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Abstract

Investigating the Use of Transformer Based Embeddings for Multilingual Discourse
Connective Identification

Thomas Chapados Muermans

In this thesis, we report on our experiments toward multilingual discourse connective (or

DC) identification and show how language-specific BERT models seem to be sufficient even with

little task-specific training data and do not require any additional handcrafted features to achieve

strong results. Although some languages are under-resourced and do not have large annotated dis-

course connective corpora. To address this, we developed a methodology to induce large synthetic

discourse annotated corpora using a parallel word aligned corpus. We evaluated our models in 3

languages: English, Turkish, and Mandarin Chinese; and applied our induction methodology on

English-Turkish and English-Chinese. All our models were evaluated in the context of the recent

DISRPT 2021 Task 2 shared task. Results show that the F-measure achieved by our simple approach

(93.12%, 94.42%, 87.47% for English, Turkish and Chinese) are near or at state-of-the-art for the 3

languages while being simple and not requiring any handcrafted features.
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Chapter 1

Introduction

A discourse is a coherent group of sentences, as opposed to just a random assemblage of sen-

tences (Jurafsky and Martin, 2009). A coherent text flows smoothly from beginning to end, and

allows the reader to follow the logical relationships between ideas. These relationships, also known

as discourse relations (DRs), can be signaled explicitly using specific words or phrases. For exam-

ple, in the sentence:

(Ex. 1) Shorter maturities are considered a sign of rising rates because portfolio managers can

capture higher rates sooner.

the word because relates the first idea (in italics) to the second (in bold) and signals a causality rela-

tion. In the context of natural language processing (NLP), these explicit words are called discourse

connectives (DCs). Automatically identifying these DCs can be useful for many NLP tasks, such

as question answering (Jansen et al., 2014) and text summarization (Louis et al., 2010) where it is

important to measure how coherent the generated text is.

DCs come in different forms. They can be Explicit, as in (Ex. 1) above, when typical words

or phrases, drawn from specific grammatical categories are used to signal the discourse relation

(Prasad et al., 2008). Today, state of the art models for automatically identifying Explicit con-

nectives in English reach human level performance1; however, in English, Explicit connectives
1Indeed Johannsen and Søgaard (2013) showed that a simple logistic regression model could achieve an F-measure

above 94% for Explicit connective identification; whereas the human performance is estimated to be 82.8% (Milt-
sakaki et al., 2004) for the more general task of discourse parsing which includes DC identification, argument segmenta-
tion and relation labeling.
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account for only 45.47% of all DCs tagged in the The Penn Discourse Treebank PDTB (Prasad

et al., 2008). The other 54.53% fall under the umbrella of Implicit relations, which are defined

as “relations between abstract objects that are not realized explicitly in the text and are left to be

inferred by the reader” (Prasad et al., 2008). (Ex. 2) shows an example of an Implicit relation.

(Ex. 2) Some have raised their cash positions to record levels. High cash positions help buffer a

fund when the market falls.

In (Ex. 2) the reader can infer a relation of causality, although it is not explicitly signaled by a

DC; there is an implicit because between the sentences. Implicit relations are difficult to identify

automatically because no typical lexical marker from a well-defined grammatical category directly

signals them. However some Implicit relations are signaled by textual units that use alternative

lexicalizations (AltLex) to Explicit DCs. AltLex are an open class of phrases present in

sentences where providing an Explicit DC would lead to a redundancy in the expression of the

relation. Alternatively they can be thought as lexical realizations that signal discourse relations that

are not part of the closed set of Explicit. For example in (Ex. 3),

(Ex. 3) It said the delay resulted from difficulties in resolving its accounting of a settlement with

the Federal Trade Commission.

the phrase the delay resulted from signals a relation of causality using an AltLex because the use of

an Explicit DC such as because would lead to a redundant expression of the causality relation.

This thesis aim to identifying DCs with textual elements (i.e. Explicit and AltLex) in a

multi-lingual context.

1.1 Goals of the Thesis

The goal of this thesis is to develop a multi-lingual approach to the identification of Explicit

and AltLex DCs in the context of the Discourse Relation Parsing and Treebanking (DISRPT)

2021 shared task. The DISRPT shared task has been organized by the NLP community since 2019 to

advance the state of the art in computational discourse parsing. We were particularly interested in the

track of Discourse Connective Identification across Languages, which aim to identify the location

2



of discourse connectives in texts. The most recent attempts at multilingual discourse connective

identification have achieved very good results (F-measure of 92.02 for English, 94.11 for Turkish

and 87.52 for Chinese) (Gessler et al., 2021), but the methods used are typically complex and require

many handcrafted features. In this thesis, we will show how a simpler approach that does not rely on

linguistic features can achieve similar performances, using the data sets and evaluation metrics of

DISRPT 2021. We will develop and experiment with DC identification models based on transformer

embeddings and different classification heads that perform well in multiple languages. Results

with the DISRPT-2021 data set show that our approach is able to achieve a similar performance

in multilingual discourse connective identification as the SOTA approach (Gessler et al., 2021).

Our hypothesis is that BERT and BERT like transformer models already learn relevant discourse

information in their pre-training tasks, and therefore fine-tuning these models simply aligns them

to the task of DC identification. We show this by creating DC identification models in English,

Turkish, and Chinese, which achieve strong performances even when we reduce the amount of

training data available. As part of our experiments, we also created synthetic data to augment the

training corpus as a means to improve the performance on low-resource languages. However, the

synthetic data sets created by our methods seem to be of questionable quality and do not lead to an

increase in performance. Following an inspection of these data sets, we propose ways of improving

their quality.

1.2 Contributions

This thesis presents a number of theoretical and practical contributions. Note that contributions

1 to 3 below are the focus of our recently published paper at the 27th International Conference on

Natural Language & Information Systems (NLDB-2022) (Muermans and Kosseim, 2022).

(1) The implementation of various DC identification models using transformers as a embedding

that reach SOTA performance, yet do not need any handcrafted features (see Chapter 3).

(2) The creation of synthetic Turkish and Chinese corpora with DC annotations (see Chapter 3).

3



(3) Experimentation with the synthetic Turkish and Chinese corpus, in order to augment the data

available for those languages and to see how they impact performance (see Chapter 4).

(4) Experimentation with corpus reduction to determine how much training data is needed to

create models that still perform well (see Chapter 4).

(5) An analysis of the models’ results in order to understand which DCs are well identified and

which the models struggle with (see Chapter 4).

(6) An analysis of the synthetic Turkish and Chinese data sets and proposals to improve their

quality (see Chapter 4).

1.3 Thesis Structure

This chapter motivated the importance of multilingual discourse connective identification and

how it can help improve other NLP tasks. The rest of this thesis is structured as follows: Chap-

ter 2 reviews the theory of the models and methods that are important to better understand the work

presented. In particular, we describe the Penn Discourse Treebank framework and how it was im-

plemented in other languages such as Chinese and Turkish, we present the data sets used in our

experiments, and how we evaluated the performance of our models. Lastly, we present previous

work on multilingual discourse connective identification. Chapter 3 details the models we devel-

oped for the task, as well as the procedure for creating synthetic datasets for Chinese and Turkish.

Chapter 4 shows the results of our experiments and present an in-depth analysis of the results, show-

ing where the models struggle and how well they performs on individual DCs for each language,

identifying errors in the synthetic data sets and proposing ways to improve them further. Chapter 5

presents our conclusions and future work.

4



Chapter 2

Related Work

The goal of this thesis is to develop a multilingual discourse connective identification in the

context of the Discourse Relation Parsing and Treebanking (DISRPT) 1 2021 shared task. As such,

the approach is based on data annotated with the PDTB framework, and the languages in question

are English using the Penn Discourse Treebank, Chinese using the Chinese Discourse Treebank,

and Turkish using the Turkish Discourse bank. In this chapter, we will briefly describe each corpora

in Section 2.2, and because this work was framed within the DISRPT shared task, we will describe

how the organisers use the corpora for the task in question (Section 2.3.1), and how the task is

evaluated and the metrics used (Section 2.3.2). We will then describe the models (Section 2.1) and

methods (Section 2.1.2) that will be of importance to this work, and finally we will discuss past

work on multilingual discourse connective identification (Section 2.3.3).

2.1 Basic NLP Techniques

Neural approaches have gained popularity and have been achieving state-of-the-art performances

for many natural language processing tasks over the last decade as availability to computation re-

sources have increased and tools/frameworks have become more easily available and easy to use.

Before describing specific neural approaches to DC identification, let us first describe the basic

neural networks used by these approaches.
1for more information go to: https://sites.google.com/georgetown.edu/disrpt2021/home
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2.1.1 Annotation Projection

Corpus augmentation has been shown to improve many NLP tasks where annotated data sets are

scarse. In particular, annotation projection has shown its usefulness for many tasks, such as part-of-

speech tagging (Yarowsky et al., 2001), word sense disambiguation (Bentivogli and Pianta, 2005),

dependency parsing (Tiedemann, 2015) and discourse relations identification (Laali and Kosseim,

2017). Since they are semantic and rhetoric in nature, it is often assumed that discourse annotations

can be projected from one language to the another through word alignment. In particular, Laali

(2017) created a PDTB styled discourse corpus for French, by projecting discourse annotation from

English (the PDTB) to French and using statistical word-alignment to identify unsupported annota-

tions that should not be projected. The resulting corpus improved the performance of their French

DC parser by 15%. Given the success of annotation projection for discourse analysis, we investi-

gated its use to create synthetic corpora for DC annotation in Turkish and Chinese (see Section 3.3).

2.1.2 Word Alignment

Word alignment as seen in Figure 2.1, maps words from one language to another language.

Word alignment is useful for many NLP tasks, such as machine translation (Brown et al., 1993), ty-

pological analysis (Östling, 2015) (Lewis and Xia, 2008), and most importantly annotation projec-

tion (Yarowsky et al., 2001) (Laali, 2017). In the 1990’s to 2010’s, word alignment was done using

statistical word aligners such as Giza++ (Och and Ney, 2003). Then with the rise of neural net-

works, several attempts have been made to develop neural word alignment (Peter et al., 2017) (Garg

et al., 2019), however these require large parallel training corpora which can be difficult to come by.

SimAlign (Jalili Sabet et al., 2020) attempts to remedy this problem by using existing static mul-

tilingual embedding trained on non-parallel data in an unsupervised manner, such as multilingual

BERT. This method has shown to match or outperform state-of-the-art word alignment results for

the languages tested. As shown in Section 3.3, Word alignment will be used to project annotations

from an English parallel corpus to Turkish corpus and Chinese Corpus.

6



Figure 2.1: Example of word alignment French and English

2.1.3 Conditional Random Fields

Similarly to RNNs (see Section 2.1.4) and LSTMs (sec Section 2.1.4.1), Conditional Random

Fields (CRF) (Lafferty et al., 2001) are appropriate for sequence labelling tasks. CRFs model a

conditional probability distribution over input sequences x and label sequences y, p(y|x). They are

able to capture the dependencies between label predictions by building a graphical model that takes

context into account. An important thing to note is that a CRF does not model the dependencies that

may exist in the input x, therefore it does not model the marginal p(x). The formal definition of a

CRF on (x, y) is as defined by Sha and Pereira (2003):

pλ(y|x) =
exp λ · F (y, x)

Zλ(x)
(1)

where λ is the weight vector, y is the label sequence, x is the input sequence, F (y, x) are feature

functions (given by Equation 2), and Zλ(x) is a partition function (given by Equation 3):

F (x, y) =
∑︂
i

f(y, x, i) (2)

where i ranges over the input positions, and f(y, x, i) is a feature function, which can be anything

so long as the input that that function are y (target), x (input) and i (input position).

Zλ(x) =
∑︂
y

exp λ · F (y, x) (3)

To get the most likely predicted label sequence for input sequence x:

ŷ = argmax
y

pλ(y|x) = argmax
y

λ · F (y, x) (4)
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We can train a CRF maximizing the log-likelihood of a given training set T = (xk, yk)
N
k=1, where

the maximum is attained when the empirical average of the global future vector is equal to its model

expectation.

Lλ =
∑︂
k

log pλ(yk|xk) =
∑︂
k

[λ · F (yk, xk)− log Zλ(xk)] (5)

To optimize, we seek the zero gradient which will occur as mentioned before where the average

global features vector is equal to its model expectation:

∇Lλ =
∑︂
k

[F (yk, xk)− Epλ(y|xk)F (y, xk)] (6)

CRFs have been used for a wide variety of NLP tasks, including part-of-speech tagging, where

Lafferty et al. (2001) showed that CRFs outperformed other graphical models (Hidden Markov

Model, maximum entropy Markov models) for this task. Sha and Pereira (2003) showed it could be

used for shallow parsing for NP chunking.

2.1.4 Recurrent Neural Networks

As text is data with sequential dependencies, it is natural to use a neural network that can learn

these sequential dependencies. Recurrent neural networks (RNN) do this by allowing the layers

of the network to have connections to themselves and to the layers before and after them. The

formulation of a vanilla RNN is as follows:

ht = fh(Whxt + Uhht−1 + bh) (7)

yt = fy(Wyht + by) (8)

where xt is the input vector (eg. a word in a sentence), ht is the hidden state, yt is the output vector

(eg. a label for a word), W,U are trainable parameter matrices, and b (the bias) is a trainable vector.

fh and fy are non-linear activation functions such as ReLU, softmax, sigmoid.

Although RNNs have many benefits compared to feedforward neural networks for sequen-

tial data, they do have drawbacks. RNNs cannot be parallelized during training, as one input at
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Figure 2.2: Recurrent neural network: (a) Recurrent network presented with the self-loop (b)
Unrolled presentation of RNN with respect to time. (Davari, 2020)

time t needs the result of time t-1, which causes the training procedure to be time consuming.

Additionally, vanilla RNNs have difficulty with long input sequences. These can cause a van-

ishing or exploding gradient problem as shown by Bengio et al. (March 1994); Hochreiter and

Schmidhuber (November 1997), and effectively stops the RNN from learning anything. To address

this issue Hochreiter and Schmidhuber (November 1997) proposed the Long Short-Term Memory

(LSTM) architecture.

2.1.4.1 Long Short-Term Memory

In order to address the vanishing and exploding gradient problems, Hochreiter and Schmidhuber

(November 1997) proposed a modification to the vanilla RNN unit, Long Short-Term Memory

(LSTM), that allows the network to remember over an arbitrary sequence length. This process is

done using an input gate, a forget gate, and an output gate. Figure 2.3 shows the architecture of

an LSTM unit. As the bottom portion of the figure shows, the previous output ht−1 is combined

with the current input xt; using a Sigmoid (σ) this is similar to the vanilla RNN using a Sigmoid

activation. The top portion addresses the vanishing and exploding gradient problems by allowing

the network to select what to remember from the previous state and the current state. The formal

definition of an LSTM unit is shown in Equations 10, 10, and 11, where i is the value of the input

gate, f is the value of the forget gate, and o is the value of the output gate. All these values are
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Figure 2.3: LSTM architecture (Davari, 2020)

computed at time t.

it = σ(U ixt +W iht−1) (9)

ft = σ(Ufxt +W fht−1) (10)

ot = σ(Uoxt +W oht−1) (11)

where xt is the input at time iteration t, ht−1 is the output of the LSTM unit at the previous time

step, Us are the matrices of weights connecting the input to the LSTM unit, W s are the matrices of

weights used for the internal connections of the LSTM, and σ is the Sigmoid activation function.

The final output of the LSTM at time t, ht, is computed as the dot product (⊙) between the cell state

(what to remember) and the output of the Sigmoid:

ht = tanh(Ct)⊙ ot (12)
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where Ct is called the cell state and is computed via the following 2 equations:

C∗
t = tanh(Ugxt +W ght−1) (13)

Ct = σ(ft ⊙ Ct−1 + it ⊙ C∗
t ) (14)

While the LSTM does result in better performances over long sequences compared to the vanilla

RNN, it introduces a new problem, that is all these new weight matrices and additional computation

make it expensive to train in time and in computational resources. In addition, the LSTM does not

solve the lack of parallelization issue of the vanilla RNN. To address this issue a new architecture

must be used, the Transformer.

2.1.5 Transformers

Transformers address some of the issues of RNNs. As seen in Section 2.1.4, RNNs are not

parallelized; meaning the training is prohibitive yet computational resources are left unused. Trans-

formers (Vaswani et al., January 2017) aim to remedy this in their architecture. The Transformers

architecture is based only on the attention mechanism. Attention allows a network to focus on what

is important and the dependencies between inputs and target outputs. The algorithm achieves this

by distributing weights to the components of an input; for an NLP task this would in the input

words, which allows it to model long term dependencies. Over a sequence of length n, an RNN has

to essentially loop through the entire sequence. This leads to O(n) computation complexity over

the sequence, whereas Transformers are parallelized over the sequence, meaning they have a O(1)

complexity. The complexity of the transformer also determines the length of the longest path that

the model has for modeling long term dependencies and as Bengio et al. (March 1994); Bahdanau

et al. (May 2015) showed, longer paths prevent gradient error signals from being propagated. Trans-

formers having a longest path of O(1) easily handle long term dependencies. Based on Vaswani

et al. (January 2017) attention in Transformers is defined as:

Attention(Q,K, V ) = softmax

(︃
QKT

√
n

)︃
V (15)
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where K and V are key-value pairs that represent the encoding; and Q, the query, is the output of the

decoder. Transformers perform this attention operation multiple times, leading to the name Multi-

head attention, which allows the model to attend to different dependencies within the sequence.

For a natural language sentence, these dependencies might be semantic (eg. discourse relations),

or syntactic (eg. part-of-speech) dependencies. The number of times the attention operation is

performed depends on the number of heads h:

MultiHead(Q,K, V ) = [head1, . . .headh]W
O (16)

where headi = Attention(QWQ
i ,KWK

i , V W V
i ) (17)

where WO, WQ
i , WK

i , and W V
i are weight matrices that will be adjusted as training is done.

2.1.5.1 Bidirectional Encoder Representations from Transformers

Devlin et al. (2018) proposed the Bidirectional Encoder Representations from Transformers

(BERT) model, which is a pre-trained language model using a multi-layer bidirectional transformer

encoder architecture. BERT models help to alleviate the problem of designing task specific models,

by proposing a model that is pre-trained in an unsupervised fashion, then using this model as an

embedding and fine-tuning it for a specific task. BERT is pre-trained on two language modeling

tasks: masking language model (MLM), designed to understand the context around a word, and

next sentence prediction (NSP), which seeks to model the relation between two sentences. As

Figure 2.4 shows, once the model is trained on a large corpus, it can be fine-tuned with ease by

changing what is inputted into the model and which output is important for the downstream task.

Sections 3.2.1, 3.2.2, 3.2.3, 3.2.4, will describe how we use BERT in our work. Given the success

of BERT in many NLP tasks, several more specific models have been developed as follow-ups.

