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Abstract

Dependency Encoding for Relation Extraction

Fathima Nihatha Abdul Lathiff

The surge in information in the form of textual data demands automated systems to

extract structured information from unstructured data. Relation extraction plays a key

role in the process, with the aim of extracting semantic relations between entities in a

text. Since dependency parse trees are capable of capturing the grammatical structure of

sentences, this thesis experiments with different encodings of the dependency parse tree to

distinguish different semantic relationships. Experiments are conducted on three different

data sets that vary in domain and complexity and experimented with varying encoding

schemas that can be grouped into two. The first group focuses on encoding the structure

of the dependency parse tree with a Deep Graph Convolution Neural Network (DGCNN).

The second group focuses on encoding the linguistic features obtained from the dependency

parse tree with classical machine learning models such as Random Forest, Support Vector

Machine, and Feed-Forward Network, and deep models such as BERT and Transformer

encoder stack. The objective of this thesis is not to achieve state-of-the-art (SOTA) perfor-

mance, rather to evaluate how dependency parse tree based linguistic features perform on

different encoding schemas, including deep transformer-based models, on the relation ex-

traction task. The results of the experiments show that these features on certain data sets

being less computationally demanding are competitive for complex language models such

as BERT, and incorporating them externally to BERT improves the performance rather

than confounding.
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Chapter 1

Introduction

In bio-medicine, knowing the impact of introducing a new drug in the presence of an-

other is crucial to avoid any fatal consequences, in particular, when the reaction is positive.

Knowledge repositories with information on drugs and their behavior in the presence of

others make information retrieval on drugs easier, rather than having to go through hun-

dreds of pages of medical documents. However, the need for a structured representation

of knowledge possibly in the form of knowledge graphs is not limited to the biomedical

domain. Rather, it is of crucial significance to many NLP applications such as sentiment

analysis, summarization, structured search, question answering and sentiment analysis.

Due to technological advancement and with the introduction of the Web in 1983, the

surge of electronic text in the form of news wires, blogs, emails, tweets, publications, etc.,

started to exponentially increase in terms of size and in heterogeneity. This made it difficult

for people to stay up-to-date with trending changes or access prior knowledge. Therefore,

to ease the process of acquiring up-to-date information from many sources published daily,

there exists a need for automated extraction of structured information from unstructured

electronic text documents. This process is known as Information Extraction (IE) in the

field of Natural Language Processing (NLP). Grishman (1997) defined IE as follows:

“The process of IE is the identification of instances of a particular class of events

or relationships in a natural language text, and the extraction of the relevant ar-

guments of the event or relationship. Information extraction therefore involves

the creation of a structured representation (such as a database) of selected in-

formation drawn from the text.”

(Grishman, 1997)

According to Jurafsky and Martin (Jurafsky & Martin, 2009), IE is a pipeline-like
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process that consists of several stages such as: Named Entity Recognition (NER), Refer-

ence Resolution, Relationship Detection and Classification / Relationship Extraction (RE),

Event Detection and Classification, Temporal Expression Recognition and Temporal Anal-

ysis, and Template Filling. Although these stages are part of the pipeline, each stage on

its own is a research field in NLP. Since the main objective of this thesis is to identify the

relationship between two entities of interest given a text, I focus on the RE (relationship

extraction) stage in the IE pipeline.

Relationship extraction refers to a step in IE that extracts relationships between entities

of interest based on the language cues found in the text. However, the type of relationship

(and the entities) is highly dependent on the context and objective of the task. In other

words, there is no single universal set of relationship types defined; instead, the relationship

varies task-to-task, relying on the objective of what to achieve or extract from a corpus. The

following are examples of different types of relationship types (and entity types) extracted

from different corpora (the underlined text in the following examples denotes different types

of entity identified).

Ex 1: “Fluvoxamine increased mean alosetron plasma concentration (AUC) approximately 6-fold and

prolonged the half-life by approximately 3-fold.”

Relation: (fluvoxamine, alosetron) = True - Drug-Drug Interaction

(SemEval 2013 - DDI dataset (Segura-Bedmar, Mart́ınez, & Herrero-Zazo, 2013))

Ex 2: “Financial stress is one of the main causes of divorce”

Relation: (stress, divorce) = Cause-Effect

(SemEval 2010 - Relation Extraction dataset (Hendrickx et al., 2010))

Ex 3: “Over the range tested, the deposition rate of perchloric acid increases by around six orders of

magnitude.”

Relation: (deposition rate, around six orders of magnitude) = Has Quantity

Relation: (perchloric acid, deposition rate) = Has Property

Relation: (increases, deposition rate) = Qualifies

(SemEval 2021 - MeasEval (Harper et al., 2021))

As illustrated in examples Ex 1 - 3, the relation extraction task is not confined to

defined definitions. However, based on the grammatical structure of a sentence, one can try

to predict whether there exists any type of relationship between the two entities of interest.

For example, based on Ex 1, given the two entities Fluvoxamine and alosetron, we can

predict that there is an interaction between the two by observing words such as increased
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Figure 1.1: Dependency parse tree of Ex 1; highlighted relationship indicate the shortest
path between the two entities Fluvoxamine and alostron

mean ... concentration. To extract such necessary information one can use dependency parse

trees which are known to capture the grammatical structure of a sentence. Figure 1.1 shows

the dependency parse tree of Ex 1. Based on the figure, it can be seen that Fluvoxamine and

alostron are connected through the word increased. This inherently indicates the influence

of the noun subject (nsubj) Fluvoxamine on the object alostron, which is a compound of the

indirect object (iobj), concentration. Therefore, considering the nature of the RE task and

the capability of dependency parse trees on capturing semantic relations between entities,

this thesis focuses on different ways to encode dependency parse tree using varying neural

models to perform the RE task.

With time, change in the nature of text and size lead to the growth in deep learning

approaches. This in return paved the path for advanced problem solving in NLP, reduced

the focus from using static linguistic features which were heavily used in early NLP research.

Furthermore, deep learning models such as BERT (Devlin et al., 2019) are designed in such

a way that there is no one direct way to encode linguistic features externally with its input.

Therefore, this thesis more precisely focuses on 2 things. First, encoding linguistic features

extracted from the dependency parse tree along with features representing the parse tree to

evaluate whether these features are suitable for the RE task. Second, using these linguistic

features as input to different encoding schemas including deep transformer encoder-based

models to evaluate the impact of these features on these models’ performance. To evaluate

the generality of different approaches across text from varying domains, this thesis focuses

on three different data sets that vary in complexity and in the objective of the task. The

following sections will focus on a brief description of different datasets in increasing order

of complexity.
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1.1 Drug-Drug-Interactions (DDI)

Objective of the task: Medicines help us lead a better life and stay healthy. However,

the wrong dose or combination of different drugs can cause fatal results. Since negative

DDI can have dangerous therapeutic effects, the detection of DDI is an important field of

research for both patient safety and proper cost control of health care. Therefore, many

studies on drug-drug interactions have gained interest and are frequently reported in clinical

pharmacology journals and technical reports, leading to the challenge task DDI Extraction-

2011 (Segura-Bedmar, Martinez, & Sanchez-Cisneros, 2011) followed by DDI Extraction-

2013 (Segura-Bedmar et al., 2013). These tasks were created with the objective of advancing

state-of-the-art text mining techniques to facilitate drug identification and the extraction

of drug-drug interaction information from the biomedical literature.

Subtasks: Unlike the DDI Extraction-2011 (Segura-Bedmar et al., 2011), DDI Extraction-

2013 (Segura-Bedmar et al., 2013) is made up of 2 subtasks:

(1) Task 1: Identification and classification of pharmacological substances.

(2) Task 2: Extraction of drug-drug interaction and its type

The competition was held in such a way that the two subtasks were independent of each

other. Drug detection (Task 1) is not necessary for extraction of the relation (Task 2)

since the drugs were explicitly annotated. Since the main focus of this thesis was on the

extraction of relationships, I focused only on Task 2, detecting whether there exists an

interaction between drugs or not.

Dataset The semantically annotated Drug-Drug Interaction (DDI) corpus labels docu-

ments for drug-drug interactions in form of XML. Each file consists of a number of sentences

with drugs and their interactions (True or False) annotated. Drugs that have a positive

interaction with another will have type interaction as additional information; the type can

be one of the four types of interactions that drugs could have between them: Advise, Effect,

Mechanism, and Interaction. However, in this thesis, the DDI data set is treated as a bi-

nary classification task to predict true or false values based on whether or not the two drugs

have an interaction. Ex 1 mentioned above is a sample data set from the DDI corpus that

illustrates the annotated drugs and their relationship. However, unlike the demonstrated

example, sentences in the DDI can contain multiple drug entities within a sentence, where

relationships should be predicted for all permutations of drug combinations (even if the

drug name is repeated multiple times within the sentence), as shown in Ex 4.
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Ex 4: “Digoxin1: When multiple doses of atorvastatin and digoxin2 were co-administered, steady-

state plasma digoxin3 concentrations increased by approximately 20%.”

Relations: False ( digoxin1, atorvastatin),

False ( digoxin1, digoxin2),

False ( digoxin1, digoxin3),

True ( atorvastatin, digoxin2),

False ( atorvastatin, digoxin3),

False ( digoxin2, digoxin3)

As illustrated in Ex 4, creating all permutations of drug-drug pairs results in a high

number of data points falling into the negative class, and repeated drug names have an

ambiguous relationship with other drugs depending on the position of the drug name within

the sentence. This strongly calls for models to focus on the relationship between words

considering sentence structure rather than on pre-trained token representations.

The DDI corpus consists of 1,072 documents, of which 714 documents were assigned as

training data, and the remaining were treated as test data sets. The basic statistics of the

corpus are shown in Table 1.1.

Table 1.1: Basic statistics on the DDI

Training Testing
Total number of sentences 6976 1964

Total number of entities 14765 3726
Total number of pairs 27792 6657

Sentences without entities 1416 554

1.2 SemEval-2010 task8: Multi-way classification of semantic

relations between pairs of nominals (Sem10)

Objective of the task: The SemEval-2010 task 8 (Hendrickx et al., 2010) is focused

on the extraction of semantic relations between pairs of nominal given a sentence. Rather

targeting a specific domain, this corpus focuses on extracting generic relationships of a

broad variety and of practical interest that can be observed in English texts. The organizers

formulated this task as a multi-way classification task where for each example, one class

has to be chosen from a set of nine defined relationships and Other if no relationship is

detected, in addition to the mapping from nouns to arguments. The nine relationships are

defined as follows with examples:

(1) Cause-Effect (CE): Represents an event or an object leading to an effect
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In chemical lasers the <e1> inversion </e1> is produced by a chemical

<e2> reaction </e2>.

(2) Instrument-Agency (IA): Represents an agent using an instrument

The <e1> author </e1> of a keygen uses a <e2> disassembler </e2> to

look at the raw assembly code.

(3) Product-Producer (PP): Refers to a producer causing the existence of a product

The <e1> court </e1> decided the objection by making the instalment

<e2> order </e2> as sought.

(4) Content-Container (CC): Refers to an object physically stored in a defined area

of space.

Flowers are nice, but don’t last very long and the <e1> fruit </e1> in a

fruit <e2> basket </e2> often goes bad.

(5) Entity-Origin (EO): Refers to an entity (either a position or material) coming or

derived from an origin.

Many other <e1> dwarves </e1> also hailed from this infamous <e2>

clan </e2>.

(6) Entity-Destination (ED): Refers to an entity moving towards a particular desti-

nation.

This book has transported <e1> readers </e1> into <e2> ancient times

</e2 >.

(7) Component-Whole (CW): Refers to an object of a larger whole.

The <e1> owl </e1> held the mouse in its <e2> claw </e2>.

(8) Member-Collection (MC): Refers to a member who forms nonfunctional part of

a collection.

In the same way, a <e1> society </e1> is built up of many <e2> individ-

uals </e2>.

(9) Message-Topic (MT): Refers to a message either written or spoken corresponds to

a specific topic.
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The <e1> flyer </e1> advertised a two-week <e2> workshop </e2> being

conducted at the university this summer.

Subtasks: For a given sentence with two tagged entities (e1 and e2, where the ordering

of these tags occurs in the order of words in the sentence) such as The <e1> burst </e1>has

been caused by water hammer <e2> pressure </e2>. the participating system should:

(1) Predict the relationship between the entities (select one class out of ten):

Relation (burst, pressure) = Cause-effect

(2) Predict the direction of the relation:

(e2: pressure) caused the (e1: burst) therefore direction is from pressure to burst

e2 −→ e1

Similar to DDI, the second task to predict the direction of the relationship was omitted

from experimenting in this thesis as the main focus was on relation extraction task and not

particulars of the task related to the data set. Therefore, the classification task on Sem10

was treated a simple 10 ten way classification.

Dataset: The SemEval10 dataset consists of 10,717 annotated examples where 8000 were

treated as training samples and the remaining 2717 were treated as test samples. Every data

sample is a single sentence containing only a pair of entities between which the relationship

and direction should be identified. Even though most of the tagged entities span over a

single word, they are not restricted to it. There are entities which spans over a base noun

phrase (NP)1 whose head is a common noun as shown in Ex 5. Table 1.2 shows some basic

statistics on the Sem10 data set.

Ex 5: “Feminist science fiction tends to deal with women’s roles in society.”

Table 1.2: Basic statistics on Sem10 data set

Training Testing
Total number of sentences 8000 2717

Total number of single word entities 15226 5190
Total number of multiple word entities 774 244

1A base noun phrase (NP) consists of a noun and its premodifiers, such as nouns, adjectives, and deter-
miners
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1.3 MeasEval: Counts and Measurements (MeasEval)

Objective of the task: The MeasEval data set is made up of excerpts from scientific

articles from Elsevier Labs OA-STM-Corpus2 which is a collection of scientific, technical,

and medical articles. The excerpts provided as a dataset varied in multiple disciplines of

science. Counts and measurements are an important part of scientific discourse. Even

though it is relatively easy to identify counts and measurements, detection of them alone

is not useful unless one knows what it measures and other additional properties relevant

to it. Since there is no one standard way in writing scientific documents, the ambiguous

and inconsistent nature of scientific documents poses a challenge for extracting relevant

information as they vary widely in terms of location with regard to measurements and

well in type of information. This task was introduced in SemEval-2021 task 8 (Harper et

al., 2021) with the objective of extracting counts and measurements together with other

relevant information.

Subtasks: The MeasEval consists of 5 (non independent) subtasks covering entity detec-

tion, span detection, and relation extraction across multiple sentences3. Since the main

objective of the task is to identify quantities (counts or measurements), related entities and

additional properties of entities, the term Annotation Set is used in this thesis to define

all related entities and relations associated with a particular quantity. Individual entities

within an annotation set will be identified as Annotation Type. An annotation set can

consist of four types of annotations and three relation types. The following sentence is used

as an example to define the different types of annotations and relationships.

Over the range tested the deposition rate of perchloric acid increases by around six orders of magnitude

MP ME QL Q

HasQuantity

HasProperty

Qualifies

The four annotation types are:

(1) Quantity (Q): Is the starting point for an annotation. It is either a Count consisting

of a value or a Measurement consisting of a value and usually a unit. A Quantity can

additionally include optional modifiers like ranges or approximation. (e.g. around six

orders of magnitude is the span of the Q with orders of magnitude as Unit(U) and

IsApproximate as Modifier(MOD) to indicate that the Q is a approximation). In very

rare cases a Quantity can exist standalone if no other entities can be detected in the

2https://github.com/elsevierlabs/OA-STM-Corpus
3https://competitions.codalab.org/competitions/25770
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document.

(2) MeasuredEntity (ME): Refers to an entity being measured by Q (e.g. perchloric

acid). It is a required span of text that has Q as a direct value or indirectly through

MeasuredProperty.

(3) MeasureProperty (MP): An optional span associated with both ME and QT. This

refers to a span of text which resembles some property of ME, the Q is referring to

(e.g. deposition rate).

(4) Qualifier (QL): Optional qualifier span describes the special circumstances which

affect a particular measurement. It can be relate to any ME, MP or Q. In the given

example increases is a QL of MP.

Annotation types are connected through 3 types of relationships; they are:

(1) HasQuantity (HQ): Is a relationship type which relates a MP to a Q or ME to a

Q if there exists no MP in the annotation set (e.g. deposition rate(MP)- HQ -around

six orders of magnitude(Q)).

(2) HasProperty (HP): Is a relationship type relating a ME to a MP (e.g perchloric

acid(ME)- HP -deposition rate(MP))

(3) Qualifies (QLS): Is a relationship type relating a QL to either a Q or ME or MP

(e.g. increases(QL)- QLS -deposition rate(MP)).

As mentioned above, a Q can have additional properties such as units (U) and modifiers

(MOD). Units (U) denote the metric used to measure the quantity and contained within

the Q span in the gold annotation. Modifiers are the type of class into which the quantities

can be grouped. The following is a list of the 9 types of modifiers defined in the task with

examples:

(1) IsApproximate: The polar forcing via ion drag generates strong westward (sub-

coroting) winds at a peak velocity of around 1300 ms-1 near 82◦ latitude.

(2) IsCount: This detection was based on four transits observed with the Space Telescope

Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST).

(3) IsRange: Concentrations of salts in Mars soil assuming deposition during the Ama-

zonian, a soiing density of 1 g cm-3, and mixing in a range of 1.5 - 2.6 m depth.

(4) IsList: Effect of bed inventory on increase of solid minor element concentrations for

bed inventories 4.5 kg, 6 kg and 13 kg CaCO3.
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(5) IsMean: In our solstice simulation (R19) we find exospheric temperatures averaged

from 74◦S to 90◦S (the summer polar region) of 490 K.

(6) IsMedian: If we use a median Os abundance is seawater of 10 ppq we can evaluate

the approximate Os contribution from the Caribbean LIP to the global ocean using a

progressive mixing model.

(7) IsMeanHasSD: The external diotomite standard (1.26±0.2‰, Reynolds et al., 2007)

yielded a mean and 2SD of 1.23±0.25‰ (n=104).

(8) IsMeanHasTolerance: They found that the average variability during one solar

rotation was found to be 9 ± 6%.

(9) IsRangeHasTolerance: Even higher temperatures in Saturn’s auroral oval was of

(563–624) ± 30 K were derived from Cassini VIMS observations by Stallard et al.

(10) HasTolerance: Recent sanidine 40Ar/39Ar and zircon 206Pb/238U geochronology

integrated with astrochronology constrain the CTB at 93.90±0.15 Ma.

Except for quantities falling into the IsCount category, the rest may or may not have units.

If a unit exists in the text, then it should be indicated along with the modifiers.

The complexity of the MeasEval data set, for this thesis is reduced to only relation

extraction. More specifically, I only focus on the detection and classification of annotation

types Q, ME and MP4 and the relationship between them.

Dataset: In total, the MeasEval data set consists of 428 documents (scientific excerpts),

of which 313 documents are treated as training data and 135 documents as test sets. The

number of sentences within these documents range from 15 to 506 sentences. Not all sen-

tences within the documents contain gold annotations. Resulting in 298 documents with

gold annotations for training. Table 1.3 shows basic statistics of the corpus. As shown in

the table, the dispersion of annotation sets along with very few samples to train a system

makes the task highly complex compared to others.

In summary, this thesis focuses on the Relation Extraction (RE) by using three different

datasets, that vary in domain and complexity. RE can be defined as extracting relationship

between entities of interest based on the language cues found in the text. Since depen-

dency parse trees are capable of capturing grammatical structure of sentences, this thesis

focuses on extracting and representing linguistic features based on the dependency parse

4QL is ignored as they do not have a proper definition as to what pertain as QL
5doc id: S0378383912000130-1096
6doc id: S0022000014000026-18167
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Table 1.3: Basic statistics on MeasEval data set

Training Testing
Total number of sentences 1733 756

Total number of sentences with annotation sets 294 130
Total number of Annotation sets 866 369

tree and encoding them with varying encoding schema including deep transformer-based

architectures to evaluate whether these features are suitable to perform the RE task, and

whether the deep learning models benefit from these features when combined to perform

the RE task. Since the objective is to evaluate different encoding schema across all data

sets, a generic approach of selecting features and parameters of models was followed when

designing different experiments. Due to the generic approach followed, this thesis does not

focus on achieving SOTA performance on any data set. Therefore, all subtasks associated

with each data sets (except the relation extraction task) is omitted from experimentation.

This thesis is structured to provide background information on the neural network mod-

els along with description of linguistic features used and different representation techniques

used in Chapter 2. The following chapter focuses on the importance and capability of de-

pendency parse trees on RE task, with a Graph Neural Network (GNN) based approach

to encode it. Moreover, Chapter 3 also contains information about the data processing

and extraction of features on each dataset. Chapter 4, discusses the different experiments

conducted with different encoding schemas along with observation and analysis. The final

chapter, Chapter 5, concludes the thesis, with future work that could be carried out based

on this study.
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Chapter 2

Background

2.1 Relationship Extraction (RE)

RE is one of the steps in Information Extraction (IE). Culotta, McCallum, and Betz

(2006) defined it as:

“The task of discovering semantic connections between entities. In text, this

usually amounts to examining pairs of entities in a document and determining

(from local language cues) whether a relation exists between them”

Formally, a relation can be represented as r = (e1, e2...en) where r is a relation and ei

is an entity in a document D. Most relation extraction tasks focus on extracting binary

relations such as r(e1, e2) (e.g. parent(mother, son)) but can also extend to higher-order

relations (r(e1, e2, e3)) (McDonald et al., 2005). However, this thesis will only focus on the

extraction of binary relations.

A binary relation is defined as a relation that exists between 2 entities. That being

said, we then raise the question as to what an entity is. From a language point of view,

the definition of an entity (and relations) varies depending on the genre of the text and

the purpose of the task. Generally, a Entity simply refers to a word or a sequence of

words that refers to a proper name. A proper name can refer to a person (e.g. John),

place (e.g. Germany), organization (e.g. WHO), facility (e.g. YUL airport), etc. In NLP,

the process of detecting proper names and categorizing them is known as Named Entity

Recognition (NER). However, specialized applications could involve other types of entity

such as proteins and genes in the biomedical domain (Segura-Bedmar et al. (2011); Segura-

Bedmar et al. (2013)) and commercial products or works of art in the e-Commerce sector,

etc. Even though the notion of an entity refers to the identification of proper names, it

can be extended to things which cannot be explicitly seen as entities but have practical
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importance and characteristics which signal them as entities, such as temporal expressions

(Gast, Bierkandt, Druskat, and Rzymski (2016); Bethard et al. (2016)) which includes dates,

time and named events, and numerical expressions such as measurements (Harper et al.,

2021), counts, prices, etc.

