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ABSTRACT 

 

 

Machine Learning for Next-generation Content Delivery Networks: 

Deployment, Content Placement, and Performance Management 

 

Sepideh Malektaji, Ph.D. 

Concordia University, 2022 

 

With the explosive demands for data and the growth in mobile users, content delivery 

networks (CDNs) are facing ever-increasing challenges to meet end-users quality-of-

experience requirements, ensure scalability and remain cost-effective. These challenges 

encourage CDN providers to seek a solution by considering the new technologies available 

in today’s computer network domain. Network Function Virtualization (NFV) is a relatively 

new network service deployment technology used in computer networks. It can reduce 

capital and operational costs while yielding flexibility and scalability for network operators. 

Thanks to the NFV, the network functions that previously could be offered only by specific 

hardware appliances can now run as Virtualized Network Functions (VNF) on commodity 

servers or switches. Moreover, a network service can be flexibly deployed by a chain of 

VNFs, a structure known as the VNF Forwarding Graph or VNF-FG. Considering these 

advantages, the next-generation CDN will be deployed using NFV infrastructure. However, 

using NFV for service deployment is challenging as resource allocation in a shared 

infrastructure is not easy. Moreover, the integration of other paradigms (e.g., edge computing 

and vehicular network) into CDN will compound the complexity of content placement and 

performance management for the next-generation CDNs. In this regard, due to their impacts 

on final service and end-user perceived quality, the challenges in service deployment, 

content placement, and performance management should be addressed carefully.  In this 

thesis, advanced machine learning methods are utilized to provide algorithmic solutions for 

the abovementioned challenges of the next generation CDNs.  
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Regarding the challenges in the deployment of the next-generation CDNs, we propose two 

deep reinforcement learning-based methods addressing the joint problems of VNF-FG’s 

composition and embedding, as well as function scaling and topology adaptation. As for content 

placement challenges, a deep reinforcement learning-based approach for content migration in an 

edge-based CDN with vehicular nodes is proposed. The proposed approach takes advantage of the 

available caching resources in the proximity of the full local caches and efficiently migrates 

contents at the edge of the network.  Moreover, for managing the performance quality of an 

operating CDN, an unsupervised machine learning anomaly detection method is provided. The 

proposed method uses clustering to enable easier performance analysis for next-generation CDNs. 

Each proposed method in this thesis is evaluated by comparison to the state-of-the-art approaches. 

Moreover, when applicable, the optimality gaps of the proposed methods are investigated as well. 
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Chapter 1 

 

1. Introduction 

 

1.1 Overview 

 

Content Delivery Networks (CDNs) are a group of network elements organized for the efficient 

delivery of content to end-users over a large scale [1]. In this regard, CDNs rely on a set of 

strategically placed surrogate servers (a.k.a replica servers) to replicate content from an origin 

server (a.k.a content server) so that they can offer content delivery services with reduced latency. 

Today, CDNs play a pivotal role in the delivery of content to end-users across the internet. The 

demand for CDNs is predicted to increase exponentially, and its market is predicted to rise from 

$11.76 billion in 2019 to $49.61 billion in 2025 [2]. To that end, CDNs need to cope with the 

exponential data demand growth, straining their infrastructure. Moreover, they need to satisfy end-

users quality-of-experience (QoE) requirements, ensure scalability and remain cost-effective. 

These challenges encourage CDN providers to seek solutions by considering the new technologies 

arising in the modern computer network domain. 

Network Function Virtualization (NFV) is a network service deployment technology that has 

recently emerged. Thanks to the NFV, the network functions that previously could be offered only 
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by specific hardware appliances can now run as Virtualized Network Functions (VNF) on 

commodity servers or switches. In that regard, by virtualizing the network resources, NFV 

technology provides opportunities for network optimization, cost reduction, and scalability [3].  

1.2 Challenges and Thesis Contributions  

1.2.1  Challenges  

Considering the advantages, the next-generation CDN will be deployed on shared infrastructure 

using NFV technology. However, the use of NFV for CDN deployment is not easy. To that end, 

not only new deployment challenges should be addressed but also with the integration of new 

technologies, one can expect new challenges in the operation and management of CDNs. In the 

following, some examples of these issues faced by modern CDNs are discussed: 

• VNF-FG resource allocation for CDN deployment: Resource allocation in a shared and 

complex infrastructure is not easy. In the NFV ecosystem, a network service (e.g., a content 

delivery service) is a set of chained VNFs (called VNF forwarding graph or VNF-FG) through 

which the service traffic should traverse one by one. To this end, the following Resource 

Allocation (RA) problems [4] need to be addressed: 1) VNF-FG Composition: Determining the 

number and order of VNFs in VNF-FG, 2) VNF-FG embedding: Allocating physical resources to 

the VNFs and their connecting links, and 3) VNF-FG scheduling: efficient scheduling of the shared 

resources among embedded VNFs.  Each of these RA challenges contributes to the costs and 

service quality of the final network service and thus should be addressed carefully.  

• VNF-FG adaptation for CDN deployment: An already deployed and running VNF-FG 

that enables a content delivery service could become inefficient as the service demands increase 

and network conditions fluctuate [3]. To that end, not only the number of VNF instances needs to 

be adjusted (a process known as function scaling or horizontal scaling), but also the topology of 

the VNF-FG and its mapping to the physical network may need proper adjustments via so-called 

topology adaptation.  

• Content placement for CDN operation: The next-generation CDN can be integrated with 

other paradigms (e.g., edge computing and vehicular network). The operational decisions in this 

heterogeneous and complex environment will be challenging. For example, for an edge-based 

CDN that consists of fixed and mobile caches, decisions on placement, migration, and removal of 
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contents are challenging. Since these decisions could have vital impacts on the content delivery 

quality, they should be carefully investigated [5]. 

• Performance monitoring for CDN management: Monitoring users’ experience in the 

content delivery process is of paramount importance for CDNs. Throughout their operations, CDN 

providers target the satisfaction of users’ expectations in terms of Quality of Experience (QoE). In 

this context, CDN providers need to acquire knowledge of users’ QoE, identify QoE degradations, 

and investigate their potential root causes. However, due to the complexity of the CDN ecosystem, 

tracking the QoE evolution and detecting the degradation is quite challenging.  

1.2.2  Thesis Contributions  

Unfortunately, the challenges of the next-generation CDNs presented in Section 1.2.1 are not 

yet fully addressed. This Ph.D. thesis proposes the use of advanced Machine Learning (ML) 

algorithms to tackle these challenges in three categories of deployment, content placement, and 

performance management. To that end, it makes four main contributions. The two first 

contributions address the service deployment, whereas the third and fourth contributions target 

CDN content placement and performance management, respectively. These contributions are 

presented as follows  

1.2.2.1  Dynamic Joint VNF Forwarding Graph Composition and 

Embedding: A Deep Reinforcement Learning Framework [6] 

The first contribution is an ML-based deployment algorithm for joint VNF-FG composition and 

embedding. In the literature (e.g. [7-11]), the composition and embedding stages of VNF-FGs are 

usually targeted separately, which may result in undesired solutions. In this contribution, we 

propose a joint VNF-FG composition and embedding solution, which considers the variations of 

service demands while also accounting for dynamic network conditions. Specifically, our proposed 

solution relies on deep reinforcement learning empowered by two components for estimating 

dynamic parameters: network resource utilization and service demand analyzers. Moreover, to 

efficiently explore the problem's large discrete action space, we utilize a specialized branching Q-

network and enhance it with an action filtering mechanism. We evaluate our proposed method 

against joint and disjoint composition and embedding heuristics as well as versus other deep 
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learning-based methods. Our results show that the proposed method can achieve up to a 95% 

improvement in embedding cost compared to our benchmarks. 

