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Abstract

Extensions to Cross-collection Topic Models with Parallel

Inference and Differential Privacy using Flexible Priors

Zhiwen Luo

Cross-collection topic models extend previous single-collection topic models such as
Latent Dirichlet Allocation (LDA) to multiple collections. The purpose of cross-
collection topic modelling is to model document-topic representations and reveal sim-
ilarities between topics and differences among groups. The limitation of Dirichlet prior
has impeded the state-of-the-art cross-collection topic models’ performance, leading
to the introduction of more flexible priors.

In this thesis, we first introduce a novel topic model, GPU-based cross-collection
latent generalized Dirichlet allocation (ccLGDA), exploring the similarities and dif-
ferences across multiple data collections by introducing generalized Dirichlet (GD)
distribution to overcome the limitations of Dirichlet prior for conventional topic mod-
els while improving computational efficiency. As a more flexible prior, the general-
ized Dirichlet distribution provides a more general covariance structure and valuable
properties, such as capturing collection relationships between latent topics and en-
hancing the cross-collection topic model. Indeed, this new GD-based model utilizes
the Graphics Processing Unit to perform a parallel inference on a single machine,
which provides a scalable and efficient training method for massive data. Therefore,
the new approach, the GPU-based ccLGDA, proposes a scheme that incorporates a
thorough generative process into a robust inference process with powerful computa-
tional techniques to compare multiple data collections and find interpretable topics.
Its performance in comparative text mining and document classification shows its
merits.

Furthermore, the restriction of Dirichlet prior and the significant privacy risk
have hampered cross-collection topic models’ performance and utility. The training

of those cross-collection topic models may, in particular, leak sensitive information
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from the training dataset. To address the two issues mentioned above, we propose an-
other novel model, cross-collection latent Beta-Liouville allocation (ccLBLA), which
operates a more powerful prior, Beta-Liouville distribution with a more general covari-
ance structure that brings a better capability in topic correlation analysis with fewer
parameters than GD distribution. To provide privacy protection for the ceLBLA
model, we leverage the inherent differential privacy guarantee of the Collapsed Gibbs
Sampling (CGS) inference scheme and then propose a centralized privacy-preserving
algorithm for the ccLBLA model (HDP-ccLBLA) that prevents inferring data from
intermediate statistics during the CGS training process without sacrificing its util-
ity. More crucially, our technique is the first to use the cross-collection topic model
in image classification applications and investigate the cross-collection topic model’s
capabilities. The experimental results for comparative text mining and image classi-

fication will show the merits of our proposed approach.
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Chapter 1

Introduction

1.1 Background

As social media platforms proliferate, our internet continues to collect an unprece-
dented quantity of information from large-scale applications, making it more impor-
tant to extract knowledge and patterns from large and complex data sets. Therefore,
researching efficient machine learning techniques to handle massive data collections
such as text documents and images is absolutely essential. In unsupervised topic
modeling, such data are generalized as documents manipulated using count vectors
according to the Bag of Words (BOW) approach. The objective is to construct
meaningful topics to efficiently predict unseen documents in information retrieval
and document classification tasks. In further detail, topics represent the intermedi-
ate low-dimensional representations of documents [1]. A well-known topic model is
Latent Dirichlet Allocation (LDA) [2] incorporating the Dirichlet distribution as con-
jugate prior to the multinomial distribution. In the LDA model, documents appear
as a combination of topics, and topics are vocabulary distributions. Moreover, LDA
is frequently used as a dimensionality reduction tool to examine documents by topic
and extract useful information from a large amount of unstructured data. Recently,
topic models such as LDA have been the subject of various extension techniques [3] to
cluster text documents and images [4-6] through their latent topics based on words
(or visual words in case of images) co-occurrence.

The origin of topic models is the latent semantic analysis (LSA) [7]. LSA model

mainly utilizes Singular Value Decomposition (SVD) for data analysis, so it is not a



topic model in effect. Nevertheless, its fundamental idea provides the foundation of
topic models and has contributed to developing the first topic model. Based on the
structure of the LSA model, Hofmann [8] proposed a probabilistic latent semantic in-
dexing (PLSI) model. pLSI model is a probabilistic generative model by looking for a
transformation from document space to topic (implicit semantic) space with different
optimization goals. Therefore, the pLSI model is seen as an actual topic model. LDA
model [2], as an extension of the pLSI model [8], is a complete generative probabilistic
model that improves generalization capability by introducing Dirichlet prior to over-
come the overfitting and the difficulty in predicting documents probability problems.
In particular, the LDA model utilizes the BOW method for a variety of different appli-
cations, including text modeling and computer vision, and its generative process has
been extensively documented in several articles [2,3,9]. Even though the LDA model
plays a fundamental role in topic modeling and many machine learning applications,
numerous studies [10,11] have shown that the constraints of Dirichlet prior hamper
the LDA’s performance. Specifically, the Dirichlet has a restrictive negative covari-
ance matrix, unable to capture the correlation between topics [12-14]. Bakhtiari and
Bouguila [15] showed that using more flexible priors [16] such as Generalized Dirichlet
(GD) and Beta-Liouville (BL) distributions [17] in document parameters can improve
the performance of the LDA model in text modeling and computer vision applica-
tions. Moreover, Thou and Bouguila [5,6] proposed new models that replace the
Dirichlet distribution on both the corpus and the document parameters with GD or
BL priors [18], and their experiments show that those more flexible priors can perform
well in topic correlated environments. The recent expansion of large-scale datasets
has led to the proliferation of studies that use more efficient computational methods.
Hence, Graphics Processing Units (GPUs), which have successfully accelerate various
large-scale data machine learning algorithms, provides us a better platform for imple-
menting parallel inference methods with massively built-in parallel thread processors
and high-speed memory. So far, GPUs have become a high-performance parallel ar-
chitecture for many applications [19]. Compared with the CPU, GPU has a much
higher computational capability and memory bandwidth. However, some famous par-
allel implementations of LDA, such as AD-LDA [20], cannot be adapted on the GPU
due to the limitation of memory consumption. Moreover, recent evidence suggests

that model inversion attack [21] and membership inference attack [22], according to



recent findings, can both pose a privacy issue for machine learning models in different
ways. To address these privacy problems, Dwork et al. [23] proposed the differential
privacy (DP) strategy for privacy preservation in machine learning models. Because
differential privacy provides a mathematical framework for measuring the security of
several machine learning techniques, there has been an increasing interest in applying

differential privacy in topic models such as LDA.

1.2 Cross-collection Topic Model

So far, natural language processing, computer vision, pattern recognition and
other disciplines are increasingly using the LDA model and its extensions, such as
the LBLA. Due to different practical problems, there are more and more different
new topic models inspired from LDA. For example, Zhai et al. [24] introduced a topic
model, the Cross-Collection Mixture model (ceMix) based on the pLSI model [8],
for handling comparative text mining problems. Due to the limitation of the ceMix
model, Paul and Girju [25] presented a Cross-Cultural LDA (ecLDA) model, which
is the extension of LDA and ceMix frameworks. The cross-collection topic models
try to extract the common information from all collections and figure out what is
unique to a specific collection in different dataset collections. As the state-of-the-art
cross-collection topic model, the ccLDA model provides better generalization capa-
bilities which is less reliant on user-defined parameters. Moreover, ccLDA model
shares assumption with the LDA-Collection [26] and Topical N-Gram models [27).
Those models assume that each word can be generated from two different distribu-
tions. Based on ccLDA model, Julian and Ralf [28] offered an entropy-based ccLDA
model which distinguishes collection-independent and collection-specific words ac-
cording to information entropy. The BOW assumption is maintained in both ccLDA
and entropy-based ccLDA models; thus, each word is dependent on different dataset
collection.

The ccLDA model can both detect topics among multiple data collections and
differences between those data collections. Specifically, the ceLDA model first samples
a collection ¢ (observable data), then chooses a topic 2 and flips a coin z to determine
whether to draw from the shared topic-word distribution or the topic’s collection-

specific distribution. The probability of z is 1 or 0 and comes from a Beta distribution.



The generative process of the ceLDA model is based on the following steps:

e Draw a collection-independent multinomial word distribution ¢ from Dirichlet(3)

for each topic z

e Draw a collection-specific multinomial word distribution o . from Dirichlet(4)

for each topic z and each collection ¢

e Draw a Bernoulli distribution 1. . from Beta(v, ;) for each topic z and each

collection c

¢ For each document d, choose a collection ¢ and draw a topic mixture #; from

Dirichlet(a.). Then for each word w; in d:

— Sample a topic z; from Mutl(6;)
— Sample z; from Bernoulli(1. .)

— If x; = 1, sample a word w; from Mutl(o. )

else z; = 0, sample a word w; from Mutl(g.)

Although the ccLDA model generalizes the LDA model by adding comparative
analyses of different data collections, the limitations of the Dirichlet distribution to
capture the correlation between topics have impeded the performance of the ccLDA

model its extensions in various text analysis or classification applications.

1.2.1 Inference schemes

Many previous inference techniques and extensions proposed to the latent Dirich-
let allocation [2] considers some inference schemes, such as VB and MCMC infer-
ences [2,29-32]. Due to the restrictions of Dirichlet prior, those models cannot learn
coherent topics and has the challenge to identify the optimal number of topics be-
cause the Dirichlet distribution has a restrictive negative correlation structure, which
impedes the performance for exploring positively correlated structure datasets [33).
So, the authors in [11, 15] used a more flexible prior, generalized Dirichlet distri-
bution to circumvent the limitation of Dirichlet prior. Those previous models have
chosen variational Bayesian (VB) inference because it has a higher convergence speed
than MCMC inference. However, the problem of VB is that the method suffers from



a significant bias as it assumes that the latent variables and parameters are fully
independent. Even though this strong assumption can bring computational advan-
tages, it harms the overall performance of the accuracy. Therefore, the VB inference
schemes could cause an inaccurate modeling result. Thou and Bouguila proposed a
CVB-LGDA model [5, 34], which takes advantage of both the VB and the MCMC
as a hybrid inference scheme. Although this method is accurate, this hybrid infer-
ence scheme is too complex and inefficient for large-scale datasets because it requires
second-order Taylor approximations to calculate the latent variable. Therefore, the
Collapsed Gibbs sampling [29, 35| is still the first choice for many topic models be-
cause it is simple to implement and CGS can approximate a global maximum based on
sampling from the actual posterior distribution rather than variational distribution in
a variational Bayesian inference scheme. Nevertheless, the CGS is also inefficient for
massive datasets with high computational complexity issue. This limitation mainly
hinders the development and use of the topic model in real-world applications and
industry, requiring highly effective performance for large-scale data. Therefore, a
robust approach is to parallelize learning methods with multiple processors [20, 36)].
Researchers have paid more attention to parallel algorithms for topic models in-
ference. Newman et al. [20] propose two parallel LDA algorithms, AD-LDA and HD-
LDA. The AD-LDA made an eight times speed up on a 16-processor computer. Chen
et al. [37] extend the AD-LDA model with MPI and MapReduce on 32 machines and
get ten times speedup. Asuncion et al. [38] provide an asynchronous distributed LDA
algorithm, which makes 15-25 times speedup on 32 processors. However, those par-
allel algorithms require many machines. Nowadays, GPU performance has improved
significantly as compared to CPU, and NVIDIA CUDA programming interface has
become a powerful tool to extend topic modeling scheme, so many recent studies
have shown that GPUs are a better choice for implementing the parallel algorithms
for LDA model inference [19]. For instant, Yan et al. [39] have accelerated collapsed
Gibbs sampling (CGS) method of LDA on the GPU. Compared with the standard
LDA on the CPU, their implementation achieved a speedup of around 26 times on a
single machine. Lu et al. [19] present a GLDA model, which uses GPU to accelerate
the CGS-LDA training by highly reducing the memory requirement on a single GPU.
Their method also can be extended to train large-scale data by involving multiple
GPUs. Nevertheless, these GPU-based topic models have tended to focus on single



collection rather than multiple collections data. Far too little attention has been paid

to applying the cross-collection topic model on the GPU platform.