Once the entities are identified, the relations between the entities are extracted using

the relation extraction technique. Relation extraction has been an active topic in the

research field for a long time. To explore effective ways of extracting relationships from

text, new data sets are released from time to time in the form of competition (Multi-

way classification of Semantic Relations (Hendrickx et al., 2010); New York Times Corpus

(Riedel, Yao, & McCallum, 2010); Drug-drug interaction corpus (Segura-Bedmar et al.,

2013); WikiData for Sentential Relation Extraction (Sorokin & Gurevych, 2017); Tacred

(Y. Zhang, Zhong, Chen, Angeli, & Manning, 2017); Capturing discriminative attributes

(Krebs, Lenci, & Paperno, 2018); Few-shot relation classification (FewRel) (Han et al.,

2018); FewRel2 (Gao et al., 2019); MeasEval (Harper et al., 2021)). Early work on RE

focused on extracting relations from single sentences with entities explicitly annotated by

task organizers. However, with the use of deep learning approaches, the intensity of the

tasks continues to grow to address various practical requirements, such as detecting entities

as the first step before detecting a relationship, as in MeasEval (Harper et al., 2021); or

spanning relation detection across multiple sentences, as in DocRED (Yao et al., 2019) and

BioCreative V CDR (J. Li et al., 2016); or performing zero-shot learning to extract new

relation types that are only specified during the test time, which can be used to construct

knowledge graphs and does not require the hard labor of human annotation (Levy, Seo,

Choi, & Zettlemoyer, 2017).

Different machine learning techniques were used to perform the RE task. Jurafsky and

Martin (Jurafsky & Martin, 2009) broadly cluster these techniques into two main groups:

• supervised methods.

• semi-supervised methods, or self-supervised methods.

This thesis addresses the RE task as a supervised task. Supervised methods treat RE

as a classification problem where text is provided with relations explicitly annotated by

human analysts. In general, a classification task would have positive and negative training

examples. Therefore, given a sentence S with entities e1 and e2, the output of the classifier

is given as:

fR(T (Se1,e2)) =

+1 If e1 and e2 are related by R

−1 Otherwise
(2.1)
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Here, fR(.) refers to any discriminative classifier function and T (Se1,e2) refers to the

transformation of a sentence into a vector representation of extracted features. The following

sections discuss the background of different classification models and linguistic features that

are used as input to these models along with the feature representation techniques used in

this thesis.

2.2 Classification Models

Classification refers to a predictive modeling problem in which a class label is predicted

for a given input example. To achieve this, in machine learning (ML), a model is trained

using the training data set to best map the input data to specific class labels. From rule-

based approaches to deep learning techniques, the evolution of ML techniques has greatly

influenced the field of NLP in terms of the complexity of the tasks addressed and the

performance achieved.

2.2.1 Feed-Forward Neural Network

Also known as Multilayer Perceptron (MLP), it is one of the fundamental techniques,

consisting of one or many layers of fully or partially connected neural nodes, allowing the

approximation of complex functions (Pal & Mitra, 1992). Each layer in a neural network

is made up of one or more nodes that receive an input in the form of a linear combination

of the output of the previous layer. These inputs are then passed through a non-linear

transformation (see Table 2.1) function or activation function that result in the output of

the current layer.

Table 2.1: Activation functions

Name Activation functions

Softmax softmax(x)i = exp(xi)∑
i exp(xi)

Sigmoid sigmoid(x) = 1
1+exp−x

Hyperbolic tangent tanh(x) = expx−exp−x

expx+exp−x

Rectified Linear Units ReLU(x) = max(x, 0)

More formally, if x is an input vector of dimension n of a layer with m nodes and f(.)

is a non-linear function, then the m dimensional output y of the layer is computed as:
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Figure 2.1: Illustration of a fully connected feed-forward neural network

y = f(Wx) (2.2)

where W is a weight matrix n×m, learned during the backpropagation phase (Rumel-

hart, Hinton, & Williams, 1986) while training the neural network.

2.2.2 Support Vector Machines (SVM)

Being effective in high-dimensional spaces and versatile in using different kernel func-

tions made SVM a strong contender in RE shared tasks (Lai, Leung, and Leung (2018);

Chowdhury and Lavelli (2013); Speer and Lowry-Duda (2018); Thomas, Neves, Rocktäschel,

and Leser (2013)). A binary SVM(Cortes & Vapnik, 1995) is based on the notion of iden-

tifying a hyperplane that best divides a data set into two. As shown in Figure 2.2, the

SVM algorithms identify critical data points named support vectors, which determine the

position of the dividing hyperplane. A hyperplane can be defined as a n− 1 subspace that

linearly separates a space of n. Therefore, for a 2 dimensional space, the hyperplane would

be a 1 dimensional dot, whereas for a three-dimensional space, the hyperplane would be a

two-dimensional line, etc. Intuitively, the further the data points are from the hyperplane,

the more confident they are that they have been classified correctly. Therefore, the SVM

algorithm tries to find an optimal hyperplane by maximizing the margin between the sup-

port vectors, where margin refers to the distance between the support vectors (that is, the

closest data point) from either class to the hyperplane.

Finding a hyperplane that correctly classifies 100% in a real data set is impossible.

Most real data sets are not linearly separable. Non-linearly separable cases are dealt with

by SVM using two concepts: Soft Margin and Kernel Tricks. The soft margin tries to

find a hyperplane to separate the data set with a certain amount of tolerance for incorrectly

classified data points. On the other hand, the kernel trick tries to find a non-linear decision
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Figure 2.3: Transformation of features to higher dimension with kernel trick.

boundary by applying transformation functions to existing features, casting the data points

to a higher dimension (see Figure 2.3) to find a hyperplane to divide the data set.

2.2.3 Convolutional Neural Networks (CNN)

CNN employs a mathematical operation called convolution, which is a linear operation

that involves multiplication of weights with input to produce an output. This operation is

performed in a way that can be simply thought of as a sliding window function on a matrix.

Introduced in the field of computer vision by (LeCun, Haffner, Bottou, & Bengio, 1999),

CNN gained popularity (Krizhevsky, Sutskever, and Hinton (2012); Oquab, Bottou, Laptev,

and Sivic (2014)) due to its ability to capture localized information that was shared between

neighbors in the input data (that is, features such as edges and shadows are identified in

images based on the surrounding pixel). Inspired by its greater ability to capture localized

characteristics, Kim (2014) introduced CNN to NLP to capture spatial information between

words, resulting in improved performance in a variety of NLP tasks (Nguyen and Grishman
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(2015); Kim (2014)) and RE tasks (Shen and Huang (2016); Wang, Cao, de Melo, and Liu

(2016); Zeng, Liu, Lai, Zhou, and Zhao (2014)).

Convolutions vary in 1D, 2D, or 3D depending on how the convolution functions are

applied to the input data. This thesis uses a 1D convolution as part of the experimental

setup, where the convolution window moves only in a single direction. A CNN architecture

is made up of one or more layers of convolution layers, pooling layers, and finishing it off

with a fully connected feed-forward network for the final classification.

Convolution in the convolution layer is performed by a kernel (weight matrix) that

operates in a region of input data to return a single value sum as the output of an element-

wise dot product. This operation is performed on all input data by sliding the kernel window

in a single direction, where the sliding size is determined by the value stride. A combination

of kernel windows are used in the input data to obtain different abstractions of features.

Pooling performs a scalar transformation on each local region of input data; however,

unlike the kernel function, pooling either computes the average of values (average pooling)

in the region it operates or selects the highest value in the region, discarding the rest (max

pooling) or the opposite in min pooling. The idea of pooling is used to extract only the nec-

essary information while reducing the effects of noise on the data. Additionally, the pooling

greatly reduces the computational cost of the CNN architecture as it generally reduces the

dimension size of the input data. After multiple layers of interchanged convolution and

pooling layers, the final layer of the CNN architecture is the fully connected feedforward

network, which performs the classification task.

Although CNNs were able to capture localized linguistic characteristics and improve

performance, they were not suitable for dealing with inputs of varying length, such as

sentences. Therefore, to accept input of varying length and preserve word ordering in
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sentences, Recurrent Neural Networks (RNN) (Elman, 1990) were introduced, followed by

LSTM (Long Short-Term Memory) networks (Hochreiter & Schmidhuber, 1997) to address

problems of vanishing gradients, which prevent RNN networks from maintaining long-range

dependency in sentences. Although RNN and LSTM are used in many RE tasks (Socher,

Huval, Manning, and Ng (2012); Lin, Shen, Liu, Luan, and Sun (2016); Cai, Zhang, and

Wang (2016)), the details of these architectures will not be discussed, as they are not

experimentally investigated in this thesis.

2.2.4 Transformers

The transformer Vaswani et al. (2017) is a sequence-to-sequence architecture. A sequence-

to-sequence architecture transforms a given sequence of source inputs into another sequence

of target output, similar to machine translation (MT). This transformation is carried out us-

ing a encoder and decoder mechanism. The encoder takes an input sequence of arbitrary

length and maps it into a higher-dimensional space (i.e. a fixed-length vector known as the

context vector), which is then fed into the decoder to transform it into an output sequence.

An LSTM/RNN model-based sequence-to-sequence architecture performs this translation

by providing the last hidden state of the encoder as the context vector, containing the

summary of the input sequence, as input to the decoder for translation. Here, the context

vector is expected to remember all the necessary information in the source sentence, in a

fixed size vector. This becomes a bottleneck for longer sentences, as the model forgets some

information from the earlier part of the input sentences, producing bad context vectors,

resulting in poor performance.

As a remedy for this bottleneck of the fixed-size context vector, Bahdanau et al. (2015)

proposed a mechanism, namely attention, to take into account all input words in the

context vector while providing relative importance to each word in the input. This concept

is widely used in the RE task (Lin et al. (2016), Shen and Huang (2016), Wang et al. (2016))

to obtain a context vector based on the relative importance of the annotated entities. This

relative importance process is similar to the cognitive process of selectively concentrating on

one or a few things while ignoring others. Thus, whenever a decoder generates a sentence

given an input, it searches for a set of positions in the encoder hidden states where the

most relevant information is available. Extracted from the paper Bahdanau et al. (2015),

Figure 2.5 shows the intensity of the attention weights (brightness) with relevance to the

source to target word in the English-French machine translation task. These attention

weights are learned by the network, while it adjusts itself according to the output element

in the target sequence generated by the decoder. Since the context vector has access to all
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Figure 2.5: Attention weights associated with source words (English) to target words
(French) in English-French machine translation task (Bahdanau et al., 2015)

elements of the input sentence, long dependencies could be retained regardless of the length

of the source sentence.

While attention is focused on relating words from one sequence to another, self-attention

(Cheng et al., 2016) focuses on relating different positions within the same sequence to

compute a representation of the sequence. Extracted from the paper Cheng et al. (2016),

Figure 2.6 illustrates the different memories or words triggered when processing words in

red. The different shades of blue represent the degree of memory activation. Focusing on

the same concept (self-attention), Vaswani et al. (2017) came up with an alternative way

to calculate self-attention than Cheng et al. (2016). Furthermore, Vaswani et al. (2017)

introduced the multi-head attention mechanism to project each input in different repre-

sentation subspaces, allowing the model to attend parts of the sequence differently.

Using the multi-head attention mechanism Vaswani et al. (2017) introduced the trans-

former architecture consisting of two parts, the encoder and the decoder. The proposed

architecture consists of 6 Encoders stacked on top of another, where each stack contains 2

sub-layers, as shown in Figure 2.7. The first is the multi-head attention mechanism consist-

ing of eight independently trainable self-attention heads, and the second is a position-wise

fully connected feed-forward network. Both sub-layers are followed by a residual connection

and a normalization layer, before the values propagate to the next layer. The first encoder

in the stack accepts the input as word embeddings summed with the positional encoding

calculated as shown in Equation 2.3:
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Figure 2.6: Different memory activation indicating the influence of memory words (blue) on
the target word (red). Intensity of blue indicates the degree of memory activation. (Cheng
et al., 2016)

PE(t, i) =

sin(t/100002k/dmodel), if i = 2k

cos(t/100002k/dmodel), if i = 2k + 1
(2.3)

where PE(t, i) denotes the positional encoding vector of the ith index of the embedding vec-

tor of the token in position t. Integration of positional encoding is performed to incorporate

position information into the token embeddings, as transformer encoders process the input

in parallel. This contrasts with RNN or LSTM based encoders, where input is processed

sequentially. The remaining encoders on the stack accept the output of the previous encoder

as input.

Add & norm

Feed-forward

Add & norm

Dot product
Attention

QQQ KKK VVV

Positional
Encoding

XXX = [xxx1 ⊕ . . . ⊕ xxxT ]

PPP

HHH = [hhh1 ⊕ . . . ⊕ hhhT ]

Figure 2.7: Illustration of Transformer Encoder architecture (Vaswani et al., 2017)
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Similarly to the number of encoders, the proposed transformer architecture consists of

6 Decoders stacked on top of another, consisting of two sublayers as in the encoder and

an additional sublayer to apply masked multihead attention to the output embedding. This

masked multi-head attention is used to prevent decoder from being aware of the future

tokens to be predicted, but allowing already predicted tokens as well as the current token

to be input to the decoder. The second multi-head attention layer in the decoder accepts

the encoder output as input, as well as the output of the masked multi-head attention layer,

allowing it to decide which encoder input to focus on. The output of each decoder is passed

along the stack of decoders, and the final output of the decoder is passed through a linear

classifier and softmax functions to output the probabilities of the next possible token in the

sequence.

2.3 Linguistic features

A feature is an individual measurable property or characteristic of a phe-

nomenon.

(Bishop, 2006)

As with any NLP task, a text document goes through a series of pre-processing steps

to clean the data and extract the necessary features to perform the task. How we perform

cleaning or extraction and what features are extracted have a considerable influence on the

overall performance of the system. Since textual preprocessing is vital and many researches

have been conducted throughout the years, currently there exist many different packages

for facilitating this task using different approaches:

NLTK (Natural Language Take Kit) (Bird, Klein, & Loper, 2009) is a suite of Python

libraries and programs specially used for symbolic and statistical processing of lan-

guages, widely used in the field of teaching and research;

Stanford CoreNLP (Manning et al., 2014) provides a set of language processing tools

written in JAVA, supporting multiple languages like Arabic, French, Chinese, etc. in

addition to English;

spaCy 1 is a free open-source library based on the neural net for language processing.

Unlike other packages, spaCy focuses more on software for production use, facilitat-

ing the integration of different popular machine learning libraries such as PyTorch2,

1https://spacy.io/models
2https://pytorch.org/
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Over the range tested , the deposition rate of perchloric acid increases by around 6 orders of magnitude .

Figure 2.8: Unicode tokenization

TensorFlow3 and others within its pipeline;

GATE (Cunningham, Tablan, Roberts, & Bontcheva, 2013) (General Architecture for Text

Engineering) is a suite of JAVA-based frameworks that facilitate language processing

and provide a user interface (UI) for visual analysis of annotations, which contributes

heavily to the process of finding language-related patterns.

Regardless of the package, a typical NLP preprocessing pipeline includes sentence split-

ting, tokenization, sometimes followed by task-relevant gazetteer annotation, possibly Named-

Entity-Recognition(NER), part-of-speech (POS) tagging, and dependency parsing. The

following sections provide brief descriptions of some important steps in the preprocessing

pipeline with sample annotations based on Ex 6.

Ex 6: “Over the range tested, the deposition rate of perchloric acid increases by around 6 orders of

magnitude.”

2.3.1 Tokenization

Tokenization is the process of splitting text into basic units called tokens which are

composed of a set of characters, such as words or terms. Tokenization is a crucial step in

the preprocessing pipeline, since the meaning of the text is interpreted by analyzing the

tokens existing in a text. Different tokenization techniques are used to satisfy different

requirements. ANNIE’s (Cunningham, Maynard, Bontcheva, & Tablan, 2002) Unicode

tokenizer (used in GATE) splits text into very simple tokens such as numbers, punctuation

marks, symbols, and words of different types such as uppercase and lowercase, preserving the

surface-level lexical information to be capitalized by the other modules in the preprocessing

pipeline. Figure 2.8 illustrates the output of the GATE tokenizer for Ex 6.

In contrast, pre-trained language models such as BERT (Devlin et al., 2019) and XLNet

(Z. Yang et al., 2019) use Subword Tokenization, also known as Wordpiece Tokenization

(Y. Wu et al., 2016), which preserves commonly used words as is and decomposes rare

words into meaningful sub-words. Therefore, Ex 6 will be divided into 21 tokens, where

the rare word “perchloric” is broken down into 3 tokens such as “perch”, “##lor”, and

“##ic” as shown in Figure 2.9. This enables BERT-like modules to generate somewhat

meaningful representation for unknown words by combining word pieces that are shared

3https://www.tensorflow.org/
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Over the range tested , the deposition rate of perch ##lor ##ic acid increases by around 6 orders of magnitude .

Figure 2.9: Wordpiece tokenization

with other similar tokens. In addition to the Unicode tokenizer or the WordPiece tokenizer,

there are other techniques such as character-based tokenizer, Regex tokenization, etc. which

will not be discussed in detail as they are not used in this thesis. Since tokenization usually

appears as the primary step in the preprocessing pipeline, errors in this stage propagate

through other modules, producing erroneous features. Therefore, choosing an appropriate

tokenization technique for the task and fixing errors in this stage is crucial.

2.3.2 Part-of-Speech (POS) tagging

POS tagging is the process of assigning each token in the sentence a tag corresponding

to a particular part of the speech, based on both its definition and context. Or in other

words, it can be defined as indicating for each word whether it is a noun, verb, adjective,

adverb, preposition, etc. Penn Treebank (Marcus, Marcinkiewicz, & Santorini, 1993) is a

commonly used POS tag set consisting of 36 POS tags and punctuation marks. Figure 2.10

shows an example of POS tagging for the sentence in Ex 6 which is tokenized based on the

Unicode tokenizer of the ANNIE module (Cunningham et al., 2002) in the GATE pipeline.

Over the range tested , the deposition rate of perchloric acid increases by around 6 orders of magnitude .

IN DT NN VBN , DT NN NN IN JJ NN NNS IN RB CD NNS IN NN .

Figure 2.10: POS tagging of Ex 6 from Stanford Parser (Klein & Manning, 2003)

2.3.3 Dependency Parsing

Also known as typed dependency parsing, describes the syntactic structure of a sentence

in terms of binary grammatical relations between words. Relations between the words

are indicated with directed, labeled arcs from heads (governors) to dependents. Since the

relation labels are from a fixed grammatical inventory, the formalism of dependency relations

is known as typed dependency parsing. More formally, a dependency parse tree is a graph

G = (V,E) where V is a set of vertices that contain words in a sentence, and the edge E is

the dependency relationship that connects two words. In addition to the tree-like structure,

a dependency parse tree must satisfy 3 other conditions: 1) There must be a single root

node with no incoming edges. 2) For each node v in V , there must be a path from root

R to v. 3) Each node except the root must have only a single incoming edge (that is, a
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child node (dependent) can only have a single parent node (governor)). Figure 2.11 shows

a typed dependency parse tree of Ex 6 using the dependency parse grammar formalism of

the Stanford dependency parser (de Marneffe et al., 2006) and Figure 2.12 illustrates the

tree-like perspective that could be derived from the dependency parse tree.

Over the range tested , the deposition rate of perchloric acid increases by around 6 orders of magnitude .

IN DT NN VBN , DT NN NN IN JJ NN NNS IN RB CD NNS IN NN .

case

det

root

obl

punct

obj

punct

det

compound

nmod

nmod

case

amod

compound

case

nummodadvmod

nmod

case

Figure 2.11: A typed dependency parse from the Stanford Parser (de Marneffe et al., 2006)

2.4 Feature Representations

Features used to represent data can be either numerical (e.g. age, height, weight, volume,

etc.) or categorical (e.g. name, gender, sex, token strings, POS tags, etc.). In principle,

a neural network requires input as a vector of real numbers. Numerical features extracted

from the data can be represented as it is since they are numbers and neural networks can

handle them. On the contrary, categorical features must be transformed into a numerical

vector before feeding to a neural network. There are multiple techniques available for the

transformation of categorical data into a numerical vector representation. The following

is a list of representation techniques that are used in this thesis to represent the linguistic

features.

tested

range

Over the

rate

the deposition increases orders

of perchloric acid by 6

around

magnitude

of

obj

case

det

obj

det compound nmod
nmod

case
amod compound case

nummod

nmod

advmod case

Figure 2.12: Tree-view of dependency parsed sentence shown in Figure 2.11
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2.4.1 One-hot-encoding

It is a very simple and straightforward technique that requires very little computational

effort and time to construct. Formally, one-hot encoding is defined as x being any discrete

random categorical variable with n distinct values x1, x2, ...xn. The one-hot vector v of a

value xi will be of size n with n− 1 components of v filled with 0 except the ith component,

which will have a value 1. For example, given a set C corresponding to a set of blue, green,

and red colors C = {b, g, r}, a random variable x taking values from C will have one-hot

encoding as: (1,0,0), (0,1,0), (0,0,1) for b, g, r, respectively. Regardless of its simplicity, the

disadvantage of this technique is that the dimension of the vector increases with the size of

the unique values (vocabulary size) a feature contains, and regardless of the size of the vector,

a vector will contain only 1 bit of information. This leads to sparsity, resulting in higher

consumption of memory and issues related to higher dimension (curse of dimensionality).

The curse of dimensionality is an expression coined by Richard Ernest Bellman

(Bellman, 1961) describing the phenomenon that arises when analyzing/organizing

data in a high-dimensional space. Among the many potential issues, containing

more features than observation leads machine learning models to overfit due

to a lack of data to generalize based on the observed features. Especially for

algorithms based on distance measuring (e.g. K-nearest neighbors), the more

the dimension, the more the distance between points, leading for data points to

appear equidistant from all others, preventing meaningful clusters to be formed.

2.4.2 Label encoding

Is a technique that provides a unique integer label to each categorical value of a given

feature. Similarly to the color example above (assuming the colors are sorted alphabeti-

cally), label encoding would provide label 1 for blue, 2 for green, and 3 for red. Even though

this is one way of encoding and this works for some variables, such as ordinal values (first,

second, third), this does not suit all categorical variables (e.g. colors). Why? Real numbers

have a natural ordering relationship, which in return imposes an artificial ordering among

the categorical variables, resulting in unpredictable results. Also, in neural networks, during

the optimization step with stochastic gradient descent, the value of a feature with a larger

encoded label will contribute more during weight updates. Regardless of its downside, label

encoding is still a useful technique utilized to encode class labels in a multiclass classification

task, as well as in decision tree-based algorithms, which works well with categorical data.
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2.4.3 Multi-hot encoding

Also known as binary encoding, it is a compromise between label encoding and one-hot

encoding. In this approach, the categorical values are encoded first by label to obtain a

unique value and then convert the numerical labels into a binary vector of size dlog2ne, where

n is the number of unique values in the categorical feature. Following the above example of

colors, n = 3 therefore the size of the vector is dlog23e = 2, therefore [0, 1], [1, 0], [1, 1] will

be the representation for b, g, r respectively. Although multi-hot encoding comparatively

reduces the sparsity of the feature vector, it introduces false additive relationships, e.g.