1.2.2.2  Joint VNF-FG Function Scaling and Topology Adaptation for the 

Next-generation CDNs’ Deployment [12] 

The second contribution of this thesis is a joint VNF-FG function scaling and topology 

adaptation method. This method targets the necessary adaptations of already deployed and running 

VNF-FGs that have become inefficient by the increase of the service demands and fluctuations of 

network conditions. Given that function scaling and topology adaptation may have mutual 

correlations, a disjoint approach could lead to inefficient results. Thus, in our method, not only the 

number of VNF instances are adjusted, but also the topology of the VNF-FG and its mapping to 

the physical network are properly altered. In this contribution, we propose a deep reinforcement 

learning (DRL)-based joint framework, which takes advantage of a Deep Double Q network 

architecture enhanced with action filtering to jointly update the function and topology of the 

already deployed VNF-FGs. Our evaluation results show that the proposed method achieves up to 

a 93% cost improvement compared to our benchmarks. 

1.2.2.3  Content placement for the Next-generation CDNs [13] [14] 

The third contribution is a framework for content placement in edge-based CDNs with vehicular 

nodes. In this contribution, based on real-life situations, we consider a dynamic and heterogeneous 

environment consisting of mobile and fixed caches where contents have pre-assigned high and low 

priorities and developed a use case from a vehicular network to illustrate the motivation of our 

work. Our proposed method considers the available caching capacity in edge caches so that upon 

the arrival of high-priority contents, instead of just removing the low-priority contents from full 

caches, it migrates low-priority contents between edge caches to create enough space to 

accommodate high-priority contents. We implement our DRL migration agent with a deep double-

Q learner method empowered by LSTM memory cells. The simulation results show up to 70% in 

cost improvements compared to the existing methods. 

1.2.2.4  Performance Management for the Next-generation CDNs [15] 

Users’ viewing experience in the video delivery process is of paramount importance for Content 

Delivery Networks (CDNs). Throughout their operations, CDN providers target the satisfaction of 
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users’ expectations in terms of Quality of Experience (QoE). In this context, CDN providers need 

to acquire knowledge of users’ QoE and correlate observations through different video sessions to 

identify QoE degradations and investigate their potential root causes. In the absence of users’ 

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators 

(KPIs) throughout video sessions. This allows assessing the Quality of Service (QoS) offered to 

users, influencing their QoE. However, due to the large number of sessions handled by CDN 

operators, it is not possible to conduct such an analysis manually. In this work, we introduce a 

framework that allows to automatically group a large set of video sessions into a small number of 

representative clusters, with each cluster containing video sessions with similar patterns of KPIs. 

The framework builds upon a set of features representing the evolution of KPIs over a session. It 

relies on an unsupervised machine learning algorithm to form the clusters. We evaluate the 

framework over a real-world dataset with traffic logs relating to thousands of sessions. The 

obtained results underline the capabilities of the proposed framework. 

 

1.3 Background Information 

 
This subsection presents the background information that is relevant to our research domain 

and it covers the following topics: The general principles of CDN, service deployment, content 

placement, and performance management. Moreover, the general principles of machine learning 

methods will be discussed in this subsection.  

1.3.1  General Principles of Content Delivery Networks 

Content Delivery Networks (CDNs) consist of a collection of Web servers distributed over 

multiple locations with the main objective of delivering content to end-users with reduced latency. 

They were traditionally provisioned with static Web technologies but are now mostly integrated 

with modern technologies such as cloud computing. The main entities of a CDN are content servers 

(a.k.a origin servers), surrogate servers (sometimes called replica servers), and a controller [1]. 

Content servers hold the original copy of the content that end-users want to access. Surrogate 

servers are the servers in which the content of the origin server is replicated. They are deployed in 

strategic locations to enable the rapid delivery of content to end-users. They also enable load 

balancing and efficient resource usage. The controller uses certain criteria (e.g., content 
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availability, physical distance, and network conditions) to choose the most appropriate surrogate 

server for each end user's request and redirect the request to the selected server.   

1.3.1.1 Cloud-based Content Delivery Networks 

Cloud computing has several inherent advantages, such as scalability, on-demand resource 

allocation, flexible pricing model (pay-as-you-go), and easy applications and services provisioning 

[1]. CDNs can leverage these advantages. An example of a cloud-based CDN is MetaCDN [16]. 

In cloud-based CDN, replica servers are provisioned as cloud applications on top of Infrastructure 

as a Service (IaaS) [1]. However, cloud-based CDNs still face issues in meeting end-users 

expectations when it comes to latency. The distance between surrogate servers (possibly residing 

in the cloud) and end-users remains the main roadblock.  Thereby the edge computing paradigm 

can be utilized by the next generation CDNs to address the issue of latency [17]. 

1.3.1.2 Cloud-based Content Delivery Networks with Edge Nodes 

The next-generation CDN could be seen as an extended cloud-based CDN with edge caching 

resources. Indeed, moving the location of the caches closer to the edge of the network has the 

advantage of reducing the latency required for accessing and delivering users’ requests [17]. In 

particular, caching at the edge node, such as base stations, roadside units, or even on vehicles’ 

onboard units allows the delivery of content to mobile users with limited need for backhaul usage 

to connect to a remote surrogate server and thus to reduce the latency [17]. 

1.3.2  Deployment, Content Placement, and Performance Management of 

The Next-generation CDN 

1.3.2.1 Deployment of the next-generation CDNs 

The next-generation CDN is envisioned to be deployed on shared NFV-based infrastructure. 

Network Function Virtualization (NFV) [3] is a newly emerged network service deployment 

technology. The network functions that previously could be offered only by specific hardware 

appliances can now run as Virtualized Network Functions (VNF) on commodity servers or 

switches. Therefore, it reduces the capital and operational costs while yielding flexibility and 

scalability for the network operators.  To this end, in the NFV paradigm, network services are 

deployed as an ordered set of VNFs called VNF-FG.  In this regard, the so-called NFV resource 

allocation (NFV-RA) problem should be addressed [4]. The NFV-RA comprises three stages: (i) 
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composition of the VNF forwarding graph, (ii) embedding of the VNF-FG on the given substrate 

network, and (iii) scheduling of VNFs on the substrate nodes/links.  

With the help of NFV, multiple virtual networks (e.g., content delivery networks) can be created 

and managed on top of shared physical infrastructure, and that is a significant opportunity to reduce 

capital and operational costs while yielding flexibility and scalability for network operators [3].  

1.3.2.2 Content Placement for the next-generation CDNs 

Content Placement (CP) algorithms [5] determine the selection of the contents to be stored in 

the surrogate servers in traditional CDNs. They directly affect meeting the end-user demands with 

the expected quality of service [5] and thus are quite important. They were conventionally 

categorized into either pull or push-based, considering how they are retrieved from origin servers 

to surrogate servers. With the integration of the new paradigms (e.g., Edge computing and NFV), 

the next-generation CDNs could consist of edge-based local caches in the vicinity of end-users, 

and they can be even dynamic. In this regard, advanced CP decisions are needed to determine the 

placement of content not only on surrogate servers but also on these edge caches as well. 

1.3.2.3 Performance Management of the next-generation CDNs 

In this contribution, we introduce a framework for the analysis of Key Performance Indicators 

(KPIs) in large-scale CDN systems so that in the absence of users’ feedback on their QoE, CDN 

providers can monitor and analyze the performance evolutions throughout video sessions. Since it 

is not possible to conduct such an analysis manually, we introduce a framework that allows to 

automatically group a large set of video sessions into a small number of representative clusters, 

with each cluster containing video sessions with similar patterns of KPIs. The framework builds 

upon a set of features representing the evolution of KPIs over a session. It relies on an unsupervised 

machine learning algorithm to form the clusters. We evaluate the framework over a real-world 

dataset with traffic logs relating to thousands of sessions. The obtained results underline the 

capabilities of the proposed framework. Our framework employs an unsupervised machine 

learning algorithm to automatically form clusters of video sessions, presenting similar evolution 

of KPIs.  
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1.3.3  Machine Learning Algorithms 

Machine Learning (ML) algorithms [18] are the process of automatic learning from a collected 

set of data or experiences. They build data-driven models by automatic analysis and thus provide 

efficiency and cost-effectiveness in computing processes [18]. Considering the availability of true 

labels for the data, ML methods can be categorized into supervised and unsupervised learnings. 