2.1.5.2 Generative Pre-trained Transformer 2

Radford and Narasimhan (2018) proposed a Generative Pre-trained Transformer (GPT) model

whose goal is to learn a universal representation that transfers to a wide range of tasks with little

adaptation. The model is pre-trained in two stages. The first stage is a language modeling objective

12



Figure 2.4: Fine-tuning BERT in downstream tasks with few new training parameters added to the
base model and slightly modified training objective. (Devlin et al., 2018)

13



on unlabeled data, which initialized the model parameters. In the second stage, the model is adapted

to a target task using a corresponding supervised objective. GPT-2 (Radford et al., 2019) has a

similar objective, base transformer architecture and training methods as GPT. However, it has an

order of magnitude more learning parameters than GPT while also being trained on more data.

GPT-2 should be able to generalized very well to a wide variety of tasks given its size. Section 3.2.6

will describe how we used GPT2 in our work.

2.1.5.3 A Robustly Optimized BERT Pretraining Approach

Liu et al. (2019) introduced a Robustly Optimized BERT Per-training Approach (RoBERTa),

because they found that BERT was under-trained in its per-training tasks. The resulting RoBERTa

model achieved at the time state-of-the-art on GLUE2, RACE3, and SQuAD4. To achieve these

results they trained the model longer, with larger batches, over more data, in addition, they removed

the next sentence prediction objective, trained on longer sequences and dynamically changed the

masking pattern applied to the training data. While the architecture of RoBERTa remains the same

as BERT, it is better optimized. Therefore using this model should result in better performances

over using BERT. Section 3.2.5 will describe how we used RoBERTa in our work.

2.1.6 Tokenization

Tokenization is an important step in NLP tasks, and can be done in many different ways. Tra-

ditionally, tokens were made from words and punctuation separated by white spaces or other punc-

tuation marks. This worked well enough for languages similar to English, but was insufficient

for languages where punctuation is different and spacing between words may not exist (eg. Chi-

nese, Japanese). With these languages, this approach results in large vocabularies that are incapable

of handling out-of-vocabulary words. To fix these issues, new tokenization methods that rely on

sub-words have been proposed. These approaches breakdown complex or rare words into multiple

sub-units that still retain some of their meaning, resulting in a smaller and more flexible vocabulary.

There are many ways of doing sub-word tokenization, the two we are interested in are:
2https://gluebenchmark.com/
3https://www.cs.cmu.edu/˜glai1/data/race/
4https://rajpurkar.github.io/SQuAD-explorer/
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• WordPiece algorithm (Wu et al., September 2016).

• Byte Pair Encoding (BPE) algorithm (Sennrich et al., August 2016).

BERT uses the WordPiece algorithm, which first creates a vocabulary with every character in the

training set and progressively learns a given number of merge rules that maximized the likelihood

of the training set, if a “character symbol pair probability divided by the probabilities of its first

symbol followed by its second symbol is the greatest among all symbol pairs.”5

Whereas, RoBERTa and GPT-2 use BPE, which uses a set of unique words and their frequencies

to build a vocabulary of symbols and learns merge rules to form new symbols from pairs of symbols

in the base vocabulary, then counts which symbol pair are most frequent, and this process is repeated

until the vocabulary reaches a desired size.

2.2 Penn Discourse Treebank Framework and Corpora

The Penn Discourse Treebank (PDTB) framework (Prasad et al., 2008) is one of the most widely

used annotation scheme developed to facilitate research in computational discourse analysis by

providing strict annotations guidelines to create annotated texts labeled with discourse connectives,

discourse arguments, and discourse relations. The PDTB framework was originally used to create

an annotated corpus for English, called the PDTB corpus (see Section 2.2.1), which was annotated

by linguists and reached a very high annotator agreement; then several corpora following the PDTB

framework were created, including the CDTB for Chinese (see Section 2.2.2) and the TBD for

Turkish (see Section 2.2.3).

2.2.1 English PDTB Corpus

The Penn Discourse Treebank (PDTB) (Prasad et al., 2008) corpus was created using the Penn

Treebank (PTB) (Marcus et al., 1993) corpus, itself composed of articles from the Wall Street Jour-

nal (WSJ). The PDTB is based on the simple idea that discourse relations are signaled by a set of

words or phrases called discourse connectives (DC) or in adjacent sentences for Implicit rela-

tions. The PDTB annotates the beginning and the end of two textual units related by a discourse
5https://huggingface.co/docs/transformers/tokenizer_summary
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relation. These textual units are known as arguments, Arg1 and Arg2, which may include a DC.

The discourse relation between the two arguments is labeled with a sense. Figure 2.5 shows a

hierarchy of the possible senses in the PDTB 3.0.

Figure 2.5: PDTB 3.0 sense hierarchy (Rehbein et al., 2016)

Discourse relations in the PDTB can be signaled by:

(1) Explicit relations: (Ex.) The city’s Campaign Finance Board has refused to pay Mr.

Dinkins $95,142 in matching funds because his campaign records are incomplete.

(2) Implicit relations: (Ex.) The city’s Campaign Finance Board has refused to pay Mr.

Dinkins $95,142 in matching funds. His campaign records are incomplete.
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Training Validation Test
Explicit 14722 680 923
Implicit 13156 522 769
AltLex 524 19 30
EntRel 4133 215 217
NoRel 204 8 4
Total 32739 1444 1943

Table 2.1: Statistics of the PDTB 3.0.

(3) Alternative lexicalizations AltLex: (Ex.) It said the delay resulted from difficulties in re-

solving its accounting of a settlement with the Federal Trade Commission.

(4) Entity relations EntRel: (Ex.) Hale Milgrim, 41 years old, senior vice president, marketing

at Elecktra Entertainment Inc., was named president of Capitol Records Inc., a unit of this

entertainment concern. Mr. Milgrim succeeds David Berman, who resigned last month.

(5) No Relation NoRel: (Ex.) Mr. Rapanelli met in August with U.S. Assistant Treasury Secre-

tary David Mulford. Argentine negotiator Carlos Carballo was in Washington and New

York this week to meet with banks.

Explicit relations are signaled by a well defined closed set of 100 DCs (e.g. but, if, because...),

these 100 DCs more frequently signal discourse relations over other terms. Whereas Implicit

relations are not signaled by a textual element, but rather they are inferred by the context. Similarly

to Implicit, AltLex are not signaled by a closed set of DCs but by a more flexible textual

expression, any discourse relation that is signaled by textual realization that is not part of the 100

DCs is an AltLex DC. EntRels are signaled via an entity-based coherence relation and are

closely related to Implicit relations. Lastly NoRel, where an implicit connective could not be

provided.

Table 2.1 shows statistics of the PDTB 3.0. The PDTB is split into 24 sections. The PDTB

manual suggests using sections 02 to 21 for training, sections 0, 1 and 24 for validation, and section

23 for testing. This section splitting is often called the PDTB-split.

In the PDTB, Explicit and Implicit relations are annotated separately. For Explicit

relations, the first step involves finding the DC. DCs can be characterized by 3 syntactic functions:
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(1) Subordinating conjunctions: (Ex.) The cyclist took the traffic heavy boulevard because they

did not have safer alternative routes.

(2) Coordinating conjunctions: (Ex.) They lived in Montreal, and went to study at Concordia

University.

(3) Discourse adverbials: (Ex.) Anyway , I need to go and pick up lunch.

It is important to note that some DCs may be used in a discourse usage (DU) (see Ex. (Ex. 4))

or in a non-discourse usage (NDU) (see (Ex. 5)). This is a source of ambiguity in the annotation

procedure. In (Ex. 4) ‘and’ is in discourse usage (DU) because it links the two arguments by an

expansion-conjunction relation; whereas, in (Ex. 5) ‘and’ is used in an itemized list (i.e. NDU).

(Ex. 4) It employs 2,700 people and has annual revenue of about $ 370 million.

(Ex. 5) My favorite languages are Python and Go.

Once the DC is located, its arguments Arg1 and Arg2 need to be identified, this is highly

dependent on the physical location to the connective.

Annotating Implicit relations follows the same principle as Explicit relations, except

that the DC is not present. The goal of the annotators was, therefore, to identify where a DC could

have been located. Because this task is not always easy, constraints were imposed. Implicit

relations can only occur within a sentence bounded by a period, a question mark, an exclamation

mark, or a semicolon or within a pair of sentences which are adjacent and do not cross paragraph

boundaries. Once a relation is identified, the annotator inserts a DC that could convey the same

discourse relation. If no DC is applicable, they must identify if the relation is signaled by AltLex,

EntRel, or NoRel.

2.2.2 Chinese Discourse Treebank (CDTB)

The Chinese Discourse Treebank (CDTB) (Zhou and Xue, 2015) is a subset (70k words) of the

Chinese Treebank (4.1 million words), where discourse relations have been annotated following the

PDTB framework with some alterations. The most important changes include the adoption of a flat
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sense inventory containing 11 classes (Alteration, Causation, Conditional, Conjunction, Contrast,

Expansion, Purpose, Temporal, Progression, EntRel, and NoRel). This was done to facilitate the

task of the annotators given the specificities of the Chinese language itself. Unlike the PDTB,

where Explicit and Implicit relations were annotated separately, these relations were marked

simultaneously in the CDTB. This was done for a variety of reasons, but the main one being that in

Chinese Explicit discourse relations only account for 22% of all discourse relations, as it is very

common to drop the DCs in Chinese; whereas in English, Explicit relation account for 45.47%

of the PDTB. Table 2.2 shows statistics of the CDTB.

Identifying Explicit relations in Chinese is similar to that of English: First, a DC must

be found, characterized by the same 3 syntactic functions, but Chinese has an additional function

called “localizers”. Subordinating conjunctions, coordinating conjunctions, and “localizers” have

two lexical realizations: single and paired. Paired DCs, also known as discontinuous DCs, consist

of single DCs fragmented with a textual span between the segments (e.g. if ... then). It is interesting

to note that while English has a very small number of discontinuous DCs, most DCs in Chinese

are discontinuous, though part of the pair can be dropped and would still be considered a DC.

In two Chinese common DC lexicons, (王起澜et al., 1989) contains 1165 DCs where 62.7% are

discontinuous DCs and (戴木金et al., 1988) contains 1344 DCs where 77.3% are discontinuous

DC. Unlike the PDTB, the identification of Chinese Arg1 and Arg2 is not based on their physical

location but rather on semantics, which is different for each sense. This makes the annotation

consistent between all forms of DCs: Explicit relations (single, paired, or if only part of a pair

is present) and Implicit relations.

Annotating Implicit relations in Chinese is different than in English. This is mainly because

of the way Chinese sentence boundaries are conventionalized. Unlike English, commas can often

indicate a sentence boundary in Chinese. This means that if Implicit relations are to be properly

identified, intra-sentential Implicit relations separated by a comma need to be annotated. Simi-

larly to English, the annotators were asked to insert a DC that best fits the relation being signaled.

If none were suitable, the annotators identified it as either an AltLex, EntRel, or NoRel.
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Count Ratio
Explicit 1223 22.10%
Implicit 4193 75.80%
AltLex 118 2.10%
EntRel 0 0.00%
NoRel 0 0.00%
Total 5534 100%

Table 2.2: Statistics of the CDTB.

2.2.3 Turkish Discourse Bank (TDB)

The Turkish Discourse Bank (TDB) (Zeyrek et al., 2013) (Demirşahin and Zeyrek Bozşahin,

2017) is built on a subset of the METU Turkish Corpus (MTC) (Say et al., 2002). The TDB con-

tains texts from various genres (novels, stories, research articles, essays, travel, interviews, diaries,

memoirs, news) written from 1990 to 2000. The TDB is also based on the PDTB framework, where

two text spans Arg1 and Arg2 are arguments to a DC. Similarly to English, DCs belong to three

syntactic classes:

(1) Conjunctions (coordinating and other). (Explicit)

(2) Subordinators/Subordinating Conjunctions (complex). (Ex.) için (for), karşın (although/de-

spite’) (Explicit)

(3) Discourse adverbials. (Explicit)

(4) Phrasal expressions. (AltLex)

The TDB does not annotate simplex subordinators, i.e converbs (-IncA ‘when,’ –ken ‘while, now

that’). In the TDB 1.0, only Explicit and phrasal expressions (a form of AltLex) are annotated

with their two arguments; their sense and other discourse relations were left for future work. The

TDB 1.1 takes 10% of the TDB 1.0 and adds AltLex, EntRel, Implicit where the best fit

DC is inserted, as well as sense to Explicit, AltLex, and Implicit. For the task of DC

identification we are mainly interested in Explicit, and AltLex, and because we do not need

the sense, we safely used the TDB 1.0. The Table 2.3 shows statistics of the TDB 1.0.
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Syntactic Class Count Ratio
Explicit 7789 94.18 %
Implicit 0 0.00%
AltLex 494 5.82%
EntRel 0 0.00%
NoRel 0 0.00%
Total 8483 100%

Table 2.3: Statistics of the TDB.

2.2.4 Other PDTB-style Corpora

2.2.4.1 TED-Multilingual Discourse Bank

The TED-Multilingual Discourse Bank (TED-MDB) (Zeyrek et al., 2019, 2018), is a paral-

lel corpus of TED talks transcriptions with PDTB styled DC annotations, identifying Explicit,

Implicit, AltLex, EntRels, and NoRels. The corpus contains 7 languages: English, Ger-

man, Lithuanian, Polish, Portuguese, Russian and Turkish. The annotation was done manually and

in a similar way to the original PDTB corpus (see Section 2.2), though several types of DCs that

tend to appear in speeches, such as attribution, pragmatic markers and modified connectives are not

annotated. This dataset is fairly small containing only 424 sentences and is not in the same format

as the DISRPT 2021 dataset, making it difficult to use for our research.

2.3 DISRPT 2021 Shared Task

2.3.1 DISRPT 2021 Datasets

The DISRPT 2021 (Zeldes and Liu, 2021) shared task provides a script to convert/move the

PDTB, TDB and CDTB raw textual data into three different formats: conllu, tok, and rels. For

the task of DC identification, we are only interested in Explicit and AltLex as these are the

only relations that are signaled via a textual element. The conllu format6 provides plain text an-

notations of various linguistic features. Listing 2.1 shows a sample from the conllu training set.

As shown in Listing 2.1, each word is annotated with the word lemma, universal part-of-speech,

language-specific part of speech, list of morphological features, head of the current word, universal
6see https://universaldependencies.org/format.html for a breakdown of each field
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dependency relations, enhanced dependency graph and a section for any other annotation. The DIS-

RPT 2021 shared task uses the section for any other annotation to signal the presence of a DC or the

lack thereof. A DC is annotated with the label Seg=B-Conn which signals that the word is the be-

ginning of a DC, and Seg=I-Conn which signals that the word is inside of a DC. The example in

Listing 2.1 shows the Explicit DC ‘in fact’ annotated with Seg=B-Conn and Seg=I-Conn.

The conllu files provided by the DISRPT 2021 shared task are split by sentence and the words/punc-

tuation are tokenized, this makes the task of DC identification into one of token classification, where

the model needs to predict a tag for each token. Table 2.4 shows statistics of each conllu file. The

tok file similarly tokenizes the words/punctuation but does not split the sentences in the raw text,

nor does it provide any additional linguistic features. It annotates DCs in a similar way to the conllu

files, signaling that the word is the beginning of a DC with Seg=B-Conn and a word is inside a DC

with Seg=I-Conn. The rels file provides annotations on the sense of the relation being signaled

by the DC.

Corpus Language # of Sentences # tok B-Conn + I-Conn % tok B-Conn + I-Conn
PDTB-train English 44,563 28,349 2.671
PDTB-dev English 1703 1,112 2.796
PDTB-test English 2364 1,483 2.665
TDB-train Turkish 24,960 7,572 1.900
TDB-dev Turkish 2,948 888 1.777
TDB-test Turkish 3,289 919 1.919
CDTB-train Chinese 2,049 1,171 2.249
CDTB-dev Chinese 438 398 3.560
CDTB-test Chinese 404 354 3.514

Table 2.4: Statistics of the conllu training, validation and test data at DISRPT 2021.

For the purpose of multilingual DC identification we used the conllu files.
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Listing 2.1: Example of a PDTB conllu file (eng.pdtb.pdtb train-1677)
# sent_id = eng.pdtb.pdtb_train-1677

# s_type = decl

# text = In fact , " the market has always tanked .

1 In in ADP IN _ 2 case 2:case Seg=B-Conn

2 fact fact NOUN NN Number=Sing 9 obl 9:obl:in Seg=I-Conn

3 , , PUNCT , _ 9 punct 9:punct _

4 " ‘‘ PUNCT ‘‘ _ 9 punct 9:punct _

5 the the DET DT Definite=Def|PronType=Art 6 det 6:det _

6 market market NOUN NN Number=Sing 9 nsubj 9:nsubj _

7 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 aux 9:aux _

8 always always ADV RB _ 9 advmod 9:advmod _

9 tanked tank VERB VBN Tense=Past|VerbForm=Part 0 root 0:root _

10 . . PUNCT . _ 9 punct 9:punct _

2.3.2 DISRPT 2021 Metrics

The evaluation of DC identification models, is done using the standard metrics of precision,

recall and F-measure.

Precision P measures the ratio of true positives Tp to the sum of Tp and false positives Fp and

can be seen as measuring the quality of the predictions:

P =
Tp

Tp + Fp
(18)

Recall R measures the ratio of Tp to the sum of Tp and false negatives Fn and can be seen as

measuring the quantity of predictions:

R =
Tp

Tp + Fn
(19)

Using two different metrics can make it difficult to know which predictions are better; this is

why P and R are combined into a single measure; the F-measure. For the purpose of the this thesis

we will only use F1 which is the harmonic mean of P and R:

F1 = 2 · 1
1

recall +
1

precision
= 2 · precision · recall

precision + recall
(20)

The evaluation script provided by DISRPT 2021 uses a strict exact match of the DC annotation
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and no points are given for partial identification. To better understand how the evaluation script

works, Listing 2.2 shows an example gold annotation for the generic sentence “A B C D E F.”

Listings 2.3 to 2.8 show possible predictions for this sentence. We will look at the P , R and F1 for

each.

Listing 2.2: Sample Gold Annotation
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ Seg=B-Conn
3 C _ _ _ _ _ _ _ Seg=I-Conn
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ Seg=B-Conn
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Listing 2.3: Sample Prediction 01: No DC identified
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ _
3 C _ _ _ _ _ _ _ _
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ _
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

The sample prediction 01, shown in Listing 2.3 annotates none of the words as DCs. Hence its

performance can be calculated as P = 0
0+0 = 0.0%, R = 0

0+2 = 0.0% and F1 = 2 · 0·0
0+0 = 0.0%,

as the official evaluation script is only concerned with DCs.