[0, 1] + [1, 0] = [1, 1] meaning red+ blue = green.

2.4.4 Word Embedding

The main pitfalls of one-hot encoding discussed above are the lack of preservation of

word order, word-sense information, and semantics. In other words, when we try to visualize

one hot vector in a vector space, each word in the vocabulary will be a dimension on its own

that has nothing to do with the rest of the dimension, resulting in all words being equally

different from each other (i.e. “good” and “brilliant” is equally different as “house” and

“dog”), which is not true. Therefore, to reflect the syntactic or semantic similarity of words,

the notion of distributed representations of words (Hinton, McClelland, & Rumelhart, 1986)

was used to create a representation of words that incorporates the dependency of its context

on its dense vector representation. This dense representation is known as word embedding.

Distributed Representations refers to the representation of any single con-

cept, distributed over many, if not all, processing units (Hinton et al., 1986).

Word embeddings (Bengio, Ducharme, Vincent, and Janvin (2003), Mikolov, Chen, Cor-

rado, and Dean (2013)) learn word representations using a predictive neural model. Here,

the model is trained to predict a target word providing a window of context/surrounding

words. The hidden weights of the learned neural model correspond to the embedding of

words in the vocabulary. There are many different approaches to creating word representa-

tion, and some are provided in detail below.

2.4.4.1 Word2Vec

Is a two-layered neural network proposed by Mikolov et al. (2013) to learn word repre-

sentations in the form of dense word embeddings. Word2Vec aims to learn word embeddings

in such a way that words sharing a similar context tend to appear closer to each other in

26



Figure 2.13: Architecture of Word2Vec Continuous Bag-of-words (CBOW) model

the vector space than words that do not often occur in the same context. Two model ar-

chitectures were proposed by Mikolov et al. (2013): continuous bag-of-words (CBOW) and

skip-gram. The CBOW model takes context as input and tries to predict the target word;

in contrast, the skip-gram model takes the target word as input and tries to predict the

context words. The context used in both approaches is formulated by a fixed size window of

(2× c+ 1), where c refers to the size of the context window, and ×2 is used to consider the

left and right words of the target word. Given a sentence “The more you know, the more

you realize you know nothing”, Table 2.2 shows the context-target pairs of context window

size (c) two to train the neural model.

Table 2.2: Sample context-target pairs generated, with context window size 2 for sentence:
“The more you know, the more you realize you know nothing”

Context Target

more, you The
the, you, know more
the, more, know, the you
more, you, the, more know
you, know, more, you the
know, the, you, realize more
the, more, realize, you you
more, you, you, know realize
you, realize, know, nothing you
realize, you, nothing know
you, know nothing

Given a vocabulary size V , both target word and words in context are represented with

a one-hot vector of size V . Figure 2.13 shows the architecture of the CBOW model, where

the number of neurons in the hidden layer N corresponds to the size of the embedding

one intends to produce, and the output (i.e. the target word) is a vector of size V with
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Figure 2.14: Architecture of Word2Vec skip-gram model

softmax values as elements. The softmax values indicate how probable each word in the

vocabulary to be the target word given a specific context. Since the target value is one-hot

encoded, the difference between the target value and the softmax values are calculated and

backpropagated as error to train the model. By the end of training, the entire model is

discarded except for the trained weight matrix after the hidden layer W ′N×V , is used as a

table of reference to find corresponding word embedding for all the word in the vocabulary.

Skip-gram model on the contrary can be considered as the inverse of CBOW architecture

as shown in Figure 2.14, where the input is the one-hot vector of the target and the output

is a probability distribution over all words in the vocabulary, for each word in the context.

The training is conducted in a similar way as CBOW, where the error of each context word

would be backpropagated through the model to train the weights, and the weight matrix

of the hidden layer (W ′N×V ) will be preserved for obtaining the word embeddings.

2.4.5 Generalized Language Models

Even though Word2Vec learns word embedding by training the network model to predict

the target words based on the context, when retrieving the word embeddings for each word

there is only one representation, resulting in a context independent vector representation.

In other words, given the following 2 sentences, “I deposited my money in the bank” and “I

saw a boy playing along the river bank”, even though the word “bank” refers to two different

concepts, the pretrained word embedding retrieved from the Word2vec model remains the

same. To mitigate the shortcomings of this approach, approaches to compute contextualized

word embeddings were proposed which computes the embedding through dynamic functions

of the the context.
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2.4.5.1 Embeddings for Language Models (ELMo)

To embed context dependant information in word embeddings, Peters et al. (2018)

proposed ELMo (Embeddings for Language Models), a deep contextualized word repre-

sentation. A contextualize embedding refers to a representation that captures both the

word meaning along with the information available in the context. Therefore ELMo, unlike

word2vec utilizes a two layered bi-LSTM, where each layer of the bi-LSTM has two passes

- forward pass and backward pass stacked together. This architecture uses character level

convolution neural network to represent words of a text string into raw word vectors. These

raw word vectors are used as input to the first layer of bi-LSTM. The forward pass within

the bi-LSTM layer contains information about a certain word and the context (other words)

that appear before the word, whereas the backward pass contains information about the

word and the context that follows the word. This pair of information from the forward

and backward pass forms the intermediary word vector which is then used as input to the

next layer of the bi-LSTM. Final representation of ELMo is computed by obtaining the

weighted sum of the raw word vectors and the two intermediate word vectors results after

each layer of bi-LSTM. This enables the model to produce word embeddings based on the

context surrounding, meanwhile encoding morphological information, due to the utilization

of character convolutions. Even though ELMo improved in performance, however, for each

specific downstream task, the model has to learn a linear combination of the hidden states

of the ELMo model (i.e. the learned weights of the linear combination of the ELMo layers)

to form the word embeddings resulting in training the model for every downstream task.

To mitigate training a model for every downstream task as in ELMo, ULMFiT (Howard

& Ruder, 2018) was proposed as a solution for transfer learning, which was widely used in

computer vision tasks. This philosophy introduced in ULMFiT paved for new techniques to

effectively transfer knowledge learnt, but adjust to downstream task by fine tuning on the

task dataset, rather than having to train a new model from scratch. Apart from ULMFiT,

GPT (Radford & Narasimhan, 2018) and BERT (Devlin et al., 2019) followed the same

principal of transfer learning, enabling the use of pretrained language model to be directly

incorporated on end tasks. These models follow a two step approach: pretraining and fine-

tuning. The following section describes both pre-training and fine-tuning with respect to

BERT as it was used in this thesis.

2.4.5.2 BERT

Bidirectional Encoder Representations from Transformers or in short BERT (Devlin et

al., 2019) is a language model solely based on Transformer architecture (see Section 2.2.4),
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more precisely a multi-layer bidirectional encoder from the transformer architecture. The

introduction of BERT in late 2018, took NLP by storm, by obtaining state-of-the-art results

on many NLP benchmark tasks. Even though BERT is a language model (LM), the authors

of BERT rephrased the LM prediction task into a “Masked Language Model” (MLM) task

and “Next Sentence Prediction” NSP tasks giving them the leverage of using birectionality

of transformer architecture when producing contextualized word representation.

Statistical models, which are trained to predict the next word given a sequence

are called Language Models or LMs

(Jurafsky & Martin, 2009)

As shown in Figure 2.15 the input of BERT is a representation of the sum of three

embeddings:

• Token embeddings: are retrieved through Wordpiece tokenization (see Section 2.3,

Tokenization), which allows the model to better handle unknown words by breaking

down a rare word into smaller sub-word units.

• Segmentation embeddings: were motivated by certain downstream tasks such as

Natural Language Inference (NLI) and Question and Answering (QA), where the tasks

focuses on relation between two sequences. In this case the segmentation embedding

is utilized to form embedding for different sequences, by having a special separation

token [SEP] in between.

• Positional embedding: Unlike in sequential learning models like LSTMs and RNNs,

the utilization of multiple Transformer blocks with multi-head attention mechanism,

causes BERT to process text in parallel. This leads the model to not retain the word

ordering. Therefore, to provide the notion of word ordering positional embedding in

incorporated as part of the input embedding.

In addition to the above mentioned embeddings, a special token [CLS] is added at the

beginning of the input. The final hidden state of this token retrieved from the BERT

model, corresponds to the aggregation of sequence representation, and is used for prediction

in classification based downstream tasks.

As mentioned earlier, BERT follows the philosophy of transfer learning. This is ac-

complished in 2 phases: pretraining and fine-tuning. In the pretraining phase, Bert is

trained for both MLM and NSP tasks. Masked Language Model (MLM) task was per-

formed by masking 15% of the tokens in the input in random and trying to predict what
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Figure 2.15: Input embeddings of BERT consisting of token embeddings, segmentation
embeddings and positional embeddings. Source (Devlin et al., 2019)

the masked tokens are. The Next Sentence Prediction (NSP) task was performed by pro-

viding pairs of sentenced to the model, and trying to predict whether the second sentence

is the actual next sentence following the first one. Both MLM and NSP were performed

simultaneously while training the model, therefore the weight adjustments were based on

the training loss which is a the sum of the mean likelihood of MLM and the mean likelihood

of NSP. Since BERT was trained on BooksCorpus (800M words) and English Wikipedia

(2,500M words), it provides a better generalized representations that could be utilized di-

rectly on downstream tasks. The authors of BERT released 4 different version of BERT that

could be used on different circumstances based on the requirement, BERT-base-uncased,

BERT-base-cased, BERT-large-uncased and BERT-large-cased. Both BERT-base models

constitute of 12 transformer blocks within their architecture with approximately 110 million

parameters to be trained. On the contrary BERT-large models consists of 24 transformer

blocks with roughly 340 million parameters to be trained.

In the fine-tuning phase, a few parameters are added to the pre-trained model ac-

cording to the downstream task. As shown in Figures 2.16 a and b, the final hidden

representation of [CLS] is used as input for any classification model, such as a feed-forward

neural network, linear regression, etc. to predict the probability of classes in single sentence

classification tasks or sentence pair classification related tasks. We will see how a similar

construct to the above is utilized in our Relation Extraction (RE) task in Chapter 4.

For token classification tasks, such as NER detection (Figure 2.16.d), each hidden token

state is used to calculate a probability distribution over a given set of c available classes

using a neural network, to predict which class each token belongs to.
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Figure 2.16: Training parameters added to the base model for fine-tuning BERT for different
downstream task. Source (Devlin et al., 2019)
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2.5 Works related to Relationship Extraction

RE was approached using a variety of machine learning paradigms mentioned above.

In a supervised setup, the RE task was treated as a multiclass classification problem.

Early research focused on extracting rich linguistic features to be used in feature-based

approaches (Kambhatla (2004); Suchanek, Ifrim, and Weikum (2006); Rink and Harabagiu

(2010)) such as POS tags, lexical gazetteers, WordNet representations, while some focused

on kernel-based approaches using SVM (Chowdhury and Lavelli (2013); Thomas et al.

(2013)), convolution tree kernel (Qian, Zhou, Kong, Zhu, & Qian, 2008) and dependency

tree kernel (Bunescu & Mooney, 2005) for the classification task. However, the recent spike

in deep neural networks has changed the focus to using deep networks to learn features

rather than hand-crafting the features. Socher et al. (2012) worked on an RNN network

to learn vectors in the constituent parse tree between target entities to determine their

semantic relationships. Similarly, Ebrahimi and Dou (2015) built an RNN to obtain a

classification representation based on the dependency path between the two target entities.

Using a deep CNN, Zeng et al. (2014) extracted features at the lexical and sentence level

and concatenated them to construct a feature vector for classification. Wang et al. (2016)

used a CNN architecture with a multilevel attention mechanism to capture entity-specific

and relation-specific attention with respect to target entities and relationship, respectively.

Similarly, Shen and Huang (2016) used a CNN in the sentence to obtain a sentence convolu-

tion vector, which is then concatenated with an attention-based context vector to perform

the RE task. Although the BERT model is not designed for RE tasks, Baldini Soares,

FitzGerald, Ling, and Kwiatkowski (2019) and S. Wu and He (2019) attempted to perform

the tasks by reformulating the input in BERT with special markers to highlight the target

entities.

Among the many approaches attempted, considering the nature of the RE task, that

is, to classify semantic relations between two entities, some researches focused on making

use of dependency parse trees to extract features. Using dependency parse trees has shown

to be effective as they are capable to capture long-range syntactic relationships which are

unclear to observe from the surface form of the sentence. Classical feature-based models

(Kambhatla (2004); Bobić, Fluck, and Hofmann-Apitius (2013); Thomas et al. (2013)) ex-

tracted lexical and syntactical features of tokens that lie in the dependency path between

the two target entities and encoded along with other linguistic features of tokens in the

sentence. Bunescu and Mooney (2005) showed the effectiveness of reducing the dependency

parse tree to shortest dependency path between entities using a tree kernel approach. Miwa
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and Bansal (2016) attempted to capture both the substructure information of the depen-

dency parse tree and the word sequence by using a bidirectional sequential LSTM stacked

with a bidirectional tree-structured LSTM.

In contrast to the techniques mentioned above, Y. Zhang, Qi, and Manning (2018) and

D. Li and Ji (2019) attempted to model the RE task by applying a Graph Convolution

Network (GCN) (see Section 3.1) in the dependency parse tree along with contextualized

word vectors. Y. Zhang et al. (2018) used the GCN on a pruned dependency parse tree

based on the target entities rather than restricting to the shortest dependency path. Con-

textualized word representation obtained from a bi-LSTM was used as input to the GCN

architecture. This bi-LSTM is trained jointly with the rest of the network. Similarly, D. Li

and Ji (2019) modeled a 2-layer GCN in a similar approach however obtaining contextual-

ized word embedding from BioBERT (as they performed their task on DDI) embedded with

positional encoding and used dependency parse tree of the entire sentence as input rather

than pruning it.

Considering the nature of the RE task, and the capability of dependency parse tree in

capturing semantic relationship between entities, this thesis focuses on a similar approach

to a GCN architecture. Rather restricting the GCN architectue only to contextualized word

embeddings, this thesis attempts to encode additional linguistic features of tokens in the

dependency parse tree along with a representation of dependency path between entities

using Node2Vec embeddings. More detailed description of the specific GCN architecture

used along with the input representation is given in the following chapter (Chapter 3).
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Chapter 3

Dependency parse trees and Graph

Neural Networks

Human languages are organized in a way that captures the basic view of how humans

observe the world (de Marneffe, Manning, Nivre, & Zeman, 2021). We see entities (or

objects) participating in events (actions or states), and these entities and events have at-

tributes that describe their nature. The dependency graphs try to capture this using three

fundamental linguistic units, namely nominal, clause, and modifier. These three units

can be phrases (consisting of multiple words) or minimally be just a single word.

Nominals resemble entities, and typically a nominal phrase will contain a noun as the

head word of the phrase. Clause resembles events, and usually have a head word also

known as predicate, mostly a verb, but possibly an adjective or adverb. Modifiers are

used to describe the attributes of entities or events and have mainly an adjective or adverb

as the head word. In a phrasal construct, a clause has a main predicate that expresses

a state or action, and since most of the time these actions involve participants, they also

contain nominals. These types of composition lead to a hierarchical structure where clauses

can contain nominals, modifiers, and other clauses; nominals can also contain all three

units; and modifiers can contain other modifiers. To express the hierarchical structure, the

dependency grammar uses a construct head - dependent, where a phrase has a head, and

the rest it contains are considered dependents of the head. This relationship is symbolized

with a directed arrow pointing towards the dependents (more precisely, to the head of the

dependents) starting from the head. This head-dependent binary asymmetrical relation

results in a tree structure with the main predicate as the root.

As we have seen in earlier chapters, the relationship extraction task requires a triple

annotation in the form of (relation, X, Y), where X and Y are two target entities, and the
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relation depicts the relation between the entities. Since dependency parse trees are capable

of providing approximations of semantic relationships between predicates and their argu-

ments, this thesis focuses on generalizing over dependency parse trees to obtain latent path

representations to distinguish different semantic connections between the target entities.

Link Prediction (LP) versus Relation Extraction (RE) Link prediction (LP) is a

task that focuses on predicting whether two nodes in a graph network are likely to have a

connection or not (M. Zhang & Chen, 2018). LP is applied to graph structured data, which

are widely used in many domains such as social networks, recommender systems, knowledge

graphs, proteins or gene interactions, etc. A practical example of an LP task on a social

network graph would try to predict whether two people who are not currently connected

will connect in the future or not. Graph Neural Networks (GNNs) (Kipf & Welling, 2017)

are a family of neural approaches that are applied to graphs to address certain tasks, such

as link prediction. Therefore, for the above social network example, a GNN approach uses

the information about the network structure, i.e. connections that are common for given

two nodes (humans), along with features of the nodes, such as hobbies, interests, age, etc.

to predict whether or not the two nodes will have a connection in the future.

Relation extraction (RE) tasks can be perceived in the same way as LP. Similarly to

the two target nodes in the LP task, in RE there are two target entities (E1 and E2). In

LP, the graph structure encapsulating the target nodes along with the features associated

with it is used to predict the existence of a link, whereas in RE one can leverage upon the

dependency parse tree (which is a type of graph) and use token features (such as token

embedding, POS tag, etc.) to predict the relationship between the two entities. However,

in contrast to LP, where the prediction is the existence of a (physical) link, in RE it would

be a semantic link. In a multiclass setting, this link will also have a type rather than just a

prediction of whether there exists a link or not. Since the LP and RE task share similarities,

this thesis attempts to model the RE task using the GNN approach, which is discussed in

the following section.

3.1 Graph Neural networks (GNN)

GNN operates on graph data. A graph is a structured way to represent data. Many

natural phenomena or systems and their interactions, such as social networks, molecules,

organizations, citations, transactions, etc., can be naturally represented as graphs. There-

fore, formally, a graph G can be defined as a set of vertices/nodes V and a set of edges

E that connect them. Each vertex v ∈ V , can have one or many properties, such as a
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person vertex on the social network, has features such as age, sex, name, etc. The edges

represent the relationship between these vertices. They can be directed (similar to depen-

dency parse trees) or undirected (similar to social network connections) and may or may

not contain properties similar to vertices. Unlike other data types, such as image data or

text data, graph data lack a fixed structure and ordering. Sentences are composed of a

specific ordering of words, and image data is composed of a grid of pixels. Ordinary neural

network-based approaches struggle in processing graph structured data, leading to a sep-

arate family of neural approaches called graph neural networks (GNN) (Bruna, Zaremba,

Szlam, and Lecun (2014); Defferrard, Bresson, and Vandergheynst (2016); Duvenaud et al.

(2015); Atwood and Towsley (2016); Kipf and Welling (2017)).

The basics of GNN (Kipf & Welling, 2017) are very similar to the basics of Convolutional

Neural Networks (CNN) (LeCun et al., 1999). CNN on image data takes each pixel and

extracts information about its region by aggregating the pixel within the context of its

neighborhood. The next layer then extracts information about that region in the context

of its neighboring regions. Doing this over enough number of layers enables the network to

be able to reason over different parts of the whole image, and passing this over some linear

computations will identify the relevant object.

Similarly, relaxing the properties of fixed structure and ordering as in an image data,

GNN performs convolution by passing messages from nodes to its neighbors. This is achieved

by aggregating the messages received from all neighboring nodes. Performing this over

multiple rounds enables more and more information to be passed around the graph. After

a sufficient round of message passing, the GNN obtains a final representation of each node

in the graph that describes it given the larger context. Each round of message passing can

be viewed as a series of layers, just as in CNN. The final representation of each node can

be considered as a node embedding, which can be used as input to any ordinary neural

network-based architecture to perform the classification task.

In the family of GNN techniques, many different approaches are currently being ex-

plored. Since motivation to investigate the link prediction-based approach was obtained

from M. Zhang and Chen (2018), this thesis experiments with their approach using a Deep

Graph Convolution Neural Network (DGCNN).

3.1.1 Deep Graph Convolution Neural Network (DGCNN)

Among the different implementations of GNN, this thesis focuses on a specific archi-

tecture, DGCNN (M. Zhang et al., 2018). Apart from the reason it was used in the LP

37



Figure 3.1: Graphs and adjacency matrices

article (M. Zhang & Chen, 2018) as mentioned above, DGCNN obtained SOTA (state-of-

the-art) performance in two of the benchmark bio-informatics datasets, such as PROTEINS

(Borgwardt et al., 2005) and D&D (Dobson & Doig, 2003) and two social network datasets

COLLAB (Yanardag & Vishwanathan, 2015) and IMDB-M (Yanardag & Vishwanathan,

2015). Most importantly, the architecture was designed to accept graph input of arbitrary

size, which was relavant to this thesis as the size of the input vary sample to sample.

Similarly to the basic GNN architecture (Kipf & Welling, 2017), the input to DGCNN

is represented using two matrices. One is the Adjacency Matrix A and the other is the

Information Matrix(IM ); for simplicity of representation in the formula, the notation X

will be used instead of IM in this chapter.

Adjacency matrix (A): Also known as the connection matrix is a square matrix A ∈
Rn×n. Its dimension corresponds to the number of vertices (n) on the graph, with 1 or 0 in

position of (vi, vj) depending on whether vi is adjacent to vj or not. For a graph without

self-loops, the matrix will have a diagonal with 0 s. For an undirected graph, the A matrix

will be symmetric. Figure 3.1 shows a few simple examples of graphs and how they are

interpreted in an A matrix.

Since dependency parse trees are directed trees, the resulting A matrix is not symmetri-

cal, as shown in Figure 3.1.D. Furthermore, modifications to the values within the A matrix

can be made by providing weight values instead of binary values to show the strength of the

connection each node can have with its neighboring nodes. Although this is a possibility of

a modification that could be tested, this thesis will not take this discussion further, as it is

beyond the scope of this thesis.
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Figure 3.2: Representation of an Adjacency matrix and corresponding Information matrix
for entity pair (stress, divorce)

Information matrix (IM/ X ): Unlike vertices in a typical graph structure, vertices in

the dependency parse tree contain rich linguistic features such as token embedding, POS

tags, gazetteer encoding, etc. Therefore, to capitalize on these features and their connections

to other nodes, we create an Information Matrix X ∈ Rn×c, where n refers to the number

of nodes within a graph, and c refers to the size of the feature vector of each node in the

graph. Therefore, for each row in the A matrix, a corresponding row in the X matrix (see

Figure 3.2) will be created that contains the feature vector of each node in the graph.