1.2.2 Topic model with Differential Privacy

Many machine learning models [40-42] have applied differential privacy to ad-
dress privacy attack vulnerabilities by perturbing the model during different training
parts. Specifically, there are a lot of different ways to adopt differential privacy
in ML models such as output perturbation, objective perturbation [43], intermedi-
ate perturbation [44,45] and input perturbation. In recent years, there has been
an increasing interest in input perturbation and local differential privacy [46], which
demonstrates that enormous randomized crowdsourced data may leak valuable statis-
tics. By eliminating the premise of trustworthy servers, the input perturbation can
give a privacy guarantee. As a classic machine learning approach, topic models also
can achieve differential privacy protection by perturbing the intermediate parame-
ters during the training process via input perturbation. For instance, by perturbing
the sampling distribution in the final iteration, Zhu et al. [47] suggested a DP guar-
antee CGS-LDA model. While performing variational Bayesian inference scheme,
Park et al. [45] used differential privacy in LDA by perturbing the adequate statistics
data in each iteration. Similar to the above works, Decarolis et al. [48] altered the
intermediate statistics in the spectral methodology. However, those DP guarantee
methods [45, 47, 48] cannot tackle the problem of untrustworthy data curators by
design. Wang et al. [49] established a locally private LDA strategy for a federated
environment, but this approach is not a generic solution to standard approach for the
batch-based LDA model.

Then, Zhao et al. [50] proposed a differential privacy solution for traditional batch
LDA training, a hybrid privacy-preserving algorithm (HDP-LDA), which injects the
noise to obfuscate the word count in each training iteration and takes advantage of
the inherent randomness of Markov Chain Monte Carlo (MCMC) techniques. The
inherent privacy guarantee is an essential feature of the CGS5-LDA method. Recent
improvements [49,51] in intrinsic privacy have heightened that the Bayesian sampling
can generate the inherent privacy guarantee without introducing further noise to sam-
ple statistics variables. Foulds et al. [52] expanded on this work, concluding that the

generic MCMC mechanism may also process inherent privacy guarantees and acquire



privacy protection in a way that is similar to the Laplace mechanism. Measuring
the inherent privacy guarantee in a topic model such as the LDA model is still a
challenge. Even though HDP-LDA [50] has been demonstrated to be effective and
outperforms some methods mentioned above [45,47, 48|, this scheme still suffers from
the restriction of Dirichlet prior and insufficient for comparative datasets analysis. In
this thesis, we present a cross-collection topic model that overcomes the limitations
of Dirichlet prior by adopting a more flexible prior as well as using differential privacy
for privacy preservation, which can secure sensitive information from attackers who

are aware of the training process.

1.3 Contributions

The main contributions of this thesis could be summarized as follows:

1. Parallel Inference for Cross-Collection Latent Generalized Dirichlet
Allocation Model and Applications
We present a GPU-based cross-collection latent topic model with more flexibil-
ity and scalability by providing a better prior distribution and using a parallel
inference which is parallel collapsed Gibbs sampling (CGS) for handling large
datasets. Our model replaces Dirichlet distribution with GD as a more flexi-
ble prior to overcome its shortcomings related to both the document and cor-
pus parameters. It also provides an improvement to the state-of-the-art cross-
collection model, CGS-ccLDA [25]. We introduce a parallel collapsed Gibbs
sampling (CGS) approach for the eccLGDA model on GPUs. Our parallel ap-
proach exploits the parallel computing power of GPUs and utilizes the CGS
structure of the ccLGDA learning approach, significantly reducing the comput-
ing cost and processing time. Finally, our new model is successfully applied for

comparative text mining and document classification.

2. Cross-Collection Latent Beta-Liouville Allocation Model Training with
Privacy Protection and Applications
The generative process of LDA [2], LBLA [6,15,53], and the ccLDA [25] have all
been improved by the new model. Our novel model replaces Dirichlet distribu-
tion with Beta-Liouville (BL) distribution [54,55] as more flexible prior [56] to



overcome its shortcomings related to document and corpus parameters. Com-
pared with the state-of-the-art privacy-preserving topic model (HDP-LDA), our
proposed model can discover topics’ similarities and differences across multiple
collections. Indeed, we deliver the first study on adopting the cross-collection
topic model for image classification applications by processing each image as
a separate document using the Bag of Visual Words methodology [4-6]. Our
studies indicate that our proposed model (ccLBLA) can achieve a much higher
generalization performance in comparative text mining, and document and im-
age classification. Furthermore, the HDP-ccLBLA strategy can obtain a good

model utility while maintaining sufficient privacy guarantees.

1.4 Thesis Overview

This thesis is structured as follows:

¢ Chapter 1 introduced the background knowledge regarding cross-collection topic

model with different inference schemes and differential privacy.

¢ Chapter 2 presents a GPU-based cross-collection latent topic model with more
flexibility and scalability by providing a better prior distribution and using a
parallel inference which is parallel collapsed Gibbs sampling (CGS) for handling
large datasets. The new approach introduces a flexible GD prior for a robust
parallel inference scheme taking advantage of GPUs to show its merit in com-
parative text mining. Experimental results illustrate that our proposed model,
GPU-based ceLGDA, outperforms ccLDA on all four quality measures on four
text datasets with different domains and quantity of collections and proves the

proposed method’s robustness on various text datasets in other fields.

¢ In chapter 3, we develop a novel cross-collection topic model (ceLBLA model)
that utilizes the BL distribution instead of Dirichlet for various domain text
collections to improve previous cross-collection topic models. We present the
first study on applying the cross-collection topic model to image classification
application. What’s more, our proposed model (HDP-ceLBLA) can prevent
data inference from intermediate statistics during training. Indeed, our exper-
imental studies demonstrate that the HDP-ccLBLA algorithm can achieve a

8



good model utility under differential privacy.

¢ Chapter 4 demonstrates a conclusion of the thesis by summarizing the main

contributions and some promising future work.



Chapter 2

Parallel Inference for
Cross-Collection Latent
Generalized Dirichlet Allocation

Model and Applications

In this chapter, we propose a GPU-based cross-collection latent topic model with
more flexibility and secalability by providing a better prior distribution and using a
parallel inference which is parallel collapsed Gibbs sampling (CGS) for handling large
datasets. This is a novel cross-collection topic model that combines state-of-the-art
cross-collection topic model [25], the completely LGDA model [34,35] and the GLDA
model [19]. Besides, This parallel inference scheme integrates the advantages of GPUs
computing and Gibbs sampling with GD distributions in collapsed space [19,35]. This
robust parallel inference scheme allows the ccLGDA model to analyze latent topics
and discover the similarities and differences across a considerable number of collections

and datasets with high computational efficiency.

2.1 The GPU-based ccLGDA Model

This section mainly describes our GPU-based Cross-Collection Latent Generalized
Dirichlet Allocation (GPU-based ccLGDA) Model. Our approach integrates GLDA
[19] and ccLDA [25] as a GPU-based cross-collection topic model with considering

10



GD distribution on both document and corpus parameters. We start with a review of
the generative process of fundamental LGDA [5,11,35] and ccLDA [25] models. Then,
we introduce our extension (GPU-based ccLGDA) of those two models to the parallel
collapsed Gibbs sampling learning scheme applying the method on GLDA model [19],
including parallel method and CGS inference schemes with GD distribution prior.
Therefore, this paper will first compare CPU-based ccLGDA models (CGS-ccLGDA)
to illustrate our proposed model’s more comprehensive analysis and motivations by
showing its merit in large-scale processing data. For helping readers to get a better
understanding of our model, the variables are described in Table 2.1, and we will

provide their characteristics.

C' - Total number of collections

D - Total number of documents

W - Total number of words in each document

K - Total number of topics

W = w;; - observed words

Z = 2;; - latent variables

f#; - mixing proportions

¢y - corpus parameters in collection-independent distribution
Tk - corpus parameters in collection-specific distribution
Uk - parameter in Bernoulli distribution

#; ~ GD(u,,v.) - generalized Dirichlet distribution

¢ ~ GD(s,1) - generalized Dirichlet distribution

Ok ~ GD(ge, h.) - generalized Dirichlet distribution

U, ~ Beta(7o,y1) - Beta distribution

T ~ Bernoulli(1,) - Bernoulli distribution

Zig /O ~ Mult(f;) - multinomial distribution

T/ Zjks O, T = 0 ~ Mult(¢h) - multinomial distribution
Tk Zjks O oy T = 1 ~ Mult(o) - multinomial distribution

Table 2.1: Model variables and definitions

2.1.1 LGDA and ccLDA models

Dirichlet distribution cannot perform well in a topic correlation analysis because of
its negative covariance structure. Even though Blei et al. [57] proposed a Correlated
Topic Models (CTM) to solve that problem in the topic model by introducing the
normal logistic distribution. However, this distribution is not a conjugate prior to
the multinomial distribution [57, 58], which makes the CTM difficult to implement.

11



Recent developments in the topic modeling, have focused on the need for more flexible
priors. The generalized Dirichlet prior has become a popular choice. There are
many extensions of the LDA model based on generalized Dirichlet prior, such as GD-
LDA [10], LGDA [11], and Collapsed LGDA [5,35] models. For generalized Dirichlet
distribution, in dimension (K + 1) space, the generalized Dirichlet distribution with
hyperparameter vector (s1,t1, ..., Sk, tx) is defined by:

T k Tie
P(kls, t) = H FE:E}—;{?)] 2t (1 — Z qu) (2.1)

j=1

fork=1,..., K—1,, where 7 =t} — 83,1 —fxy1, and 7 = tx — 1. The vector ¢,
is the N-dimensional multinomial parameter drawn from the GD(s,t) distribution.
When ¢, = 55,1 + g4, the generalized Dirichlet distribution is reduced to Dirchlet
distribution [13,59-62]. Thus, the generalized Dirichlet includes the Dirichlet distri-
bution as a special case [63]. Compared with Dirichlet distribution, the generalized
Dirichlet has more parameters and is more flexible for servel applications [12,54,64,65].
We define ¢ = (1, ..., 05 +1) and g1 =1 — ELI ¢@;. The mean and the variance of
the generalized Dirichlet distribution are given by:

k—1
Bl = +Ekl_‘[5 (2.2)
ss+1 ot 41
Varlee = E6e)(c—7—7 [l 55757 — B@w) (2:3)
i=1 T T

and, the covariance between ¢; and ¢; is given by

i—1

. s; + 1 tg + 1 _ )
wlén i1 = B3) oy I oy — B@) (24)

According to Eq.2.2 - 2.4, variables with the same mean do not need to have the
same variance. Moreover, unlike the restrictive negative covariance of Dirichlet dis-
tribution [66-68], the generalized Dirichlet distribution has a more general covariance
structure. Those advantages mentioned above make the generalized Dirichlet distri-
bution more powerful and practical in topic modeling. Furthermore, both generalized
Dirichlet and Dirichlet distributions are conjugate to the multinomial [69-72] and be-
long to the exponential family of distributions. Hence, introducing GD distribution
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to replace the Dirichlet prior in the LDA model provides a considerable improve-
ment in topic correlation and is convenient practical applications. Consequently, the
LGDA model can provide more practical capabilities than the original LDA model,
and includes the LDA model as a particular case [11].

. OO

R N
D

Figure 2.1: Graphical representation of LGDA

This subsection will analyze the (smoothed) LGDA model, which implements the
GD distribution on both document and corpus parameters [35]. The LGDA model
is a generative probabilistic model. The model generates each word of the document
through the following steps:

e For each document d, draw a topic mixture 8; from G D(u,v).

e Draw a corpus multinomial word distribution ¢ from G'D(s,t) for each topic

Z.
® Then for each word w; in d:

— Choose a topic 2; from Mult(f4)
— Choose a word w; from Mult(g:)

Even though the LGDA model has more flexible prior to enhance the topic corre-
lation, this model only focuses on one single collection of the dataset, which is insuf-
ficient for comparative datasets analysis. To overcome this problem in topic model
scheme, Paul and Girju [25] propose the cross-collection latent Dirichlet allocation
(ecLDA) model based on the ccMix [24] and LDA [2] models. The ccLDA model,
can both detect topics among multiple data collections as well as differences between
those data collections. Specifically, the ccLDA model first samples a collection ¢ (ob-

servable data), then chooses a topic z and flips a coin z to determine whether to
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Figure 2.2: Graphical representation of ceLDA

draw from the shared topic-word distribution or from the topic’s collection-specific
distribution. The probability of z is 1 or 0 and comes from a Beta distribution. The

generative process of the ccLDA model is based on the following steps:

e Draw a collection-independent multinomial word distribution ¢. from Dirichlet(3)

for each topic z

e Draw a collection-specific multinomial word distribution o . from Dirichlet(4)

for each topic z and each collection ¢

e Draw a Bernoulli distribution 1. . from Beta(~, ;) for each topic z and each

collection c

¢ For each document d, choose a collection ¢ and draw a topic mixture #; from

Dirichlet(a.). Then for each word w; in d:
— Sample a topic z; from Mutl(6;)
— Sample z; from Bernoulli(i. .)

