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Abstract

Bayesian Matrix Factorization and Applications

Oumayma Dalhoumi

Nonnegative matrix factorization (NMF) reduces the observed nonnegative matrix into a prod-

uct of two nonnegative matrices. Nonnegativity entails two major implications: non-negative com-

ponents and purely additive combination. These characteristics made this method useful in a wide

range of applications. In this thesis, we propose two novel Bayesian nonnegative matrix factoriza-

tion techniques.

First, we propose a model dedicated to semi-bounded data where each entry of the observed ma-

trix is supposed to follow an Inverted Beta distribution. Latent variables of the factorized parameter

matrices follow a Gamma prior. Variational Bayesian inference and lower bound approximation for

the objective function are used to find an analytically tractable solution for the model. An online

extension of the algorithm is also proposed for more scalability. Both models are evaluated on five

different applications.

Second, we propose a Bayesian NMF that can be specifically useful for non intrusive load

monitoring (NILM). NILM can be formulated as a source separation problem where the aggregated

signal is expressed as linear combination of basis vectors in a matrix factorization framework. The

model achieves superior performance by imposing sparsity on the activation matrix using Dirichlet

priors. To estimate the parameters of the model, variational Bayesian inference is used. A novel

optimization approach is proposed to find an analytically tractable solution for the model. We

evaluate the model with three data sets: REDD, AMPds and IRISE, and with multiple experimental

setups. The proposed model provides interpretability, flexibility and high performance.
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Chapter 1

Introduction

1.1 Background

The world has always been changing thanks to major breakthroughs in different domains thus

the discovery of electricity, the steam engine, transistors, etc. These discoveries reshaped humans’

lifestyle and yield to a sequence of scientific revolutions that created an all-time record growth.

Since the end of the 20th century, we have been living in the middle of what is called the digital rev-

olution. In fact, the immergence of new technologies allowed the collection of enormous amounts

of data. In 2006, British mathematician Clive Humby claimed “Data is the new oil.”. The statement

has been proven right as data have become a tradable wealth in both its row or processed formats.

Data are basically the fuel of the digital economy. The only convenient is that this wealth is continu-

ously growing thanks to billions of everyday online connections among people, businesses, devices,

and processes. The digital economy is continuously empowered by hyperconnectivity which means

growing interconnectedness of people, organisations, and machines that results from the Internet,

mobile technology and the internet of things (IoT).

Data have always been valuable. However, the breakthrough in computational and storage re-

sources allowed the efficient usage of this data for information retrieval and decision-making pro-

cesses. Advanced data analysis, data mining, pattern recognition and machine learning techniques

are now the motor behind major decisions across the world. This includes political decisions, trad-

ing strategies, climate change, but also what video will show up on my youtube’s home page and
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how much bananas will be found in the neighborhood store today.

With the emergence and the growth of this new economy, keep coming new challenges and lim-

its. In fact, regardless of the application and the domain, modern data driven solutions have to be

designed to suit certain constraints. These can be categorized into user related concerns, application

specific restrictions, and implementation challenges. Firstly, users are more and more sensitive to

their privacy. Data does usually contain sensitive information that the user is not comfortable re-

vealing or sharing across platforms. Federated learning is a technique that allows a decentralized

training of an algorithm. This approach is attracting more interest to preserve data privacy and to

keep user’s data on his/her own device. Secondly, from application perspective, one of the most

common issues with machine learning algorithms is the lack of interpretability. Actually, for var-

ious applications, the explainability of classification or regression model could be a core reason

behind this task and even more important than the results themselves. In business for example,

understanding why your model is predicting a spike or a fall in the demand forecasting model can

be crucial to decide on marketing strategies or pricing model. For energy disaggregation, the model

has to provide a clear vision on how different devices impact the overall consumption. This infor-

mation is used by both household and energy companies to optimize consumption and decide on

efficient appliance usage. Last but not least, the collection of enormous amounts of data in different

formats (image, text, audios, videos, etc.) requires appropriate tools to combine these information

into significant numerical values that can be interpreted and used by a machine. Additionally, de-

spite the improvement in computational and storage resources, the increase in data volume is always

more significant. Scalable solutions have to be proposed to address the volume of data. This brings

another challenge related to the choice of the adapted data solution. In fact, the structure and dis-

tribution of data are continuously changing even within the same business case. Highly parametric

models can therefore be inefficient as the chosen hyper-parameters wouldn’t be appropriate when

data change. Usually, data scientists have a scheduled hyper-parameter tuning after certain data

updates. Yet, this solution is not optimal. Generative models and Bayesian learning are more ro-

bust. With the appropriate hypothesis on the prior and posterior distributions, they can regularly

auto-adjust to data changes. In this thesis, we are aiming to build machine learning solutions that

are adapted to current data science challenges. We will propose methods that are scalable, can be
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implemented in an online framework with stream data, and can easily be adapted into a distributed

context.

The increasing interest in data driven technologies have created the need for an effective way

of data representation by appropriate dimensionality reduction techniques. Generally speaking, two

basic properties are supposed to be satisfied: first, the dimension of the original data should be re-

duced; second, the principal components, hidden concepts, prominent features, or latent variables

of the data, depending on the application context, should be identified efficaciously. In most of

the cases, data can be presented in the format of a data matrix (or tensor) that we will be denot-

ing as X 2 RN⇤M . From a mathematical stand point, dimensionality reduction techniques can

be expressed as a transformation � : RN⇤M ! RN⇤K , where in most cases K << M . This

transformation can be either linear [11] or non-linear [76, 85]. Examples of linear methods in-

clude principal component analysis (PCA), singular value decomposition (SVD) [87], independent

component analysis (ICA) [78], etc. Non linear models include kernelized PCA [98] and deep au-

toencoders [86], etc. Different methods can be differentiated based on the statistical properties of

the constraints imposed on either the transformation or the resulting matrix. Yet, most of the meth-

ods listed here don’t take into account structure and properties of the input data. In various real life

applications, data are semi-bounded and represented as positive vectors by nature, for instance pixel

intensities, amplitude spectra, occurrence counts, purchases data, user scores, stock market values,

energy consumption, etc. Hence, for the sake of interpretability of the results, optimal processing of

positive vectors may call for processing under nonnegativity constraints. Extending the nonnegativ-

ity constraint in dimensionality reduction models to the latent matrices helps to induce sparsity and

leads to part-based decompositions. Therefore, the importance of Nonnegative Matrix Factorization

(NMF) [62, 45] which adds to the properties mentioned above the non-negativity constraint. Those

characteristics made NMF stand out of other methods and be useful in a wide range of applications

beyond its mathematical exploration.

From evaluation perspective, evaluating machine learning methods highly depends on the nature

of the application and its usage. A wide range of metrics have been discussed and used in literature

[102, 13, 31]. In this work, we were able to assess the performance of our models using application

specific methods by running different experiments. We provide specific analysis for each of the
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generated results and inspect them from an overall as well as a detailed perspective. Data cleaning

and preprocessing have been performed for each of the applications.

1.2 Mathematical formulation of NMF

From mathematical stand point, NMF reduces an observed nonnegative matrix into a product of

two nonnegative matrices called excitation and basis matrices U and V, respectively. The problem

has been traditionally formulated as finding U and V such that: X = UV where, U > 0 and V > 0.

The idea of NMF has initially been introduced as Positive Matrix Facorization by Paatero and Tapper

[62, 61]. The existance of such factorization was proven by the theory of Completely Positive (CP)

factorization [83]. The initial models however suffered from convergence and computational issues.

In fact, resolving NMF and formulating it as a convex optimization problem are still open research

topics. As of the time of writing this thesis, NMF is still an ill-posed problem with non unique

solutions [1]. Various models have therefore been proposed to improve the convergence and the

performance of NMF and to also take into account other constraints such as sparcity, orthogonality,

etc. [62, 45, 73, 93, 77, 83, 53, 29]. Various ways have been proposed to resolve NMF. The

conventional NMF algorithms seek to maximize the similarity between X and the product of latent

matrices UV by defining and optimizing a similarity measure D(Xk|UV ). Examples of these

functions are Frobenius norm and I-divergence [46]. Given the NP-hardness of the problem, the

most common optimization approaches apply iterative multiplicative updates similar to expectation

maximization algorithms and are inspired from the SED-MU and GKLDMU proposed in [46].

Convergence rate of these algorithms is yet to be improved. Optimization techniques are usually

used to address this issue.

NMF has also been treated from a statistical point of view. A propablistic NMF model has

initially been suggested by Mnih et al. in [56] where the similarity is determined based on a prior

knowledge about the probability distribution of the noise. This model paved the way to Bayesian

non-negative matrix factorization (BNMF) and the first approach was proposed by Salakhutdinov

et al. in [69]. Generative models can properly reflect the statistical structure of the signal and the

disclosed components. In the recent years, more attention has been brought to generative modeling
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in various AI models [68, 57]. Specifically for NMF, Bayesian learning allowed for more flexibility

in modeling, adding further constraints and generating more robust solutions. In fact, unless reg-

ularization parameters are tuned carefully, discriminative models are prone to overfitting because

they find a single point estimate of the parameters. Bayesian inference can usually resolve this issue

and provide robust solutions [75]. A fully Bayesian treatment of a probabilistic matrix factorization

was presented in [69, 17] where the model was trained using Markov Chain Monte Carlo (MCMC)

methods. Variational inference is a scalable alternative to MCMC for Bayesian posterior inference.

It has been proposed and tested in various domains [88, 5]. Variational inference was used to in-

fer latent variables for Bayesian NMF in [63, 53, 29]. Unlike conventional Bayesian NMF, work

in [53, 29] applied matrix factorization on the model parameters. This allows more flexibility and

enables imposing further constraints on the factorization model.

1.3 Applications of NMF

Beyond its mathematical formulation, the philosophy behind NMF is to propose a feasible

model for learning object parts. Parts-based representation is considered among the fundamen-

tals of certain computational theories of recognition problems: perception of the whole is based

on perception of its parts. Basically, nonnegativity entails two major implications: non-negative

components and purely additive combination.

Firstly, as explained above negative data in both observations and latent components are irrele-

vant in various real life applications as the corresponding data are semi-bounded and represented by

positive vectors by nature. Extracted positive embeddings do commonly correspond with semantic

and meaningful interpretations. Secondly, objects of interest are most naturally characterized by the

inventory of its parts, and the exclusively additive combination means that they can be reassembled

by adding required parts together. Thanks to it’s simple yet powerful characteristics, NMF achieved

high performance in wide range of real life applications: natural language processing (NLP), collab-

orative filtering (CF), graph embedding, non intrusive load monitoring (NILM), pattern recognition,

etc.
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1.3.1 Collaborative filtering

Collaborative filtering (CF) is widely used in recommender systems. Recommender systems are

a type of information filtering systems that involve predicting user responses. CF is based on the

idea that people who liked an item on the past are very likely to agree on it in the future. Matrix

factorization resolves CF by factorizing a utility function X where rows and columns represent users

and items respectively. The inferred latent vectors correspond then to users and items embeddings

and they represent their hidden characteristics. The rating of user i for item j can be reconstructed by

multiplying the latent vectors that correspond to that user item combination. Collaborative filtering

has traditionally been resolved by dot products and NMF represented the state of the art for a long

time. With the development of deep learning approaches, He and al. proposed neural collaborative

filtering (NCF) in [26]. Despite the wide success of deep collaborative filtering, researchers from

google have demonstrated that with the proper parametrization, an NMF still outperfoms NCF [65].

In fact, despite their theoretical capabilities, NCF are costly, more complex to use in production

environment and are prone to bias.