Moreover, Reinforcement Learning (RL) is another branch of the ML algorithm that learns with 

continuous interaction with the environment. The recent integration of Deep Neural Network 

(DNN) with RL has introduced a powerful ML tool called Deep Reinforcement Learning (DRL). 

A method that has been successfully and widely used in many different domains. Indeed, because 

of the interdisciplinary nature of ML algorithms in general, they play pivotal roles in various fields, 

including engineering, medical, and computing [18]. In the following subsections, we provide 

background on each of the ML classes (i.e., supervised, unsupervised, and reinforcement learning). 

In supervised learning methods, the model is built over a collection of pairs of input and desired 

output [18]. The model will be trained so that a mapping function between input and output space 

be found. Consequently, the model will be tested over another input-output set (i.e., a testing set) 

that was not used for training. When the goal is to predict a continuous or quantitative output value, 

the corresponding problem to be solved is called regression, whereas the prediction of a categorical 

or qualitative output is known as a classification problem [18]. Support Vector Machines (SVMs), 

Artificial Neural Nets (ANN), logistic regression, naive Bayes, and random forests are some of 

the widely used supervised learning algorithms. Their application in communication systems 

includes channel decoder and email spam classification [19].  

Q-Learning [20] is the most widely used reinforcement algorithm. Q-learning works by 

successively updating the evaluation of the long-term quality (the Q value) of actions at each state. 

It is a simple way for an agent to learn how to act optimally [20]. We note, however, that classic 

Q-learning is limited to tasks with a small number of states and actions [20]. Moreover, in the Q-

learning algorithm, all the states should be met, and all the actions should be experienced. Those 

restrictions are impractical in most real-world problems, as they deal with environments that are 

extremely complex and dynamic, and their states are large and vary rapidly over time. The only 

way to learn anything in these types of dynamic situations (where we have dynamic state-space) 

is to generalize from previously experienced states to new states [20]. The required generalization 
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is often called function approximation [20]. To approximate the Q values for unmet states/actions, 

one can use a deep neural network (DNN)-based approach, which relies on nonlinear gradient-

descent function approximation [20]. This approach eliminates the need for visiting all the 

state/action pairs to compute the Q values. First proposed in [21], this revival hybrid approach is 

now widely used in different domains under the so-called deep reinforcement learning (DRL) or 

deep Q-learning (DQL) method [19]. 

 

1.4 Thesis Outline 
 

The rest of the thesis is organized as follows. Chapter 2 presents the motivating scenarios, the 

driven requirements, and a thorough review of the state-of-the-art. Chapter 3 presents a deep 

learning framework for joint VNF-FG composition and embedding for CDN deployment. In 

chapter 4, we discuss a joint function scaling and topology adaptation method. In chapter 5, a 

content placement method for CDN with mobile nodes is presented.  Moreover, we present our 

unsupervised KPI clustering framework for CDN performance management in chapter 6. Finally, 

Chapter 7 concludes the thesis and presents the future work. 
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Chapter 2 
 

2. Related Work 

 

In this chapter, we first present a list of requirements for algorithms in CDNs, and then we 

survey the state-of-the-art accordingly. 

2.1 Requirements 

We divide the set of requirements into two classes of CDN general requirements and specific 

requirements that correspond to contributions made in this thesis. 

2.1.1  General Requirements 

QoS/QoE: The primary goal of CDN is to deliver quality content to the end-users. In this 

regard, The CDN algorithms not only should consider QoS metrics (such as latency jitter, etc.) but 

also should take into account the perceived quality of the end-users by considering indicative QoE 

metrics.  

Cost: Another important objective in CDN algorithms is to ensure cost-efficiency. In this 

regard, the algorithm should be able to minimize the costs, which could be the budgets for the 

deployment or operation of the CDNs. 
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2.1.2  Specific Requirements 

The requirements discussed in this section are specific to contributions made in this thesis and 

are divided into three classes:  requirements for NFV-based deployment of CDN, CDN content 

placement, and performance management requirements. 

2.1.2.1 Requirements for NFV-based deployment of CDN 

Considering the advantages, the next-generation CDN will be deployed on shared infrastructure 

using NFV technology. In such an environment, the content delivery service is deployed by a set 

of chained VNFs (called VNF forwarding graph or VNF-FG) through which the service traffic 

should traverse one by one and finally reach the end-users. To this end, the following requirements 

should be satisfied: 

Consideration of CDN’s dynamic service demand: The incoming traffic demand for content 

delivery service is highly dynamic. For example, the demand for live streaming peaks during a 

football match, and these variations should be considered in the NFV-based deployment of CDNs.   

Consideration of dynamic condition in CDN underlying physical network:  Since the 

resources of the substrate network are shared among different service flows, the network resource 

congestion conditions are highly dynamic. For instance, the congested link between two physical 

nodes may dissolve shortly after a streaming application is terminated.  

Joint CDN service’s VNF-FG composition and embedding:  Deployment of a CDN with 

disjoint VNF-FG composition and embedding may lead to violation of service requirements and 

consequently deteriorate the end-users perceived quality.  

Joint CDN service’s VNF-FG function scaling and topology adaptation: a well-performing 

CDN deployed by VNFs, could become inefficient as the service demands increase and network 

conditions fluctuate [3]. To that end, not only the number of VNF instances need to be adjusted (a 

process known as function scaling or horizontal scaling), but also the topology of the VNF-FG and 

its mapping to the physical network may need proper adjustments via so-called topology 

adaptation. Moreover, since function scaling and topology adaptation could have mutual 
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correlations, they need to be considered joint, or otherwise undesirable results leading to QoE 

degradation might happen. 

2.1.2.2 Requirements for content placement in CDN with mobile edge nodes  

The content placement in an edge-based CDN with vehicular nodes has a vital impact on the 

transmission delay and consequently on the end users' QoE. In this environment, it is crucial to 

account for the followings:  

Consideration of mobility for both end-users and edge caches:  An edge-based CDN [17] 

can consist of not only mobile end-users but also dynamic local caches that are deployed over 

vehicles.  

Consideration of low- and high-priority content: In a CDN with mobile edge caches, the 

caching priority of contents could vary widely. As an example, consider a vehicular network 

consisting of autonomous and non-autonomous vehicles [23] [24]. In this network, the caching 

priority of certain contents, such as high definition maps (HD maps), would generally be higher 

than that of infotainment contents. Since vehicles' onboard sensors are limited to line-of-sight, 

autonomous vehicles rely heavily on these maps to plan precisely and maneuver correctly on the 

road. These machine-readable HD maps model the surface of the road to an accuracy of 10-20 cm 

and therefore have large volumes. 

Consideration of the limited capacity of edge caches: Unfortunately, the local caches have 

limited capacities, and when they are fully occupied, it may sometimes be necessary to remove 

their lower-priority content to accommodate higher-priority content. At other times, it may be 

necessary to return previously removed content to local caches. Downloading this content from 

surrogate servers is costly from the perspective of network usage and potentially detrimental to the 

end-user QoE in terms of delay. 

 2.1.2.3 Requirements for Performance management in CDN  

The CDN provider must track and analyze performance evolution. In the absence of users’ 

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators 

(KPIs) throughout video sessions. This would allow the CDN provider to learn about QoS and 

QoE offered to users, identify possible drops, and know whether they are caused by issues inside 
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or outside the CDN’s domain. To that end, we derive the following requirements for a framework 

targeting QoS and QoE analysis for CDN providers. 

Scalability: A CDN provider operates over a large scale, handling demand from a large set of 

users as well as a large set of content. A QoS and QoE analysis framework should therefore operate 

efficiently over a large scale. 

Flexibility: Multiple KPIs that reflect users’ QoE can be collected by the CDN provider. A 

QoS and QoE analysis framework needs to be flexible to account for multiple KPIs. 

Automation: As analyzing and correlating KPIs cannot be handled manually over a large scale, 

a QoS and QoE analysis framework needs to offer automated procedures.  

Fine granularity: Users’ QoE can fluctuate over time throughout a single video session. A 

QoS and QoE analysis framework, therefore, needs to target the analysis of corresponding 

fluctuations. 

