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Abstract

Peripheral Blood Smear Analyses Using Deep Learning

Rabiah A. Al-Qudah, Ph.D.

Concordia University, 2022

Peripheral Blood Smear (PBS) analysis is a vital routine test carried out by hematologists

to assess some aspects of humans’ health status. PBS analysis is prone to human errors and

utilizing computer-based analysis can greatly enhance this process in terms of accuracy

and cost. Recent approaches in learning algorithms, such as deep learning, are data hungry,

but due to the scarcity of labeled medical images, researchers had to find viable alternative

solutions to increase the size of available datasets. Synthetic datasets provide a promising

solution to data scarcity, however, the complexity of blood smears’ natural structure adds

an extra layer of challenge to its synthesizing process. In this thesis, we propose a method-

ology that utilizes Locality Sensitive Hashing (LSH) to create a novel balanced dataset of

synthetic blood smears. This dataset, which was automatically annotated during the gener-

ation phase, covers 17 essential categories of blood cells. The dataset also got the approval

of 5 experienced hematologists to meet the general standards of making thin blood smears.

Moreover, a platelet classifier and a WBC classifier were trained on the synthetic dataset.

For classifying platelets, a hybrid approach of deep learning and image processing tech-

niques is proposed. This approach improved the platelet classification accuracy and macro-

average precision from 82.6% to 98.6% and 76.6% to 97.6% respectively. Moreover, for

white blood cell classification, a novel scheme for training deep networks is proposed,

namely, Enhanced Incremental Training, that automatically recognises and handles classes

that confuse and negatively affect neural network predictions. To handle the confusable

classes, we also propose a procedure called "training revert". Application of the proposed

method has improved the classification accuracy and macro-average precision from 61.5%

to 95% and 76.6% to 94.27% respectively.

In addition, the feasibility of using animal reticulocyte cells as a viable solution to com-

pensate for the deficiency of human data is investigated. The integration of animal cells is
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implemented by employing multiple deep classifiers that utilize transfer learning in differ-

ent experimental setups in a procedure that mimics the protocol followed in experimental

medical labs. Moreover, three measures are defined, namely, the pretraining boost, the

dataset similarity boost, and the dataset size boost measures to compare the effectiveness

of the utilized experimental setups. All the experiments of this work were conducted on

a novel public human reticulocyte dataset and the best performing model achieved 98.9%,

98.9%, 98.6% average accuracy, average macro precision, and average macro F-score re-

spectively.

Finally, this work provides a comprehensive framework for analysing two main blood

smears that are still being conducted manually in labs. To automate the analysis process,

a novel method for constructing synthetic whole-slide blood smear datasets is proposed.

Moreover, to conduct the blood cell classification, which includes eighteen blood cell types

and abnormalities, two novel techniques are proposed, namely: enhanced incremental train-

ing and animal to human cells transfer learning. The outcomes of this work were published

in six reputable international conferences and journals such as the computers in biology

and medicine and IEEE access journals.
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Chapter 1

Introduction

1.1 Motivation

Blood tests are very important diagnostic tools. Despite the advancement in haematology,

Peripheral Blood Smear (PBS) remains as a very important diagnostic test to both haema-

tologists and clinicians; the literature reveals that approximately 70% of clinical decisions

are supported by laboratory medicine [10]. Moreover, PBSs play a vital role in the diag-

nosis and monitoring of disease progression and therapeutic response. However, PBSs are

still being manually analyzed by lab specialists using microscopes. Computer researchers

have already developed many methods that automate some basic aspects of blood analysis

[108, 19], whereas, only a handful of works conducted a deeper level of blood analyses to

classify the morphological abnormalities and the blood cell subtypes. The automation of

PBS examination will not only save hematologists time, money and reduce errors, but will

also protect and save lives of front-line workers, especially during pandemics.

Deep Neural Networks (DNN) rely on large volumes of data. Obtaining large datasets

can be a real challenge for researchers from different research areas. Acquiring medical
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datasets can be even more challenging due to privacy constraints on patients’ data. More-

over, annotating this type of data is a costly procedure that can only be performed by med-

ical experts. In the context of blood smear analysis some extra domain-specific challenges

arise. The first challenge is that some blood cell subtypes are rare in occurrence, for exam-

ple, the authors in [124], were only able to collect three cases of reactive plasmacytosis in

three years. Hence, having a sufficient number of blood smears containing such rare types

for training and testing a deep network might take many years.

Additionally, the complexity of preparing a balanced dataset of blood smears comes

from its natural structure; each blood smear contains hundreds of blood cells from differ-

ent types, which are naturally distributed in an imbalanced manner. In [122], the authors

demonstrated that Red Blood Cells (RBCs) occurred approximately seven times more than

White Blood Cells (WBCs) in the training set. This challenge implies that traditional aug-

mentation techniques might not help as it will only amplify the imbalance issue.

Moreover, most datasets employed in this research area are private which limits results

reproducibility and comparability. Finally, the available public datasets are only annotated

for some blood cell types which is not sufficient to fully comprehend and analyse blood

smears.

This thesis contributes in overcoming two main challenges in the context of blood smear

analyses, the automation of blood smears analyses and blood image data scarcity.

1.2 Objectives and Contributions

The main goal of this thesis is to automate the analyses of two types of blood smears,

however, data scarcity is a major obstacle to the automation process. Hence, the problem

of data scarcity is tackled by two solutions, synthetic data generation and Transfer Learning

(TL). The main contributions of this thesis can be summarized as:

2



1. Provide a thorough literature review on the subject of PBS analysis, along with the

main current challenges and possible future directions.

2. Employ Locality Sensitive Hashing (LSH) with Random Projections as a synthetic

image generation method.

3. Create a dataset of synthetic whole blood smears. This dataset, which got the ap-

proval of five medical experts, is automatically annotated during the data generation

process. To our knowledge, this is the first comprehensive synthetic dataset of this

kind.

4. Propose a novel training method called "Enhanced Incremental Training", that trains

the neural network in stages, while assessing confusable classes that negatively affect

the network performance. Moreover, to handle the confusable classes, we propose a

procedure called "training revert". A set of experiments are presented in this thesis

to verify the effectiveness of the proposed method.

5. Propose a classifier that is trained on a synthetic dataset, and is capable of classify-

ing the subtypes and morphological abnormalities annotated in the synthetic dataset.

Classifying those classes aids in diagnosing more than 20 medical conditions and

diseases. To our knowledge, this is the first classifier designed to work on a synthetic

dataset rather than the usual datasets.

6. Train the deep classifier to categorize platelets into 3 main categories, which is rarely

discussed in the computer science literature. Moreover, to our best knowledge this is

the first work to consider the activated platelets in the classification.

7. Study the feasibility of utilizing animal cells as a viable solution to human medical

data scarcity. To our knowledge, this is the first work that studies this aspect.

8. Propose a public labeled human reticulocyte dataset for research purposes.
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9. Propose a human reticulocyte classifier, that classifies blood cells into 3 main classes;

RBCs, reticulocytes and other random background objects.

10. Conduct a set of experiments to study the dataset size and balance trade-off.

1.3 Related Publications

In this section, available blood smears and cells datasets are listed. Moreover, the most

recent studies on the topic of blood analyses are summarized.

1.3.1 Available Blood Smears and Cells Datasets

Figure 1: Light microscopic images

Figure 2: Whole-slide images

In the context of PBS analysis research, two types of datasets can be found: light mi-

croscopic image datasets, also known as, blood cell datasets, and whole-slide datasets, as

shown in Figures 1 and 2, respectively. The first type is being extensively investigated
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compared to the second one despite the fact that the whole-slide sets pose more realistic

and challenging scenarios, as the entities in the blood sample appear microscopic, touching

and crowded instead of the simple scenario represented in the light microscopic images,

where only one object of interest appears. Some public and synthetic datasets are listed in

the next two sections.

Synthetic Blood Smear Datasets

Synthetic datasets are widely used as a solution to data scarcity [42, 47]. Multiple tech-

niques have been used to generate such datasets. The work in [23], generated blood smears

by pasting blood cells on blood smear canvases by applying a Markov random process

followed by a pix2pixHD network. A shortcoming of this synthetic dataset is that it only

considers RBCs, which is a unrealistic scenario.

Non-synthetic Blood Smear and Blood Cell Datasets

Some public blood smear and blood cell datasets are:

1. Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB)

dataset [69]: this dataset is composed of 108 images collected in September 2005. It

contains approximately 39000 entities with an image resolution of 2592x1944. The

dataset contains records for both healthy and sick people and it only supports annota-

tion for blast cells. ALL-IDB1 dataset consists of whole-slide images, whereas ALL-

IDB2 consists of light microscopic images. This dataset has been mainly utilised for

Leukemia detection.

2. Blood Cell Count and Detection (BCCD) dataset [115]: this dataset consists of 364

images. The dataset is annotated in Visual Object Challenge (VOC) format for RBCs,

WBCs, and Platelets. This dataset can be utilised for classifying and counting blood

cells.
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3. Leukocyte Images for Segmentation and Classification (LISC) dataset [102]: this

dataset consists of 250 light microscopic images of the five main WBC types: Neu-

trophil, Lymphocyte, Monocyte, Eosinophil, and Basophil. The dataset also contains

126 whole-slide blood smears but without annotation. This dataset can be utilised

for automating the differential blood test.

4. National Institute of Health (NIH) dataset [95, 4]: this dataset was published in 2018.

It consists of light microscopic cell images from thin blood smear slides in which

images were collected at Chittagong Medical College Hospital, Bangladesh. The

dataset contains 27,558 light microscopic cell images, with equal instances of Plas-

modium parasitized and uninfected segmented red blood cell images. This dataset

has been widely used in Malaria related research.

Some general conclusions can be drawn from this section are:

1. A promising solution to the data imbalance and scarcity issues in the context of PBSs

can generate more synthetic data. However, Only a handful of works have provided

synthetic data generation solutions in this context.

2. Most public datasets are composed of light microscopic images, or cropped blood

smear images that only show small cropped portions of blood smears. Hence, more

whole-slide blood smear datasets are needed as it poses more realistic and challeng-

ing scenarios.

3. The majority of the public datasets are only annotated for the main blood cell types

(RBCs, WBCs, Platelets) or only the main WBC or RBC subtypes. On the other

hand, datasets annotated for morphological abnormalities are scarce. This has re-

sulted in limiting most of the work done in this context to only consider the main

blood cell types and subtypes. If annotations are made to cover more blood cell sub-

types and morphological abnormalities, then computer researchers will be able to

6



tackle more areas of blood analysis.

Computer researchers have mainly focused on four distinct directions in the context of

blood smear analysis:

1. Malaria Detection.

2. Blood Cell Detection and Classification.

3. Leukemia Diagnosis.

4. Reticulocyte Detection

In sections 1.3.2, 1.3.3, and 1.3.4, the recent state-of-the-art techniques used for each

of these directions are presented in greater detail.

1.3.2 Malaria Detection

Malaria is a life-threatening disease caused by parasites that are transmitted to people

through the bites of infected female Anopheles mosquitoes, The estimated number of

malaria deaths stood at 435,000 in 2017. Many studies used the NIH dataset to train their

neural networks [68, 96, 61, 93, 95, 118].

In [68], a Convolution Neural Network (CNN) architecture that is comprised of 12 lay-

ers was trained on the NIH dataset after applying a set of augmentation operations such

as horizontal flip, vertical flip, width shift, height shift, fill mode, zoom range, and rota-

tional range. The dataset was preprocessed by applying normalization, gamma correction,

and logarithmic correction. This model achieved an accuracy of 98.23% and a F1 score of

97.74%.

The NIH dataset instances were mean normalized in [96] and several augmentation

techniques including rotations, translation, shearing, zooming, and flipping were performed.
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A CNN that consists of 3 blocks was trained for Malaria detection. Moreover Visual Geom-

etry Group-19 (VGG-19), SqueezeNet, InceptionResNet-V2 were customized by truncat-

ing them at their deepest convolutional layer and adding a Global Average Pooling (GAP)

and dense layers. Several combinations of the listed models were ensembled by taking

the average of the predictions, the VGG-19 and SqueezeNet combination outperformed

the individual models and other ensembles in all performance metrics with an accuracy of

99.51%.

The work in [61] utilized the same NIH set to train a CNN of 3 convolutional layers, one

hidden layer, input, flatten and output layers. This shallow CNN achieved a good accuracy

of 95% with no augmentation or preprocessing. In [94], the NIH dataset was preprocessed

by stain normalization, Min-Max Normalization, and Standardization. Many augmentation

techniques were applied: horizontal and vertical flips, Gaussian blur, rotation, horizontal

and vertical shifting, darkening and lightening, ZCA whitening, and feature wise standard-

ization, and Change of color space and Gaussian Blur. The dataset size was extended to

137,940 after augmentation. This work proposed a CNN that consists of 8 convolution

layers. A VGG16 deep network was also customized by removing the pre-trained fully

convolution layers, and adding a dense layer, a dropout layer, and a fully connected layer.

A third architecture called CNNEx-SVM was trained by emitting the customised VGG16

features to an Support Vector Machine (SVM). Finally, all models were ensembled by tak-

ing a weighted average of all predictions. The customised VGG16 achieved an accuracy of

97.6%, and the ensemble one achieved an accuracy of 97.7%.

The authors in [95] applied a multi-scale Laplacian of Gaussian (LoG) filter to detect

RBC centroids. The detected cells were then segmented. Morphology opening operation

was then applied to remove artifacts. F1-score of 0.952 was achieved in the detection phase.

In addition, for cell classification a custom CNN of three convolutional layers and two fully
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connected layers and other pre-trained CNNs (AlexNet, VGG-16, Xception, DenseNet-

121, and ResNet-50) were employed. ResNet outperformed the other networks with 95.7%

accuracy. The accuracy was improved to 95.9% by evaluating the optimal layer for feature

extraction, as the final layer is not necessarily the optimal one.

Finally, in [118], an autoencoder was employed as a classifier. Multiple augmentation

techniques were performed on the dataset, such as shift, zoom, and rotations. The per-

formance of the autoencoder achieved an accuracy of 99.23%. Moreover, the model was

tested to work on smartphones without the need for internet access. Some general con-

clusions can be drawn from [68], [96], [61], [94], [118], and [95] since it was all trained

using the same dataset is that ensemble Learning when accompanied with preprocessing

and augmentation can be a very effective and outperforms individual deep models.

Other works considered different datasets for training deep networks for Malaria detec-

tion [142, 93, 21, 116, 76, 83, 27]. For example, the authors in [142] developed an Android

smartphone application using a dataset of 1819 whole slide thick smear images from 150

patients. The parasite in this work was detected using a pipeline that starts by applying an

intensity-based Iterative Global Minimum Screening (IGMS) procedure to reduce the size

of the initial search space and limit the number of regions of interest which are fed to a

CNN consisting of seven convolutional layers. The classification accuracy was 93.46%.

The work in [93] annotated over 92k objects of the four major malaria species. Two

CNNs were proposed for classification in this work, one for the cell quantitation and a

second one for species identification. The first CNN had 3 convolutional layers, followed

by two Inception modules and one fully connected layer. Where the late stage branch CNN

was a fully convolutional neural network with 7 convolutional layers.

The authors of [21] combined two datasets, one collected by the authors and another

public dataset from the Institute for Molecular Medicine Finland (FIMM). The overall col-

lection has a total of 1030 images of infected cells, and 1520 images of non-infected ones.
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The VGG network proposed in [21] was customized by removing the last three layers. The

features obtained from the network were then fed to an SVM, and the model was called

VGG19-SVM. Accuracy of 93.13% and F-score 91.66% were achieved.

In [116], a dataset of 1000 instances, multi-wavelength was utilized to increase the sam-

ple size, 45°, and 135° rotations were also applied. The authors opted to utilize AlexNet,

VGG-16, ResNet50, GoogLeNet, and a customized CNN network of 5 convolutional layers

and 2 fully connected layers. ResNet outperformed with an accuracy of 97.6% in classify-

ing the test set as healthy or infected.

A CNN framework that was able to perform the extended depth of field images from z-

stacks of thick blood films for automated malaria diagnosis was presented in [76]. Two deep

architectures were proposed, EDoF-CNN-3D, and EDoF-CNN-Max. In EDoF-CNN-3D,

the encoder part of the network was modified by replacing the two-dimensional convolu-

tions with three-dimensional ones. The output tensor was flattened on the z-axis before the

residual layers of the network by average pooling. On the other hand, the EDoF-CNN-Max

combined the idea of the Siamese networks and wavelet-based networks. Each focal plane

was passed through the encoder part of the network, and the maximum of the activation

values were selected before going through the residual layers. The detection recall of the

EDoF-CNN-3D method was 73%.

The work in [83] used another whole-slide dataset which consists of 800 infected cells

and 2000 healthy cells. Two augmentation techniques were applied on half of the dataset to

produce two augmented sub-datasets: image interpolation in the spatial domain, and image

interpolation in the feature domain.

The authors in [27] used 4100 whole-slide peripheral blood smear images to train a

Deep Belief Network (DBN) to classify the objects to either parasites or non-parasites.

The objects were extracted from peripheral blood smear images using the level set method.

A concatenated feature of color (histogram-based features and color coherence vector) and
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texture (Haralick features, LBP features, and gray level run length matrix feature) were

used to initialize the visible layer of the 4 hidden layer DBN. The deep network achieved a

F-score of 89.66%.

The work in [85], trained the proposed framework on a blood cell images dataset of

size 1182. The proposed framework utilised a functional link artificial neural network

(FLANN) and a sparse stacked autoencoder. The proposed model scored an accuracy of

89.10%.