— If x; = 1, sample a word w; from Mutl(o. )

else z; = 0, sample a word w; from Mutl(g.)

Although the ceLDA model generalizes the LDA model through adding compara-
tive analyses of different data collections, it still suffers from an incomplete generative
process due to the restricted covariance structure of Dirichlet prior. Moreover, both

LGDA and ccLDA models use inefficient inference techniques to estimate the posterior
of the hidden variables. For example, GD-LDA [10], LGDA [5,35], ccLDA [25] models
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are CPU-based. The performance of those models is still not satisfactory since they
require high memory storage and extensive computational resources. Those models
are inadequate for modern applications, demanding fast computation of huge datasets.
To deal with the problems of LGDA and ceLDA models with CPU-based inference
schemes, we will propose our GPU-based ccLGDA model in the next subsection.

2.1.2 Proposed topic model : GPU-based ccLGDA model

(&)

T | @)
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©
@
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.\%h

Figure 2.3: Graphical representation of ccLGDA

In this subsection, we demonstrate our extension of ccLDA [25], LGDA [5,11, 34,
35], and GLDA [19] models by using a parallel inference method, in which we take
advantage of collapsed Gibbs sampling (CGS) and the GPUs with GD distribution on
both the document and corpus parameters in the collapsed space. For the complete
analysis of the GPU-based ccLGDA model, we will first state the generative process of
the ccLGDA model, and then we will analyze and compare the CPU-based ceLGDA
models (CGS-ccLGDA). Finally, we will illustrate the parallel inference scheme for
the ceLGDA model on single machine and show its merit.

ccLGDA model, first samples a collection ¢ (observable data), then chooses a
topic z and flips a coin x to determine whether to draw from the shared topic-word
distribution or the topic’s collection-specific distribution. The probability of x being

1 or 0 comes from a Beta distribution.

e Draw a collection-independent multinomial word distribution ¢ from GD(s,1)

for each topic z
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e Draw a collection-specific multinomial word distribution o, from GD(g,, h,)

for each topic z and each collection ¢

e Draw a Bernoulli distribution 1), . from Beta(~g, ;) for each topic z and each

collection c

¢ For each document d, choose a collection ¢ and draw a topic mixture #; from
GD(u,,v.). Then for each word w; in d:

— Sample a topic z; from Mutl(6;)
— Sample z; from Bernoulli(y )

— If z; = 1, sample a word w; from Mutl(o} )

else z; = 0, sample a word w; from Mutl(g;)

Collapsed Gibbs Sampling (MCMC-CGS) for ccLGDA

Because the estimation of the posterior distribution in the Bayesian topic model is
intractable, inference methods such as VB and MCMC become the common choices to
estimate the latent topics and the model parameters. For the inference of the ceLGDA
model, we choose collapsed space representation because it contributes to the perfor-
mance of GPU-batch models [19]. In collapsed space, the parameters are marginalized
out only, leaving the latent variables that are conditionally independent [73], and the
collapsed space of latent variables is a low dimensional space compared with joint
space. Based on those properties of collapsed space, the computation of perform-
ing estimation is faster than in joint space. The collapsed Gibbs sampling inference
algorithm computes expectations by a sampling process of the latent variables to
approximate the posterior distributions using a Bayesian network. Compared with
standard Gibbs sampling in the joint space, the CGS is simple to implement and
computationally faster. Because the CGS inference dose not need to use digamma
functions, it reduces computational consumption. Hence, the CGS inference provides
an accurate estimate of the actual posterior distribution when the Markov chain
reaches its stationary distribution. The ccLDA and CGS-LGDA models [25, 35] are
based on CGS inference to estimate posterior distribution because of its advantages.

In the CGS-ceLGDA scheme, the conditional probabilities of latent variable z;;
are calculated by the current state of all variables except the particular variable
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2;; beging processed in the marginal joint distribution p(w,z|z; = 0,u.,v.,s,t) or
p(w,z|z; = 1,u,,v,., 9., h.) between collection-common and collection-specific case.
This algorithm applies the collapsed Gibbs sampler for topic assignments. The con-
ditional probability of 2;; is p(zy; = k|lz; = 0,2_;;, W, U, V., 5, 1) or p(2; = klz; =
1,2 i, W, Ug, Ve, ge, Re). The —ij represents the counts with z; excluded [73]. This

conditional probability of collection-common and collection-specific are expressed as:

F(zij = k: z_ijﬁwl"rij = ﬂ? Up, Uy 8, t]

p(zy; = k|zy; = 0,279, W, u,., v, 8, 1) = (2.5)

p(z7% wlzy = 0, U, U, 8, 1)

P2 = k, 279, W|xi; = 1, Ue, Ve, Ge, )
p{z_ij?w|mij = lsﬂ'r_‘? Ves Ops he]

p{z‘i}' = ji;Ix'i_‘i' = l,z_ij,w,umwc,gc, h'c) =
(2.6)
Eq.2.5 and Eq.2.6 can be simplified as following:

p{zij =k | Tij = G! z_ij:w:uc7ﬂc: S:t) oc F{zl.j = k,ﬁ_ij,w I Iy; = D,'Hc,ﬂc, S,t} {2?}

plzg =k | Tij = 1,277, W, Up, Ve, ge, he) 0 (235 = kb, 279, W | Ty = 1, U, Ve, G, R

(2.8)

In CGS-ccLGDA model, the parameters f, ¢, ¢ are drawn from the GD distribu-
tion. To speed up the traning process, we marginalize these parameter in the collapsed
space because sampling in the collapsed space is much faster than in the joint space
of latent variables and parameters [5,73]. In the collapsed space, we can integrate
out 8, ¢, 0, and v to get Eq.2.11 - 2.14 based on the conjugacy of the Beta/binomial
and GD/multinomial distributions using the update equations from CGS-ceLDA and
CGS-LGDA [25,35]. By integrating out the parameters, the Gibbs sampler’s equation

iz obtained as an expectation expression:

Pzf':kxi'=D:Z_ijawaucsu’-'!s!t =
(25 = Klas; ) ) (2.9)
Ep{£ij=k|fij=u:w~“ﬂ1”ﬂ=a‘ 9 [p( 2 = klzy; = 0,277, W, u,,7,, 8, t)]
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p(zij =k I Ly = l,z"*i"?w,uc,vc,gc,hc} = {2 1[}}
Eﬂiiij=I=|Iij=11w1ﬂed-'m§mhe}[p{z‘i:i' =k I Ty = 1, z_ij+w+ Ue, Vey Jes hc]]

In CGS algorithm iteration, we sample new assignment of z and x alternately

with the following equations:

p{zil = klm: = 'D'.- Z_;, W, U, U, 8, t‘} o
( _—1_? + M]{ﬂr_-k + E!Ii_;-ll-l —=j {N—ij + Sw}{t + Euw—zl-l-l _‘I-:} [2.1]}
x
(et + Ve + 3 opon N¥ (S +tw+ Y0 Neot

p{il-‘ = l']le—'i:az W. 7, 5, t} o

N5+ 70 (Nl + 8,)(tw + Y0 ok N2 (2.12)
Nk +90+m (Sp +ty+ Y0t ;:J,i)

For Eq.2.11 and Eq.2.12, all counts only refer to the words for which =; = 0,
which are the words assigned to the topic model. Specifically, N is the total number
of words for which z; = 0, not the total number of words in the corpus. Same for
Eq.2.13 and Eq.2.14, the count only include the words for which x; = 1, which means
that N is the total number of words for which z; = 1.

plzi = klzi = 1,25, W, U, Ve, g, Bc) ox
(NG + ) (o + L NG) (N, + o) o + Sty Na) (213)
(et + Ver + EKH N_u {ch + Rew + EWH N_H ;)

plz; =1|T_;,2,W,7, 0., I) oc
NE (N, + Gew) (hew + Y0t N ) (2.14)
N.k C+Te+ T {gm + h 4 EW+1 ﬂj]

The count N;i is the number of word w; in the document j and topic k in class
c. Besides, N;‘j is the total number of words in document j and topic k in class ¢
except the word w; being sampled. The count h”,;?:ﬂij is the number of times the word

w;; appears in topic k and document j. In addition, N,;:;fj is the number of times the
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word w;; appears in document j and topic k except beging sampled. Niiwij is the
number of times the word w;; appears in topic k and document j in specific collection
c. In addition, N ﬂ.-,— is the number of times the word w;; appears in document j
and topic k in specific collection ¢ except beging sampled. Nf*“ is the number of x
in topic k and collection e. x should be initialized as 0 for all tokens, because we
initially assume that everything comes from the shared collection word distribution.

For parameters estimation, the document parameter distribution is:

(N + ) (et + Yy Nit)
(et + Ver + Xy Nin)

0, (2.15)

The predictive distributions of the collection-independent and collection-specific

words are:

(N +80)(t + 20 N

2.16
P (5w + tw + 37 Ny (2.16)
Nots; + ew) (e + 0 LN,

{gcw + Ih’er.r.l + Zﬂ=w Nc.ku]

Algorithm 1 Summary of CPU-based ccLGDA Inference
procedure
Input: w, ., v, 5,1, ge, he iterMax, K, V, N
initialize z, x, Nk, Niew, Netw, N:
for iter = 1 to iterMax do
for i = 1 to N in document j in class ¢ do
if z;; = 0 then
update z; using Eq.2.11

else[z;; = 1]
update z;; using Eq.2.13
end if

update r;; using Eq.2.12 and Eq.2.14
upda.te Njk: Nkw‘.— Nc.ﬁ:w+ Nz
end for
end for
Output: Parameters 6}, ¢, 04 using Eq. 2.15 - 2.17
end procedure
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GPU-based ccLGDA model

For showing the complete merit of ccLGDA model, we propose a method to over-
come the efficiency problem of training the eccLGDA model - aceleration with GPUs.
Because the collapsed Gibbs sampling method is inherently sequential, each iteration
depends on the previous result in the training process [19]. The study in [20] has
shown that a similar accuracy could be obtained by using a parallel approximate
topic model algorithm. Therefore, we integrate a related parallel topic model infer-
ence algorithm for our GPU implementation with more completely generative pro-
cess. Specifically, we employ the enormous thread parallelism programming model
from NVIDIA CUDA to implement our parallel algorithm.

Our parallel Gibbs sampling algorithm mainly utilizes atomic increment and decre-
ment opreations to produce a correct result in the concurrent runing environment.
Hence, we only need to maintain one copy of Ny and N matrices in our implemen-
tation. First, we take advantage of the atomic increment and decrement operations
for the correctly counter update. Then, we serialize the computation and update on
the N,; and N_,; matrices. Algorithm 2 demonstrates our parallel ccLGDA algo-
rithm for one interation with two modifications above. Compared with CPU-based
ccLGDA model (from Algorithm 1), which requires many sequential loops to perform
the result in each iteration. Our parallel algorithm makes use of the high-performance
parallel architecture on GPUs to perform a concurrent running for w*. In particu-
lar, our parallel algorithm execute global updates after each p words are sampled in
p processors in parallel. This step can puarantee that updated results are correct.
The inherent data parallelism of the sampling algorithm is implemented by multiple
threads in each thread block because we map each thread block in CUDA to a proc-
ssor. And, the communication overhead is trivial in this implementation based on

the fact that multi-processors on the GPU are tightly coupled.

2.2 Experiments

This section evaluates the cross-collection latent Generalized Dirichlet Allocation
model with GPU implementation in terms of perplexity, classification accuracy, topic
coherence, time efficiency, and topics examples through different datasets as compared

with the ceLDA model to show our approach’s merit. The experiments utilize four

20



Algorithm 2 Summary of GPU-based ccLGDA Inference for one iteration
procedure
Input: w, ., v, 5,1, ge, he iterMax, K, V, N
initialize z, x, Nk, Niew, Netw, N:
w?: word tokens assigned to the pth processor
for all processors in parallel do
for each w;; € w” do
if z;; =0 then
sample z;; using Eq.2.11

else[zr;; = 1]
sample z;; using Eq.2.13
end if

sample r;; using Eq.2.12 and Eq.2.14
/* Global synchronization */
update Nk
Atomic update Npw, Negw, Nz
end for
end for
Output: Parameters 6;, ¢k, 0 using Eq. 2.15 - 2.17
end procedure

text datasets with different collections number, document lengths, and domains.