Listing 2.4: Prediction 02: Only a partial DC identified
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ Seg=B-Conn
3 C _ _ _ _ _ _ _ _
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ _
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Prediction 02 in Listing 2.4 identifies only one DC starting and ending at word B. Its performance

will therefore be calculated as P = 0
0+1 = 0.0%, R = 0

0+2 = 0.0% and F1 = 2 · 0·0
0+0 = 0.0%, as

only complete matches to a DC in the gold are given points.
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Listing 2.5: Prediction 03: One DC identified (multi-word DC)
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ Seg=B-Conn
3 C _ _ _ _ _ _ _ Seg=I-Conn
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ _
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Prediction 03 in Listing 2.5 identifies one DC starting on B and ending on C, matching the gold

annotation for that DC; but the DC at word E is not identified. Its performance therefore will be

calculated as P = 1
1+0 = 100.0%, R = 1

1+1 = 50.0% and F1 = 2 · 1.0·0.5
1.0+0.5 = 66.7%.

Listing 2.6: Prediction 04: Extra word in DC is identified
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ Seg=B-Conn
3 C _ _ _ _ _ _ _ Seg=I-Conn
4 D _ _ _ _ _ _ _ Seg=I-Conn
5 E _ _ _ _ _ _ _ _
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Prediction 04 in Listing 2.6 identifies one DC starting on B and ending on D, which does not match

the gold standard, D should not be identified; additionally the DC at word E is not identified. Its

performance therefore will be calculated as P = 0
0+1 = 0.0%, R = 0

0+2 = 0.0% and F1 =

2 · 0.0·0.0
0.0+0.0 = 0.0%.

Listing 2.7: Prediction 05: One DC identified (single-word DC)
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ _
3 C _ _ _ _ _ _ _ _
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ Seg=B-Conn
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Prediction 05 in Listing 2.7 annotates a DC starting and ending at E, matching the gold annotation

for that DC; but misses the DC at BC. Its performance therefore will be calculated as P = 1
1+0 =

100.0%, R = 1
1+1 = 50.0% and F1 = 2 · 1.0·0.5

1.0+0.5 = 66.7%.
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Listing 2.8: Prediction 06: One correct and one partial DC identified
# text = A B C D E F .
1 A _ _ _ _ _ _ _ _
2 B _ _ _ _ _ _ _ Seg=B-Conn
3 C _ _ _ _ _ _ _ _
4 D _ _ _ _ _ _ _ _
5 E _ _ _ _ _ _ _ Seg=B-Conn
6 F _ _ _ _ _ _ _ _
7 . _ _ _ _ _ _ _ _

Prediction 06 in Listing 2.8 annotates the start and end of a DC at B (instead of BC) and another

starting and ending at E. Its performance therefore will be calculated as P = 1
1+1 = 50.0%,

R = 1
1+1 = 50.0% and F1 = 2 · 0.5·0.5

0.5+0.5 = 50.0% as the partial identification does not count.

2.3.3 Previous Approaches to DC Identification

The earliest attempt at identifying DCs automatically using the PDTB dates back to Pitler and

Nenkova (2009) who used extracted features from gold-standard Penn Treebank parses, and a max-

imum entropy classifier and obtained an F-measure of 94.19 for Explicit DC disambiguation on

the PDTB test set. Johannsen and Søgaard (2013) showed that a simple logistic regression model

could achieve better results without relying on gold-standard parse trees, using lexical features and

part-of-speech tags only. Laali et al. (2016) created a complete discourse parser that first identi-

fies Explicit DCs, annotated the sense, and segmented Arg1 and Arg2 automatically. To do

this, they used a decision tree binary classifier to disambiguate if the connective is in discourse

usage (DU) or not (NDU), then used a different decision tree to identify the sense, and used a con-

ditional random field (CRF) to segment Arg1 and Arg2. This work achieved 91.00 F-measure

for Explicit DC identification, 89.48 F-measure for sense labeling of those Explicit DCs

and 40.23 F-measure for Explicit argument identification on the PDTB test set. Explicit

DC identification can be done using non-neural approaches to near human level performance, for

English using the PDTB as a training set.

In 2019, Muller et al. (2019) was the team with the best performance. They employed mul-

tilingual BERT and bi-directional LSTMs and achieved F-measures of 88.60%, 69.85%, 79.32%

in English, Turkish and Chinese respectively. These results seem to correlate with the size of the

training set of 44k, 24k and 2k respectively. This motivated creating synthetic data to increase the
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performance for the lower-resource languages. The most recent attempt for the detection of mul-

tilingual DC identification, (Gessler et al., 2021) used transformer models (see Section 2.1.5) in

addition to many handcrafted input features and a conditional random field (see Section 2.1.3) as a

final classifier instead of a linear output layer, achieving the best performance at DISRPT 2021 with

an F-measure of 92.02%, 94.11%, 87.52% for English, Turkish and Chinese respectively; leading

to a significant improvement in all three languages.

In this chapter we have reviewed the PDTB framework and three datasets in different languages

that employ the framework to create corpora with discourse annotation: we explained the differ-

ent type of discourse annotation which can be found in these corpora Explicit, Implicit,

AltLex, EntRel. We explained how the DIRSPT shared task uses this data to provide the par-

ticipants with an simple and intuitive datasets to train their models on which only contains the

annotation for DC that have textual elements (Explicit, AltLex), and how the evaluation script

they provided works. We then explained various models such as transformers and CRF and methods

(word alignment and annotation projection) that are important to the work presented in this thesis.

Lastly we went over recent work in multilingual discourse connective identification, which helped

guide the models we have used in this work. Chapter 3 will describe our approach in detail.
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Chapter 3

Models and Methods

This chapter will explain the frameworks used to create our model architectures (see Sec-

tions 3.1); then will go into detail about the specific models employed for DC identification (see

Section 3.2). An overview of the methods we developed for data augmentation: annotation projec-

tion, annotation agreement, and the union of the two will be described in Section 3.3. Followed by

a description of the corpora used for the augmentation of Chinese and Turkish corpora and how the

methods are implemented for the two languages. Finally the method used for data reduction will be

presented in Section 3.4.

3.1 Tools and Frameworks

We have developed and experimented with 6 different models for multilingual DC identification.

The details of each model will be described in Section 3.2. However, before describing the models,

let us present the built-in tools and frameworks that we used to build them.

3.1.1 Huggingface

All models rely on pre-trained embeddings (see Section 2.1.5). For this, we used Hugging-

face1, a community driven database of pre-trained models that are to be fine-tuned on downstream

tasks. The specific embeddings used in this thesis are shown in Table 3.1. As the table shows,
1https://huggingface.co/
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most embeddings are monolingual, while one model is multilingual. The multilingual model,

bert-base-multilingual-cased, is pre-trained on 104 languages, and has been used in

our research to validate if multilingual pre-training benefits our task or if it is a detriment (see

Section 4.1).

Model Citation Huggingface link Language # Parameters
bert-base-cased Devlin et al. (2018) https://huggingface.co/bert-base-cased English 110M
bert-large-cased Devlin et al. (2018) https://huggingface.co/bert-large-cased English 340M

roberta-base Liu et al. (2019) https://huggingface.co/roberta-base English 123M
gpt2 Radford et al. (2019) https://huggingface.co/gpt2 English 1.5B

dbmdz/bert-base-turkish-cased https://huggingface.co/dbmdz/bert-base-turkish-cased Turkish 110M
bert-base-chinese https://huggingface.co/bert-base-chinese Chinese 110M

bert-base-multilingual-cased Devlin et al. (2018) https://huggingface.co/bert-base-multilingual-cased 104 languages 110M

Table 3.1: Huggingface transformer models

The number of parameters is considered a good measure of how much generalization a model

can achieve, but also how much storage size and computer resources are required to train or fine-

tune it. As shown in Table 3.1, the GPT2 model is an order of magnitude greater than the BERT base

models (1.5B parameters versus 110M to 340M). It was used specifically to evaluate the influence

of its size on the performance for out task.

3.1.2 PyTorch

All our models (see Section 3.2) use various tools provided by PyTorch2. PyTorch is an open

source Python machine learning library that makes the creation and training of deep learning models

on the GPU simple. It performs dynamic tensor computations with automatic differentiation. In

particular, we have used PyTorch to implement LSTMs, GRUs, and Linear networks, as well as

functions such as Dropout, Dataset, DataLoader, and CrossEntropyLoss.

The CRF3 used is one that is implemented using PyTorch. This was used because it was easy

to insert in whatever model that required it and it is open source. The PyTorch-CRF documentation

states that the implementation is based on the one in the AllenNLP4 CRF module found on GitHub5.
2https://pytorch.org/
3https://pytorch-crf.readthedocs.io/en/stable/
4https://allenai.org/allennlp
5https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_

random_field.py
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3.1.3 Training Set-up

All the models developed were fine-tuned for a maximum of 40 epochs using early stopping

with a patience of 20 epochs. The models that are monolingual were trained on the appropriate

languages; for example, bert-base-cased (English) was fined-tuned on the PDTB only. On

the other hand multilingual models such as bert-base-multilingual-cased, were fine-

tuned in a multilingual way using all three language corpora.

3.2 Models

Figure 3.1 shows the general architecture of the models we have developed. Each model is

composed of a pre-trained embedding provided by Huggingface, and a classification head, which

predicts the label for each token. By experimenting with different embeddings and classifiers we

have created 6 specific models. Sections 3.2.1 to 3.2.6 will describe these in detail.

Figure 3.1: General architecture of all models.
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3.2.1 Model 1: BERT + Linear Layer

Model 1 is a standard BERT model. It uses a BERT embedding and a Linear layer classifier.

Figure 3.2 shows a diagram of this model. The input is tokenized using the BERT word piece

tokenizer (see Section 2.1.6); these tokens are then passed to the BERT embedding, the result of

which is then passed to a feed forward neural network made up of a linear layer that outputs 3

values, one for each class, and the most probable class is selected. For the embeddings, we ex-

perimented with bert-base-cased for English, dbmdz/bert-base-turkish-cased for

Turkish, bert-base-chinese for Chinese, and bert-base-multilingual-cased with

all languages are trained together.

Figure 3.2: Overview of Model 1: BERT-base DC annotation model for English, Turkish, and/or
Chinese

As shown in Figure 3.2, the linear layer consist of 1 layer with 768 hidden units.

3.2.2 Model 2: BERT + BiLSTM + Linear Layer

For the second model, we wanted to investigate how LSTMs would affect the fine-tuning of

BERT. The model adds 2 layers of bi-directional LSTMs between the BERT embedding and the

linear output layer. The size of the hidden layers of the BiLSTMs was set to 64, due to a limitation

in computational resources at the time. This model architecture is similar to the one of the best

performing models at DISRPT 2019 known as ToNy (Muller et al., 2019) for this particular task;

however, our model was allowed to train longer, had an additional BiLSTM layer, and had fewer

31



hidden units in the BiLSTMs. Figure 3.3 shows a diagram of the implemented model.

Figure 3.3: Overview of Model 2: BERT-base with BiLSTM DC annotation model for English,
Turkish, and/or Chinese

3.2.3 Model 3: BERT + BiGRU + Linear Layer

The third model is similar to the model with the LSTMs (Section 3.2.2) but the LSTMs are

replaced by 2 layers of bi-directional GRUs, which also have 64 hidden units. Figure 3.4 shows

a diagram of the implemented model. Because GRUs have fewer parameters than the LSTMs, we

wanted to experiment with them to validate whether the performance would suffer and whether the

performance of the task depends on how well the RNN can learn this task.

3.2.4 Model 4: BERT + Linear Layer + CRF

The fourth model considers the task as a sequence labelling task as opposed to an individual clas-

sifications. Hence, we wanted to evaluate the use of a CRF as the last layer of the model. Figure 3.5

shows a diagram of the implemented model. Similarly to the previous models, model 4 also uses

BERT embeddings (bert-base-cased or bert-large-cased for English, bert-base-chinese

for Chinese, dbmdz/bert-base-turkish-cased for Turkish, and bert-base-multilingual-case
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Figure 3.4: Overview of Model 3: BERT-base with BiGRU DC annotation model for English,
Turkish, and/or Chinese

for all) and the output is then sent to a linear layer that produces a score for each of the 3 labels

(B-Conn, I-Conn, and None). In model 4, these scores are then fed to a conditional random field

(CRF) (see Section 2.1.3) that produces the most likely final tags for each word given the whole

sentence into account.

Figure 3.5: Overview of Model 4: BERT-base with CRF output DC annotation model for English,
Turkish, and/or Chinese
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3.2.5 Model 5: RoBERTa + Linear Layer + CRF

The fifth model is similar to model 4, but replaces the BERT embedding with RoBERTa. How-

ever recall from Section 2.1.6 that RoBERTa uses the byte-pair encoding algorithm for tokenization;

hence this can have an effect on the output as well. This model was experimented with to evaluate

how a model that has slightly more parameters compared to BERT performs on this task. Figure 3.6

shows a diagram of the implemented model.

Figure 3.6: Overview of Model 5: RoBERTa-base with CRF output DC annotation model for En-
glish

Due to the unavailability of RoBERTa embeddings for Turkish and Chinese (see Table 3.1) this

model was only used for English.

3.2.6 Model 6: GPT2 + Linear Layer + CRF

The last model that we experimented with replaces the BERT embedding of model 4 with a

GPT2 transformer embedding. As described in Section 2.1.6, the tokenization is done using GPT2

byte-pair encoding, like the RoBERTa model. The GPT2 model contains learning parameters that

are an order of magnitude greater than the BERT model (1.5B versus 110M); therefore, we expected

this model to be able to generalize and perform better on the test set. Figure 3.7 shows a diagram of

the implemented model. Similarly to model 5, this model is only available for English and is only
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trained on the PDTB.

Figure 3.7: Overview of Model 6: GPT2-base with CRF output DC annotation model for English

All models above were experimented with in conjunction with corpus augmentation (see Sec-

tion 3.3) and corpus reduction (see Section 3.4)

3.3 Corpus Augmentation

Data augmentation has been shown to increase performance in many NLP tasks (Bentivogli and

Pianta, 2005; Tiedemann, 2015; Laali and Kosseim, 2017). Since DCs are semantic and rhetori-

cal in nature, it is often assumed that discourse annotations can be projected from one language to

another through word alignment. Therefore creating synthetic corpora with discourse connective

annotations from resource rich languages to lower resource languages could help improve the per-

formance of discourse connective identification models for these low resource languages. Given

that the Chinese CDTB only contains 2049 training instances (see Table 2.4), we explored the use

of data augmentation for this language. We also applied the data augmentation to Turkish to see if

additional data would benefit the task.

We developed two methods for data augmentation: Annotation Projection (see Section 3.3.1.1)

and Annotation Agreement (see Section 3.3.1.2). The first step in both approaches is to collect a

list of DCs in both the low and resource rich languages. These lists contain words annotated with
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B-Conn and a phrases (i.e. containing at least one I-Conn) and is extracted from the training sets

of each language. These lists will be used to determine if no DCs are present in a given sentence

or if the DC is present but not annotated by a model (i.e. in non-discourse usage). Once we have a

list of DCs in each language, we used then for both methods: annotation projection and annotation

agreement.

3.3.1 Methods

3.3.1.1 Annotation Projection

Annotation projection assigns an annotation from a source language word onto its aligned target

language word, given a word aligned corpus. For the dataset used at DISRPT 2021, annotation

projection involves the projection of the tags B-Conn and I-Conn from an English source dataset

onto a parallel word aligned target dataset. This is done by training DC identification models for

a source language (English) and a target language (Chinese or Turkish), then applying the trained

models to identify DCs in a parallel word aligned corpus. It is important to note that the projection

implemented in this research will only project annotations from the source language to the target

language if the target language instance does not contain any DC annotations. This is done in

order to capture DC annotations which the target language model was unable to label but which the

source language model did label. However, the correctness of the label in the source language is

undetermined, and this may lead to projecting incorrectly labeled DCs onto the target language. This

is a particular weakness of this method. Figures 3.8, 3.9, and 3.10 show how differently annotated

English and Chinese sentences will produce different outcomes. The algorithm for projection is

presented in Listing 3.1 and the method is detailed below. Example 1 in Figure 3.8, shows a DC

from English being projected onto the aligned Chinese phrases and being added to the synthetic

corpus. Example 2 in Figure 3.9, shows a sentence being added in the resulting synthetic corpus

that has no annotated DCs. This is because as Listing 3.1 shows, if the source sentence contains

a connective the target sentence is added. Example 3 in Figure 3.10, shows a sentence that is not

added because, as Listing 3.1 shows, if the target already has annotations, the sentence is not added.
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Listing 3.1: Projection Algorithm
SET source_sents TO [[sent]]
SET source_sent_conns TO [[conn]]
SET target_sents TO [[sent]]
SET target_sent_conns TO [[conn]]
SET alignments_target_to_source TO [[alignment]]
SET target_connectives TO {read_json_file}
SET ndu_counter TO 0

FOR sent_idx, alignment IN enumerate(alignments_target_to_source):
IF len(alignment) <= 3:

continue
SET source_conn to source_sent_conns[idx]
SET target_conn to [None] * len(target_sent_conns[idx])
SET target_sent to target_sents[idx]

SET all_none_target TO [i is None FOR i IN target_sent_conns[idx]]
SET all_none_source TO [i is None FOR i IN source_conn]
SET error TO False
IF all(all_none_target) and NOT all(all_none_source):

FOR item in alignment:
FOR target_idx, source_idx IN item.items():

TRY:
IF alignment valid:

SET target_conn[target_idx] TO source_conn[source_idx]
EXCEPT:

SET error TO True
continue

ELSE:
continue

IF error:
continue

SET source_conn TO CLEAN_CONN_FORM(source_conn)
SET all_none TO [i is None FOR i IN source_conn]
IF all(all_none):

IF NOT CHECK_IF_NDU(source_conn):
continue

ELSE:
ndu_counter += 1
IF ndu_counter % 2 EQUALS 0:

continue

WRITE_TO_CONLLU_FILE(source_conn)

For each alignment:

(1) Get all the tags in the English sentence and target language sentence.

(2) Check if:

• All the tags in target language sentence are None i.e. there is no DC in the target

language, and

• All tags in the English sentence are not None i.e. at least one English token is marked

as a DC.

(3) If (2) is true, iterate through the word alignments for this sentence, and project the tag found
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on the aligned English word to the aligned target language word. If a target language word is

aligned to multiple English words (i.e. a 1:n word alignment) then project only the tag of the

last aligned word to the target language word.

(4) Re-label the target sentence to make sure all DCs start with B-conn and not I-Conn.

(5) Drop all target sentences that contain no potential DC – i.e. no word in the sentence is part of

the language specific list of DCs. (see Section 3.3)

(6) Drop 50% of the sentences with at least one potential DC marked as non discourse usage –

i.e. at least one word in the sentence is part of the language specific list of DCs but is labeled

as None. This makes the dataset more balanced, otherwise the NDUs might drown out the

DUs.

(7) Add the target sentence to the new synthetic corpus.

3.3.1.2 Annotation Agreement

Similarly to the annotation projection method, agreement requires DC annotation models trained

on a source language and target language and applies these models to a word aligned parallel corpus.