Finally, in [15], a dataset from Kaggle which comprises of instances that are classified

as either, parasitized or uninfected is utilized to train a 16-layer CNN. The f1 score of the

proposed CNN was 96%

1.3.3 Blood Cell Detection and Classification

The work in [90] proposed an architecture for microcytic hypochromia. The target features

were a combination of blood smear image features extracted by AlexNet deep convolu-

tional neural network and clinical features from (RBC count, Haemoglobin concentration

(HB), RBC distribution width (RDW)). Samples were collected especially for this research

from twenty patients. Both Principal Component Analysis (PCA), and Linear Discriminant

Analysis (LDA) algorithms were used to reduce the feature set with minimal loss of infor-

mation. k-Nearest Neighbors (k-NN), SVM, and Neural Network (NN), were employed

for the classification phase. Each network was trained with three different feature sets: the

clinical features, image features and fused features. The NN and the SVM classifier scored

99% accuracy at testing when trained with the fused features, which shows the superiority

of the proposed fusion model.

The works in ([134], [91]) classify WBCs not only to their main types but also to some

morphological abnormalities. In [134], a total of 14,700 annotated whole-slide images that

include 11 categories of leukocytes were considered. Cell recognition was performed using
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Single Shot Detector (SSD) and YOLOv3, Different variations of SSD and YOLOv3 were

examined, a 0.931 Mean Average Precision (MAP) and an accuracy of 90.09% score were

reported for the SSD 300×300, and the highest MAP scored with YOLOv3 320×320 was

0.92.

In [91], the authors collected a private dataset that contains a total of 92480 leukocytes

belonging to 40 categories, with one object of interest in each instance. To handle the

dataset imbalance, many augmentation techniques were applied such as, horizontal and

vertical flips, and adding random noises and color changes to the original images. The

architecture of the proposed deep residual neural network consists of 7 convolutional layers,

2 fully connected layers and three residual blocks to improve its performance. The authors

examined 7 different schemes by using different activation functions to train the network.

The average classification accuracy was 76.84%.

The work in [51] studied blood-cell classification in medical hyperspectral imaging

(MHSI). It utilized four different architectures: SVM, VGG16, CNN without Gabor wavelet,

CNN with Gabor wavelet and a combination of modulated Gabor wavelet and CNN kernels,

named as MGCNN. In MGCNN, each convolutional layer performs a dot product between

multi-scale and orientation Gabor operators and the initial CNN kernels, to transform the

convolutional kernels into the frequency domain in order to extract the features. Three

datasets were utilized for testing; Bloodcells1-3, Bloodcells2-2, and a white blood cells

dataset. The highest Overall Accuracy (OA) was achieved using the proposed model with

a score of 94.03%, 94.40% and 97.65% on the first, second and third datasets respectively.

In [122], a subset of the All-IDB1 dataset was used, as the authors selected 42 images

and performed a pixel wise annotation on them. The training set size was increased from 29

to 145 images by performing random reflection and translation augmentation techniques.

The class weighting technique was used to handle the dataset imbalance caused by having

RBCs appear seven times more than WBCs. The set was then fed to a SegNet for semantic
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segmentation purposes. The highest class accuracy was the WBC’s accuracy with a score

of 94%.

In [133], a dataset of WBC images available on GitHub was used. Augmentation tech-

niques such as random rotation, scaling, reflection, and shearing were performed. Gaussian

noise was also applied to a subset of the training and testing set to train the network on poor

quality images. The resulting 12,500 instances set was then fed to 3 sets of experiments

that are made up of 10, 20, 30 CNNs where each CNN is constructed by generating ran-

dom numbers of convolution blocks and layer sizes from preset ranges. The feature maps

of each experiment were then concatenated and emitted to a PatternNet deep network to en-

semble the strongest features to contribute in the final decision. The 30-CNNs experiment

outperformed the 10 and 20 CNNs experiments with an accuracy score of 99.37%.

The input images were acquired from Pinterest online open source haematology database

in [14]. RBCs were cropped from the blood smear to generate the dataset of normal, acan-

thocyte, sickle cell, teardrop and elliptocyte cell. The authors utilized SVM and AlexNet

deep network. SVM model outperformed the AlexNet model, the authors referred this to

the small dataset size. It is noted that there is a noticeable difference between the results of

the models, for example, the SVM model achieved 100% accuracy in classifying Achanto-

cyte where the deep learning model achieved 0%.

The work in [136] combines Fourier Ptychographic Microscopy (FPM) and an im-

proved version of YOLO networks for WCB detection. In order to improve the detection

of the microscopic WBCs, the feature maps of the last three layers were concatenated and

passed to a final convolution layer. The proposed model was trained and tested on a 1000

whole slide image set.

The authors in [72] try to address the problem caused by the lack of some deep net-

works ability to fully exploit the long-term dependence relationship between certain key
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features of images and image labels. A combination of a CNN and Recurrent Neural Net-

work (RNN) was employed to deepen the understanding of the image context. A dataset

comprising 12,444 augmented and rotated images of blood cells were collected from Kag-

gle and BCCD public datasets. The proposed network consists of Pre-trained convolutional

neural network layer, RNN layer, Merge layer, and fully connected layer with Softmax out-

put. The proposed model achieved an accuracy of 90.79%.

In [79], a dataset of blood cell images was augmented by performing rotation, reflection

and translation, three pipelines one for each blood cell were implemented to perform the

classification using CNNs and UNet deep networks. The 64000 blood cell dataset used in

[98] is a combination of all-idb, DPDx, ASH image bank and other images available on

Google.

The authors of [98] proposed a two-stage solution, In the first phase, a contour aware

CNN was used for the segmentation of individual cells. In order to classify WBCs into five

subtypes, features were extracted by a CNN and forwarded to ELM for classification. Sev-

eral features were extracted such as centroid, medial axis ratio, and cell deform ratio, next,

the extracted features were forwarded to Extreme Learning Machine (ELM) for classifica-

tion. Overall RBC classification accuracy was 90.10%, the highest WBC subtype accuracy

was 98.68%, which was scored on the Monocyte class .

The authors in [26] trained a capsule neural network on the LISC dataset to classify

blood cells into the five main WBCs subtypes. In [137], not only a classification system was

proposed, but also a different cell augmenting method was presented. The augmentation

method was implemented by segmenting and pasting blood cells on different microscopic

surrounding images. The model was able to achieve an accuracy score of 97.6%.

In [112], a modified version of the YOLOv3 network was trained on the BCCD dataset.

The modifications on the YOLO structure included, using depthwise separable convolution,
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and utilizing the Swish activation function instead of the Leaky ReLU function. The preci-

sion of the platelets, red blood cells, and white blood cells classes were 90.25%, 80.41%,

and 98.92% and the MAP was 89.8%.

Finally, the authors in [84], utilized the BCCD and Kaggle datasets. The canonical

correlation analysis approach was applied on the training dataset of blood cell images be-

fore training. A CNN was combined with a LSTM to classify the images into: Eosinophil,

Lymphocyte, Monocyte, Neutrophil. The proposed method achieved a F1 score of 96.2%.

1.3.4 Leukemia Diagnosis

Leukemia is a fatal malignancy and has two main types: acute and chronic. Moreover, there

are two subtypes of each leukemia main type depending on the size and shape of the WBC:

lymphoid and myeloid. Acute leukemia is usually diagnosed after having clinical signs and

symptoms that need to be confirmed by laboratory investigations. Complete blood count

for WBCs, RBCs, platelets, and a peripheral blood smear are the initial tests. In many

cases they are not enough to confirm the diagnosis, which is why the clinical practice is

to do a bone marrow smear and biopsy. A bone marrow specimen will have a smear and

a biopsy. This specimen is usually good enough to confirm the diagnosis of leukemia, but

more testing is mandatory for subtyping the leukemia into lymphoid or myeloid, and then

subclassifying each subtype. In bone marrow specimen, number and shape of WBCs are

key points in diagnosing leukemia.

The works in [6] and [110] perform Leukemia diagnosis and classify the result into its

subtypes. In [6], two public leukemia datasets, ALL-IDB and ASH Image Bank, were used

to train the network to classify the samples into one of the four main Leukemia types. The

number of samples increased to 8 times for both datasets by applying shifting, rotation,

and flipping. A CNN of 2 convolution layers, a Flatten layer, followed by a fully connected

layer was proposed in this work. The accuracy of classification obtained was 81.74%.

15



The works in [89, 75, 129, 123], and [130] aim to train a well generalized model to de-

tect Leukemia. In [89] segmented white blood cell images of the C-NMC dataset were aug-

mented by performing horizontal and vertical flips, and random translations. A Squeeze-

and-Excitation-ResNeXt50 network achieved a weighted F1-score of 88.91%. In [75] only

one object of interest appeared in each instance. All images were converted to grayscale

and the cell region was then binarized using the threshold estimated by Otsu’s method fol-

lowed by the erosion operation. The authors opted to train the model using a ResNet with

two fully connected layers and utilize the bagging ensemble training strategy. The model

achieved an F1-score of 0.84.

The work in [129] trained three deep architectures, AlexNet, CaffeNet, Vgg-f, to gen-

erate features. The feature space was then reduced by applying the gain ratio algorithm,

before emitting the features to an SVM classifier. An accuracy score of 100% was achieved

when the classification was performed by concatenating and reducing the features obtained

by all models. In [123], a CNN architecture comprising of 5 convolutional layers and 2 lay-

ers (fully connected and softmax) was trained on ALL-IDB1 dataset after applying many

augmentation operations: histogram equalization, translation, reflection, rotation, shear-

ing, conversion to grayscale, and blurring. The proposed method achieved an accuracy of

96.6%.

The authors in [130], extracted feature maps from the All-IDB1 dataset using AlexNet,

CaffeNet, Vgg-f deep networks before being classified using SVM, Multilayer Perceptron

(MLP) and Random Forest (RF). The authors also experimented the concatenation of fea-

ture maps obtained by all deep networks, the feature space was reduced by utilizing the

PCA technique and the majority voting rule to combine the outcomes obtained by each

classifier. An accuracy score of 100% was achieved.

The authors in [120] utilised the ALL-IDB2 and the C-NMC datasets to train and test a

novel framework for efficient feature selection. The proposed approach combined a VGG
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network with an improved version of the salp swarm algorithm (SSA). The VGG network

was used as a feature extractor, where the SSA algorithm was employed for feature selec-

tion.

Three datasets, namely, ALL-IDB1, SMC-IDB, and IUMS-IDB were used for Leukemia

detection in [36]. Each image instance was preprocessed by first applying an RGB to HSV

conversion, followed by thresholding and Boolean mask generation. Next, a blob detec-

tion step based on the scale-normalized LoG (Laplacian of Gaussian) was executed. The

resulting image was then segmented by applying multiple image processing filters and tech-

niques. Next, an AlexNet network was employed for feature extraction. Finally the blood

cells were classified using SVMs. The proposed framework scored an accuracy of 94.1%.

A drawback of this framework, is the very long pipeline.

Finally, in [106], the authors utilized both ALL-IDB and LISC datasets. First, a Gen-

erative Adversarial Network (GAN) was utilized to increase the training instances. Next,

a Darknet-53 and ShuffleNet were trained on the dataset. The classification results were

100% for the ALL-IDB and 99.70% for the LISC dataset.

1.3.5 Reticulocyte Detection

Xu and collaborators [140] proposed a pipeline to classify 8 types of RBCs; discocytes,

echinocytes, elongated, granular, oval, reticulocytes, sickle and stomatocyte. First, RBCs

were extracted in order to isolate the regions of interest (ROI), next, touching RBCs were

separated by applying an improved random walk method based on automatic seed genera-

tion. In the second step, a mask-based RBC patch-size normalization method was utilized

to normalize the variant size of segmented cell patches into uniform size. Third, a CNN

was employed to perform the RBC classification. In addition to classify RBCs the authors

performed shape factor analysis for each RBC type to further quantify specific RBC shape

parameters. The proposed method scored an average AUC value of 0.94.
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Vinicki and collaborators [67] proposed a public feline reticulocyte dataset. Moreover,

an SSD network was utilized for the purpose of classifying the cells into RBCs, aggregate

reticulocytes, and punctate reticulocytes. The proposed model achieved an accuracy of

98.7% in classifying aggregate reticulocytes. The authors also tested the model on a dataset

created with a smartphone camera, the model was only able to classify 88.5% of the total

reticulocytes correctly.

Finally, in [132], a new human reticulocyte dataset of 784 images was proposed. A

Faster R-CNN was utilized and the test recall was 99.9% and 97.7% for RBCs and reticu-

locytes respectively.

Table 1 summarizes all the literature findings mentioned in this section.

Table 1: Summary of the reviewed literature

Malaria Detection

Reference Method Dataset Results

[15], (2021) CNN Kaggle F1 score: 96%

[118], (2020) Autoencoder NIH Accuracy: 99.23%

[85], (2020) FLANN and sparse

stacked autoencoder

Private dataset Accuracy: 89.10%

[68], (2019) CNN NIH Accuracy: 98.23%

F1 score: 97.74%

[96], (2019) CNN, VGG19,

SqueezeNet,

InceptionResNet-V2

NIH Accuracy: 99.51%

[61], (2019) CNN NIH Accuracy: 95%

[94], (2019) CNN, VGG16, SVM NIH Accuracy: 97.7%
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[95], (2018) CNN, AlexNet,

VGG-16, Xcep-

tion, DenseNet-121,

ResNet-50

NIH Accuracy: 95.9%

[142], (2019) CNN Private dataset Accuracy: 93.46%

[93], (2019) CNN Private dataset Class accuracy:

Ring: 94.8%

Late: 96.6%

[21], (2019) VGG, SVM Private dataset + FIMM Accuracy: 93.13%

F-score 91.66%

[116], (2019) AlexNet, VGG-16,

ResNet50, GoogLeNet,

CNN

Private dataset
Accuracy: 97.6%

[76], (2019) CNN Private dataset Recall: 73%

[83], (2018) CNN
Private dataset

Accuracy: 99%

[27], (2017) Deep Belief Network

(DBN)

Private dataset F-score: 89.66%

Blood Cell Detection and Classification

Reference Method Dataset Results

[112], (2021) YOLOv3 BCCD dataset MAP 89.8%

[84], (2021) CNN, LSTM BCCD, Kaggle MAP 96.2%

[26], (2020) Caspule neural network LISC dataset Accuracy: 96.86%

[90], (2019) AlexNet, SVM Private dataset Accuracy: 99%

[134], (2019) YOLO, SSD Private dataset Accuracy: 90.09%
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[137], (2019) CNN Private dataset Accuracy: 97.6%

[91], (2018) Residual Network
Private dataset

Accuracy: 76.84%

[51] , (2019) SVM, VGG16, CNN,

CNN with Gabor

wavelet

Private dataset Accuracy: 97.65%

[122], (2017) SegNet ALL-IDB Accuracy: 89.45%

[133], (2018) CNN, PatterNet Private dataset Accuracy: 99.37%

[14], (2018) SVM, AlexNet
Pinterest

haematology dataset
Acanthocyte Accuracy:

100%

[136], (2018) YOLO Private dataset Precision: 100%

[72], (2018) CNN, RNN Kaggle and BCCD Accuracy: 90.79%

[79], (2018) CNN, U-Net Private dataset Specificity: 99.11%

Sensitivity: 100%

[98], (2017) contour aware CNN,

ELM

ALL-IDB, DPDx,

ASH,Google.

Class accuracy:

RBC: 94.71%

WBC: 98.68%

Leukemia Detection

Reference Method Dataset Results

[106], (2021) Darknet-53, ShuffleNet ALLIDB, LISC Accuracy: 100%

[89], (2019) Squeeze-and-

Excitation-ResNeXt50

Augmented, C-NMC

dataset

F1-score: 88.91%

[36], (2020) AlexNet ALLIDB, SMC-IDB,

IUMS-IDB

Accuracy: 94.1%
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[89], (2019) Squeeze-and-

Excitation-ResNeXt50

Augmented, C-NMC

dataset

F1-score: 88.91%

[6], (2019) CNN ALL-IDB and ASH

Image Bank

Accuracy: 81.74%

[89], (2019) Squeeze-and-

Excitation-ResNeXt50

Augmented, C-NMC

dataset

F1-score: 88.91%

[75], (2019) ResNet Private dataset F1-score: 0.84

[129], (2018) AlexNet, CaffeNet,

VGG-f, SVM

Private dataset Accuracy: 100 %

[123], (2018) CNN ALL-IDB1 Accuracy: 96.6%

[130], (2017) AlexNet, CaffeNet,

VGG-f, SVM

All-IDB1 Accuracy: 100%

Reticulocyte Detection

Reference Method Dataset Results

[132], (2021) R-CNN Public Dataset Recall: 97.7%

[67], (2021) SSD Public Feline Dataset Class accuracy: 98.7%

[140], (2017) CNN Private Dataset AUC: 94%

1.4 Thesis Statement

Blood smear analysis is an important diagnostic tool for medical doctors. Recent advance-

ments in machine and deep learning have paved the way for researchers to utilize these

learning networks for blood smear analysis. On the other hand, such learning algorithms

are data hungry, and data-driven. Hence, having a balanced, expressive dataset is a key
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factor in having reliable, well generalized models. Hence, the problem of medical data

scarcity has heavily affected the advancement in automated blood analyses. In this thesis,

the problem of blood data scarcity is investigated, moreover, two solutions are provided. In

addition, an automated blood smear analysis system using deep learning is proposed.

1.5 Outline

The rest of the thesis is organized as follows: the most recent literature on the thesis topic

is presented in Chapter 2. The proposed methods are outlined in Chapter 3. The results are

described in Chapter 4, the discussion on the results is given in Chapter 5. Finally, Chapter

6 presents the conclusion and future work.
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Chapter 2

Background

The human body is made up of 11 organ systems that collaborate to manage all the essential

body functions. The cardiovascular organ system consists of 3 main parts; a closed circuit

of vessels, the heart and blood [117]. Blood is the fluid that constantly circulates through

the vessels. Blood is used to transport oxygen and nutrients to the body tissues and carbon

dioxide to the lungs. Moreover, it carries waste products to the kidneys and liver [41].