2.2.1 The Datasets

In the COVID-19 newspapers dataset, the first collection contains the online
newspapers from the United States of America, which is from COVID-NEWS-US-
NNKDATASET! [74]. In addition, we crawled the COVID-19 newspapers from sev-
eral different British newspaper websites to model the second collection in this dataset
based on the newspaper links?2. Then, we will use this dataset for comparative con-
tent aggregation and summarization to extract common and different effects and
knowledge about the virus in two various countries and demonstrate the merit of
our proposed model. To display the superiority of our approach in different types of

documents, the second dataset focuses on the field of computer science, including the

Lhttps:/ /github.com/nnk-dataset /usa-nnk
?https: / /www.kaggle.com /jwallib/coronavirus-newspaper-classification /data
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abstracts of NeurIPS? and CVPR? papers in 2019. We take advantage of compara-
tive text analysis to automatically discover different themes and trends in these two
different conferences.

We use also a subset of the New York Times (NYT) comments dataset®, which
contains more than two million comments from 2017 to 2018. A two-month comments
dataset between 2017 and 2018 is used to evaluate the accuracy of the ceLGDA
model. Indeed, the larger dataset, including total month comments in 2017 and
2018, is used to assess the time efficiency of the topic model. Because the length of
comments in this dataset varies greatly, some comments are discarded if the minimum
number of words is less than one hundred. To make a fair comparison with the result
reported in ccLDA [25], we reuse the dataset® crawled from an online travel platform -
lonelyplanet.com. This dataset consists of three different countries’ discussion forums
of India, Singapore, and the UK. Each collection has thousands of threads. Therefore,
our experiment utilized four domains datasets among newspapers, academic papers,

customer comments, and blogs. Table 2.2 displays an overview of the datasets sizes.

Experiments Datasets
Dataset Collection D | W/D
COVID-19 Newspapers USA /UK 2731 | 433
Academic Papers NIPS/CVPR 2787 | 9N
NYT Comments 2017,/2018 74895 | 127
Traveler Forum India/Singapore/UK | 4174 | 247

Table 2.2: Datasets - number of documents D and average number of words per
document W /D (without stop word)

2.2.2 Experimental Setup

We preprocess the datasets by first tokenizing words with the Natural Language
ToolKit(NLTK) [75], removing punctuation, stop-words, and then lemmatizing tokens
to derive their common base form. Following the same setting of the asymmetric GD
priors with Thou and Bouguila [35], we implement GD priors hyperparameters as

follows: u, = {zighs s ve = {35k}t xi s and g, = {p27)i i ¢ and b, =

*https: / /www.kaggle.com /rowhitswami /nips-papers-1987-2019-updated
Ahttps: / /www.kaggle.com /paultimothymooney/cvpr-2019-papers
Shttps:/ /www.kaggle.com /aashita /nyt-comments

Shttp:/ /www.michaeljpaul.com /downloads/ccdata.php
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{;J,;fl ;.. with same probability of occurrence of collection-common and collection-
specific words. For Dirichlet based model, the topic distribution priors are fixed and
a = 0.1. Then, we set § and 4 to 0.01; For «; and -, we use the same value, 1.0,
for both Dirichlet and GD based models in the experiments. We experimented on an
NVIDIA GeForce GTX 3070 GPU. Our proposed model, ccLGDA-GPU, is developed
using NVIDIA CUDA. In our experiment, two GPU-based models, ccLGDA-GPU and
GLDA (GPU-based LDA), use the same thread block setting, which is 1024 thread
blocks. The CPU counterparts (CPU LDA and ccLDAT) are based on a widely used
open-source package GibbsLDA-++. In the experiment, we will compare the CPU-
based ccLGDA model and GPU-based ccLGDA model to evaluate the accuracy of
our parallel implementation.

For the experiment validation, we use ten-fold cross-validation, which separates
each dataset with a 90% training set and 10% test set. In the Gibbs sampling,
the burn-in period is five hundred, and then we collect ten samples separated by
lags of ten iterations. The average of ten samples is the final result of the model.
After, we calculate the document-topic parameter £, the collection-independent word
distribution parameter ¢, the collection-specific word distribution parameter o, and
the 1. Moreover, we can assess model perplexity, document classification accuracy,

mixed topic coherence, and time efficiency based on these parameters and results.

2.2.3 Perplexity

Perplexity evaluates how well a topic model trained on training data predicts
the co-occurrence of words on the unseen test data. Perplexity focuses on the topic
model’s ability to generate word probabilities for the unseen dataset, so a lower per-
plexity score indicates better generalization performance. Based on Hofmann [8], we
use the "fold-in” approach for this experiment. This method evaluates the model
by only learning the document-topic probabilities # of the test dataset. All other
topic model probabilities parameters keep the same from the training dataset—the
validation Gibbs sampling measure only the document-topic distributions on the test
documents.

In cross-collection topic model, for a test dataset of M documents, the perplexity

is:

Thttp://www.michaeljpaul.com /downloads/mftm.php
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Perplezity(Dy..;) = 2 T likelihood(w]8uney <) (2.18)

The M is the total number of words in all test documents. In this formula,
after getting the topic probabilities #; and the collection ¢ of a test document d, the

likelihood of a word w in test document d is:

likelihood(w|4,..,,c) = Z P(2|0dpe)
: (2.19)
x[P(w|z,z = 0)P(z = 0) + P(w|z,c,z = 1)P(z = 1)]

P(x = 0) is the probability that word w belongs to collection-independent, and
z = 1 means the likelihood of word w being collection-specific. P(w|z,z) denotes
the possibility of word w sampled from collection-common or collection-specific when
topic z is sampled.

Figure 2.4 presents the perplexity for each model on both corpora for different
values of topics. As expected, cross-collection topic models (ccLGDA and ccLDA
models) generally achieves a lower perplexity than single-collection topic model (LDA
and GLDA models) because these models utilize extra information to assign a higher
probability to words more likely to appear in a document. According to Figure 2.4,
The ccLGDA and ceLDA models have very similar performance when the number
of topics is small. With the increasing of topics, the ccLGDA models achieve lower
perplexity than the ccLDA models because the GD distribution prior has better topic
correlation, flexibility, generalization, and modeling capabilities [34]. This advantage
can contribute to our proposed model, ccLGDA-GPU, fitting with a large dataset with
a considerable mumber of topics. Furthermore, this experiment shows no significant
difference for the perplexity results between the ccLGDA-CPU based model and the
ccLGDA-GPU based model.

2.2.4 Document Classification

The ecross-collection topic model can generate a document likelihood which de-
pends on the document’s collection [25], so the cross-collection models like the ccLGDA
and ccLDA have the ability to make a collection prediction. In this task, each model

predicts the collection of test documents based on the words. Moreover, the document
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Figure 2.4: Perplexity results on four different datasets for ccLGDA-GPU based,
ccLGDA-CPU based, ccLDA, LDA, and GLDA
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classification accuracy can evaluate the model’s separation of collection-common and
collection-specific words [25,28]. The cross-collection topic model not only assigns
the most probable collection for test document, but also places a probability to each
collection. This probabilistic classification allows a more detailed assessment of the
degree of certainty of each topic model. Therefore, we can objectively measure the
performance of these models in document classification. The cross-collection topic
model calculates the category of an unlabeled document d for choosing collection ¢

as:

label = argmax P(c) [ | Z P(2|f4pen €)
w = (2.20)

x[P(w|z,z = 0)P(z = 0) + P(w|z,¢,z = 1)P(z = 1)]

We can get the predicted collection ¢ by using the Eq. 2.20. Expect for P(z|0,,¢)
and P(c); other probabilities are generated from the training document because
P(z|84,¢) and P(c) depend on the new test document. Following Paul’s approach [25],
we assign a collection ¢ for the unlabeled document, and then we use another Gibbs
sampling procedure to learn these probabilities. The classification accuracy for the
new test datasets is %ﬂ:’:'::f.

Figure 2.5 demonstrates all document classification accuracy results for four dif-
ferent datasets among ccLGDA and ecLDA models. The performance of the ceLGDA
model is much better than the ccLDA model in the document classification task on
the whole. Specifically, on academic papers and traveler forum datasets, the accuracy
of our proposed GD-based model is in average 20% higher than ccLDA’s accuracy. On
the COVID-19 newspapers and NYT Comments datasets, the ccLGDA model also is
in average 7% better than ccLDA’s accuracy. Primarily, we can find the ccLDA model
has a constant accuracy on the COVID-19 Newspapers dataset, and this accuracy is
almost equal to the %. Still, the ccLGDA model does not have the same issue and
gets a reasonable accuracy. We will analyze this phenomenon in the topic analysis and
discussion subsection. Furthermore, we compare the ccLGDA-CPU based model and
ccLGDA-GPU based model to test the accuracy of our parallel algorithm in the cross-
collection topic model. Based on Figure 2.5, we can conclude that our ccLGDA-GPU
based model achieves similar performance with the CPU-based algorithm.
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Figure 2.5: Document Classification Accuracy results on four different datasets for
ccLGDA-GPU based, ccLGDA-CPU based, and ecLDA
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2.2.5 Topic Coherence

The topic coherence assessment compares the ecLGDA and ecLDA models to
cluster words within the collection-independent topic and between multiple collection-
specific topics through semantic similarity. In particular, we evaluated the model’s
ability to align topics of different collections among different collection-specific topic-
word distributions. However, the current topic coherence measure only considers
the single word distribution per topic without handling multiple word distributions
in one single topic. Therefore, we choose the mix topic coherence [28], which com-
bines the topic representation of the collection-independent word distribution and the
collection-specific word distribution. Therefore, we use the union of these representa-
tions as a single topic representation, which is independent in the different collections
and distributed by specific topic terms. Then, the coherence of this union can be
measured to present the current topic coherence score. Based on Risch and Kres-
tel [28], this mixed topic coherence can also allow evaluating the topical alignment of
the different collection word distributions.

For the topic coherence evaluation method, we choose the C} method [76]. This
coherence measurement is based on a sliding window, segmentation of a set of top
words, indirect confirmation measures using normalized pointwise mutual information
(NPMI), and cosine similarity. This coherence measure uses a sliding window and
a constant window size to retrieve the co-oceurrence count for a given word. These
counts are used to calculate the NPMI. The segmentation of a set of top-level words
results in calculating the cosine similarity between each top word vector and the
sum of all full word vectors. Then Cy Coherence is the arithmetic mean of these
similarities. Even though ('} coherence measurement respects correlation to human
ratings, this topic coherence still has its limitations because Cy coherence assumes
that words never appear together in the reference dataset are not coherent. This
assumption is not suitable for some datasets with strong language contrast.

In this experiment, we use the Palmetto library® to evaluate the topic coherence
automatically. Table 2.3 shows the Cy-based topic coherence of four datasets, which
averages all topics’ coherence scores. In this experiment, the number of the topic is
based on the result from perplexity and document classification. From Table 2.3, we

can conclude that the eccLGDA model obtains noticeably higher topic coherence values

fhttps: //github.com/dice-group,/Palmetto



Topic Coherence
Dataset ccLDA | ceLGDA
COVID-19 Newspapers | 0.3832 | 0.4008
Academic Papers 0.3886 | 0.4250
NYT Comments 0.4115 | 0.4174
Traveler Forum 0.3833 | 0.4015

Table 2.3: Topic coherence comparison with ecLDA and ceLGDA models

than the ccLDA model. Especially for the COVID-19 newspaper and traveler forum
dataset, our proposed model gets around 4.7% improvement. Indeed, the ccLGDA
model obtains 9.6% advancement compared with the ccLDA model.

2.2.6 Time Efficiency
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Figure 2.6: Performance comparisions for one iteration of NYT Comments dataset
with number of topics varied

This section compares the time efficiency with a PC equipped with an AMD
Ryzen7 5800X CPU and 16 GBytes memory. Only one CPU core is used for the CPU-
based model—our time efficiency experiment on the large NYT Comments dataset
for our cross-collection parallel CGS algorithm. Based on the results of perplexity
and document classification, it is to be concluded that the GPU-based ccLGDA and
CPU-based models have similar accuracy and effect, indicating that our parallel cross-

collection topic model algorithm can produce a correct result. Figure 2.6 shows
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Average Elapsed Time (sec)

Topic | GLDA (GPU-LDA) | GPU-ccLGDA | CPU-ccLDA | CPU-LDA
128 0.23 0.41 5.9 6.3
256 0.35 0.69 11.6 12.1
512 0.68 1.2 21.3 245
1024 1.8 3.1 40.8 47.1

2048 5.6 11.3 79.3 94.6

Table 2.4: Average Elapsed Time comparison with GLDA (GPU-LDA), GPU-

ccLGDA, CPU-ccLDA, CPU-LDA models

that our ccLGDA-GPU implementations are around 12-18X faster than CPU-ccLDA
and CPU-LDA models, which are sequential programs that use only one core. Such
speedup is outstanding, especially for large real-world datasets. Based on Table 2.4,
we can find that our GPU-based ccLGDA model performs similarly to GLDA when
the topic is below 512. Even though GLDA's performance is better than our proposed
model when topic is more than 1024, GPU-ceLGDA model still keeps a reasonable
elapsed time for such significant computation. This experiment demonstrates that

our ccLGDA-GPU model includes high training speed and scalability for such large

datasets.

