore, in Fig. 5.1 the

values of t′min,low(ql, 8) that are above 343 ms can be disregarded as they do not contribute in the

calculation of the T ′
min,low(δ). The values that are under 343 ms are the ones that contribute for

Tmin(δ) and have more importance. The small value for t′min((x, cl,x), 8) are 230 ms. But we
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Figure 5.1: Number of modes of TASTS with same t′min((x, cl,x), 8).

observe that this value occur for a small number of modes (45). To quantify “not frequent" a 5%

threshold is selected in this thesis for the solar tracker system that: if the number of modes that result

in t′min(ql, δ) lower than Tmin,exp(δ) are less than 5% of the total modes of the TA, then t′min(ql, δ)

from those modes are disregarded.2 Given the fact that t′min(δ) is used to obtain a lower estimate

for Tmin(δ), we may consider ignoring low values of t′min(δ) if they occur in a “small" number of

modes. In other words, if the modes that generate t′min(ql, δ) are lower than the experimental value

and are not frequent, then they are ignored. The TASTS has 2061 modes and 5% threshold translates

to approximately 104 modes. The reasons to select 5% threshold are as follows.

(1) When the solar tracker system is moving in these 2061 modes, in 5% of the cases, the value

of T ′
min,low(δ) might be far lower than the actual Tmin(δ) and even if the solar tracker system

reaches any of these modes, it is guaranteed that the actual Tmin(δ) will likely be higher since

T ′
min,low(δ) is a lower bound for Tmin(δ).

(2) If all the modes are considered, then the LLP design will be too conservative which is not

desirable.
2The exact threshold also depends on how critical the application is. The more critical the system, lower the threshold

should be.
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Table 5.8: Theoretical T ′
min,low(δ) (ms) for δ = 1, . . . , 9.

δ T ′
min,low(δ) (ms)

1 0
2 0
3 0
4 0
5 0
6 90
7 230
8 320
9 390

From Fig. 5.1, we observe that t′min(δ) values of 230 ms and 250 ms occur in 2.5% of the modes.

The value of 320 ms is obtained for 15.04% of modes. Therefore, based on the 5% rule, t′min(δ)

values of 230 ms and 250 ms, are ignored. Thus T ′
min,low(δ) = 320 ms. Finally, the same threshold

is applied for determining T ′
min,low(δ), for other values of δ from 2 to 9 and reported in Table 5.8.

5.5 Computation Time Analysis of LLP with Buffering

In LLP with Buffering, the product of solar tracker plant and specification is expanded for a

window of Nw = Nmin + Ω. Different combinations of δ and ∆ can result in same Ω value. For

instance, Ω = 7 is the same in both the cases when δ = 3 and ∆ = 4 and δ = 2 and ∆ = 5;

thus, the expanded plant model will be the same in both the cases. The only difference is that the

number of LLP supervisory computations will change. The computation time however would be

the same. In other words, regardless of the different values of δ and ∆, if Ω is the same for different

combinations of δ and ∆, then Cmax(Nw) for LLP supervisor for the look-ahead window size Nw

would be the same.

The parameter δ provides the information about how many events are left in the buffer before

supervisory calculations must be performed for the next window. It is crucial to complete the

computation of the LLP supervisor commands for the window size of Nw within the occurrence of

δ events. A sufficient condition is Cmax(Nw) ≤ Tmin(δ). For the solar tracker system Nmin = 6.

The supervisory control computation times Cmax(Nw) is called 2 ≤ δ ≤ 9 and ∆ = δ + 1 in
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Figure 5.2: Comparison between Cmax(Nw), Cavg(Nw) and Cmin(Nw) where Nw = Nmin+∆+δ,
and Nmin = 6.

Table 5.9: Cmax(Nmin +Ω) for LLP with Buffering in ms (Ω = δ +∆).

Ω 0 3 5 7 9 11 13 15 17 19
Cmax(Nw) 63 156 188 203 218 250 265 312 312 312

Table 5.9.3 Table 5.9 also includes the computation time for the regular LLP supervisor when δ

and ∆ are both zero. There are two reasons to select δ = 1, . . . , 9 and ∆ = δ + 1: (1) we would

like to know the minimum Cmax(Nw) for each value of δ and; (2) going beyond SP = 19 will not

change the Cmax(Nw) since the expansion of the product of the plant and the specifications will

result in the complete model [5]. The minimum, average and the maximum computation times for

LLP supervisor with buffering for the solar tracker system is illustrated in the Fig. 5.2.

5.6 Selection of Buffering Parameters

Selecting the correct buffering parameters plays a crucial role in LLP with Buffering involves

tradeoffs:

(1) If the size of the expansion Nw becomes SP , then LLP supervisor is same as the offline
3Cmax(Nw) is determined by measuring end-to-end execution time required for computing LLP supervisor in PC.