2.1 Blood Components

Blood consists mainly of four components: RBCs, WBCs, plasma and platelets [103]. In

the following subsections each of the these components will be explored in detail.

Red Blood Cells (RBCs)

RBCs, also referred to as erythrocytes, are biconcave flexible disks containing haemoglobin

which is responsible for its redness. They are anucleate entities with a diameter of 6 to 8

micrometers [103], and are responsible for carrying oxygen to the entire body and bringing

carbon dioxide back from the entire body to the lungs to be released through breathing.

RBCs are produced from pluripotent haemopoietic cells [78]. These stem cells reside
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initially in the bone marrow before they undergo a series of maturation events which even-

tually result in fully functional RBCs. Epo [50] is the primary hormone that manages

the process of producing erythrocytes. The Pronormoblast is the first identifiable form

of RBCs followed by the Basophilic normoblast, Basophilic Normoblast, Polychromatic

Normoblast, Orthochromic Normoblast and reticulocyte in the bone marrow. Next, Retic-

ulocytes enter the circulating blood and mature into functioned RBCs [7]. The average life

span of those mature RBCs is 110 days [86].

Figure 3: RBCs abnormal morphologies [2]

In certain health conditions, the body produces abnormal RBCs, Figure 3 illustrates

some of the commonly seen abnormalities. These abnormalities can be summarized as:

1. Abnormal cell distribution: RBCs should be slightly separated and barely touching

when spread on a slide, but when the cells are not distributed in this manner then

an abnormality is identified. For example, when cells appear in stacks (rouleaux)
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or chains then the presence of some health conditions like multiple myeloma and

connective tissue disorder can be concluded [58].

2. Abnormal cell variation: some indices are commonly used in labs to describe RBCs,

those indices include Average RBC size (MCV), Hemoglobin amount per RBC (MCH),

the amount of hemoglobin relative to the size of the cell per red blood cell (MCHC).

When the cells’ MCV does not fall in the normal range, then an abnormality is iden-

tified. For example, Macrocytic is identified when cells with a diameter of approx-

imately 9 µm or larger, having a mean cell volume (MCV) of greater than 100 µm

are present in a blood sample. Macrocytic can be associated with B12 deficiency, or

Hypothyroidism or smoking [8].

3. Abnormal shape variations: tear drop cells, burr cells, and sickle cells are examples

of abnormal RBC shape variations. In sickle cell anemia for example, RBCs are

shaped like crescent moons.

4. Abnormal hemoglobin distributions: this type of abnormality occurs when hemoglobin

(Hb) concentration is not normal. When the Hb concentration is less than the mini-

mum normal level then the cells are called hypochromic and many health conditions

might be identified in this case, such as, iron deficiency anemia.

RBCs are the most common blood cells, for instance, the number of WBCs in adult

males ranges from 4.5 to 11.5 thousand in 1 microlitre, where the number of RBCs in adult

males ranges from 4.6 to 6 million in 1 microlitre [103].

Plasma

Plasma is considered as the largest component of the human blood. Plasma is made up of

92% water, 7% vital proteins, and 1% mineral salts, sugars, fats, hormones and vitamins

[38]. Centrifugation is the process of separating plasma from blood, where the blood is set
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to spin in a centrifuge with an anticoagulant. Plasma serves multiple important functions

in human bodies:

1. Waste removal from cellular functions that help to produce energy. In addition,

plasma transports the waste to the organs responsible for excretion (e.g. liver, kid-

neys).

2. Regulation of body temperature.

3. Transportation of nutrients like lipids, and vitamins from the digestive system to the

rest of the body.

Convalescent plasma is the plasma extracted from the blood of patients recovered from

a disease, and is used as a therapy to help other patients recover. For example, in 2020

the U.S. Food and Drug Administration (FDA) authorized this therapy for people with

coronavirus disease 2019 (COVID-19). People suffering from COVID-19 can be given

convalescent plasma of recovered patients to boost their ability to fight the virus [127].

White Blood Cells

WBCs, also known as leukocytes, are a heterogeneous group of nucleated blood cells. In

healthy individuals, the count of these cells varies between 4000 and 10,000 per microliter

[131]. Leukocytes are in charge of protecting the body against both foreign invaders and

infectious diseases. The process of producing WBCs starting in the bone marrow and

ending with mature cells circulating in the blood is called Leukopoiesis [29]. The 5 main

types of WBCs are: Neutrophils, Monocytes, Eosinophils, Basophils, which result from the

Myelopoiesis process, and Lymphocytes which results from Lymphopoiesis. More details

about WBC types can be found in Appendix A.
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Platelets

Platelets, also known as thrombocytes, are very small blood cells (i.e. the average diam-

eter size is about 2 to 4 µm). Platelts help the body build clots to stop bleeding. This is

because platelets send signals to attract more platelets and grow sticky edges to adhere to

one another.

platelets are activated once an activation cause is triggered (such as injury) forming

very irregular edges and shaping a star-like appearance [125]. Finally, giant platelets are

described as platelets that are abnormally large, i.e., as large as a normal red blood cell. The

presence of this type is associated with some disorders, such as, Bernard-Soulier disease.

2.2 Phlebotomy and Blood Cell Separation

Phlebotomy, also known as blood draw or venipuncture, is the process of using a needle

to take blood from a vein, usually in the arm. It is an important tool for diagnosing many

medical conditions. This process has to be implemented by a well trained phlebotomist

and the World Health Organization (WHO) elements of quality assurance in Phlebotomy

have to be followed [5]. The collected blood sample is kept in a special tube that prevents

clotting.

Finally, the blood sample goes through a separation process, which is implemented by

placing the tube in a lab device called centrifuge. The centrifuge spins the blood sample for

a specific amount of time (typically 15 minutes) at a specific speed. This process places the

RBCs at the bottom, topped by the platelets, then the white blood cells and finally, plasma

are placed at the very top.
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2.3 Disease Diagnosis from Blood

Medical doctors rely on blood tests to: diagnose patients for certain diseases and medical

conditions, examine the functions of certain organs and see how the patient is responding

to prescribed treatments and/or medications. In this section blood tests will be categorised

based on the type of blood sample needed for the test.

2.3.1 The Complete Blood Count Test

The literature shows that about 70% of clinical and medical decisions are backed by labo-

ratory medicine [10]. In this section, tests that are performed in medical labs using a blood

sample, rather than a blood smear are discussed. Such tests can be classified into many cat-

egories but in this thesis, we will only focus on tests related to blood cell types, subtypes,

and their morphological abnormalities.

In medical labs, Complete Blood Count (CBC) is one of the most frequently requested

tests by medical doctors. The CBC test counts the numbers of RBCs, WBCs, and platelets.

It is used to diagnose several blood diseases such as anemia, as well as other conditions

that indirectly affect the blood (such as dehydration, bone marrow disorders, Hemoglobin

abnormalities, inflammation, Thalassemia, and Sickle cell disease). The CBC test also

measures more detailed aspects of each blood component. The following 3 subsections

will explain more about the aspects that are measured from each of the main blood types.

RBC tests The hematocrit, hemoglobin and RBC indices are all measures that the lab

specialist reports in CBC results. The hematocrit measures the percentage (%) of the vol-

ume that the RBCs occupy within the whole blood. In automated analyzers, the hemat-

ocrit (HcT) is typically calculated from both the RBC count and the measured MCV. The

hemoglobin level measures the total amount of the oxygen-carrying protein in the blood.

The laboratory professional interprets the accuracy of the RBC count, hemoglobin, and
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hematocrit values using a quick mathematical check referred to as the rule of three. Simply,

RBCcount×3 = hemoglobin×3 = hematocrit(%). In case of these values do not agree

within 3% of the measured values, an instrument malfunction or a measurement error could

have occurred, or it is an indication that the patient could have a pathology that requires

further investigation.

Finally, RBC indices, which suggest how the RBCs will appear microscopically as well

as provide significant diagnostic information, are measured.

WBC tests The WBC differential is an analysis and enumeration of the various subtypes

of WBCs [45]. An altered concentration of one specific type of leukocyte most commonly

causes an increase or decrease in the total WBC count. For this reason, an abnormal total

WBC count should be followed by a WBC differential, also known as diff. The differential

results are reported as the percentage of each cell type counted. To accurately interpret

whether an increase or decrease in cell types exists, the absolute concentration of each cell

type is calculated using the results of the WBC count and the differential.

Platelets Automated hematology instruments generate the platelet count, which is re-

ported as billions of platelets per liter (number of 109 platelets*/L). The mean platelet vol-

ume (MPV) is similar to MCV for erythrocytes because it represents the average volume of

individual platelets. Laboratory professional utilizes both platelet count and MPV to assess

thrombopoiesis and pathologic conditions related to platelets. A decreased platelet count

generally represents decreased thrombopoiesis, increased platelet destruction, or consump-

tion. Reactive or malignant conditions can cause an increase in the platelet count.

2.3.2 Peripheral Blood Smears

A Peripheral Blood Smear (PBS), also known as a blood film, is the result of spreading and

staining a thin layer of blood on a microscope slide.
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A well-made and properly stained blood smear is required for accurate interpretation.

The slide is examined macroscopically and microscopically by a lab specialist to ensure that

the blood was spread and stained properly. At a macroscopic level, a smear should look

pinkish purple in color and transition to a feathered edge. Whereas at a microscopic level,

the blood cells should be evenly distributed and areas between cells have to be clear. More-

over, Erythrocytes should look orange-red, Neutrophilic granules should look pale purple,

Eosinophilic granules should look red-orange, Basophilic granules should look purplish

black, Lymphocytes’ cytoplasm should look blue, Leukocytes’ nuclei should look purple,

and finally Chromatin and parachromatin should be distinct within the nucleus.

(a) (b)

Figure 4: Different blood samples used in different blood tests

a: A blood sample collected in a tube for CBC with differential [138], b: A blood sample

spread on a microscope slide for PBS analysis[34]

Despite the advancement in haematology, PBS remains as a very important diagnostic

test to both haematologists and clinicians. In many cases, the CBC with differential test is

not enough and more blood analyses are needed and a PBS is requested. Figure 4 shows the

difference between the blood samples needed for CBC and PBS. The thorough examination

of a peripheral blood smear can be used:

1. As a screening tool to identify illness.
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2. For making the definitive diagnosis of certain hematologic and nonhematologic con-

ditions.

3. To monitor the patient’s response to therapy.

The peripheral blood smear evaluation includes an estimation of leukocyte and platelet

count, the detection of abnormal cells and abnormal erythrocyte distribution, the review of

erythrocyte and platelet morphology. A blood smear is mainly requested to:

1. Check the presence of immature, and abnormal cells.

2. Identify blood cells that are beyond the capabilities of the automated analyzers, i.e.,

morphological abnormalities.

3. Verify results obtained by automatic analyzers.

2.3.3 Clinical Laboratory Professionals Review and Diagnosis from

CBC and PBS Data

The role of laboratory professionals is to analyze and interpret the data generated by the

automated hematology analyzer and the manual peripheral blood smear review. The in-

terpretation is essentially a correlation of the various components of the CBC in order to

identify the likelihood of abnormal results, pathology, and discrepancies in the generated

data.

Within the CBC report, the laboratory professional must be keenly aware of the criti-

cal limits that represent the critical low and high values for hematologic parameters. The

normal values for hematologic parameters vary depending on age, gender, race, ethnicity,

and geographic area. Thus, it is important that this information is available when reviewing

data. For example, various parameters of the CBC are dramatically different in newborns
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compared with adults, hence, the patient’s age must be considered when evaluating a pa-

tient’s blood picture. Hence, cells classified from the same blood smear are tested among

those normal ranges in lab, to finally infer whether any of the medical conditions listed in

Table 2 [70, 148] are present. The table lists 22 general medical conditions caused by the

abnormal increase or decrease of WBC, RBC, or platelet types. Each of those listed medical

conditions can reveal the existence of a group of illnesses, for example, Lymphocytopenia

when accompanied with a low number of Monocyte indicates that the patient suffers from

MonoMAC syndrome. Moreover, monocytosis is seen in chronic bacterial infections, in-

flammatory conditions such as Crohn’s disease, and malignancies such as chronic and acute

myeloid leukaemia[10].

Table 2: Medical conditions and disorders the proposed system can infer

Blood cell type / abnormality Abnormal high number Abnormal low number
Lymphocytes Lymphocytic, viral infec-

tion
Lymphocytopenia

Neutrophils Neutrophilic leukocytosis,
bacterial infection

Neutropenia

Monocytes Monocytosis, Malaria, fun-
gal infection

Basophils Basophilia, malignancy
Eosinophils Allergic reaction, fun-

gal infection, Hypere-
osinophilic syndrome

Platelet Thrombocytosis, hyperco-
agulability

Thrombocytopenia,
hypocoagulability

Giant Platelet Macrothrombocytopenia
Hypersegmented Neutrophils Megaloblastic anemia
Hyposegmented Neutrophils Pelger-Huët anomaly
Nucleated RBC Leukemia,anemia

2.3.4 Reticulocyte Smears

Reticulocytes are immature RBCs released by the bone marrow that circulate for one to

two days in blood before becoming mature RBCs. Reticulocyte count is a routine test
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that can be done by manual counting of reticulocytes and RBCs under oil immersion lens

and calculate the percentage of reticulocytes per 100 RBCs. Automated hematology cell

counters are also available, but the manual method is easy to perform and is preferred by

most laboratories. Counting the number of reticulocytes in a blood sample can be a vital

source of information for medical doctors to diagnose and assess patients’ health condition

[77]. Doctors request a reticulocyte count for the following reasons [1]:

1. Assess how well the bone marrow is functioning.

2. Diagnose and distinguish between types of anemia and assess how well the body is

responding to iron deficiency treatments.

3. Monitor patients’ health condition after undergoing chemotherapy, radiation therapy,

or bone marrow transplant procedure.

The number of reticulocytes is normally less than 1% of the total number of RBCs. A

higher percentage indicates an abnormal condition called reticulocytosis. Reticulocytosis

can be a sign for many health conditions such as, hemolysis, hemorrhage, leukemia, preg-

nancy, recovery from vitamin B12, folate, or iron deficiency, and sickle cell anemia. On

the other hand, an abnormal low number of reticulocytes is called reticulocytopenia. This

condition can indicate bone marrow failure, chronic disease, folate deficiency, infection,

iron deficiency, liver disease, malignancy, pernicious anemia and vitamin B12 deficiency.
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Chapter 3

Methods

3.1 Study Scope

In this thesis, the automation of two types of blood smears is implemented; general PBSs

(see section 2.3.2) and reticulocyte smears (see section 2.3.4).

Based on medical advice, the blood cell subtypes and morphological abnormalities of

WBCs, RBCs and platelets that are listed in Table 3 are considered for general PBS au-

tomation. Throughout this study we will refer to WBCs, Nucleated RBCs and Platelets as

the main blood cell types, while referring to the rest of the subtypes and abnormal mor-

phologies as blood cell subtypes.

Table 3: Types of blood cells

Main blood cell
type

Blood cell subtypes/ abnormalities

Platelets Giant Platelets, Activated Platelets
WBCs Atypical Lymphocyte, Atypical Monocyte, Band cell, Basket

cell, Basophil, Eosinophil, Hyper-Segmented Neutrophils, Hypo-
Segmented Neutrophils, Lymphocyte, Monocyte, Plasma cell, Re-
active Lymphocyte, Segmented Neutrophils

RBCs Nucleated RBCs
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On the other hand, the second smear type covers two types of blood cells, reticulo-

cytes and RBCs. The following two sections 3.2 and 3.3 discuss the automation of general

PBSs, whereas section 3.4 presents the methods proposed for reticulocytes data scarcity

and reticulocyte detection automation.

3.2 Generation of Synthetic Blood Smears Using Locality

Sensitive Hashing

Deep neural networks are data hungry and data-driven. In this thesis, we opted to propose

a method that produces a synthetic dataset of PBSs, due to the lack of public datasets that

annotate blood cells to the main types and subtypes.

Researchers proposed different methods to generate synthetic data. The authors of

[113] reviewed 200 publications that discuss synthetic image generation using Generative

Adversarial Networks (GANs). GANs were utilized as tools to generate light microscopic

synthetic images to increase the size of the training set [106, 49, 73].

Simulation to Reality (Sim-to-Real), Simulation to Simulation (Sim-to-Sim) are also

techniques that include extracting labelled data from simulations to circumvent data scarcity.

These methods are mostly used to train robots [55, 62, 88, 37].

In this section, a framework for constructing a synthetic balanced dataset of blood

smears is proposed. Synthetic data have helped to improve the performance of NNs by

providing sufficient instances that help NNs learn features of target classes. Synthetic in-

stances do not necessarily need to look identical to real instances, but it must look realistic,

hence, the quality of the smears produced by our framework does not matter as much as its

ability to help the classification network better generalize [71].

The proposed framework aims to assemble images of segmented blood cells from all

main and sub cell types as mentioned in Table 3 on blood smear canvases while keeping
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Figure 5: Constructing blood smear approaches as black box. A is an enlarged annotated
sample result from the approach described in 3.2.2, B and C are enlarged sample results
from the approach described in 3.2.2, D is an enlarged sample result from the approach
described 3.2.2.

in mind the dataset balance issue and retaining the natural distribution of blood cells. The

complexity of preparing a balanced dataset of blood smears comes from its natural struc-

ture; each blood smear contains hundreds of blood cells from different types, which are

naturally distributed in an imbalanced manner. For example, in [122], the authors demon-

strated that Red Blood Cells (RBCs) occurred approximately seven times more than White

Blood Cells (WBCs) in the training set. This challenge implies that traditional augmenta-

tion techniques might not help as it will only amplify the imbalance issue.

This approach, as illustrated in Figure 5, runs in two stages; data pools preparation

stage, and blood smears generation and annotation stage. The expected results of the pro-

posed approach are:

1. A dataset of blood smear images.

2. A set of annotation files for the dataset instances that annotates blood cells to three

main classes (Nucleated RBC, WBC, Platelet).
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3. A set of annotation files for the dataset instances that annotates blood cells to the 17

subtypes of blood cells.