2.2.7 Topics analysis and discussion

Table 2.5: ceLGDA model with three topics for COVID-19 newspapers dataset

Topic 1 Topic 2 Topic 3
Coronaviru, health, report, | China, world, first, chine, | hospit, doctor, mask, nurs, die,
viru, spread, outhread, case, | research, cans, report, equip, war, oxXygen, surgic,
public, resident, quarantine coronaviru, vear, fall healthear
USA UK USA UK USA UK
health case price anim mask die
office confirm global Wuhan medic ventil
starff contact year human ventil care
home ship product sar wear patient
protect infect trade respiratori patient famili
work quarantin market cell drug nurs
depart passeng sale vaccin healthear intens
Emerg China demand bat treat ambul
center Hight industri expert respir away
care patient energi lung devic age

In the COVID-19 newspapers datasets, we modeled this dataset with 30 top-

ics according to perplexity and topic coherence results. Based on the outcome, we
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found the ecLDA model has a problem of word sparseness because each data source’s
collection-specific and collection-independent topics will be forced to align, especially
for a significant gap in quantity between the collections. Because the UK collection
is much more extensive than USA collections, almost all words have been assigned to
the UK collection in the ccLDA model. This problem can also explain why the con-
stant accuracy of the ccLDA model shows in the document classification experiment
because all of the test documents have been assigned to one collection, which has a
significant P(c). Because the ccLGDA model takes advantage of GD distribution with
different update equations, Eq. 2.11-2.14, the ccLGDA model overcomes the short-
coming that the collection-specific and collection-independent topic must be aligned
in the ceLDA model, thereby avoiding the problem of words being scattered between
the collection-specific and collection-independent topic distribution. Therefore, we
mainly discuss the topics discovered by the ccLGDA model.

Table 2.5 represents the top-10 words for collection-independent and each collec-
tion local word distribution from the ccLGDA model. From the collection-independent
topic words, we can quickly identify the meaning of Topic 1, which is about stopping
COVID-19 from spreading. What’s more, we can compare which methods are chosen
between USA and UK. It is clear that the USA government let people work from
home and built some emergency centers to protect public health for USA collection.
The UK administration quarantines the passengers because of the confirmed cases in
the ship and measures the flights from China. Topic 2 is about the China research
report of Coronavirus. There is a substantial different concern between the USA and
UK newspapers. We can conclude that the USA newspaper mainly focused on the
virus's effect on the global economy like product price, international trade, market,
and industry. The UK newspaper paid attention to the origin of the COVID-19
virus and the production of the vaccine. Besides, Topic 3 represents the treatment of
COVID-19. Compared with USA newspapers, the UK collection concentrates more
on the death of patients while the USA talks more about treatment equipment.

Table 2.6 compares two neural network topics learned by the ceLGDA and ecLDA
model. The ceLGDA model provides better coherence in collection-specific distribu-
tions. For the collection-independent topic, both models are able to capture "neural
network”, "layer”, " convolution”, and "deep”. The CVPR collection in both models

manifests that many researchers pay attention to the accuracy of CNN. However,
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Table 2.6: Example topics of academic papers dataset as discovered by the ccLDA

and ecLGD

A models

ccLDA

ccLGDA

network, neural, deep, train,
architectur, layer, convolut,
perform. activ

network, neural, comput,
layer, convolut, oper, deep,
block, transform, point

NIPS CVPR NIPS CVPR
neural convolut gradient network
weight accuraci method convolute
connect achiev optim neural
kernel output stochast architectur
larg result COTIVETZ accuraci
nn cnn descent point
batch best TNONCONVEX map
TECUIT separ local How
care Oper global paramet
initi tradit iter cnn

the ccLDA model shows a limitation of separating collection-specific and collection-
independent words. In the ceLDA model, NIPS collection does not indicate a mean-
ingful topic, but the ccLGDA model emphasizes optimation methods such as gradient

descent and stochastic optimation in 2019 NIPS coference.

Table 2.7: Example topics of traveler forum dataset as discovered by the ccLDA and
ccLGDA models

ccLDA ceLGDA
airport, flight, hour, check, arriv, luggag, time, flight, sirport, book, check, arriv, leav, termin,
take, termin, leav hour, take, time
India Collection | Singapore Collection | UK Collection | India Collection | Singapore Collection | UK Collection
station airport heathrow book airport ticket
armiv changi gatwick delhi changi airlin
mmbai termin allow ticket taxi heathrow
airport transit connect ATTiV termin london
taxi tacxi stanst airpaort transit global
take hotel checkin mumbai free frill
intern budget think arilin shuttl guid
late citi transfer taxi hotel luggag
give frec pari back train stanst
thank Ares mean patienc night connect

As shown in Table 2.7, this topic discusses transportation from the traveler forum
dataset. The analysis of the ccLDA model can conclude that the ccLDA model has
a good performance when the topic similarity of each data source is very high, and
there is not a significant gap in quantity between the collections. For example, in the

traveler forum, India, Singapore, and the United Kingdom have similar P(c), and all
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of the collections are involved in the transportation topic. There is little difference
between ccLDA and ecLGDA models in this topic, but the result of the ceLGDA

model is more interpretable.

Table 2.8: ccLGDA model with three collection-independent topics for NYT Com-
ments dataset

Topic Topic Representation
climat, human, pollut, regul, technolog,
chang, energi, scienc, natur, use,
system, industri, electr, power, fossil,
environment, plant, speci, much, mine
govern, constitut, right, court, nation,
citizen, feder, unit, protect, free,
congress, Tule, secur, suprem, amend,
justic, law, legal, must, first
cost, health, care, price, system,
compani, money, insur, expens, govern,
save, afford, spend, pay, servic,
free, industri, healthear, le, tax
crime, case, call, state, would,
know, crimin, deal, action,
polic, claim, commit, depart, act,
involv, said, victim, session, refus, person

Environment

Policy

Health

Crime

Table 2.8 lists four different topics about public concernment from 2017 to 2018
learned by ceLGDA model on NYT Comments dataset. These topics are first 20
words from collection-independent word distribution. We can detect the public was
concerning the environment, policy, health, and crime between 2017 and 2018. What's
more, Table 2.9 compares world economy topics from the New York Times Comments
corpus with ccLDA and ecLGDA models. Our approach, the ccLGDA model, also
produces a better separation of collection-specific words and topic coherence in this
dataset. ccLDA model assigns "bank” and "estate” to the 2017 collection, while the
ccLGDA model assigns "worker,” "job,” and "wage” words for the world economy
topics. Compared with estate and bank, labor cost has a much more significant effect
on the world economy because real estate and banks may affect the local economy.
Furthermore, both models have a similar result on the 2018 collection about China's
effect on world trade. Nevertheless, ccLDA only captures the trade relationship be-
tween China and Canada. At the same time, ccLGDA assigns "China” and "global”
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to 2018 collections, which is more relative to the collection-specific topic: world econ-
omy.

Table 2.9: Example topics of NYT Comments dataset as discovered by the ccLDA
and ccLGDA models

ccLDA ccLGDA
busi, market, product, money, product, econom, trade,
trade, compani, economi, economi, manufactur, job,
econom, good, price good, american, world, trump
2017 Collection | 2018 Collection | 2017 Collection | 2018 Collection

regul trade worker trade
bank china job china
estat tariff wage tariff

reduc steel price steel
£conom manufactur labor industri
growth chine cost global
2008 aluminum market chine
doddfrank canada industri countri
mortaga industri work market
banker impos autom deficit




Chapter 3

Cross-Collection Latent
Beta-Liouville Allocation Model
Training with Privacy Protection

and Applications

In this chapter, to alleviate the restriction of Dirichlet prior and the significant
privacy risk, we propose a cross-collection latent topic model (ccLBLA) with more
flexibility and scalability by offering a better prior distribution, the Beta-Liouville
distribution [77]. This is a novel enhanced cross-collection topic model that combines
state-of-the-art cross-collection topic model [25], the completely LBLA model [6,53).
To address privacy and utility issues, we present a hybrid privacy-preserving approach
of the ccLBLA model (HDP-ccLBLA) based on a systematic analysis of the intrinsic
differential privacy guarantee of topic model training on centralized datasets by taking
advantage of HDP-LDA model [50]. The merits of our novel approach are demon-
strated by experimental results in text document analysis and image recognition and

categorization.
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3.1 The Hybrid Privacy-preserving Approach of
ccLBLA Model

This section mainly describes our Cross-Collection Latent Beta-Liouville Alloca-
tion (ccLBLA) model and the hybrid private ccLBLA framework. Our approach
integrates LBLA [6,53] and ccLDA [25], and HDP-LDA [50] as a privacy preservation
cross-collection topic model that takes BL distribution on both document and corpus
parameters. We will start with a study of the generative process of the fundamen-
tal ccLBLA model. Then, we introduce our extension of the ccLBLA model to the
hybrid privacy-preserving learning scheme applying the method on the HDP-LDA
model [50], which includes cross-collection and CGS inference method with BL dis-
tribution prior. The variables in this paper are provided in Table 3.1 to allow readers

to understand our models and follow easily the inference steps.

Table 3.1: Model variables and definitions
C - total number of collections
D - total number of documents
W - total number of words in each document
K - total number of topics
w = w;; - observed words
Z = z; - latent variables
f; - mixing proportions
¢y - corpus parameters in collection-independent distribution
Ok, - corpus parameters in collection-specific distribution
Uk - parameter in Bernoulli distribution
f; ~ BL((.) - generalized Dirichlet distribution
o ~ BL(€) - generalized Dirichlet distribution
Ok ~ BL(T,) - generalized Dirichlet distribution
Uy . ~ Beta(7,7;) - Beta distribution
T ~ Bernoulli(v) - Bernoulli distribution
2/ @i ~ Mult(f;) - multinomial distribution
T/ Zjks P, T = 0 ~ Mult(¢y) - multinomial distribution
Tk Zjkes O ey T = 1 ~« Mult(0.) - multinomial distribution

3.1.1 The cross-collection LBLA model

For the complete analysis of the eccLBLA model, we will first state the generative

process of the ccLBLA model, and then we will develop the inference equations when
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Figure 3.1: Graphical representation of ccLBLA

using the collapsed Gibbs sampling for learning (CGS-ccLBLA). The ccLBLA model
first samples a collection ¢ (observable data), then chooses a topic z and flips a coin x
to determine whether to draw from the shared topic-word distribution or the topic’s
collection-specific distribution. The probability of x is 1 or 0 and is supported to be
generated from a Bernoulli distribution.

e Draw a collection-independent multinomial word distribution ¢ from BL(¢) for

each topic z

e Draw a collection-specific multinomial word distribution .. from BL(7.) for

each topic z and each collection ¢

e Draw a Bernoulli distribution 1. from Beta(vp, 1) for each topic z and each

collection c

¢ For each document d, choose a collection ¢ and draw a topic mixture #; from
BL(¢.). Then for each word w; in d:
— Sample a topic 2 from Mutl(6;)
— Sample x; from Bernoulli(iy.)

— If z; = 1, sample a word w; from Mutl(ow )

else z; = 0, sample a word w; from Mutl(g;)
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Because the estimation of the posterior distribution in Bayesian topic models is
intractable, inference methods such as VB and MCMC have become the standard
choices to estimate the latent topics and the model parameters. For the inference of
the ccLBLA model, we choose collapsed space representation because it contributes
to the performance of batch models [29,30]. Details about collapsed Gibbs sampling
inference will be provided. Specifically, (. carries the document hyperparameters
a. and f3., € includes the collection-common hyperparameters n and A, as well as
the variable 7. holds collection-specific hyperparameters 7. and A.. In more detail,
(&) = (@, ..., ek —1), Qc, fc) means the hyperparameter set of a document with class
¢, and K is the number of topics. The collection-independent hyperparameter vari-
able € can be extended as € = (A, ..., Ay_1, A, ) while V' is the size of the vocabulary
or codebook. Similarly, the collection-specific hyperparameter variable (., can be ex-
pressed as 7, = (Aq, ...y Agv_1), Ac, ) While V' is also the size of the vocabulary. In our
scheme, the document, topic’s collection-commeon, and collection-specific distribution
are sampled from Beta-Liouville distributions. Therefore, in our implementation, ¢,
is the K — 1 dimensional BL hyperparameter (., ..., @ k_1), @, 5.) for the docu-
ment in class ¢ in a K dimensional space. The ¢ and 7. are the V dimensional BL
hyperparameters for the vocabulary in a V' dimensional space.