The specifics of the matrix IM (or X ), such as how it is created and what features are

encoded there, will be discussed later in this chapter in Section 3.3. The following sections

will focus on how these matrices (A, X ) are used to create a graph representation using the

DGCNN architecture. As shown in Figure 3.3 DGCNN consists of four sequential stages:

(1) Graph Convolution layers: Extract local substructure features of vertices and

define a consistent vertex ordering

(2) Sort Pooling layers: sort vertex features and normalize input sizes

(3) 1D Convolution network: extract abstract features and create graph representa-

tion

(4) Dense layer: make predictions based on graph representations.

3.1.1.1 Graph Convolution layers

In a nutshell, the graph convolution layers perform message-passing from all nodes to

their neighbors, so that at the end of multiple rounds of message passing, each node will
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Figure 3.3: Illustration of DGCNN architecture; Source:M. Zhang et al. (2018)

have a representation given the larger context (the graph). Given a graph G, represented

by the matrices A and X, the graph convolution is performed as follows:

Z = f(D̃−1ÃXW ) (3.1)

where Ã = A + I with I as the identity matrix to add self-loops to the A matrix. D̃

is a diagonal degree matrix with D̃ii =
∑

j Ãij , W ∈ Rc×c′ is matrix of trainable graph

convolution parameters, f is a nonlinear activation function and Z ∈ Rn×c′ is the output of

the activation function.

For a deeper understanding of the graph convolution, it can be split into 4 steps. The

first step is the linear transformation of the node information matrix by XW, mapping

c feature vectors to c′ vector; here the filter weight W is shared among all vertices. The

second step is the propagation of the node information to the neighboring vertices, as well

as the node itself, by ÃY , where Y = XW . For further understanding, this can be broken

down as (ÃY )i =
∑

j ÃijYj = Yi+
∑

j∈Γ(i) Yj or, that is, the row i of the resulting matrix is

the sum of Yi itself and Yj from neighboring nodes of i (Γ(i)). As the third step, to maintain

a fixed feature scale after graph convolution, each row i is normalized by multiplying by

D̃−1
ii . The final step is to apply a point-wise non-linear activation function f and output

the results of the graph convolution.

Similarly to a traditional convolution kernel (see Section 2.2), a graph convolution ex-

tracts information about the local substructure by aggregating information about the vertex

in local neighborhoods. Therefore, to extract features of multiscaled substructures, multiple

layers of graph convolution (such as Equation 3.1) can be stacked as follows:

Zt+1 = f(D̃−1ÃZtW t) (3.2)
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where Z0 = X, Zt ∈ Rn×ct is the output of the graph convolution layer t and W t ∈
Rct×ct+1 maps the ct feature vectors to the ct+1 feature vector. After multiple layers of

graph convolution, an additional layer is added to horizontally concatenate the generated

output Zt, where t = 1, ..., h resulting in an output Z1:h := [Z1, ..., Zh], where h is the

number of graph convolutions applied and Z1:h ∈ Rn×
∑h

1 ct . Therefore, in the concatenated

output Z1:h, each row i contains the encoding of multiscale local substructure information

of vertex vi, which will be addressed as the “feature descriptor” of each vertex.

3.1.1.2 Sort Pooling layers

The main objective of the SortPooling layer is to sort the feature descriptors created

in the previous step in a consistent order before using them as input into a traditional 1D

convolutional and dense neural network. M. Zhang et al. (2018) consider this step to be

one of their novel approaches in their proposed DGCNN architecture.

In this layer, given an input Z1:h, which is a tensor of dimension n×
∑h

1 ct, the output

is produced as a tensor (Zsp) of dimension k ×
∑h

1 ct, where k is an integer defined by the

user. This is accomplished in two steps. The first step is to perform a row-wise sorting of

the input Z1:h based on Zh , since Zh is the last layer of convolution, considered the output

of the vertices with the most refined substructure information. The vertex order sorting

based on Zh is performed by first sorting the last channel of Zh in descending order. If

two channels of two vertices have the same value, then the tie is broken by comparing the

second to the last channel, and so on. If ties still exist, then the comparison will continue

with the values produced by earlier layers, such as Zh−1
i , Zh−2

i , and so on until the ties are

broken. M. Zhang et al. (2018) compares this ordering similar to lexicographical ordering

but in reverse order (from right to left), which maintains a consistent ordering throughout

all graphs, enabling to feed into a traditional neural network to perform the classification

task.

Once the row-wise sorting is performed, the second step in the SortPooling layer is to

normalize the size of the output tensor. This step is crucial, since the traditional neural

network works with a fixed input size, and the input graph to the DGCNN system is

not restricted to any fixed size (the number of vertices in the graph can vary). Without

normalization, the output generated from the SortPooling layer will be a tensor of varying

size, which the next layer cannot handle. Therefore, the first dimension of the output tensor

is normalized to size k by truncating or extending the size from n to k. This is performed

by deleting the last n− k rows if n > k, or adding k − n rows with zeros if n < k.
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IM

Figure 3.4: Architecture of 1D convolutional neural network in DGCNN

3.1.1.3 1D Convolution Neural Network (1D-CNN)

After the SortPooling layer, the output Zsp generated is of size k ×
∑h

1 ct. To train a

1D CNN on them, Zsp is first reshaped row-wise (by concatenating the rows one after the

other) into a vector k(
∑h

1 ct)× 1. This step is then followed by a 1D convolution layer (see

Figure 3.4) with a filter size and a step size equal to
∑h

1 ct, to sequentially apply filters on

the feature descriptors of the vertices. This is then followed by a Max-pooling layer with

a 2 by 2 window size and stride size 1, to extract the prominent features. This is then

followed by another 1D convolution layer to learn local patterns in the node sequence. The

final representation is then flatten to produce a single-dimensional vector, which will then

be used as a graph representation for classification.

3.1.1.4 Dense Layer

The graph representation obtained from the 1D convolution network is used as input to a

fully connected neural network with a hidden layer and a softmax layer to perform the classi-

fication task. The cross entropy loss function1 with class weights passed as a parameter was

used to calculate the loss and backpropagate to fine-tune the weight parameters of all layers

in DGCNN. Here, the class weights were calculated by obtaining the inverse of the total num-

ber of data samples observed in the training data (1/total num datapoints within class)

1https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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to address the imbalanced data distribution in the corpus.

3.2 Preprocessing text

As with any language-related task, a text document goes through a series of preprocess-

ing steps to clean and extract linguistic features to perform the task. The process of cleaning

and extracting has a considerable amount of influence on the overall performance of the sys-

tem. A typical NLP preprocessing steps include sentence splitting, tokenization, sometimes

followed by task-relevant Gazetteer annotation, possibly Named-Entity-Recognition(NER),

part-of-speech (POS) tagging, and dependency parsing. These pre-processing steps are so

common that there exist many different packages to facilitate this task using different ap-

proaches (see Section 2.3). However, for this thesis, all pre-processing steps were performed

using the GATE(Cunningham et al., 2013) framework.

3.2.1 Pre processing pipeline

The three data sets (DDI, Sem10, and MeasEval) were processed with a series of GATE

(Cunningham et al., 2013) modules: ANNIE Tokenizer, ANNIE Sentence Splitter, Stanford

Parser for POS tagging (Klein & Manning, 2003) and Stanford Dependency Parser (de

Marneffe et al., 2006). Errors in the earlier modules have a snowball effect on the following

modules by propagating errors, resulting in incorrect annotations. For example, a wrong

tokenization will affect the POS assigned to it, possibly leading to a wrong dependency

parse tree. To prevent the snowball effect of errors throughout the pipeline and to obtain

an optimal dependency parse tree, a sequence of additional JAPE (GATE’s rule description

language) rules were added to post-process certain outcomes of the modules. The following

is a list of JAPE rules added to fix certain unfavorable outcomes observed by the pipeline

modules.

• Mixed character protection: This rule prevents splitting tokens composed of dif-

ferent character types into different tokens (e.g. δ 13CTOC 6→ δ, 13, CTOC) while

preserving the usual behavior of ANNIE tokenization when dealing with mathematical

symbols. ( for example “5 ≤ 2θ /◦ ≤ 80” → “5”, “≤”, “2θ”, “/”, “◦”, “ ≤ ”, “80”).

• Number normalization: This rule prevents the default behaviour of ANNIE to-

kenizer splitting decimal numbers into three different tokens (256.89 6→ “256”, “.”,

“89”). Also, it identified words that resemble numbers as numbers. This was accom-

plished using the Number Normalizer GATE plugin, developed by a previous student

from the CLaC lab to modify the behavior of the ANNIE tokenizer. However, an
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additional rule was added for an unhandled case where decimal numbers such as .005

without a proceeding integer before full-stop being split into two (.005 6→ “.”, “005”).

• Abbreviation period protection: Although the ANNIE sentence splitter preserves

abbreviation periods without splitting them into sentences, scientific documents con-

tain some additional abbreviations which are not commonly found in English text,

such as Fig., sp., spp.., Tab. etc. To fix this issue, instead of explicitly specifying

what those abbreviations are, a simple pattern-based JAPE rule was added to fix this

issue. The rule utilized (in regular expression) is as follows:

\.( \) | \S+ [a-z])

In simple words, if there exists a full-stop punctuation mark followed by ending paren-

theses or followed by one or more spaces, with a proceeding word starting with a low-

ercase character, then the full-stop punctuation mark is considered as a punctuation

mark to abbreviate a word rather than the ending of a sentence.

• List and interval protection: Scientific articles frequently report on intervals ex-

pressed in different ways and with varying lengths (e.g., “34-40” or “265.32, 272.30,

and 340.21”). These lists, as a whole, play a role in the text. Unfortunately, they

do not receive proper dependency-parse assignments. To improve dependency rela-

tionship assignments, a JAPE rule was introduced to group cardinal number tokens

(“CD”) belonging to a list into one token and manually assign the POS tag “CD”

to the grouping. The following is a summary of the grouping patterns used for this

purpose.

CD (: | - | to) CD

CD (, CD)* and CD

Once the data sets are preprocessed through GATE, the linguistic features such as token

offsets, sentence offset, POS tags of each token in a sentence, and dependency parse trees are

extracted in a CSV (comma separated value) file by utilizing GATE’s Configurable Exporter

module for further processing to create the input representation for my experiment models.

3.3 Constructing Information Matrix (IM)

As explained in Section 3.1.1 the input to the DGCNN is made up of two matrices: Ad-

jacency matrix(A) and Information matrix(IM ). The A matrix represents the connectivity

of entities based on the dependency graph, while the IM matrix contains the feature vectors
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of each token/node within the graph. Feature vector of each token/node is constructed

by concatenating multiple linguistic features. Since the thesis addresses three different data

sets to evaluate the impact of linguistic features on the RE task and the achievement of

SOTA performance was not part of the objective, the features extracted to represent in IM

are basic and can be produced by any text processing library (e.g. SpaCy or NLTK) or

frameworks (e.g. GATE) than task-specific.

According to the paper on Link Prediction(M. Zhang & Chen, 2018), the authors ex-

tract a subgraph surrounding the target nodes and construct the A and IM to represent

them. This subgraph serves as a context to determine whether there exists a link between

the two target nodes or not. Similarly, I constructed the context by extracting all nodes

on the shortest path between the two target entities, as they have been proven to be ef-

fectiveBunescu and Mooney (2005). Therefore, as a first step, before constructing feature

vector representations for tokens/nodes, the target entities (E1, E2) were first identified, and

then the subtree2 encompassed by the target entities were extracted from the dependency

parse tree. Since there are 3 data sets, which are different from each other, the following

sections will discuss the steps to identify the entities (E1, E2) individually for each data set.

3.3.1 Target entity pair extraction and class labeling for DDI

Summary of the task: The DDI (Segura-Bedmar et al., 2013) corpus consists of doc-

uments describing drug-drug interactions extracted from the DrugBank (Wishart et al.,

2006) database and MEDLINE abstracts. Each document consists of multiple sentences,

where each sentence is provided with a unique sentence ID along with all drugs within the

sentence identified as Entities and explicitly annotated by the task organizers. For sen-

tences containing more than one entity, they will contain Pair annotations, which denote

the pair of entities between which a relationship should be predicted. The pair annotation

for each sentence is created by taking all the permutations of the identified entities in a

sentence (that is, a sentence containing 4 entities will have 6 pair annotations, as shown in

Ex 7 ). However, the order of the entities within the pair annotation is based on sentence

ordering. (that is, E1 should appear before E2 in the sentence).

Ex 7: “Anakinra1: Concurrent administration of anakinra2 (an interleukin-1 antagonist) and an-

other TNF-blocking agent has been associated with an increased risk of serious infections, an

increased risk of neutropenia and no additional benefit compared to these medicinal products

alone.”

2the term subtree is used instead of subgraph, since a tree is a kind of graph and the dependency parse
tree has a tree-like structure
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DDI (Anakinra1, anakinra2): False

DDI (Anakinra1, interleukin-1 antagonist): False

DDI (Anakinra1, TNF-blocking): False

DDI (anakinra2, interleukin-1 antagonist): False

DDI (anakinra2, TNF-blocking): True (type: Effect)

DDI (interleukin-1 antagonist, TNF-blocking): True (type: Effect)

The drug that has a positive interaction with another drug will have a ”type” of inter-

action as additional information; the type can be one of the four types of interactions the

drugs could have between them: Advise, Effect, Mechanism, and Interaction. However, to

keep the task simple, only the interaction (True or False) was predicted instead of trying

to predict the type of interaction.

As a preliminary step to construct the representation IM, the target entities between

which a relationship should be predicted (E1, E2) are extracted from the corpus through

the following steps:

Selection of sentence: Given the DDI corpus, sentences containing the annotation Pair

were only considered and pre-processed, to be used to extract input data to train the models,

the rest of the sentences in the corpus were discarded.

Selection of token pairs (E1,E2): Since DDI explicitly provides the target entities

(E1,E2) in the form of annotation Pair, this information is used directly to create the token

pairs necessary to construct the IM. However, the entities annotated in the corpus may

sometimes be a composition of multiple tokens (e.g., HIV Protease Inhibitors, interleukin-1

antagonist (as shown in Ex 7)), in this case only one token is chosen given the span to

represent the pair of tokens (E1,E2). This is due to the fact that the dependency-parse tree

is made of tokens rather than spans. To choose a single token given the span of the entity,

I attempted to find the head noun following the hypothesis, as the token should be a noun

(with a POS tag NN/ NNS/ NNP/ NNPS ) and if there exist many nouns within the span,

the last token of nouns will be chosen as the token to represent the entity.

Labeling token pairs: Each token pair is assigned the label provided by the organizers.

False classes received a label 0 and true classes received a label 1.

3.3.2 Target entity pair extraction and class labeling for Sem10

Summary of the task: SemEval-2018 task 8 (Hendrickx et al., 2010) is focused on the

extraction of the semantic relationship between pairs of nominal given a sentence. Rather
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than restricting the sentences to a specific domain, this task focuses on extracting generic

relationships based on the practical interest that can be observed in the English text. This

task was organized as a multiway classification task, where a relationship should be predicted

for a pair of entities out of 10 relationship defined, including “Other” (no-relationship class).

Selection of sentence: In contrast to the other two data sets, the Sem10 is a more

engineered dataset where the corpus consists of sentences with a pair of nominals explicitly

annotated for each sentence. Therefore, all sentences in the corpus were considered training

data.

Selection of token pairs (E1,E2): Similar to the DDI task, the pairs of target entities

were explicitly annotated for each sentence in the corpus. However, the entities annotated

in the corpus might sometimes be a composition of multiple tokens (e.g., science fiction,

health care provider). Therefore, to extract a single token as Entity, the head noun is chosen

following a similar approach as DDI mentioned above.

Labeling token pairs: Each pair of token annotated in the corpus is given a single class

out of the 10 classes defined by the organizers. The 10 classes are Cause Effect, Instru-

ment Agency, Product Producer, Content Container, Entity Origin, Entity Destination, Com-

ponent Whole, Member Collection, Message Topic, and Other. The definitions of the classes

are provided in Section 1.2.

3.3.3 Target entity pair extraction and class labeling for MeasEval

Summary of the task: The MeasEval(Harper et al., 2021) task consists of 5 subtasks

(non-independent) that cover entity detection, span detection, and relation extraction across

multiple sentences. Since the main objective of the task is to identify Quantities (Q) and

its related entities, the term “Annotation set” (AnnSet) is used to define all related

entities and relations associated with a particular Q. The individual entities within an

AnnSet will be identified as “Annotation type” (AnnType). A basic annotation set

can consist of 4 annotation types (Quantity (Q), MeasuredEntity (ME), MeasuredProperty

(MP) and Qualifier (QL)) and 3 relation types (HasQuantity (HQ), HasProperty (HP), and

HasQualifier(HQ)).

Unlike the other data sets, the MeasEval dataset comes with its own set of challenges.

With limited data (show in Table 3.1 and 3.2), wide range of topics involved in the dataset,

and the idiosyncrasies of vocabulary used in each scientific field makes the task difficult.
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Table 3.1: Training data: Frequencies of Annotation types

Annotation Frequency
Quantity (QA) 866

MeasuredEntity (ME) 855
MeasuredProperty (MP) 544

Qualifier(QL) 238

Table 3.2: Frequencies of different composition of Annotation Sets

Composition Training Testing
Q,MP,ME 365 152

Q,ME 281 99
Q,MP,ME,QL 148 86

Q,ME,QL 34 23
Q,MP,ME,QL,QL 25 9

Q 6
Q,MP 4

Q,MP,QL 1
Q,ME,QL,QL 1

Q,MP,ME,QL,QL,QL 1

Also the complexity of the task increases with the multiple phases having to be achieved to

complete the task, such as:

• Identification of AnnTypes (Q, ME, MP and QL); There are a few cases where a

particular span of text will have different AnnType for different AnnSet, as shown in

Ex 8.

Ex 8: “The SCGs show that from the initial version barcode-0.90 there were two(Q1) coherent clusters

(X) in the system. The smaller one is around 10%(Q2) of the code(ME2) while the

larger is around 40%(Q3) of the code(ME3).”

Annotation Set-1: (Q1, ME(X))

Annotation Set-2: (Q2, ME2, MP(X))

Annotation Set-3: (Q3, ME3, MP(X))

And more cases where a particular AnnType belonging to more than one AnnSets

(i.e. a span identified as MP can belong to both annotation set 1 and 2) as shown in

Ex 9.

Ex 9: “We recruited 147 patients from consanguineous pedigrees(ME) (parents of the proband

were second cousins or more closely related) who were diagnosed with permanent diabetes

(MP) before 6 months(Q1) of age or were diagnosed with permanent diabetes before 9 months
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However , all elements included within Fig. 5 can be consi- to be at very low concen- of < 2 ppm

dered trations

Figure 3.5: Tokenized and POS tagged sample sentence from the MeasEval data set

(Q2) and had any additional clinical features that made a diagnosis of type 1 diabetes

less likely.”

Annotation Set-1: (Q1, ME, MP)

Annotation Set-2: (Q2, ME, MP)

• Determining the span of the entity (see Table 3.3 for a comprehensive list of the range

of span sizes with examples with respect to each annotation type)

• Classification of Q to detect modifiers and detection of units if exists any.

• Grouping annotation types into annotation sets; there are rare cases where the anno-

tation set can span multiple sentences (as shown in Ex 8 above).

Since this thesis only focuses on relation extraction, additional tasks such as detecting

modifiers and units were excluded from experimentation. Also the detection of QL AnnType

was excluded as it lacked the definition as to what it corresponds to.

Unlike the other two data sets, in MeasEval the entities were not explicitly annotated.

Therefore a system has to perform Entity detection prior to performing a relation extraction.

Considering all these factors, I made certain assumptions to determine what the target

entities could be, prior to extracting the subtrees. Based on the sentence in Figure 3.5, the

assumptions and the intuition behind them are as follows:

(1) Entity spans are unknown. In other words, given a sentence one do not know whether

there exist any token that falls into any category (Q, ME or MP). Hence entities

should to detected first.

(2) However, based on the guideline provided, Q always serves as the base for a given

AnnSet.

(3) Even though a Q span is not explicitly given, based on the definition, a Q span should

contain a numerical value. This numerical value will have a POS tag CD. For the ease

of readability the term base CD will be used to address this token.

Assumption 1 : A Quantity should have a POS tag CD

Based on the sentence in Figure 3.5, “5” and “2” are possible candidates for base CD.
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Table 3.3: Word count within spans for each annotation type. Spans are split by space to
obtain an approximate word count in given gold data.

Annotation type word
count

occurrence
count

Example

Quantity

1 427 “Five”
2 440 “4 days”
3 144 “After 8 days”
4 75 “less than one day”
5 43 “up to at least 3Rp”
6 20 “1.5 mm and the 8.5 mm”
7 10 “a few percent to around thirty percent”
9 4 “increases from 2.6 km s−1 to 25 km s−1”
10 1 “(a) 1.3 (b) 2.4, and (c) 2.2 mg cm- 2”

Measured Entity

1 430 “diatoms”
2 397 “size fractions”
3 133 “sets of cases”
4 78 “input of odd nitrogen”
5 55 “diatom silicon isotope fractionation factor”
6 18 “cells of all three germ layers”
7 12 “impactors have churned the soil on Mars”
8 7 “free-air enrichment by supplementary CO2 in field

plots”
9 6 “Refined crystallographic parameters for (1) from

PXD and PND”
10 4 “δ30Si values of size fractions between 2 and 20 µm”
11 4 “deficient HA start their decomposition at tempera-

tures lower than pure HA”
12 1 “pure HA (ratio CaP=1.67) is stable in an air and

argon atmosphere”
13 2 “North Atlantic igneous province (NAIP), the Kilda

Basin, and the northern rain belt”
14 1 “Tropical E. grandis × E. urophylla expressing a

stress-inducible rd29a promoter-CBF2 transcription
factor cassette”

Measured Property

1 400 “thick”
2 167 “spinner flask”
3 88 “taken any medication”
4 37 “storage in the dark”
5 23 “maximum yield for the year”
6 10 “fractional integrated differential brightness of BS1”
7 3 “gelatin-coated tissue culture plates in differentiation

medium”
8 3 “rapid cooling to ambient temperature at a rate”
9 5 “self-pick up process has been shown to lead to”
10 1 “found to carry the GFP-Neo cassette in the SOX2

locus”
11 2 “Seismic amplitude differences between the 38 °C

and 34 °C scenarios”
12 2 “produce the same backward slice as well as the same

forward slice”
14 1 “category-4 still make up the second largest group

and when added together with category-2”
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Table 3.4: Continuation of Table 3.3... Word count within spans for each annotation type.
Spans are split by space to obtain an approximate word count in given gold data.