The following subsections provide more details about each stage.

3.2.1 Stage 1: Data Pools Preparation

In this stage, we aim to create an image pool for each main and sub blood cell type, hence

18 image pools will be processed and ready by the end of this stage; 17 blood cell subtypes

and RBCs. The RBCs class is added as a pool because it still shows in all blood smears

even if it is not annotated. Each of the 18 pools contains images of segmented cells of

the pool cell type. All images were collected from public resources and processed by

removing the background. In addition, all images were augmented by multiple rotations.

Some restrictions need to be considered at this stage are:

1. All images must be subject to the same microscope magnification, because the size

of the blood cell can be a major factor in distinguishing and classifying some mor-

phological abnormalities.

2. All instances must be treated with the same stain for consistency purposes.

3. Each pool must be representative, well generalised, and comprise all possible appear-

ances of the cell type. In other words, for each cell type we aim to collect distinct

images that cover all possible features more than we aim for a large number of in-

stances.

3.2.2 Stage 2: Blood Smears Generation and Annotation

In this stage, cell images from stage one are assembled on blood smear canvases to form

thin blood smear instances. This procedure can be a bit complicated because each blood
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smear contains hundreds of cells that have to be ordered in a natural realistic way. The

following factors need to be considered at this stage:

1. No restrictions limit the selection of blood cell subtypes to appear in a blood smear,

as the presence, absence or deficiency of each cell type or subtype represents certain

types of syndromes or medical diagnoses that is independent from all other syn-

dromes or medical diagnoses that can be concluded from other cell types appear in

the same blood smear.

2. Total number of the main blood cell types must be carefully selected to represent

realistic blood smears. Hence, RBC, Platelet and WBC cells are assumed to follow

Normal (Gaussian) Distributions. The Normal distributions of WBCs and Platelets

and their parameters were derived from the All-IDB dataset [69] statistics, however,

the RBCs' Gaussian Distribution was assumed to follow the one in [23].

The Gaussian Distribution is a probability distribution that is typically used to model

normal phenomena and is described by the probability density function (PDF). A PDF

describes the probability of a value (x) of an experiment to fall within a particular range of

values, it is mathematically represented by the following formula:

P (x) =
1

σ
√
2π

e−(x−µ)2/2σ2

(1)

where, the mean denoted by µ is the arithmetic average of the data, and σ is the standard

deviation that is calculated by:

σ2 =

n∑
i=1

(xi − µ)2

N
(2)

where, N is the number of sample observations. Table 4 lists µ and σ for each main cell

type.
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Table 4: Statistics of the main blood cell types

Blood cell type Mean Standard
Deviation

Platelets 4.3 4.8
WBCs 8.6 10.5
RBCs 669 149

At this point an efficient approach is needed to place cell images from different pools on

a blood smear background canvas. For this purpose, we first select three random numbers; a

random number from each Gaussian Distribution. Second, subtypes of each main blood cell

type are uniformly selected. Next, instances from each selected subtype pool are selected.

When all subtypes and cell instances are selected from image pools, an efficient approach is

needed to place these cells on canvas. In the following subsections we present and discuss

three different placement strategies to paste the selected instances on blood smear canvas

in a realistic fashion.

Naive approach 1: Random placement

In this approach random paste coordinates are selected for each cell. This approach exe-

cutes fast and is easy to implement, however, it does not guarantee the spread of cells on

the smear canvas. As shown in Figure 5-A, this method forms cell clumps, and some cells

might override others which leads to wrong annotations. Figure 5-A shows how bounding

boxes are heavily intersected.

Naive approach 2: Random placement on virtual blocks

In this approach the blood smear background canvas is divided into MxN virtual blocks.

For each cell a block is uniformly chosen, then random paste coordinates are selected inside

the chosen virtual block. A drawback of this approach is that some blocks might be selected

more than others which will also form cell clumps. Figure 5-B illustrates a crowded block
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where 5-C illustrates an almost empty block.

Nearest neighbour mining approach

The main shortcoming resulted from the previous naive approaches is the formation of

clumps in the generated blood smears. To avoid placing cells on canvas with high proba-

bility of occlusion we need to choose a paste location that does not overlap with any other

surrounding cell. Implementing this in a brute-force manner can guarantee the accuracy

of the results but the processing time grows linearly with the number of cells on canvas.

On the other hand, choosing a potential paste point and estimating its nearest neighbors

and reject those points that will cause occlusion with neighboring objects can reduce the

number of comparisons and the complexity. Locality Sensitive Hashing (LSH) is a nearest

neighbour retrieval algorithm that can be utilised for this purpose because it is a generic

hashing technique that intends to preserve the local relations of the data.

In our problem, we have a set of cell objects to be pasted on a canvas, each object

will be represented by its top left coordinates, called paste points, hence our space is a 2D

Euclidean space. A dictionary keeps the width and height of the paste point’s corresponding

cell. Our goal is to retrieve the nearest neighbor points to each potential paste point, check

if the dimensions of the paste point will overlap with its neighbors or not within a certain

threshold, and finally decide to accept this new point or reject it. An effective approach to

implement our goal on the mentioned Euclidean space can be dividing the space by a set

of projections and hash near points into the same bucket. This approach is called Random

Projections.

The core idea behind random projections is given in the Johnson-Lindenstrauss lemma,[57]

which states that if points in a vector space are of sufficiently high dimension, then they

may be projected into a suitable lower-dimensional space in a way which approximately

preserves the distances between the points. This can be represented as:
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Let X be a space of objects [22], to which dataset and query objects belong. Let D be

a distance measure defined on X. Let H be a family of hash functions h : X→ Z, where Z

is the set of integers.

Let R1, R2, P1, and P2 be real numbers. For any points X1 and X2 in X that are close

to each other, there is a high probability P1 that they fall into the same bucket:

PH [h(X1) = h(X2)] ≥ P1 for D(X1, X2) ≤ R1 (3)

Moreover, for any points X1 and X2 in X that are far apart, there is a low probability P2 <

P1 that they fall into the same bucket:

PH [h(X1) = h(X2)] ≤ P2 for D(X1, X2) ≥ cR1 = R2 (4)

Let L denote the number of random projections, then the space will be partitioned using

L hyperplanes by selecting pr1, ...,prL vectors at random from a Gaussian distribution.

Then each dataset and query objects are hashed using equation 5, where m is any potential

paste point, and i is the random projection index.

[h(m)]i =


0 prTm ≤ 0

, i = 1...L

1 prTm > 0

(5)

In this work, random binary projections method is implemented, hence, all values will

be projected to either 0 or 1. Object m will then be stored in a hash table with its hash value,

h(m), as its key. Every time a potential paste point is queried against the LSH engine, it

will be hashed using equation 5, and all previous points in the same bucket will be returned

as possible neighbors. Each of the returned neighbors will be checked against a distance

criteria, if all neighbor points are farther than a certain threshold, then the potential paste
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point will pass and the object will be pasted. Else, if at least one neighbor point is closer

than the same threshold, then the point will be rejected and a new paste point will be

selected and queried against the LSH engine. Since we are dealing with cells as bounding

boxes, a good distance measure will be measuring the intersection over union ratio, also

known as Jaccard similarity between the potential paste point and its neighbors. Jaccard

Similarity can be defined as:

J(p, ni) = |p ∩ ni|/|p ∪ ni| (6)

where ni denotes a neighbor point, and p denotes the potential paste point. The Jaccard

similarity value between each neighbor and the paste point will be checked by equation 7

for the validity of the paste point.

Evaluation[p] =


0 ∃ni, J(p, ni) > T

, ni ∈ N

1 Else

(7)

Algorithm 1 demonstrates more details of the proposed approach. The following parame-

ters are defined in Algorithm 1:

• Rw, RR, RP are the random counts of WBCs, RBCs, and Platelets respectively. Each

of these counts represents the number of cells that will appear in the being generated

blood smear instance.

• LSH: is the locality sensitive hashing engine, that is initialized once instantiated to

D dimensions and L projections.
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Algorithm 1 Creating a blood smear dataset of size DS
1: for i← 1 to DS do
2: RW ← N (σW , µW )
3: RR ← N (σR, µR)
4: RP ← N (σP , µP )
5: LSH ← D(Dimensions), L(Projections)
6: for R← RW , RR, RP do
7: SubTypesCount← Rand(1,Maxtypes)
8: Max← 1
9: for S ← 1 to SubTypesCount do

10: TypePercentage← Rand(Min,Max)
11: Max←Max− TypePercentage
12: for Count← 1 to TypePercentage ∗R do
13: Cell← Rand(Pool(S))
14: RejectPoint← 1
15: while RejectPoint do
16: PastePoint← Rand(Canvas)
17: Neighbors← LSH.NN(PastePoint)
18: for N ← Neighbors do
19: if Jaccard(N,PastePoint) ≥ T then
20: RejectPoint← 1
21: Break;
22: else
23: RejectPoint← 0
24: end if
25: end for
26: if RejectPoint = 0 then
27: Paste(PastePoint, Cell, Canvas)
28: Anotate(PastePoint,MainTypesF ile)
29: Anotate(PastePoint, SubTypesF ile)
30: end if
31: end while
32: end for
33: end for
34: end for
35: SaveAnnotation(MainTypesF ilei)
36: SaveAnnotation(SubTypesF ilei)
37: SaveImage(Canvasi)
38: end for
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• Max: for each of the main cell types (WBCs, Platelets, Nucleated RBCs), its corre-

sponding subtypes have to appear in percentages that sum up to 1. The Max param-

eter is initialized to 1, and is later decreased as the algorithm progresses.

Some highlights from Algorithm 1 are:

• In lines 6 to 9: for each of the main blood cell types, subtypes are randomly chosen

and stored in the SubTypesCount parameter. These subtypes and the percentages

of which each of them will contribute in the blood smear instance are then randomly

selected.

• In lines 11 to 15: cell instances are selected from corresponding pools, one cell

instance at a time, and a random paste point is then selected within the blood smear

canvas. Next, the LSH engine retrieves all potential neighbor points.

• In lines 16 to 22: each neighbor is checked against the potential paste point using the

Jaccard similarity metric. If any neighbor overlaps with the potential point past the

allowed percentage then the potential paste point will be rejected.

• In lines 35 and 36: the annotations of the generated blood smear are saved.

Two annotation files are automatically generated for each generated synthetic blood

smear, hence two sets of annotations will be provided for the dataset:

1. The first set of annotations targets multi-step classification pipelines, which classify

the main types of blood cells, then further classify the regions of interest into its

corresponding subtypes in a second phase. Since Nucleated RBCs is the only sub-

category of RBCs, this annotation set will classify cells into: WBCs, Platelets, and

Nucleated RBCs.

2. The second set of annotations targets one-step classifiers, where the system classifies

whole blood smears into all 16 subtypes. Platelets category is also annotated in this
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set based on the advice of a medical expert. Hence, this set of annotations includes

17 categories.

3.2.3 Medical Assessment

A questionnaire of 12 questions about the dataset was created to ensure that the dataset

meets the medical standards of thin blood smears. The questionnaire was filled by 5 expe-

rienced hematologists. A blood smear was displayed in each question, followed by some

questions to evaluate the following aspects about the dataset instances:

1. Factor 1: The general quality of the smears in terms of the total numbers of RBCs,

WBCs and Platelets.

2. Factor 2: The correctness of the first set of annotation, by asking the respondents to

verify some labels.

3. Factor 3: The correctness of the second set of annotation.

4. Factor 4: The quality of blood cell subtype choices.

5. Factor 5: The level of overlap and occlusion between the blood cells on the syn-

thetic blood smears to assess the quality of the locations produced by our proposed

algorithm.

The questionnaire was initially reviewed and verified by a designated hematologist for

quality assurance purposes. The average years of experience of the participating hematol-

ogists is 6 years. The expected answers were set before starting this experiment and will

be denoted by the ground truth throughout this thesis. The questionnaire can be found here

[92].
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3.3 General PBS Analysis Using Deep Learning

In this section, the framework illustrated in Figure 6 is implemented in order to classify

blood cells that appear in general blood smears. In the first phase a deep network detects

and classifies blood cells from whole-slide smears into Nucleated RBCs, WBCs, platelets

and other objects. The detected objects are then cropped and passed to the second phase.

The nucleated RBCs are not further classified. On the other hand, there are 13 WBC sub-

types and 3 platelet subtypes. Hence in the second phase, the platelet instances are passed

to a classifier and an image processing module. Moreover, the cells that were classified as

WBCs in the first phase are emitted to a deep-classifier-based module called the incremen-

tal training module. It is worth mentioning that the plasma WBC cells were excluded in

phase 2 due to the lack of test instances, therefore, the number of WBC subtypes that will

be considered in the incremental training phase are 12.

Figure 6: General workflow of the proposed blood smear analysis framework
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3.3.1 Phase 1: Classification of Main Blood Cell Types using YOLO

Deep Network

In this phase, the synthetic blood smears along with the first set of annotations; the main

types annotations, are fed to two different YOLO deep networks. All computations men-

tioned in this section were made on the supercomputer Helios from Laval University, man-

aged by Calcul Québec and Compute Canada.

YOLO deep network [99], is a real time object detection and classification network that

performs object detection and classification in one scan. YOLO is a convolutional neural

network which divides the input image into an NxN grid. Each grid cell predicts bounding

boxes and confidence scores for those boxes, where confidence scores mirror how confident

the network is that the bounding box contains an object. Each bounding box consists of 5

attributes: (x, y, h, w, confidence) where, x and y are the coordinates of the center of the

bounding box, h and w are the height and the width of the bounding box. Moreover, each

grid cell predicts C conditional class probabilities to classify the object that is located in the

grid cell. A deep network loss function aims to minimize the network error and in YOLO,

it is calculated as the combination of localisation and classification errors :

S2∑
i =0

B∑
j =0

⊮obj
ij [(xi− x̂i)

2+(yi− ŷi)
2]+λcoord

S2∑
i =0

B∑
j =0

⊮obj
ij [(
√
wi−

√
ŵi)

2+(
√

hi−
√
ĥi)

2]

+ λcoord

S2∑
i =0

B∑
j =0

⊮noobj
ij (Ci − Ĉi)

2 + λcoord

S2∑
⊮obj

i

∑
c ∈classes

(pi(c)− p̂i(c))
2

(8)

where ⊮obj
i denotes if object appears in cell i and ⊮obj

ij denotes that the jth bounding box

predictor in cell i is responsible for that prediction. A relatively small NN of 13 convolu-

tional layers, namely, tiny YOLOv3 network [100] and a larger network that consists of 23

convolutional layers, namely YOLOv2 [99] are utilized for the experiments of this phase.

Moreover, in order to further improve the result, the network input resolution is randomly
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resized every 10 batches during training, this regime which was proposed in [99] works like

data augmentation and helps the network learn to better generalise. The networks ran with

a momentum value of 0.9, learning rate of 0.001, and network input resolution of 800 as

an initial resolution. All experiments were trained with the synthetic dataset and validated

and tested with the ALL-IDB1 Dataset.

In this phase, objects that are detected with a confidence score less than 10% are classi-

fied as "other objects" and are saved in a separate directory in order to be further examined

by the lab technician. The threshold 10% was empirically set.

3.3.2 Phase 2: Classification of Blood Cell Subtypes

In image classification applications of deep learning, a neural network is trained on a set

of images until an acceptable error rate is achieved. In the case of supervised learning

where all instances are labelled, like in this study, a training dataset DS of size N can be

represented as {(xn, yn)} for n= 1, ..., N , where xn ∈ Rd is the instance feature vector. If

there exist M possible output labels, then the labels set can be expressed as C={c1, ..., cM},

and each instance label which is a subset of the possible M output classes can be expressed

as yn ∈ C. In this work, a set of deep neural networks are utilised to classify 15 blood cell

categories, hence, the feature vector of xn is extracted automatically by the network and

the size of the possible output classes set C is 15. When training a classifier we aim to

have a discriminant function f(x → βm) that maps each instance xn to M class-specific

parameters for each class β1, ..., βM . Such functions are used to classify each test sample x

as the class label that scores the highest β parameter, as shown in equation 9. In this work

the softmax function will be utilized to calculate the β values.

arg maxm[f(x→ βm)] (9)
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To tackle the complex nature of blood cell classification problem, the classification

process will be divided into 2 parts: the first part deals with platelets classification, and the

second part deals with WBCs classification. These approaches are described in detail in

the next two subsections.

The experiments of phase 2 are all trained with the synthetic dataset. For testing and

validation, a hematologist with 9 years of experience reannotated the ALL-IDB1 dataset

to cover the classes considered in this study. The dataset consists of 459 platelet instances

and 906 WBC instances. In order to increase the size of the dataset that will be utilized

for validation and testing, cropped cell images available on the web were collected. Search

keywords like ”microscopic band cell” and "microscopic white blood cells" were typed on

the Google search engine. After a careful observation, images of good visual quality and

that were taken with a magnification within the range of 300-500 were considered. One

hundred fifty platelet instances and 1,100 WBC instances were collected. The blood cells

from the All-IDB dataset and the images collected from the web were combined together

for validation and testing.

3.3.3 Classifying platelets

The main challenge in classifying platelets arises from its very small size, which makes it

difficult for the network to recognise and extract accurate and distinguishing features [32].

In this work, three categories of platelets are considered; normal platelets (a.k.a platelets),

giant platelets, and activated platelets.

The main visual difference between platelets and giant platelets is the length of their di-

ameters. On the other hand, activated platelets look different than the other two categories,

because cells that belong to this category have very irregular edges. Pseudopods form on

the surface of activated platelets, forming a star-like appearance once an activation cause is

triggered (such as endothelial damage) [125]. Figure 7 illustrates examples of platelets and
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activated platelets.