2.2 Related work 

In this section, we will discuss the works from the literature that are closely related to each of 

the thesis contributions. We first discuss and analyze the works related to service deployment and 

present them into two categories of the VNF-FG composition and embedding and VNF-FG 

function scaling and topology adaptation. After that, we review the works related to content 

placement and performance management in CDNs. 

2.2.1  VNF-FG Composition and Embedding Related Work 

In this section, we first review the few research works that target the joint problem of VNF-FG 

composition and embedding and then evaluate some of the recent disjoint methods. In our 

evaluation, we regard the general requirements and the requirements for NFV-based deployment 

of CDN discussed in Sections 2.1.1 and 2.1.2.1, respectively.  

2.2.1.1 Joint VNF-FG Composition and Embedding 

Despite its determinant value, the joint consideration of VNF-FG composition and embedding 

remains relatively under-examined; only relatively few works consider VNF-FG composition and 
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embedding together. Based on the structure of the heuristic, we classify these works into two 

categories of one- (e.g. [7], [25], [8], and [9]) and two-stage (e.g., [26], [10], [11], [27], and [28]) 

algorithms. 

One-stage heuristics: In one-stage algorithms, for each requested VNF in a VNFR, the order 

and physical node that will host the VNF are determined simultaneously in a single step. Ref. [7] 

is one of the earliest one-stage works that considers VNF-FG composition and embedding 

simultaneously. The authors of [7] proposed their recursive CoordVNF heuristic for the 

coordination of VNF-FG composition and embedding with the objective of minimizing bandwidth 

usage. Comparable to CoordVNF is the so-called JoraNFV algorithm, proposed in [25], which 

coordinates the three phases of resource allocation, VNF-FG composition, embedding, and 

scheduling. The JoraNFV algorithm is designed to minimize a rather comprehensive cost model 

consisting of capital, operating, and link costs. To this end, the problem is formulated as a mixed-

integer linear programming (MILP) problem, addressed by a single-stage heuristic. The correlation 

of VNF-FG composition and embedding and their joint impact on network operator revenue were 

extensively studied in [8], where the authors presented an ILP formulation of the chain 

composition and embedding problem with the objective of maximizing revenue of resource 

sharing. In [9], certain VNF embedding constraints, known as location constraints, are considered. 

These constraints enforce limitations on the number of nodes that can host specific VNFs and thus 

complicate the joint problem of VNF-FG composition and embedding. After presenting an ILP 

formulation of the joint problem, these authors proposed an exact method followed by a greedy-

based heuristic algorithm for large-scale problems.  

Two-stage heuristics: Two-stage algorithms begin with the composition (or selection) of a 

single VNF-FG (or a subset of all possible VNF-FGs). In this composition stage, not only VNFRs 

but also some embedding-related restrictions will be observed. The composed VNF-FG (or the 

selected subset of them) will then go through the embedding stage. In this stage, with an embedding 

objective (e.g., minimizing the costs, maximizing revenue, etc.), either the algorithm produces (if 

possible) an embedding solution for the composed VNF-FG or the most appropriate solution 

among the previously selected VNF-FGs satisfying the embedding objective will be chosen. If 

embedding of the composed VNF-FG is not possible or the objective is not well satisfied by either 

of the VNF-FGs in the selected set, the algorithm returns to the composition stage and looks for 
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alternative VNF-FG(s). For example, in [26], the authors proposed a two-stage heuristic algorithm 

to jointly compose and embed the service requests. In the first stage, an order of VNFs (i.e., a 

VNF-FG) is determined such that the embedding cost is minimized. To this end, the proposed 

heuristic considers the following two aspects: (i) the location of the candidate node to host a given 

VNF and (ii) the ratio of the outgoing data rate over the incoming data rate for a given VNF. The 

allocation of resources for the composed VNF-FG is then carried out in the next stage (the 

embedding stage). In this stage, if any assigned node becomes over-utilized, a node splitting 

mechanism is triggered, which alters the structure of the composed VNF-FG. As a result, the 

acceptance ratio of the service requests will be improved. 

Relatively only a few two-stage heuristic works consider QoS parameters such as availability, 

latency, and reliability in their joint VNF-FG composition and embedding solutions. As for the 

availability of a given service function, the failure of both embedding nodes and VNFs should be 

considered. To this end, the authors of [10] introduced the concept of traffic-weighted availability, 

which is defined as the fraction of traffic that can be supported considering the availability state of 

the underlying infrastructure. With the help of this newly introduced metric, the authors of [10] 

solve the VNF-FG composition and embedding problem while guaranteeing availability. 

However, the method presented in [10] is only applicable for applications that can tolerate a certain 

range of bandwidth reduction. Alternatively, a probability-based availability and backup model 

for VNF-FG is presented in [11], where the authors propose a two-stage heuristic for VNF-FG 

composition and embedding while ensuring availability. 

Latency and reliability, two important QoS metrics, were considered in [27] and [28], 

respectively. In [27], the authors target latency minimization for applications that require different 

service functions on forwarding and backward traffic. To this end, they define a problem called 

Hybrid VNF-FG Composition and Embedding and, considering the substrate network 

provisioning state, propose two approximation algorithms that minimize the latency of the 

constructed service function. The work in [28] studies the trade-off between reliability and per-

server load in a bipartite forwarding graph using a probabilistic model. For the joint optimization 

of a VNF-FG and the embedding, they provide a mixed ILP formulation to maximize end-to-end 

reliability and propose a two-stage Block coordinate descent (BCD)-based heuristic to solve it. We 

note that none of the existing joint composition and embedding solutions supports service demand 
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dynamics (The first requirement in Section 2.1.2.1) or network condition variations (The second 

requirement in Section 2.1.2.1). Therefore, these two requirements remain unmet by all these 

related works. 

Table 2.1 VNF-FG composition and embedding related work evaluation 

 

             Requirements 

 

 

 

Related Works 

 

Requirements 

General 

Requirements 
VNF-based Deployment Requirements 

QoS/ 

QoE 
Cost 

VNF-FG 

Composition and 

embedding 

 

Service 

Demand 

Dynamic

s 

 

network Condition 

Dynamics 

 

M.  Beck et al., [7] ✓ ✓ ✓(Joint approach) 
 

x 

 

x 

Araujo et al., [8] ✓ ✓ ✓(Joint approach) 
 

x 

 

x 

Spinnewyn et al., [9] ✓ ✓ ✓(Joint approach) 
 

x 

 

x 

Gour et al., [10] ✓ ✓ ✓(Joint approach) 
 

x 

 

✓ 

Wang et al., [11] ✓ ✓ ✓(Joint approach) 
 

x 

 

✓ 

Chen et al., [29] ✓ ✓ 
Composition 

Only 

 

x 

 

x 

Bian et al., [30] ✓ x 
Composition 

Only 
x x 

Ning et al., [31] ✓ ✓ 
Composition 

Only 
x ✓ 

Pham et al., [34] ✓ ✓ Embedding Only x x 

Wu et al., [35] ✓ ✓ Embedding Only ✓ x 

Pei et al., [36] ✓ ✓ Embedding Only x ✓ 
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2.2.1.2 Disjoint VNF-FG Composition and Embedding 

Here we first present the disjoint approaches targeting VNF-FG composition and then proceed 

with recently published embedding-only studies. In this regard, we review both Machine Learning 

(ML)-based and non-ML-based methods.  

VNF-FG Composition: Following an intent-based service design approach, the authors in [29] 

propose a semantic-based VNF-FG composer called CompRess, in which users' intents are 

translated into multiple possible VNF-FGs. However, their VNF-FG composition design does not 

provide a particular solution as to the best ordering pattern for requested VNFs. In [30], researchers 

formulate the VNF-FG composition problem as a non-cooperative game to reduce request latency 

while considering (fixed) network congestion. The work in [31] considers the heterogeneity of 

today's Internet traffic and proposes a dynamic DRL-based VNF-FG composition that regards 

traditional IP-based traffic (known as background traffic) patterns and updates the VNF-FG 

chaining accordingly, aiming at minimizing the service's flow path delay. In [32], the authors first 

formulate the VNF-FG composition problem as a binary integer program and then use a deep belief 

network (a supervised learning model) to obtain the best chaining strategy. Their strategy aims at 

minimizing the end-to-end delay while respecting VNF-FG's request constraints. Despite the 

consideration of the substrate network dynamics, both works discussed above (i.e. [31] and [32]) 

unrealistically assume service requests to be static.  