Annotation type word
count

occurrence
count

Example

Qualifier

1 107 “mean”
2 52 “cooler by”
3 50 “high magnetic susceptibility”
4 31 “random high-angle grain boundaries”
5 17 “Compared to the C1 model”
6 15 “better than in the rotating mode ”
7 13 “average solar XUV flux at 0.047 AU”
8 8 “at the location of the accelerated electron signa-

ture”
9 8 “(at T = 1200 K) for Σ5 grain boundaries”
10 4 “post-inoculation of single suspension BC1 cells in

ultra-low attachment plates”
11 1 “accumulated over 3 byr and mixed into 1.5–2.6 m

of soil”
17 2 “inferred from elemental abundances measured at

various locations on Mars by Spirit, Opportunity,
Pathfinder, and Viking Landers”

19 1 “little evidence to suggest that standard clinical in-
formation on preclinical vascular risk status would
be helpful in the prediction”
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(4) But not all token with POS tag CD are quantities; scientific documents contain many

mentions of numerical representations which are not exactly quantities depending on

its context. Year of publication (e.g. ... Peters et al., 2018...) or section/table/figure

numbers (e.g. ... as shown in table 3.4...) or scientific names with numerical suffixes

which might not be explicitly attached with a symbol with the string prefixes (e.g.

...across SD 1 and SD 2 are shown...) are few examples for numerical values not being

quantities in the given corpus.

Assumption 2 : Not all “CD”s are Quantities

Based on Figure 3.5 “5” is a number of the figure and does not fall a Q span.

(5) Figure 3.6 shows the gold annotation provided by the organizers for the sentence in

Figure 3.5. As per the example, ME (“elements”) is approximately 16 tokens away

(based on GATE tokenization) from Q (“<2 ppm”). However based on the depen-

dency parse tree of the sentence as shown in Figure 3.6, ME is only 5 edge(hop)

distance away from Q(“2”), when traversing along the path of the edges of the depen-

dency graph. This shows that any AnnType within an AnnSet lies in close proximity

(in terms of dependency parse tree) to Q, i.e. ME or MP lies semantically closer to

Q.

Assumption 3 : Different annotation types such as ME, MP are in close

proximity to Q in terms of dependency parse trees (i.e. semantically closer)

Even though most cases of the AnnTypes of a given AnnSet are within a single sen-

tence, there exist some cases in the corpus where the AnnSet spans multiple sentences.

In other words, for a particular Q, its ME can be 2 sentences apart from Q. Since

this thesis focuses on the dependency parse tree as a base to construct the input

representation, AnnSets that lies within a sentence are only considered.

Given the above assumptions, the target entities (E1, E2) are extracted and assigned a

label through the following steps:

Selection of sentence: From the resulting sentences after pre-processing the documents,

sentences with token POS tagged as “CD”(base CD) are processed to extract entities and

the rest of the sentences are discarded.

Selection of token pairs (E1, E2): Based on Assumption-1, E1 is always a token with

the POS tag “CD” (base CD), which pairs with other tokens in the dependency parse tree.
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However , all elements included within Fig. 5 can be consi- to be at very low concen- of < 2 ppm.

dered trations

ME MP Q

nummod

depnmod

xcomp
dep

HasProperty HasQuantity

Figure 3.6: Gold annotation and dependency-parse tree representation of the sentence in
Figure 3.5

In principle, all nodes in the dependency parse tree are candidates for E2. However, based

on Assumption-3, I limit the number of nodes for E2 based on the length of the connecting

path. This results in multiple pairs for each base CD.

For example, based on the dependency parse tree in Figure 3.6, E1 will be the token/node

with value “2”. If the maximum connection path length is set to 5, all token pairs that

would be generated are as follows.

• Path length 1: (2, ppm)

• Path length 2: (2, <),

• Path length 3: (2, of), (2, concentrations)

• Path length 4: (2,considered), (2,to), (2,at), (2,be), (2,low)

• Path length 5: (2,elements), (2,5), (2,be), (2,can), (2,very)

Since the sentence in Figure 3.5 has another token “CD” “5”, it will also be considered

as E1 and will be paired with its neighboring nodes in the same way as shown above.

Labeling token pairs: Since the MeasEval task was approached in such a way that it

would be possible to perform the detection of the entity and the extraction of the relation

simultaneously, it was treated as a multiclass classification problem where the classes were

constructed to reveal the type of entity and the relationship between entities. 1 out of 5

classes were assigned to each pair of tokens (E1, E2) based on the gold span into which each

token falls in the given training gold annotation:

• Class 0 (Other): E1 is not within a gold Quantity span

• Class 1 (Q-O): E1 is within a gold quantity span, but E2 is not within any gold spans

• Class 2 (Q-Q): E1 and E2 are within a gold Quantity span.
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Table 3.5: Class labels assigned to token pairs generated for base CD “2” on Figure 3.5
Token Pair Class Explanation

(2, ppm) 2 (Q-Q) “2” and “ppm” fall in the gold Q span
(2, <) 2 (Q-Q) “2” and “<” fall in the gold Q span
(2, of ) 1 (Q-O) “2” is in Q span but “of” is not within any span
(2, concentrations) 4 (Q-MP) “2” is in Q span and “concentrations” is within MP span
(2, considered) 1 (Q-O) “2” is in Q span but “considered” is not within any span
(2, to) 1 (Q-O) “2” is in Q span but “to” is not within any span
(2, at) 1 (Q-O) “2” is in Q span but “at” is not within any span
(2, be) 1 (Q-O) “2” is in Q span but “be” is not within any span
(2, low) 1 (Q-O) “2” is in Q span but “low” is not within any span
(2, elements) 3 (Q-ME) “2” is in Q span and “elements” is within ME span
(2, 5) 1 (Q-O) “2”is in Q span but “5” is not within any span
(2, be) 1 (Q-O) “2” is in Q span but “be” is not within any span
(2, can) 1 (Q-O) “2” is in Q span but “can” is not within any span
(2, very) 1 (Q-O) “2” is in Q span but “very” is not within any span

• Class 3 (Q-ME): E1 is within a gold quantity span and E2 is within a gold Measure-

dEntity span

• Class 4 (Q-MP): E1 is within a gold quantity span and E2 is within a gold Measured-

Property span

Using these definitions, the class labels assigned for each pair of generated token samples

are shown in Table 3.5. Since the sentence Figure 3.5 consists of another token “5” with a

“CD” POS tag, all generated token pairs will be assigned a label 0 since “5” does not fall

within a gold quantity span.

Since I approached the MeasEval task by breaking down the entity spans into token

pairs, I did not adhere to the official evaluation criteria (see AppendixB). Rather a modified

approach was followed, where for each pair of tokens, I directly compare the gold label I

assigned (discussed above) with the label predicted by the encoding schema.

3.3.4 Extracting Subtree encompassing target entities and representing

features

After the token pairs (E1, E2) are generated for the three datasets, the next step is to

extract the subtree from the dependency parse tree encompassing the pair of target entities.

This is achieved by traversing the shortest path from E1 to E2 through the edges of the

dependency tree. All nodes/tokens encountered during the traversal between the two target

nodes are considered to be part of the subtree.
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Adjacency matrix (A) representation: Once the subtree is extracted for each pair

(E1, E2), it is represented using the adjacency matrix A. Since the dependency parse tree

has governor-dependent relationships and a dependent can only have one governor, the rows

in the A matrix represent the dependents and the columns represent the governor. If a pair

(E1, E2) has n nodes within the subgraph, the A matrix will have dimension n×n (that is,

A ∈ Rn×n ).

Information matrix (IM ) representation: The IM matrix is constructed to contain

feature vectors of each node / token within the extracted subtree between the target entities

(E1, E2). Each row in IM corresponds to each row in the A matrix. Dimension IM ∈
Rn×c, where n represents the number of nodes in the subtree and c represents the size of

feature vector of a given node. The feature vector here is a concatenation of the linguistic

features of each node in the subtree. These linguistic features were obtained from the GATE

preprocessing pipeline and experimented with different representation techniques, as the

features are categorical. Since experiments of different encoding schemas were performed

on all three datasets, basic and generic linguistic characteristics were chosen for IM rather

than task-specific features. However, it should be emphasized that the IM constructed is

not restricted to these features and should be explored in the future with more task-specific

features related to the task. The features chosen to represent in the IM in this thesis are:

• POS tags of tokens

• Dependency relationship

• Token embedding

• Distance Labeling

To individually encode these features as feature vectors, multiple representation tech-

niques were attempted to assess the impact of each technique. The following is the list of

techniques applied for each feature representation.

POS tag: The Stanford Parser (POS tagger) (Klein & Manning, 2003) module used

in the GATE pipeline uses the Penn Treebank tag set (Marcus et al., 1993), which consists

of 36 POS tags and other tags for punctuation and symbols. The number of unique punc-

tuation marks and symbols observed in the training set varied according to the data set.

To transform the POS tag into a numerical representation, two techniques were explored.

(1) Label encoding: In this technique, all unique POS values observed in the training data

were collected, sorted alphabetically (to maintain consistency), and assigned a label
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to each POS tag corresponding to the index of the sorted list as its label. During the

construction of the IM matrix, each node/token in the subtree is assigned a single

numerical value as a label representing the POS tag of the node/token.

(2) One-hot-encoding: Similar to the label encoding technique, all unique POS values

observed in the training data were collected, alphabetically sorted (for consistency)

and stored as a POS reference list. During the construction of the IM matrix, for

each node/token in the subtree, a vector of the same size as the POS reference list

is created and assigned a value 1 to the index corresponding to the POS tag of the

token in the reference list while filling the remaining elements of the vector with 0s.

Dependency relationship: The Stanford Dependency parsermodule (de Marneffe

et al., 2006) was used in GATE to obtain the dependency parse tree of each sentence.

Although the A matrix represents the structure of the subtree (that is, which node / token is

connected to which other node/token), it does not encode the information of the dependency

relationship (that is, the type of edge). Therefore, two approaches were experimented to

encode the dependency relationship between the nodes in IM :

(1) Representing the immediate governor: This was an initial step in trying to encode

the dependency relationship. Since a node in the dependency parse tree can only

have a single parent, the A matrix denotes who the parent is, but not the type.

Therefore, to encode the type of dependency relationship of a token with its immediate

governor(parent), the One-hot-encoding technique was used. Similarly to POS one-

hot encoding, all dependency edge relationships observed in the training data were

collected, sorted alphabetically, and stored as a dependency reference list. During

the construction of IM, for each node/token in the subtree, a vector of the size of

the dependency reference list is created and filled with 0s, except for the index of the

vector corresponding to the dependency relationship of the node with its parent. It

is marked as 1.

(2) Representing path of each node from the base node: For MeasEval task, ME

and MP are determined based on the relationship the entities have with Q. There-

fore, instead of encoding the immediate edge relationship explained above, a path

representation from E1 to E2 was chosen to represent it in IM. For MeasEval, E1

always corresponds to base CD and all paths were retrieved with a correspondence

to it. Although this is not the case for the other two datasets (DDI and Sem10), to

maintain a consistent approach throughout all data sets, I decided to retrieve the path
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representation for all nodes in the subtree starting from E1, which is the first target

entity node that appears in the sentence ordering for DDI and Sem10.

Financial stress is one of the main causes of divorce

nsubj

nmod

nmod

p(stress, stress) = (self)
p(stress, one) = (nsubj)
p(stress, causes) = (nsubj, nmod)
p(stress, divorce) = (nsubj nmod nmod)

Figure 3.7: Dependency subtree of a Sem10 sample, (E1, E2) = (stress, divorce); Depen-
dency path p (E1, ti) generated for all nodes / tokens within the subtree with respect to E1

As shown in Figure 3.7, dependency graphs are directed. However, to traverse along

the edges to obtain a path representation (only), the dependency parse tree was treated

as undirected3. Therefore, regardless of the direction of the arc in the dependency

tree, the relationship between the dependent and the governor is taken as is, as shown

in Figure 3.7. In addition, to indicate a path from a token to itself, a self path was

also created rather than not encoding the path information at all. Once the path

information is retrieved from the subtree, I compare two encodings:

• Multi hot encoding: A multi-hot encoding is typically used to represent a single

categorical variable with a binarized label (see Section 2.4.3). However, a modi-

fied implementation of multi-hot encoding was utilized to represent the path in-

formation. Instead of binarizing the label of a dependency relationship, similar to

one-hot encoding, the multi-hot encoding encodes all the edges encountered dur-

ing the traversal from E1 to a specific node in the dependency subtree, by adding

1 in the vector for each type of dependency relationship encountered. Hence the

multi-hot path vector will be of size same as the dependency reference list, with

multiple counts denoting the dependency relationship types encountered and the

rest of the elements in the vector filled with 0s as shown in Figure 3.8

3Contrasting to this approach, another approach was attempted by introducing reverse relationship in the
dependency graph with prefixed “r”(e.g., rnsubj, rnmod ). However, after experimentation, it was decided
to treat the graph as undirected to obtain path information rather than introduce more variables

57



Figure 3.8: Muli-hot encoding of dependency path of p(stress, divorce) =
(nsubj nmod nmod)

enmod =

ernsubj =

p(stress, divorce) =  ernsubj enmod enmod 0 0 0

 128

 128

6 x 128

Figure 3.9: Concatenated node2vec encoding of dependency path p(stress, divorce); lp =
6 and de = 128

Although multi-hot encoding encodes all the dependency relationship types en-

countered during the traversal, the sequence of the path is not retained, i.e., all

the dependency relationship types observed in the path are encoded without a

particular order of the edges. Therefore, the following technique was attempted

as a remedy for this problem.

• Concatenating Node2Vec embedding: This approach was used to encode

dependency relationships with dependency embeddings (similar to Word2Vec

embeddings). A modified Node2Vec approach (Grover & Leskovec, 2016) (see

Section 3.3.4.1) was used to create dependency embeddings of size 128, for each

type of dependency relationship observed in the training data. In IM, a vector

of size v ∈ Rd is instantiated, where d = lp × de where lp is the size of the

maximum path length observed in the training data, and de is the size of the

dependency embedding (in our experiment it is of size 128). For each row in IM,

the representation of the path is constructed by concatenating the dependency

embedding of each type of dependency relationship observed on the path. For

paths shorter than the observed maximum path length (lp), 0s are padded until

the vector size reaches the empirical limit d, as shown in Figure 3.9.

• Averaging Node2Vec embedding: Similar to the concatenation of Node2Vec

embeddings, in this approach, the dependency embeddings were summed for all

dependency relationships observed in the path. To normalize the vector, an

average was calculated by dividing by the path length. Therefore, the averaged

path representation was equal to the size of the dependency embedding, 128.
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Token Embedding: Tokens were represented in IM with word embeddings retrieved

from pre-trained ELMo models (Peters et al., 2018):

• Original ELMo embedding: Original ELMo model trained on 800M tokens from the

WMT news crawl data was used to obtain the word embedding of 1024 size to encode

tokens in IM.

• PubMed ELMo embedding: The PubMed ELMo model, trained with 10M PubMed

abstracts, was used to obtain word embeddings of 1024 sizes to encode in IM.

Distance labeling: Inspired by (M. Zhang & Chen, 2018), the Double Radius Node

Label (DRNL) approach was used to calculate the combined distance of a node vi in a

subtree to the pairs of target entities (E1, E2). Then, this label was represented as a one-

hot vector in IM. The objective of this feature is to give a notion of the distance of how

far a node is from the target pair of tokens. Both target nodes E1 and E2 carry the label

1. For the rest of the nodes v within the subtree, the distance label is calculated using the

following hashing function:

f(v) = 1 +min(dt1, dt2) + bd
2
c × (bd

2
c+ [d%2]− 1) (3.3)

where f(v) assigns labels to all nodes v, dt1, and dt2 are distances of v with respect to t1

and t2, respectively. d = dt1 + dt2, bd/2c is the integer quotient and [d%2] is the remainder

of d divided by 2. Based on Figure 3.7, f(stress) and f(divorce) will have a distance label

of 1, f(one) (dt1 = 1, dt2 = 2) and f(causes) (dt1 = 2, dt2 = 1) will have a distance label 3

based on the above hash function.

3.3.4.1 Node2vec

As discussed above, the dependency path is a feature represented in IM. The depen-

dency path refers to the sequence of dependency relationships that exist when traversing

from one token to another along the dependency graph. To represent the dependency re-

lationship, dependency embeddings were created using the Node2Vec technique with a

minor modification.

Node2Vec (Grover & Leskovec, 2016) is an embedding technique used to transform

graphs into numerical representations. More precisely, it creates an embedding for each

vertex in a graph, preserving the structure of the original graph so that similar vertices

in the graph will have similar representations. This objective is similar to the concepts

of Word2Vec (Mikolov et al., 2013) (see Section 2.4). Therefore, Node2Vec uses the same

technique as Word2Vec(skip-gram model) to obtain a node representation. Since embedding
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Figure 3.10: Directed acyclic graph with a maximum degree of 1.

Figure 3.11: First-order transition probabilities

is created using the Word2Vec approach, Node2Vec focuses mainly on sampling strategy

to create a corpus from the graph data to train the Word2Vec skipgram model.

Before looking at the sampling strategy, let us first understand the structure of the input

used to train Word2Vec. The training data used in Word2Vec are made up of a sequence

of tokens. As shown in Figure 3.10, this sequence can be interpreted as a directed acyclic

graph with a maximum degree of 1. Since Word2Vec can embed this very specific kind of

graph, (Grover & Leskovec, 2016) proposes a hyperparameterized sampling strategy based

on second-order random walk. This strategy extracts the specific kind of graph structure

as above, from more complex graph structures which can be (un)directed, (un)weighted,

(a)cyclic, and with many degrees of connection.

A first-order random walk can be thought of as a walk carried out on a graph along

the edges of the graph. At each step, the decision on where to go next is made on the

basis of the current state alone. Figure 3.11 shows an example of a first-order random walk,

where u1, u2, u3 are three neighboring nodes of node v with weights w associated with each

edge. Given these weights, the probability of picking the next step can be calculated as

follows.

p(u|v) =
w(u, v)∑

u′∈Nv
w(u′, v)

=
w(u, v)

d(v)
(3.4)

where Nv is the set of neighboring nodes of v which are u1, u2 and u3 in the given

example and d(v) denotes the degree of node v.

Based on Equation 3.4 the transition probabilities from v to u1, u2 and u3 are 0.4, 0.5,

and 0.1, respectively. Based on the transition probability, the next step from node v would
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be toward u2 and this is called 1-hop transition. Therefore, a first-order random walk can

be described as a walk generated by performing multiple 1-hop transitions, which only

depends on the current state. However, second-order random walk proposed by Grover

and Leskovec (2016) is a slightly modified version of the first-order random walk, which

incorporates information from the previous step before deciding the next step during the

traversal. This strategy consists of 4 arguments:

• Number of walks (N): Number of walks to be generated from each node in the

graph

• Walk length (L): Maximum number of nodes in each walk

• P: Return hyperparameter

• Q: In-out hyperparameter

This means that the second-order random walk will go over each node in the graph,

generating N number of walks, of length L. However, to decide which node to traverse next

given the current state, the algorithm uses two parameters P and Q. Given the example

shown in Figure 3.12, let us assume that we have transitioned from node u2 to node v.

Therefore, the parameter P is considered as the probability of going back from node v to

node u2 and the parameter Q is considered as the probability of exploring the undiscovered

parts of the graph. Based on these parameter values, the second-order transition calculates

the normalized transition probability as follows.

p(u|v, t) =
αpq(t, v)w(u, v)∑

u′∈Nv
αpq(t, u′)w(u′, v)

(3.5)

where t refers to the previous state (in our example (Figure 3.12), u2 corresponds to t)

and α is calculated as follows:

αpq(t, u) =


1
p if dtu = 0

1 if dtu = 1

1
q if dtu = 2

(3.6)

where dtu denotes the shortest path distance between nodes t and u. Since dtu must be

one of 0,1,2, Grover and Leskovec (2016) conclude saying that only two parameters P and

Q are sufficient to guide the walk by controlling how fast the walk explores and leaves the

neighborhood of a particular node on the graph. Therefore, by decreasing the value of q

we increase the probability of going outward (that is, not restricting the walk to a localized
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Figure 3.12: Illustration of random walk procedure in node2vec. The walk just transitioned
from u2 to v and is now evaluating its next step out from v. Edge label indicates search
biases α; yellow line indicates the in-out edge, and red line indicates the return edge.

Figure 3.13: Detailed view of the feature vector in IM

neighborhood) and, conversely, restricting the walk within a localized neighborhood by

increasing the value of q.

As mentioned above, Node2Vec uses the sampling strategy N times on each node in the

graph, producing a corpus of node sequences. This corpus is then fed into the Word2Vec

skip-gram algorithm to generate node embeddings.

Since our main objective of using Node2Vec is to generate embeddings for dependency

relationship types, instead of generating a sequence of nodes, I modified the Node2Vec sam-

pling algorithm to generate a sequence of edges (i.e., a sequence of dependency relationship

types) as the corpus to train the Word2Vec model.

3.3.5 Final representation of IM

Section 3.3.4, describes the different techniques used to represent the linguistic features

(POS tag, dependency relationship, and token embedding) and the distance feature. Based

on a preliminary ablation study conducted on the MeasEval data set with DGCNN archi-

tecture (see Appendix A), certain representation techniques were chosen for each feature as

shown in Table 3.6.

Using these representation techniques, the linguistic features are transformed into vector

representation and concatenated with each other (as shown in Figure 3.13) to construct the
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Table 3.6: Representation techniques used to represent linguistic features in IM ; bold text
indicate the chosen representation technique for each feature.

Features Representation techniques

POS tag
Label encoding
One-hot encoding

Dependency relationship

One-hot encoding
Label encoding
Multi-hot encoding
Node2Vec average
Node2Vec concatenation

Token Embedding
Original ELMo
PubMed ELMo

Distance feature One-hot encoding

feature vector of each node / token in the IM . Although different representation techniques

were explored, they were chosen on the basis of the MeasEval data set and used to represent

the other two data sets to evaluate the impact of linguistic features on different encoding

schemas (see Chapter 4). However, different features and their representation techniques

may behave differently on different data sets. Due to limited processing resources and time

constraints, a complete ablation of these features and their transformation techniques was

not performed on all data sets.
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Chapter 4

Experiments and Analysis

Previous chapters covered the motivation behind using a dependency parse tree as a

base structure for the relation extraction task along with details of Graph Neural Networks

(GNNs) that are designed to work on graph based data structures. Even though the idea of

representing input in the form of an Information Matrix (IM) originated from GNN based

architectures, it is not restricted to GNNs only. In this chapter, I evaluate the performance

of a GNN based architecture DGCNN, along with other neural encoding models that are

widely used in NLP research using IM as the primary or complimentary input. These

models can be basically grouped into:

(1) GNN based architecture: DGCNN

(2) Classic baseline algorithms

(3) Pretrained model - BERT

(4) Ad hoc Transformer - Encoder stack

For evaluating and comparing the performance of the encoding systems, I used macro-

averaged precision, recall and F1 measure for all the systems. Prior to discussing about the

different experiments conducted, let me briefly discuss the evaluation metrics in the section

that follows.