(a) (b) (c) (d)

Figure 7: Activated platelets and normal platelets

(a) and (c): Activated platelet, (b) and (d): Normal platelet

In order to perform this classification task, a one-phase classification technique is en-

hanced and a two-phase classifier is proposed. In the next two subsections the neural net-

works that were utilized for classifying platelets and the proposed classification methods

will be discussed. Figure 8 depicts the steps of both classification approaches.

Figure 8: Platelet classification approaches
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One-phase classification

The choice of deep classifier can directly affect the accuracy of the classification results,

more complex contexts need more complex functions to be learned by the neural network.

The literature reveals that deeper networks have performed well in classifying blood cells

[16], hence in this work neural networks with a relatively high number of layers will be

considered.

For the purpose of classifying platelets the VGG16, VGG19, ResNet50, InceptionV3,

and DenseNet121 networks available on the Keras applications library [64] were experi-

mented, but only the top two networks were considered. All the mentioned networks except

the VGG19 and ResNet50 scored validation accuracies less than 70% when trained on the

platelet images. Hence only the VGG19 which consists of 19 layers and the ResNet50

which consists of 50 layers were considered. It is worth mentioning that the reason behind

the superiority of the results achieved by the VGG19 and the ResNet networks compared to

the results obtained from the other neural networks is considered beyond the scope of this

study. Before feeding the images to the VGG19 and the ResNet50 networks, the platelet in-

stances were resized to 200 x 200. Next, the resulting images were augmented by applying

rotation, and horizontal and vertical flips. The augmentation techniques and the resizing

factor were imperically set. Finally, the images were converted from RGB to BGR, then

each color channel was standardized with respect to the ImageNet dataset, without scaling,

using the Keras "preprocess input" function. The work of M. Shanker and collaborators

discusses the benefits of data standardization [114]. Both neural networks were initialized

to the ImageNet pretrained weights, and customised by removing the pretrained fully con-

nected layers, and freezing all the remaining layers. Next, an extra fully connected layer

and a softmax layer were attached to the networks, finally, the batch size hyperparmeter

was tuned and the value 128 was considered. Table 5 summarizes the properties of the

fully connected network that was utilized for this task.
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Table 5: The properties of the fully connected neural network utilized for platelet and WBC
classification

Framework Keras 2.4.3
Loss function Cross Entropy
Learning rate .01
weight decay 1e-6
momentum .9
Optimization algorithm mini-batch Gradient Descent
Activation function ReLU, Softmax
fully connected layer size 1000

Two-phase classification

This approach is proposed to improve the results obtained from the first approach. Here,

the same ResNet and a VGG19 networks that were utilized in the one-step approach were

trained to classify platelets into two classes only; activated platelets and "other platelets".

The random undersampling technique was applied in order to reduce the giant and nor-

mal platelets training instances to one class while retaining the training dataset balance.

Platelets that are classified as "other platelets" are further processed in the second phase

by applying a set of image processing techniques. Each instance from the "other platelets"

class is first processed by extracting the green channel, because most contours of blood cells

appear continuous and contrasted against the background in the green channel [18]. Next,

Contrast Limited Adaptive Histogram Equalization (CLAHE) [87] and Otsu thresholding

[82] are applied. All the above mentioned image processing techniques were adopted based

on their success in the context of blood cell classification [66, 13, 80, 20].

Finally, Hough Circle Transform (HCT) [141] is applied to outline the platelet cell with

a circle and measure its diameter. Based on the diameter size, the instance is classified as

either normal or giant. The size ranges for normal and giant platelets were decided with

the help of a hematologist, the hematologist chose the largest and smallest normal platelet

and giant platelet cells that appeared in the ALL-IDB datasets, and the diameter of each

of those chosen cells was measured, next, those measurements were used as limits for the
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ranges utilized in this study. This step imitates the way lab technicians classify platelets in

a lab. A lab technician typically, estimates the diameter of platelet cells with bare eye under

a microscope to decide whether the platelet cell is giant or normal. All objects that do not

fall in the specified diameter range are moved to the "other objects" directory in order to be

further examined by the lab technician.

3.3.4 Classifying WBCs

In this section, 12 WBC categories and morphological abnormalities are considered for

classification. This relatively high number of classes, in addition to the sensitivity of mak-

ing wrong classifications in medical diagnoses, adds an extra layer of complexity to this

task. Many classes included in this study have high visual resemblance [126, 101, 120],

which might affect the classification accuracy. Typically, a one-phase classifier is used for

this task, however, to accommodate for the complexity of WBCs classification, the one-

phase technique is extended to a two-phase classifier:

1. One-phase WBC classification: In this approach all WBC instances from all 12

classes are classified by a single neural network. For this task, VGG16, VGG19,

ResNet50, InceptionV3, and DenseNet121 networks available on the Keras applica-

tions library were experimented, but only the VGG19 was considered for this ap-

proach and the enhanced incremental training approach because it achieved the best

results. It is worth mentioning that the reason behind the superiority of the results

achieved by the VGG19 network compared to the results obtained from the other

neural networks is considered beyond the scope of this study. The WBC instances

were first resized to 200 x 200. Next, the resulting images were augmented by ap-

plying horizontal and vertical flips. The augmentation techniques and the resizing

factor were empirically set. Finally, the images were standardized using the Keras

"preprocess input" function. The VGG19 network was customised by removing the
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Figure 9: The enhanced incremental training framework

pretrained fully connected layers, and freezing all the remaining layers. Next, an ex-

tra fully connected layer and a softmax layer were attached to the network. The fully

connected network utilized in this approach is similar to the one used for platelet

classification, which is summarized in Table 5.

2. Deep neural networks pipeline trained using enhanced incremental training: In

this approach WBCs are classified in 2 phases. In the first phase, all non confusable

classes are classified, and classes considered as confusable are passed to the second

phase classifiers. For the purpose of figuring out the confusable classes, we opted

to propose an enhanced version of incremental deep neural networks training [121],

this approach will be explained in detail in this section.
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Enhanced incremental training

Deep networks are black boxes [9], and knowing what exactly causes wrong predictions

can be difficult, or even impossible [56]. Moreover, in any classification task, as the number

of classes considered in a dataset increases, it becomes more infeasible to analyze and look

for the reason behind high rates of wrong predictions from the confusion matrix. Hence,

researchers tend to set some hypothesis on what might cause the low correct predictions

rate, and then handle such hypothesis to measure and test its effect on the neural network

performance.

In this work the term confusable classes is used frequently. Confusable classes are

classes that include instances that have many visual attributes and features in common,

which cause a higher level of confusion in the network performance and harm the overall

classification results [145, 105]. Visual resemblance between different classes can make

the classification task more complicated, as feature vectors for their instances come out

very similar and lead to wrong estimations and results by the function mentioned in equa-

tion 9, and hence an increased rate of wrong classifications. In this study, the number of

WBC classes is relatively high, some of these classes are separable and exhibit insignifi-

cant visual similarities (e.g., Basket cells and Eosinophils). On the contrary, many other

classes are confusable (e.g., Lymphocyte and Atypical Lymphocyte), Figure 10 shows cells

from separable and confusable classes. Hence, our hypothesis in this study is that the high

visual resemblance between some WBC classes is the reason behind the high rate of wrong

predictions.
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(a) (b) (c) (d)

Figure 10: Instances from separable and visually similar blood cell types, with microscope
at magnification 300x

(1) Separable instances: a: Basket cell b: Eosinophil (2)Confusable instances c:

Lymphocyte d: Atypical Lymphocyte [69].

Deep networks are typically trained on instances from all classes at the same time in a

single training stage. But in order to test our hypothesis, the incremental training method

proposed in [121] will be enhanced and utilized in a novel way in this work to recognize

and handle confusable classes.

In incremental training, a training dataset TS is divided into S disjoint subsets of size

L, i.e., each subset contains all the training instances of L classes, this implies that:

S∑
i=1

Li = |C| (10)

where |C| is the size of the set of all possible classes or output labels, S is the number of

subsets, and Li is the number of classes included in the ith subset . The network is initially

trained on the first subset, then the resulting weights are passed to the next stage of training,

where another subset is added to the training set. A new training process is initiated every

time a new subset is added. Eventually, the network training will be completed after S

training stages. The regime of passing weights between the training stages acts like transfer

learning, hence the learned knowledge is accumulated among the stages. We formalised

incremental training in Algorithm 2.
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Algorithm 2 Incremental Training
Parameters:
i: training stage index
tsi: the training set at the ith stage
Wi: the weights resulted from training the network at the ith stage
si: the ith subset

1: S ← |C|/L
2: s← {s0, s1, ..., sS−1}
3: W−1 ← InitialWeights
4: ts−1 ← ∅
5: i← 0
6: while i < S do
7: tsi = tsi−1 ∪ si
8: NeuralNetwork.ReshapeOutput(CurrentShape+ L)
9: Wi ← NeuralNetwork.Train(tsi,Wi−1)

10: i← i+ 1
11: end while

The concept of incremental learning has been proposed in the literature as a way of

solving the problem of adapting neural networks to learn to classify instances from classes

that were not in the initial training set [44]. For instance, in [104], a deep network that

hierarchically grows to adapt to new classes that were not introduced during the training

phase was proposed. In this work, the deep network expanded in a tree-like mode, where

classes were categorised, and each category was represented by a branch in the Tree-CNN.

Every time a new class was introduced, only the corresponding branch was retrained.

Sarwar and et al. [109], introduced a network that incrementally grows by adding

convolutional kernels and fully connected layers to the later layers of the network in order

to adapt to new classes. An advantage of this method is that the network adapts to new

classes without the need to retrain on the previously seen instances, which might not be

available at the time of retraining. In [30], Ferrari and collaborators proposed a method

that trains deep neural networks incrementally, using new data and a small sample from the

previously seen classes. This method is based on the use of a combination of cross-entropy

and distillation loss functions. The works in [53, 121] proposed training schemes that
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considered exposing the network gradually to the training data in a way that imitates the

learning patterns of human beings. The work of Istrate and collaborators [53] performed

incremental training by first establishing an original network that was later divided into

sub-networks. However, this method slightly improved the accuracy of the model.

Our proposed enhanced incremental training strategy utilises the concept of incremental

training as a backbone while adhering additional rules and procedures. In the proposed

method, we aim to train the network gradually to identify classes that increase the wrong

predictions. Moreover, in order to handle the side effects of classes’ visual resemblance,

classes are categorised prior to training, and are undersampled into one class during training

in case of performance degradation. Undersampling similar classes into one class can ease

the network task, as all instances that look similar will be classified the same. After the

completion of the proposed enhanced incremental training algorithm, categories that are

recognized to include confusable classes will be classified in a second phase. The proposed

algorithm is presented in detail in Algorithm 3 and Figure 9.

Table 6: WBC categories

Category
ID

Category Name Category Members

Cat0 Separable WBCs Cat-
egory

Band cell, Basket cell, Basophil, Eosinophil

Cat1 Monocyte Category Monocyte, Atypical Monocyte
Cat2 Lymphocyte Category Atypical Lymphocyte, Reactive Lymphocyte, Lym-

phocyte
Cat3 Neutrophils Category Hyper-Segmented Neutrophils, Hypo-Segmented

Neutrophils, Segmented Neutrophils

The main highlights from Algorithm 3 and Figure 9 are:

1. Categorization and initialization: In line 1 all classes are categorised based on their

visual similarity. In this study, the WBC classes are clustered in 4 categories. Table

6 lists each category and its member classes. The Lymphocyte, Monocyte, and Neu-

trophils category members were grouped based on their high visual similarity, i.e.,
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Algorithm 3 Enhanced Incremental Training
Parameters:
TS: training set
Wi: the weights resulted from training the network at the ith stage
CategoryTS: the training set at the beginning of the stage
Current_shape: the number of the network output nodes
▷Categorization and initialization

1: Categories← {Cat0, Cat1, Cat2, Cat3}
2: W−1 ← ImageNetWeights
3: TS ← ∅
4: i← 0

▷ Category looping
5: for Category in Categories do
6: CategoryTS ← TS
7: CategoryOutputShape← Current_Shape
8: CategoryWeight← Wi−1

9: TS ← TS ∪ Category
10: Nodes← Size(Category)
11: Network.Reshape(CurrentShape+Nodes)
12: Wi ← Network.Train(TS,Wi−1)

▷ Stage evaluation
13: if Evaluate(Network) ≥ Threshold then
14: ▷Training revert
15: SubSampledCat← SubSample(Category)
16: TS ← CategoryTS ∪ SubSampledCategory
17: Network.OutputShape← CategoryShape+ 1
18: Wi−1 ← CategoryWeight
19: Wi ← Network.Train(TS,Wi−1)
20: end if
21: i← i+ 1
22: end for
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members of the same group are highly probable to be confused to each other. The

Separable WBCs Category comprises the remaining classes that exhibit insignificant

morphological and visual similarity and are thought to be easily distinguished from

each other. This categorisation was planned based on the advice of a medical ex-

pert. The categorization was planned based on human’s perspective on what classes

are confusable, but since neural networks might have a different point of view on

what is confusable, the following steps in the algorithm will let the network test the

categorization and decide which categories are confusable from the neural network

perspective.

2. Category looping: In line 5 the algorithm loops over each category, and at the be-

ginning of every training stage, a new category is added to the training set. Next, in

lines 6 to 8, the values of all training parameters at the beginning of each stage are

kept, to be used if needed later on in running the "training revert" procedure (more

details in point 4). Finally, in lines 9 to 12, a new category is added to the training set

while keeping the previously added categories, this act aids in avoiding the "catas-

trophic forgetting" problem, which refers to the destruction of features learned from

previously added data when the neural network was only trained on data of the newly

added category [139]. Next, the network output size is adjusted to classify the newly

added category, and finally the network weights are assigned to the weights resulted

from the previous stage. Utilizing the weights resulted from the previous stages aids

in transferring the network knowledge about the previously added categories to the

current stage, this way the network will not need to retrain from scratch, but it only

fine-tunes the previous knowledge to accommodate the newly added category.

3. Stage evaluation: In line 13, the model is tested on the validation set and if the

network metrics drop, then we conclude, based on our hypothesis, that the category
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contains one or more confusable class(es) that caused a higher number of wrong pre-

dictions. The threshold of this drop decides whether the category contains confusable

classes or not can be numerically or even logically set depending on the problem do-

main. The criterion that was empirically chosen for this study is 5% drop in the

validation accuracy. Hence, the training revert procedure was executed every time

the validation accuracy dropped more than 5% compared with the accuracy obtained

in the previous stage. It is also worth mentioning that the validation set of WBCs

was chosen to contain equal proportions of data from all classes, which facilitated

the usage of the accuracy metric. The evaluation of the first model is an exceptional

case since there is no previous stage to compare it to, hence, the first model’s evalu-

ation accuracy is compared to a baseline value. In this study the baseline value is the

accuracy obtained from the one-phase WBC classification as our goal is to improve

the results obtained from that approach.

4. Training revert: Training the network incrementally facilitates the implementation

of gradual testing, which in turn aids in the recognition of the categories that are

responsible for the drop in the network performance. Lines 14 to 18 represent the

proposed "training revert" procedure, which is only executed in case of encountering

a category that contains confusable classes. In this procedure the network reverts to

its state before training on the newly added category, i.e., the network reverts to the

weights, training set, and output shape values before adding the category that caused

the performance drop. Next, in order to handle the complexity associated with the

confusable classes, the newly added category is undersampled and reduced to one

class. The point of undersampling the category is to retain the training set balance.

The undersampled category is then added as one class to the training set. The purpose

of adding the category that contains confusable classes as one class is to alleviate the

complexity of classifying the confusable classes. As the network will classify all
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the instances that exhibit a high level of visual resemblance as one class, rather than

different classes.

After the completion of the proposed enhanced incremental training algorithm, each

category that includes confusable classes will be classified in a separate neural network in

a second phase as shown in Figure 9. Training separate networks to classify categories

that contain confusable classes will give the network a chance to better learn and special-

ize in the features of the confusable classes, and classify them more accurately. In the

second phase, each neural network is trained on the corresponding category classes before

subsampling.

For the neural networks of the second phase, multiple deep networks were experimented

but the VGG16 was considered because it achieved the best results. The VGG16 classi-

fier was connected to a shallow neural network that consists of a fully connected layer, a

dropout layer and finally a softmax layer. The cross entropy loss was used for this task and

the batch size, image resolution, and dropout rate hyperparameters were tuned for each of

the second phase networks separately. Multiple combinations of augmentation techniques

are also experimented for each of the networks to improve the results. The early stopping

technique is utilized to stop the training and avoid overfitting.

Batch size tuning

A factor in improving the classification results in the context of peripheral blood cell classi-

fication is tuning the batch size hyperparameter [135]. A NN trains with weights W can be

seen as an optimisation problem, where we aim to adjust W to reach the minimum possible

value for the loss function F . This optimisation problem can be expressed as:

arg minWF (11)
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In this work the mini-batch Gradient Descent algorithm is utilized. During training, at the

j-th iteration, W is updated using the formula :

Wj+1 = Wj − α/mb∆Wj (12)

where α is the learning rate and mb is the batch size [11]. It can be seen from equation 12

that the batch size can directly affect the value of the updated weights, and subsequently

affect the value of the loss F that we aim to minimize. In order to tune the neural networks

used for WBC classification, the deep networks trained using the enhanced incremental

training method will be run on 4 commonly used batch sizes, to examine the effect of tuning

this hyperparameter on the classifiers’ predictions. Four widely used batch size values were

chosen for the experiments: 16, 32, 64, and 128 which was the highest possible value given

the available resources.

3.3.5 Considering Determinism

Neural networks use randomness by design. Many forms of randomness are utilized during

training, such as, random weights initialization, random mini-batching, random augmen-

tation. This randomness implies that different results will be obtained when training the

exact same neural network on the exact same training data multiple times. Introducing de-

terminism to deep networks means controlling the random processes to generate the same

random numbers every time in order to guarantee reproducibility.