In collapsed space, the parameters are marginalized, leaving only the latent vari-
ables that are conditionally independent [73], and the collapsed space of latent vari-
ables is a low dimensional space as compared with joint space. Estimation in collapsed
space is faster than in joint space because the parameters ¢, #, and @ are marginalized
out. The collapsed Gibbs sampling inference approach uses a Bayesian network to
estimate the posterior distributions by computing expectations through a sampling
process of the latent variables. The CGS is easier to implement and computationally
quicker than ordinary Gibbs sampling in the joint space. Because the CGS inference
does not need the usage of digamma functions, it increases computational efficiency.
As a result, when the Markov chain achieves its stationary distribution, the CGS in-
ference delivers an accurate approximation of the actual posterior distribution. The
ccLDA and its extensions [25,28] are based on CGS inference to estimate posterior dis-
tribution because of its advantages. Furthermore, in the next section, we will describe
our privacy-preserving ccLBLA method by utilizing the intrinsic privacy guarantee

feature of the CGS inference scheme.



In the CGS-ccLBLA scheme, the conditional probabilities of latent variable z;;
are calculated by the current state of all variables except the particular variable z;;
being processed in the marginal joint distribution p(w,z | z;; = 0, €) or p(w,z |
T;; = 1, (. T.) between collection-common and collection-specific case. This algorithm
applies the collapsed Gibbs sampler for topic assignments. The conditional probability
of z; splziy =k | s = 0,245, W, (e €) or p(2i = k| s = 1,24, W,(,T). The
—ij represents the counts with 2; excluded [73]. This conditional probability of

collection-common and collection-specific is expressed as:

F(zij = k’z—ij?w I Iy = D:CE:E]

i'=k I'.'=D: _ij: s Yo = o 3.1
Py =Rz = 0.2, G €)= T e W Ty = 0,600 G
i plz; =k, 29w |2y =1,(,Te)

=k i'=1: j? rhes Te) = i 3.2

Pl =K 2 =12 W o Te) = e W 2y = LéaT) 42
Eq.3.1 and Eq.3.2 can be simplified as following:

p{z'ij =k | Iy = ﬂ? z_ij7w7 ‘:r:? E) oC F{zij = k:z_ijaw I Ly = D:Cc: E] {33}

plzg =k |z =129, W, Te) oxplzi =k, 279w | 235 = 1,0, 7e) (3.4)

In the CGS-ccLBLA model, the parameters f, ¢, and ¢ are drawn from the BL
distribution. To speed up the training process, we marginalize these parameters in
the collapsed space because sampling in the collapsed space is much faster than in
the joint space of latent variables and parameters [6,73]. By integrating out the
parameters, Gibbs sampler’s equations are obtained as expectation expressions:

2y =k xi'znsz_ij:awa o ) =
P(2; | 5 Cer €) (3.5)

Epliiij=k|1ij=ﬂ,w,f.-_-,£}[p{zij =k | Ti; =10, z—ij,w, Ces E}]
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plzg =k |25 =127, w,(,T.) =

Ep{z.'j=k|:l.‘.'j=1,w,cﬂ,1'ﬂ}[p{zij =k | Tij = lfz_ijsws CmTc)]

(3.6)

In the collapsed space, we can integrate out #, ¢, o, and v to get Eqs.3.7 - 3.10
according to the conjugacy of the Beta/Binomial and BL/Multinomial distributions
[78,79] based on the inference equations developed for CGS-ccLDA and CGS-LBLA
[6,25]. In CGS algorithm iterations, we sample new assignment of z and x alternately

with the following equations:

plzi=k|x:=0,2_;,W ,C,:,E]

(0 + Ny (0 + T NG
(I ea+ EK TN (et Bot zi_ N (3.7)
(As + Ni,? A+ Nﬁ“}

pHED) +Z TN=T) " A+ +30 NG
{:—f ) n =1 Nu)

pl{.‘ﬁ;‘, =0 | I i &, W.7, 8 t}
N2Zo + 0 MM AR M) (38)
TN > S v T S gy e

For Eq.3.7 and Eq.3.8, all counts only refer to the words for which x; = 0, which
are the words assigned to the topic model. Specifically, N is the total number of
words for which z; = 0, not the total number of words in the corpus. Same for Eq.3.9
and Eq.3.10, the count only includes the words for which z; = 1, which means that
N is the total number of words for which z; = 1.

p{zi=k|zi=1:uz—i: :CC+T)DC

(0 + N (0t I N
{Ei—l Qg+ E: 11 Nj_;“ {ﬂ’ + 5.+ Z;_ _“ (3.9)
{}t + Nﬂ_,_,:f (Ao + E _“

X P
(Ci M+ 205 Naf) - Qe+ ne+ X Naf



pl{.‘l-‘,- =1 | r_;, &, W'.-".I"JT } o
NES +m O N o Qe Ty Nat -
NEe+ 9+ 7 (Ei 1 "a + Z:=1 Ngd' (Ae+1e+ EI=1 c._i:?

The count N;'i is the number of words w; in the document 7 and topic £ in class c.
Besides, N;j is the total number of words in document j and topic k in class ¢ except
for the word w; being sampled. The count Nﬂﬂﬁ is the number of times the word
w;; appears in topic k and document j. In addition, N;J;"_'j is the number of times
the word w;; appears in document j and topic k except being sampled. Jﬁ":iw.-j is the
number of times the word w;; appears in topic k and document j in specific collection
c. In addition, N* ,m is the number of times the word w;; appears in document j and
topic k in specific collection ¢ except being sampled. N*¢ is the number of x in topic
k, and collection ¢. x should be initialized as 0 for all tokens. We initially assume
that everything comes from the shared collection word distribution.

For parameters estimation, the document parameter distribution is:

(ca + Nye) (0 + 305" Na)
i ea+ X0 Nﬂ) (e + Be+ Y1ty Nit)

The predictive distributions of the collection-independent and collection-specific

B, — (3.11)

words are:
V1
Prw = E}‘ + Niw) « AT E‘=1VN*‘] (3.12)
O N+ Y0 Nw) T A+, Na)
V-1
S (Ae + Negw) (Ae+ 2315 Naw) (3.13)

o
(A + 00 M) e+ 7+ 30, Na)

3.1.2 Hybrid Privacy-preserving ccLBLA scheme

This section will first introduce the differential privacy and exponential mecha-
nism. Then, we demonstrate a thorough analysis of the inherent differential privacy
guarantee of CGS-ccLBLA training on centralized datasets. We will present a hybrid
privacy-preserving method for the cross-collection topic model (HDP-ccLBLA) based
on the study above. In the HDP-ccLBLA scheme, all the intermediate statistics of
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Algorithm 3 Summary of CGS5-ccLBLA model
procedure
Input: w, (., T, €, iterMax, K, V, ¥
initialize z, x, Nk, Niew, Netw, N:
for iter = 1 to iterMax do
for i = 1 to N in document j in class ¢ do
if z;; =0 then
update z;; using Eq.3.7
else
update z;; using Eq.3.9
end if
update r;; using Eq.3.8 and Eq.3.10
update Nj_&, Niw, Nekw, Nz
end for
end for
Output: Parameters 6;, ¢, 0 using Eq. 3.11 - 3.13
end procedure

the CGS-cceLBLA model can be protected during the training process.

Differential privacy and exponential mechanism

Differential privacy [23] is a de-facto standard for privacy protection framework
with a rigorous mathematical proof. So far, DP has been widely utilized in the past
to assess the privacy issue of random algorithms by comparing the mathematical

differences between neighboring datasets.

Theorem 1 (Differential Privacy [23]) A randomized mechanism f : D — Y
offers (e,d — DP) if for any adjacent D, I €D andY €Y, there 1s:

Pr(f(D)eY) < ePr(f(D") € Y)+4 (3.14)

The Pr() refers to the probability and € is the privacy level of f. This definition

restrains an adversary’s ability to infer whether the training or input dataset is D or

D.

According to Dework et al. [23], exponential machanism is a base approach to
obtain € — DP. The main concern of exponential mechanism is to return the result
sampled from a definite distribution with a fixed output set.
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Theorem 2 (Exponential Machanism [23]) Given a range R, a dataset D, a
function u, and a privacy parameter €, the mechanism Mg(z,u,R) : D — R sal-
isfies € — DP if Mg(z,u,R) output an element r € R with probability Pr satisfies
that:

£
248U

Pr oc exp( u(z,r)) (3.15)

where u(x, r) is the utility function and A u is sensitivity.

Inherent Privacy of CGS inference scheme

Because Gibbs sampling has the same process with an exponential mechanism for
differential privacy, Foulds et al. [52] highlighted that the Gibbs sampling method
inherently generates some degree of intrinsic differential privacy. The CGS technique
has the same property since it is one of the versions of Gibbs sampling. Furthermore,
during each iteration of learning a topic-word distribution, the CGS inference outputs
a topic from the topics set. Thus, Zhao et al. [50, 80] began to investigate the CGS
process in terms of the exponential mechanism, and they sucessfully concluded the
inherent privacy of the CGS algorithm in LDA model. They indeed specifically anal-
yse the intrinsic privacy loss in each iteration before composing the privacy in total
interactions of the CGS training scheme of LDA. We will employ the same concepts
and then extend this idea to our proposed model so we will use the same propositions
in HDP-ccLBLA model.

According to Zhao et al. [50], the intrinsic privacy of LDA’s CGS inference tech-
nique has two significant drawbacks. First, because privacy loss grows linearly, the
privacy loss will accumulate rapidly. Second, during the CGS inference process, there
is no protection for word-count information since intrinsic privacy cannot secure the
word-count data, leading to a privacy leakage issue. We will address these two po-
tential difficulties of inherent privacy after leveraging CGS’s inherent privacy feature

and present a privacy-preserving solution for our model (HDP-ccLBLA).

Hybrid Privacy-preserving ccLBLA algorithm

The final hybrid privacy-preserving model (HDP-ccLBLA) described in this sec-
tion integrates the inherent privacy of the CGS inference approach with external
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privacy provided by noise injection. We provide suitable noise in each iteration of
the CGS technique to secure the word-count statistical information to overcome the
possible privacy concern of intrinsic privacy. We introduce the noise to obfuscate
the difference between Ny or N,y in each iteration. Besides, we minimize the rapid
accumulation of privacy loss by setting the upper bound of the topic-word count. We
choose the same method for HDP-LDA [50], which resorts to a clipping method to
restrict the inherent privacy in each iteration. Specifically, the clipping only impacts
a copy of Ng or N in the computation of sampling but not the updating of CGS
inference. Algorithm 4 meets (er, 4+ €;) — DP in each iteration. e; is the inherent

privacy loss:

. 2log(£ +1), ifzy;=0 (3.16)
210g{%+1], if z;; =1

The ¢ denotes the privacy loss incured by the Laplace noise, and the ' is the
clipping bound for Ng. or N.g.

In Algorithm 4, the privacy loss in the HDP-ccLBLA model includes privacy
loss e, incurred by Laplace noise and the inherent privacy loss ¢ of CGS inference.
According to Eq.3.16, we can conclude that the rapid increase of inherent privacy
loss has been limited, and the word-count statistical information also gets privacy

protection.

3.2 Experimental results

The cross-collection Allocation model was evaluated via perplexity, classification
accuracy, and topic coherence using several applications such as comparative text
mining and image classification. We also compare topic examples across multiple
text datasets to demonstrate the strengths of our technique. The experiments utilize
four text datasets with different collection numbers, document lengths, domains, and
one well-known image dataset. In this section, we use the Scale Invariant Feature
Transform (SIFT) and K-means approaches to successfully apply our cross-collection
topic model (ccLBLA) to an image classification assignment using the Bag of Vi-
sual Words (BOVW) approach. Finally, we primarily validate the HDP-ccLBLA

algorithm’s performance in terms of model utility such as perplexity to show our
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Algorithm 4 Summary of HDP-ccLBLA algorithm

procedure
Input: w, (., T, €, iterMax, K, V, ¥
initialize z, x, Nk, Niew, Netw, N:
for iter = 1 to iterMax do
for i = 1 to N in document j in class ¢ do
n ~ Lap(Z)
if z;; = 0 then
Add noise to Ny
P\rkw = Nk-:.r_' +1n
Clip: (Npy )™ ™ = min( Ny, C)
Compute: ¢ = Ziog{ﬁ +1)
update z;; using Eq.3.7
else
Add noise to N,
Noow = N +71
Clip: (N ) ™™ = min( N, C)
Compute: e = Ziog{ﬁ +1)
pdate z;; using Eq.3.9
end if
update z;; using Eq.3.8 and Eq.3.10
update Nj_&, Niw, Nekw, Nz
end for
end for
Output: Parameters 6;, ¢, 0 using Eq. 3.11 - 3.13
Output: Privacy loss € = (e, + €f)
end procedure
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approach’s merits.