1.3.2 Natural language processing

In NLP, NMF was widely used for document clustering and topic modeling. Authors in [30]

surveyed the usage of NMF methods for documents clustering. The usage of different algorithms

showed superior performance compared to state of the art methods like spectral clustering in both

accuracy and latent semantic topic identification. NMF was also applied for topic modeling. The

returned basis matrix represents prominent topics contained in a document corpus [33, 3]. Authors

in [8] also showed the efficiency and the potential of Poisson NMF on topic modeling.

1.3.3 Non intrusive load monitoring

Load disaggregation is the task of extracting single appliances’ power consumption out of the

aggregated power data using one single energy meter. Interest in understanding appliance level

consumption has risen with current energy and climate challenges. As power consumption is pos-

itive, NMF provides the logic to recover individual components’ power consumption through the

6



learned latent basis. Works in NMF for energy aggregation showed efficiency and high performance

[72, 64, 55]. Most of the proposed methods are however discriminative and lack generalization ca-

pabilities.

1.3.4 Parts based decomposition

In object recognition and computer vision applications, the learned basis images are localized

rather than holistic and they can be mapped to actual parts of the original images [89, 59, 10].

Authors in [32, 21] have shown that setting a high sparseness value for the basis images results in a

local representation of an imput image.

1.3.5 Graph embeddings

Graph embedding learning aims to automatically learn low-dimensional node representations.

Among the applications of graph embedding is link prediction. It can be defined as: given a set

of biomedical entities and their known interactions, we aim to predict other potential interactions

between entities [52]. Matrix factorization techniques resolve this problem by factorizing the link

matrix to learn low-dimensional representations in a latent space. A binary classification is then

performed to decide if a link exists between the biological elements.

1.4 Contributions

As discussed in the previous sections, NMF is still an ill-defined problem. Yet, it is very efficient

for a wide range of applications and is highly competitive even compared to high performing deep

learning approaches. The main goal of this thesis is to propose new non negative matrix factorization

models that are capable to address modern machine learning challenges. The contributions are listed

as follows:

• Bayesian Matrix Factorization for Semi-bounded Data

A novel Bayesian nonnegative matrix factorization technique dedicated to semi-bounded data

where each entry of the observed matrix is supposed to follow an Inverted Beta distribution.

The model has two parameter matrices with the same size as the observation matrix which we
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factorize into a product of excitation and basis matrices. Entries of the corresponding basis

and excitation matrices follow a Gamma prior. To estimate the parameters of the model, vari-

ational Bayesian inference is used. A lower bound approximation for the objective function

is used to find an analytically tractable solution for the model. An online extension of the

algorithm is also proposed for more scalability and to adapt to streaming data. The model

is evaluated on five different applications: parts-based decomposition, collaborative filter-

ing, market basket analysis, transactions prediction and items classification, topic mining and

graph embedding on biomedical networks.

This work has been published in IEEE Transactions on Neural Networks and Learning Sys-

tems [12]

• Bayesian Non-negative Matrix Factorization for Non-Intrusive Load Monitoring

A Bayesian non-negative matrix factorization approach is proposed. We assume a generative

model where each matrix element follows an exponential distribution. Exponential distribu-

tion (exp) with support (0,1) can be used to model non-negative real variables. The matrix

is modeled in a way to impose a sparsity constraint on the excitation matrix A which is guar-

anteed through the sum to k. To model this constraint on a Bayesian space, we assume that

the coefficients of AK , weights for device k, follow a Dirichlet distribution of parameters that

are subject to our optimization problem. The matrix factorization is applied on the model pa-

rameter instead of directly applying it on the observed matrix. A Dirichlet prior is associated

to the matrix A. We propose a novel approximation method using mean field variational infer-

ence to learn the model and estimate the parameters. The proposed model is evaluated with

different applications and tested against different baselines with multiple datasets: REDD

dataset, AMPds and IRISE dataset. The proposed model shows high performance against

various supervised learning approaches. It is high performing for low frequency setup. More-

over, the proposed learning process is low dependent on other observations and therefore can

be easily adapted in a federated learning framework.
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1.5 Thesis Overview

• In chapter 1, we introduce non negative matrix factorization. We discuss different mathemat-

ical formulations of NMF as well as various applications. We present the current state of the

art and its limitations. We also discuss the motivations behind our work.

• In chapter 2, we propose a novel Bayesian NMF model. We use variational learning and

provide a novel lower bound approximation for the objective function to find an analytically

tractable solution for the model. An online extension of the model is afterward proposed. The

efficiency of the model has been evaluated by comparing it to state of the art models on five

different applications.

• In chapter 3, we present a Bayesian NMF approach dedicated to non intrusive load moni-

toring. We explain the optimization model. The performance of our model is tested against

several approaches. We used different datasets and metrics for evaluation to take into account

different circumstances.

• In conclusion, we briefly summarize our contributions.
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Chapter 2

Bayesian Matrix Factorization for

Semi-bounded Data

2.1 Introduction

With the increasing amount of available raw data, due to the development in sensor and com-

puter technology, rises the need of dimensionality reduction techniques. The observed data are

usually organized in a form of matrix or tensor. Thus, from an algebraic perspective, dimension-

ality reduction can be interpreted as decomposing this matrix into the product of two matrices. To

accomplish this task, several methods have been proposed such as SVD [20], PCA [92], ICA [82],

etc. . . In general these methods have to satisfy two properties: reducing the dimensionality of the

original data, and preserving the hidden concepts and latent variables of the data. Yet, they usually

don’t take into account structure and properties of the data. In various real life applications, data

are semi-bounded and represented as positive vectors by nature, for instance pixel intensities, am-

plitude spectra, occurrence counts, purchases data, user scores, stock market values, etc. Hence, for

the sake of interpretability of the results, optimal processing of positive vectors may call for pro-

cessing under nonnegativity constraints. Extending the nonnegativity constraint in dimensionality

reduction models to the factor matrices helps to induce sparsity and leads to part-based decomposi-

tions. Therefore, the importance of Nonnegative Matrix Factorization (NMF) [62, 45] which adds

to the properties mentioned above the non-negativity constraint.
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NMF reduces the observed nonnegative matrix into a product of two nonnegative matrices called

excitation and basis matrices that we’ll refer to as U and V, respectively. This property has shown

a great utility in several applications such as visual features learning [101], face recognition [51],

source separation [60], collaborative filtering and recommender systems [43], document clustering

and topic mining [95, 74], etc. Observed data can usually be modeled in the form of a matrix

X = (x1, x2, ..., xM ), where xj is a column vector of size N . When requiring both the dimension-

ality and the factorization rank of X to increase, the optimization problem of NMF is NP-hard [84].

Therefore, only a local minimum is achievable in a reasonable computational time. Classically,

NMF is approached by maximizing the similarity between X and the product UV by performing al-

ternating minimization of a suitable cost function. Several algorithms have been proposed to tackle

NMF [90, 49]. Authors in [46] used Frobenius norm and I-divergence as optimization functions.

They proposed two algorithms by minimizing l2�norm and Kullback-Leibler (KL) divergence. Un-

less regularization parameters are tuned carefully, classical models are prone to over-fitting because

they find a single point estimate of the parameters. Bayesian inference can usually resolve this issue

and provide robust solutions [75]. A fully Bayesian treatment of a probabilistic matrix factoriza-

tion was presented in [69, 73, 17] where the model was trained using Markov Chain Monte Carlo

(MCMC) methods. Variational inference is a scalable alternative to MCMC for Bayesian posterior

inference. It has been proposed and tested in various domains [88, 5]. Variational inference was

used to infer latent variables for Bayesian NMF in [63, 53, 29]. Unlike conventional Bayesian NMF,

work in [53, 29] applied matrix factorization on the model parameters. This allows more flexibility

and enables imposing further constraints on the factorization model.

Most of NMF applications involve large datasets where scalability is an issue. In general, data

continuously arrive in streams or batches. Online learning is a well known solution for the problems

mentioned above. Online approach processes the data, one at a time, or in mini-batches. This is

particularly important in the context of image and video processing and news text mining. The

standard variational Bayes formulation is adapted to the online setting by stochastic coordinate

ascent. The online learning gives two advantages: only a limited amount of data needs to be stored

at a time in memory, independently of the size of the original dataset; by processing the data in a

random sequence, we gain robustness to local optima and maintain convergence guarantees.
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In this chapter, a Bayesian nonnegative matrix factorization approach is proposed. We assume

a generative model where each matrix element follows an Inverted Beta distribution. Inverted Beta

(IB) with support (0,1) can be used to model nonnegative real variables [44]. IB has a flexible

shape and can be symmetric or highly skewed. The model has two parameter matrices. The ma-

trix factorization is applied on the model parameters instead of directly applying it on the observed

matrix. Each parameter matrix is factorized into a product of excitation and basis matrices. Cor-

relation between the parameter matrices is modeled by setting the excitation matrix to be the same

for both matrices. A Gamma prior is associated to each entry, thus the naming IBG-NMF. Vari-

ational inference with a lower bound approximation is proposed to learn the model and estimate

the parameters. Due to the properties of the Gamma distribution, the sparseness constraint can be

achieved by imposing a low shape parameter on either the excitation or the basis matrix. An online

extension of the model is proposed to allow for more scalability and to adapt to streaming data.

The proposed models are evaluated with different applications and tested against different baselines

with multiple datasets: parts-based decomposition, collaborative filtering, market basket analysis,

transactions prediction and items classification, topic mining and graph embedding on biomedical

networks. Our application for transactions prediction and items classification allows a novel inter-

pretation for market basket analysis. It allows using the NMF to model market baskets in more

efficient way than the traditional association rules. This approach can also be used for e-commerce

recommender systems to recommend items based on those already selected in a basket and not only

the user’s historical purchases.

The rest of this chapter is organized as follows: a general introduction to nonnegative matrix

factorization with a brief litterature review is given in Section 2. In Section 3, the generative model

and model specifications are introduced. In sections 4 and 5, we describe the IBG-NMF and online

IBG-NMF solutions and algorithms. Experiments, results and comparisons are presented in section

6. Finally, conclusion is drawn in Section 7.
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2.2 Nonnegative Matrix Factorization

In this chapter, we refer to matrices by upper case bold letters as for X. A vector of X is denoted

as lower case bold italic letters xi and elements of X are xij . All other scalars are denoted by roman

non-bold letters. Model parameters are denoted by greek letters.

Observed data can usually be modeled in the form of a matrix X = (x1, x2, ..., xM ), where xj

is a column vector of size N . NMF, introduced in [45] is a dimentionality reduction technique that

reduces a nonnegative matrix X into a factor of a nonnegative basis matrix U and a nonnegative

excitation matrix V such that:

X ⇡ UV, (2.1)

where: X 2 RN⇥M
+ , U 2 RN⇥K

+ and V 2 RK⇥M
+ . The columns of X are a linear combination

of all the columns of U, with weighting coefficients from the columns of V, xj ⇡
PK

i=1 uiVij . We

usually have K << M,N . This generally results in part-based representations.

The existence of NMF solution was proved via the theory of completely positive factorization

in [83]. Based on the conventional NMF, many extensions [93, 77, 48] have been studied, and sev-

eral constraints can be added on the NMF to enhance the reconstruction performance, such as the

orthogonal constraint [50], the sparse constraint [21], and the discriminant constraint [36]. NMF

can be treated in the conventional way as well in a probabilistic way where we try to estimate the

parameters of the underlying model instead of estimating the basis and excitation matrices directly.

Due to the NP-hardness of the problem, a unique solution is not achievable in a reasonable compu-

tational time [90], and only local minima can therefore be achieved. A Bayesian estimation, can be

used instead. The authors in [69, 73, 17] presented a fully Bayesian treatment of probabilistic ma-

trix factorization trained using MCMC methods that showed significant accuracy levels on Netflix

dataset. Variational inference is a scalable alternative to MCMC for Bayesian posterior inference.