VNF-FG Embedding: As exhaustively surveyed in [4] and more recently [33], there are 

multiple approaches (e.g., Markov approximation, Game theory, DRL, etc.) for VNF embedding. 

For example, [34] uses a sample-based Markov approximation approach and further enhances it 

with a matching game to tackle the complexity of the VNF-FG embedding problem. Game theory 

is also widely used to address the challenges in VNF embedding. In [35], for instance, researchers 

propose a user-network cooperation-based method to minimize the VNF-FG embedding cost while 

considering the service response time in a dynamic workload (but fixed network congestion) 

condition. In fact, the automated learning ability of DRL approaches makes them suitable for the 

dynamic VNF-FG embedding problem, and there are indeed numerous DRL-based embedding 

works. Some examples are [36], [37], [38], [39], [40], and [41]. In [36], the authors propose a 

DRL-based method called “DDQN-VNFPA.” Their proposed learning method includes offline 
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training while aiming to minimize the embedding cost. Although substrate network dynamics are 

considered in “DDQN-VNFPA,” the service network requests are assumed to be fixed.  

Embedding cost minimization was also targeted in [39], in which the authors propose 

“DeepOpt,” an RL embedding method that is empowered with Graph Neural Network (GNN) 

instead of the more commonly used feedforward neural networks to improve the applicability of 

their solution for different network structures. However, their approach considers static network 

conditions and service demands.  

The work in [37] proposes an actor-critic-based algorithm called “UNREAL_MD,” in which 

the feedback of the environment is quantified by a queuing model that evaluates the delay of the 

embedded VNF-FG. “NFVdeep,” an adaptive online method that considers not only the variation 

of VNFR requirements but also the changes in substrate network conditions, is proposed in [38]. 

This work aims to minimize the operating cost while maximizing the total throughput. It uses a 

serialization-and-backtracking method to handle the large action space of the embedding problem. 

More recently, in [40], researchers propose “DDQP,” a dynamic DRL-based method to robustly 

deploy both active and standby VNF-FG instances considering both the variation of service 

demand and network conditions with the objective of minimizing resource waste. The dynamics 

of underlying substrate networks are also considered in [41], in which complex VNFs are first 

decomposed into smaller VNF components, and then a DRL-based delay minimizing scheme 

decides on their placements. To improve the results, the authors apply both the experience reply 

and target network mechanisms in their scheme. To summarize, even though the related works 

described above all exploit the advanced features of a DRL method, to the best of our knowledge, 

no work has applied a DRL approach to solving VNF-FG composition and embedding problems 

jointly while considering the dynamics of substrate network conditions and service requests. 

2.2.2  VNF-FG Adaptation Related Work 

We classify the related work of VNF-FG deployment into two groups of function scaling and 

topology adaptation. We note that while there exist a number of works on function scaling only 

and topology adaptation only, the joint approach has not been studied before. In our evaluation, 

we consider the general requirements and the requirements for NFV-based deployment of CDN 

discussed in Sections 2.1.1 and 2.1.2.1, respectively
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Table 2.2 VNF-FG adaptation related work evaluation 

 

             Requirements 

 

 

 

Related Works 

 

Requirements 

General 

Requirements 
VNF-FG Adaptation Requirements 

QoS/ 

QoE 
Cost 

VNF-FG 

Function 

Scaling and 

Topology 

Adaptation 

 

Service 

Demand 

Dynamic

s 

 

network Condition 

Dynamics 

 

Fei et al., [42] ✓ x 
Function Scaling 

Only 

 

✓ 

 

x 

Panday et al., [44] ✓ x 
Function Scaling 

Only 

 

✓ 

 

x 

Subramanya et al., [45] ✓ x 
Function Scaling 

Only 

 

✓ 

 

x 

Luo et al., [46] ✓ ✓ 
Function Scaling 

Only 

 

✓ 

 

x 

Lang et al., [47] ✓ ✓ 
Function Scaling 

Only 

 

✓ 

 

x 

Houidi et al., [48] ✓ ✓ 
Topology 

Adaptation Only 
✓ x 

Liu et al., [49] ✓ ✓ 
Topology 

Adaptation Only 
✓ ✓ 

 

2.2.2.1 VNF-FG Function Scaling 

Adjusting the number of instantiated VNFs in response to a rise in network traffic has been 

investigated in some recent works (e.g., [42], [43], [44], [45], [46], and [47]. Most of these works 

rely on predicting the rise of VNF demand, which is considered as a trigger for scaling. In [42], a 
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simple pre-determined threshold-based load monitoring mechanism was used for initiating the 

scaling procedure. However, the complications of calculating these thresholds and their dependent 

parameters are not discussed. In [44], a Gated Recurrent Unit (GRU) was proposed as a resource 

demand predictor. However, once the increase in service demand is predicted and the action of 

scaling is decided, the whole service function chain is scaled, though the imposed cost of such a 

decision was not discussed. In [45], the authors targeted the VNF auto-scaling in multi-domain 

networks by leveraging centralized, and federated learning prediction approaches. The future 

numbers of VNF instances are calculated as a function of the predicted traffic demands. However, 

only a general form of resource allocation cost is considered, while other costs such as instantiation 

of new VNFs and state copying are ignored. Both Refs. [44] and [45] use oversimplified cost 

models. Similar to [45], a VNF deployment and migration method for heterogeneous edge and 

cloud environments was proposed in [43]. However, the migration in their work is considered as 

a mechanism for accommodating the rejected VNF-FG requests rather than a scaling mechanism 

for the original VNF-FG. In [46], a dependent rounding online algorithm was proposed to ensure 

that enough VNF instances are deployed in case of network traffic fluctuations. In [47], a 

supervised learning agent (which is trained by generated labeled data) determines the required 

number of VNF instances according to the changes in service demand. While Refs. [46] and [47] 

consider a rather comprehensive cost model, the topologies of the VNF-FGs are assumed to be 

fixed. In other words, in these works, the connectivity of the VNFs in a service chain does not 

change in the scaling process.  

2.2.2.2 VNF-FG Topology Adaptation 

Here, we review the existing works that target VNF-FG topology adaptation (or expansion) in 

response to a rise in service demand. We review the papers that make modifications in the structure 

of the VNF-FG but exclude those works that preserve the initial VNF-FG and only apply the 

modifications to the embedding graph, e.g., [38], [40]. In [48], the authors studied the VNF-FG 

extension problem and proposed two heuristics, namely, Steiner Tree-based and 

eigendecomposition-based algorithms, to minimize the rejection of extension requests when the 

demand increases. In their work, the initially embedded graph remains unaltered while additional 

nodes and links are simply attached to the edge of the graph as a response to the changes in the 

demand of the users. However, there are situations where the whole VNF-FG needs to be modified 
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or that adding new VNFs just to the edge of the graph could not be feasible. For instance, a 

particular VNF may need to be reached in between two other VNFs and not at the edge of the 

graph. The authors of [49] considered the dynamicity of mobile users as well as the changes in 

their service demand, aiming to adjust the deployed VNF-FG accordingly. To that end, they first 

formulated the problem as an Integer Linear Programming (ILP) and solved it using the Column 

Generation (CG) approach. However, in their work to decrease the complexity, the order of VNFs 

is reserved. Also, [49] only considers VNF-FGs with simple typologies, thus having limited 

applicability in real-world scenarios. None of these works provide a general framework where both 

function scaling and topology adaptation can both be leveraged.  

2.2.3  CDN Content Placement Related Work 

Using the general requirements and the specific requirements for content placement for CDN 

with mobile edge nodes discussed in Sections 2.1.1 and 2.1.2.2, respectively, we discuss the related 

work for content placement. We first review the existing research works that target the edge 

content placement and delivery problem in CDNs while considering a content priority scheme. 