3.2.1 The Datasets

Table 3.2 displays an overview of each dataset size for the text datasets. The
COVID-19 newspapers dataset contains online newspapers from the United States of
America, which is collected from COVID-NEWS-US-NNKDATASET! [74]. Besides,
the second collection of this dataset is from several different British newspapers web-
sites’. Indeed, we can use this novel dataset for comparative text mining tasks in
aggregation and summarization to extract common and different effects and knowl-
edge about the virus in two different countries and demonstrate the merits of our
proposed model. Besides, the second text dataset mainly focuses on the field of
computer science academic papers, including the abstracts of NeurIPS® and CVPR4
papers published in 2019. We apply our model to comparative text analysis to au-
tomatically spot different topics and trends in these two different conferences. The
third text dataset consists of a subset of the New York Times (NYT) comments®,
which contains more than two million comments from 2017 to 2018. Because some
comments are discarded if the minimum number of words is less than one hundred, we
decided to take advantage of a two-month comments dataset between 2017 and 2018
to compare the performance of the ccLBLA model with ccLDA [25], and LDA [29]
models. We also reuse the dataset® reported in ccLDA [25] so that we can make a fair
comparison. The last text dataset crawled from an online travel platform including
three different countries’ discussion forums of India, Singapore, and the UK, with
thousands of threads in each collection [25]. Therefore, our experiment utilized four
domains of datasets newspapers, academic papers, customer comments, and travel
blogs, to prove that our approach can handle different types of documents.

For the image-based application, we used the famous grayscale natural scenes
dataset [81]. As shown in Table 3.3 and Fig.3.2, this image dataset includes the
following categories: kitchen, office, bedroom, suburb, highway, living room, street,

downtown, industry, store, forest, skyscraper, coast, mountain, and rural area.

Lhttps:/ /github.com/nnk-dataset /usa-nnk

?https: / /www.kaggle.com /jwallib/coronavirus-newspaper-classification /data
*https: / /www.kaggle.com /rowhitswami /nips-papers-1987-2019-updated
Ahttps: / /www.kaggle.com /paultimothymooney/cvpr-2019-papers

Shttps: / /www.kaggle.com /aashita /nyt-comments

http: //www.michaeljpaul.com /downloads/ccdata.php
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Table 3.2: Datasets - number of documents D and average number of words per
document W/D (without stop words)

Text Datasets
Dataset Collection D | W/D
COVID-19 Newspapers USA /UK 2731 | 433
Academic Papers NIPS/CVPR 2787 | 91
NYT Comments 2017/2018 T4895 | 127
Traveler Forum India/Singapore/UK | 4174 | 247

Table 3.3: Size of each image category

Natural scenes images dataset
Catepgories Size
Kitchen 210
Office 215
Bedroom 216
Suburb 241
Highway 260
Living Room 289
Street 292
Downtown 308
Industry 311
Store 315
Forest 328
Skyscraper 356
Coast 360
Mountain 374
Rural Area 410
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(a) Kitchen (b} Office (c) Bedroom

(m) Coast (n) Mountain (o) Rural Area

Figure 3.2: Examples from the natural scenes images dataset (Total Fifteen
Categories)



3.2.2 Experiments for text mining

For comparative text mining application, we preprocess the text datasets by first
tokenizing words with the Natural Language ToolKit (NLTK) [75], removing punc-
tuation, stop-words, and then lemmatizing tokens to derive their common base form.
We choose BL priors hyperparameters following the same setting of the asymmetric
BL priors in [6]. For Dirichlet based model, the topic distribution priors are fixed
and a = 0.1. Then, we set § and 4§ to 0.01; for 7y and 7, we use the same value,
1.0. The LDA and ccLDA (LDA and ccLDA") are based on a widely used open-
source package GibbsLDA++. For the text experiment validation, we use ten-fold
cross-validation, which separates each dataset with a 90% training set and 10% test
set. In the Gibbs sampling, the burn-in period is five hundred, and then we col-
lect ten samples separated by lags of ten iterations. The average of ten samples is
the final result of the model. After, we calculate the document-topic parameter #,
the collection-independent word distribution parameter ¢, the collection-specific word
distribution parameters o, and 1. Moreover, we assessed model perplexity, document
classification accuracy, and mixed topic coherence based on these parameters and
results.

Perplexity

Perplexity evaluates how well a trained topic model predicts the co-occurrence
of words on the unseen test data. Perplexity focuses on the topic model’s ability to
generate word probabilities for the unseen dataset, so a lower perplexity score indi-
cates better generalization performance. Based on Hofmann [8], we use the " fold-in”
approach for this experiment. This method evaluates the model by only learning the
document-topic probabilities # of the test dataset. All other topic model probabil-
ities parameters are kept the same from the training dataset—the validation Gibbs
sampling measure only the document-topic distributions on the test documents.

In cross-collection topic model, for a test dataset of M documents, the perplexity

is:

Perplezity(Dyyy) = 27 T ikelihood(w]0uneu, ) (3.17)

Thttp:/ /www.michaeljpaul.com /downloads/mftm. php
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In this formula, after getting the topic probabilities #; and the collection ¢ of a

test document d, the likelihood of a word w in test document d is:

likelihood(w | 84,..,,c) = Z P(2 | Bdpew)
: (3.18)
x[P(w|z,z=0)P(zx=0)+Pw| z.cz=1)P(z =1)]

P(x = 0) is the probability that word w is collection-independent, and =z = 1
means the likelihood of word w being collection-specific. P(w | 2,z) denotes the
possibility of word w sampled from collection-common or collection-specific when
topic z is sampled.

The perplexity for each model on both corpora for different values of topics is
shown in Fig.3.3. As expected, cross-collection topic models (ccLBLA and ccLDA)
generally achieve a lower perplexity than single-collection topic model (LDA) because
these models utilize extra information to assign a greater probability to words more
likely to exist in a document. According to Fig.3.3, The ccLBLA and ecLDA models
have comparable performance when the number of topics is negligible since the topic
number is not ideal for specific datasets. The ccLBLA models achieve lower perplexity
than the ccLDA models as the number of topics increases. The ccLBLA and ceLDA
models produce pretty similar results on the traveler forum dataset, although the
difference between the two models is not significant. After examining the traveler
forum dataset, we notice that each collection contains many duplicate documents,
implying that this dataset cannot accurately demonstrate the capabilities of a cross-
collection topic model to predict unseen documents. In the other three text datasets,
ccLBLA has a lower perplexity than the ccLDA model. The main reason may be that
the BL distribution prior has better topic correlation, flexibility, generalization, and
modeling capabilities [6, 53].

Document Classification

Cross-collection topic models like ccLBLA and ccLDA are capable of producing
collection predictions for unseen documents since they can generate a document likeli-

hood that relies on the document’s collection [25]. Each model predicts the collection
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of test documents based on the words in this task. Furthermore, the document classi-
fication accuracy may be used to assess the model’s separation of collection-common
and collection-specific words [25, 28]. The cross-collection topic model provides a
probability for each collection and assigns the most likely collection for the test docu-
ment. This probabilistic classification enables a more precise assessment of each topic
model’s degree of certainty. Therefore, we can objectively measure the performance of
these models in document classification. The cross-collection topic model calculates

the category of an unlabeled document d for choosing collection ¢ as:

label = argmax P(c) HZ P(z | 4y, €)
: w = (3.19)

x[Pw|z,z=0)P(x=0)+Plw| z,cx=1)P(z =1)]

We can get the predicted collection ¢ by using Eq.3.19. Expect for P(z | 84, ¢)
and P(c); other probabilities are generated from the training document because P(z |
#4,c¢) and P(c) depend on the new test document. Following Paul’s approach [25],
we assign a collection ¢ for the unlabeled document, and then we use another Gibbs
sampling procedure to learn these probabilities. The classification accuracy for the
new test datasets is Deereeat

Dhyestzer

Table 3.4 demonstrates all document classification accuracy results for four dif-
ferent datasets among ccLBLA and ceLDA models. The performance of the ceLBLA
model is much better than the ccLDA model in the document classification task on the
whole. On the COVID-19 newspapers dataset, the document classification accuracy
of the ccLBLA model is almost 45% higher than the ccLDA model. Also, the ccLBLA
model achieves about 40% greater than ccLDA’s accuracy. The ccLBLA model gets
about 19% higher accuracy in academic papers and NYT comments datasets than
the other two datasets. Based on those results, compared with the eccLDA model, we
can conclude that the ccLBLA model obtains a better ability to separate collection-

common and collection-specific words by introducing BL distribution.

Topic Coherence

The topic coherence evaluation compares the ccLBLA and ecLDA models for clus-
tering words inside the collection-independent topic and between multiple collection-

specific topics through semantic similarity. In particular, the model’s capacity to
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Table 3.4: Document classification accuracy results on four different datasets for
ccLDA and ccLBLA

Document Classification Accuary
Dataset ceLDA | ceLBLA
COVID-19 Newspapers | 0.40 0.59
Academic Papers 0.76 0.91
NYT Comments 0.63 0.75
Traveler Forum 0.45 0.63

align topics from distinet collections among different collection-specific topic-word
distributions was tested. The current topic coherence metric, on the other hand, only
examines a single word distribution per topie, not several word distributions inside a
single topic. As a result, we use the mix topic coherence [28], which mixes the topic
representation of the collection-independent word distribution with the collection-
specific word distribution. As a result, we employ the union of these representations
as a unified topic representation, which is distributed by particular topic terms and
iz independent of the individual collections. The coherence of this union can be
evaluated in order to determine the current topic coherence score.

This mixed topic coherence may also be used to evaluate the topical alipnment of
different collection word distributions according to Risch and Krestel [28]. The Cy
technique [76] is chosen as the topic coherence evaluation method. This coherence
measurement is based on a sliding window, segmentation of a set of top words, indirect
confirmation measures using normalized pointwise mutual information (NPMI), and
cosine similarity. This coherence metric retrieves the co-oceurrence count for a given
word using a sliding window and a constant window size. The NPMI is calculated
using these counts. When a collection of top-level words is segmented, the cosine
similarity between each top word vector and the sum of all complete word vectors is
calculated. The arithmetic mean of these similarities is thus €y Coherence. Despite
the fact that Cy coherence measurement takes into account human judgments, this
topic coherence has limits since Cy coherence implies that words that never appear
together in the reference dataset are not consistent. This assumption is not suitable
for some datasets with strong language contrast.

In this experiment, we use the Palmetto library® to evaluate the topic coherence

automatically. Table 3.5 shows the Cy-based topic coherence of four datasets, which

fhttps: //github.com/dice-group,/Palmetto
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averages all topics’ coherence scores. In the mixed topic coherence evaluation, the
number of the topic is based on the result from perplexity and document classification.
From Table 3.5, we can conclude that the ccLBLA model obtains slightly higher topic
coherence values than the ceLDA model. Especially for the academic papers dataset,
our proposed model gets around 8.3% improvement. Indeed, the ccLBLA model
obtains almost 4.5% advancement compared with the ccLDA model in COVID-19

newspapers and travler forum dataset.

Table 3.5: Topic coherence comparison with eccLDA and ccLBLA models
Topic Coherence

Dataset ccLDA | ccLBLA

COVID-19 Newspapers | 0.3832 | 0.4008

Academic Papers 0.3886 | 0.4211

NYT Comments 0.4115 | 0.4182

Traveler Forum 0.3833 | 0.4013

Topics analysis and discussion

We modeled this dataset with 30 topics based on perplexity and topic coherence
findings in the COVID-19 newspapers datasets. The top-10 words for collection-
independent and each collection local word distribution from the ccLBLA model are
shown in Table 3.6. Topic 15, which is about maintaining public health during the
Covid-19 pandemic, may be deduced from the collection-independent topic terms.
Indeed, when comparing the methods used in the United Kingdom and the United
States, it is evident that the United States government advises individuals to work
from home and stay at a safe distance from public places to prevent the spread of
Covid-19 in the USA collection. The UK government recommends that people wear
masks and wash their hands to protect themselves.