Once the DCs have been identified in both languages, the models are considered to be in agreement

if the annotations in the target language match the annotations in the aligned words in the source

language. This creates a dataset with high precision, as the ensemble of two models needs to agree

on the annotation. In our experiments, the matching criteria is strict on matching the None tags

from a source language to a target language, i.e. all aligned words that are None in the source need

to be None in the target. Whereas for the DCs, B-Conn or I-Conn are considered to match if

either tag in the source language is aligned with any number of words tagged as either B-Conn

or I-Conn. If many source words are aligned with one target word (i.e. a n:1 alignment), the

alignment is considered a match only if the source words and the target word are all None or

they all contain DC annotations (B-Conn or I-Conn). To clearly show how agreement works,

Figures 3.11 to 3.16 show examples of agreement between English (source) and Chinese (target).

Note that Figure 3.12 does have agreement between the source and target; however, it may not be
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Figure 3.8: Example 1: Annotation projection of an English discourse con-
nective onto a Chinese sentence. The DC when is aligned to three Chinese
words that are not tagged. These three words are tagged by the projection
and the sentence is added to the synthetic corpus.
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Figure 3.9: Example 2: Annotation projection of an English discourse con-
nective dropped in Chinese. The DC until is dropped in the translation (i.e.
not aligned), so the English annotation is not projected but the Chinese sen-
tence is added to the synthetic corpus.
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Figure 3.10: Example 3: Annotation projection. The Chinese sentence al-
ready has annotated DCs, so the English DC annotation is not projected and
the Chinese sentence is not added to the synthetic corpus.
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added to the corpus because of steps 5 and 6. The algorithm is presented in Listing 3.2 and the

method is detailed below.

Listing 3.2: Agreement Algorithm
SET source_sents TO [[sent]]
SET source_sent_conns TO [[conn]]
SET target_sents TO [[sent]]
SET target_sent_conns TO [[conn]]
SET alignments_target_to_source TO [[alignment]]
SET target_connectives TO {read_json_file}
SET ndu_counter TO 0

FOR sent_idx, alignment IN enumerate(alignments_target_to_source):
IF len(alignment) <= 3:

continue
SET source_conn to source_sent_conns[idx]
SET target_conn to target_sent_conns[idx]
SET target_sent to target_sents[idx]

SET all_equal TO []
FOR item IN alignment:

SET error TO False
FOR target_idx, source_idx IN item.items():

TRY:
IF alignment valid:

IF (source_conn[source_idx] IS None AND target_conn[
target_idx] IS None) OR (source_conn[source_idx] IS NOT
None AND target_conn[target_idx] IS NOT None):
all_equal.append(True)

ELSE:
all_equal.append(False)

EXCEPT:
all_equal.append(False)
SET error TO True
continue

IF error:
continue

IF NOT all(all_equal):
continue

SET source_conn TO CLEAN_CONN_FORM(source_conn)
SET all_none TO [i is None FOR i IN source_conn]
IF all(all_none):

IF NOT CHECK_IF_NDU(source_conn):
continue

ELSE:
ndu_counter += 1
IF ndu_counter % 2 EQUALS 0:

continue

WRITE_TO_CONLLU_FILE(source_conn)

For each alignment:

(1) Get all the tags in the English sentence and the target language sentence.

(2) Iterate through the word alignment for this sentence. A word’s tags are considered a match if:

• the aligned English word is tagged as None and the target language word is also tagged

as None.

• or if the aligned English word is not None and the target language word is not None.
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If a target language word is aligned to multiple English words (i.e. an n:1 alignment), each

aligned English word is checked for the above matching condition.

(3) If all aligned words match the above condition, we proceed to step 4 below, otherwise we

continue to the next sentence.

(4) Relabel the target sentence, to ensure that all DCs start with B-conn and not I-Conn.

(5) Drop all sentences that contain no potential DC – i.e. no word in the sentence is part of the

language specific list of DCs. (see Section 3.3)

(6) Drop 50% of the sentences in the target language with at least one potential DC that is marked

as non discourse usage – i.e. at least one word in the sentence is part of the language specific

list of DCs but is labeled as None.

(7) Add the new target sentence to new synthetic corpus.

Example 3 in Figure 3.13, the sentence has a chance of being added to the synthetic corpus, as

in Listing 3.2 shows that if a DC is in NDU form, it has a 50% chance of being added to the corpus.

Examples 5 and 6 in Figures 3.15 and 3.16 respectively show sentences that are not added to the

corpus because they do not have a complete match on the annotated DCs, as Listing 3.2 requires.

3.3.1.3 Projection union Agreement

The corpora created by the projection and the agreement methods are mutually exclusive, which

means they can be combined together to create a new DC annotated corpus. We took the union of

the datasets by simply training with both corpora at the same time.

3.3.2 Resulting Synthetic Corpora

3.3.2.1 Synthetic Chinese Corpus

As indicated in Section 3.3.1.1, to apply annotation projection and agreement, we needed word

aligned corpora. To create synthetic corpora for Chinese, we used the Tsinghua alignment eval-

uation set version 2 (Liu and Sun, 2015; Liu et al., 2005), which contains 40,716 manually word
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Figure 3.11: Example 1: Annotation agreement does match. The DC when
and its aligned words are annotated as DCs. The annotations agree so the
sentence is added to the synthetic corpus.
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Figure 3.12: Example 2: Annotation agreement does not match. English
DC dropped in translation. The DC until is dropped in translation (i.e. not
aligned), so the English annotation is not in agreement with the Chinese sen-
tence, but the sentence could be added to the corpus if the sentence contains
a NDU (i.e. labelled as None).
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Figure 3.13: Example 3: Annotation agreement of English DC in NDU with
a Chinese DC in NDU. The DC when and its aligned words are in NDU (i.e.
labelled as None), meaning the annotation agrees and the sentence is added
to the synthetic corpus because those words can be found in the list of DCs.
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Figure 3.14: Example 4: Annotation are not in agreement, all of the Chinese
DCs not annotated. The when is annotated but its aligned words are not.
Therefore the Chinese sentences are not in agreement and the sentence is
not added to the synthetic corpus.
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Figure 3.15: Example 5: Annotation are not in agreement, part of the Chi-
nese DC is not annotated. The when is annotated but its aligned words are
only partly annotated. Therefore the sentences are not in agreement and the
Chinese sentence is not added to the synthetic corpus.
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Figure 3.16: Example 6: Annotation are not in agreement, part of the Chi-
nese DC is not annotated. The when is annotated but its aligned words are
only partly annotated. Therefore the sentences are not in agreement and the
Chinese sentence is not added to the synthetic corpus.
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aligned sentences. This corpus was created to verify the performance of the Tsinghua statistical

word alignment system. While the inter and intra annotator agreement of this gold dataset is un-

known, this was the only large sentence and word aligned dataset we found at the time.

To create the synthetic Chinese DC annotated data sets, we first created a list of DCs for En-

glish and Chinese as defined in Section 3.3 by extracting the DCs labelled in the PDTB and the

CDTB training sets. This lead to 1160 DCs for English and 195 DCs for Chinese. An English DC

identification model was then trained on the PDTB training set and another model on the CDTB;

the model architecture used was model 4, the BERT base with CRF output (Section 3.2.4). As

the Tsinghua alignment eval set was already tokenized and included word alignment, therefore we

were able to use it directly. The trained models were used to identify DCs in the parallel Tsinghua

corpus; with the DC identified, the two methods (Projection Section 3.3.1.1, and Agreement Sec-

tion 3.3.1.2) were applied to synthesize two new Chinese datasets with DC annotations. Table 3.2

shows the breakdown of the resulting corpus. The table shows that the agreement method (ZHO-

AG) produced a synthetic data set with nearly 22k training instances which is a magnitude greater

than the CDTB. Whereas, the projection method (ZHO-PJ) produced a synthetic data set with nearly

3k training instances, a little more than the CDTB training set.

3.3.2.2 Synthetic Turkish Corpus

The synthetic Turkish corpus is based on the SETimes (Tiedemann, 2012) English-Turkish par-

allel corpus, which contains 207,677 aligned sentences. SETimes is a parallel corpus of news ar-

ticles in Balkan languages and English, though it is not word aligned. In order to align the words

we used SimAlign (Jalili Sabet et al., 2020), which also provides the probability of the alignment.

SimAlign can provide different alignment outputs based on 3 different algorithms: itermax, argmax,

and match. Based on the results of Jalili Sabet et al. (2020), itermax seems to perform better than

the other methods; hence, we used the itermax word alignments.

Similarly to Chinese, we extracted a list of Turkish and English DCs from the TDB and PDTB

training set. This lead to a list of 1160 DCs for English and 277 DCs for Turkish. Then we trained

model 4 the same BERT base with CRF output (Section 3.2.4) on the PDTB and TDB training

sets. However, the SETimes corpus has no word alignment and is not tokenized. Therefore we
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used SimAlign (Jalili Sabet et al., 2020) to generate itermax alignment with probabilities and used

Spacy (Honnibal et al., 2020) to tokenize the two sides of the parallel data. With the tokenized data,

the DC identification models were applied. The SimAlign probabilities were used to keep only the

sentences with an average word alignment probability 85% or greater, to ensure that error propaga-

tion is minimized. The two methods (Projection (Section 3.3.1.1) and Agreement (Section 3.3.1.2))

were applied resulting in two synthetic corpora (TUR-AG and TUR-PJ), the details of which can be

seen in Table 3.2. The table shows that the agreement method (TUR-AG) produced a synthetic data

set with nearly 28k training instances, which is larger than the TDB training set ( 25k instances).

Whereas, the projection method (TUR-PJ) produced a synthetic data set of just over 4k training

instances.

Synthetic
Corpus

Language # of Train Sentences # tok B-Conn + I-Conn % tok B-Conn + I-Conn

ZHO-AG Chinese 21,934 21,774 4.645
ZHO-PJ Chinese 2,848 1,404 2.312
TUR-AG Turkish 27,827 6,537 1.254
TUR-PJ Turkish 4,468 4,166 4.191

Table 3.2: Statistics of the Chinese and Turkish synthetic datasets

3.4 Corpus Reduction

In order to better evaluate the influence of the size of the training data for DC annotation, we

also experimented with corpus reduction. To do so, we created random subsets of the PDTB, the

TDB and the CDTB. The subsets are 75%, 50%, 25%, 10% and 5% of the original datasets for

each language. These experiments were carried out to determine how much data is needed until the

performance of identifying DCs is significantly affected. Additionally 5% of the PDTB and 10% of

the TDB are comparable in size to the entire CDTB allowing us to determine if identifying DCs is

a simpler task in one of the languages compared to the others.

In this chapter, we described the six models we developed to run various experiments for the
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automatic identification of DCs. We also described the tools and frameworks used to create our

models. Each of these models uses a transformer as an embedding; and only BERT based models

are available for Turkish and Chinese, while the other models, built only for English, were built to

evaluate if BERT is sufficient for accomplishing this task or if additional parameters are of benefit.

Additionally, in Section 3.3 we discussed and explained the methods we developed to modify the

corpora by data augmentation using projection and agreement and by data reduction. In Chapter 4,

each of these models and methods will be used and the performance on the development and test

sets for the task of DC identification will be presented and analysed.
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Chapter 4

Results and Analysis

In this chapter, the results of each models’ performances on the DISRPT 2021 will be presented

along with a general analysis of these results (see Section 4.1). Section 4.2 will then present a more

comprehensive error analysis on the best performing models for English, Turkish and Chinese in

the hope of understanding where the models can be improved.

4.1 DISRPT 2021 Results

For all models presented in Chapter 3, we ran several experiments varying the training corpora.

Each experiment was run five times along with we recorded the average score and the standard

deviation.

4.1.1 English Results

The English DC identification results are presented in Table 4.1. As the table shows, for most

experiments, excluding the GPT2 model and data reduction, the lowest F-measure on the test set is

88.18 (model 1 on row 15) and the highest is 93.13 (model 4 on row 7); that is a difference of only

4.95 points. The model that achieves the best score is model 4 with the BERT large embedding.

However, this model does require much more computational resources than model 4 that uses the

BERT base embedding (row 1) or model 1 with the BERT base embedding (row 10) which lead to

F-measures of 92.49 and 92.99 respectively. It would be interesting to empirical measure the energy
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consumption of training these models in order to measure the performance over their training cost.

The results of Table 4.1 also show that the development set seems to be easier than the test set for

the task of English DC identification, as the F-measures seen on the development set are always

slightly higher than these of the test set.

Unsurprisingly the experiments with the subsets of the PDTB lead to strong results, as even

with only 5% of the PDTB (row 6) there are still more training instances than the CDTB. These

results indicate that the BERT transformer does benefit from having more data, but the performance

improvement over the size of the data gives diminishing returns. As this type of annotated data

is difficult and costly to create, finding a balance between the number of training instances and

performance is important and might help guide the creation of such resources for other languages.

Recall that the GPT2 model (model 6 on row 9) has an order of magnitude more learning pa-

rameters than the BERT base model (model 4 on row 7), yet it performs rather poorly (F-measure

of 81.20 ±1.17). This could be because the CRF output does not backpropagate good error signals

to the GPT2 transformer model, or maybe this is not a task the GPT2 transformer does well in.

More investigation is needed in order to determine what the problem is. Similarly, the RoBERTa

model (model 5 on row 8) under-performs, possibly for similar reasons as the GPT2 model. Note

that both transformers use the BPE algorithm for tokenization; while BERT uses Word Pieces (see

Section 2.1.6). This may explain the superior preformance of BERT.

4.1.2 Turkish Results

Table 4.2 shows the performance of various models on the Turkish data set. The models have

overall the best performance on the TDB test set for Turkish DC identification over DC identification

for the other two languages; this is likely due to the simpler task of identifying Explicit DC and

phrasal expressions (small subset of AltLex). The best F-measure attained is 94.42 by the BERT

(dbmdz/bert-base-turkish-cased) model (model 1 on row 13), but it seems slightly less

stable than model 4: BERT + CRF (model 4 on row 1) as it has a standard deviation of 0.37

compared to 0.31. Another thing to notice is that the development dataset seems to be a slightly

more difficult task, as each model performs 1 or more points better on the test set than on the

development set.
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It is clear from the experiments that the synthetic datasets do not lead to an increase in perfor-

mance on this task. The projection data set (TUR-PJ) is particularly unrepresentative of the target

task, achieving an F-measure of 41.15 with model 4 (row 8) on the test set, which is only 2 points

above the baseline of selecting the most probable classification based on the frequency of DU and

NDU in the respective training set (F-measure of 39.14). This seems to indicate that the projec-

tion method employed does not project useful DC annotations. On the other hand, the agreement

method does produce a better dataset (TUR-AG) than the projection method, attaining an F-measure

of 87.99 on the test set (model 4 on row 7). However, it does not seem to provide an additional per-

formance increase when trained with the TDB (model 4 on row 10) with an F-measure of 93.34

compared to 94.01 (model 4 on row 1). Both methods perform more poorly than when the model is

trained only on 10% of the TDB (model 4 on row 5). Section 4.2.1.2 will analyse this further.

The experiments with model 4 and the reduced TDB (rows 2 to 6) indicates that the task of

Turkish DC identification does not require all that much data to have a strong performance. TDB-

05% only contains 1248 training instances and 319 tokens annotated as B-Conn and 60 annotated

as I-Conn, yet, achieves an F-measure of 86.04 (row 7). This may indicate that most of the DCs

in the test set are common Explicit DCs, since the model only has to learn these to achieve a

good performance on the test set.

Multilingual cross-training appears to have a negative impact on the task of Turkish DC identi-

fication (rows 14, 15, and 16). Indeed, row 14 performs 3.60% lower than the same model trained

solely on the TDB (row 1). Similarly, row 15 performs 3.30% lower than its counterpart (row 13).

This is believed to be because of the imbalance between the size of each of the data sets. The PDTB

contains over 40k instances where as the TDB contains only 20k. To adjust for this imbalance, in

row 16, each dataset contains around 2k training instances; yet, the model performs worse than with

the imbalanced data. This seems to indicates that multilingual cross training with languages that are

not part of the same family of languages may not transfer useful information for the task of Turkish

DC identification.
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4.1.3 Chinese Results

Table 4.3 shows the performance of various models on the CDTB development and test sets.

In general, the Chinese models have the lowest performance in DC identification. The model that

achieves the best performance is BERT (bert-base-chinese) with a CRF output layer (model

4 on row 1), which achieves a performance of 87.47 with a standard deviation of 0.96 on the test

set and 86.39 with a standard deviation of 0.44 on the development set. The test set overall leads to

stronger F-measures compared to the development set, indicating that the test set is an easier task.

The synthetic Chinese data sets again do not seem to represent the task of Chinese DC identi-

fication well, and both methods have poorer performance compared to using the CDTB only. The

projection method (ZHO-PJ) achieves an F-measure of 57.37 (row 8). This is better than that of

the Turkish projection dataset for Turkish DC identification (see row 8 of Table 4.2) which had a F-

measure of 41.14. The baseline of choosing the most probable classification based on the frequency

of DUs and NDUs in the respective training sets achieves an F-measure of 55.50 on the CDTB test

set, which is only 1.87 points worse than the projection data set. It is clear that the Chinese synthetic

projection data set (ZHO-PJ) does not contain valuable DC annotations. The synthetic agreement

data set (ZHO-AG) fares better, achieving an F-measure of 86.31 (row 7) only 1.16 points behind the

best performing Chinese model. This strong result is likely attributed to the lack of error accumula-

tion due to not having to generate word alignments. Additionally, when using the agreement dataset

in conjunction with the CDTB (row 9), the F-measure only decreases by 0.01 points, indicating that

this dataset might bring interesting information.

The poor performance of training on all the CDTB (rows 1 and 13) is likely due to the small

size of the data set and the particularities of Mandarin Chinese, where most DCs have two forms

(discontinuous and single), both of which can be used interchangeably (see Section 2.2.2). Ad-

ditionally, the task of identifying DCs in Chinese involves identifying Explicit and AltLex

connectives. As the CDTB is already quite small, the results from the experiments with reducing it

further (rows 2 to 6) were not all that surprising. Each reduction in size resulted in a much weaker

model, excluding the CDTB-75% (row 2). CDTB-75% achieves the strongest performance on the
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test set (87.55 F-measure) but is weaker than the model trained on all the CTDB (row 1) when mea-

sured against the development set. As indicated in Section 4.1.3, the development set is a harder

task, which indicates that the model on row 1 has better generalization. Although even with only

204 training instances (CTDB 10%) the performance drops 10.37 points on the training set, this

shows that BERT (bert-base-chinese) does have some level of knowledge about DCs.

The experiments with the multilingual cross-training (rows 14 to 16) are interesting: the CRF

(model 4 on row 14) seems to have a negative impact on the performance in this setting, unlike the

models trained only on the CDTB (row 1 vs row 13) and comparing the results for the multilingual

model without a CRF output (model 1 on row 15) we observe this behaviour. Perhaps the CRF has

difficulty modeling in a multilingual setting. Additionally, similarly to Turkish, the imbalanced data

does seem to impact the model’s performance for Chinese DC identification. Indeed, the model

trained on the full sized PDTB, TDB, and CDTB (row 15) has an F-measure 0.94 points lower than

that of the model trained on the reduced PDTB and TDB where each dataset contains 2k instances

for each language (row 16). Although none of the multilingual cross trained model perform better

than the model trained on the CDTB alone, this again seems to indicate that multilingual cross

training for DC identification with languages that are not from the same family does not provide

benefit.