Since the proposed "enhanced incremental training" method includes training neural

networks gradually, while assessing the difference between the evaluation metrics at differ-

ent stages, considering training the neural networks while taking determinism into account

is crucial. This is simply because if the network was non-deterministic, then a different

neural network with different parameters will be produced at every stage.
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In order to enforce determinism on the training process of all the classifiers considered

in this work, technical solutions proposed by Keras [65] and Nvidia [39] were followed. In

addition, all NNs were initialized with weights pretrained on the ImageNet dataset, which

eliminated the randomness caused by the weight initialization factor. To the best of our

knowledge, this is the first work to consider determinism with incremental training.

3.3.6 Evaluation

In order to evaluate the platelet and WBC classification approaches, cross-validation is

used. As mentioned earlier, the datasets were partitioned into training, validation, and

testing sets. Since determinism is considered in this work, the experiments will not be

repeated, as the results will not change.

The final models that result from both platelet classification approaches, and both WBC

classification approaches will be tested on the test set and evaluated using the precision,

recall of each class. Moreover, each model will be evaluated in terms of the macro-average

precision, the macro-average recall, and the accuracy [146].

3.3.7 Experimenting Enhanced Incremental Training with Non-medical

Datasets

In order to test how well the proposed enhanced incremental training method interacts with

other datasets, two non-medical public datasets available on Kaggle are utilized: humming

birds dataset [60] and animals dataset [59].

The humming birds dataset consists of four classes: broad tailed females, broad tailed

males, rufous females and an extra class that covers other objects such as bird feeders. In

order to implement the proposed method, the dataset was divided into two categories: the

females category which consists of both female breeds, and another category that consists

of the remaining classes. This categorisation was made based on the visual resemblance
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(a) Rufous female (b) Broad tailed female

(c) Broad tailed male (d) Bird feeder

Figure 11: Samples from the humming bird dataset

between the broad tailed females. Figure 11 shows some samples from the humming birds

dataset.

On the other hand, only a subset of the animals dataset is considered for this experiment.

The seven considered classes are: orangutan, chimpanzee, foxes, wolves, snakes, zebra

and turtles. In order to implement incremental training the classes are categorized into:

the monkeys category which consists of the orangutan and chimpanzee classes, the canines

category which consists of the wolf and fox classes, and finally, all the remaining classes

were grouped into one category. The canines and monkeys categories were formed based

on their visual resemblance, whereas the classes of the last category exhibit insignificant

visual similarities. Figure 12 shows some samples from the monkeys and canines.

For each dataset the VGG16, ResNet50, Xception, Densenet121, MobileNetv2 neural

networks are trained and tested and only the best performing network is then experimented

using enhanced incremental training.
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(a) (b)

(c) (d)

Figure 12: Visual resemblance in the monkeys and canines categories

3.4 Detection of Reticulocytes

In this study we aim to train a deep network to classify reticulocyte cells in human blood

smears. The main challenge in this context is data scarcity. Hence, we propose a novel

approach to overcome this challenge by using animal reticulocyte cell features as a solution

to compensate for the deficiency of human data.

Transfer Learning (TL), is reusing the knowledge obtained from a source neural net-

work in training target network(s) in order to improve their performance [147]. This tech-

nique is widely used in the literature and it has proven its effectiveness in different appli-

cation domains. Moreover, utilizing TL was found to be better than initializing weights

randomly [143].
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In [33], a comparison between utilizing medical image datasets and general large-scale

datasets as source for pretrained weights is conducted. The author reviewed many works

that utilize both types of source datasets to train target networks that perform medical image

analysis. No explicit relation or benefit was found between the type of the source (medical,

or large-scale) and the testing results.

The authors of [63] conducted a set of experiments to investigate how ImageNet ar-

chitectures and pretrained weights relate to performance on downstream medical tasks. In

this work, 16 widely used convolutional neural networks were initialized to weights pre-

trained on the ImageNet dataset to train the target network to classify chest X-rays. The

authors observed that ImageNet pretraining resulted in a statistically significant boost in

performance.

3.4.1 Datasets

The datasets utilised in this work for the purpose of reticulocyte classification are:

CENPARMI human reticulocyte dataset

This study is a part of the Centre for Pattern Recognition and Machine Intelligence (CEN-

PARMI)’s [3] research projects in the field of artificial intelligence. This dataset was col-

lected for this study and consists of 2461 instances that belong to three main classes: RBCs,

reticulocytes, and unknown background objects. Figure 16 (b) depicts the number of in-

stances of each class in the dataset.

All smears were inspected under an oil immersion lens of a Nikon ECLIPSE E100

microscope [81] with a 1000X magnification. The microscope was connected to a 14 Mega

Pixel digital microscope camera that captured the images of the blood smears. Next, an

experienced hematologist annotated the target cells. This dataset is available for research

purposes. Figure 13, Figure 14, and Figure 15 illustrate samples from the reticulocytes,
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RBCs and background objects instances respectively.

(a) (b) (c) (d)

Figure 13: Human reticulocyte samples from the CENPARMI human reticulocyte dataset

(a) (b) (c) (d)

Figure 14: Human RBC samples from the CENPARMI human reticulocyte dataset

(a) (b) (c) (d)

Figure 15: Samples of the background objects class from the CENPARMI human reticulo-
cyte dataset

The feline reticulocytes dataset

This public dataset was collected by Vinicki et al. [128, 48] from two non-anemic male

cats. This dataset consists of whole-smear instances that were taken with a Bresser mi-

croscope camera and a Samsung Galaxy S6 smartphone camera. The blood cells in this
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(a) (b)

Figure 16: Instance counts of the feline and human reticulocyte datasets
a) The number of instances of each class in the feline reticulocyte dataset, and b) The

number of instances of each class in the human reticulocyte dataset

dataset were annotated into three categories: aggregate reticulocytes, punctate reticulo-

cytes and erythrocytes (RBCs). The open-sourced dataset consists of 1086 smear images

and their corresponding Pascal VOC XML annotation files. Figure 16 (a) depicts the num-

ber of instances of each class, it also shows that the number RBCs is double the number

of instances of the other two classes. Different cameras and settings were considered when

the dataset was collected, therefore, it can be noted that reticulocyte cells significantly vary

in size. Figure 17 depicts 2 examples of aggregate reticulocytes that vary in size in dif-

ferent instances. Finally, some cells are not annotated in the dataset. Figure 18 illustrates

2 examples where some cells were not considered in the annotation files, in the figure the

cells outlined by green bounding boxes are not annotated in the original dataset.
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(a) (b)

Figure 17: Different whole-slide instances where aggregate reticulocytes vary in size

(a) (b)

Figure 18: Different whole-slide instances where some cells are not annotated

The ImageNet dataset

This dataset [35, 52] consists of 14,197,122 images from different general categories, such

as, animals, plants and instruments. This dataset has been widely used in the literature due

to the high diversity of classes and the rich features it provides to neural networks.

3.4.2 Can Animal Cells be a Possible Solution for Medical Data Scarcity?

Data is the backbone of neural networks. In order to train a human reticulocyte classifier,

a dataset that consists of a sufficient number of instances is needed. Due to the scarcity

of public human reticulocyte datasets, we managed to collect a relatively small dataset,

and hence we opted to utilize methods that handle small datasets rather than synthesizing

reticulocyte data. However, more data is still needed in order to have a well-trained robust

network.
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In recent years, researchers have proposed some viable solutions to help neural net-

works learn and perform well with relatively small datasets. Some techniques that can help

neural networks generalise on small datasets are: Data augmentation and transfer Learn-

ing. Transfer learning is transferring the knowledge from a source neural network to target

network(s) in order to improve their performance [147].

Table 7: Transfer learning formulation

Source Target

DS = {(xi
S , yiS)}ms

i=1 DT = {(xj
T , yjT )}mt

j=1

XS , YS XT , YT

FS → P (Y | xi
S) FT → P (Y | xj

T )

Table 7 shows transfer learning setup [144], in each transfer learning problem the source

dataset DS comprises ms labeled instances, and a neural network FS is optimized and

trained to output the probabilities of each output class Y , given an input instance xi
S , where

Y ∈ YS and xi
S ∈ XS . Moreover, YS is the set of all possible output labels (classes) and

XS is the input space. On the other hand, the target also consists of the same components as

the source. By applying transfer learning we aim to tune FS into FT in order to accomplish

the target task. In general, transfer learning can be applied either by retraining the base

network on the target dataset to adapt its weights to perform the target task, or by using FS

without any change to extract features in order to perform predictions for the target task.

The earlier technique is called fine-tuning, and the latter is called freezing.

In this work, three experimental setups will be implemented for the purpose of train-

ing a reticulocyte classifier, Figure 19 illustrates those setups. In all the experiments that

employ TL, the target dataset DT , is the human reticulocyte dataset. Moreover, the set of

possible output target classes YT consists of 3 classes; human reticulocytes, human RBCs,

and the unknown background objects class. In those experiments, we aim to optimize the
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Figure 19: The proposed experiments

neural network FT to maximize the conditional probability of the correct class. The next

subsections list more details about each of the experimental setups described in Figure 19.

3.4.3 Transfer Learning Between Similar Datasets: Feline to Human

Reticulocyte Transfer Learning Experiments

Human reticulocytes are round in shape and differ from RBCs in terms of size and mor-

phology. Human RBCs are 6-8 µM whereas reticulocytes are 5-10 µM [25], moreover,

RBC cells have a clear appearance whereas reticulocytes are distinguished by the reticular

network of ribosomal RNA. On the other hand, felines have two types of reticulocytes;

aggregate and punctate and both types differ in size and morphology. Feline punctate retic-

ulocytes and mature RBCs are approximately 5.5-6.3 µM [46], whereas aggregate reticu-

locytes are larger. Moreover, punctate cells exhibit less reticular RNA remnants compared

to aggregate cells.

The purpose of this set of experiments is to assess the feasibility of utilizing animal cell

features as a solution to the scarcity of human data. In addition, the high visual similarity
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of the feline and human reticulocytes could be very beneficial, as utilizing transfer learning

between similar datasets provides the target network with pretrained domain specialized

features.

Before conducting this experiment some operations were performed, in order to further

bridge the gap between the source and the target dataset:

1. The cells labeled as aggregate or punctate in the feline dataset were merged into

one class named "reticulocyte". We opted to perform this operation because both

feline reticulocyte types map to human reticulocytes, hence merging them in one

class could help the source network focus more on learning general features of retic-

ulocytes rather than on learning the features of punctate and aggregate reticulocytes

separately.

2. Due to the structure of the instances in the human dataset, the cells in the feline

dataset were cropped in order to have one ROI (cell) showing in each instance.

According to the formulation in Table 7, in this experiment, XS = XT , since both input

spaces are images. Moreover, after merging the feline reticulocyte classes the output cat-

egory spaces will be very similar but yet not homogeneous since the source dataset lacks

the "unknown background objects" class; YS ⊂ YT . Finally, the target neural network will

be experimented by freezing the layers of FS .

3.4.4 Transfer Learning Between Dissimilar Datasets: ImageNet to

Human Reticulocyte Transfer Learning Experiments

In this experiment the ImageNet features will be transferred to classify human reticulocytes.

The set of all possible output classes in the source, YS , consists of hundreds of general

classes. Hence, in this context, only the input spaces are equal, whereas YS ̸= YT and
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DS ̸= DT . The neural networks in this experiment are experimented by freezing the

layers of FS .

3.4.5 No Transfer Learning Experiments

In this experiment the neural network will be trained from scratch, i.e., without any prior

knowledge, on the target reticulocyte dataset.

3.4.6 Dataset Size and Balance Effect

The 3 experimental setups described in subsections 3.4.3, 3.4.4 and 3.4.5 utilize the CEN-

PARMI reticulocyte dataset to train the target neural networks. In this work, the dataset

size and balance aspects will be experimented too; all the experiments in this work will be

conducted twice:

1. Using all the instances of the CENPARMI dataset, which is highly imbalanced.

2. Using a balanced version of the dataset that consists of equal proportions of all 3

classes. In order to obtain the balanced version of the dataset, the RBCs class, which

is the dominant class in the dataset, was subsampled to 500 instances.

In the full dataset, the number of instances is higher and the dataset is imbalanced due to

the high number of RBCs compared to the other 2 classes, whereas, in the balanced version

of the dataset the total number of instances is 1000 less, but it is balanced. By comparing

the results of utilizing each version of the dataset we can assess the importance of more

training instances over the balance of the dataset.

3.4.7 Technical Setup

The neural network utilized in this work is the VGG16 network, other deep networks such

as the DenseNet, ResNet50 and VGG19 were experimented but the results were very poor
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Table 8: The properties of the fully connected neural network utilized in the target networks

Framework Keras 2.4.3
Loss function Cross Entropy
Learning rate .01
Weight decay 1e-6
Momentum .9
Optimization algorithm mini-batch Gradient Descent
Activation function ReLU, Softmax
Fully connected layer size 1000
Batch size 32

hence we opted to only utilize the VGG16. In order to train the human reticulocyte classi-

fier, the desired pretrained weights were first loaded. Next, the human reticulocyte dataset

instances were resized to 100 x 100. Next, the resulting images were augmented by ap-

plying rotations, and horizontal and vertical flips. The augmentation techniques and the

resizing factor were empirically set. Finally, the images were standardized using the Keras

"preprocess input" function. Next, an extra fully connected layer and a softmax layer were

attached to the network. The fully connected network utilized in the experiments is sum-

marized in Table 8. Finally, the early stopping technique was used to stop the training and

avoid overfitting.

The pretrained weights of the ImageNet were loaded from the Keras applications li-

brary. On the other hand, in order to get the pretrained weights of the feline cells, the

VGG16 network was trained from scratch on the feline dataset, and the early stopping

technique was used to stop the training. The network stopped training after 100 epochs

with a training loss value of .057, accuracy of 97.8 %, macro F-score of 97.5 %, and macro

precision of 97.6 %.
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3.4.8 Evaluation Metrics

The stratified k-fold cross validation method will be used to train and evaluate the neural

networks in this work. Stratified k-fold cross validation is an extension of the k-fold vali-

dation method where the ratio between the dataset classes is the same in each fold as it is

in the full dataset. The number of folds in all experiments is 5 [17, 31].

Each experiment will be evaluated in terms of the average precision, average accuracy,

and average F-score. The metrics are all averaged because they result from training the

network 5 times. Moreover, the models will be evaluated and compared in terms of the

following boost measures:

1. Pretraining boost: We study the effect of pretraining on the overall performance by

defining the pretraining boost measure [63] as the difference between the macro F-

score of the human reticulocyte classifier model initialized with pretrained weights

(on the ImageNet dataset or the feline reticulocytes dataset) and the macro F-score

of the classifier without pretraining, as shown in Equation 13.

Pretraining boost = FscoreDS − Fscorepretraining (13)

2. Datasets similarity boost: Since the feasibility of utilizing animal cells is the focus of

this study, a boost measure that studies the effect of datasets similarity on the results

is defined as the difference between the macro F-score of the human reticulocyte

classifier initialized with weights pretrained on the feline reticulocytes and the macro

F-score of its counterpart pretrained on the ImageNet dataset, as shown in Equation

14. It is worth mentioning that the sign of the result of this equation is crucial, as it

indicates how it benefits the feline cells weights compared to the ImageNet pretrained

weights.

Similarity boost = FscoreFeline − FscoreImageNet (14)
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3. Dataset size boost: Two variations of the CENPARMI dataset are utilized in this

work as explained in Section 3.4.6. In this evaluation metric we aim to assess which

dataset is more beneficial to the models’ performance. This metric is defined as the

difference between the macro F-score of each of the three human reticulocyte classi-

fiers trained on the entire imbalanced dataset and the macro F-score of its counterpart

trained on the balanced dataset, as shown in Equation 15.

Similarity boost = FscoreimbalancedDS − FscorebalancedDS (15)
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Chapter 4

Results

4.1 Results of Synthetic Blood Smears Generation Using

Locality Sensitive Hashing

In this section, the results of the proposed synthetic dataset generation method explained in

Section 3.2 and the medical assessment method mentioned in Section 3.2.3, are presented.

4.1.1 Synthetic Dataset Generation Results

To conduct this set of experiments, Algorithm 1 was implemented and executed. During the

execution, it was noted that the initial set of cells were often pasted without any overlapping

and without the need to retrieve neighbors due to space availability. Hence, to further

decrease the cost of execution, the initial 60 cells were pasted without neighbor retrieval.

The threshold 60 was chosen empirically.

To further tune our algorithm, the assignment of the threshold parameter T from equa-

tion 7 was adjusted; T was assigned to a random value from an acceptable range that reflects

the real distribution pattern, instead of setting it to a constant value throughout the execu-

tion. With this improvement, the synthetic blood smear instances reflected more realistic
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Figure 20: Synthetic dataset main types statistics

scenarios, For example, some RBCs were stacked in many smears forming patterns sim-

ilar to the well-known Rouleaux formation. The resulting dataset consists of 2500 blood

smears, the dataset is balanced in terms of subtypes and each subtype has around 2000 total

instances. Figures 20 and 21 depict more statistical details of the synthetic dataset. Figure

21 demonstrates the dataset balance.

Figure 21: Synthetic dataset Subtypes Statistics
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(a) (b) (c)

(d) (e) (f)

Figure 22: Instances from real and synthetic blood smears

Figure 22 illustrates some samples from the synthetic dataset; smears (a) to (c) belong

to the synthetic dataset, while the rest belong to ALL-IDB1 dataset.