It has been proposed and tested in various domains [88, 5]. Variational inference was used to infer

latent variables for Bayesian NMF in [63, 53, 29]. Authors in [100] have reformulated the classical

matrix factorization problem to a hierarchical Bayesian generative model and utilized variational

inference to infer model parameters. This approach showed robustness and effectiveness with dif-

ferent applications. Unlike conventional Bayesian NMF, [53, 29], applied matrix factorization on
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the model’s parameters. This allows for more flexibility and enables imposing further constraints

on the factorization model.

In order to scale up larger datasets and to take into account stream data we propose an online

extension to our algorithm. Online approaches process the data, one at a time, or in mini-batches.

For the online schemes of NMF, Guan et al. [23] proposed an approach using robust stochastic

approximation. Lefevre et al. [47] proposed an online updated algorithm with Itakura–Saito di-

vergence to estimate NMF solutions. For NMF, Gu et al. proposed a fast two-stage algorithm for

non-negative matrix factorization in streaming data [22]. In this chapter, the standard variational

Bayes formulation is adapted to online settings by stochastic coordinate ascent. In section 2.3, we

propose a Bayesian framework for nonnegative matrix factorization.

2.3 Model Specification

Data generated by real life applications, such as sales data, collaborative filtering data, repre-

sentations of texts and image data, etc, are semi bounded by nature. Therefore, for the sake of

interpretability of the results, optimal processing of this kind of data may call for processing under

nonnegativity constraints. In this section, we propose a novel model for Bayesian matrix factoriza-

tion for semi-bounded data.

2.3.1 Generative Model

We assume that each nonnegative data point xnm is generated from an IB distribution, with

parameters unm and vnm. For an observation matrix X we have two parameter matrices U and V all

of size (N ⇥M). Similar to [53, 29], we jointly factorize each parameter instead of the observation

matrix as:
U ⇡ AH

V ⇡ BH

A,B 2 R(N,K)
+ , H 2 R(K,M)

+

(2.2)

Given the nonnegativity property of A, B and H, we can assign a Gamma prior to each entry.

With the above, we can create the following generative model:
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an,k ⇠ Gamma(anm|µnk,↵nk)

bn,k ⇠ Gamma(bnk|⌫nk,�nk)

hk,m ⇠ Gamma(hkm|⇢km, ⇣km)

xn,m ⇠ iBeta(xnm|
X

k

ankhkm,

X

k

bnkakm)

(2.3)

where Gamma(x|k, ✓) is the Gamma density function with parameters k and ✓, and iBeta(x|↵,�)

is the IB density function with parameters ↵ and �. We have :

Gamma(x|k, ✓) = ✓
k

�(k)
x
k�1

e
�✓x

, k, ✓ > 0 (2.4)

iBeta(x|↵,�) = x
↵�1(1 + x)�↵��

B(↵,�) (2.5)

where �(.) is the Gamma function and B(., .) is the Beta function defined as B(a, b) = �(a)�(b)
�(a+b) .

IB is flexible and allows different shapes (i.e.. symmetric, skewed to the right, skewed to the left).

The distribution can be a good representation for sparse, heavy tailed or symmetric semi bounded

data based on the choice of the model parameters a and b.

We define the latent variable Z such that: Z = {A,B,H}. The posterior distribution is then p(Z|X).

Z is divided into disjoint groups A, B and H and a Gamma prior has been assigned to each entry by

definition of the generative model in (2.3). We end up with the following equations:

p(Z|X) =
p(X|Z)p(Z)

p(X)

p(Z) = p(A)p(B)p(H)

p(A) =
Y

n,k

p(ank), p(B) =
Y

n,k

p(bnk), p(H) =
Y

k,m

p(hkm)

p(X|Z) =
Y

n,m

1

B(
P

k ankhkm,
P

k bnkhkm)

⇥ (xnm)
P

k ankhkm�1

⇥ (1 + xnm)�
P

k ankhkm�
P

k bnkhkm

(2.6)
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2.3.2 Matrix Decomposition

Depending on the application, there might be a need to have the following form X = UV. Based

on the model proposed in Eq (2.3) we have:

x̄nm =

P
k ankhkmP

k bnkhkm � 1
(2.7)

X̄ = AH ↵ (BH � 1) (2.8)

where ↵ is the element-wise division.

If we impose the sparseness constraint on the excitation matrix H (column sparseness equal to

1), we can decompose the matrix as in (2.9). Details of this decomposition can be found in Appendix

B.

X̄ = AH ↵ (BH � 1) = (A ↵ (B � 1))H (2.9)

The sparseness constraint can be achieved by choosing low values of the shape parameter. In

fact, the excitation matrices A and B and the basis matrix H follow a Gamma prior. The Gamma

distribution has two parameters: shape parameter k and a scale parameter ✓. The expectation value

is k
✓ . For a given mean value, a small shape parameter forces the variable to have a very high

probability around zero. Thus, the sparseness constraint can be achieved. After normalizing the

matrices, the condition for (2.9) can be satisfied.

2.4 Batch Variational Bayesian Inference

The main goal of Bayesian analysis is to infer the posterior distribution given the prior distribu-

tion and the data likelihood. However, the exact Bayesian inference of the generative model stated

in (2.3) is not analytically tractable. So, we shall use variational inference to learn our model. Our

problem is equivalent to maximizing an objective function L(q) = Eq(z)[ln(
p(Z,X)
q(Z) )]. This leads

to an optimal solution q
⇤(ank) expressed in (A.2) calculation details can be found in Appendix A,
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where x̄ denotes the expected value of x and E\q(ank)[X] =
R Q

(i,j) 6=(n,k)Xq(aij)daij :

ln q⇤(ank) = E\q(a⇤nk)
[ln p(X,Z)] + const

=
X

m

E\q(a⇤nk)
[� lnB(

X

k

ankhkm,

X

k

bnkhkm)]

+
X

m

h̄km lnxnmank �
X

m

h̄km ln(1 + xnm)ank

+ (µ0 � 1) ln(ank)� ↵0ank + const

(2.10)

One way to find an analytically tractable solution is by identification, where we separate ele-

ments of (A.2) that only include ank from elements that only include ln ank. However, due to the

integral expression in the � function, the expectation of lnB(.) is not analytically tractable. Thus,

an analytically tractable solution cannot be obtained directly. According to the extended factorized

approximation [29, 37, 35], we can find a lower bound to the objective function L(q). Maximizing

this lower bound is asymptotically equivalent to maximizing the objective function L(q).

In this chapter we use Extended Factorization Approximation (EFA) to derive an analytically

tractable solution to the Bayesian Estimation of IBG-NMF. We find an auxiliary function Eq(Z)[ln ep],

such that:

Eq(Z)[ln p(X,Z)] � Eq(Z)[ln ep(X,Z)] (2.11)

We can write:

Eq(Z)

h
ln(p(X,Z))

i
= Eq(Z)

hX

n,m

(fnm + rnm)
i

(2.12)
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With:

Eq(Z)[fnm] = Eq(Z)[� lnB(
X

k

ankhkm,

X

k

bnkhkm)]

Eq(Z)[rnm] = Eq(Z)

hX

k

(ankhkm � 1) lnxnm

�
X

k

(ankhkm + bnkhkm) ln(1 + xnm)

+
X

k

⇥
(µ� 1) ln ank + (⌫ � 1) ln bnk

+ (⇢� 1) lnhkm � ↵ank � �bnk � ⇣hkm

⇤i

+ const

(2.13)

Therefore, a lower bound of the objective function is:

Eq(Z)[ln
p(X,Z)
q(Z)

] � Eq(Z)[ln ep(X,Z)]� Eq(Z)[ln q(Z)] (2.14)

Our goal is to find an analytically tractable solution for the objective function via the lower

bound. The term rnm is analytically tractable. However, we cannot resolve fnm. In the next section

we try to find a lower bound for fnm.

2.4.1 A Lower Bound Approximation

In [53], the authors showed that � lnB(
P

k xk,
P

k yk) is convex relative to lnx for arbitrary

y, if and only if
P

k yk > 1. With this relative convexity, and by restricting that
P

k ankhkm and
P

k bnkhkm are greater than 1, we can use Jensen inequality and first order Taylor decomposition

to find a lower bound for the expectation of the objective function.
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The first-order expansion of Eq(x,y)[fnm] function with respect to ln x around ln x̄:

Eq(x,y)[fnm] � Eq(x,y)

h
� lnB(

X

k

x̄k,
X

k

yk)
i

+ Eq(x,y)

h⇣
 
�X

k

(x̄k + yk)
�
�  (

X

k

x̄k)
⌘

⇥
X

k

x̄k(lnxk � ln x̄k)
i

(2.15)

where  is the Digamma function defined as  (x) = d
dx ln�(x).

As � ln(B(x, y)) in (2.15) is also relative convex to ln y for any x, we can further lower bound

the LIB function as:

Eq(x,y)[Fnm] � Eq(x,y)

h
� lnB(

X

k

x̄k,
X

k

ȳk)
i

(2.16)

+ Eq(x,y)

"⇣
 
�X

k

(x̄k + ȳk)�  (
X

k

ȳk)
�⌘

⇥
X

k

ȳk(ln yk � ln ȳk)

#

+ Eq(x,y)

"⇣
 
�X

k

(x̄k + yk)�  (
X

k

x̄k)
�⌘

⇥
X

k

x̄k(lnxk � ln x̄k)

#

In the equation above, the first term (2.16) is a constant. The second term (??) depends only on

the variable y. However, the third term depends on both x and y which are not mutually independent

and their expectations cannot be carried out separately. However, as xi and yj are independent for

i 6= j, (??) term can be written as follows:
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Eq(x,y)

"h
 
�X

k

(x̄k + yk)
�
�  

�X

k

x̄k

�i

⇥
X

k

x̄k(lnxk � ln x̄k)

#

� Eq(x,y)

h
 
�X

k

(x̄k + yk)
�
�  (

X

k

x̄k)
i

⇥Eq(x,y)

hX

k

x̄k(lnxk � ln x̄k)
i

= Eq(y)

h
 
�X

k

(x̄k + yk)
�
�  (

X

k

x̄k)
i

⇥
X

k

Eq(xk)

h
x̄k(lnxk � ln x̄k)

i

(2.17)

Since  (x) and ln(x) are concave functions in x, we can get the following inequalities by

applying Jensen’s inequality:

Eq(x)[ln(x)]  ln(Eq(x)[x]) = ln(x̄)

Eq(x)[ (x)]   (Eq(x)[x]) =  (x̄)
(2.18)

Equation (2.17) can be rewritten as:

Eq(x,y)

"h
 
�X

k

(x̄k + yk)
�
�  (

X

k

x̄k)
i

⇥
X

k

x̄k(lnxk � ln x̄k)

#

=
h
 
�X

k

(x̄k + yk)
�
�  (

X

k

x̄k)
i

⇥
X

k

Eq(xk)

h
x̄k(lnxk � ln x̄k)

i

(2.19)

Finally, the expectation Fnm can be lower-bounded as:
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Eq(x,y)[Fnm] � Eq(x,y)

h
� lnB(

X

k

x̄k,
X

k

ȳk)
i

+

"h
 
�X

k

(x̄k + ȳk)
�
�  (

X

k

ȳk)
i

⇥
X

k

ȳk(Eq(yk)[ln yk]� ln ȳk)

#

+

"h
 
�X

k

(x̄k + ȳk)
�
�  (

X

k

x̄k)
i

⇥
X

k

h
x̄k(Eq(xk)[lnxk]� ln x̄k)

i#

(2.20)