4.1.4 DISRPT 2021 Results

Given the results of our experiments, we selected our best models and evaluated them with the

official DISRPT 2021 data set and scorer. These models are:

• For English model 4 on row 7 in Table 4.1.

• For Turkish model 1 on row 13 in Table 4.2.

• For Chinese model 1 on row 1 in Table 4.3.

Table 4.4 shows the result of the shared task of Multilingual DC identification for DISRPT 2021

and the results of the best model presented in this thesis. When comparing the performance of our

models to the other participating systems at the DISRPT-2021 shared task, our base BERT models
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performs as well as, if not better than the top performing model, DiscoDisco (Gessler et al., 2021)

for all three languages; while being significantly simpler in terms of linguistic and computational

resources. The DiscoDisco approach used a collection of handcrafted features including 3 sentence

embeddings (2 trainable/fine-tuned, and 1 static), a variety of grammatical and textual features

(UPOS, XPOS, universal dependency relations, head distance, sentence type, and sentence length),

and also a representation of the context via neighboring sentences. On the other hand, our models

(model 4) are less resource-intensive, as they consist of only a language-specific BERT + CRF and

only use the current sentence as context. This seems to show that the language-specific BERT-base

model contains sufficient information to accomplish this task, and feeding the model with additional

information is redundant and only increases its complexity without significant performance gain.

Corpus TMVM DiscoDisco disCut SegFormers CLACDis (best models) average
P R F1 P R F1 P R F1 P R F1 P R F1 F1

PDTB 85.98 65.54 74.38 92.32 91.15 92.02 93.32 88.67 90.94 89.73 92.61 91.15 93.46 92.79 93.12 88.32
TDB 80.00 24.14 37.10 93.71 94.53 94.11 90.55 86.93 88.70 90.42 91.17 90.79 93.63 95.22 94.42 81.02
CDTB 30.00 0.96 1.86 89.19 85.95 87.52 84.43 66.03 74.10 85.05 87.50 86.26 88.43 86.54 87.47 67.44
macro average 65.33 30.21 37.78 91.74 90.54 91.22 89.43 80.54 84.58 88.40 90.43 89.40 91.84 91.52 91.67 78.93
micro average 79.00 38.75 49.30 92.87 92.64 92.85 91.22 86.22 88.60 89.79 91.49 90.63 92.49 93.22 93.45 82.97

Table 4.4: Comparison of our best BERT models (For English model 4 on row 7 in Table 4.1, for
Turkish model 1 on row 13 in Table 4.2, and for model 1 on Chinese row 1 in Table 4.3) with the
official results of DISRPT 2021 Task 2, taken from Zeldes and Liu (2021).

4.2 Analysis

In order to better understand the behaviour of our models we performed a comprehensive anal-

ysis of the outputs.

4.2.1 Per-DC Analysis

The first investigation aimed at determining if there is a correlation between the performance

of the model and specific DCs being tagged. For example, if the term is always in discourse usage

(DU), then the DC identification task may be considered easier than a term that is used as often

in discourse usage (DU) as non discourse usage (NDU). To evaluate the Pearson product-moment

correlation between the F-measure of performance specific DCs, we focused on three features of

DCs:
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(1) The frequency of DC in the training set in DU form.

(2) The ratio of that DC being in NDU form.

(3) The entropy of the DC.

Recall that entropy (a measure of uncertainty developped by Claude Shannon) is defined as:

−(ratioDU ∗ log2ratioDU) + (ratioNDU ∗ log2ratioNDU)

Entropy is a measure of ambiguity; the lower that value, the more likely the DC falls consistently

into either DU or NDU. Whereas the larger values represent a DC that is ambiguous; it appears in

DU form as often as NDU form.

4.2.1.1 English

The per-DC analysis for English was performed using one of the five BERT large with CRF

output layer (model #7 in Table 4.1). This model was used because its performance was slightly

under the average of the five models, meaning more errors can be observed. Recall from Table 4.1,

that this specific model had an F-measure of 93.65 on the test set and 92.28 on the development set.

We used 3 inventories of DCs:

• The PDTB list of 100 DCs. (Prasad et al., 2008)

• DimLex. (Das et al., 2018)

• DCs marked by the model but not included in the above two resources.

We use the PDTB list of 100 DCs because it contains the most common occurring DCs and we

expect those DC to have the best performance. We used DimLex to observe other very common DC

which should also have good performance. Lastly observing the performance of the DCs that are

not in those sources are mostly AltLex or uncommon Explicit DCs.

Inventory 1: PDTB Explicit DCs
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The Penn Discourse Treebank 2.0 Annotation Manual1 contains a list of 100 Explicit DCs.

This list of Explicit DCs is used to identify and extract the F-measure of those DCs in the test

set, to count the number of times this particular term is used in DU or NDU form, and therefore

the entropy of the term, the entropy of the DC in the training set versus the F-measure of that DC

in the test set. Table 4.5 shows the 100 DCs from the PDTB. Of these 100 DCs, only 2 form a

Discontinued DC (#68 and #69, on the one hand ... on the other hand). In the PDTB, discontinued

DCs are split into their components and each unit is considered a separate DC, this is how the

models at the shared task and the official evaluation handles discontinuous DCs. Of the 100 PDTB

DCs, 66 are found in the DISRPT 2021 test set. Table 4.6 shows the F-measure of model 4 for each

DC, along with their frequency as DU and NDU in the training set, as well as their entropy. To

compare how well the DCs in each lexicon perform, we use 3 different aggregations of F-measures:

• The average of the F-measures.

• The weighted average of the F-measues where the weight is based on the frequency of the

DC in the test set in DU form.

• The calculated F-measure based on its true positive, false negative, and false positive rates.

We sum each of these values, then calculate the precision, recall and finally calculate the

F-measure of each DC.

As Table 4.6 shows, the average F-measure for this list is 88.00, whereas the weighted average is

96.23 and the calculated F-measure is 96.50. This shows that the model does not have difficulty

with Explicit DCs. However, 6 DCs appear a total of 10 times as DU in the training set that

have an F-measure of 0.00. These are: in the end (see Nb 61: 0 DU, 1 false positive), specifically

(see Nb 62: 2 DU, 2 false negatives), as well (see Nb 63: 1 DU, 1 false negative), further (see Nb

64: 1 DU, 1 false negative), for (see Nb 65: 6 DU, 6 false negative), in other words (see Nb 66: 0

DU, 1 false positive). To examine if the F-measure is correlated with the specific DC, we computed

the Pearson product-moment correlation coefficient between the F-measure and

(1) The frequency of DC in the training set in DU form (see column #7) - correlation of 0.099
1https://www.seas.upenn.edu/˜pdtb/PDTBAPI/pdtb-annotation-manual.pdf
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(2) The ratio of that DC being in NDU form (see column #9) - correlation of -0.351

(3) The entropy of the DC (see column #10) - correlation of 0.057

These results indicate that the F-measure does not have a strong dependency on these any of these

features and the performance does not seem to be dependent on the specific DC being tagged.

1 accordingly 26 conversely 51 indeed 76 rather
2 additionally 27 earlier 52 insofar as 77 regardless
3 after 28 either 53 instead 78 separately
4 afterward 29 or 54 later 79 similarly
5 also 30 else 55 lest 80 simultaneously
6 alternatively 31 except 56 likewise 81 since
7 although 32 finally 57 meantime 82 so
8 and 33 for 58 meanwhile 83 so that
9 as 34 for example 59 moreover 84 specifically
10 as a result 35 for instance 60 much as 85 still
11 as an alternative 36 further 61 neither 86 then
12 as if 37 furthermore 62 nevertheless 87 thereafter
13 as long as 38 hence 63 next 88 thereby
14 as soon as 39 however 64 nonetheless 89 therefore
15 as though 40 if 65 nor 90 though
16 as well 41 if and when 66 now that 91 thus
17 because 42 in addition 67 on the contrary 92 till
18 before 43 in contrast 68 on the one hand 93 ultimately
19 before and after 44 in fact 69 on the other hand 94 unless
20 besides 45 in other words 70 once 95 until
21 but 46 in particular 71 or 96 when
22 by comparison 47 in short 72 otherwise 97 when and if
23 by contrast 48 in sum 73 overall 98 whereas
24 by then 49 in the end 74 plus 99 while
25 consequently 50 in turn 75 previously 100 yet

Table 4.5: 100 Explicit DC from the PDTB 2.0 annotation manual.

Inventory 2: DimLex

A similar analysis was done using the English Discourse Marker Lexicon v.1.0 (DimLex) (Das

et al., 2018) which includes the 100 explicit DCs from the PDTB and an additional 43 from the

RST Signalling Corpus (Das and Taboada, 2018). Table 4.7 shows the DCs that are exclusive to

this lexicon. These includes Explicit and phrasal expressions (small subset of AltLex). Out

of the 43 DCs in this lexicon and not in the 100 Explicit DCs from the PDTB, only 14 are
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy

1 accordingly 1.00 1.00 1.00 3 2 2 0.50 1.00
2 as a result 1.00 1.00 1.00 4 73 73 0.50 1.00
3 as though 1.00 1.00 1.00 1 5 5 0.50 1.00
4 besides 1.00 1.00 1.00 2 18 17 0.51 1.00
5 otherwise 1.00 1.00 1.00 1 23 20 0.53 1.00
6 after 1.00 1.00 1.00 23 667 548 0.55 0.99
7 nor 1.00 1.00 1.00 4 47 32 0.59 0.97
8 as soon as 1.00 1.00 1.00 2 11 17 0.39 0.97
9 finally 1.00 1.00 1.00 1 48 30 0.62 0.96

10 simultaneously 1.00 1.00 1.00 1 8 5 0.62 0.96
11 hence 1.00 1.00 1.00 1 7 4 0.64 0.95
12 later 1.00 1.00 1.00 2 156 86 0.64 0.94
13 yet 1.00 1.00 1.00 2 186 94 0.66 0.92
14 by then 1.00 1.00 1.00 1 3 6 0.33 0.92
15 rather 1.00 1.00 1.00 1 129 54 0.70 0.88
16 as if 1.00 1.00 1.00 1 6 15 0.29 0.86
17 instead 1.00 1.00 1.00 2 51 146 0.26 0.83
18 separately 1.00 1.00 1.00 3 18 68 0.21 0.74
19 now that 1.00 1.00 1.00 1 5 22 0.19 0.69
20 by comparison 1.00 1.00 1.00 1 2 9 0.18 0.68
21 in addition 1.00 1.00 1.00 11 39 176 0.18 0.68
22 for example 1.00 1.00 1.00 8 20 184 0.10 0.46
23 in fact 1.00 1.00 1.00 3 7 80 0.08 0.40
24 therefore 1.00 1.00 1.00 1 2 23 0.08 0.40
25 nonetheless 1.00 1.00 1.00 2 2 25 0.07 0.38
26 much as 1.00 1.00 1.00 1 150 9 0.94 0.31
27 for instance 1.00 1.00 1.00 13 5 84 0.06 0.31
28 so that 1.00 1.00 1.00 1 1 30 0.03 0.21
29 nevertheless 1.00 1.00 1.00 7 1 36 0.03 0.18
30 unless 1.00 1.00 1.00 1 2 94 0.02 0.15
31 meanwhile 1.00 1.00 1.00 14 2 173 0.01 0.09
32 moreover 1.00 1.00 1.00 3 1 95 0.01 0.08
33 although 1.00 1.00 1.00 16 1 302 0.00 0.03
34 additionally 1.00 1.00 1.00 1 0 6 0.00 0.00
35 by contrast 1.00 1.00 1.00 2 0 26 0.00 0.00
36 consequently 1.00 1.00 1.00 1 0 9 0.00 0.00
37 on the other hand 1.00 1.00 1.00 3 0 35 0.00 0.00
38 whereas 1.00 1.00 1.00 1 0 4 0.00 0.00
39 when 1.00 0.98 0.99 50 363 998 0.27 0.84
40 also 0.99 0.99 0.99 76 108 1615 0.06 0.34
41 and 0.98 0.99 0.98 282 12648 5829 0.68 0.90
42 but 1.00 0.96 0.98 190 362 3402 0.10 0.46
43 while 1.00 0.95 0.97 37 40 742 0.05 0.29
44 however 1.00 0.94 0.97 36 12 432 0.03 0.18
45 or 0.93 1.00 0.97 14 2508 371 0.87 0.55
46 because 1.00 0.93 0.96 44 427 792 0.35 0.93
47 if 0.94 0.98 0.96 52 136 1216 0.10 0.47
48 though 0.92 1.00 0.96 11 25 312 0.07 0.38
49 as 1.00 0.89 0.94 46 4110 884 0.82 0.67
50 before 0.94 0.94 0.94 17 336 300 0.53 1.00
51 thus 0.91 0.91 0.91 11 8 98 0.08 0.39
52 so 0.93 0.88 0.90 16 562 321 0.64 0.95
53 until 1.00 0.80 0.89 5 191 156 0.55 0.99
54 then 0.83 0.94 0.88 16 98 368 0.21 0.74
55 since 0.82 0.90 0.86 10 436 206 0.68 0.91
56 earlier 1.00 0.75 0.86 4 645 12 0.98 0.13
57 still 0.83 0.83 0.83 12 491 175 0.74 0.83
58 once 1.00 0.67 0.80 3 144 79 0.65 0.94
59 indeed 0.67 1.00 0.80 2 22 97 0.18 0.69
60 previously 0.50 1.00 0.67 3 110 49 0.69 0.89
61 in the end 0.00 0.00 0.00 0 10 11 0.48 1.00
62 specifically 0.00 0.00 0.00 2 16 9 0.64 0.94
63 as well 0.00 0.00 0.00 1 211 24 0.90 0.48
64 further 0.00 0.00 0.00 1 272 13 0.95 0.27
65 for 0.00 0.00 0.00 6 9093 339 0.96 0.22
66 in other words 0.00 0.00 0.00 0 0 16 0.00 0.00

Average F-measure 0.88
Weighted Average F-measure 0.96
Calculated F-measure 0.97

Table 4.6: Performance of model on row #7 in Table 4.1 for the 66 PDTB Explicit DCs found
in the test set with their frequency and entropy per DC.
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found in the DISRPT 2021 test set. Table 4.8 shows the performance of these DCs and how often

they are found in the training set in DU or NDU form as well as their entropy. As the table shows,

the average F-measure is 70.10, whereas the weighted average is 86.12 and the calculated the F-

measure is 85.71. Most of these DCs do appear in the training set in NDU form more often than

in DU, making learning when to annotate these DCs ambiguous. However, when we calculate the

correlation between the F-measure and various features of the DC, we can see that this does not seem

to be the case. The correlation between the frequency of DU in the training set and the F-measure

is 0.2651, between the NDU ratio and the F-measure is -0.5305 and between the entropy and the

F-measure 0.0025. The strongest correlation is with the NDU ratio in the training set, indicating

that the F-measure is slightly affected by how many times a DC is in NDU form over all of its

appearances.

1 after all 12 despite 23 given that 34 not but
2 after that 13 essentially 24 in addition to 35 not only
3 afterwards 14 even if 25 in any case 36 particularly
4 anyway 15 even so 26 in any event 37 quite the contrary
5 as a result of 16 even though 27 in case 38 rather than
6 aside from 17 eventually 28 in essence 39 upon
7 at that point 18 everytime 29 in response to 40 whatever
8 at the same time 19 except that 30 in spite of 41 whenever
9 at the time 20 for one 31 in this way 42 with
10 because of 21 for one thing 32 instead of 43 without
11 by the way 22 given 33 irrespective of

Table 4.7: DimLex DCs that are not part of the 100 DCs from PDTB 2.0 annotation manual.

Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 whenever 1.00 1.00 1.00 1 7 7 0.50 1.00
2 not only 1.00 1.00 1.00 1 35 37 0.51 1.00
3 instead of 1.00 1.00 1.00 1 41 50 0.55 0.99
4 after that 1.00 1.00 1.00 1 4 8 0.67 0.92
5 at the same time 1.00 1.00 1.00 6 58 9 0.13 0.57
6 given 1.00 1.00 1.00 1 10 149 0.94 0.34
7 even though 1.00 1.00 1.00 5 88 0 0.00 0.00
8 even if 1.00 1.00 1.00 1 83 0 0.00 0.00
9 without 0.75 1.00 0.86 3 90 231 0.72 0.86

10 with 0.75 1.00 0.86 6 304 4584 0.94 0.34
11 rather than 0.25 1.00 0.40 1 38 96 0.72 0.86
12 for one 0.00 0.00 0.00 1 10 45 0.82 0.68
13 at the time 0.00 0.00 0.00 1 7 46 0.87 0.56
14 eventually 0.00 0.00 0.00 0 7 71 0.91 0.44

Average F-measure 0.70
Weighted Average F-measure 0.86
Calculated F-measure 0.86

Table 4.8: Performance of model on row #7 in Table 4.1 for DimLex only DCs found in the test set
with their frequency and entropy per DC.
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Inventory 3: DCs In Neither Lexicon

The model has identified 126 DCs in the test set that are not found in neither of the lexicons

(PDTB or DimLex). Tables 4.9 and 4.10 show the performances of each of these DCs. The average

F-measure is a low 38.24, the weighted average is 61.55, and the calculated F-measure is 59.40.

Most of these DCs do not appear in the training set in DU form, or only have few occurrences

where they are in DU form, on average having 15.83 occurrences of DU compared to an average of

1118.54 occurrences of NDU. However, the correlation between the F-measure and the frequency

of DU in the training set is 0.0382, the ratio of NDU is -0.0227 and entropy 0.4157, shows weak or

no correlation.

Figures 4.1, 4.2, and 4.3 summarises the correlation of the performance with each DCin each

DC inventory. Figure 4.1 shows the frequency of DU for each DC in the training set versus the

F-measure of that DC in the test set. The reasoning is that the more positive instances (annotated

as DU) a DC has, the more confident the model should be about that DC being in discourse usage.

Although this ignores the question of ambiguity, focusing only on the frequency of DU.

Figure 4.2 shows the ratio of NDU for the DC in the training set versus the F-measure of that

DC in the test set. We expected a strong negative correlation because the larger the ratio of NDU

for a DC is, the more likely that the DC is used in NDU. However, there seems to be only a small

negative correlation. This measure takes into account the ambiguity of a DC.

Figure 4.3 shows the entropy vs the F-measure of the DCs. As entropy is a measure of ambiguity,

we expected DCs with a lower entropy (less ambiguous) to have a better performance. While this

is not always the case, there does seem to be a small cluster of points at the top left corner of the

graph.