Next, we review the recent DRL-based approaches in the edge caching domain.  

2.2.3.1 Content Placement Approaches with content priority schemes 

There are very few works that consider specific content priority schemes in CDNs with edge 

nodes. Most of them focus on priority content dissemination rather than caching technology. The 

work in [50], for instance, proposes a priority-based content propagation scheme that accelerates 

safety content delivery for a set of moving vehicles and provides the forwarding of non-safety 

contents based on popularity. Similarly, in [51], an information-centric dissemination protocol for 

safety information in vehicular ad-hoc networks was proposed. The authors of [52] proposed an 

architecture that uses a data cognitive engine to determine user priority (based on the users' health 

situation) and allocates edge resources (including edge caching resources) accordingly through a 

resource-cognitive engine. However, none of the above-mentioned works consider the limited 

caching capability of edge caches in their solutions, and so none of them propose a strategy for 

content eviction. 
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Table 2.3 Content placement related work evaluation 

 

Requirements 

 

 

 

 

Related Works 

 

Requirements 

General 

Requirements 
Content Placement Requirements 

QoS/ 

QoE 
Cost 

High- Low 

priority 

contents 

Mobility  

Limited Size of 

Edge Caches 

 

Khan et al., [50] 
✓ 

 
x ✓ ✓ x 

Meuser et al., [51] 
✓ 

 
x ✓ ✓ ✓ 

Chen et al., [52] 
✓ 

 
x ✓ x x 

Zhu et al., [53] x 
✓ 

 
x ✓ x 

Hu et al., [55] 
✓ 

 
x x ✓ x 

He et al., [56] 
✓ 

 

✓ 

 
x x ✓ 

Yu et al., [57] 
✓ 

 

✓ 

 
x ✓ ✓ 

Qiao et al., [58] 
✓ 

 

✓ 

 
x ✓ x 

Gomaa et al., [59] x ✓ x x ✓ 

 

2.2.3.2 DRL-based approaches for edge content caching 

The use of deep reinforcement learning (DRL) has become quite popular in the networking 

domain. In a recent work, the authors of [19] conducted a comprehensive survey on DRL 

applications for solving a variety of networking problems (e.g., dynamic network access, wireless 
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caching, and data rate control). Specifically, as stated in [19], the adoption of DRL for edge caching 

has received more attention than other networking issues. Zhu et al. [53] advocated the use of DRL 

by examining key challenges in mobile edge caching and then mapping them with unique DRL 

aspects. The existing edge caching DRL-based approaches can be classified into two categories: 

(i) works that use DRL for learning specific caching parameters (e.g., content popularity [54] or 

cache expiration time), and (ii) DRL approaches that target multiple aspects in their caching policy 

design [55],[56] (e.g., networking and computation). Falling into the first category, the authors in 

[54] propose a DRL-based cache replacement scheme for a single BS, where the content popularity 

is learned by considering the cache hit rate as the system reward. Similarly, in their recent work 

[57], Yu et al. propose a federated learning approach to predict content popularity for connected 

vehicles and provide a mobility-aware cache replacement policy. Many recent works in the 

vehicular network domain belong to the second category. For instance, Hu et al. [55] proposed 

integrated networking, caching, and computing optimization framework for connected vehicles 

that sets both operational excellence and cost efficiency as objectives. They adopted deep 

reinforcement learning to overcome the high level of complexity caused by the joint optimization 

problem. However, they do not suggest a strategy for the case of full edge caches. Similarly, in the 

recent work of Qiao et al. [58], DRL is utilized to solve the joint optimization of content placement 

and delivery problems in the vehicular networks, formulated as a double time-scale Markov 

decision process. Gomaa et al. [59] proposed a dynamic orchestration framework for 

communication, caching, and computing resources in a software-defined and virtualized vehicular 

network. They applied DRL to obtain a close-to-optimal policy for integrated resource allocation. 

However, no concrete solution for the case of full edge caches is proposed. Considering that 

resources in edge caches are indeed limited, it is quite probable that these caches become fully 

occupied. Therefore, having no strategy for these cases is a notable shortcoming of these DRL-

based edge caching methods. 

2.2.4  CDN Performance Management Related Work 

In the following, we present CDN performance management works and evaluate them 

according to the general and specific set of requirements listed in Sections 2.1.1 and 2.1.2.3. 

Several studies have aimed at investigating the impact of specific events in the CDN system on 

the QoS and QoE over individual video sessions. Fan et al. [60] studied the impact of changes in 
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the CDN redirection mechanism on the latency perceived by users. The study was conducted over 

a large scale. However, only one KPI was considered, i.e., latency. Casas et al. [61] also analyzed 

the impact of events in CDNs on the QoE of users. To this end, the authors propose automated 

approaches that operate over a large scale and consider multiple KPIs. However, their work does 

not consider the fluctuations of KPIs throughout sessions. Shafiq et al. [62] studied the impact of 

network dynamics on user abandonment behavior. Their analysis was conducted over a large scale, 

over multiple KPIs, and relies on an automated approach. Nevertheless, KPIs fluctuations over 

individual sessions were not considered.  

Other studies have aimed at identifying the mapping between QoS and QoE metrics in CDNs 

using traffic datasets. Li et al. [63] studied the correlations between video download throughput 

and user engagement. A large-scale analysis of a single KPI, i.e., download throughput, is 

conducted. However, it does not account for its fluctuations. Lian et al. [64] studied correlations 

between performance and QoE metrics. The correlations were considered for multiple KPIs 

through automated approaches. However, the evolution of KPIs is not considered, and the analysis 

is led over a small scale. Orsolic et al. [65] predict the QoE level of a session according to a set of 

KPI features. The evolution of multiple KPIs is considered over individual sessions with an 

automated approach for prediction. However, the study is conducted over a small scale. 

Multiple studies focus on the analysis of anomalies based on CDN traffic datasets. Giordano et 

al. [66] propose a method to identify changes in the CDN cache selection policy. Their method 

operates over a large scale, considers multiple KPIs, and is automated. Nevertheless, it does not 

account for the evolution of KPIs throughout sessions. Wu et al. [67] focus on the detection of 

video freeze events in video sessions. They propose an automated method that operates over a 

large scale, considering the evolution of only one KPI over each session, i.e., the inter-segment 

duration. Dimopoulos et al. [68] propose a framework to diagnose the root cause of mobile video 

QoE issues. The framework adopts an automated approach that covers multiple KPIs. However, it 

operates over a small scale and does not account for the evolution of KPIs across video sessions. 

In turn, Zhu et al. [69] also target the diagnosis of QoE issues. They propose an automated 

approach that allows identifying the root cause of large latency increases over a large scale. 

Nevertheless, they only account for latency and do not consider its evolution through video 

sessions. 
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Table 2.4 Performance management related work evaluation 

 

Requirements 

 

 

 

 

Related Works 

 

Requirements 

General 

Requirements 

Performance 

Management Requirements 

 

QoS/ 

QoE 
Cost Scalability Flexibility Automation 

Fine 

 Granularity 

Fan et al., [60] 
✓ 

 
✓ ✓ x x ✓ 

Casas et al., [61] 
✓ 

 
x ✓ ✓ ✓ x 

Shafiq et al., [62] 
✓ 

 
✓ ✓ ✓ ✓ x 

Li et al., [63] 
✓ 

 
x ✓ x x x 

Lian et al., [64] 
✓ 

 
x x ✓ ✓ ✓ 

Orsolic et al., [65] 
✓ 

 

✓ 

 
x ✓ ✓ ✓ 

 

In summary, none of the previous studies meets all requirements listed in Sections 2.1.1 and 