Moreover, Topic 19 presents the symptom of COVID-19. The topic 23 is a Coro-
navirus study report. The newspapers in the United States and the United Kingdom
have distinect concerns. The virus’s instances and patients in China were the emphases
of the US newspaper. In contrast, the COVID-19 virus’'s data across the world and
vaccine manufacture were the focus of the UK media.

Furthermore, Table 3.7 compares ccLDA and cecLBLA models to world economic
issues from the New York Times Comments dataset. Our method, the ccLBLA model,
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Table 3.6: ccLBLA model with three topics for COVID-19 newspapers dataset

Topic 15 Topic 19 Topic 23
Coronaviru, health, work, Symptom, infect, virn viru, diseas, conronaviri
week, continu, viru, time day, ill, coronaviru, sever anim, vaccin, spread, human

emerg, countri, clear people, cough, fever research, studi, scientist
UK Collection | USA Collection | UK Collection | USA Collection | UK Collection | USA Collection
mask peopl health hand vaccin infect
worker FOVE case breath world China
suppl stay peopl test data patient
protect home covidlD cough use Wuhan
wear social test covidl19 develop outhreak
face test viru lung medium il
product distanc infect suffer resgarch tiest
hand offic dizeas bodi work pandem
Ui public spread throat inform cent
hospit rule death clean report public

also results in superior separation of collection-specific terms and theme coherence in
this dataset. The 2017 collection is assigned the terms "bank” and "estate” by the
ccLDA model, whereas the world economy themes are assigned the words "job,”
"work,” and "worker” by the ccLBLA model. Labor costs have a considerably more
significant impact on the global economy than real estate and banks because real
estate and banks can affect the local economy. What is more, both models pro-
vide the same outcome in the 2018 collection regarding China’s impact on global
commerce. The ccLDA model, on the other hand, is limited to the Sino-Canadian
economic connection. ccLGDA, on the other hand, assigns "China” and "global” to
2018 collections, which is more relevant to the collection’s specific topic: the global

ECOTOILY.

3.2.3 Image classification

In this section, we successfully apply the cross-collection topic model in image
classification application following the bag of visual words framework [4,6]. Fig.
3.4 illustrates an overview of the feature extraction, clustering, and ccLBLA pipeline.
Specifically, we use the Scale Invariant Feature Transform (SIFT') algorithm to extract
the local features from local patches through the whole corpus collection, the vectors
of counts in each image. The K-means algorithm clusters the set of training image
descriptors to find the unique local feature representation. After that, we can obtain
the codeword from the cluster center and the codebook or the dictionary of image

vocabulary. The codebook contains a vector of counts for each image. Using this
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Table 3.7: Example of topics from the NYT Comments dataset as discovered by the
ccLDA and ccLBLA models

ccLDA ccLBLA
busi, market, product, money, econom, economi, job,
trade, compani, economi, polici, worker, increas,
econom, good, price corpor, employ, product, cost
2017 Collection | 2018 Collection | 2017 Collection | 2018 Collection
regul trade job trade
bank china work china
estat tariff worker market
reduc steel labor global
econom manufactur class industri
growth chine busi good
2008 aluminum incom compani
doddfrank canada rate rate
mortaga industri rich COSt
banker impos growth product

bag of visual words approach, we can consider each image as a document and train
them into our proposed ccLBLA model. Besides, in this well-known grayscale fifteen-
categories natural scenes dataset, the data is separated into training and testing sets

in each category: the testing set has a hundred random images while the remaining

constitute the training set. In the model section, we set the range of topic numbers
from 10 to 80. Then, we can use the bags of visual words representation for each

image to evaluate the performance of the ccLBLA model in the image classification

task based on Eq.3.19.

SIFT Input: Vechor of

Image Tensars SIFT Descripors
| g
= = e i i‘u T o
LR B ot \‘ﬁ
— g
./ eit| n K-means : L0
o= = Clustering FHW (e
S5 - =
Cross-Collection Latent Beta-Liouville
Scale-Invariant Feature Allocation
Transform (SIFT)

Figure 3.4: An overview of the feature extraction, clustering, and ccLBLA pipeline



class = argmaxnz P(z|#a,,,c)
© w s (3.20)

x[Pw|z,z=0)P(x=0)+Plw| z,cx=1)P(z =1)]

Because the cross-collection topic model can generate an image (document) like-
lihood which depends on the image’s collection [25], cross-collection models like
ccLBLA and ecLDA are capable of making collection predictions for unseen docu-
ments. Therefore, the cross-collection topic model naturally suits the classification
task, and each model can predict the collection of test documents based on the visual
words. Specifically, The predictive model is created by estimating the topic param-
eters using Eq. 3.11. The predictive topic distributions and the empirical likelihood
framework lead to the estimation of the class likelihood. Based on Eq. 3.20, we can
obtain the class conditionals to predict the class label of unseen images. Therefore, the
collection of the unseen image is chosen with the highest class posterior distribution.

For our experiment, we use the same training and testing dataset to implement
the LDA, LBLA, ccLDA, and ceLBLA models by estimating the class likelihood to
predict the class label of unseen images. The highest class posterior distribution will

assign the class for the unseen image.

Table 3.8: The accuracies of different tested models applied to the natural scene

dataset
LDA LBLA ccLDA  ccLBLA

57.93% T2.67T% 81.3T% 90.97T%

From Table 3.8, we can conclude that the ccLBLA model provides better accuracy
than the other topic models. Precisely, our proposed model achieves 57% (CGS-
LDA), 25% (CGS-LBLA), and 12% (CGS-ccLDA) higher accuracy. Fig.3.5 shows
that the optimal vocabulary size is V=700, and we find that the optimal number of
topics is K=50. The accuracy rate is 90.97, shown in the confusion matrix (Fig.3.6).
These results demonstrate that the generative schemes with more flexible priors can
enhance the performance of the cross-collection topic model and reinforce the concept

of generalization of the eccLDA model.
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Figure 3.6: Confusion matrix for the natural scenes classification
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3.2.4 Performance of HDP-ccLBLA

This section details our assessment of the HDP-ccLBLA model, emphasizing its
utility. We implement our method on three real-world text datasets: Covidl9 newspa-
pers, academic publications, and comments from the New York Times. The statistics
for these datasets are presented in Table 3.5. Because the traveler forum dataset con-
tains many duplicate documents which cannot accurately demonstrate the capabilities
of a cross-collection topic model, we will not use this dataset in this experiment.

In this experiment, we select perplexity as the evaluation standard for topic model
utility, similar to Zhao et al. [50, 80|, because perplexity emphasizes the generative
aspect of topic models to predict word probabilities for unseen documents in the test
dataset [2,28]. A lower perplexity indicates a higher likelihood and better model
utility. To compute the perplexity and likelihood of a cross-collection topic model,
we apply Eq.3.3 and Eq.3.18. To evaluate our strategy, we will compare it to CDP-
ccLBLA+, which protects the training process by introducing Laplace noise into Ng.,
Ni., and N, in each iteration. In addition, we will compare the differences in topic
samples between HDP-ccLBLA and Non-privacy protection ccLBLA to validate the
utility of our approach.

Utility

The perplexity of HDP-ccLBLA and CDP-ccLBLA+ with different Laplace pri-
vacy £ settings is shown in Fig.3.7. In Fig.3.7, we also compare the plain CGS
algorithm (Non Privacy), which lacks privacy protection. Furthermore, we employ
several BL parameter configurations in ccLBLA experiments in this utility experi-
ment. To limit the inherent privacy, we explicitly set a larger A, and A.., as well as
a proper clipping bound €', during the training process. Then, we set the intrinsic
privacy level of HDP-ccLBLA to 10 in each iteration. Because we utilize a more sig-
nificant parameter in BL distribution, the prior information can improve the model
utility ability to the noise. The Imited Inherent means that the HDP-ceLBLA has
the same setting for inherent privacy level but no Laplace noise for N, and N,.
From Fig.3.7, we can infer that Limited Inherent has a utility degradation compared
with the plain CGS algorithm (Non Privacy) because Limited Inherent integrates a
stronger inherent privacy guarantee. Even though CDP-ccLBLA+ introduces more
Laplace noise and privacy loss than the HDP-ccLBLA scheme, including the intrinsic
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privacy loss, the utility of HDP-ccLBLA outperforms the CDP-ccLBLA+ method in
that three real-world datasets based on the BL prior information.
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Chapter 4
Conclusion

In this thesis, to alleviate the restrictions in the traditional cross-collection topic
model, we propose two cross-collection latent topic models with training acceleration
and privacy protection replacing Dirichlet distribution with other more flexible prior
distributions, such as generalized Dirichlet and Beta-Liouville distributions.

In Chapter 2, we proposed and implemented a novel cross-collection topic model
(GPU-based ccLGDA) for multiple domain text collection to improve the original
ccLDA model. Our new approach is the first GPU-based cross-collection model
that utilizes the Graphics Processing Unit (GPU) to accelerate training speed sig-
nificantly. The objective was to provide a powerful cross-collection topic model with
more fexibility and computational efficiency to perform on various real-world, large-
scale datasets. Therefore, the new approach introduces a flexible GD prior for a
robust parallel inference scheme taking advantage of GPUs to show its merit in com-
parative text mining. The new cross-collection topic model, GPU-based ccLGDA,
extends the ccLGD, GLDA, and LGDA models. These previous models suffer from
the limitation of Dirichlet prior, focusing only on one individual data collection, and
inefficient inference techniques, which causes a lower computational speed for large-
scale applications. The GPU-based ccLGDA model provides a solution to all these
shortcomings. Specifically, our new model replaced the Dirichlet distribution with the
GD prior in the generative process so that our model is more flexible than the models
using Dirichlet distribution. Furthermore, our new model incorporates the GPU to
implement a powerful parallel inference technique that accelerates the training process

on a single machine. To show the credit of our approach, we compare our result to the
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ccLDA model. We evaluated topic model perplexity, document classification accuracy,
topic coherence, and time efficiency. Experiment results illustrate that our proposed
model, GPU-based ccLGDA, outperforms cecLDA on all four quality measures on four
text datasets with different domains and quantity of collections and proves the pro-
posed method’s robustness on various text datasets in other fields. In particular, the
new approach overcomes the shortcoming that the collection-specific and collection-
independent topic must be aligned in the ceLDA model due to the advantage of the
D in topic correlation, which produces a complete covariance structure. Indeed, our
experimental studies demonstrate that the GPU-based ccLGDA model can handle
such large-scale real-world datasets and provide a performance speedup of up to 18X
on RTX 3070 over ccLDA and LDA on a single machine.

In chapter 3, we present and implement a novel cross-collection topic model
(ccLBLA model) that utilizes the BL distribution instead of Dirichlet for various
domain text collections to improve previous cross-collection topic models because the
BL distribution can provide a better topic correlation representation. The ccLBLA
model extends the eccLDA and LBLA models. These previous models suffer from the
limitation of Dirichlet prior, or focusing only on one individual data collection. All
of these issues are addressed by the ccLBLA model. In particular, our new model
replaced the Dirichlet distribution with the BL prior in the generating process, mak-
ing our model more flexible. We compare our experimental results to the ccLDA and
LDA models to demonstrate the merits of our new technique. The perplexity of the
topic model, document classification accuracy, topic coherence, and topic samples are
all examined. Experimental findings show that our cecLBLA beats ecLDA and LDA
models on all four quality metrics across four real-world text datasets with varying
domains and number of collections. Moreover, we present the first study on applying
the cross-collection topic model to image classification applications. Because of the
general covariance structure in the BL distribution, the performance of the ceLBLA
model in image classification demonstrates a higher classification accuracy than the
ccLDA, LBLA, and LDA models. Furthermore, we investigate the privacy protection
of topic models with differential privacy and propose a centralized privacy-preserving
algorithm for the ccLBLA model (HDP-ceLBLA), which takes advantage of the Col-
lapsed Gibbs Sampling inference approach’s inherent differential privacy guarantee to
address the privacy issue. Our HDP-ceLBLA model can prevent data inference from
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intermediate statistics during training. Indeed, our experimental studies demonstrate
that the HDP-ccLBLA algorithm can achieve a good model utility under differential
privacy.

For future work, we will continue to optimize the model parameter estimation
algorithms using the variational inference. In addition, we can investigate other
flexible priors to improve the performance, and propose other techniques to better

separate collection-specific and collection-independent words.
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