4.1 Evaluation metrics

As mentioned before in this thesis, I have treated the Relationship Extraction (RE) task

as a classification problem. Where for each entity pair (E1, E2) a class label is predicted

indicating the relationship between the the entities. This label is directly compared with the
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gold label either provided by the organizers (for DDI, and Sem10) or derived (for MeasEval,

see Section 3.3.3) to evaluate the systems’ performance. For this purpose, Precision (P),

Recall (R) and F1-measure (F1) are used as the evaluation metrics. Out of the three

data sets used, two of the data sets are treated as a multi-class classification problem (Sem10

and MeasEval), where MeasEval was treated as two separate multi-class classification tasks

to detect ME and MP relationship individually1. Hence, more precisely Macro averaged

precision, recall and F1-measure were used to evaluate and compare performance of different

encoding systems.

In a multiclass setting, macro average reduces the multiclass prediction into multiple

sets of binary prediction and calculates each metric, precision, recall and F1-measure for

each binary cases and then averages the results together (an example calculation is shown

with respect to precision). Since the average is obtained by dividing by the number of

classes seen in the data set, implicitly it is assumed that the each class gets equal weight

when contributing their portion during the calculation of any evaluation metric.

Precision: also known as positive predictive value, is the fraction of relevant instances

among the retrieved instances. It can be measured by the following equation:

P =
TP

TP + FP
(4.1)

However to calculate the macro averaged precision, the following equation is used.

P macro =
P1 + P2 + ...+ Pk

k
= P1

1

k
+ P2

1

k
+ ...+ Pk

1

k
(4.2)

Recall: also known as sensitivity is the fraction of retrieved relevant information. It is

calculated as follows:

R =
TP

TP + FN
(4.3)

In the above equations (4.1, 4.3) TP, FP and FN stands for True Positives, False Pos-

itives and False Negatives respectively. TP refers to positive instances that are correctly

identified by the system, while FP refers to instances that are falsely identified as positive

instances and FN refers to positive instances left unidentified by the system.

1Entities in MeasEval are inter-dependant on one another. Based on early experimentation, detection of
ME and MP separately showed comparatively better performance than trying to predict both in the same
system. Therefore all experimentation in this chapter follow the same process as to predict the two entities
separately, in a multi-class setup
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F1-measure: provides a single measure to represent precision and recall. In general, it

is calculated as follows:

Fα = (1 + α2)× precision× recall
α2 × precision+ recall

(4.4)

where α denotes the importance of recall over precision. However, to strike an equal balance

between precision and recall, F1 (also known as harmonic mean) is calculated as follows:

F1 = 2× Precision×Recall
Precision+Recall

(4.5)

4.2 GNN based architecture: DGCNN

The input representation in the form of Information matrix (IM) was inspired by the

Graph Neural Networks (GNN). Since the inspiration of the GNN architecture was obtained

from M. Zhang and Chen (2018), I used their DGCNN (M. Zhang et al., 2018) (see Section

3.1.1) on my relation extraction task.

4.2.1 Original DGCNN (DGCNNorg)

As mentioned above an initial set of experiments of the DGCNN system is conducted on

the original setup of the authors of the SEAL architecture, M. Zhang and Chen (2018). The

authors used this architecture for link prediction between two nodes given a subgraph. As

explained in Section 3.1.1, the DGCNN system consists of four sequential stages, the graph

convolution layers, sort pooling layers, 1D convolution network and dense layer. Table 4.1

shows the default parameter setting at each stage in the DGCNN architecture defined by

the authors. The DGCNN system was trained for 6 epochs with an Adam optimizer and

learning rate 1e− 4.

4.2.2 Modified System (DGCNNmod)

As for parameter modification I experimented with changing the number of graph con-

volution layers and size of each layer, while keeping the rest of the parameters fixed as

shown in Table 4.1.

• Graph convolution layers

◦ Number of graph convolutions: 10

◦ Window size at each layer: [4000, 2500, 1024, 512, 256, 108, 64, 32, 16, 1]
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Table 4.1: Default parameter setting of each stage in the DGCNN architecture defined by
the authors (M. Zhang & Chen, 2018)

Stage Parameter Values

Graph convolution layers
# of Graph convolutions 4
Window size at each layer [32, 32, 32, 1]

Sort pooling layer Padding/Truncating size (k) 10

1D convolution network

First convolution layer

kernel size: k(
∑h

1 ct)

Stride size: k(
∑h

1 ct)
Activation function: ReLU
In channel: 1
Out channel: 16

Max pool layer
Kernel size: 2
Stride size: 2

Second convolution layer

Kernel size: 5
Stride size: 1
Activation function: ReLU
In channel: 16
Out channel: 32

Dense layer
Hidden layer 128
Activation function ReLU
Loss function CrossEntropyLoss

My main intention to modify only the graph convolution layer values is to retain original

information from IM as much as possible. This is because, according to the DGCNN

implementation, values derived from graph convolution layers are concatenated and used

as input to the proceeding stages of DGCNN while discarding the original IM matrix (see

Section 3.1.1.1). Since IM with token feature vectors are richer unlike node feature vectors

derived from graph data (used as input in the author’s paper (M. Zhang & Chen, 2018)),

I experimented by modifying the values of graph convolution layers in such a way that it

would extract more information from the IM .

Table 4.2: Precision(P), Recall(R) and F1-measure(F1) results on all 3 data sets with
original DGCNN (DGCNNorg) and parameter modified DGCNN (DGCNNmod).

Sem10 DDI MeasEval (MP) MeasEval (ME)
Experiment P R F1 P R F1 P R F1 P R F1

DGCNNorg .56 .62 .56 .76 .87 .80 .58 .72 .61 .58 .72 .61
DGCNNmod .68 .73 .69 .81 .88 .84 .60 .72 .63 .62 .73 .65

Table 4.2 shows increase in performance for DGCNNmod across all the data sets com-

pared to DGCNNorg. This is because the graph convolution extracts multi scaled substruc-

ture features by performing graph convolution as shown below in equation 4.6:

Zt+1 = f(D̃−1ÃZtW t) (4.6)
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where Zt+1 is the output after t number of graph convolution cycles. Z0 = IM , and W t

is the weight matrix of the tth convolution layer (see Section 3.1.1.1 for complete detail

on graph convolution). At each cycle of the graph convolution, the W (weight) matrix

performs a linear transformation on the input Z from the previous layer. Say at the first

convolution cycle, Z0 = IM ∈ Rn×c, and W ∈ Rc×c′. Therefore, the size of the output from

the 1st convolution layer Z1 ∈ Rn×c′, which will then be used as input to the next layer.

The final output of the graph convolution layer in DGCNN (which is then used as input

in the SortPooling layer) is the concatenation of Z1:t+1, excluding Z0 which is the original

IM .

The authors of DGCNN (M. Zhang & Chen, 2018) defined a size [32, 32, 32, 1] indicating

that, 4 graph convolution cycles will take place where at each cycle the size of W matrix

(more precisely the second dimension of the W matrix) is equal to the size defined in the

list. In other words, at the first cycle W 0 ∈ Rc×32 (where c is the size of feature vector in

Z0 = IM and 32 is the size given as the parameter in the list). Even though the size defined

by the authors M. Zhang and Chen (2018), is more suitable for the graph data used in their

experiments2, as they represent each node in the graph with an embedding size of 128 (i.e.,

c = 128), it is not suitable for my experimentation as the my node representations in IM

is more richer in features (e.g. cDDI = 3800). Therefore, using a weight matrix at the first

graph convolution cycle with a size W 0 ∈ R3800×32 on IM ∈ Rn×3800 (along with other

matrix multiplication as in equation 4.6) will result Z1 ∈ Rn×32, abstracting from 3800

features to 32 features. This results is huge feature loss. Therefore, the experimentation

with sizes similar to the IM and gradually decreasing them performs comparatively better.

4.3 Encoding Information matrix

Information matrix used as input for DGCNN is a two-dimensional matrix where the

rows represent the number of nodes contained within a subgraph and the columns cor-

respond to the feature vector (i.e., a concatenation of multiple embeddings representing

selected features) of each node. Even though DGCNN is configured in a way to accept the

input (IM) as a two-dimensional matrix, for certain models such as feed-forward network

or random forest networks (which were used as baseline models which will be discussed

in detail in the following section), this increases the level of complexity of handling the

data. Therefore, the transformation of two-dimensional IM into one dimensional vector

was experimented with two approaches.

2PROTEINS (Borgwardt et al., 2005) or MUTAG (Debnath, Lopez de Compadre, Debnath, Shusterman,
& Hansch, 1991) were few data sets which were used in the paper to evaluate the performance of the DGCNN
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Figure 4.1: Row concatenation approach to construct one-dimensional vector

(1) Concatenating the rows (row concat): In this approach, each row in the IM is

concatenated one after the other forming a one dimensional vector without any loss

in information. However, due to varying size of the subgraphs for different samples,

the one-dimensional vector after row concatenation will differ in size between samples.

Therefore to construct uniform sized vector representation for all samples, during the

formulation of this representation, the possible maximum number of nodes that can

exist within a subgraph is determined and used to calculate the size of vector to be

padded with zeros after the concatenation of rows (see figure 4.1). For example, let’s

assume the maximum number of nodes observed within a subgraph is of size 8. But

the current processing subgraph only has 5 nodes and the size of the feature vector

is 1000. Therefore, after concatenating 5 rows, we obtain a vector of size 5000. Since

the maximum nodes can be 8, a remaining 3 * 1000 vector with 0’s is padded at the

end of 5000 to normalize the size to 8000.

(2) Aggregating columns (col aggr): In contrast to above, in this approach all rows

in the IM are summed column-wise to obtain a lossy vector representation for each

sample data (see figure 4.2). No padding was required in this approach since the size

of the resulting vector is equal to the size of the feature-vector which is a fixed size

for all samples in the corpus.
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Figure 4.2: Column aggregation approach to construct one-dimensional vector

4.4 Classic baseline algorithms

Objective: The Graph Neural Network (GNN) inspired Information Matrix (IM) con-

tains feature vectors describing all the nodes within a subtree. To contrast with com-

plex architecture like DGCNN used above, in the following set of experiments I wanted to

observe how simple baseline modules like Random Forest, Support vector machines or a

Feed-Forward network would perform with IM input.

4.4.1 Random Forest (RF)

A random forest fits a number of decision tree classifiers on various sub samples of

the data set and averages over the results of each decision tree classifier to improve the

accuracy of the prediction while having control over preventing over-fitting. An off-the-

shelf RF implementation from the sklearn library3 was used with the default parameter

setting set to, n estimator = 100 and branching criterion (impurity measure) set to “Gini”.

Input to RF was provided by transforming the IM with either of the above mentioned

transformation technique (row concatenation or column aggregation). Therefore, the size of

the input varied depending on the size of vector after the transformation of either approach

and the output depends on the task at hand.

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble

.RandomForestClassifier.html
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4.4.2 Support Vector Machines (SVM)

Similar to RF network explained above the off-the-shelf support vector machine (SVM)

implementation provided by the sklearn library4 was used with the default parameter set-

tings set to kernel being “RBF”, decision function shape set to “ovr” due to multi-class

setting and the tolerance as the stopping criterion set to 1e − 3. SVM was experimented

with both transformed input variation of the IM matrix (row concatenation and column

aggregation).

4.4.3 Feed-Forward Neural network with Non linear activation (FF)

Similar to both experiments above off-the-shelf feed-forward network5, also known as

Multi-Layer Perceptron (MLP) implementation, with one hidden layer was used to exper-

iment with IM as input, transformed with either of the approaches mentioned above. As

mentioned above the size of the input vector depends on the size of the resulting vector after

the transformation of either approach, the number of hidden neurons were fixed to 100 with

ReLU as the activation function and the number of output neurons varied depending on the

task at hand (i.e., DDI data set had two neurons in the output layer, Sem10 data set had

10 and MeasEval data set had 4 neurons in the output layer). The network’s weight was

optimized using Adam (Kingma & Ba, 2015), with a learning rate of 0.001. The network

was trained for a maximum of 200 iterations or less until it converged. Since the vanilla

neural network was chosen to establish a baseline for the experiments, no parameter tuning

was conducted to choose the values mentioned above. Instead, all values set as default by

the sklearn library 6 for this network were utilized as it is.

Table 4.3 shows the results of the baseline models on all three data set with both IM

transformation approaches. In comparison to different machine learning models, based on

F1 score and Recall (R) the models can be ranked in (descending) order as FF, SVC and RF

regardless of the transformation approach. However, the precision fluctuates within different

models, data sets and transformation approach. Except for Sem10 data set, RF model has

higher precision value than FF models. Also in comparison to transformation approach

within the RF experiments RFrow concat comparatively performs better than RFcol aggr. This

observation might be because of RF models are highly capable of extracting distinguishable

features, that works as branching factors. Aggregating all the row values in the IM into

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
5https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier

.html
6https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier

.html
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one vector as in column aggregation diffuses the information, which might be impacting the

performance of RFcol aggr.

Table 4.3: Precision(P), Recall(R) and F1-measure(F1) results on all 3 data sets with
baseline models RF, SVC and FF with 2 different encoding of the IM (IMcol aggr and
IMrow concat)

Sem10 DDI MeasEval (MP) MeasEval (ME)
# Experiment P R F1 P R F1 P R F1 P R F1

1 RFcol aggr .66 .6 .61 .88 .67 .72 .67 .50 .53 .80 .51 .53
2 SVCcol aggr .75 .72 .73 .87 .76 .80 .60 .57 .59 .73 .58 .58
3 FFcol aggr .73 .73 .73 .83 .85 .84 .63 .65 .64 .63 .64 .63

4 RFrow concat .68 .61 .63 .88 .66 .71 .80 .51 .53 .78 .52 .55
5 SVCrow concat .73 .69 .70 .87 .73 .77 .76 .58 .59 .76 .59 .61
6 FFrow concat .74 .74 .74 .84 .86 .85 .70 .67 .68 .69 .69 .69

However in contrast to FF and RF, where the row concatenation approach performs

better than column aggregation, for SVC based experiments the opposite works best except

for MeasEval data set. Even though there is no clear evidence to this behaviour it can

be assumed that, due to the nature of how SVC works (that is based on the notion of

identifying a hyperplane that best divides a data set) when the input dimensionality is

high, data-points are more scattered in the vector space, impeding the model’s decision

(curse of dimensionality). Considering the size of the vector after both transformation

approaches, vector resulting after column aggregation has a lesser size compared to the size

of the row concatenation. Therefore, SVCcol aggr comparatively performs better than the

SVCrow concat.

In conclusion, compared to all experiments in Table 4.3, FFrow concat shows better per-

formance.Therefore, I chose the row concatenation transformation approach and FF as a

better contender to compare with future experiments.

4.5 Pretrained baseline model - BERT

Objective: Currently, deep pretrained language models such as BERT are widely used

in many NLP tasks achieving state-of-the-art performance. In contrast to DGCNN and

other neural models trained with IM matrix as input, the objective of this experiment is to

experiment with BERT as a trending baseline to observe the impact of pretrained language

model on relation extraction tasks.

For this experiment, the uncased base pretrained BERT model from Hugging Face li-

brary 7 was used with a feed-forward network as a classifier on the top for performing the

7https://huggingface.co/bert-base-uncased
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Figure 4.3: BERT language model combined with a FF network as classifier to perform RE
task. Dotted lines indicate the back propagation path. BERT input constructed with 3
segments; E1, E2 and tokenenized sentence, with [SEP] marker after every segment.

classification task. The FF is designed with 1 hidden layer with 50 neurons with ReLU

as the activation function and CrossEntropyLoss8 as its loss function, with class weights

calculated by 1/total num datapoints within class. Loss calculated by the above function

is used to adjust the weights of the FF while finetuning BERT weights according to the

task. The model was trained for 2 epochs9, with AdamW optimizer and learning rate set

to 2e− 5.

Considering the nature of RE task, the input to BERT was constructed (Thillaisundaram

& Togia, 2019) as depicted in figure 4.3. Where t1 to tn denotes the tokenized sentence with

n number of tokens within a sentence. tE1 and tE2 denote the tokens that are identified as

entities between which a relationship should be predicted. As pointed out by BERT authors

(Devlin et al., 2019) special classification token [CLS] is added at the beginning of each input

to obtain a sequence representation from BERT’s final layer to be used for the downstream

classification task. Originally (Devlin et al., 2019) [SEP] marker is used to differentiate

between different segments of the text (i.e., different sentences given a paragraph of text).

However, I used the [SEP] marker as it was intended to be used (to distinguish sentences)

8https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
9Out of the 4 epochs trained, 2nd epoch on the development data set showed high performance
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and to segment different parts of the BERT input. These different parts of the input are

the entities E1 and E2 which are explicitly annotated for SEM10 and DDI data set and

the derived ones for MeasEval data set. Therefore, the input to BERT is constructed with

3 segments, where each segment is split by a [SEP] marker. The first segment contains

tokens annotated as E1, the second segment contains tokens annotated as E2, and the final

segment is the entire tokenized sentence that contains both E1 and E2.

This representation puts the focus on the entities of interest, especially for the DDI

data set and MeasEval data set, which contain multiple entities, with different relation-

ships. Hence, using an input in the form of a tokenized sentence alone without explicitly

annotating the entities will lead to confusion not knowing which entities to target to pre-

dict the relationship. Therefore, I opted to experiment with separating the entities outside

the sentence with a [SEP] marker to distinguish target entity tokens from other tokens

(Thillaisundaram & Togia, 2019). As for the classification part, the hidden state repre-

sentation of the [CLS] token from the last layer is extracted and fed into the classifier to

predict the relationship between the two target entities, explicitly annotated in the input to

BERT. Moreover, this experiment was designed in a way to fine tune the BERT model by

back propagating the error from the classifier to BERT parameters. Experiment results are

given in Table 4.4 with other BERT based experiments discussed in the following section.

4.6 Concatenating Bert output with external representations

Objective: Even though BERT is trained in a self-supervised manner on a large corpus

of texts obtaining state-of-the-art performance on many NLP related tasks, fusing external

information utilizing varying techniques with regards to the task at hand has shown im-

provement in performance (A. Yang et al. (2019); Urooj, Mazaheri, Da vitoria lobo, and

Shah (2020); Liu, Fu, Zhang, and Xiao (2021)). In the same stream of thought, the ob-

jective of the following experiments is to experiment fusing different encodings of IM with

BERT’s representation to observe the impact on performance with regard to the RE task.

Even though varying techniques were followed to fuse external information with BERT, I

followed a simple concatenation of IM encoding with the final hidden state of the [CLS]

token and used it as input to a FF network for classification10

4.6.1 Concatenating IMrow concat as an external feature vector (BERT IM)

In this experiment, using the row concatenation approach (see section 4.3) the IM

was transformed into a one-dimensional vector (IMrow concat) to concatenate with the final

10The FF classifier is the same as the FF classifier discussed earlier for BERT model
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Figure 4.4: BERT IM architecture; IMrow concat concatenated with final hidden representa-
tion of [CLS] token from BERT as used as input to the FF classifier. Dotted lines indicate
the back propagation path of the error.

hidden representation of the [CLS] token obtained from BERT and used as input to the

classifier (see Figure 4.4). Since the IM matrix is a data representation of hand-crafted

features, there are no weight parameters to fine-tune except for fine-tuning the BERT

parameters based on the task. Therefore, as explained above (see Section 4.5), the error

obtained during the classification task is backpropagated to adjust the weight parameters

of the classifier as well as the BERT architecture during the training process.

4.6.2 Concatenating BERT and Convoluted IM (BERT IMconv)

Objective: The objective of this experiment is to extract abstract features from the

row concatenated IM (IMrow concat) and use it as an external feature to concatenate with

BERT’s [CLS] representation and observe the performance of the system on the RE task.

The reason to perform a convolution on the IMrow concat is because, as mentioned earlier,

the IM is a data structure of hand-crafted features concatenated with one another to form a

feature vector of each node in a subgraph, extracted from a dependency parse tree between 2

entities. The IMrow concat is a simple concatenation of rows in the IM matrix to construct a

single-dimensional vector that can be concatenated with another vector like the last hidden

state representation of the [CLS] token. Similar to the BERT IM experiment, here as shown

in Figure 4.5 the vector obtained after performing the convolution on the IMrow concat is
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Figure 4.5: BERT IMconv architecture; concatenation of final hidden representation of [CLS]
token from BERT with output of 1D convolution performed on IMrow concat prior to feeding
to a FF classifier. Dotted lines indicate the back propagation path of the error to fine-tune
the weight parameters of convolution network and BERT.

concatenated with the final hidden state of the [CLS] token and used as input to a FF

network for classification. The convolution network architecture used is same as the 1D

convolution used in the DGCNN architecture (see Section 3.1.1.3). The error calculated

after classification is backpropagated to adjust the weight parameters of the convolution

network and fine-tune BERT.

4.6.3 Concatenating BERT and DGCNN (BERT DGCNN)

Objective: The IM was constructed as an input to a Graph Neural Network (GNN),

such as DGCNN. The DGCNN tries to learn important feature patterns from cascaded

feature vectors (from neighboring nodes). Similar to the motive of above experiment (see

Section 4.6.2) the objective of this experiment is to evaluate the effectiveness of concatenat-

ing the internal representation of DGCNN to the final hidden representation of [CLS] token

of BERT. This concatenated vector is then used as input to a FF network for classification.

As shown in figure 4.6, the final hidden state of [CLS] token from BERT is concatenated

with the feature vector derived as the output from the 1D convolution in the 3rd stage of

the DGCNN system (i.e., the input to the dense layer in the DGCNN system). This

concatenated vector is used as input to the FF network for classification. The error obtained
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Figure 4.6: BERT DGCNN architecture; concatenation of final hidden representation of
[CLS] token from BERT with the intermediary representation obtained after the 1-D con-
volution stage of DGCNN, prior to using it as input to a FF classifier. Dotted lines indicate
the back propagation path of the error to fine-tune the weight parameters of BERT and
DGCNN.

during the classification task is backpropagated to adjust the weight parameters of both

BERT and DGCNN architectures during the training process.