2.1.2.3. Some studies were conducted over a small scale, and thus did not meet our scalability 

requirement. Many works do not consider multiple KPIs, leaving the flexibility requirement 

unsatisfied. All but two papers introduce automated procedures for their studies, meeting the 

automation requirement. As for fine granularity, only two studies fulfilled that requirement. While 

none of the previous works meets all our requirements, our KPIs analysis framework does 

accomplish that. Our framework forms clusters of video sessions, presenting a similar evolution 

of KPIs, using unsupervised machine learning tools. To the best of our knowledge, we are the first 

to investigate the evolution of KPIs throughout video sessions using unsupervised machine 

learning tools. Our framework provides a clear understanding of the evolution of KPIs throughout 

video sessions. It operates by considering the fine-grained evolution of multiple KPIs, throughout 
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each session, it adopts an automated approach and operates over a large scale, thereby meeting all 

requirements listed in Sections 2.1.1 and 2.1.2.3 

2.3 Conclusion 

In this chapter, we first presented sets of general and contribution-specific requirements. After 

that, we surveyed the related work. Table 2.1and Table 2.2 provide a summary of the reviewed 

papers, respectively. For each paper, we show the requirements which are met and the ones which 

are not met. As it can be seen, none of the reviewed works satisfy all our requirements.
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Chapter 3 

 

3. Joint VNF-FG Composition and Embedding 

for CDN Deployment1 

3.1 Introduction 

Deploying a CDN with the NFV paradigm is not easy. For example, considering the complex 

and dynamic nature of a CDN, resource allocation (RA) remains a challenging topic for the 

deployment of content delivery services. On the other hand, the two seemingly separated stages of 

a VNF forwarding graph  (i.e., composition and embedding) can have inter-related impacts on the 

eventual service performance and the embedding cost and thus should be jointly considered. This 

chapter focuses on the joint VNF-FG composition and embedding problem and proposes a joint 

framework where the variations of service demands as well as dynamic network conditions are 

                                                 
1 This chapter is based on a submitted  paper: 

 

- Sepideh Malektaji, Amin Ebrahimzadeh, Marsa Rayani, Vahid Maleki Raee, Halima Elbiaze, and Roch Glitho, “Dynamic Joint 

VNF Forwarding Graph Composition and Embedding: A Deep Reinforcement Learning Framework” revised version submitted 

to IEEE Transactions On Network and Service Management. 



28 

 

simultaneously considered.  To manage the complexity of the problem, we formulate it as a 

Markov Decision Process and design our Reinforcement Learning (RL)-based framework that 

relies on a Q-learning approach [20], which makes simultaneous decisions regarding both the 

ordering and embedding of requested VNFs. Next, to cope with the huge discrete multi-

dimensional action space, we utilize a variant of the Deep Q Network (DQN) approach, the 

Branching Dueling Q network (BDQN) [70], and further enhance it with an action filtering 

mechanism [71]. This step reduces the action space and helps explore the problem search space 

more efficiently. Given the set of VNF service requests (VNFRs), along with their QoS 

requirements, our proposed framework calculates the mapped forwarding graph of each VNFR, 

which not only determines a proper ordering of the requested VNFs (i.e., VNF-FG composition), 

it also specifies the hosted physical nodes and links for the requested VNFs and their connections 

(i.e., VNF-FG embedding). More specifically, the obtained mapped forwarding graph minimizes 

the accumulated embedding cost over the usage service period while meeting the VNFR-specific 

service throughput requirements. In doing so, we empower our framework with the so-called 

resource utilization analyzer and service demand analyzer, which estimate the time-varying service 

demand and network resource utilization, respectively.  

The remainder of this chapter is organized as follows: we first provide the system model and 

problem formulation. We then present our proposed DRL-based joint framework in detail, 

followed by the performance evaluation of the framework. Finally, in the last subsection, the 

conclusion will be provided for this chapter. 

3.2  System Model and Problem Formulation 

3.2.1  System Model 

In our system model, to differentiate the duration of the data collecting from the actual 

service usage periods, we view time as two consecutive intervals, namely, pre-service usage 

time and service usage time. Pre-service usage time is of duration 𝑇0 and refers to t < 𝑇0, 

whereas service usage time corresponds to t ≥ 𝑇0. 

1) Substrate network: Substrate network is modeled as a directed graph 𝐺 = (𝒩, ℰ), 

where 𝒩 and ℰ are the sets of |𝒩| physical nodes and |ℰ| directed links, respectively. Each 

𝑒𝑝,𝑞 ∈ ℇ represents the direct physical link connecting physical nodes 𝑛𝑝 and 𝑛𝑞, ∀𝑛𝑝, 𝑛𝑞 ∈
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𝒩. Also, we let the set 𝒫𝑝,𝑞
𝑚𝑎𝑥 contain all the paths such as 𝜑𝑝,𝑞 connecting the node np to 

nq with a maximum path length of φmax hops. Accordingly, |φmax |is the number of all 

existing paths in G     with a maximum of φmax hops. Each node 𝑛𝑞 ∈ 𝒩 has a processing 

capacity WCPU(np). Similarly, each link 𝑒𝑝,𝑞 ∈ ℇ has a bandwidth capacity WBW(p,q). 

2)  VNF service request (VNFR):  Let ℛ be the set of | ℛ | received VNFRs, each with a 

unique ID number. Services of the VNFRs should become available during the service usage 

time (i.e., t < T0). Further, we assume that VNFR 𝑟 ∈  ℛ is attributed to the following parameters 

[26]: 

1) Ingress node 𝑛𝑟,𝑠 ∈ 𝒩 and egress node 𝑛𝑟,𝑑 ∈ 𝒩, which are the physical nodes from which 

the first VNF of the requested VNF-FG originates and at which the last VNF terminates, respectively. 

2) The initial entering data rate at the beginning of the service usage time denoted by:  

𝑑𝑟,𝑠 = {𝑑𝑟,𝑠(𝑡)|𝑡 = 𝑇0 } 

Where  𝑑𝑟,𝑖(𝑡) denotes the entering data rate to VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 for t ≥ T0. 

3) Set 𝐹𝑟 = {𝑓𝑟,1, 𝑓𝑟,2, … , 𝑓𝑟,|𝐹𝑟|} of |𝐹𝑟| required VNFs along with their dependency graph 𝐷𝑟, 

which is an acyclic-directed graph with |𝐹𝑟| vertices and |𝐿𝑟| directed links representing the 

dependency relations between VNFs. We denote ζ(𝐷𝑟) as the Degree of Freedom (DoF) [103] of 

the dependency graph 𝐷𝑟, which is given by: 

ζ(𝐷𝑟) = |ℱ𝓇| × (|ℱ𝓇| − 1) − |ℒ𝓇|       (3-1) 

4) Ratio 𝑅𝑓𝑟,𝑖 of outgoing data rate to incoming data rate of VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟. 

5) Processing resource demand 𝑃𝑓𝑟,𝑖 per bandwidth for VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟.  

We assume that all the service request parameters explained above remain unchanged during 

the service usage period (i.e., t ≥ 𝑇0) except for the entering data rate  𝑑𝑟,𝑠(𝑡), which may vary 

over time. Figure 3.1 illustrates an example of a VNFR and its specifications. 

3) Mapped forwarding graph: Let the mapped forwarding graph 𝑀𝑟 of VNFR 𝑟 ∈  ℛ be an 

ordered list of |𝑀𝑟| distinct elements. Each element of 𝑀𝑟 is a 3-tuple containing three components 

𝑓𝑟,𝑖, 𝑛𝑗 , and  𝜑𝑘,𝑗, where 𝑓𝑟,𝑖 ∈ 𝐹𝑟, 𝑛𝑗 ∈ 𝒩, and  𝜑𝑘,𝑗 ∈ 𝒫𝑘,   𝑗
𝑚𝑎𝑥 . To that end, we denote the ℎ𝑡ℎ 

element of  𝑀𝑟  as follows:  

σ𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖,   𝑛𝑗 ,  𝜑𝑘,𝑗 > (3-2) 
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Additionally, let us define the function Π𝑏(σ𝑟,ℎ
𝑖,𝑗,𝑘
) that returns component b (b = 1, 2, 3) of σ𝑟,ℎ

𝑖,𝑗,𝑘
.  