Therefore, by substituting xk and yk in (2.20) by
P

k ankhkm and
P

k bnkhkm, we can write the

approximation as:

Eq(Z)[fnm] �
h
� lnB(

X

k

ānkh̄km,

X

k

b̄nkh̄km)
i

+
h
 (

X

k

(ānkh̄km + b̄nkh̄km))�  (
X

k

ānkh̄km)
i

⇥
X

k

ānkh̄km

h
Eq(ank)q(hnk)

⇥
ln(ānkh̄km)� ln(ānkh̄km)

⇤i

+
h
 (

X

k

(ānkh̄km + b̄nkh̄km))�  (
X

k

b̄nkh̄km)
i

⇥
X

k

b̄nkh̄km

h
Eq(bnk)q(hnk)

⇥
ln(b̄nkh̄km)� ln(b̄nkh̄km)

⇤i

= Eq(Z)[ efnm]

(2.21)

2.4.2 Optimal Estimation via the EFA

Based on (2.12) and (2.21), a lower bound for Eq(Z)

h
ln(p(X,Z))

i
can be written as:

Eq(Z)[ln ep(X,Z)] = Eq(Z)

hX

n,m

( efnm + rnm)
i

(2.22)
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From (2.14), the objective function that we want to maximize can be lower bounded as:

Eq(Z)

h
ln

p(X,Z)
q(Z)

i
� Eq(Z)

hX

n,m

( efnm + rnm)
i
� Eq(Z)[q(Z)] (2.23)

Based on the principles of the variational inference framework, we can find the optimal q⇤(ank) ,

q
⇤(bnk) and q

⇤(hkm), and the optimal updates are:

ln q⇤(ank) = E\(q(ank))

hX

m

( efnm + rnm)
i
+ const (2.24)

ln q⇤(bnk) = E\(q(bnk))

hX

m

( efnm + rnm)
i
+ const (2.25)

ln q⇤(hkm) = E\(q(hkm))

hX

n

( efnm + rnm)
i
+ const (2.26)

eF and R are replaced by their expressions in (2.24), (2.25) and (2.26). To resolve q
⇤(ank) we

can skip all the terms that do not contain ank. The final expression of q⇤(ank):

ln(q⇤(ank)) =

(
X

m

h
 (

X

k

ānkh̄km + b̄nkh̄km)

�  (
X

k

ānkh̄km)
i
ānkh̄km + µ0 � 1

)
ln ank

�
(
X

m

(h̄km ln (1 + xnm)

� h̄km lnxnm) + ↵

)
ank + const

(2.27)

Equation (2.27) has the logarithmic format of the Gamma density function. It is possible to

separate terms with ln ank and terms with ank in (2.27). The shape and the scale parameters µ and
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↵ can be computed as:

µ = µ0 +
X

m

⇥
 (

X

k

ānkh̄km + b̄nkh̄km)

�  (
X

k

ānkh̄km)
⇤
ānkh̄km

↵ = ↵0 +
X

m

(h̄km ln (1 + xnm)� h̄km lnxnm)

(2.28)

We can verify that the shape and scale parameters of the Gamma distribution are positive. In fact,

 (.) and ln() are increasing functions. Then, terms  (
P

k ānkh̄km + b̄nkh̄km) �  (
P

k ānkh̄km)

and ln(1+X)� ln(X) are always positive. ln q⇤(bnk) and ln q ⇤ (hkm) can be obtained similarly as

follows:

ln(q⇤(bnk)) =
nX

m

⇥
 (

X

k

ānkh̄km + b̄nkh̄km)

�  (
X

k

b̄nkh̄km)
⇤
b̄nkh̄km + ⌫0 � 1

o
ln bnk

�
⇣X

m

(h̄km ln (1 + xnm) + �0

⌘
bnk + const

(2.29)

ln(q⇤(hkm)) =

(
X

n

h⇥
 (

X

k

ānkh̄km + b̄nkh̄km)�  (
X

k

ānkh̄km)
⇤
h̄kmānk

+
⇥
 (

X

k

ānkh̄km + b̄nkh̄km)�  (
X

k

b̄nkh̄km)
⇤
h̄kmb̄nk

i

+ ⇢0 � 1

)
lnhkm

�
(
X

n

(ānk + b̄nk) ln (1 + xnm)

�
X

n

ānk ln (xnm) + ⇣0

)
hkm + const

(2.30)
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2.4.3 IBG-NMF Algorithm

In order to simplify the equations we can organize the parameters in (2.28) in a matrix format.

The six parameter matrices µ, ↵, ⌫, �, ⇢, and ⇣ can be written as 1:

µ = µ0 +
⇥
 (ĀH̄ + B̄H̄)�  (ĀH̄)

⇤
H̄T � Ā

↵ = ↵0 +
⇥
ln(1 + X)� ln(X)

⇤
H̄T

⌫ = ⌫0 +
⇥
 (ĀH̄ + B̄H̄)�  (B̄H̄)

⇤
H̄T � B̄

� = �0 + ln(1 + X)H̄T

⇢ = ⇢0 +
n

ĀT ⇥
 (ĀH̄ + B̄H̄)�  (ĀH̄)

⇤

+ B̄T ⇥
 (ĀH̄ + B̄H̄)�  (B̄H̄)

⇤o
� H̄

⇣ = ⇣0 + (ĀT
+ B̄T ) ln(1 + X)� ĀT

lnX

(2.31)

The values of the parameter matrices are given by iteratively updating the parameters and the

expectations of A,B and H accordingly. The expectation of A,B and H are given by 2:

Ā = µ↵ ↵, B̄ = ⌫ ↵ �, H̄ = ⇢↵ ⇣ (2.32)

The corresponding algorithm is summarized as follows:

Algorithm 1 IBG-NMF
Input: Observation matrix X, number of basis K, initialization of ↵0, �0, ⇢0, µ0, ⌫0 and ⇣0.
Output: Hyperparameters ↵, �, ⇢, µ, ⌫ and ⇣.

Generate Ā, B̄ and H̄ according to (2.32)
while iterations < maxIter do

Update parameters ↵0, �0, ⇢0, µ0, ⌫0 and ⇣0 according to (2.31)
Update expectations Ā, B̄ and H̄ according to (2.32)
if convergent precision is satisfied then

break;
end if

end while=0

An empirical study of the convergence of algorithm 1 showed that the proposed IBG-NMF
1� denotes element-wise multiplication.
2↵ denotes element-wise division.
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Figure 2.1: Illustration of the convergence of the IBG-NMF algorithm.

algorithm could always converge after about 60 to 80 rounds of iterations. The objective function

is numerically calculated by generating samples from the posterior distributions. An example of

the convergence rate for Olivetti faces database is presented in figure 2.1. For this example, we

downsample observations to size 32 ⇥ 32. We set K to 10, 20, 50 and 100. The algorithm could

always converge after about 60 to 80 iterations. The objective function is numerically calculated by

generating samples from the posterior distributions.

2.5 Online Variational Inference

The model proposed above introduces an innovative robust approach for matrix factorization

with semi-bounded data. However, most of NMF applications involve large dataset where scalability

is an issue. In many cases, data continuously arrive in streams or batches. Online learning is a well

known solution for the problems mentioned above. The standard variational Bayes formulation is

adapted to the online setting by stochastic coordinate ascent. The advantages of this online learning
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are: only a limited amount of data needs to be stored at a time in memory, independently of the size

of the original dataset; by processing the data in a random sequence, we gain robustness to local

optima and maintain convergence guarantees.

The batch variational inference approach for learning IBG-NMF model is extended to online

settings by adopting the framework. The observation matrix X can be partitioned into smaller sub-

sets S
(t), called mini-batches which change for each iteration t. For a fixed amount of data T at

each iteration, the current lower bound for the observed data at iteration t is given by:

L(t)(q) =
NM

T

X

(n,m)2S(t)

n
E q(Z)[p(xnm|Z)]

⇤
� E q(Z)[q(Z)]

o
(2.33)

Assume that we have already observed (t� 1) batches S(1)
, ..., S

(t�1), for a new observation S
(t),

we can maximize the current lower bound L(t)(q) with regard to q
t(Z) for each variational factor

while keeping other values to their (t � 1) values. Therefore, the model hyperparameters ⇥(t) =

{↵(t)
, µ

(t)
,�

(t)
, ⌫

(t)
, ⇣

(t)
, ⇢

(t)} computed at iteration t can be calculated as:

↵
(t) = ↵

t�1 + r
(t)�↵(t)

, µ
(t) = µ

t�1 + r
(t)�µ

(t)

�
(t) = �

t�1 + r
(t)��(t), ⌫(t) = ⌫

t�1 + r
(t)�⌫(t)

⇣
(t) = ⇣

t�1 + r
(t)�⇣(t), ⇢(t) = ⇢

t�1 + r
(t)�⇢(t)

(2.34)

where rt is the learning rate which is used to reduce the earlier inaccurate estimation effects

that contributed to the lower bound and accelerate the convergence of the learning process. In this

work, we adopt a learning rate function such that rt = (⌘0 + t) � a, subject to the constraints a 2

(0.5, 1] and ⌘0 � 0. In 2.34, �⇥(t) = {�↵(t)
,�µ

(t)
,��(t),�⌫(t),�⇣(t),�⇢(t)} are the natural

gradients of the corresponding hyperparameters. The natural gradient of a parameter is obtained by

multiplying the gradient by the inverse of Riemannian metric, which cancels the coefficient matrix

for the posterior parameter distribution. It is defined as :
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where⇥(t)
i corresponds to the optimal values of the hyperparameter⇥i while optimizing L(t)(Q)

with regard to Q
(t). The online nonnegative matrix factorization approach is summerized in algo-

rithm 2.

Algorithm 2 online IBG-NMF
Input: Observation matrix X, number of basis K, initialization of ↵0, �0, ⇢0, µ0, ⌫0 and ⇣0.
Output: Hyperparameters ↵, �, ⇢, µ, ⌫ and ⇣.

Generate Ā, B̄ and H̄ according to (2.32)
while Receiving new stream do

Calculate natural gradients�↵(t)
,�µ

(t)
,��(t),�⌫(t),�⇣(t),�⇢(t) according to (3.22)

Update variational parameters ↵0, �0, ⇢0, µ0, ⌫0 and ⇣0 according to (2.31)
Update expectations Ā, B̄ and H̄ according to (2.32)

end while=0
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2.6 Experimental Results

2.6.1 Experiments setup

In this section, we present the results of the IBG-NMF models on five different applications.

First, we use our models for parts based representation with ORl and CBCL datasets. This experi-

ment highlights both models’ capabilities for parts based decomposition and how they can be used

while imposing sparsity constraint. Secondly, the model is used for collaborative filtering applica-

tion on two data sets: Netflix data and MovieLens data. Then, the IBG-NMF model is used for topic

modeling on Reuters dataset. We also propose the usage of NMF for a retail application. Finally,

we use our model for graph embedding on biomedical link prediction.

In each experiment, the two proposed models are compared against baseline results from state of

the art factorization models namely NMF, PMF [56], BPMF [69] and BNMF [73] when applicable.

Additional baseline models are used for comparison for specific experiments. Particularly, for col-

laborative filtering, we also run the experiment on BG-NMF model that takes into consideration the

fact that the data is bounded. For the topic modeling experiments we add results obtained from LDA

[6] and hierarchical Dirichlet process (HDP) [81]. Finally, for the graph embedding we compare

our models’ performance against the models proposed in [96]. Experiments are run with a 10 folds

cross validation. That is, 10 random splits each with 90% training data and 10% test data where

the 10 test splits do not overlap. The average performance metric is reported. We test on different

values of the latent space dimension K 2 {10, 20, 50, 100, 200, 500, 800}. K values with highest

results for each algorithm is reported.