Table 4.4: Precision(P), Recall(R) and F1 measure(F1) results on all 3 data sets with BERT
based architectures

Sem10 DDI MeasEval (MP) MeasEval (ME)

Experiment P R F1 P R F1 P R F1 P R F1

BERT .83 .86 .84 .82 .85 .84 .71 .70 .70 .71 .71 .70
BERT IM .85 .86 .85 .85 .90 .87 .73 .73 .72 .72 .74 .72
BERT IMconv .84 .86 .85 .81 .88 .84 .72 .73 .72 .72 .73 .72
BERT DGCNN .81 .81 .80 .81 .88 .84 .59 .72 .63 .62 .72 .65

Table 4.4 shows the macro averaged results of all BERT based architectures. Based on

the numbers shown in the table, it can be observed that concatenating linguistic features in

the form of IMrow concat to BERT shows improvement on all data sets consistently compared

to BERT alone results. Even though the recall value of BERT IM and BERT are the same

for Sem10 data set, combining IM information to BERT has improved the precision of

BERT rather confounding. Therefore this improvement in performance across all data

sets answers the hypothetical question of this thesis as to whether linguistic features are

beneficial to transformer-based models like BERT in improving performance on the RE

task. Additionally, this indicates the potential for more task specific features to improve
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Figure 4.7: Recall (left) and Precision (right) values of BERT and BERT IM model for each
class in the Sem10 data set; OTH:Other, C-E: Cause-Effect, I-A: Instrument-Agency, P-P:
Product-Producer, C-C: Content-Container, E-O: Entity-Origin, E-D: Entity-Destination,
C-W: Component-Whole, M-C: Member-Collection, M-T: Message-Topic

the performance even further, as very basic linguistic features show improvement on the

BERT model.

BERT-BERT IM precision, recall comparison on Sem10 data set: Further break-

ing down the prediction results of BERT and BERT IM, Figure 4.7 shows the recall and pre-

cision values of each class within the Sem10 data set. As the figure illustrates, BERT IM has

comparatively improved precision (right image) for all classes except for OTHER class than

BERT alone. However, recall wise (left image), BERT model has comparatively high recall

than BERT IM except for Content-Container (C-C) class and Member-Collection

(M-C) class. Looking at the confusion matrix of both BERT (see Table 4.5) and BERT IM

(see Table 4.6), BERT confused C-C class more often (15 instances11) with E-D (Entity-

Destination) class while there are only 2 instances12 BERT IM confused with E-D class.

During error analysis, I was able to observe that some examples for both classes are much

similar to one another, causing BERT to be confused with one another.

Ex 10: A tableau like this one is placed inside the king’s room and refers to court ceremonies.

Gold class: (C-C), BERT IM: (C-C), BERT: (E-D)

Ex 11: The instrument was sealed in a polyethylene bag for 40 hours at room temperature.

Gold class: (C-C), BERT IM: (C-C), BERT: (E-D)

Ex 12: Then, the target PET bottle was put inside of a metal container, which was grounded.

Gold class: (E-D), BERT IM: (E-D), BERT: (E-D)

11out of the 15 examples, BERT IM confused 2 instances with E-D class and 1 instance with OTH class
12BERT also got these 2 instances confused with E-D

78



Table 4.5: Confusion matrix of BERT on Sem10 data set
j Predicted class (BERT)

Gold Class Oth C-E I-A P-P C-C E-O E-D C-W M-C M-T Total
Oth 200 30 19 32 13 20 20 39 32 44 449
C-E 4 314 1 3 2 4 328
I-A 13 123 10 1 5 152
P-P 1 4 3 206 2 1 3 220
C-C 4 166 1 15 6 192
E-O 13 7 5 224 2 3 1 2 257
E-D 8 4 278 1 1 292
C-W 17 6 1 2 271 4 5 306
M-C 15 4 1 1 2 1 201 6 231
M-T 4 1 1 1 254 261
Grand Total 279 360 153 258 186 251 317 326 239 319 2688

Table 4.6: Confusion matrix of BERT IM on Sem10 data set
Predicted class (BERT IM)

Gold Class Oth C-E I-A P-P C-C E-O E-D C-W M-C M-T Total
Oth 256 18 13 21 12 21 18 31 28 31 449
C-E 11 309 1 4 3 328
I-A 21 121 5 1 3 152
P-P 18 4 2 190 2 2 2 220
C-C 10 179 2 1 192
E-O 25 6 5 213 2 2 1 2 257
E-D 12 4 274 1 1 292
C-W 19 8 1 4 263 6 4 306
M-C 14 1 2 3 208 3 231
M-T 10 1 6 1 243 261
Grand Total 396 340 144 223 200 242 300 310 244 289 2688

79



Ex 13: We poured the pulp into the tupperware tub filled with water.

Gold class: (E-D), BERT IM: (E-D), BERT: (E-D)

Ex 10 and Ex 11 are examples of class C-C which BERT confused with E-D. When

comparing Ex 10 and Ex 11 with Ex 12 and Ex 13 the structure of the sentences seems

almost similar, leading BERT to be confused with E-D class. However, features in IM

(BERT IM), helped BERT to predict the classes correctly as pointed out earlier based on the

confusion matrices. Even though there is no clear way to point out which feature/features

in IM exactly contributed for this correction, one common observation was that, out of

the 15 misclassified cases 7 instances had an indication for passive in the dependency path

(nsubjpass) encoded in the IM . However, I was able to observe some E-D examples with

passive sentence structure as shown in Ex 14 and Ex 15 leading for no clear conclusion as to

what contributed for the change, either dependency relationships or the token embeddings

obtained from ELMo. However, the overal observation based on these analysis is that

the concatenation of IM with BERT seems more precision oriented and improved the

performance of BERT slightly on Sem10 data set.

Ex 14: This song has been entered into the contest unofficially.

Gold class: (E-D), BERT IM: (E-D), BERT: (E-D)

Ex 15: The body that was removed for an autopsy was placed in a lead coffin, which was put inside a

wooden case.

Gold class: (E-D), BERT IM: (E-D), BERT: (E-D)

BERT versus BERT IM performance comparison on DDI data set: Unlike Sem10,

based on Table 4.4, BERT IM shows a 3% increase in F1 score and 5% increase in precision

on DDI data set. During error analysis, I found that the usage of PubMed ELMo embed-

ding in the IM which is pretrained on medical data, has provided the added advantage

to BERT IM model to have a performance increase. This is further evident based on the

results discussed with Table 4.15 in Section 4.8.

Table 4.7: BERT confusion matrix on DDI
Predicted

Gold 0 1 Total
0 4898 325 5223
1 218 715 933
Total 5116 1040 6156

Table 4.8: BERT IM confusion matrix on DDI
Predicted

Gold 0 1 Total
0 4940 283 5223
1 142 791 933
Total 5082 1074 6156

In addition to the PubMed ELMo embedding, the construction of IM , limiting only

to the scope of target entities prevents unnecessary confusions for BERT, boosting it’s
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performance when concatenated with IM . In other words, IM is constructed by encoding

linguistic features of all nodes between the two target entities extracted from the dependency

parse tree (see Section 3.3.4). In contrast to IM , BERT input is encoded by explicitly

annotating target entities at the beginning of the tokenized sentence while having a [SEP]

marker to separate entities and tokenized sentence (see Section 4.5). Even though I attempt

to highlight the target entities in BERT input, in instances such as Ex 16 and Ex 17 the same

drug name occurs in multiple places within the same sentence, where (theophylline1 and

DIFLUCAN ) has a positive relationship and (DIFLUCAN and theophylline2) has a negative

relationship. This made me realize that the highlight of entities alone without positional

information to BERT is not sufficient. Concatenation of IM to BERT (BERT IM) has the

added advantage of boundary being limited only between the target entities and not having

the duplicated drug name within the IM13 leading to a better performance.

Ex 16: Careful monitoring of serum theophylline1 concentrations in patients receiving DIFLUCAN

and theophylline2 is recommended.

Gold class: False, BERT IM: False, BERT: True

Ex 17: Rifampin1: Rifampin2 enhances the metabolism of concurrently administered DIFLUCAN.

Gold class: True, BERT IM: True, BERT: False

Comparison of BERT IMconv and BERT DGCNN: Apart from BERT-BERT IM

comparison, surprisingly, considering the capability of convolution networks to extract mul-

tiple abstract features from raw information, I was expecting both BERT IMconv and

BERT DGCNN to have a high performance than BERT IM. Based on Table 4.4, even

though BERT IMconv results are marginally better than BERT (except for DDI precision)

on all data sets, BERT DGCNN performs the worst of them all, in fact the concatenation of

both the complex architectures degrades the overall performance (F1) than BERT as shown

in Table 4.9. Also, comparing the values between different models shown in the table, it

can be seen that the scores are more leaning towards DGCNNmod than of BERT, implying

that the classifier in BERT DGCNN (see Figure 4.6) is more biased to DGCNN based input

than of BERT (except for Sem10 data set).

In summary, external features in the form of IM increased the performance of BERT

model on all data sets consistently. Even though the increase in BERT IM is marginal

compared to BERT, the concatenation of IM did not confound the performance of BERT.

13there are very few exceptions where the same drug name as one of the entity name can be in the
dependency path between the target entities
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Table 4.9: Comparison results of BERT based and DGCNN based models
Sem10 DDI MeasEval (MP) MeasEval (ME)

Experiment P R F1 P R F1 P R F1 P R F1

BERT .83 .86 .84 .82 .85 .84 .71 .70 .70 .71 .71 .70
BERT DGCNN .81 .81 .80 .81 .88 .84 .59 .72 .63 .62 .72 .65
DGCNNmod .68 .73 .69 .81 .88 .84 .60 .72 .63 .62 .73 .65

Additionally, I see that the declarative nature of IM (where all features are explicitly pro-

vided) rather than compiled information as in BERT IMconv or BERT DGCNN shows com-

paratively better results for the 3 data sets I experimented with.

4.7 Six layer Transformer Encoder Stacks (6TS)

Objective: Off the shelf BERT implementation requires input in the form of sentences

or tokenized sentences. Providing additional linguistic features such as POS tags or De-

pendency information or any other handcrafted feature is not straightforward. However,

BERT’s architecture or more precisely the encoder stack architecture have shown great

performance improvements in recent research. Therefore, the objective of the following set

of experiments is to mimic BERT based architecture in the form of Transformer encoder

stack but with IM as input to evaluate if self attention can benefit from linguistic features.

As shown in Figure 4.8, the architecture of the transformer encoder stack (with 6 layers)

was constructed following the implementation of Vaswani et al. (2017). The raw informa-

tion matrix (IM) was used as input to this architecture. However, since the size of IM

(specifically the number of rows) varies depending on the subtree, a maximum number of

rows was defined and IM with a smaller number of rows was padded with zeros until the

defined size. The input size of 6TS depends on the size of the feature vector in IM . All

token outputs from the final encoder are concatenated before being fed to the classifier to

predict the relationship. The architecture of the classifier is similar to the architecture of

the classifier used in BERT. Containing only one hidden layer with 50 neurons, using ReLU

as the activation function, and loss calculated with CrossEntropyLoss with weights passed

as parameters to bias the back-propagation values depending on the class. The weights

of the classes are calculated by obtaining the inverse of the total number of sample points

within a class in the training data (1/total num datapoints within class). The 6TS was

trained for a maximum of 414 with the AdamW optimizer and the learning rate set to 2e−5.

Table 4.10 shows the results of two 6TS experiments in the three data sets, where one of

14out of which a particular epoch was chosen based on the performance of dev set
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Figure 4.8: 6 layer Transformer encoder stack with IM as input

Table 4.10: Precision (P), Recall (R), and F1 measure (F1) on all 3 data sets based on 6TS.
The ‘with’ and ‘no’ positions indicate whether positional encoding is embedded in the 6TS
input.

Sem10 DDI MeasEval (MP) MeasEval (ME)

Experiment P R F1 P R F1 P R F1 P R F1

6TSwith position .75 .78 .76 .80 .83 .81 .73 .71 .72 .73 .72 .72
6TSno position .75 .76 .76 .88 .84 .86 .73 .71 .72 .73 .73 .72
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the experiments is with positional encoding and the other without positional encoding em-

bedded with the input. According to the authors Vaswani et al. (2017) of the Transformer

architecture, the purpose of embedding positional encoding in the input is to make the

architecture aware of the ordering of tokens within a sentence, as the transformer architec-

ture processes all tokens within a sentence at the same time, unlike the LSTM architecture

(Hochreiter & Schmidhuber, 1997), where tokens are fed one after the other in a sequence.

However, based on the results in Table 4.10, although the results of both experiments are

very similar to each other, the experiment without positional encoding specifically for DDI

shows a 5% increase in F1 measure from the experiment with positional encoding. This

may be because the IM matrix that I use as input to the 6TS architecture is constructed on

the basis of the subtree extracted from the dependency parse tree, which does not retain a

sentence ordering of the tokens. Therefore, embedding positional encoding with each node

in IM provides a false order to the 6TS architecture, which could hinder the performance

of 6TSwithposition.

4.8 Overall comparison

Table 4.11 shows a summary of the different encoding systems discussed above. The

second best scores are highlighted with gray.

Table 4.11: Summary of the results of the best performing configuration of different encoding
systems

Sem10 DDI MeasEval (MP) MeasEval (ME)

Experiment P R F1 P R F1 P R F1 P R F1

FFrow concat .74 .74 .74 .84 .86 .85 .70 .67 .68 .69 .69 .69
DGCNNmod .68 .73 .69 .81 .88 .84 .60 .72 .63 .62 .73 .65
BERT .83 .86 .84 .82 .85 .84 .71 .70 .70 .71 .71 .70
BERT IM .85 .86 .85 .85 .90 .87 .73 .73 .72 .72 .74 .72
6TSno position .75 .76 .76 .88 .84 .86 .73 .71 .72 .73 .73 .72

Difference in the nature of the data set: The main observation of Table 4.11 is that

different data sets pattern differently. BERT IM being the best contender comparative to

all settings consistently shows a high macro-average F1 on all data sets. However, the

configuration placed second varies depending on the data set. Taking into account the

macro-average F1 score, BERT is second for Sem10, and for the other two data sets (DDI

and MeasEval), 6TSno position is second. Furthermore, considering the range of variation in

terms of the F1 score between different configurations, Sem10 varies with a spread of 16%,
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DDI with 3%, and MeasEval approximately with 7-9%. This shows the difference in the

type of relation tasks addressed by different data sets along with the nature of the data set.

The Sem10 data set is composed of general English sentences, where entities are common

English words. As shown in example Ex 18, Ex 19 and Ex 20, certain relationships are

predicted based on the real meaning and real world relationship of the entities, rather than

looking at the context of those entities alone. In other words, based on example Ex 19, a

classification model is expected to predict that posts (product) are produced by a writer

(producer), when the context does not explicitly state it. Since BERT is trained with a

large corpus of texts (Wikipedia-2500 million words and book corpus 800 million words),

BERT has these associations to associate posts are being written by writer, providing BERT

an added advantage over the other encoding systems.

Ex 18: And you thought a dentist with a drill was scary.

Gold class: Instrument-Agency (I-A)

Ex 19: When viewers ignore negative posts, the offending writer often leaves the site.

Gold class: Product-Producer (P-P)

Ex 20: Organic sesame oil has an anti-bacterial and anti-inflammatory effect.

Gold class: Entity-Origin (E-O)

In contrast to Sem10, DDI is composed of extracts from the real-world biomedical

domain, where entities are specialists’ terms that refer to drug names. Hence, the pre-

trained nature of base BERT has a lesser leverage compared to other encoding models. This

results in a minimal fluctuation of the results between different encoding systems (as shown

in Table 4.11) for DDI. However, the MeasEval data set falls into an in-between category

of DDI and Sem10, containing normal English paragraphs, where measured entities(ME)

or measured properties (MP) might sometime be scientific terminologies or normal English

words, and quantities are always numbers, causing different encoding systems to fluctuate

lesser than Sem10 and higher than DDI as pointed out earlier.

The 6TS architecture with IM as input is a good baseline: As can be observed

from Table 4.11, the transformer encoder stack performs well on all data sets placing second

(except Sem10, as it lacks the pre-trained knowledge contained in BERT), and has either

equal or higher precision than the best performing model BERT IM. This shows that the

transformer stack can utilize the linguistic features encoded within the IM to construct

encoding that can be used to perform the RE task and is suggestive of a good architecture

to experiment with as a baseline.

85



Classes

F1
-M

ea
su

re

0.250

0.500

0.750

1.000

C-E E-D C-C M-T M-C E-O C-W P-P I-A OTH

BERT(F1)

BERTIM(F1)

DGCNN(F1)

FF(F1)

Transformer(F1)

avg_F1

Figure 4.9: Line chart illustrating F1 measure of different encoding schema for each class
in Sem10 data set

Error analysis of different encoding systems and Sem10 classes: Figure 4.9 shows

the F1 score of each Sem10 class for each encoding schema shown in Table 4.11. As explained

above, BERT IM performs comparatively better than BERT on all classes except for the

Entity-Origin (E-O) class. When analyzing the instances of the (E-O) class for which

BERT predicted correctly and BERT IM predicted wrong, out of the 14 instances (see

Table 4.5 and Table 4.6) 7 instances were predicted as the Other class and some were

confused with Product-Producer (P-P). Ex 21 is an instance BERT IM confused with

P-P class. However, compared to other P-P examples provided in the training data (such

as example Ex 22 and Ex 23 ), Ex 21 is not much different, causing confusion.

Ex 21: At one time, most of Europe’s ammonia was produced from the Hydro plant at Vemork, via

the electrolysis route.

Gold class: (E-O), BERT IM: (P-P), BERT: (E-O)

Ex 22: The researchers produced a report which has, literally, saved their jobs.

Gold class: (P-P), BERT IM: (P-P), BERT: (P-P)

Ex 23: the Italian manager has drawn up a list of potential targets to reinforce his depleted defensive

options.

Gold class: (P-P), BERT IM: (P-P), BERT: (P-P)

Apart from the comparison of BERT and BERT IM, when comparing the BERT-based

models with non-BERT models (FF, 6TS, and DGCNN) from Figure 4.9, it is observed that

all 3 non-BERT models fall below the average F1 trend line, except for the Cause-Effect

(C-E) class. Additionally, the gap between different classes keeps on widening from left
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to right on the x axis. As mentioned earlier, Sem10 is a language-oriented task that relies

on word meaning and real-world relationship, hence the gap between BERT-based models

and non-BERT models is due to the pre-trained knowledge of BERT. However, for class

C-E, all models except for DGCNN have a very high and approximately similar F1 value

(BERT = 0.913, BERT IM = 0.925, FF = 0.891 and 6TS = 0.916). When analyzing why

this behavior was so, I was able to find that the number of training instances in the training

data for this class is high, as shown in Table 4.12 and the training data provided for this

particular class have clear patterns that allow them to be easily distinguished from other

classes. Similarly to Ex 24 and Ex 25, words / phrases such as cause, caused, resulted,

outputting, caused by and etc. were commonly observed in the training and testing samples

provided for the C-E class.

Ex 24: Traffic vibrations on the street outside had caused the movement of the light.

(Gold class: (C-E))

Ex 25: The aircraft was written off in the accident due to the severe impact caused by the KLM

aircraft, and the resulting fire.

(Gold class: (C-E))

Table 4.12: Distribution of classes in Sem10 data set
Class Abbreviation Training Testing
OTHER OTH 1389 449
CAUSE-EFFECT C-E 1003 328
COMPONENT-WHOLE C-W 928 306
ENTITY-DESTINATION E-D 845 292
ENTITY-ORIGIN E-O 712 257
MEMBER-COLLECTION M-C 688 231
PRODUCT-PRODUCER P-P 649 220
MESSAGE-TOPIC M-T 634 261
CONTENT-CONTAINER C-C 539 192
INSTRUMENT-AGENCY I-A 487 152

This behavior of C-E performing equally well for all encoding models (except DGCNN)

shows that BERT’s pretrained nature does not offer great advantage in this particular

scenario, when the number of training instances is high and when the class has clear patterns

that distinguish the class from the others.

Based on Table 4.13, which shows the ranking of different classes in the Sem10 data set

for each encoding system, E-D is the class that performs best next to C-E. After analyzing

the prediction results of all encoding systems, I observed a similar pattern to the C-E where

words/phrases such as released into, into, added to the, moving into, delivered to, placed in
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and etc. were observed, as shown in examples Ex 26 and Ex 27 and the number of training

instances is also high compared to other classes.

Ex 26: He put a book into the cupboard.

Gold class: (E-D)

Ex 27: All LibriVox recordings have been released into the public domain

Gold class: (E-D)

Table 4.13: Ranking of Sem10 classes based on the F1 score for each encoding system
Rank

Model 1 2 3 4 5 6 7 8 9 10

BERT E-D, C-E E-O C-C M-T P-P C-W M-C I-A Oth
BERT IM E-D, C-E C-C M-T M-C P-P E-O C-W I-A Oth
DGCNNmod E-D M-T, C-C M-C C-W E-O C-E P-P I-A Oth
FFrow concat C-E E-D M-T C-C M-C E-O C-W P-P I-A Oth
6TSno position C-E E-D C-C M-C M-T E-O C-W P-P I-A Oth

Similarly to the C-E and E-D classes consistently ranking in the first two positions in

all encoding systems, Instrument-Agency (I-A) and Other consistently drop in the last

two positions for all systems, as shown in Table 4.13. Among all classes, I-A has the least

amount of training data (see Table 4.12), causing all systems to perform poorly. Although

the Other class, in contrast to I-A, has the most training data samples compared to all

classes, the lack of definition of this class causes it to perform consistently poorly in all

systems. In other words, all data samples that do not belong to a class fall into the Other

class, making all models confused as to what to consider as Other.

Apart from the classes discussed above (such as C-E, E-D, I-A, and Other), the rest

of the classes in Sem10 fluctuate between different ranking for different models. However,

based on Table 4.5, we can observe that certain classes were confused with other classes,

since the definitions of these classes and the provided examples are very similar to each

other. Table 4.14 shows a summary of classes confused with each other with an example

associated to each class.15.

DGCNN pattern differently: In addition to the ranking of different classes discussed

above, another interesting observation in Figure 4.9 is that DGCNN has a strange trend

compared to other encoding systems. All encoding systems perform very well in the C-E

class, where DGCNN performs very poorly (it falls in the 7th position, while for others it

15Since the Other class is an accumulation of all outlier examples, all classes are confused with the Other
class; therefore, I omitted it from the summary
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Table 4.14: Summary of classes confused with other classes based on confusion matrix
of BERT (Table 4.5) with examples; C-E: Cause-Effect, I-A: Instrument-Agency, P-P:
Product-Producer, C-C: Content-Container, E-O: Entity-Origin, E-D: Entity-Destination,
C-W: Component-Whole, M-C: Member-Collection, M-T: Message-Topic

Class Confused with Example

I-A
P-P

The manufacturer assembles the order using parts supplied by his

preferred supplier , and ships the order to the retailer .