Note that Figures 4.1, 4.2, and 4.3, may not indicate a correlation between the features of these

DCs with the F-measure, but they do seem to indicate that DCs that are not in any lexicon are

much more difficult for the model to identify. This is likely because the 100 PDTB and DimLex

connectives are Explicit connectives and common phrasal expressions; whereas the other are a

combination of less common AltLex and errors done by the model.
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 that means 1.00 1.00 1.00 2 15 15 0.50 1.00
2 since then 1.00 1.00 1.00 2 17 16 0.48 1.00
3 partly because 1.00 1.00 1.00 2 16 21 0.57 0.99
4 not because 1.00 1.00 1.00 1 3 2 0.40 0.97
5 the result is 1.00 1.00 1.00 1 4 6 0.60 0.97
6 in part because 1.00 1.00 1.00 2 10 6 0.38 0.95
7 leaving 1.00 1.00 1.00 2 22 37 0.63 0.95
8 causing 1.00 1.00 1.00 1 14 25 0.64 0.94
9 especially after 1.00 1.00 1.00 1 1 2 0.67 0.92

10 filling 1.00 1.00 1.00 1 5 10 0.67 0.92
11 only to 1.00 1.00 1.00 1 16 32 0.67 0.92
12 even after 1.00 1.00 1.00 1 7 3 0.30 0.88
13 just when 1.00 1.00 1.00 1 5 2 0.29 0.86
14 indicating 1.00 1.00 1.00 1 8 21 0.72 0.85
15 reflecting 1.00 1.00 1.00 1 58 20 0.26 0.82
16 so are 1.00 1.00 1.00 1 3 1 0.25 0.81
17 resulting in 1.00 1.00 1.00 2 8 2 0.20 0.72
18 in reaction 1.00 1.00 1.00 1 1 6 0.86 0.59
19 making 1.00 1.00 1.00 2 32 231 0.88 0.53
20 increasing 1.00 1.00 1.00 1 12 97 0.89 0.50
21 suggesting 1.00 1.00 1.00 1 2 17 0.89 0.49
22 followed by 1.00 1.00 1.00 1 4 35 0.90 0.48
23 in order 1.00 1.00 1.00 2 51 5 0.09 0.43
24 even as 1.00 1.00 1.00 1 12 1 0.08 0.39
25 even with 1.00 1.00 1.00 1 1 12 0.92 0.39
26 provided 1.00 1.00 1.00 1 4 80 0.95 0.28
27 not 1.00 1.00 1.00 1 63 1480 0.96 0.25
28 producing 1.00 1.00 1.00 1 2 53 0.96 0.23
29 trying 1.00 1.00 1.00 2 6 204 0.97 0.19
30 as did 1.00 1.00 1.00 1 9 0 0.00 0.00
31 as do 1.00 1.00 1.00 2 1 0 0.00 0.00
32 especially when 1.00 1.00 1.00 1 3 0 0.00 0.00
33 exacerbating 1.00 1.00 1.00 1 1 0 0.00 0.00
34 further fueling 1.00 1.00 1.00 1 0 0 0.00 0.00
35 greatly expanding 1.00 1.00 1.00 1 0 0 0.00 0.00
36 just a month after 1.00 1.00 1.00 1 0 0 0.00 0.00
37 one reason is 1.00 1.00 1.00 2 0 0 0.00 0.00
38 only if 1.00 1.00 1.00 1 12 0 0.00 0.00
39 particularly after 1.00 1.00 1.00 1 0 0 0.00 0.00
40 perhaps because 1.00 1.00 1.00 1 1 0 0.00 0.00
41 presumably because 1.00 1.00 1.00 1 0 0 0.00 0.00
42 propelled by 1.00 1.00 1.00 1 0 1 1.00 0.00
43 that ’s because 1.00 1.00 1.00 1 15 0 0.00 0.00
44 threatening 1.00 1.00 1.00 1 0 19 1.00 0.00
45 by 0.73 1.00 0.84 19 513 4630 0.90 0.47
46 assuming 0.50 1.00 0.67 1 16 16 0.50 1.00
47 largely because 1.00 0.50 0.67 2 9 14 0.61 0.97
48 bringing 1.00 0.50 0.67 2 10 29 0.74 0.82
49 reducing 0.50 1.00 0.67 1 6 35 0.85 0.60
50 at this point 0.50 1.00 0.67 1 1 11 0.92 0.41
51 so new 0.00 0.00 0.00 1 1 1 0.50 1.00
52 typical is 0.00 0.00 0.00 0 1 1 0.50 1.00
53 aided by 0.00 0.00 0.00 0 6 5 0.45 0.99
54 that ’s why 0.00 0.00 0.00 0 4 3 0.43 0.99
55 what ’s more 0.00 0.00 0.00 0 11 7 0.39 0.96
56 at that time 0.00 0.00 0.00 0 3 8 0.73 0.85
57 will result in 0.00 0.00 0.00 1 3 8 0.73 0.85
58 as was 0.00 0.00 0.00 1 1 4 0.80 0.72
59 forcing 0.00 0.00 0.00 1 4 17 0.81 0.70
60 partly 0.00 0.00 0.00 0 17 80 0.82 0.67
61 especially 0.00 0.00 0.00 1 21 126 0.86 0.59
62 but because 0.00 0.00 0.00 0 7 1 0.13 0.54
63 partly because of 0.00 0.00 0.00 1 2 21 0.91 0.43
64 too 0.00 0.00 0.00 2 16 347 0.96 0.26
65 whether 0.00 0.00 0.00 0 7 299 0.98 0.16

Table 4.9: Performance of model on row #7 in Table 4.1 for the DCs not in the the PDTB and
DimLex found in the test set with their frequency and entropy per DC.
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

66 in 0.00 0.00 0.00 2 433 18498 0.98 0.16
67 that 0.00 0.00 0.00 0 164 9222 0.98 0.13
68 both 0.00 0.00 0.00 0 8 533 0.99 0.11
69 such as 0.00 0.00 0.00 0 2 376 0.99 0.05
70 to 0.00 0.00 0.00 0 97 24888 1.00 0.04
71 a 0.00 0.00 0.00 0 79 22293 1.00 0.03
72 will 0.00 0.00 0.00 1 8 3414 1.00 0.02
73 the 0.00 0.00 0.00 0 94 53321 1.00 0.02
74 a major reason is 0.00 0.00 0.00 1 0 1 1.00 0.00
75 another is 0.00 0.00 0.00 0 0 2 1.00 0.00
76 another is that 0.00 0.00 0.00 1 0 0 0.00 0.00
77 as evidenced by 0.00 0.00 0.00 1 0 1 1.00 0.00
78 as has 0.00 0.00 0.00 1 2 0 0.00 0.00
79 as has been 0.00 0.00 0.00 0 0 0 0.00 0.00
80 as was the 0.00 0.00 0.00 0 0 1 1.00 0.00
81 but also because 0.00 0.00 0.00 0 0 0 0.00 0.00
82 chalking up 0.00 0.00 0.00 0 0 1 1.00 0.00
83 coming as 0.00 0.00 0.00 0 1 0 0.00 0.00
84 drawing 0.00 0.00 0.00 1 0 16 1.00 0.00
85 effective 0.00 0.00 0.00 0 0 93 1.00 0.00
86 examples are 0.00 0.00 0.00 1 0 0 0.00 0.00
87 further pressuring 0.00 0.00 0.00 0 0 0 0.00 0.00
88 further squeezing 0.00 0.00 0.00 1 0 0 0.00 0.00
89 further supporting 0.00 0.00 0.00 1 0 0 0.00 0.00
90 in a similar vein 0.00 0.00 0.00 1 0 0 0.00 0.00
91 indicated that 0.00 0.00 0.00 1 0 30 1.00 0.00
92 largely reflecting 0.00 0.00 0.00 0 0 1 1.00 0.00
93 on the bottom line 0.00 0.00 0.00 0 0 1 1.00 0.00
94 potentially 0.00 0.00 0.00 0 0 27 1.00 0.00
95 potentially exempting 0.00 0.00 0.00 1 0 0 0.00 0.00
96 should the courts uphold the validity 0.00 0.00 0.00 0 0 0 0.00 0.00
97 should the courts uphold the validity of this type of defense 0.00 0.00 0.00 1 0 0 0.00 0.00
98 so , too 0.00 0.00 0.00 1 0 0 0.00 0.00
99 so as 0.00 0.00 0.00 0 4 0 0.00 0.00

100 so oriented as 0.00 0.00 0.00 1 0 0 0.00 0.00
101 squeezing 0.00 0.00 0.00 0 0 3 1.00 0.00
102 such a hard time counting all the planes in their fleets 0.00 0.00 0.00 1 0 0 0.00 0.00
103 supporting 0.00 0.00 0.00 0 0 27 1.00 0.00
104 that ’s when 0.00 0.00 0.00 0 0 1 1.00 0.00
105 that action 0.00 0.00 0.00 1 0 0 0.00 0.00
106 that change will obviously impact 0.00 0.00 0.00 1 0 0 0.00 0.00
107 that follows 0.00 0.00 0.00 0 0 2 1.00 0.00
108 that ranks 0.00 0.00 0.00 0 0 0 0.00 0.00
109 that rise came on top of 0.00 0.00 0.00 1 0 0 0.00 0.00
110 that was modestly higher than 0.00 0.00 0.00 1 0 0 0.00 0.00
111 the announcement caused 0.00 0.00 0.00 1 0 0 0.00 0.00
112 the cuts are necessary 0.00 0.00 0.00 1 0 0 0.00 0.00
113 the decision 0.00 0.00 0.00 1 0 44 1.00 0.00
114 the delay resulted from 0.00 0.00 0.00 1 0 0 0.00 0.00
115 the main reason remains 0.00 0.00 0.00 1 0 0 0.00 0.00
116 three days later 0.00 0.00 0.00 1 0 3 1.00 0.00
117 thus forcing 0.00 0.00 0.00 0 0 0 0.00 0.00
118 to make its point 0.00 0.00 0.00 1 0 0 0.00 0.00
119 too late 0.00 0.00 0.00 1 0 9 1.00 0.00
120 toward that end 0.00 0.00 0.00 0 0 0 0.00 0.00
121 trapping 0.00 0.00 0.00 0 0 0 0.00 0.00
122 was one reason for the downgrade 0.00 0.00 0.00 1 0 0 0.00 0.00
123 were cited 0.00 0.00 0.00 1 0 3 1.00 0.00
124 what has changed is that 0.00 0.00 0.00 1 0 0 0.00 0.00
125 which can result in 0.00 0.00 0.00 1 0 0 0.00 0.00
126 0.00 0.00 0.00 0 0 0 0.00 0.00
Average F-measure 0.38
Weighted Average F-measure 0.62
Calculated F-measure 0.59

Table 4.10: Performance of model on row #7 in Table 4.1 for the DCs not in the PDTB and DimLex
found in the test set with their frequency and entropy per DC.
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Figure 4.1: Frequency of English DUs in training set of each DC vs F-measure for PDTB test set.
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Figure 4.2: Ratio of English NDUs of each DC vs F-measure for PDTB test set.
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Figure 4.3: Entropy of each English DC vs F-measure for PDTB test set.
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4.2.1.2 Turkish

We also analysed the correlation between features of DCs and the model performance for Turk-

ish. To do this, we used model #13 from Table 4.2 and used the Turkish connective Lexicon

(TCL) (Zeyrek and Başıbüyük, 2019) as DC inventory.

Turkish Connective Lexicon

The Turkish Connective Lexicon (TCL) (Zeyrek and Başıbüyük, 2019), contains 226 discourse

connectives, from the ExplicitDCs of the TDB 1.0/1.1, and the TED-MDB (see Section 2.2.4.1).

Out of these, 44 are marked by our Turkish model and found in the TCL while; 59 are marked but not

in the TCL. Table 4.11 shows the performance of each DC in the lexicon. The average F-measure

is 90.50, the weighted average is 95.66 and the calculated F-measure is 95.74. Again, this indi-

cates that the model can easily identify Explicit DCs. The correlation between the F-measure

and the frequency of DUs in the train set is 0.1197, between the F-measure and the ratio of NDUs

in the training set is -0.3516, while the correlation between the F-measure and entropy is 0.3987.

Again, these features do not seem to correlate with the performance of the TCL DC in the test set.

Figures 4.4, 4.5, 4.6, show this visually.

Inventory 2: DCs Not Found in the TCL

Similarly, we can observe the performance of the DCs that are not in the TCL, of which there are

59 marked by the model (see Table 4.12). For these, the average F-measure is 65.90, the weighted

average is 80.84, and the calculated F-measure is 73.12. The correlation between the frequency of

DUs and the F-measure us 0.0986, the ratio of NDU and the F-measure is -0.2603 and the entropy

and the F-measure is 0.1083. Again, these features do not seem to correlate with the performance

of the model on the test set.

Figure 4.4 shows the frequency of DUs for each DC in the training set versus the F-measure of

that DC in the test set. Again, if a DC occurs often as DU in the training set, then we expect the

model to be capable of identifying it as a DU or NDU. However the graph does not show this type
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 hemen önce 1.00 1.00 1.00 1 1 1 0.50 1.00
2 rağmen 1.00 1.00 1.00 12 58 46 0.44 0.99
3 tersine 1.00 1.00 1.00 1 9 12 0.57 0.99
4 mesela 1.00 1.00 1.00 1 12 8 0.40 0.97
5 için de 1.00 1.00 1.00 2 25 41 0.62 0.96
6 hem 1.00 1.00 1.00 8 80 156 0.66 0.92
7 zaman 1.00 1.00 1.00 9 137 360 0.72 0.85
8 dolayısıyla 1.00 1.00 1.00 6 54 18 0.25 0.81
9 sonra da 1.00 1.00 1.00 13 61 18 0.23 0.77

10 amacıyla 1.00 1.00 1.00 2 54 13 0.19 0.71
11 halde 1.00 1.00 1.00 3 49 11 0.18 0.69
12 beraber 1.00 1.00 1.00 1 5 24 0.83 0.66
13 ayrıca 1.00 1.00 1.00 6 86 14 0.14 0.58
14 sanki 1.00 1.00 1.00 2 22 160 0.88 0.53
15 fakat 1.00 1.00 1.00 5 71 9 0.11 0.51
16 birlikte 1.00 1.00 1.00 3 29 252 0.90 0.48
17 böylece 1.00 1.00 1.00 10 70 8 0.10 0.48
18 ne var ki 1.00 1.00 1.00 2 27 3 0.10 0.47
19 ne 1.00 1.00 1.00 4 89 957 0.91 0.42
20 halbuki 1.00 1.00 1.00 1 16 1 0.06 0.32
21 gene de 1.00 1.00 1.00 3 22 1 0.04 0.26
22 bir yandan da 1.00 1.00 1.00 2 25 1 0.04 0.24
23 oysa 1.00 1.00 1.00 5 117 3 0.03 0.17
24 ancak 1.00 0.97 0.98 32 332 81 0.20 0.71
25 çünkü 1.00 0.96 0.98 24 239 5 0.02 0.14
26 ve 0.97 0.98 0.98 223 1686 4337 0.72 0.86
27 ama 0.96 0.99 0.97 110 785 85 0.10 0.46
28 ya da 0.93 1.00 0.97 14 114 214 0.65 0.93
29 önce 1.00 0.93 0.97 15 125 463 0.79 0.75
30 sonra 0.93 1.00 0.96 76 537 481 0.47 1.00
31 daha sonra 1.00 0.90 0.95 10 43 24 0.36 0.94
32 kadar 0.94 0.94 0.94 16 127 706 0.85 0.62
33 için 0.88 1.00 0.93 84 916 850 0.48 1.00
34 karşın 0.83 1.00 0.91 5 56 34 0.38 0.96
35 hem de 1.00 0.83 0.91 6 28 63 0.69 0.89
36 yine de 1.00 0.75 0.86 4 56 2 0.03 0.22
37 ardından 0.71 1.00 0.83 5 67 113 0.63 0.95
38 aslında 0.67 1.00 0.80 6 62 38 0.38 0.96
39 örneğin 0.67 1.00 0.80 4 45 13 0.22 0.77
40 gibi 0.82 0.70 0.76 20 191 1092 0.85 0.61
41 bir süre sonra 0.67 0.67 0.67 3 25 14 0.36 0.94
42 öte yandan 0.50 1.00 0.67 1 22 1 0.04 0.26
43 özellikle 0.00 0.00 0.00 1 1 125 0.99 0.07
44 artık 0.00 0.00 0.00 1 0 310 1.00 0.00

Average F-measure 0.91
Weighted Average F-measure 0.96
Calculated F-measure 0.96

Table 4.11: Performance of model in row #13 in Table 4.2 for Turkish TCL DCs found in the test
set with their frequency and entropy per DC.
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 için” 1.00 1.00 1.00 2 1 1 0.50 1.00
2 bundan sonra 1.00 1.00 1.00 1 12 14 0.54 1.00
3 sonuçta 1.00 1.00 1.00 1 9 7 0.44 0.99
4 aksine 1.00 1.00 1.00 2 8 6 0.43 0.99
5 ilkin 1.00 1.00 1.00 1 3 2 0.40 0.97
6 o zaman 1.00 1.00 1.00 3 76 42 0.36 0.94
7 ne de 1.00 1.00 1.00 2 24 45 0.65 0.93
8 dolayı 1.00 1.00 1.00 2 17 34 0.67 0.92
9 zaman da 1.00 1.00 1.00 1 3 6 0.67 0.92

10 ya 1.00 1.00 1.00 1 152 347 0.70 0.89
11 için mi 1.00 1.00 1.00 1 8 2 0.20 0.72
12 yıllar sonra 1.00 1.00 1.00 1 4 16 0.80 0.72
13 ondan sonra 1.00 1.00 1.00 1 7 1 0.13 0.54
14 bu nedenle de 1.00 1.00 1.00 1 8 1 0.11 0.50
15 bunun için 1.00 1.00 1.00 2 25 3 0.11 0.49
16 sayesinde 1.00 1.00 1.00 1 2 23 0.92 0.40
17 bir yandan 1.00 1.00 1.00 1 46 3 0.06 0.33
18 buna karşılık 1.00 1.00 1.00 2 17 1 0.06 0.31
19 bu yüzden 1.00 1.00 1.00 2 50 2 0.04 0.24
20 bu nedenle 1.00 1.00 1.00 7 84 2 0.02 0.16
21 aksi halde 1.00 1.00 1.00 1 5 0 0.00 0.00
22 belki de o nedenle 1.00 1.00 1.00 2 0 0 0.00 0.00
23 bir yıl sonra da 1.00 1.00 1.00 1 0 0 0.00 0.00
24 birkaç yıl sonra da 1.00 1.00 1.00 1 0 0 0.00 0.00
25 bu yüzden de 1.00 1.00 1.00 1 3 0 0.00 0.00
26 bunun neticesinde 1.00 1.00 1.00 1 0 0 0.00 0.00
27 daha sonra da 1.00 1.00 1.00 1 7 0 0.00 0.00
28 daha sonra ise 1.00 1.00 1.00 1 0 0 0.00 0.00
29 iki gün sonra 1.00 1.00 1.00 1 0 1 1.00 0.00
30 iki yıl sonra 1.00 1.00 1.00 1 0 1 1.00 0.00
31 ilk önce 1.00 1.00 1.00 1 1 0 0.00 0.00
32 işte o zaman 1.00 1.00 1.00 3 2 0 0.00 0.00
33 işte o zaman da 1.00 1.00 1.00 1 0 0 0.00 0.00
34 kadar da 1.00 1.00 1.00 1 0 12 1.00 0.00
35 o halde 1.00 1.00 1.00 1 3 0 0.00 0.00
36 tam aksine 1.00 1.00 1.00 1 0 0 0.00 0.00
37 aynı zamanda 0.90 0.82 0.86 11 23 22 0.49 1.00
38 onun için 0.75 1.00 0.86 3 9 13 0.59 0.98
39 buna karşın 1.00 0.50 0.67 2 13 0 0.00 0.00
40 daha önce 1.00 0.33 0.50 6 15 48 0.76 0.79
41 ardından da 0.00 0.00 0.00 1 5 5 0.50 1.00
42 her şeye rağmen 0.00 0.00 0.00 1 1 1 0.50 1.00
43 öte 0.00 0.00 0.00 1 23 33 0.59 0.98
44 buna 0.00 0.00 0.00 0 42 114 0.73 0.84
45 az sonra 0.00 0.00 0.00 1 2 6 0.75 0.81
46 sonuç 0.00 0.00 0.00 0 4 39 0.91 0.45
47 aynı 0.00 0.00 0.00 0 23 322 0.93 0.35
48 o 0.00 0.00 0.00 0 88 1289 0.94 0.34
49 11 0.00 0.00 0.00 0 0 35 1.00 0.00
50 ”veya 0.00 0.00 0.00 1 0 0 0.00 0.00
51 15 yıl sonra 0.00 0.00 0.00 1 0 0 0.00 0.00
52 az önce 0.00 0.00 0.00 1 0 16 1.00 0.00
53 buna ek olarak 0.00 0.00 0.00 1 0 0 0.00 0.00
54 eğer 0.00 0.00 0.00 1 0 82 1.00 0.00
55 itibaren 0.00 0.00 0.00 0 0 65 1.00 0.00
56 o yüzden 0.00 0.00 0.00 1 7 0 0.00 0.00
57 sonuç olarak da 0.00 0.00 0.00 1 0 0 0.00 0.00
58 yine de de 0.00 0.00 0.00 0 0 0 0.00 0.00
59 0.00 0.00 0.00 0 0 0 0.00 0.00

Average F-measure 0.66
Weighted Average F-measure 0.81
Calculated F-measure 0.73

Table 4.12: Performance of model in row #13 in Table 4.2 for DCs not in the Turkish TCL found in
the test set with their frequency and entropy per DC.
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Figure 4.4: Frequency of Turkish DUs in training set of each DC vs F-measure for TDB test set.
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Figure 4.5: Ratio of Turkish NDUs of each DC vs F-measure for TDB test set.

of correlation.