The LLP supervisory computations are performed on a standard desktop PC with Intel(R) Core(TM) i5-2400 processor
operating at 3.10 GHz and 8 GB RAM.
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Figure 5.3: Comparison between Cmax(Nw), T ′
min,low(δ) and Tmin,exp(δ), with Nw = Nmin + Ω

and Nmin = 6.

supervisor. Consequently, more memory is consumed due to the expansion of the complete

plant and the specifications.

(2) If Nw has a value close to Nmin, then the advantages of LLP with Buffering are not uti-

lized since frequent LLP supervisor computation will be required. As a result, this will take

considerable CPU time which may result in other tasks being preempted [5].

Rigorous experiments are performed to obtain the correct buffering parameters. While there are a

plethora of combinations for the value of δ and ∆, we need to determine only those values of the

buffering parameters that for the resulting look-ahead window Nw, Cmax(Nw) can be computed

within the deadline of δ events.

Fig. 5.3 compares the value of T ′
min,low(δ), Tmin,exp(δ) and Cmax(Nw) from the Table 5.2,

Table 5.8 and Table 5.9 respectively, which provides the maximum time for LLP computations for

any given frame size ∆. If we aim for

Cmax(Nw) < T ′
min,low(δ) < Tmin,exp(δ), (35)

then from Fig. 5.3 we conclude that δ can have three values 7, 8 and 9. For δ = 7, equation (35)

will be satisfied for Ω values 3, 5 and 7. But with δ = 7, Ω = 7, ∆ = Ω − δ = 0. So, δ = 7 is
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Table 5.10: Number of LLP computations and supervisor size with respect to Nw.

Look-ahead Window Size Nw

(Nmin = 6)
Number of LLP
Computations

Supervisor
States Transitions

δ = 0, ∆ = 0 (Nw = 6) 1153 91 330
δ = 8, ∆ = 9 (Nw = 23) 158 2001 9159
δ = 9, ∆ = 10 (Nw = 25) 144 2061 9467

unacceptable. If we choose δ = 8, then equation (35) is satisfied for 3 ≤ Ω ≤ 15. For δ = 7 and

Ω = 15, we get ∆ = Ω − δ = 8 which is acceptable. It can be observed from the Fig. 5.3 that for

the buffering parameters δ = 8 and ∆ = 9 (Ω = 17)

Cmax(23) = 312ms < T ′
min,low(8) = 320ms < Tmin,exp(8) = 343ms.

For δ = 9, equation (35) holds for 3 ≤ Ω ≤ 19. Only Ω = 19 results in an acceptable ∆ =

Ω − δ = 10. For δ = 9 and ∆ = 10, the computation time of the LLP supervisor is well under

the T ′
min,low(8). However in this case, the LLP supervisor size is the same as the size of the offline

supervisor. Therefore, for the solar tracker system we select the buffering parameters δ = 8 and

∆ = 9.

Table 5.10 provides the number of LLP supervisory computations and the supervisor size in

terms of the states and transitions when Nw is 6, 23 and 25. From the Table 5.10, when δ = 8

and ∆ = 9, the size of the LLP supervisor is almost equal to the size of offline supervisor (see Ta-

ble 4.17). However, there is still LLP with Buffering performed on the product of the expanded plant

and expanded specifications is not completely explored; nevertheless, the memory consumption will

be high. On the contrary, the number of LLP computations during the “Full Sweep" maneuver for

the solar tracker plant is reduced considerably. In comparison with the regular LLP (Nw = 6),

there is a significant 86.30% reduction in the number of LLP computations. For δ = 0, ∆ = 0,

Cmax(6) = 60 ms and the computation time = 63 × 1153 = 72639 ms. However, for δ = 8,

∆ = 9, Cmax(23) = 312 ms and the computation time = 312× 158 = 49296 ms. It can be noticed

that there is a significant 32% reduction in the total computation time when δ = 8 and ∆ = 9 is

chosen.

The condition Cmax(Nw) < Tmin(δ) could be too conservative and strict. This depends on the
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control system, for instance how many times it is acceptable to miss the completion of LLP super-

visory computations within the deadline of δ events. Therefore, using these buffering parameter

values will provide a starting point and the values can be adjusted further until they are acceptable

for any given control system.

Lower values of buffer parameters can be selected by using faster CPU and by implementing

efficient algorithm for computing LLP supervisor. There are many software tools which uses effi-

cient algorithms for computing supervisors. Supremica [65] is one of the most complete tool among

the existing supervisory tools which implements compositional abstraction-based techniques [66],

as well as binary decision diagram base methods for synthesizing supervisors. Supremica requires

0.8s to synthesize a modular supervisor for an agv plant containing 2.57 · 107 reachable states.4

(See Table 1 in [65]). Using such efficient algorithms for computing LLP supervisor will definitely

contribute in selecting lower values for buffer parameters.