4.1.2 Medical Assessment Results

Figure 23 demonstrates the results of the questionnaire, where the responses to each ques-

tion are represented by a column in the chart. In each column, similar answers were

grouped by color, and the blue color is used for answers that are identical to the ground

truth. Figure 23 shows clearly that all responses were identical and met the expected an-

swers in all questions except for questions 6 and 10. The sixth question is one of the ques-

tions that were used to verify factor 3. It showed a synthetic blood smear and asked the

respondent to classify the platelets that appeared in the smear. The platelet is sub-classified

as a normal platelet in the second set of annotations of the proposed dataset; however, one

of the hematologists classified it as a giant platelet. It is worth mentioning that it is common

that medical experts have different opinions about medical data annotation [97].
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Figure 23: The results of the questionnaire

On the other hand, the tenth question tested the ratio of the blood cell sizes in the smear.

One of the hematologists expressed that some cells appeared a little larger than it should be,

where the other 4 hematologists believed that the ratios were appropriate. Factor 5 verifies

the correctness of the proposed algorithm and due to its importance, the haematologists

were asked to assess all the blood smears that appeared in the questionnaire in terms of

the quality of cell distribution and occlusion. All respondents approved that all the slides

shown in the questionnaire were thin and all cells were distributed in a natural pattern with

a ratio of occlusion that meets the standard in real blood smears.

The proposed dataset proved its usefulness in the context of PBS analysis, it also pro-

vides the following benefits:

1. The synthetic dataset is not subject to any privacy constraints since it does not belong

to real people.

2. Rare subtypes, like plasma cells, are sufficiently present in the dataset.

3. The dataset was automatically annotated for blood cell subtypes and a wide range of

morphological abnormalities, without any extra efforts of medical experts.
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4. The dataset is balanced in terms of the 15 subtypes covered in this study.

4.2 Results of Phase 1: Classification of Main Blood Cell

Types using YOLO Deep Network

The results of the first phase of classification mentioned in Section 3.3.1 are presented in

this section. A Tiny YOLOv3 network [100] was first trained on the synthetic dataset, but

due to its relatively small size (13 convolutional layers) and the high complexity of the con-

text, the network achieved a low Mean Average Precision (MAP) score of approximately

40%. To improve the results, a larger network, namely YOLOv2 [99], that consists of 23

convolutional layers, was trained on the dataset. This network achieved a much better MAP

score of 97.59%.

To further improve this result, the network input resolution was randomly resized every

10 batches during training, this regime which was proposed in [99] works like data aug-

mentation and helps the network learn to better generalise. By exposing the network to

randomness, the MAP score was improved to 98.72%. Both Nucleated RBCs and WBCs

classes were classified with 100% Average Precision (AP), while Platelets scored 96.4%.

In order to better understand the wrong platelet predictions made by the network, we fur-

ther discussed the platelet results with a hematologist who suggested that the majority of

the errors resulted from confusing the network between platelet cells and stain residues

that some times appear on smears. Hence, in order to handle this issue, platelet cells are

further examined against fixed ranges in the second classification phase which is explained

in more detail in Section 3.3.3.The utilized neural network ran with a momentum value

of 0.9, learning rate of 0.001, and network input resolution of 800 as an initial resolution.

Table 9 summarizes the blood cell classification experiments and results.
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Table 9: Blood cell classification results using YOLO

Deep Network Mean average precision
Tiny YOLOv3 40%
YOLOv2 without random resiz-
ing

97.59%

YOLOv2 with random resizing 98.72%

4.3 Phase 2: Results of Blood Cell Subtypes Classification

4.3.1 Platelets classification results

Two approaches are proposed in this work for platelets classification; one-phase classifica-

tion, and two-phase classification. The results of both approaches, are presented in the next

two sub sections.

One-phase Classification

In this approach, a single neural network was trained to classify all 3 platelet types. A

VGG19 network was trained first, but it only achieved 78% test accuracy. In the second ex-

periment, a ResNet50 was trained to classify all 3 classes. The trained ResNet50 achieved

a test accuracy score of 82.67%.

Two-phase Classification

In this approach platelets are classified in two phases. In the first phase, a VGG19 network

was trained and tested on both classes. This network achieved an accuracy score of 98.4%.

Classifying both confusable classes (normal and giant platelets) as one class reduced the

level of confusion, and the rate of misclassifications which resulted in a better accuracy.

In the second experiment, a ResNet50 was also trained and tested on both classes. This

network test result surpassed all the previous networks trained in this study for platelet

classification. An accuracy test score of 100% was achieved by this network, hence, we
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 24: Sample results from the second phase of classification.
(a) to (e): test instance 1 classification process, (f) to (j): test instance 2 classification

process
(a),(f): the original image; (b),(g): the extracted green channel; (c),(h): the resulting image

after applying CLAHE; (d),(i): the resulting image after applying Otsu’s thresholding;
(e),(j) the platelet is outlined after applying Hough Circle Transform

Table 10: Confusion matrix resulted from the one-phase classification approach

Predicted
Activated Giant Normal Recall

Activated 50% 50% 0% 50%
Giant 0% 76% 24% 76%
Normal 1% 16% 83% 83%
Precision 98% 54% 78%
Accuracy 82.67% (CI 95% 79.11, 86.23)
Macro-average recall 69.6%
Macro-average precision 76.6%

chose to only consider it for the second phase. In the second phase, the instances classi-

fied as "other platelets" went through a set of image processing techniques and filters, as

illustrated in Figure 8.

Figure 24 illustrates the classification process of two test samples in the second phase,

each row in the figure represents one test sample. Only a few instances were misclassified

in the second phase, leading to an overall accuracy score of 98.6%.

Moreover, in order to have a better understanding of the obtained results, Table 10

shows the confusion matrix of the one-phase ResNet50 model, and Table 11 shows the
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Table 11: Confusion matrix resulted from the two-phase classification approach

Predicted
Activated Giant Normal Recall

Activated 100% 0% 0% 100%
Giant 0% 94% 6% 94%
Normal 0% 1% 99% 99%
Precision 100% 99% 94%
Accuracy 98.6% (CI 95% 97.5, 99.7)
Macro-average recall 97.6%
Macro-average precision 97.6%

confusion matrix of the two-phase ResNet50. As can be seen in Table 10, one reason for

the low accuracy in the one-phase approach was the high visual similarity between giant

and normal platelets. For instance, 24% of the giant platelets were confused with platelets,

and 16% of the platelets were confused with giant platelets, which negatively affected the

overall classification accuracy. Hence, combining both classes in the "other platelets" class

aided in improving the classification results. It is also worth mentioning that the activated

platelets classification results were also another reason for the low accuracy of the one

phase approach but investigating the reason is beyond the scope of this study, as this class

is not considered as confusable, hence it is not related to the study hypothesis. On the

contrary, in the two-phase approach only 6% of the giant platelets were confused with

platelets, and 1% of the platelets were confused with the giant platelets.

4.3.2 WBC classification Results

Two approaches are proposed in this work for WBC classification: 1) one phase WBC clas-

sification, and 2) deep neural networks pipeline based on enhanced incremental training.

One phase WBC classification

In this approach all WBC instances from all 12 classes are classified by a single VGG19

neural network.
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Table 12: One phase WBC Classification Results

Batch Size Accuracy (%)
16 33.7
32 39.1
64 44
128 61.5

The results obtained are listed in Table 12. The poorest result was obtained with the

smallest batch size. On the other hand, the results kept improving as the batch size value

increased. However, the best achieved result was 61.5%.

Deep neural networks pipeline based on enhanced incremental training

In this approach, WBCs are classified into two phases. During the implementation of the

proposed method, Cat0 was added to the training set first, as according to the medical

expert, the odds of having a confusable class in this category is very low. Hence, training

this category first helps to have a solid basis of trained weights before training the network

on the rest of the categories which contain classes with high visual resemblance.

In the proposed method, the network is tested on the validation set during training and

only the final model that results from training the network on all categories is tested on

the test set. Four neural networks were trained using enhanced incremental training, each

classifier only differed in the batch size value.

Table 13 lists the classes that were included in each stage. Figure 26 depicts all training

stages for each of the four neural networks, along with the validation accuracy results

obtained from each stage. It is clear from the figure that all classifiers followed the same

pattern during the training process. Moreover, Figure 25 depicts the workflow of executing

the proposed training scheme. Some highlights from Table 13, Figures 25 and 26 regarding

all four classifiers are:
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Figure 25: The workflow of training the four neural networks using enhanced incremental
training and the accuracy results obtained from each stage using the validation set

Figure 26: The workflow of training using the proposed training scheme
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Table 13: Classes included in each stage

Stage ID
Category Class Name 1 2 3 4 5 6
Cat0 Band cell ✓ ✓ ✓ ✓ ✓ ✓
Cat0 Basket cell ✓ ✓ ✓ ✓ ✓ ✓
Cat0 Basophil ✓ ✓ ✓ ✓ ✓ ✓
Cat0 Eosinophil ✓ ✓ ✓ ✓ ✓ ✓
Cat1 Monocyte ✓ ✓ ✓ ✓ ✓
Cat1 Atypical Monocyte ✓ ✓ ✓ ✓ ✓
Cat2 Reactive Lymphocyte ✓

✓ ✓Cat2 Atypical Lymphocyte ✓ ✓
Cat2 Lymphocyte ✓
Cat3 Hyper-Segmented Neutrophils ✓

✓Cat3 Hypo-Segmented Neutrophils ✓
Cat3 Segmented Neutrophils ✓

• The validation accuracy was 100% after adding Cat0 and Cat1. Despite our expec-

tations that the accuracy will drop after adding Cat1 due to the visual similarity of

the Monocyte and atypical Monocyte cells, the model actually kept a high accuracy

score.

• In Stage 3, classes of category Cat2 were added and the accuracy score dropped by

more than 5%. Hence, Cat2 was identified as a category that comprises confusable

classes. The confusion matrix at this point was analyzed, and it was observed that

the drop in the accuracy was mainly due to the high level of confusion between the

instances of the three lymphocyte category classes, which supports the assumption

that visual resemblance can be a key factor in negatively affecting the classification

results.

• In Stage 4, the "training revert" procedure was executed; the weights and the training

set were reverted to their values just after training category Cat1, i.e., Stage 2. All

Cat2 classes were then randomly undersampled and reduced to one class. The net-

work was trained again with the reduced category and the accuracy score increased.

88



Table 14: Test results of the WBC classifiers trained using the proposed method

Batch Size Accuracy (%)
16 91
32 91.3
64 92.2
128 95

• The accuracy dropped again by more than 5% after adding the last category, i.e.

Cat3. Hence, the "training revert" procedure was executed again, and the entire

category was reduced to one class and added to the training set. The accuracy score

increased and the final validation accuracy was higher than 90% for all batch sizes.

• All classifiers that were trained on different batch sizes showed the same pattern

during the training stages, hence the observations above apply to all four classifiers.

• Comparing the accuracies of the four classifiers that were trained on different batch

sizes, it is noted that increasing the batch size increased the accuracy.

All the results shown in Figure 25 are the validation set results, the final model resulted

from Stage 6 is the only one that was tested on the test set. The results of the test set were

very similar to the validation results. The highest test accuracy result obtained was 95%

achieved by setting the batch size value to 128. Table 14 lists all test accuracy results.

In the second phase to classify Cat2 and Cat3, two VGG16 networks were utilized;

the first one was trained to classify the Lymphocyte category into, Lymphocyte, reactive

Lymphocyte, and atypical Lymphocyte. The second network was trained to classify the

Neutrophils category into hypo-segmented Neutrophils, hyper-segmented Neutrophils, and

segmented Neutrophils.

The best Lymphocyte classification results were obtained with a batch size value of

128. Moreover, the literature reveals that the size of the input image of a neural network

aids in improving its performance [74, 12]. Hence, 10 different resolutions ranging from
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200 to 600 were experimented: {200, 250, 300, ..., 600}, where 200 is the original image

size emitted from the main classifier in phase 1, and 600 is the highest value possible with

the available hardware. The lowest accuracy was 92%, scored with the lowest resolution.

Moreover, the accuracy kept improving as the input resolution value increased. Hence, all

instances were upscaled to 600 x 600.

On the other hand, to classify the Neutrophils category, another VGG16 classifier was

tuned to upscale all instances to 400 x 400, this input resolution was tuned using the same

procedure followed in the Lymphocyte category classifier. The lowest accuracy score was

95%, achieved with the lowest resolution, and the accuracy score was 100% for all res-

olution values higher than 350. It is worth mentioning that only the best classifier from

phase one was tested with the classifiers from phase two, and both networks in phase two

achieved 100% accuracy.

To sum up, during the test phase every test instance will be first fed to the main VGG19

neural network trained in the first phase, the instances that are classified as either Lym-

phocyte category or Neutrophil category are further emitted to the networks in the second

phase for more detailed classification.

Moreover, in order to have a better understanding of the obtained WBC classification

results, the confusion matrices of the utilized methods are shown in Figures 27 and 28.

Figure 27 shows the 12x12 normalized confusion matrix of the top model trained using

the one phase approach on the test set, and Figure 28 shows the 8x8 normalized confusion

matrix of the top model trained using the proposed approach when applied to the test set.

The latter is smaller in size because two out of the four categories were subsampled during

training.

The following insights can be observed about each of the four categories from the confu-

sion matrices:

1. Classes of Cat0:
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Figure 27: The normalized confusion matrix of the top model trained using the one phase
WBC classification method

Figure 28: The normalized confusion matrix of the top model trained using the proposed
method

91



(a) The Recall values for the Band cells, Basophils, Eosinophils and Basket cells

were approximately the same in both experiments.

(b) The precision values for the Basophils, Eosinophils and Basket cells were ap-

proximately the same in both experiments. It is also noted that the preci-

sion score of the Band cells decreased in the model trained with the proposed

method.

2. Classes of Cat1:

(a) The recall score of the atypical Monocyte class remained 100% in both exper-

iments, whereas, the proposed method improved the recall of the Monocyte

class from 75% to 88%.

(b) The precision score of the atypical Monocyte class remained 100% in both

experiments. On the other hand, the proposed method improved the Monocyte

class precision from 83% to 100%.

3. Classes of Cat2: There is no exact class-to-class comparison for this category be-

cause the classes of this category were blended into one class during the execution of

the proposed method. The classes of this category were highly confused with each

other in the one-phase approach, for example:

(a) 37% of the Lymphocytes were incorrectly classified as atypical ones.

(b) 15% of the atypical Lymphocytes were misclassified as Lymphocytes.

(c) 17% of the reactive Lymphocytes were incorrectly classified as atypical Lym-

phocytes. Moreover, 66% of the reactive Lymphocytes were misclassified as

Lymphocytes.

The recall and precision ratios of the Lymphocyte category in the proposed method

were 96%, and 98.7% respectively.
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4. Classes of Cat3: The following observations can be made from the one phase ap-

proach:

(a) 14% of the hyper-segmented Neutrophils were incorrectly classified as seg-

mented Neutrophils.

(b) 34% of the segmented Neutrophils were misclassified as hyper-segmented Neu-

trophils.

5. The accuracy, macro average recall, and the macro average precision of the proposed

method are 95%, 96.25%, and 94.27% respectively. which is higher than the results

obtained from the one phase approach.

After the proposed system finishes classifying the cells in a blood smear, cells are

grouped based on their types and then counted. Overall, it can be seen that the proposed

method has improved the quality of the classification results. A drawback of utilizing the

proposed method is that it needed 3 neural networks to complete the task, compared to one

neural network in the one phase approach. But it is worth mentioning that automatic PBS

analysis is not a real time application, and like other medical applications, the correctness

of the results is a high priority.

The proposed method can be utilized in other application domains where confusable

classes are thought to be the reason behind low classification results. Moreover, the pro-

posed method was utilized on top of pretrained models available in an open source frame-

work i.e. Keras. This indicates that the method can be easily reproduced and deployed by

other researchers.
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Table 15: Comparison of the results of WBC and platelet classification using our proposed
system with existing works in the literature in terms of Accuracy

Method Accuracy (%)
Our proposed work (WBCs & platelets) 96.7 (CI 95% 96.69,96.709)
Wang et al. [135] (SSD 300x 300) 75.1 (CI 95% 72.1,78.1)
Qin et al. [91] (shallow residual network) 60 (CI 95% 57.3,62.7)

4.3.3 Comparison with existing works

A comparison of our proposed method with the works of Wang et al. [135] and the work

of Qin et al. [91] is shown in Table 15. In order to do the comparison, the overall ac-

curacy score of the top platelet and WBC classification models was considered. Next,

the entire training set (i.e. platelets and WBCs) was fed to the networks reproduced from

both [135, 91]. The results in the table show the superiority of our proposed model. It

is also noted that the results of the models from the literature were relatively close to the

accuracy scores obtained from implementing the one-phase platelet classification and one

phase WBC classification.

The method proposed in [135] scored an overall accuracy of 90.09% in the original

paper, but it only achieved an accuracy score of 75.1% when trained and tested on the

datasets of this study. One possible reason for this is that the method in the original paper

was trained on a dataset that was only annotated for 11 types of platelets and WBCs, and

this combination did not comprise many confusable classes which made the classification

task easier. Moreover, the method reproduced from [91] scored the lowest accuracy, pos-

sibly because of its shallow structure which did not comply to the complexity level of the

problem .
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4.3.4 Results of Experimenting Enhanced Incremental Training with

Non-medical Datasets

Two sets of experiments were conducted using each dataset. The first set of experiments

were conducted using a set of widely used neural networks without utilizing enhanced

incremental training. Next, in the second set of experiments the proposed method was

utilized. Finally the results of both experiment sets are compared in order to evaluate the

effectiveness of the proposed method with non-medical datasets.

Humming Birds Classification Results

In the first set of experiments, the entire dataset was fed to five widely used neural networks

namely: VGG16, ResNet50, Xception, Densenet121, and MobileNet. The best performing

network was the Xception network with a macro f-score of 87%, a macro average precision

score of 89%, and a macro average recall of 88%. Those results were obtained with a batch

size of 32. In order to further tune the batch size, the Xception network was trained again

with a batch size of 8, 4, and 2. It is worth mentioning that 32 was the highest possible batch

size given the available resources. Better results were obtained when the batch sizes was

set to 8, where the test macro f-score, macro average precision and macro average recall

values were 94.9%, 95%, and 95%, respectively. Hence, only the Xception network with

a batch size of 8 and an input network resolution of 300, was considered for the enhanced

incremental training experiment.