2.6.2 Parts based representation

Extending the non-negativity constraint in matrix factorization models induces sparsity and

leads to part-based decomposition. We apply parts based decomposition on ORL dataset [70] and

CRCL dataset.

ORL is a dataset of 400 face images of size 112 ⇥ 92. It contains 40 distinct persons’ images

with 10 examples each. Images were taken at different times, varying the lighting, facial expres-

sions (open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). The matrix
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factorization is performed on reduced face images by constructing a matrix of shape 2576 (pixels)

x 400 (faces). The number of basis is 25. The CBCL dataset consists of 2429 face images of size

19x 19. Each face image is preprocessed. For this data, we choose a basis equal to 49.

Results are reported in figures 3.4 and 2.3. With regular shape and scale parameters (no sprse-

ness), a parts-based representation can be found on face images from CBCL database. However,

with the same parameters applied on the ORL dataset, in which images are not as well aligned, a

global decomposition emerges. Authors in [32, 21] have shown that setting a high sparseness value

for the basis images results in a local representation. The sparseness constraint in our model can be

imposed by setting a low shape parameter for the matrix H. We set the shape parameter to 0.0001.

Imposing sparseness constraint on the basis matrix allows obtaining parts based representation.

Both IBG-NMF and online IBG-NMF give very close results.

2.6.3 Collaborative Filtering

Recommendation systems play a major role in the internet industry. They help users find new

products and are used by companies to find potential buyers/customers. Collaborative filtering

is a technique used in recommendation systems based on historical reviews. During the Netflix

competition, matrix factorization techniques showed a good performance to predict the reaction of

some users based on their historical data. The Netflix dataset along with the Movielens dataset are

used here to evaluate our model. We use mean square error (MSE) as evaluation metric.

The Netflix dataset was initially published during the 2008 competition, and has since then at-

tracted several researchers. The original dataset includes 17, 770 movies and 480, 189 users. Users’

ratings are on a five star (integral) scale from 1 to 5. A subset of the original dataset with 10, 164, 642

ratings of 46, 584 users over 2, 249 movies was used. The subset is selected in a way that we are only

keeping the 90% percentile of the users with highest number of ratings. MovieLens 1M dataset [24]

contains 1, 000, 209 anonymous ratings of approximately 3, 706 movies made by 6, 040 MovieLens

users who joined MovieLens in 2000. The main goal here is to reconstruct the original matrix in

order to predict non observed ratings. The number of basis K is considered as a hyperparameter.

Elements from the test set are excluded from the training phase by setting the mask matrix elements

to zero. Results on the test set are reported in table 2.1. We show that our model performs the best
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(a)

(b) (c)

Figure 2.2: Results from IBG-NMF (a) parts-based decomposition on CBCL dataset without con-
starints. (b) parts based decomposition without constraints on ORL dataset. (c) parts-based decom-
position on ORL dataset with sparsity constraint.
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(a)

(b) (c)

Figure 2.3: Results from IBG-NMF (a) parts-based decomposition on CBCL dataset without con-
starints. (b) parts based decomposition without constraints on ORL dataset. (c) parts-based decom-
position on ORL dataset with sparsity constraint.
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Table 2.1: MSE Score for Collaborative Filtering

Netflix Dataset
Model 50 100 200 500 800
online-IBG-NMF 0.8597 0.8502 0.8208 0.7692 0.7446
IBG-NMF 0.8686 0.7971 0.7872 0.7783 0.7587
BG-NMF 0.7758 0.8413 0.8985 0.9029 0.8753
NMF 0.954 0.9728 0.9819 0.9889 0.9126
PMF 0.8597 0.8727 0.8382 0.8278 0.8197
BPMF 0.9234 0.8527 0.8507 0.8218 0.8021
BNMF 0.8784 0.8434 0.8252 0.7962 0.7820

1M Movielens Dataset
50 100 200 500 800

online-IBG-NMF 0.9500 0.9207 0.8789 0.8411 0.8381
IBG-NMF 0.9606 0.9398 0.8982 0.8524 0.8430
BG-NMF 0.8602 0.8964 0.9027 0.8993 0.9012
NMF 0.9110 0.9598 0.9689 0.9769 0.9912
PMF 0.9921 0.9685 0.9617 0.9317 0.9117
BPMF 0.9770 0.9787 0.9602 0.9280 0.9017
BNMF 1.1646 1.0292 0.9475 0.9303 0.9162

with high values of K. The lowest MSE value is achieved by online IBG-NMF then IBG-NMF for

both datasets for a value of K = 800, Netflix data’s score is 0.7446 and Movielens score is 0.8381.

Whereas, the benchmark model BG-NMF achives its best score for a value ok K = 50. Netflix

data’s score is 0.7759 and Movielens score is 0.8602. NMF’s results are very poor compared to the

other algorithms. BNMF has the closest values to our model. However, zhen taking into account

the convergene rate and computational cost of both models, variational inference based models are

less expensive than MCMC based models which gives further advantages to the proposed models.

2.6.4 Topic Modeling

Topic modeling is used to uncover the latent aspects (topics) from text data. With the increasing

amount of text data available on digital format, navigation should be aided by data mining tools that

allow to quickly locate data based on some information within it. We use Reuters public dataset to

evaluate the performance of the proposed models against two popular approaches that have shown

great success on this application: regular NMF, BNMF, HDP and LDA. We select texts from the

top 20 predefined topics. After removing stop words and rare words, TF-IDF transformation was
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Figure 2.4: PMI score for different values of K.

used to model the text data. The final data is represented in a (8609, 3000) matrix where the rows

represent documents and columns represent dictionary words.

For the model evaluation, several automatic metrics have been proposed to evaluate topic quality

such as perplexity , topic coherence, and Pointwise Mutual Information (PMI) scores. Kaplan et al.

[38] have shown that the coherence based on PMI gave the largest correlation with human ratings.

PMI for a given topic t is calculated as:

PMI(t|v(t)) = 1

M(M � 2)

MX

m=2

m�1X

l=1

�p(v(t)m , v
(t)
l ) + 1

p(v(t)m )p(v(t)l )

�
(2.38)

where v(t) = (v(t)1 , v
(t)
2 , ..., v

(t)
M ) is a list of the M most probable words in topic t, and v

(t)
m and

v
(t)
l represent the m

th and l
th words of the specific topic t, respectively. p(v(t)m , v

(t)
l ) denotes the

probability that words v
(t)
m and v

(t)
l appear in the same document, while p(v(t)m ) or p(v(t)l ) mark
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the probability that the mth or lth term occurs in the document corpus. A smoothing count of 1

is included to avoid taking the logarithm of zero. Generally speaking, the more the co-occurrence

under the same topic it owns, the larger value the PMI score will be, and the better performance the

mined topic is. With respect to the K topics, the final average PMI score is then computed as the

topic model’s performance in topic-quality.

Results reported in Figure 2.4 show that IBG-NMF and online IBG-NMF outperform classical

methods for different values of K and different numbers of selected words. Increasing the number of

words per topic increases the coherence within the topic. In general, online IBG-NMF outperforms

full batch IBG-NMF because of the gradient capacity to avoid local minimum and overfitting. On-

line approach is also adapted to the nature of this application. In fact news data continuously arrives

in streams (hourly, daily or weekly).

2.6.5 Transactions Prediction and items classification

Data mining approaches are being widely used in the retail industry for demand forecasting,

improving customer experience, and understanding market behaviour. Transaction data have a rich

hidden information that can help improve the retail business. Yet, due to its complexity, exploring it

might be challenging. These data can be represented in the form of a matrix, where rows represent

transactions and columns represent products. The matrix entries take positive values. NMF can be

used in this case for two different applications:

Products clustering :

Clusters are given by the excitation matrix H. This approach can be seen as a solution for

market basket analysis. Rows of H can be later used as product features allowing to model

positive interaction between different products also known as halo effect. Results can also

be used for shelves and aisle optimization inside stores. Items within the same group should

be presented in same aisle or section within a store. The weights measure the importance

of each product. The model performance is measured by the PMI scores defined in (2.38).

This metric is usually used to evaluate topic coherence in topic mining. From statistical

perspective, it measures the point-wise mutual information. In other words, it evaluates how

likely two items existing in the same column of the excitation matrix are likely to be observed
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in the same row of the observed matrix. In the retail context, in the case where we are creating

baskets, we need to measure how likely it is, for items within the same basket/group/category,

to be purchased together. The basis matrix can then be used to model the positive interaction

between items in a feature based forecasting model.

Transaction items prediction :

This can be used for recommendation systems in e-commerce platforms. In fact, the model

predicts when a customer added certain items to his basket, what other items he is likely to

be interested in. Mean Absolute Percentage Error (MAPE) is used to evaluate this model:

MAPE =
1

NM

X

i,j

|rij � r̂ij |
rij

(2.39)

We use a transaction dataset that contains all the transactions occurring between 01/12/2010

and 09/12/2011 for a UK-based and registered non-store online retail [9]. Data cleaning and pre-

processing included removing returns (negative items) and outliers (remove 99th percentile). After

data cleaning, the final dataset includes 20, 116 transactions and 3, 935 products. The algorithm

is tested against the classical Bayesian NMF [73] refered to as BNMF, regular NMF. Results are

reported in tables 2.2 and 2.3. The proposed model outperformed the benchmark models for both

applications. For the basket analysis, we see that the highest PMI score is found for IBG-NMF

with K = 10. For other models the optimal K is higher. This shows the capacity of our model to

preserve the hidden concepts and latent variables of the data while reducing it to a smaller space.

An example of three baskets with top 3 items is shown in table 2.4. For example, items from the first

basket are all related to the christmas theme. The third basket is related to antique decoration. For

the transaction prediction, IBG-NMF achieved 0.5821 MAPE with K = 100 compared to 0.6725

for the BNMF.

2.6.6 Graph embedding on biomedical networks

Graph embedding learning aims to automatically learn low-dimensional node representations.

Authors in [96] have evaluated graph embedding methods on biomedical networks. We extend
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Table 2.2: PMI Score for Basket Analysis

Model PMI
10 20 50 100

OIBG NMF 5.6728 5.3210 4.4779 4.6198
IBNMF 5.6026 5.2024 4.7768 4.5481
BPMF 3.6074 4.1523 4.2462 4.3128
BNMF 4.2574 4.4671 4.5219 4.6579
NMF 4.1975 4.3712 4.5734 4.7400

Table 2.3: MAPE Score for Transaction Prediction

Model MAPE
10 20 50 100

OIBG NMF 0.7754 0.6902 0.6102 0.5821
IBNMF 0.7833 0.6972 0.6044 0.5940
BPMF 4.0304 3.8457 3.9353 4.0311
BNMF 0.7238 0.7104 0.6953 0.6725
NMF 0.8959 0.8734 0.8384 0.7679

Table 2.4: Baskets Examples with top 3 items

Basket 1
Part Cone
Chrismas
Decoration

T-Light
Glass
Flued
Antique

Spaceboy
Gift Wrap

Basket 2 Doormat
New England

Chest of
Drawers
Gingham
Heart

Doormat
Spotty
Home Sweet
Home

Basket 3 Antique Heart
Shelf Unit

Love Seat
Antique
White Metal

SET/4 White
Retro
Storage
Cubes
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their study to evaluate our model against traditional matrix factorization based methods used for

link prediction in three important biomedical link prediction tasks: drug-disease association (DDA)

prediction, drug–drug interaction (DDI) prediction and protein–protein interaction (PPI) prediction.