5.7 Summary

In this chapter we reviewed buffering parameters used in LLP with Buffering. Then, we dis-

cussed the sets of tests performed on solar tracker system and the procedure to calculate Tmin(δ)

experimentally. We also discussed the selection of timing information of all events (that were previ-

ously mentioned in Chapter 4). Then, we compared the results of theoretically obtained T ′
min,low(δ)

with experimentally obtained Tmin,exp(δ) for selecting the buffering parameters for LLP supervisor

of solar tracker system. In the next chapter, we will discuss conclusion and future work of this

thesis.

4All the experiments were performed on a standard desktop PC using a single 3.3 GHz microprocessor and not more
than 2 GB of RAM.

125



Chapter 6

Conclusion

6.1 Summary

This thesis examines LLP with Buffering. In particular, it examines the process of choosing the

buffer size. A key factor in this decision is the rate of event generation in the plant. In this thesis, a

model-based approach is developed for finding the minimum execution duration of TA.

Firstly, we assume that the timing information of all events such as lower time bound and upper

time bound is available. Secondly, we assume that all events are observable. Then, a procedure

with a detailed set of guidelines is presented to augment the untimed model of the system under

supervision and to transform it as a specific class of TA by incorporating the timing information

of the events. Next, all the event sequences (of any given length) are traversed from each mode

of TA through an exhaustive matrix-based symbolic analysis algorithm. The infinite state space of

the TA and the region-based abstraction to RA are disregarded and instead the clock zone-based

study of the TA is used which is efficiently represented by DBM data structure in the algorithm. In

addition, the ambiguity of deciding which reachable clock valuations of each mode would result in

smallest Tmin(δ) is avoided by making all the events eligible by setting their respective clocks to the

lower time bounds value of the defined events. The proposed method is conservative and provides

a conservative lower bound on the value of Tmin(δ). The theoretically obtained Tmin(δ) can be

too conservative which is handled by implementing an application specific threshold criterion to
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disregard very low values of minimum execution duration of event sequences. Since, the region-

based abstraction is avoided, the required reachability analysis requires polynomial time complexity

in the number of events of the TA.

As a proof of concept, the theoretical analysis is performed on the TA model of a two-degree-of-

freedom solar tracker system. Using both the theoretically calculated Tmin(δ) (an underestimate)

and experimentally calculated Tmin(δ) (an overestimate), results in theoretical analysis being more

reliable for selecting the value of buffer parameters for LLP. The theoretical analysis guarantees

that the selected buffering parameters are correct in the sense that LLP with Buffering supervisor

can always compute the necessary commands before the buffer runs out empty. The model of the

solar tracker system and the offline supervisor for it has 1584 states and 2061 states respectively.

If the speed of LLP with Buffering supervisory code is improved, then LLP with buffering can be

implemented in larger and more complex systems. Some possible directions for speeding up the

code are discussed in the next section.

6.2 Future Work

The algorithm proposed in this thesis involves DBM calculations. DBMs can be represented

symbolically as binary decision diagrams (BDDs) as described in [67,68] which can be used in our

algorithm for reducing the time complexity. In addition, the canonicalization of DBM represented

by BDD as described in [69] can also be used in our algorithm for reducing the time complexity.

Moreover, the speed of the LLP with Buffering supervisory code computation can be improved by

using BDDs as used in symbolic supervisory control (e.g. [70, 71]) and by using recursive calcula-

tions as mentioned in [13]. By reducing LLP with Buffering supervisory code computation time,

the size of the buffer and memory consumption will be reduced.

In this thesis, we assumed constant size for the buffer. However, the buffer size can be made

variable by using the values of supervisory code computation time (i.e. Cmax(Nw)) and minimum

sequence duration (i.e Tmin(δ)) at the current state of the system. As a result, for instance, during

LLP computation, if the execution time expected for the events remaining in the buffer is sufficiently

long for computing the upcoming LLP supervisory commands, then the size of the next buffer can
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be increased. There are two ways we can extend this:

(1) During the LLP computation, the value of Tmin(δ) from the current state of the system model

and for the remaining number of events in the buffer can be calculated online.

(2) The exhaustive algorithm calculates the minimum execution duration of event sequences from

every mode of the TA model of the system. Thus, one can calculate beforehand (offline) the

minimum execution duration of event sequences of different length from every mode of the

TA. Then, the minimum execution duration of the event sequences along with their length

from each mode can be stored in a look-up table. Therefore, depending upon the current state

(respective mode) and the number of events left in the buffer at any instance of LLP execution,

the size of the buffer can be varied by choosing an appropriate value for the buffer size from

the look-up table.

Implementing the above-mentioned improvements in LLP with Buffering will definitely reduce the

values of buffering parameters thereby reducing the memory consumption for storing the LLP with

Buffering supervisor and reduce the computation time of the code for LLP with Buffering.
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