In the second set of experiments, the Xception network was first trained on the broad

tailed males and the other objects classes. The validation macro f-score, macro average

precision and macro average recall values of the resulting model were all 100%. Next,

in the second stage, the females category, which consists of the broad tailed female and

Rufous female classes, was added. The validation macro f-score, macro average precision

and macro average recall values of the resulting model were all 95%. Since the evaluation
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metrics dropped, the females category was considered confusing and the "training revert"

procedure was executed. During the execution of the training revert procedure, the network

was trained again on a training set that comprises of the first category and an undersampled

females category that comprises of one class. After the execution of the training revert, the

validation evaluation metrics improved again and the macro f-measure was 100%.

Finally, an extra neural network is needed to classify the female classes. Hence, the

following networks were experimented: VGG16, ResNet50, Xception, Densenet121, and

MobileNet. The Xception net was the best performing network with a batch size of 8 and

an input resolution value of 300. Multiple augmentation techniques were also utilized, such

as, horizontal flipping, rotation, and width shifting. This network was able to classify the

female classes with a test macro f-score of 100%. Comparing the results of the experiment

sets shows that the classification results improved when the proposed method was applied.

Animals Classification Results

In the first set of experiments, the same group of deep classifiers that were employed in the

humming birds experiments were trained on the entire dataset. Some classifiers exhibited

poor performance, for example the VGG16 and the ResNet50 both scored an f-score of 2%.

On the other hand, the Xception network was the best performing network with an f-score

of 96.7%. Moreover, the macro average precision and the macro average recall were 97%

and 96%, respectively.

In the second set of experiments, the category that comprises classes with the least vi-

sual resemblance were first fed to the neural network. Hence, the first training set consisted

of three classes: snake, turtle, and zebra. The validation macro average f-score was 100%.

Next, the monkeys category was added to the training set in the second stage. At this

point, the f-score decreased to 98.6%. Next, the training revert procedure was executed and

the neural network was trained again on the first category and the undersampled monkey
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category. Executing the training revert procedure improved the validation results, and the

macro average f-score was 100%. In the final stage, the fox category was added to the

training set, however, despite our expectations, the validation results did not change and

the f-score of the resulting model was 100%.

For the purpose of monkeys classification, another Xception network was trained to

only classify images into chimpanzee or orangutan. The network achieved a macro f-score

of 98.6%. Moreover, the macro average precision and the macro average recall were both

99%.

4.4 Results of Reticulocytes Detection

In this section, the results of the approaches listed in Section 3.4 will be presented. Table

16 lists the main results of all experiments in terms of the average accuracy, macro f-score,

and macro precision. The results in this table are obtained from averaging each metric

among the 5-folds of each experiment.

Table 16: Results of 5-fold human reticulocyte classifier training

Average
accuracy (%)

Average
macro precision (%)

Average
macro F-score (%)

CENPARMI human reticulocyte dataset
Pretrained on ImageNet 98.5 98.9 98.1
Pretrained on Feline data 98.9 98.9 98.6
No transfer learning 95.8 95.7 95

Balanced CENPARMI human reticulocyte dataset
Pretrained ImageNet 96 96.4 96
Pretrained on Feline data 96.6 96.8 96.6
No transfer learning 89.1 90.9 88.4

Some highlights from the Table 16 are:

1. The best performing model is the one trained on the entire CENPARMI dataset,

with weights initialized to the weights pretrained on the Feline dataset. This model
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achieved 98.9%, 98.9%, 98.6% average accuracy, average macro precision, and av-

erage macro F-score respectively.

2. The worst performing model is the one trained on the balanced CENPARMI dataset,

without TL. This model achieved 89.1%, 90.9%, 88.4% average accuracy, average

macro precision, and average macro F-score respectively.

3. Overall, the experiments that were conducted without TL were the worst performing

among the other experiments on the same dataset.

4. In general, the human reticulocyte classifiers that were pretrained on the feline dataset

performed best among the other experiments trained on the same dataset.

4.4.1 Boost Measures Results

Table 17: Pretraining and similarity boost measure results

CENPARMI human
reticulocyte dataset (%)

Balanced CENPARMI human
reticulocyte dataset (%)

ImageNet pretraining boost 3.1 7.6
Feline pretraining boost 3.6 8.2
Similarity boost .5 .6

Table 17 lists the results of the pretraining boost measure and the dataset similarity

boost. Some highlights from the table are:

1. All pretraining boost measure results are positive, which means that employing TL

was always beneficial and resulted in better performance.

2. The similarity boost measure is positive using both datasets, this indicates that uti-

lizing animal cells as a base dataset is beneficial, especially that the results of this

utilization outperformed the results of the experiments that used Imagenet, which

means that 2000 instances of animal cells were able to beat a large-scale dataset that

consists of millions of images.
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(a) (b) (c)

Figure 29: Min Max Average plots of the K-fold experiments using the CENPARMI dataset

(a) (b) (c)

Figure 30: Min Max Average plots of the K-fold experiments using the balanced version
of CENPARMI dataset

Next, the effect of utilizing the imbalanced CENPARMI dataset compared to the smaller

balanced version of the same dataset, is discussed.

Figure 29 and Figure 30 illustrate the minimum, maximum and average values of the

accuracy, f-score and macro precision of each experiment. The minimum in the figures

represents the minimum value reported among the 5 folds of the experiment, and the maxi-

mum is also the maximum among the 5-folds. From the figures it is clear that the evaluation

metrics of the experiments that did not utilize TL spans over the widest range of values; the

gap between the minimum and the maximum is the highest.

Moreover, Table 18 lists the average loss and Mean Absolute Deviation (MAD) of each
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Table 18: The average loss and mean absolute deviation of the conducted experiments

Average loss MAD
CENPARMI human reticulocyte dataset

Pretrained on ImageNet 0.035 0.019
Pretrained on Feline data 0.040 0.012
No transfer learning 0.26 0.15
Balanced CENPARMI human reticulocyte dataset
Pretrained on ImageNet 0.10 0.04
Pretrained on Feline data 0.11 0.03
No transfer learning 0.26 0.15

experiment. MAD is the average distance between each data value and the mean, see

Equation 16, where x is the average of the values and n is the number of data points. The

larger the MAD, the greater variability there is in the data. Variability refers to how spread

out the values are in a set of data points; high variability means the data is spread out,

whereas low variability means the data is clustered together.

MAD =

n∑
i=1

|xi − x|

n
(16)

The MAD of the experiments that did not utilize TL were approximately triple the MAD

scores of the other experiments that utilized TL, this is because TL added robustness to the

training process in a way that made the network perform the same regardless of the random

test fold and the other 4 training folds. In addition, the MAD scores of the experiments that

used the full imbalanced dataset were all lower than the ones of the balanced subset, which

in terms indicates more robustness and less sensitivity to changes made on the training and

test folds. Those conclusions are also supported by the minimum and maximum values in

Figures 29 and 30, where it can be seen that the ranges of values of the experiments on the

balanced dataset are wider than those on the full imbalanced dataset.

Moreover, Table 19 lists the dataset boost measure, from the table it is shown that the

bigger dataset had a positive impact on the performance. Hence, given all the highlights and
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conclusions about the dataset size, it can be concluded that the imbalance is not necessarily

harmful on the networks performance, as more data points could aid in learning more

sophisticated features and play a role in developing a function that separates data better.

Table 19: Dataset size boost measure

Experiment Dataset size boost (%)
Pretrained on ImageNet 2.1
Pretrained on Feline data 2
No transfer learning 6.6

To sum up, the similar and dissimilar transfer learning experiments performed better

compared to the model which was trained without TL in terms of the evaluation metric

scores and the variability of the scores throughout the 5 folds. In addition, this study

presented a novel conclusion regarding the utilization of animal medical data as a viable

solution for the scarcity of human’s medical data. In the conducted experiments the human

reticulocyte classifiers that were pretrained on feline data outperformed all the other classi-

fiers. This conclusion holds a promising solution for medical data scarcity, which is a main

challenge in computer aided diagnosis systems.
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Chapter 5

Limitations

Due to the COVID-19 pandemic which constituted unprecedented challenges and pressure

to the health care sector, we did not have access to values of human-level performance.

Hence, only computer based performance is reported in this thesis.
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Chapter 6

Conclusion and Future Work

In this thesis, a novel solution to creating a dataset of synthetic blood smears is proposed.

The fact that each thin blood smear contains hundreds of blood cells, implies that the syn-

thesizing procedure can be highly complicated. The novel synthetic dataset consists of

2500 instances, and was automatically annotated for 17 essential blood cell types and ab-

normal morphologies during the instances generation process. This type of datasets is

useful since labeled medical data is scarce due to extra security and privacy constraints on

it.

In order to create this dataset, 18 image pools were created in the first phase. In the

second phase, RBCs, WBCs and platelets counts were selected from Gaussian distributions.

Next, LSH was employed to divide cells’ space into N projections and all near objects were

hashed into the same bucket. All cells that hashed in the same bucket were tested against

each other using Jaccard similarity, and all cells caused collision higher than an acceptable

threshold were rejected. Three YOLO neural networks were trained on the first set of

annotations to classify instances into WBCs, RBCs or platelets. The model was tested on

the ALL-IDB dataset, and an accuracy score of 98.72% was achieved. The dataset was also

reviewed by a group of highly experienced hematologists to ensure that it meets the general

standards of making thin blood smears.
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In order to further classify the instances into the subtypes and morphological abnor-

malities of platelets and WBCs, a set of experiments was conducted in the second stage of

classification. For classifying platelets, a one-phase classification approach is experimented

and a hybrid approach of deep learning and image processing techniques is proposed. The

proposed approach handled the confusion caused by the visual resemblance between the

giant and normal platelets while improving the platelet classification accuracy and macro-

average precision from 82.6% to 98.6% and 76.6% to 97.6% respectively.

Moreover, for white blood cell classification, a novel scheme for training deep networks

is proposed, namely, Enhanced Incremental Training, that automatically recognises and

handles classes that confuse and negatively affect neural network predictions. To handle

the confusable classes, a procedure called "training revert" is also proposed. Application of

the proposed method has improved the classification accuracy and macro-average precision

from 61.5% to 95% and 76.6% to 94.27%. The proposed method can be utilized in other

application domains where confusable classes are thought to be the reason behind low clas-

sification results. Moreover, the proposed method was utilized on top of pretrained models

available in an open source framework such as Keras. This indicates that the method can be

easily reproduced and deployed by other researchers. The proposed enhanced incremental

learning method was also experimented on two non-medical datasets that comprise con-

fusable classes. Applying the proposed method improved the classification results on both

datasets.

Finally, the classification of another type of smears, namely, reticulocyte smears, was

discussed. Reticulocyte count blood test can reveal a wide range of illnesses and medical

conditions. In this work, multiple experiments that utilized the concept of transfer learning

were conducted. Moreover, three measures were defined, namely, the pretraining boost, the

dataset similarity, and the dataset size boost measures to compare the effectiveness of the

utilized experimental setups.

104



Evaluating those measures, three main conclusions can be drawn. First, using ani-

mals medical data holds a promising solution for human medical data scarcity, as utilizing

weights that were pretrained on a medium sized feline reticulocyte dataset outperformed

the model that utilized weights that were pretrained on the large scale ImageNet dataset.

Moreover, the experiments have shown that data imbalance is not always harmful to

the performance as the bigger imbalanced version of the dataset outperformed the smaller

balanced one. Third, utilizing transfer learning has a positive impact on the performance

and generalizability of neural networks when compared to networks that initialize weights

randomly.

For future work, the enhanced incremental training method will be tested on large-scale

medical and non-medical datasets. Moreover, the influence of some factors on the results

will be examined, such as category orderings, and the usage of more complicated criteria

to evaluate the training progress between stages. Moreover, more animal datasets will be

utilized for human medical applications. Moreover, the scope of studying the feasibility of

utilizing animal data as a data scarcity solution will be further investigated by experiment-

ing this option on different problem domains where human and animal data have mutual

properties.

In addition, two aspects of PBS analysis that will be studied in my future work are:

virtual staining and PBS quality assessment. Staining is the first step in preparing blood

smears. This step is crucial since it reveals the nuclear and cytoplasmic details of cells,

and hence, plays a major role in recognizing different blood cell types and abnormalities.

Despite the importance of this step, it is considered costly, in terms of both time and money.

Being able to examine blood smears without having to implement the physical staining step

can be a huge transforming step in laboratory services. This research direction has not been

thoroughly investigated in the literature of computer science.
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Furthermore, the quality of digital blood smears can directly affect blood cell classi-

fication results [107]. Hence, developing computerized PBS quality assessment systems

can be used as an educational tool for beginner lab technician and students. This area of

research has not been completely addressed and there is still room for improvement in this

context, as it only exists as a supplementary step in a few works in the literature.
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Chapter 7

Publications

1. Rabiah Al-qudah, C. Y. Suen (2022), Blood Smear Analysis Using Deep Learning:

Current Challenges and Future Directions, Invited book chapter, “The Computational

Intelligence and Image Processing in Medical applications book” which will be a part

of the “World scientific Publishing Co Series in Computer Vision, edited by C. H.

Chen

2. Rabiah Al-qudah, C. Y. Suen (2021), Can Animal Medical Data be a Possible Solu-

tion for Human Medical Data Scarcity?, submitted to the “Neural Processing Letters

Journal". Impact factor: 2.9

3. Rabiah Al-qudah, C. Y. Suen (2021), Intensive Survey on Peripheral Blood Smear

Analysis Using Deep Learning, N. Nobile, M. Blom and C. Y. Suen (eds.), Ad-

vances in Pattern Recognition and Artificial Intelligence, Volume 6, Pages 23-45,

DOI: https://doi.org/10.1142/9789811239014_0002

4. Rabiah Al-qudah, C. Y. Suen (2021), Improving Blood Cells Classification in Periph-

eral Blood Smears Using Enhanced Incremental Deep Learning, Computers in Biol-

ogy and Medicine, Volume 131, Pages 104265. DOI:https://doi.org/10.1016/j.compbi

omed.2021. Impact factor: 4.5
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5. Rabiah Al-qudah, Suen C.Y. (2020) A Survey on Peripheral Blood Smear Analysis

Using Deep Learning. In: Lu Y., Vincent N., Yuen P.C., Zheng WS., Cheriet F., Suen

C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture

Notes in Computer Science, vol 12068. Springer, Cham. https://doi.org/10.1007/978-

3-030-59830-3_63

6. Rabiah Al-qudah, C. Y. Suen (2020), Synthetic Blood Smears Generation Using Lo-
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Appendix A

WBC types

A.1 Neutrophils

Neutrophils are multilobed-nucleus cells. The cytoplasm of this type of cells contains

numerous purple granules called azurophilic that contain microbicidal agents. Moreover,

Neutrophils make up approximately 50% of the WBC population and are responsible for

the phagocytosis and degradation of foreign organisms, through activating proteases and

other antibiotic molecules, and generating toxic oxygen radicals [111]. Neutrophils are

produced daily and normally have a circulating lifespan of 5 to 135 hours in humans [54,

119].

Alterations in Neutrophils cytoplasm or nuclei lobes is considered as a morphological

abnormality. Nucleus of normal Neutrophils have an average of three lobes and always

less than five lobes. hypersegmentation is an abnormality that can be diagnosed in lab

when more than 3 cells have 5 lobes or a single cell with six lobes is present in a sam-

ple of 100 cells [148]. On the other hand, a defect in the Neutrophil lobulation is called

Hyposegmenation resulting in the presence of dumbbell-shaped neutrophils with bilobed

nuclei.

121



Finally, a third example of Neutrophil abnormalities is band cells. This abnormal-

ity is characterized by having a curved but not lobular nuclei. Band cells are immature

Neutrophils, and an increase in its count typically means that the bone marrow has been

signaled to increase the production of WBCs due to infection or inflammation.

A.2 Eosinophils

Eosinophils are major effector cells. Eosinophils make up to 1% of the white blood cells in

normal individuals [43, 28].

Human eosinophils have bi-lobed nucleus, pink staining with eosin and characteristic

cytoplasmic granules. They are also active participants in many immune responses.

A.3 Basophil

Basophils are the only WBCs that contain histamine. Moreover, they are the least frequent

WBCs; as they make up less than 1% of the WBC population in humans [149]. Basophils

play a major role in preventing blood clotting, because they contain heparin, which is a

natural blood-thinning substance. Moreover, when the immune system is exposed to an

allergen this type of cells release histamine and mediate in handling allergic reactions.

A.4 Monocytes

Monocytes are the largest cells of the blood measuring between 16 and 22 µm in diameter.

Monocytes typically have one nuclei that is usually centrally placed within the cell and

often kidney shaped [24]. Cells of this type fight certain infections and regulate immunity

against foreign substances, moreover, they act as scavenger cell.
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A.5 Lymphocytes
Lymphocytes make up about 25% of the total WBC count. Two forms of Lymphocytes are:
B cells, and T cells. Each B cell is set to make one specific antibody, that can only match
one specific antigen. On the other hand, T cells process foreign substances for removal.
Reactive Lymphocyte, atypical Lymphocyte, Plasma cells, and Basket cells are all consid-
ered as morphological abnormalities of Lymphocytes. Reactive Lymphocytes and plasma
cells are considered as large lymphocytes. On the other hand, Basket cells are remnants
of cells that lack any identifiable structure. Such cells are associated with disorders such
as chronic lymphocytic leukemia (CLL). Finally, atypical Lymphocytes [40] are a hetero-
geneous group of lymphocytes with morphological characteristics that are not considered
among the normal ones. Each of the mentioned abnormalities, when accompanied with
clinical findings, can aid in the diagnosis of many illnesses.
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