Link prediction can be defined as: given a set of biomedical entities and their known interactions,

we aim to predict other potential interactions between entities [52]. Matrix factorization techniques

resolve this problem by factorizing the link matrix to learn low-dimensional representations in a

latent space. A binary classification is then performed to decide if a link exists between the bio-

logical elements. Yue et al. [96] provided a python package that includes 4 datasets that we use

here for evaluation. First for DDA, two datasets are used: Comparative Toxicogenomics Database

(CTD) [15] with 92, 813 edges between 12, 765 nodes (9, 580 chemicals and 3, 185 diseases), and

National Drug File Reference Terminology (NDF-RT) in UMLS [7] with 13, 545 nodes (12, 337

drugs and 1, 208 diseases) and 56, 515 edges. As for DDI graph, data is collected from DrugBank

[91] with 242, 027 DDIs between 2, 191 drugs. For PPI graph, Homo sapiens PPIs are extracted

from STRING database [80] with 359, 776 interactions among 15, 131 proteins.

IBG-NMF and online IBG-NMF are trained against top three matrix factorization preforming

methods HOPE, GraRep and SVD and we also use it on NMF. We use BioNEV 3 to train HOPE

and GraRep. We use accuracy metric for model evaluation. Results are reported in table 2.5. The

proposed models provided competitive results. With the four datasets, online IBG-NMF provided

provided the most effective results. Beside classical matrix factorization algorithms, online IBG-

NMF is also able to beat HOPE and GraRep algorithms which are designed to capture the high-order

proximity of graphs.

3https://github.com/xiangyue9607/BioNEV
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Table 2.5: Accuracy for link prediction on the four compiled biomedical datasets

Model Link Prediction
CTD NDFRT DrugBank STRING
DDA DDA DDI PPI

OIBG-NMF 0.890 0.951 0.868 0.798
IBG-NMF 0.871 0.942 0.863 0.787
HOPE 0.885 0.928 0.844 0.763
GraRep 0.889 0.938 0.850 0.780
SVD 0.853 0.700 0.837 0.794
NMF 0.781 0.652 0.801 0.698
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Chapter 3

Bayesian Non-negative Matrix

Factorization for Non-Intrusive Load

Monitoring

3.1 Introduction

Non-Intrusive load monitoring (NILM) is defined as the task of extracting single appliances’

power consumption out of the aggregated power data using one single energy meter. The problem

was first described by Hart in 1982 [97], while more attention has been brought to these techniques

in the last few years with the increase of energy demand and the rapid advancements in data driven

technologies. To answer to the high demand, energy management and sustainable buildings have be-

come the primary focus of urban planners. Energy management requires monitoring and controlling

of electrical utilities for optimizing energy utilization and thereby reducing consumption. Providing

details about appliance level power consumption would help consumers understand their usage, op-

timize their consumption, and detect malfunctioning or inefficient appliances [14, 41]. This set of

information can also be used by energy service providers and planners to allocate resources, identify

their customers’ needs, etc.

The emersion of load monitoring techniques is mostly driven by the advancements in internet of
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things (IoT), smart meters, and smart grids. However, cost and implementation constraints would

prevent including smart meters for every device to collect device level data. There comes the im-

portance of NILM since the estimation of individual electrical loads is based only on the aggregated

signal. If a load curve X monitored at a power meter is the sum of three loads consuming respec-

tively d1, d2 and d3, then the task is to determine the state of d1, d2 and d3 individually with the

only knowledge of X .

Various techniques have been proposed to resolve the NILM problem. These techniques can be

categorized into supervised vs. unsupervised algorithms [66]. Authors in [2] provided a detailed

review of most recent NILM approaches and their challenges. Unlike supervised approaches, un-

supervised models don’t rely on a prior knowledge of the individual appliances’ consumption. The

user have to set up a set of rules based on domain knowledge and appliances signature to identify

appliances. The major drawback of these techniques, is that they can miss appliances with similar

signature. Especially that no robust set of features that can effectively describe the appliances have

been identified. Such case is very common among low energy consuming appliances for exam-

ple iron and hear dryer. Two commonly used unsupervised learning techniques are hidden markov

models and mixture models. Different variants of Hidden Markov Models (HMM) have been pro-

posed as an unsupervised learning model. The most common one is factorial HMM (FHMM) that

generalizes the HMM state representation by letting the state be represented by a collection of state

variables [19]. Mixture models and HMM are usually inefficient when the number of disaggregated

appliances increases.

Supervised learning approaches on the other hand can be divided into two categories: pat-

tern recognition approaches and optimization approaches. Pattern recognition approaches include

common classification models such as SVM [39], K-nearest neighbour (KNN) [28], tree based

approaches [94] and deep learning techniques such as recurrent neural networks (RNN) [40] and

convolutional neural networks (CNN) [25, 99]. Shallow machine leaning models are usually sensi-

tive to the preprocessing step. Careful feature extraction and selection models have to be performed

in order to obtain high performing results [71]. Most of the current work on energy disaggregation

is based on deep learning given the huge success these methods have proved. Various deep learning

approaches have been proposed, yet most of the proposed techniques treat the problem as a single
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task learning. They learn separate networks for each appliance and the signal yk of appliance k

given the aggregate signal instead of simultaneously estimating all individual signals [34]. Despite

the high performance of these models, this modeling brings major computational challenges. Be-

sides, deep learning architectures have a high dimensional hyperparamter space. The construction

of optimal networks requires an excessive preprocessing.

The second category of supervised learning techniques is the optimization approach. It treats

NILM as an optimization problem where we seek to find the optimal set of appliances that compose

the aggregate signal. Among the most common optimization approaches is matrix factorization

(MF) [62]. Matrix factorization models individual appliances’ signatures as a basis and aims to

reconstruct the aggregate signal as weighted sum over this basis. For the rest of this work, we will

refer to the individual power consumption of appliance k as Dk, the corresponding weights as Ak

[27]. Depending on whether the signal D is predefined (fixed) or obtained through optimization,

MF could be treated as either in a supervised or unsupervised manner. Figueiredo et al. proposed

a non-negative tensor factorization technique including additional information from the appliance

dependencies [18] that demonstrated the superiority of the proposed MF model over benchmark

methods. Compared to other models discussed above, matrix factorization is less sensitive to feature

engineering or appliances’ signature.

The major challenge with matrix factorization models is the modeling of a problem specific set

of constraints. For the case of energy disaggregation, both total consumption and disaggregated

signals represent power consumption which is positive. The weights also have to be positive. This

specific type of matrix factorization is called non-negative matrix factorization (NMF) [45]. Sparsity

constraint in the activation function is a common approach for signal decomposition [79]. In fact,

the sparsity constraint guaranties an overcomplete representation of the data. In other words, there

exists more basis functions than the dimensionality of the data in the dictionary (i.e., D). Usually,

this constraint is achieved by adding an L1 norm to the loss function. However, this approach is

not suitable for energy disaggregation. Authors in [64] have proposed a novel approach to impose

the sparsity of the weights matrix A using a sum to k constraint. Unless regularization parameters

are tuned carefully, discriminative models are prone to over-fitting because they find a single point

estimate of the parameters. Bayesian inference can usually resolve this issue and provide robust
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solutions [75]. A fully Bayesian treatment of a probabilistic matrix factorization was presented

in [69, 17] where the model was trained using Markov Chain Monte Carlo (MCMC) methods.

Variational inference is a scalable alternative to MCMC for Bayesian posterior inference. It has

been proposed and tested in various domains [88, 5]. Variational inference was used to infer latent

variables for Bayesian NMF in [63]. Unlike conventional Bayesian NMF, work in [29] applied

matrix factorization on the model parameters. This allows more flexibility and enables imposing

further constraints on the factorization model.

In this chapter, a Bayesian non-negative matrix factorization approach is proposed. We assume

a generative model where each matrix element follows an exponential distribution. Exponential

distribution (exp) with support (0,1) can be used to model non-negative real variables. The matrix

is modeled in a way to impose a sparsity constraint on the excitation matrix A which is guaranteed

through the sum to k. We refer to our model as Bayesian sum to k non-nengative matrix factorization

(BS2k-NMF). To model this constraint on a bayesian space, we assume that the coefficients of AK ,

weights for device k, follow a Dirichlet distribution of parameters that are subject to our optimiza-

tion problem. The matrix factorization is applied on the model parameters instead of directly apply-

ing it on the observed matrix [12, 29]. A Dirichlet prior is associated to the matrix A. We propose a

novel approximation method using mean field variational inference to learn the model and estimate

the parameters. The proposed model is evaluated with different applications and tested against dif-

ferent baselines with multiple datasets: REDD dataset, AMPds and IRISE dataset. The proposed

model shows high performance against various supervised learning approaches. It performs well for

low frequency setup. Moreover, the learning process is low dependent on observations from other

houses and therefore can be easily adapted in a federated learning framework.

The rest of this chapter is organized as follows: the generative model and model specifications

are introduced in section 2. Experiments, results and comparisons are presented in section 3. Finally,

discussion and conclusion are drawn in Section 4.
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3.2 Proposed Model

3.2.1 Problem Statement

Given a matrix X , the conventional matrix factorization problem seeks to approximate a matrix

X with a product of two matrices A and D s.t.:

X ⇡ DA (3.1)

D and A are called basis and activation matrices respectively. Further constraints can be applied

on the problem above depending on the nature of the data and the properties of the application. For

instance, data generated by real life applications, such as sales data, collaborative filtering data,

representations of texts and image data, etc, are semi bounded by nature. Therefore, for the sake

of interpretability of the results, optimal processing of this kind of data may call for processing

under nonnegativity constraints. This constraint is interpreted as, given a nonnegative matrix X , the

values of D and A have to be non negative as well. This model is known as nonnegative matrix

factorization (NMF) and it has been widely used for different applications. Notably, NMF has

shown great succes in source separation problems where several signals have been mixed together

into a mixture signal and the objective is to recover the original component signals from the mixture

signal. The nonnegativity constraints allows in this example to obtain comprehensible signal.

Load disaggregation is a special case of source separation problems. The input is the mixed

energy consumption for all devices for time window D. So, for an M dimensional signal and for

a time window D, we obtain an observation matrix X 2 RMD. Suppose that the consumption is

coming from K devices. A columns of the basis matrix D correspond to the energy consumption

profile of an individual component at a day d, and rows of activation matrix A represent the cor-

responding base for D. We consider two constraints for this problem: nonnegativity constraint to

take into account the nonnegativity nature of the data, and the sum-to-k constraint for activation

coefficients that imposes the “grouping” effect where the basis vectors from the same individual

component form a “group”. The group Dk for device k represents the collected signals of device

k over a Tk time windows. The coefficients of elements of Dk for a given time window d are

43



Akd = A1kd, ..., ATkd. To preserve the grouping constraint during the factorization process we have
PTk

tk=1Atkd = 1. The aggregated signal X is computed as: X =
P

k

PTk
tk=1DmtkAtkd.

3.2.2 Generative Model

To model the first constraint, we assume that each positive observation Xmd is generated from

an exponential distribution of mean 1
� = DA =

P
k

PTk
tk=1DmtkAtkd.

Given the second constraint, the elements Atkd of the activation matrix for each device k (i.e., Ak)

are the weights of that device being represented via some bases of the signature matrix (i.e., Dk).

Therefore, we enforce the summation of all the weights for each device to be equal to one, so that

we can be confident that each device’s signal is represented by a linear combination of the bases

corresponding to that specific device. Correspondingly, summation of the elements of each column

of matrix A is equal to k (e.g., number of devices at home). This can be modeled by assuming that

the vector Akd = (a1kd, ...ankd, ) corresponding to the activation of device k follows a Dirichlet

distribution.