C-W They chose a shop that oven bakes the paint in a down draft paint booth

P-P
I-A

It is used by the grasshoppers to force a burrow in the earth to receive

the eggs

E-O
The license is issued from the new state after verifying the particulars of

the applicant license from the original issuing state

C-C
E-D

That measured moisture content of bagged samples inserted in a beaker

of soil at various depths

C-W
A central vacuum is a vacuum motor and filtration system built inside a

canister

E-O
C-E

It was windy and cold yesterday and there is still some remnants of snow

left from early yesterdays storm

P-P Here is a reliable and tasty cookie recipe from my grandmother

E-D C-C
Douglas obeyed the king , and the heart was enclosed in a silver
casket

C-W
I-A

The film uses flashbacks as a device to tell the story , which was based on

a 1947 novel by David Goodis

C-C This SNES controller has a flash drive loaded with ROMs inside

M-T This page carries a list of some of these conventions

M-C M-T Carolyn Cooke’s stories have been featured in the book

M-T
M-C

A calendar of saints forms a way of organising a liturgical year on the

finely-granulated level of days by assigning each day to association with

a saint

C-W
The album contains not only songs but also spoken parts narrating parts

of the story
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falls in the 1st position). Similarly, based on Table 4.13, the M-T class falls to the 2nd

position in DGCNN, when it is in the 4th or 5th position for all other models. Also, when

considering the difference in the F1 score between the first and last classes, DGCNN shows

a 70% drop, while the BERT and non-BERT systems show a difference between 40-50%.

Even though I do not have an explanation as to why this behavior, this observation raises

some questions as to whether DGCNN is an appropriate architecture to use for NLP tasks

especially relation extraction task? Or does the naive way of my implementation not reveal

the potential of a graph-based approach on relation extraction task?

Leaving the Sem10 data set aside, taking into account the recall values observed for

the DGCNN system in Table 4.11, which is almost the second highest compared to other

encoding schema, I lean more toward the discussion of improving the DGCNN model than

completely removing it from experimentation. Even though the DGCNN system has poor

Precision, the high Recall shows that the system is capable of addressing the task, but with

more experimentation to improve the precision.

BERT-based models versus FF on DDI: Moving away from Sem10, when observ-

ing the F1 scores of the other two data sets in Table 4.11, regardless of the complexity

of the models FFrow concat(approximately 6.8M parameters) and BERT (110M param-

eters), FFrow concat shows a marginal increase in performance compared to BERT for

DDI, and much closer results for MeasEval. However, BERT IM shows improvement over

BERT, concluding that the BERT model benefits from IM , and IM is not confounding to

BERT. To understand why FFrow concat performs better compared to BERT for DDI, the

experiments shown in Table 4.15 were carried out to evaluate the following hypothesis.

• Hypothesis 1: The IM contains PubMed ELMo embeddings, which are pre-trained on

PubMed abstracts (biomedical texts). Since DDI and MeasEval contain abstracts or

sentences from scientific articles, the use of PubMed ELMo embedding over the base

BERT gives an additional advantage to FF to leverage it and perform comparatively

equivalant to BERT.

• Hypothesis 2: The IM consists of 3 other features (POS tags, Dependency path,

Distance feature) apart from the token embedding. Adding these features contributes

to the performance of FF being equivalent to that of BERT.

Based on the hypothesis, to evaluate the influence of token embeddings, experiments were

carried out in FF replacing the PubMed ELMo embedding (FFpubmed) with the original

ELMo embedding (FForg). Furthermore, to evaluate the influence of other features except
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token embedding, IM with all features (FF(All)) and IM with only token embedding

(FF(Token)) were carried out.

Table 4.15: Precision(P), Recall(R) and F1-measure(F1) of all 3 data sets to evaluate the
impact of PubMed ELMo (FFpubmed) versus Original ELMo (FForg), and token embedding
(FF (Token)) versus all features (FF (All)) in a FF network

Experiment Sem10 DDI MeasEval - MP MeasEval-ME

P R F1 P R F1 P R F1 P R F1

FForg (All) .77 .77 .77 .81 .84 .83 .68 .67 .66 .67 .67 .67
FFpubmed (All) .74 .74 .74 .84 .86 .85 .70 .67 .68 .69 .69 .69
FForg (Token) .77 .77 .77 .83 .82 .82 .67 .64 .65 .66 .65 .65
FFpubmed (Token) .73 .73 .73 .80 .85 .82 .67 .67 .67 .66 .67 .66

Taking into account the results of FForg (All) vs FFpub med (All) or FForg (Token) vs

FFpub med (Token), except for the Sem10 data set, FFpub med performs comparatively better

than FForg for both the DDI and MeasEval data sets. It proves that Hypothesis one is

right and that PubMed ELMo embedding does influence the results for data sets based on

scientific data. Furthermore, the contrast behavior of Sem10 shows that the embedding of

PubMed ELMo hinders performance when used with ordinary English data sets.

Regarding the second hypothesis, the comparison of FForg (All) versus FForg (Token)

or FFpub med (All) versus FFpub med (Token) shows that FF(All) performs better than

FF(Token) for DDI and MeasEval, but does not influence Sem10. This may be because

Sem10 is a language-oriented task that relies on the meanings of actual words and rela-

tionships in the real world (as discussed earlier), and the linguistic features encoded within

IM are not discriminatory in distinguishing different classes. Therefore, external linguistic

features such as POS and dependency relationship do not influence much when token em-

bedding such as ELMo contain pre-trained knowledge, which has greater influence than of

hand-crafted features. However, for DDI and MeasEval, the inclusion of linguistic features

in IM is beneficial because the data set does not rely heavily on the meaning of words,

rather the context and connectivity. Therefore, Hypothesis 2 is true for DDI and MeasEval,

while it is false for Sem10.

4.9 Re-evaluating the IM matrix

The following sections discuss additional experiments conducted on Sem10 and DDI to

re-evaluate dependency-based features included in the IM16.

16Due to limited time and difficulty in analyzing, MeasEval data set was omitted from experiments
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4.9.1 Dependency-based IM (IMdep) versus Sentence-based IM (IMsent)

The experiments discussed above are based on an IM matrix constructed on the basis

of the connectivity of entities in the dependency parse tree. Although experiments were

carried out on different encoding systems, all use the same IM in one way or another.

Constructing IM restricted to tokens between entities based on a dependency parse tree

leads to a large preprocessing step prior to training a classification model. To evaluate

whether this painstaking preprocessing is actually beneficial rather than encoding all tokens

in the sentence in a matrix IM , several experiments indicated in Table ?? were performed.

Instead of running on all encoding systems discussed above, I chose DGCNN (since it is

the basic architecture that motivated the IM data structure) and BERT IM (since it is the

encoding system that performs well compared to all my other models). The features within

the IM for each token are exactly the same as those used in all the above experiments

(that is, the feature vector of each token is a concatenation of one hot POS vector, the

PubMed ELMo embedding, the Node2Vec dependency path embedding from entity 1, and

the distance feature from the target entities (see Section 3.3)).

Table 4.16: Precision (P), Recall (R), and F1 measure (F1) of Sem10 and DDI data set to
evaluate sentence-based IM (IMsent) versus dependency-based IM (IMdep) on the DGCNN
and BERT IM encoding systems

Sem10 DDI
Experiment P R F1 P R F1
DGCNNdep .68 .73 .69 .81 .88 .84
DGCNNsent .61 .64 .60 .74 .84 .77
BERT IMdep .85 .86 .85 .85 .90 .87
BERT IMsent .85 .87 .85 .74 .83 .77

Based on Table ??, IMdep performs better on both DGCNN and BERT IM with the

exception of BERT IMsent for Sem10, which has a marginal increase in precision. This

may be because the Sem10 training data are simple sentences with only a pair of entities

annotated. In IMsent, IM has more context annotated than IMdep, providing an added

advantage for BERT. However, considering the memory consumption required to process

IMsent compared to IMdep, this increase in precision is negligible. Unlike Sem10, DDI

shows an approximately 10% difference in F1 for DDI, indicating that IMsent not only

consumes more memory to process, but also contains unnecessary information that hinders

the performance of BERT. Therefore, in summary, IMdep shows more potential than IMsent

for the DDI task; on the contrary, for a language-oriented task like Sem10 and especially

the way the data are provided, IMsent shows a very minimal increase. However, considering

the memory consumption of both matrices, IMdep seems more promising.
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4.9.2 Dependency path versus Dependency governor

Among the many different ways to represent the dependency relationship, I chose to rep-

resent the dependency path by concatenating the Node2Vec embedding of the dependency

relationship when traversing from entity 1 to the target token (see Section 3.3.4) in IM .

To evaluate whether it is an effective representation or not, I replaced the path information

with the Node2Vec embedding of the immediate governor relationship to assess whether the

naive representation of dependency is sufficient or not. Similarly to the discussion above, I

experimented with DGCNN and BERT IM and chose IMdep as it showed promising results.

Table 4.17: Precision (P), Recall (R) and F1 measure (F1) of Sem10 and DDI data sets to
evaluate the dependency path encoding (dep path) against dependency governor relation-
ship (dep gov)

Sem10 DDI
Experiment P R F1 P R F1
DGCNN(dep gov) .68 .74 .69 .77 .86 .80
DGCNN(dep path) .68 .73 .69 .81 .88 .84
BERT IM(dep gov) .85 .86 .85 .84 .88 .86
BERT IM(dep path) .85 .86 .85 .85 .90 .87

Table ?? shows the results of the experiments conducted on DGCNN and BERT IM

with varying dependency relationship encoding. According to the table, DDI seems to

benefit more from the path information than the governor alone in both models. How-

ever, Sem10 does not show any change in BERT IM, since BERT IM does not seem to

rely on the dependency information (based on Table 4.15), validating the discussion more

with Table 4.15. However, there is a minimal increase in precision in DGCNNdep(dep gov)

than DGCNNdep(dep path). In conclusion, the dep path representation of dependency re-

lationship between entities contributes to the classification task, especially for the DDI data

set.
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Chapter 5

Conclusion and Future Work

Current NLP research is driven by deep learning models, leading to a shift of focus

from the use of linguistic features as the primary source of input. This thesis focuses on

addressing the Relation Extraction (RE) task represented with basic linguistic features and

provided as input to different encoding schema, including transformer-based deep models

such as BERT, to evaluate the impact of linguistic features in the RE task. Although spe-

cific linguistic features were chosen to be represented in certain ways, the thesis does not

emphasize the specificities of the features but rather the impact of enabling the linguistic

features to be represented in different encoding schemas. Experiments were conducted with

three different data sets, Sem10, DDI, and MeasEval, which vary in complexity and in na-

ture of the text. Sem10 is a SemEval 2010 data set consisting of ordinary English sentences

with nine types of relations and an additional other type. The nine types of relations

are: cause-effect, instrument-agency, product-producer, content-container,

entity-origin, entity-destination, component-whole, member-collection, and

message-topic. DDI is a SemEval 2013 data set that contains texts from the biomedical

domain in which the interaction between drugs should be predicted as true or false.

MeasEval is a SemEval 2021 task consisting of scientific excerpts, from which quanti-

ties/measurements should be identified along with the entities that are being measured

(measuredEntity) and properties of the measured entity if there exist any (measured-

Property). Unlike Sem10 and DDI, MeasEval does not explicitly annotate its entities.

Therefore, the original task is designed to separate the task into several subtasks to identify

entities and classify relationships based on identified entities. However, instead of the orig-

inal approach to the task, the MeasEval task was performed in a way that performed both

entity detection and relation extraction simultaneously in this thesis. Since the main focus

of this thesis is relation extraction, all subtasks associated with each data set (excluding
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relation extraction) were omitted from the discussion.

The main objective of an RE task is to predict the relationship between two entities.

Since dependency parse trees are capable of providing approximations of semantic rela-

tionships between predicates and their arguments, my main interest was to generalize over

dependency parse trees to obtain latent path representations to distinguish different seman-

tic connections between the target entities.

Since dependency parse trees are in a form of graph representation, I attempted to use

a Graph Neural Network (GNN) in the form of a Deep Graph Convolution Neural Network

(DGCNN) to extract latent features from the dependency parse tree to distinguish between

different relationships. Even though it seemed logical to utilize a GNN based network on

the dependency parse tree, the results obtained on all three datasets do not show promising

results and perform somewhat poorly compared to other experiments discussed in this

thesis. This observation raises multiple questions, which I find interesting to explore in

future work. First, is the DGCNN architecture chosen for this task a wise choice or not?

Even though there are many GNN based architectures, I chose DGCNN because it was

showing some promising results on the link prediction task (on graph-based data sets),

which I find to be similar to the RE task. Second, is the implementation of the DGCNN

aligned with the requirement of an RE task? Although I experimented by changing the

number and size of graph convolutions in the DGCNN architecture, I did not explore the

other parameters, which could have an impact on the results. I raise this question since the

change in convolution showed an approximately 4% increase from the original parameter

setting in DDI and Measeval, while showing an approximately 13% increase in the Sem10

data set. Furthermore, compared to other encoding schema, the DGCNN system had the

second highest recall value on all data sets. This indicates that the system is capable of

addressing the RE task, which requires more experimentation to improve precision. Based

on a review of the literature related to the GNN model, Y. Zhang et al. (2018) and D. Li

and Ji (2019) combine the representation of the graph with the representation of the target

entities before feeding it to a classifier for prediction. This I find interesting to explore as

a future work, since my classifier only uses the graph representation, whereas a classifier

could benefit from explicitly provided target entity representation.

The DGCNN architecture accepts input in the form of an Adjacency matrix (A) and an

Information matrix (IM). The matrix A represents the connectivity of the tokens (between

the two target entities) based on the dependency parse tree. Although the matrix A contains

token connectivity, it does not resemble the type of connection. Since dependency parse

trees have typed relationships, future experiments can be conducted to reflect the type in the

matrix A by providing different weights for different types of edges. For each corresponding
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row in A, IM will contain a row representing each token in the dependency parse tree. To

maintain a general approach across the different data sets, this representation is constructed

by encoding basic linguistic features that are commonly observed on all data sets. However,

these features are not the only features that could be used, and this can be extended with

additional linguistic features that are specific to the task to improve the performance of the

different encoding schema discussed in this thesis.

To encode the linguistic features obtained from the dependency parse tree, I experi-

mented with a few machine learning architectures that are widely used in the field of NLP

research by providing IM as input, primary, or complementary. These neural architectures

include classical baselines such as Random Forest (RF), Support Vector Machines (SVM),

and Feed-Forward Neural Network (FF), and trending baseline models such as BERT and

Transformers. All models except BERT accept IM as the primary input, while for BERT

(BERT IM)), IM is used as the complementary input to its classifier by a simple concate-

nation with the [CLS] token obtained from the last layer of BERT.

On the basis of the experiment results on all data sets, the difference in performance

between BERT-based models and non-BERT-based models indicates a clear distinction

between the different data sets. Compared to FF, Sem10 shows a 10% increase with BERT,

while DDI shows a 1% drop in performance with BERT. This clearly indicates that while

BERT’s pre-training yeilds significant benefits for Sem10 than the non-language-oriented

DDI task. To be more precise, BERT in DDI shows the lowest performance, indicating

that the off-the-shelf base BERT model does not have a clear advantage, regardless of its

complexity (110M parameters) in all data sets. Although it was not tested in this thesis,

domain-specific language models such as BioBERT (Lee et al., 2019) or SciBERT (Beltagy,

Lo, & Cohan, 2019) might have an added advantage on the DDI and MeasEval data sets,

in comparison to base BERT. Even though this is an hypothesis and should be tested, this

indicates that a significant amount of overhead has to be applied to pre-train these language

models to cater different genres of texts, where simple concatenation of linguistic features

may perform equally well on data sets similar to DDI.

One of the main disadvantages I encountered while using pre-trained models like BERT

is that external features cannot be directly incorporated without taking the BERT im-

plementation apart. In this thesis, I attempt to evaluate a BERT-like architecture with

external features with two strategies: One, mimic the BERT architecture with a trans-

former encoder stack by providing IM as the primary input. Two, directly concatenating

IM to [CLS] of BERT prior to classification (BERT IM). The transformer stack performs

second, with either higher or equal precision to BERT IM on all datasets except Sem10 (as

the 6TS lacks the pre-trained knowledge which is more effective on this task). Indicating
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that the transformer architecture can take advantage of the linguistic features to perform

the RE task. However, considering the F1 score, BERT IM performs consistently better on

all three data sets compared to all the experiments discussed in this thesis. This shows that

incorporating linguistic features improves the pre-trained model and is not confounding.

Although the increase in BERT IM performance is marginal compared to BERT, it can

be attributed to very basic linguistic features in IM . This should be explored with more

task-specific features, such as providing trigger words for Sem10 data points to distinguish

between different classes or incorporating information from external sources for drugs in

DDI. However, careful attention should be paid to how these linguistic features are chosen

and how they are represented, as experiments with IM constructed on the whole sentence

degrade the performance of the models, while dependency-based IM performs well. Also,

providing dependency path information contributes more to DDI than just providing de-

pendency relationship to the immediate governor. In addition, the way the external feature

was incorporated with BERT was by a simple concatenation. This can be explored with

an implementation of having a layer of self-attention on top of [CLS] and IM to obtain a

better representation before classification.

In conclusion, based on the experiments on the selected data set, linguistic features

based on the dependency parse tree show competitive performance on simpler models such

as FF compared to complex models such as BERT, and combining linguistic features with

simple concatenation with BERT improves the performance of the BERT architecture.
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Appendix A

Ablation study on linguistic

feature representation

This chapter provides a sample of preliminary ablation experiments conducted on dif-

ferent representations of linguistic features. These experiments were carried out on the

MeasEval data set on the DGCNN system. In total, 1560 experiments were conducted;

however, only a few relevant experiments are highlighted in Table A.1. Although the rep-

resentation techniques were chosen based on the results of this table, the evaluation script

used to produce these results is different from the evaluation scheme used in the thesis

content.
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Table A.1: Partial results of an ablation study conducted on different representation of
linguistic features on MeasEval data set on DGCNN system

Hop size POS tag Dependency Token Precision Recall F1-measure
8 One-hot none none 0.32 0.38 0.35
6 One-hot none none 0.33 0.37 0.35
9 One-hot none none 0.31 0.37 0.34
7 One-hot none none 0.28 0.39 0.33
5 One-hot none none 0.28 0.38 0.32
10 Label Encoded none none 0.30 0.33 0.32
6 Label Encoded none none 0.29 0.33 0.31
8 Label Encoded none none 0.30 0.32 0.31
5 Label Encoded none none 0.29 0.33 0.31
7 Label Encoded none none 0.30 0.32 0.31
10 One-hot none none 0.27 0.35 0.31
9 Label Encoded none none 0.28 0.33 0.31
8 One-hot Label Encoded Elmo 0.46 0.39 0.42
8 One-hot Node2Vec Concat Elmo 0.42 0.42 0.42
8 none Label Encoded Elmo 0.47 0.38 0.42
8 Label Encoded none Elmo 0.43 0.40 0.41
8 none none Elmo 0.44 0.39 0.41
8 none Multi-hot Elmo 0.43 0.40 0.41
8 Label Encoded Multi-hot Elmo 0.44 0.39 0.41
8 Label Encoded Label Encoded Elmo 0.46 0.37 0.41
8 Label Encoded Node2Vec Avg Elmo 0.43 0.39 0.41
8 Label Encoded one hot Elmo 0.43 0.39 0.41
8 One-hot Multi-hot Elmo 0.43 0.39 0.41
8 none one hot Elmo 0.43 0.39 0.41
8 One-hot one hot Elmo 0.43 0.38 0.40
8 One-hot none Elmo 0.42 0.39 0.40
8 none Node2Vec Avg Elmo 0.42 0.39 0.40
8 none Node2Vec Concat Elmo 0.43 0.38 0.40
8 Label Encoded Node2Vec Avg Elmo 0.42 0.39 0.40
8 One-hot Node2Vec Concat Elmo 0.41 0.37 0.39
8 One-hot Node2Vec Concat none 0.33 0.37 0.35
8 One-hot Multi-hot none 0.33 0.37 0.35
8 none Node2Vec Concat none 0.32 0.37 0.34
8 none Multi-hot none 0.34 0.35 0.34
8 One-hot Node2Vec Avg none 0.33 0.35 0.34
8 none Node2Vec Avg none 0.33 0.34 0.33
8 One-hot one hot none 0.29 0.37 0.33
8 Label Encoded Node2Vec Avg none 0.33 0.32 0.32
8 Label Encoded Node2Vec Concat none 0.32 0.33 0.32
8 Label Encoded Multi-hot none 0.33 0.32 0.32
8 none One-hot none 0.30 0.32 0.31
8 Label Encoded none none 0.30 0.32 0.31
8 Label Encoded Label Encoded none 0.29 0.33 0.31
8 none Label Encoded none 0.31 0.31 0.31
8 One-hot Label Encoded none 0.28 0.34 0.31
8 Label Encoded One-hot none 0.27 0.33 0.30
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Appendix B

Official evaluation scheme of the

MeasEval task

The official evaluation script1 expects the system prediction results to be in tab-separated

value (.tsv) file format for each document in the test data. Figure B.1 shows a sample of the

output structure. Using these files, the evaluation script performs a first pass to match the

submission Annotation Set IDs to the corresponding gold set annotation IDs and performs

a second pass to evaluate the detection of entities, relationships, and additional details

associated with each annotation type against the gold annotation.

The output of the evaluation script is very extensive, providing detailed information on

true positives, false positives, and false negatives along with the precision, recall, and F

measures for each annotation type and relationship type defined in the task. In addition,

the Exact Match (EM) score and the SQuAD-style F1 (overlap) score of the overall system

are also outputted based on which the system’s overall performance is evaluated.

The exact match is a binary value of 0 or 1 depending on whether the prediction span

exactly matches the gold span, while the F1 overlap is a token level overlap ratio of the

system output to the gold span. For components that do not include a span, the exact match

and F1 scores are the same. Relations such as HasQuantity, HasProperty, and HasQualifier

are also scored with a binary match score if the relation types match and both endpoints

match either exactly or with some overlap.

Any span, unit, modifier, or relationship found in the gold data but not the submission,

or wise versa, are included as a ”penalty row” with a score to sufficiently penalize both false

positives and false negatives when averaging scores. Due to the complex nature of the task

and the complex evaluation scheme with penalties, it was decided to modify the evaluation

1https://github.com/harperco/MeasEval/tree/main/eval
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Figure B.1: Format of a .tsv output file expected by the MeasEval evaluation script. docId:
the document id of the evaluated text; annotSet: the annotation set an annotation type
belongs to; annotType: the annotation type of each detected entity; startOffset, endOffset:
the starting and ending offset respectively of the spans of the entities identified for each
annotation type; text: resembles the text withing the span of the offsets identified; other:
includes additional details such as relationship type, if the annotation type is any other
than quantity, and for quantity this includes the units and modifier if identified any.

scheme in a more simplistic way to address in this thesis.
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