Figure 4.5 shows the ratio of NDU (frequency of NDU / frequency of NDU + frequency of DU)

for the DC in the training set versus the F-measure of that DC in the test set. Again, a higher ratio

means that a DC is likely to be NDU, but the model seems to be able to correctly annotate DCs as

DUs even if they have a high NDU ratio.

Figure 4.6 shows the entropy of the DC in the training set versus the F-measure of that DC in

the test set. Interestingly, it seems that most DCs in Turkish are somewhat ambiguous (many data

points are located towards the right of the graph). Yet the model seems to be able to disambiguate a

large portion of them.

Figures 4.4, 4.5, and 4.6 seem to show that the DCs found in the TCL are likely to be well
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Figure 4.6: Entropy of each Turkish DC vs F-measure for TDB test set.
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annotated, while those not found in the TCL are mostly found with an F-measure of 1 or 0. This is

likely caused by those particular DCs appearing only once in the test set.

4.2.1.3 Chinese

For Chinese we used two lexicons of DCs: Han yu guan lian ci ci dian (王起澜et al., 1989)

henceforth CDCL1 and Guan lian ci yu ci dian (戴木金et al., 1988) henceforth CDCL2. CDCL1

contains 400 phrases that can be part of a Chinese DC; whereas CDCL2 contains 321 phrases. The

intersection of the two contains 224 phrases and, therefore, the union of the two lexicon contains

497 phrases. Similarly to English and Turkish, with these lexicons, we can analyse the performance

of each phrase in the test set. Of the 497 phrases in the union, only 63 are found in the test set of

the DISRPT 2021, and only 50 of them are common in the two lexicons. The model used for the

analysis is model 4 in row #1 in Table 4.3.

Inventory 1: CDCL1

Table 4.13 shows the performance of the DCs in the CDCL1. The average F-measure is 88.90,

the weighted F-measure is 94.09, and the calculated F-measure is 93.79. The correlation between

the F-measure and the frequency of DU in the training set is 0.1618, between the F-measure and the

ratio of NDU in the training set is 0.0292 and between the F-measure and the entropy of the training

set is 0.2039. These indicate that these features are not correlated to the F-measure for this lexicon.

Figures 4.7, 4.8, and 4.9 show this visually.

Inventory 2: CDCL2

Table 4.14 shows the performance of the DCs in the CDCL2. The average F-measure is 86.11,

the weighted F-measure is 93.54, and the calculated F-measure is 93.37. These performances are

slightly lower then with the CDCL1, although the test set contains 58 phrases in the CDCL2 com-

pared to 55 in the CDCL1. For the frequency of DU in the training set the correlation is 0.1457; for

the ratio of NDU it is -0.0576, and for entropy it is 0.0744. Again this shows that these features do
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 因 1.00 1.00 1.00 2 1 1 0.50 1.00
2 之所以 1.00 1.00 1.00 1 1 1 0.50 1.00
3 才 1.00 1.00 1.00 1 3 3 0.50 1.00
4 特别是 1.00 1.00 1.00 2 7 8 0.53 1.00
5 如 1.00 1.00 1.00 3 9 11 0.55 0.99
6 时 1.00 1.00 1.00 5 18 30 0.63 0.95
7 却 1.00 1.00 1.00 1 6 3 0.33 0.92
8 为了 1.00 1.00 1.00 5 8 4 0.33 0.92
9 以 1.00 1.00 1.00 2 16 94 0.85 0.60

10 为 1.00 1.00 1.00 2 28 235 0.89 0.49
11 如果 1.00 1.00 1.00 7 9 1 0.10 0.47
12 一 1.00 1.00 1.00 1 9 271 0.97 0.21
13 同时 1.00 1.00 1.00 3 39 0 0.00 0.00
14 至于 1.00 1.00 1.00 1 0 0 0.00 0.00
15 其实 1.00 1.00 1.00 1 0 1 1.00 0.00
16 虽然 1.00 1.00 1.00 2 3 0 0.00 0.00
17 或 1.00 1.00 1.00 1 0 41 1.00 0.00
18 不仅 1.00 1.00 1.00 7 4 0 0.00 0.00
19 只是 1.00 1.00 1.00 1 2 0 0.00 0.00
20 不过 1.00 1.00 1.00 3 2 0 0.00 0.00
21 但是 1.00 1.00 1.00 2 8 0 0.00 0.00
22 假如 1.00 1.00 1.00 1 2 0 0.00 0.00
23 而且 1.00 1.00 1.00 4 12 0 0.00 0.00
24 那 1.00 1.00 1.00 1 0 1 1.00 0.00
25 首先 1.00 1.00 1.00 2 2 0 0.00 0.00
26 其次 1.00 1.00 1.00 1 1 0 0.00 0.00
27 此外 1.00 1.00 1.00 3 25 0 0.00 0.00
28 所以 1.00 1.00 1.00 4 1 0 0.00 0.00
29 既然 1.00 1.00 1.00 1 0 0 0.00 0.00
30 假使 1.00 1.00 1.00 1 0 0 0.00 0.00
31 即便 1.00 1.00 1.00 1 0 0 0.00 0.00
32 的话 1.00 1.00 1.00 1 0 0 0.00 0.00
33 那么 1.00 1.00 1.00 2 1 0 0.00 0.00
34 尽管 1.00 1.00 1.00 8 8 0 0.00 0.00
35 随着 1.00 1.00 1.00 5 22 0 0.00 0.00
36 不管 1.00 1.00 1.00 1 1 0 0.00 0.00
37 只要 1.00 1.00 1.00 1 3 0 0.00 0.00
38 即使 1.00 1.00 1.00 1 1 0 0.00 0.00
39 若 1.00 1.00 1.00 1 7 0 0.00 0.00
40 因此 1.00 1.00 1.00 1 7 0 0.00 0.00
41 但 0.95 1.00 0.98 20 34 0 0.00 0.00
42 而 0.92 1.00 0.96 11 24 26 0.52 1.00
43 后 0.91 1.00 0.95 10 30 23 0.43 0.99
44 则 0.91 1.00 0.95 10 17 3 0.15 0.61
45 并 1.00 0.85 0.92 13 76 22 0.22 0.77
46 由于 0.83 1.00 0.91 5 13 0 0.00 0.00
47 还 0.89 0.89 0.89 9 59 20 0.25 0.82
48 也 0.84 0.91 0.88 35 68 21 0.24 0.79
49 又 1.00 0.67 0.80 3 12 10 0.45 0.99
50 就 1.00 0.50 0.67 4 3 51 0.94 0.31
51 即 0.00 0.00 0.00 0 5 5 0.50 1.00
52 更 0.00 0.00 0.00 0 2 21 0.91 0.43
53 是 0.00 0.00 0.00 0 25 276 0.92 0.41
54 另 0.00 0.00 0.00 1 0 2 1.00 0.00
55 可 0.00 0.00 0.00 1 0 34 1.00 0.00

Average F-measure 0.89
Weighted Average F-measure 0.94
Calculated F-measure 0.94

Table 4.13: Performance of model for Chinese in row #1 in Table 4.3 for CDCL1 DCs found in the
test set with their frequency and entropy per DC.
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not correlate well with the performances of that DC, Figures 4.7, 4.8, and 4.9 show this visually.

Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 因 1.00 1.00 1.00 2 1 1 0.50 1.00
2 之所以 1.00 1.00 1.00 1 1 1 0.50 1.00
3 才 1.00 1.00 1.00 1 3 3 0.50 1.00
4 特别是 1.00 1.00 1.00 2 7 8 0.53 1.00
5 如 1.00 1.00 1.00 3 9 11 0.55 0.99
6 却 1.00 1.00 1.00 1 6 3 0.33 0.92
7 为了 1.00 1.00 1.00 5 8 4 0.33 0.92
8 以 1.00 1.00 1.00 2 16 94 0.85 0.60
9 以及 1.00 1.00 1.00 1 4 31 0.89 0.51

10 如果 1.00 1.00 1.00 7 9 1 0.10 0.47
11 其中 1.00 1.00 1.00 3 75 4 0.05 0.29
12 一 1.00 1.00 1.00 1 9 271 0.97 0.21
13 同时 1.00 1.00 1.00 3 39 0 0.00 0.00
14 至于 1.00 1.00 1.00 1 0 0 0.00 0.00
15 其实 1.00 1.00 1.00 1 0 1 1.00 0.00
16 虽然 1.00 1.00 1.00 2 3 0 0.00 0.00
17 或 1.00 1.00 1.00 1 0 41 1.00 0.00
18 不仅 1.00 1.00 1.00 7 4 0 0.00 0.00
19 结果 1.00 1.00 1.00 2 0 3 1.00 0.00
20 只是 1.00 1.00 1.00 1 2 0 0.00 0.00
21 不过 1.00 1.00 1.00 3 2 0 0.00 0.00
22 但是 1.00 1.00 1.00 2 8 0 0.00 0.00
23 假如 1.00 1.00 1.00 1 2 0 0.00 0.00
24 而且 1.00 1.00 1.00 4 12 0 0.00 0.00
25 那 1.00 1.00 1.00 1 0 1 1.00 0.00
26 故 1.00 1.00 1.00 1 2 0 0.00 0.00
27 首先 1.00 1.00 1.00 2 2 0 0.00 0.00
28 其次 1.00 1.00 1.00 1 1 0 0.00 0.00
29 此外 1.00 1.00 1.00 3 25 0 0.00 0.00
30 所以 1.00 1.00 1.00 4 1 0 0.00 0.00
31 既然 1.00 1.00 1.00 1 0 0 0.00 0.00
32 假使 1.00 1.00 1.00 1 0 0 0.00 0.00
33 即便 1.00 1.00 1.00 1 0 0 0.00 0.00
34 的话 1.00 1.00 1.00 1 0 0 0.00 0.00
35 那么 1.00 1.00 1.00 2 1 0 0.00 0.00
36 尽管 1.00 1.00 1.00 8 8 0 0.00 0.00
37 不管 1.00 1.00 1.00 1 1 0 0.00 0.00
38 只要 1.00 1.00 1.00 1 3 0 0.00 0.00
39 即使 1.00 1.00 1.00 1 1 0 0.00 0.00
40 相反 1.00 1.00 1.00 1 0 0 0.00 0.00
41 若 1.00 1.00 1.00 1 7 0 0.00 0.00
42 因此 1.00 1.00 1.00 1 7 0 0.00 0.00
43 但 0.95 1.00 0.98 20 34 0 0.00 0.00
44 而 0.92 1.00 0.96 11 24 26 0.52 1.00
45 则 0.91 1.00 0.95 10 17 3 0.15 0.61
46 并 1.00 0.85 0.92 13 76 22 0.22 0.77
47 由于 0.83 1.00 0.91 5 13 0 0.00 0.00
48 还 0.89 0.89 0.89 9 59 20 0.25 0.82
49 也 0.84 0.91 0.88 35 68 21 0.24 0.79
50 又 1.00 0.67 0.80 3 12 10 0.45 0.99
51 就 1.00 0.50 0.67 4 3 51 0.94 0.31
52 即 0.00 0.00 0.00 0 5 5 0.50 1.00
53 更 0.00 0.00 0.00 0 2 21 0.91 0.43
54 是 0.00 0.00 0.00 0 25 276 0.92 0.41
55 加上 0.00 0.00 0.00 1 0 1 1.00 0.00
56 可 0.00 0.00 0.00 1 0 34 1.00 0.00
57 和 0.00 0.00 0.00 1 0 545 1.00 0.00
58 每 0.00 0.00 0.00 0 0 34 1.00 0.00

Average F-measure 0.86
Weighted Average F-measure 0.94
Calculated F-measure 0.93

Table 4.14: Performance of model for Chinese in row #1 in Table 4.3 for CDCL2 DCs found in the
test set with their frequency and entropy per DC.
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Inventory 3: Union of CDCL1 and CDCL2

The union of the the two lexicons results in an average F-measure of 85.55, weighted F-measure of

93.46, and calculated F-measure of 93.39. The only correlation worth noting is that of the ratio of

NDU in the training set, which is -0.5590, indicating a slight correlation; whereas the other features

are not correlated similarly to the CDCL1 and the CDCL2.

Inventory 4: Intersection of CDCL1 and CDCL2

For the intersection of CDCL1 and CDCL2, we have an average F-measure of 89.89, a weighted

F-measure of 94.15, and a calculated F-measure of 93.81. This is to be expected, as the intersection

likely contains DCs that are less ambiguous. None of the correlations are noteworthy, as they are

similar to those observed for the CDCL1 and the CDCL2.

Inventory 5: Not in CDCL1 or CDCL2

Finally, we analysed the DCs that are in the DISRPT 2021 test set and are not found in either the

CDCL1 or the CDCL2, of which there are 65. The average F-measure is 49.48 (due to many DCs

with a zero F-measure), a weighted F-measure of 71.63, and a calculated F-measure of 74.85. It is

clear that these DCs are more difficult for the model to identify. Table 4.15 shows the performance

of individual DCs, most of them appearing only once or twice in the test set. Figures 4.7, 4.8, and 4.9

show the correlation between their F-measure and the same 3 features (frequency DU, ratio NDU,

and entropy); whose values are 0.3163, -0.0724, 0.5029, respectively. Only the entropy shows a

slight correlation.

Figure 4.7 shows the frequency of DU for each DC in the training set versus its F-measure in

the test set. Similarly to Turkish and English, we expected DCs with more DU annotations in the

training set to have a better F-measure on the test set. However, this is not really the case.