Therefore the matrix X is drawn according to the following generative model:

Akd ⇠ Dir(Akd|↵kd)

Xmd ⇠ Exp(Xmd|(DA)md)
(3.2)

where:

Akd 2 RTk⇥1 , X 2 RM⇥D,
PTk

tk=1Atkd = 1 , Atkd > 0 and ↵tkd > 0

Dir(Akd|↵kd) is the Dirichlet density with parameter vector ↵kd defined as:

Dir(Akd|↵kd) =
�(

PTk
tk=1 ↵tkd)QTk

tk=1 �(↵tkd)

TkY

tk=1

A
↵tkd�1

tkd
(3.3)

and Exp(Xmd|(DA)mk) is the Exponential density with parameter vector (DA)mk defined as:

Exp(Xmd|(DA)md) =
1

P
k

PTk
tk=1DmtkAtkd

e

�Xmd
P

k
PTk

tk=1 Dmtk
Atkd (3.4)
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3.2.3 Variational inference

Given the prior distribution, the inference to the posterior distribution is the central computa-

tional problem for analyzing data in the Bayesian analysis, which is also important in our BS2K-

NMF model. Given an observed matrix X and a training data D, we want to compute the posterior

distribution p(A|X,D). Exact solution is intractable. We appeal to variational inference. The idea

of variational inference [37, 4, 35], is to approximate the true posterior p(A|X,D) by q(A). In

conjugate models this permits easy coordinate ascent updates using variational distributions of the

same families as the prior distributions. However, for some specific applications, variational in-

ference could be applied to non-conjugate models. The model proposed in this chapter is such a

model. We give the activation vectors a variational distribution from the same family as its prior

distribution:

q(Akd) =
�(

PTk
tk=1 ↵tkd)QTk

tk=1 �(↵tkd)

TkY

tk=1

A
↵tkd�1

tkd
(3.5)

In the following parts we estimate the parameters that minimize the divergence between q(A)

and p(A|X) which is measured by the KL divergence KL(q(A)||p(A|X)):

KL
�
q(A)||p(A|X)

�
= Eq

⇥
ln

q(A)

p(A|X)

⇤

= ln p(X)� Eq
⇥
ln

p(A,X)

q(A)

⇤ (3.6)

From (A.1), minimizing the KL divergence is equivalent to maximizing an Evidence Lower

Bound (ELBO) that we denote as L and is equal to Eq
⇥
ln p(A,D,X)

q(A)

⇤
.

L = Eq
⇥
ln

p(A,D,X)

q(A)

⇤

= Eq
⇥
ln p(X|A,D)

⇤
+ Eq

⇥
ln p(A|↵)

⇤
� Eq

⇥
ln q(A)

⇤
(3.7)

The likelihood in (3.7) is equal to:
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Eq
⇥
ln p(X|A,D)

⇤
=

X

m,d

Eq

"
�XmdP

k

PTk
tk=1DmtkAtkd

#

� Eq

"
ln
X

k

TkX

tk=1

DmtkAtkd

# (3.8)

The values of the expectations above are intractable. Similar to [29], they can be lower bounded

by applying Jensen’s inequalities and Taylor expansion. First, the function �x
�1 is concave. Ac-

cording to Jensen’s inequality, for any vector � such that �l � 0 and
P

l �l = 1 we have:

� 1P
l xl

= � 1P
l �l

xl
�l

� �
X

l

�l
1
xl
�l

= �
X

l

�
2
l
1

xl
(3.9)

Therefore, a lower bound of the first expectation in (3.8) is:

Eq

"
�XmdP

k

PTk
tk=1DmtkAtkd

#
�

X

k

TkX

tk=1

�
2
tkmdEq

"
�Xmd

DmtkAtkd

#
(3.10)

Given the convexity of � lnx, we can bound the second expectation in (3.8) using a first order

Taylor approximation about an arbitrary point !md:

� Eq

"
ln
X

k

TkX

tk=1

DmtkAtkd

#
� � ln(!md) + 1 � 1

!

X

k

TkX

tk=1

Eq

"
DmtkAtkd

#
(3.11)

Finally the likelihood can be bounded as following:

Eq
⇥
ln p(X|A,D)

⇤
�

X

k

TkX

tk=1

�
2
tkmdEq

"
�Xmd

DmtkAtkd

#
�ln(!md)+1� 1

!

X

k

TkX

tk=1

Eq

"
DmtkAtkd

#

(3.12)

In equations 3.10 and 3.11, we derived bounds on the intractable expectations in (3.8). After

updating the variational distributions on each set of parameters A. We update � and ! to re-tighten

these bounds. Using Lagrange multipliers, we find that the optimal � is:
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�tkmd / Eq

"
1

DmtkAtkd

#�1

(3.13)

The bound in (3.11) is tightest when

!md =
X

k

TkX

tk=1

Eq

"
DmtkAtkd

#
(3.14)

Optimizing the variational distribution

The objective function L can be written as:

L = Eq
⇥
ln p(X|A,D)

⇤
| {z }

E1

+Eq
⇥
ln p(A|↵)

⇤
| {z }

E2

�Eq
⇥
ln q(A)

⇤
| {z }

E3

(3.15)

E1 =
X

k

TkX

tk=1

�
2
tkmdEq

"
�Xmd

DmtkAtkd

#
� ln(!md) + 1� 1

!

X

k

TkX

tk=1

Eq

"
DmtkAtkd

#
(3.16)

E2 =
X

k

TkX

tk

(atkd � 1)Eq

h
lnAtkd

i
+ cst (3.17)

E3 =
X

k

h
ln�(

TkX

tk

↵tkd)�
TkX

tk

ln�(↵tkd) +
TkX

tk

(↵tkd � 1)Eq
⇥
lnAtkd

⇤i
(3.18)

We have:

Eq
⇥
Atkd

⇤
=

↵tkdPTk
pk=1 ↵pkd

(3.19)

Eq
⇥ 1

Atkd

⇤
=

PTk
pk=1 ↵pkd � 1

↵tkd � 1
(3.20)

Eq
⇥
lnAtkd

⇤
=  (↵tkd)� (

TkX

pk=1

↵pkd) (3.21)
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@L
@↵tkd

=
X

m

Xmd

hX

pk

� �
2
tkmd↵pkd

Dmtk(↵tkd � 1)2
�

�
2
pkmd

Dmpk(↵tkd � 1)

�i

+ (atkd � ↵tkd) 
0(↵tkd)�

TkX

pk=1

(apkd � ↵pkd) (↵pkd)

� 1

(atkd � 1)2

(3.22)

Algorithm

The model parameters are updated using gradient descent. In this work, we adopt a learning

rate function such that ⇢t = (⌘0 + t)� a, subject to the constraints a 2 (0.5, 1] and ⌘0 � 0.

Algorithm 3 BS2K-NMF
Input: Observation Matrix X , Basis matrix D, number of basis K, initialization of ↵0.
Output: Hyperparameters ↵.

while iteration < maxiter do
Update learning rate ⇢(t) according to ⇢t = (⌘0 + t)� a

Update variational parameters ↵0:
↵tkd(t) = ↵

(t�1)
tkd

� ⇢
(t) ⇥ @L

@↵tkd

Update expectations Ā
end while=0

3.3 Experiments and Results

We are evaluating the performance of the proposed model against state of the art models using

three publicly available datasets: REDD dataset [42], AMPds dataset [54] and IRISE dataset [16].

The proposed model is used to isolate the contribution of each appliance to the total energy con-

sumption. Each time, our model is compared against state of the art supervised algorithms that are

commonly used for NILM. We will be using another group-based decomposition approach: Elastic-

Net [103] and a time series based approaches: recurrent neural network (RNN). Detailed analysis

at appliance level are also provided.

Both time duration (time period of the collected signal) and time intervals of data is important

because we want to capture differences in behavior for several devices in different seasons and
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Table 3.1: NILM Datasets Used for Model Evaluation.

Dataset Sampling rate Duration Type Location
Ampds 1 min 2 years Residential Canada
REDD 165 KHz 19 days Residential US
IRISE 10 mintes 1 year Residential France

include them in our model at the training stage.

3.3.1 Datasets

To test our models, we are using three different datasets with different characteristics: fre-

quency, sample duration and location. Studies on NILM approaches showed high sensitivity to data

frequency and most of the state of the art models showed higher performance with high frequency

data. The location of building in question could play a major role on the nature of the data. In fact,

the country and city of the considered building could impact the seasonality of the power consump-

tion and the behaviour of the consumer. Table 3.1 describes the three datasets we are using.

AMPd dataset is a public dataset for load disaggregation and eco-feedback research. It includes

data between April 1, 2012 and March 31, 2013, including different types of power signal, cur-

rent and voltage that includes 11 measurements at a sampling rate of one sample per minute for

21 sub-meters. The REDD dataset consists of aggregate and circuit-level power profiles of six US

households. The sampling frequency is 3 seconds, which is higher than usual for conventional smart

meters in residential applications. The third dataset, IRISE is collected under a European project

called Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe (REMOD-

ECE). The data contains over a year of residential consumption of houses located in France. It has

recordings of aggregated power for almost all electric appliances in the house at a sampling time of

10 minutes over a year.

We perform an analysis of the consumption patterns across datasets, houses and devices which

will be useful for results discussion later. Examples of aggregated daily signal of each of the datasets

is presented in figure 3.1. We notice a change of the overall power consumption through different

seasons. In fact, for both AMPds and REDD datasets, the power consumption in the months of Mai

to September are lower than the consumption from October to April. This supports our assumption

49



(a) a (b) b (c) c

Figure 3.1: Aggregated daily signal for each of the datasets (a) AMPds dataset (b) REDD dataset
(c) IRISE dataset.

Figure 3.2: Density Charts of Power Consumption in Watt-Hour of Different Devices by House,
IRISE dataset
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Figure 3.3: Density Charts of Power Consumption in Watt-Hour of Different Devices by House,
REDD dataset
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on the data consumption variation across seasons and therefore locations. In fact, some appliances’

consumption such as heating and air conditioning are highly seasonal. This characteristic should be

taken into account when choosing the profiles on which we perform the training, as well as the seen

houses on which the model will be trained to later estimate the unseen ones. According to figures

3.2 and 3.3, for the same device types, data consumption levels might vary from house to another,

we see that for the IRISE dataset, for white appliances, power consumption is around 20 Watt-Hour

for houses 28 and 48, while it goes up to 200 Watt-Hour for houses 36, 38 and 14. Therefore, data

normalization should be considered. Additionally, distributions shapes also change across houses

and devices.

3.3.2 Evaluation Metrics

Measuring the performance of the NILM is an open research area. Different approaches were

discussed in [58]. Evaluation metrics can be categorized based on the targeted performance. Overall

accuracy metrics are used to compare between the observed aggregate power signal and the recon-

structed signal after disaggregation. These include, but not restricted to, root mean square error

(RMSE), disaggregation percentage (DE) and accuracy (Acc). Appliance-based metrics provide a

detailed description of how effectively the disaggregated signal signatures are assigned to appliance

signatures for example: percentage of contribution in energy consumption (PCEC) and accuracy.

However, accuracy metric lacks the capacity to generalize to different appliances. In fact, for appli-

ances that are off most of the time, a model that predicts zero values for all the duration, would have

a high accuracy. However, this model would not be capturing the working hours of the appliance.

F1-score is a better choice in this case. In this work, we are exploring different metrics to provide

a robust analysis of our model. F1-score is reported for both overall and device level assessments.

Overall RMSE is reported to compare the proposed model against state of the art models. Device

level PCEC values are reported graphically through pie charts.

3.3.3 Results and Discussion

We run 3 different sets of experiments to evaluate the model.
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Table 3.2: Overall Performance Comparison with Different NILM approaches, all devices included

F1-Score RMSE DE
AMPds Elastic Net 0.8613 51.62 12.63

RNN 0.9215 49.85 10.98
S2KNMF 0.9425 49.22 10.82

REDD Elastic Net 0.8213 162.16 81.40
RNN 0.9415 160.98 83.16
S2KNMF 0.9514 161.15 80.54

IRISE Elastic Net 0.8716 9.30 15.16
RNN 0.9213 7.44 12.81
S2KNMF 0.9279 8.15 13.73

Table 3.3: Device Level Performance of the AMPds dataset: Test set - All year

Precision Recall F1-score Accuracy
Washer 97.70 98.84 98.27 98.55
Dish washer 97.68 98.83 98.25 98.51
Hot water 90.50 95.13 92.76 95.04
Fridge 64.40 80.25 71.46 79.91
HVAC 58.25 38.27 27.18 36.34

Experiment 1 - All appliances within the same house

For each of the datasets, we consider houses individually by training and testing the model

using all appliances within the same house. Each house’s data is split into train and test sets. For

robustness, a 5-fold cross validation is run. Results reported in table 3.2 describe the average of the

overall performance of the model across different houses of each dataset. Our model outperformes

benchmark techniques when it comes to detecting the states of the appliances reflected by F1-score.

Additionally, examples of decomposition are reported in figure 3.4. We see that for decomposition,

our model has a superior performance compared to ElasticNet. On average, RNN has better RMSE

values. However, we should note that for each appliance, and each house, we had to run a separate

network.

Experiment 2 - Selected appliances and unseen houses

For each of the datasets, we select a subset of appliances that are common between houses. We

then seperate the buildings into seen and unseen houses. Each time the model is trained with a seen

house and tested for the unseen ones (this is applicable only for REDD and IRISE datasets since
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(a) a

(b) b

(c) c

Figure 3.4: Pie plots for the energy usage contribution of each device. Ground truth Vs S2K-BNMF
(a) AMPds dataset (b) REDD dataset (c) IRISE dataset.
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Table 3.4: Performance of the AMPds dataset: Test set, Summer

Precision Recall F1-score Accuracy
Washer 97.70 98.84 98.27 98.24
Dish washer 97.68 98.83 98.25 98.79
Hot water 90.50 95.13 92.76 95.88
Fridge 64.40 80.25 71.46 76.06
HVAC 66.26 46.03 49.11 48.5

Table 3.5: Performance of the REDD dataset: House 1 seen and House 2 unseen.

Precision Recall F1-Score Accuracy
Dishwasher 99.04 75.15 85.39 75.15
Lighting 93.26 96.40 96.67 96.40
Microwave 99.33 90.71 94.79 90.71
Washer-Dryer 98.07 91.49 94.63 91.49

AMPds has only one house). For this set of experiments, we consider the overall consumption as

the sum of the three components.

For the REDD dataset, we select house1 as seen house and house 2 as unseen house. Four

major appliances that are common within residential buildings are considered: dishwasher, lighting,

microwave and the washer/dryer (we will refer to them as white appliances). Results are presented

in table 3.5.

For the IRISE dataset, we train the model separately with three selected houses: house 28, house

48 and house 36. It is then tested with a test subset from these houses and two unseen houses: house

38 and house 14. For this dataset, we select 3 major appliances that are common within residential

buildings: the fridge, the water heater and white appliances. Originally, the metrics are recorded

every 10 minutes. However, given the fact that most modern unexpensive smart meters measure

values at a very low frequency, we also consider resampled data with 30 minutes interval. We

evaluate the model’s capacity to capture the on and off status for each appliance using accuracy, F1-

score, recall and precision, and the model’s capacity to recover the original signal with RMSE score.

Overall performance comparison is reported in table 3.6. Appliance level performance metrics are

represented in table 3.7. Performance of the proposed model is very close to the state of the art

models for the 10 minutes sampling. However, BS2KNMF has higher capacity to generalize to

unseen houses and to handle lower frequencies. Unlike other NILM approaches, the performance
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of our model is not very sensitive to the frequency, it even improves for certain cases. In fact, RNN

based models take into account the relationship with previous states. Therefore, when increasing the

time interval between two consecutive states, the dependency is reduced. Performance for house 38

is lower compared to other buildings. This can be explained by the difference of the consumption

profiles in house 38 as described in figure 3.2.

At appliance level, water heater consumption at house 14 is best captured with house 28 despite

the apparent differences in the distributions presented in figure 3.2. The model was able to select

the adequate data.
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Table 3.8: Appliance Level Performance Including Residual Signal from Unknown Appliances

House 48 House 14 House 38
Dish Washer 99.17 98.73 98.86

Electrical Cooker 96.17 97.13 92.62
Fridge 86.18 84.87 78.35
Light 89.75 90.13 81.85

White Appliances 96.88 96.18 93.68
Residual 65.38 63.95 53.05

Experiment 3 - Unseen appliances and unseen houses

In real life situation, the number of appliances operating in a building varies constantly and

new undetermined signals can always be introduced. Therefore, the hypothesis that the aggregated

signal is equal to the sum of predetermined set of appliances cannot be generalized. Therefore, we

extend experiment 2 by supposing the following: the aggregated energy consumption Xi is equal

to the sum of energy of well defined devices y1, y2, ..., yk for which we know the signature and

a signal yk+1. yk+1 can be the aggregated signal of multiple unknown devices, or just one new

device that was not seen before. The addition of a new device would be systematically captured by

this signal. Also, this would allow for the generalization of the proposed approach across different

buildings that share a limited number of devices. This experiment is tested with IRISE dataset. We

consider 5 appliances: dish washer, electrical cooker, fridge, light and white appliances that are

common between houses 14, 38 and 48. We set X as the total energy consumption coming from

all appliances within the house. House 48 has 13 appliances, house 38 has 16 and house 14 has 20

appliances. House 48 is used for the training. D is formed by individual signals of each appliance

plus an additional set of signals that we refer to as residuals equal to the difference between X

and specific appliances’ energy. Appliance level F1-score from this experiment is reported in table

3.8. The performance of the selected appliances did not deteriorate. Since the residual signal is

coming from a different sets of appliances in the train and test sets, the F1-score is lower for this

hypothetical appliance compared to the others. However we are still capable of reconstructing it

with a confidence of up to 65%.
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Chapter 4

Conclusion

In this thesis, we have developed two Bayesian non negative matrix factorization models. We

started by introducing and explaining Nonnegative matrix factorization. In the first part of this work,

a Bayesian nonnegative matrix factorization approach is proposed. To model the nonnegativity con-

straint, we assume data follows an inverted Beta distribution. IB parameters are assigned Gamma

prior thus the naming IBG-NMF. The model parameters were approximated using variational infer-

ence. Due to the integral properties, an analytically tractable solution could not be directly obtained.

Therefore, we use a lower bound approximation to obtain an analytically tractable solution. An ex-

tension of this model is proposed with online learning using stochastic gradient ascent and natural

gradients. Online IBG-NMF is shown to be more robust and more scalable than batch IBG-NMF.

Setting small values for shape parameters allowed a sparse representation of NMF. Both models

demonstrated a success in multiple important applications such as: Parts-based decomposition, col-

laborative filtering, market basket analysis, transactions prediction and items classification, topic

mining and graph embedding on biomedical networks. The proposed models outperform state of

the art models such as PMF and BPMF as well as modern models like BG-NMF.

While MCMC methods are capable of producing exact samples from the target density, our

models (based on variational inference) were able to outperform MCMC based models. This could

be explained by the fact that the proposed model is more suitable for the nature of the data [5].

However, given the complexity of the model, and the size of the datasets used for different applica-

tions, the usage of MCMC inference to solve this model would be very costly. The online learning
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approach is also more adapted to the nature of various applications such as collaborative filtering,

transaction prediction, market basket analysis and topic mining, where large amounts of data are

continuously arriving and retraining the model each time is inefficient if not impossible. For future

work, the inference method could be further improved by using variational inference with Normal-

izing Flows [67].

We have proposed a novel matrix factorization model for non intrusive load monitoring. The

model presents a supervised learning approach that uses historical devices consumption for energy

disaggregation. The sparsity of the excitation matrix was imposed through a Dirichlet distribution.

To learn the model’s parameters a novel optimization approach was proposed for a variational learn-

ing problem with non conjugate priors. The usage of Bayesian learning allowed for robust results.

We tested the model with different datasets coming from various types of buildings and with diverse

appliances and measuring methods. The approach gives very competitive results compared to state

of the art models. Basically, for the seen houses with high frequency, our model’s performance

is very close to state of the art methods. In addition, the model is less complex and converges

quicker than deep learning based models. However, our model outstands when generalizing to un-

seen houses, low frequency domains and can capture new and unknown appliances. This robustness

is guaranteed by the Bayesian approach.

Basically, we were able to tackle different challenges relative to energy disaggregation. Firstly,

most of the state of the art approaches are either weak or computationally expensive when the

number of appliances increases. According to experiment 1, our model is still as efficient even with a

large set of appliances. Secondly, common smart meters collect data every 30 minutes to 1 hour. The

problem with common NILM approaches is that are optimized to work with high frequency data.

We experimented with a low frequency data in experiment 2 and we see that our model is robust

against the frequency variation. Another important challenge with energy disaggregation is data

collection. It is hard to collect ground truth data for every building. Therefore, it is very important

to mention that our approach can learn from one building and performs energy disaggregation on

another one. The appliance space is dynamically changing, our model was able to adapt to these

changes as described in experiment 3.

Overall, we have presented an approach that can be used to address different NILM challenges.
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The model is robust and flexible. However, we have noticed that the reconstruction error is high.

This is due to the usage of raw signals coming from historical data. For future work, we would

be interested in preprocessing the signal using dictionary learning for temporal data. Our model

does not rely on additional features and does not require a complicated preprocessing analysis. This

could be considered as an advantage especially for non domain experts. However, when additional

features are available, such as cycle of each appliance during sliding window, energy, time, appli-

ances characteristics, etc, an advanced version of this model would take into account these features

to improve the results.
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Appendix A

Variational Inference

The idea of variational inference [37, 4, 35], is to approximate the true posterior p(Z|X) by

q(Z). In the following parts we estimate the parameters that minimize the divergence between q(Z)

and p(Z|X) which is measured by the KL divergence KL(q(Z)||p(Z|X)):

KL
�
q(Z)||p(Z|X)

�
= Eq(Z)

⇥
ln

q(Z)
p(Z|X)

⇤
= ln p(X)� Eq(Z)

⇥
ln

p(X,Z)
q(Z)

⇤
(A.1)

From (A.1), our problem is equivalent to maximizing an objective function L(q) = Eq(z)[ln(
p(Z,X)
q(Z) )].

If we consider that the variables A, B and H are independent, and matrix elements are indepen-

dent, we can consider ank as the only variable and fix the remaining elements of Z. The op-

timal solution q
⇤(ank) can be obtained by (A.2), where x̄ denotes the expected value of x and

E\q(ank)[X] =
R Q

(i,j) 6=(n,k)Xq(aij)daij :

ln q⇤(ank) = E\q(a⇤nk)
[ln p(X,Z)] + const

=
X

m

E\q(a⇤nk)
[� ln�(

X

k

ankhkm,

X

k

bnkhkm)]

+
X

m

h̄km lnxnmank �
X

m

h̄km ln(1 + xnm)ank

+ (µ0 � 1) ln(ank)� ↵0ank + const

(A.2)

63



Appendix B

Sparseness constraint

Imposing the sparseness constraint on the columns of H means that for a given column hj of H

91 < kj < k, hkjj = 1, hij = 0i 6= kj (B.1)

x̄nm =

P
k ankhkmP

k bnkhkm � 1

=
ankmhkmm

bnkmhkmm � 1

=
ankm

bnkm � 1
hkmm

(B.2)
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