Figure 4.8 shows the ratio of NDU for the DCs in the training set versus the F-measure of that

DC in the test set. The ratio of NDU should have a negative correlation with the F-measure, because

as stated before the ratio of NDU is a feature that signals that a DC is more likely to be used in NDU,

but again even those with a NDU ratio of close to 1 have an F-measure of 1. This seems to indicate
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Nb DC Precision Recall F-measure DU Freq Test DU Freq Train NDU Freq Train NDU ratio Train Entropy Train

1 不久 1.00 1.00 1.00 1 1 1 0.50 1.00
2 继 1.00 1.00 1.00 1 3 3 0.50 1.00
3 为此 1.00 1.00 1.00 2 2 2 0.50 1.00
4 自 1.00 1.00 1.00 1 12 15 0.56 0.99
5 下 1.00 1.00 1.00 5 9 14 0.61 0.97
6 之后 1.00 1.00 1.00 2 3 5 0.63 0.95
7 以来 1.00 1.00 1.00 2 19 34 0.64 0.94
8 使 1.00 1.00 1.00 3 33 18 0.35 0.94
9 通过 1.00 1.00 1.00 1 14 27 0.66 0.93

10 这样 1.00 1.00 1.00 2 2 4 0.67 0.92
11 经过 1.00 1.00 1.00 2 8 3 0.27 0.85
12 不再 1.00 1.00 1.00 1 1 3 0.75 0.81
13 二 1.00 1.00 1.00 1 8 28 0.78 0.76
14 令 1.00 1.00 1.00 1 1 6 0.86 0.59
15 三 1.00 1.00 1.00 1 5 82 0.94 0.32
16 从 1.00 1.00 1.00 1 1 70 0.99 0.11
17 当 1.00 1.00 1.00 3 6 0 0.00 0.00
18 本来 1.00 1.00 1.00 1 0 0 0.00 0.00
19 前 1.00 1.00 1.00 1 0 39 1.00 0.00
20 从而使 1.00 1.00 1.00 1 0 0 0.00 0.00
21 的同时 1.00 1.00 1.00 2 7 0 0.00 0.00
22 就证明 1.00 1.00 1.00 1 0 0 0.00 0.00
23 与此同时 1.00 1.00 1.00 2 6 0 0.00 0.00
24 如果说 1.00 1.00 1.00 1 0 0 0.00 0.00
25 的过程中 1.00 1.00 1.00 1 0 0 0.00 0.00
26 之际 1.00 1.00 1.00 1 1 0 0.00 0.00
27 以使 1.00 1.00 1.00 1 1 0 0.00 0.00
28 这表明 1.00 1.00 1.00 1 2 0 0.00 0.00
29 的时候 1.00 1.00 1.00 2 1 0 0.00 0.00
30 就在 1.00 1.00 1.00 1 0 0 0.00 0.00
31 考虑到 1.00 1.00 1.00 1 0 1 1.00 0.00
32 在 1.00 0.75 0.86 16 44 475 0.92 0.42
33 使得 0.67 1.00 0.80 2 1 0 0.00 0.00
34 造成 0.00 0.00 0.00 0 1 6 0.86 0.59
35 间 0.00 0.00 0.00 1 1 25 0.96 0.24
36 中 0.00 0.00 0.00 1 5 183 0.97 0.18
37 这 0.00 0.00 0.00 1 4 152 0.97 0.17
38 的 0.00 0.00 0.00 0 13 2233 0.99 0.05
39 却也 0.00 0.00 0.00 1 1 0 0.00 0.00
40 进一步 0.00 0.00 0.00 1 0 49 1.00 0.00
41 每逢 0.00 0.00 0.00 1 0 0 0.00 0.00
42 这是导致 0.00 0.00 0.00 1 0 0 0.00 0.00
43 的主要因素 0.00 0.00 0.00 1 0 1 1.00 0.00
44 等因素 0.00 0.00 0.00 1 0 0 0.00 0.00
45 之前 0.00 0.00 0.00 1 0 1 1.00 0.00
46 更引人注目的是 0.00 0.00 0.00 1 0 0 0.00 0.00
47 所有信息显示 0.00 0.00 0.00 1 0 0 0.00 0.00
48 是因为 0.00 0.00 0.00 1 0 2 1.00 0.00
49 的缘故 0.00 0.00 0.00 1 0 0 0.00 0.00
50 大概是由于 0.00 0.00 0.00 1 0 0 0.00 0.00
51 这是 0.00 0.00 0.00 1 0 23 1.00 0.00
52 的原因 0.00 0.00 0.00 1 0 3 1.00 0.00
53 举例 0.00 0.00 0.00 1 0 0 0.00 0.00
54 这实际上是 0.00 0.00 0.00 1 0 0 0.00 0.00
55 初期 0.00 0.00 0.00 1 0 3 1.00 0.00
56 但也 0.00 0.00 0.00 1 0 0 0.00 0.00
57 到 0.00 0.00 0.00 1 0 117 1.00 0.00
58 不仅仅 0.00 0.00 0.00 0 0 0 0.00 0.00
59 0.00 0.00 0.00 0 0 0 0.00 0.00
60 可以说 0.00 0.00 0.00 0 0 2 1.00 0.00
61 应该说 0.00 0.00 0.00 0 0 0 0.00 0.00
62 也是因为 0.00 0.00 0.00 0 0 0 0.00 0.00
63 缘故 0.00 0.00 0.00 0 0 0 0.00 0.00
64 大概 0.00 0.00 0.00 0 0 0 0.00 0.00
65 均 0.00 0.00 0.00 0 0 27 1.00 0.00
66 就要求 0.00 0.00 0.00 0 0 0 0.00 0.00

Average F-measure 0.49
Weighted Average F-measure 0.72
Calculated F-measure 0.75

Table 4.15: Performance of model for Chinese in row #1 in Table 4.3 for DCs not in the CDCL1 or
CDCL2 found in the test set with their frequency and entropy per DC.
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Figure 4.7: Frequency of DUs in training set of each DC vs F-measure for CDTB test set.
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Figure 4.8: Ratio of NDUs of each DC vs F-measure for CDTB test set.
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that the model can identify a DC in DU even if that DC appears mostly in NDU form in the training

set.

Figure 4.9 shows the entropy of the DCs in the training set versus their F-measure in the test set.

Being a measure of ambiguity, most DC in Chinese appear to be ambiguous, yet the model is able

to identify them correctly.

Figures 4.7, 4.8, 4.9 seem to indicate a difference in performance based on whether that DC is

common enough to appear in a DC lexicon. Most likely because these DCs are Explicit while

the others are AltLex.

4.2.2 Analysis of The Synthetic Data Sets

The second investigation is aimed at identifying errors in our synthetic datasets. We performed

this analysis by inspecting the English annotations in the parallel sentences.

4.2.2.1 Turkish

Synthetic Projection Data Set (TUR-PJ)

We analysed the synthetic Turkish projection data set (TUR-PJ) by inspecting the English par-

allel sentences to see what kind of DCs have been projected. Figures 4.10, 4.11, and 4.12 show

various errors that seem to be quite commonly found in the projected data set.

Figure 4.10 shows the English DC also annotated with B-Conn being projected onto a comma

in the Turkish parallel sentence. This is incorrect and may cause the model to learn something that

is not valuable. Furthermore, we can also find instances where a comma in the Turkish dataset is

annotated with a I-Conn. In total, the error can be observed 527 times; 514 times for a comma

annotated as B-Conn, and 13 times where a comma is annotated as I-Conn. For a data set with

4,166 tokens annotated as DCs, this is not insignificant. A simple heuristic that filters this type of

projection could be very beneficial here.

Figure 4.11 shows also which in this sentence is not a DC, although the English model annotated

it as such. Therefore, the projection of the annotated NDU is also incorrect. This error most likely

86



Figure 4.9: Entropy of each DC vs F-measure for CDTB test set.
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Figure 4.10: Example of error for Turkish projection 1: DC also annotation is projected onto a
comma which is not a valid DC.

Figure 4.11: Example of error for Turkish projection 2: DC also is in NDU, therefore projecting
an incorrectly annotated annotation to Turkish counterpart.

occurs often, but the exact number of occurrences can only be determined by closely verifying each

instance in the dataset, which is time consuming and requires linguistic expertise.

Firgure 4.12 shows the DC however being dropped from the English to the Turkish parallel data,

yet the sentence is kept because the projection algorithm (see Section 3.1) allows for sentences with

NDU to be added to the corpus. We counted 823 sentences where a DC in English was dropped in

the Turkish parallel sentence; this is quite a significant portion of the dataset. A heuristic that would

not allow this kind of projection to occur could be used to avoid these errors.

Figure 4.12: Example of error for Turkish projection 3: DC lost in translation.
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Figure 4.13: Example of error for Turkish agreement 1: DC for annotated but should not be, in
NDU.

Figure 4.14: Example of error for Turkish agreement 2: DC bringing is annotated but should not
be, and is lot in translation.

Synthetic Agreement Data Set (TUR-AG)

We tried to visually analyse the synthetic Turkish agreement dataset (TUR-AG), similarly to

what we did for the projection dataset (TUR-PJ). We were able to find errors where DC terms are

annotated but they are in fact in NDU (see Figure 4.13). It is likely that this type of error is the

most frequent, as DCs that are ambiguous in English are likely to also be ambiguous in the target

language. Figure 4.14 shows a different type of error where the term annotated is not a DC and was

lost in translation. It stands to reason that this type of error could happen in the reverse direction,

where the Turkish model annotated a term that is not a DC in the Turkish corpus, and in the English

corpus that term was dropped in translation. In other words, the Turkish corpus would contain a

DC that only the Turkish model identified, because the English model did not know that it existed.

This type of error would result in a corpus that reinforces the errors of the model. A possible

solution would be to employ an ensemble of models to do the annotation in both the source and

target language.

We initially believed that the main source of error from in TUR-AG would come from the use

of SimAlign (see Section 3.3.2.2) to create the word alignments, causing error accumulation down-

stream. To test this hypothesis, we created two new agreement data sets: using a more lenient word
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alignment with a threshold probability of 75% and using a more strict alignment set at 90%, recall

from Section 3.3.2.2 that the datasets used in the previous experiments uses 85% as a threshold.

We trained model 4 (BERT + CRF) described in Section 4.1.2. The dataset with 90% alignment

probability has 2589 instances to train on, which resulted in an F-measure of 70.95 (±0.92) on the

TDB test set. This is much weaker than the original agreement only model, which had an F-measure

of 87.99 (±0.54) (see Table 4.2). However, the model that was trained on the data set with align-

ment probability of 75%, had 93,572 instances, and resulted in an F-measure of 90.24 (±0.15). This

seems to go against our hypothesis that additional data does not benefit the task of DC identification

and that the error accumulation from using a word alignment tool is significant.

4.2.2.2 Chinese

Synthetic Projection Data Set (ZHO-PJ)

Similarly to the Turkish projection dataset, the Chinese projection dataset (ZHO-PJ) suffers

from a similar problem. Terms are marked as DC in DU when they do not signal any discourse

relation. Figure 4.15 shows the word shaking, which was annotated by the English model, then

projected onto its Chinese counterpart震荡. This error occurs because of the restrictions of the pro-

jection algorithm on which sentences are being projected. Only sentences where no annotation was

found in the target sentence can receive an annotation (see Section 2.1.1), which ends up propagat-

ing errors that the source model makes on the target language dataset. Another error that this dataset

shares with the Turkish projection is the annotated NDUs. Figure 4.16 shows specifically which was

incorrectly annotated by the English model; again, it is projected onto its Chinese counterpart 明

确. These types of errors are hard to automatically determine and require a closer inspection of the

resulting dataset to count how often they occurs.

The error where commas are marked with DC annotation that was found in the Turkish pro-

jection dataset does happen in Chinese as well, however, fewer times; occurring only 33 times in

the Chinese projection dataset. This may be because the word alignment used for Chinese synthetic

datasets are manual gold standard (see Section 3.3.2.1), which means that fewer commas are aligned

with words. However, 1678 sentences of the dataset have terms that were annotated by the English
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Figure 4.15: Example of error For Chinese projection 1: DC shaking is annotated but is not a DC,
and is projected onto the Chinese parallel phrase.

Figure 4.16: Example of error for Chinese projection 2: DC specifically is annotated but is NDU,
and is projected onto the Chinese parallel phrase.

model and that term is dropped in the Chinese translation. resulting in Chinese sentences that have

no terms with no DC annotation. Similarly to Turkish, the best solution would be not to keep these

sentences.

Synthetic Agreement Data Set (ZHO-AG)

Unlike the synthetic Turkish agreement dataset (TUR-AG), we did not use a word alignment

tool (see Section 3.3.2.1) to generate ZHO-AG. This means that in principle there should be no

accumulation of errors from the word alignment in the synthetic DC identification. Additionally,

the model trained on the Chinese agreement data set performs almost as well as the model trained

on the CDTB, making it difficult to identify errors in the synthetic data sets.

In this chapter we have measured the performance of each of our models on the task of DC

identification using the DISRPT 2021 evaluation script. We have compared our best models for
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each language (English, Chinese, Turkish) with the results of the participants at DISRPT 2021.

The performance of our models are comparable if not better than the SOTA systems. Finally, an

analysis of the best models for each language was performed, seeing how well the models perform

on specific DCs. We also analysed the errors that can occur in our synthetic datasets due to the

way the projection and agreement algorithms were designed. Chapter 5 concludes this thesis and

presents future work.
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Chapter 5

Conclusion and Future Work

This thesis explored the automatic identification of discourse connectives in a multilingual set-

ting. Our models used transformers as embeddings without the need for heavy linguistic features.

We evaluated our work on English, Turkish, and Chinese as part of the DISRPT shared task. Our

simple approaches with language-specific BERT embedding seem to perform well, outperforming

or matching the best results seen in DISRPT 2021 for English, Turkish, and Chinese. Our experi-

ment show that adding handcrafted features is not beneficial to BERT embeddings. As part of our

exploration we also developped two methods for data augmentation based on annotation projection

and agreement. However the performance using the synthetic data sets showed that they do not help

the models and actually seem to harm their performance. An analysis of the corpora shows that

there are several systematic errors in the synthetic data sets and simple heuristics may be used to

filter them out.

Our experiments with corpus reduction showed that our main model trained on only 25% of the

PDTB or trained on only 25% of the TDB outperformed most teams at DISRPT 2021. This seems

to indicate that low-resourced languages do not need the full size corpus of the PDTB (44k) or even

the TDB (25k) to perform well (over 90 F-measure) on the task DC identification. For Chinese,

this would mean roughly doubling the size of the CDTB. We believe this is because BERT-like

models already learn some of discourse information in the pre-training tasks, and fine-tuning on a

DC identification task simply gives more importance to the attention head in the multi-head attention

that is responsible for this type of information.
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Our experiments with cross-language training using multilingual BERT (see Section 4.1) showed

poorer performance compared to training on a specific language. These results are in line with

what Virtanen et al. (2019) found. Indeed, the authors noticed that for Finnish, multilingual BERT

under-performed compared to a BERT embedding pre-trained solely on Finnish on a variety of NLP

tasks (POS tagging, named entity recognition, dependency parsing, and text classification). In our

case, we suspect that this is because the attention heads are responsible for both identifying the lan-

guage in question and tagging the DC. However, balancing the datasets leads to the lowest resourced

language gaining a small amount of performance over not doing so.

An analysis of our best performing models for each language (see Section 4.2) shows that the

BERT models can easily identify Explicit DCs that can be found in reference lexicons of each

language. However, the identification of AltLex DCs or DCs not found in the lexicons seems

to be more difficult in all languages. This result is likely due to the lack of training examples for

these types of DCs. Adding instances for each of these DCs in both DU and NDU may alleviate

the performance deficit, although because AltLex are open class, obtaining training corpora that

covers all of them in sufficient number may be difficult itself.

5.1 Contributions

This thesis presented a number of theoretical and practical contributions, including the follow-

ing:

(1) The implementation of various DC identification models using transformers as a embedding

that do not need any handcrafted features (see Chapter 3). These models achieve SOTA per-

formance of 93.12 F-measure for English, 94.42 F-measure for Turkish and 87.47 F-measure

for Chinese.

(2) The creation of synthetic Turkish and Chinese corpora with discourse connective annotation

(see Chapter 3). These corpora will be publicly available on the CLaC Github.

(3) Experimentation with the synthetic Turkish and Chinese corpus, in order to augment the data

available for those languages and to see if performance is impacted (see Chapter 4). From our
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experiments it seems that our synthetic corpora negatively impact model performance.

(4) Experimentation with corpus reduction to determine how much training data is needed to

create models that still perform well (see Chapter 4). From our experiments it seems that 5k

to 10k training examples can achieve F-measures of 90% in English and Turkish.

(5) An analysis of the models to understand what DCs it identifies well and what DCs it struggles

with (see Chapter 4). Our analysis showed that our models struggle with AltLex connec-

tives, and that the entropy of a DC is not a good indication of how well that DC will perform.

(6) An analysis of the synthetic Turkish and Chinese corpora and the proposal of simple heuristics

to improve them (see Chapter 4). Our analysis revealed several systemic errors that most

likely lead to poorer performances.

Contributions 1 to 3 above are the focus of our recently published paper at the 27th International

Conference on Natural Language & Information Systems (NLDB-2022) (Muermans and Kosseim,

2022).

5.2 Future Work

In Chapter 3, we presented two methods for creating synthetic data (annotation projection and

annotation agreement). Although the methodology is intuitively sound, these corpora did not lead

to expected improvements in performance. We speculate that this maybe due to two reasons: (1)

BERT is enough (2) the corpora contain many errors. To verify the second hypothesis, we per-

formed a manual inspection of the synthetic datasets. In Chapter 4, we discovered several errors,

and proposed simple heuristics to filter them. It would be interesting to apply these heuristics and

validate if the new synthetic corpora offer a benefit for low-resource languages (i.e. Chinese). The

performance of the Chinese agreement data set is only a few points away (1.16%) from the perfor-

mance after being trained on the CDTB; indicating that after refinements it would likely improve

performance.

Our result with data reduction (see Section 4.1) seems to indicate that the BERT embedding

already possesses some level of knowledge about Explicit DCs. It would be interesting to
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analyze the attention heads before fine-tuning and after fine-tuning to see which heads contain this

information and how fine-tuning affects BERT. This could also help identify why models struggle

with AltLex DCs identification.

Our results with the GPT2 model are very weak (see Section 4.1.1), and more research is needed

to determine why this model is underperforming. We suspect that this is because the CRF output

layer does not send error signals that are useful for the GPT2 embedding, or DC detection is not

something it performs well in.

Our results with multilingual cross training (see Section 4.1) are weaker than expected. It may

be worth investigating cross-training using languages that are part of the same family (for English a

West Germanic language, for Turkish languages in the Ural-Altaic linguistic family, and for Man-

darin Chinese a language from Sino-Tibetan family). Additionally, performing the same experi-

ments with a more powerful multilingual model that has more parameters and attention heads may

close the gap between the performance differences.

It is clear from our analysis that more work needs to be done to address the performance of less

frequent DCs, such as AltLex (see Section 4.2.1). Whether it be by adding more examples in

the training set or identifying why the models fail at this. We believe that solving this issue would

greatly improve the models performance overall.

Finally, in Chapter 2 we discussed the CDTB and how DCs in the Chinese language are of-

ten part of a pair, also known as discontinuous DCs (DDCs) or paired DCs (Huang et al., 2014).

Investigating this further and creating models to specifically address these DCs may be useful in

improving the overall performance of the Chinese models. This could be done in a 2-step process:

initially, a model can be created to identify if a pair of Chinese phrases form a DDC or not. If so,

then a second model could be used to identify DDCs in a sentence, which could be used as part of

a pipeline to identify DCs in Chinese.

Finally, in this thesis, we explored the identification for all Explicit and AltLex DCs for

English, Turkish and Chinese and showed that our simple BERT based approach does well in each.

However, it would be interesting to see how our approach fares with other languages that do not

enjoy large embeddings such as BERT.

96



Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning Representations

(ICLR 2015), San Diego, USA, May 2015.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term dependencies with gra-

dient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, March 1994.

Luisa Bentivogli and Emanuele Pianta. Exploiting parallel texts in the creation of multilingual

semantically annotated resources: The MultiSemCor Corpus. Natural Language Engineering, 11

(3):247–261, 2005.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The Mathe-

matics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19

(2):263–311, 1993. URL https://aclanthology.org/J93-2003.

Debopam Das and Maite Taboada. RST Signalling Corpus: A Corpus of Signals of Coherence

Relations. Lang. Resour. Eval., 52(1):149–184, mar 2018. ISSN 1574-020X. doi: 10.1007/

s10579-017-9383-x. URL https://doi.org/10.1007/s10579-017-9383-x.

Debopam Das, Tatjana Scheffler, Peter Bourgonje, and Manfred Stede. Constructing a Lexicon

of English Discourse Connectives. In Proceedings of the 19th Annual SIGdial Meeting on Dis-

course and Dialogue, pages 360–365, Melbourne, Australia, July 2018. Association for Com-

putational Linguistics. doi: 10.18653/v1/W18-5042. URL https://aclanthology.org/

W18-5042.

97

https://aclanthology.org/J93-2003
https://doi.org/10.1007/s10579-017-9383-x
https://aclanthology.org/W18-5042
https://aclanthology.org/W18-5042


Mohammad Reza Davari. Neural Network Approaches to Medical Toponym Recognition.

Unpublished, April 2020. URL https://spectrum.library.concordia.ca/id/

eprint/986657/.
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Deniz Zeyrek and Kezban Başıbüyük. TCL - a Lexicon of Turkish Discourse Connectives. In

Proceedings of the First International Workshop on Designing Meaning Representations, pages

73–81, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/

v1/W19-3308. URL https://aclanthology.org/W19-3308.
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