Π𝑏(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = {

𝑓𝑟,𝑖 𝑖𝑓 𝑏 = 1 

𝑛𝑗 𝑖𝑓 𝑏 = 2 

φ𝑘,𝑗 𝑖𝑓 𝑏 = 3 
 (3-3) 

As such, element h of 𝑀𝑟, which is σ𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖, 𝑛𝑗 ,  𝜑𝑘,𝑗 >,  indicates that the h-th VNF in 

the composed VNF-FG for request 𝑟 ∈  ℛ is Π1(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = 𝑓𝑟,𝑖 ∈ ℱ𝓇 and this VNF should be 

embedded in the physical node Π2(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = 𝑛𝑗 ∈ 𝒩 and connected to the previously embedded 

VNF, i.e., Π1(σ𝑟,ℎ−1
𝑖,𝑗,𝑘

), through the embedding path Π3(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = φ𝑘,𝑗 ∈ 𝒫𝑘,𝑗

𝓂𝒶𝓍.  Here, 𝑛𝑘 =

Π2(σ𝑟,ℎ−1
𝑖,𝑗,𝑘

), while assuming: 

Π2(σ𝑟,0
𝑖,𝑗,𝑘
)= 𝑛𝑠  and  Π2(σ𝑟,|𝑀𝑟|

𝑖,𝑗,𝑘
) = 𝑛𝑑 (3-4) 

Since each physical node 𝑛𝑗 ∈ 𝒩 can host more than one VNF, we define  𝐾𝑀𝑟,𝑗 as the set of 

VNFs of 𝑀𝑟 that are hosted on the physical node 𝑛𝑗 . We also define ℇ𝑟 ⊆ ℇ and 𝒩𝑟 ⊆ 𝒩 as the 

sets of physical links and nodes involved in 𝑀𝑟, respectively. Note that 𝒩𝑟 can also contain the 

Figure 3.1 Example of a VNF service request, request specifications, and a dependency graph. 
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forwarding nodes which do not host any VNFs. Therefore, we define 𝒩′
𝑟 ⊆ 𝒩𝑟, as the set of 

physical nodes that, according to 𝑀𝑟 host at least a VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟. 

4) Resource utilization and service demand: Resources of physical nodes and links are shared 

among different service flows. Given that the resource consumption patterns of these flows are 

dynamic, available resources on substrate nodes and links will change frequently. Let 𝑢𝑗(𝑡) and 

𝑢𝑣,𝑧(𝑡) represent the CPU and bandwidth utilization of node 𝑛𝑗 ∈ 𝒩 and link 𝑒𝑣,𝑧 ∈ ℇ for t ≥ 0, 

respectively. 

5)  QoS model: Service throughput as an important QoS parameter is critical to be considered 

in NFV resource allocation problems. In this regard, we consider service throughput as our QoS 

parameter specified by the service level agreement (SLA). We denote the minimum acceptable  

throughput as 𝑞𝑟
𝑚𝑖𝑛, and define it as the minimum acceptable amount of outgoing data rate of 

service request 𝑟 ∈  ℛ from the egress node 𝑛𝑟,𝑑 ∈ 𝒩. Let 𝑞𝑀𝑟(𝑡) be the end-to-end throughput of 

the mapped forwarding graph 𝑀𝑟 at time t, t ≥ T0. Since the graph topology of the 𝑀𝑟 can be 

decomposed into sequential and/or parallel structural patterns, 𝑞𝑀𝑟(𝑡)  will be equal to the 

minimum throughput provided by the physical nodes and links in 𝑀𝑟 .  

6)  Cost model: We model the embedding cost 𝐶𝑀𝑟(𝑡), ∀t ≥ T0, of mapped forwarding graph 

𝑀𝑟 = (𝜎𝑟,1, … , 𝜎𝑟,|𝑀|) as follows: 

𝐶𝑀𝑟(𝑡) = ( ∑ 𝐶σ𝑟,ℎ(𝑡)

ℎ=|𝑀𝑟|

ℎ=1

) + |𝒩𝑟| × 𝜈 (3-5) 

where 𝜈 is the activation cost per physical node, |𝒩𝑟 | is the number of activated nodes in 𝒩𝑟 , and 

𝐶𝜎𝑟,ℎ(𝑡)is the embedding cost of element 𝜎𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖, 𝑛𝑗 ,  𝜑𝑘,𝑗 >∈ 𝑀𝑟 , ∀𝑡 ≥ 𝑇0,  given by 

𝐶σ𝑟,ℎ(𝑡) = 𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑟,𝑖 × γ𝑗 + ξ𝑖,𝑗 + ∑ (𝑑𝑟,𝑖(𝑡) × 𝑅𝑓𝑟,𝑖 × Γ𝑣,𝑧),

𝑣,𝑧|𝑒𝑣,𝑧∈𝜑𝑘,𝑗

 (3-6) 

Where 𝛾𝑗 and Γ𝑣,𝑧 are the costs of utilizing a unit of CPU and a unit of bandwidth resource from 

node 𝑛𝑗  and link 𝑒𝑣,𝑧, respectively. Also, ξ𝑖,𝑗 denotes the fixed cost of instantiating VNF 𝑓𝑟,𝑖 at 

node 𝑛𝑗 . We note that the term  𝑑𝑟,𝑖(𝑡) ×  𝑃𝑓𝑟,𝑖   in Eq. (3-6) computes the CPU demand of 𝑓𝑟,𝑖 

from its hosting node 𝑛𝑗  at time t, ∀𝑡 ≥ 𝑇0. Also,  𝑑𝑟,𝑖(𝑡) and  𝑃𝑓𝑟,𝑖 denote the entering data rate 
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and processing resource demand per bandwidth for VNF 𝑓𝑟,𝑖, respectively. In Eq. (3-6), the term 

 𝑑𝑟,𝑖(𝑡) × 𝑅𝑓𝑟,𝑖  accounts for the bandwidth resource required for connecting 𝑓𝑟,𝑖 to the next VNF 

in 𝑀𝑟. 

 

Table 3.1 Input Parameters and Variables 
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3.2.2  Problem Formulation 

In the following, we formally formulate the problem under study, while Table 3.1 delineates the 

important parameters and variables. Following the system model presented above, 𝑀𝑟 would be a 

candidate joint composition and embedding solution for VNFR 𝑟 ∈  ℛ. To better explain the 

structure of a candidate solution, let us consider an examplar solution (i.e. 𝑀𝑟) for the VNFR 

depicted in Fig. 3.1.  Let 𝑀𝑟 be as follows:  

 

M𝑟 = [ < 𝑓𝑟,5, 𝑛2, [𝑒1,2] >,< 𝑓𝑟,4, 𝑛4, [𝑒2,3, 𝑒3,4] >, < 𝑓𝑟,4, 𝑛4, [𝑒2,3, 𝑒3,4] >, < 𝑓𝑟,2, 𝑛5, [𝑒4,5] >,  

< 𝑓𝑟,1, 𝑛7, [𝑒5,7] >, < 𝑓𝑟,3, 𝑛8, [𝑒7,8] > ] 

 

(3-7) 

As such, 𝑀𝑟 not only suggests a VNF-FG for VNFR r (i.e., [𝑓𝑟,5, 𝑓𝑟,4, 𝑓𝑟,2𝑓𝑟,1, 𝑓𝑟,3]), but it also 

determines its embedding graph. The latter, for instance, indicates that the first VNF in the 

suggested VNF-FG, 𝑓𝑟,5,  should be placed on node 𝑛2 and connected to the previous hosting node 

(i.e., the ingress node 𝑛1) through path 𝑒1,2 (which here happens to be a single link). The second 

VNF in the VNF-FG, 𝑓𝑟,4,   should be placed on node 𝑛4 and connected to the previous hosting 

node 𝑛2 through path [𝑒2,3, 𝑒3,4]. Similarly, other elements determine the mapping of the composed 

VNF-FG (i.e. [𝑓𝑟,5, 𝑓𝑟,4, 𝑓𝑟,2𝑓𝑟,1, 𝑓𝑟,3]). 

To ensure feasibility, a candidate composition and embedding solution 𝑀𝑟 should be evaluated for 

various constraints, as the resources of the substrate network are shared among different flows. It 

is therefore critical to not only verify whether the selected links/nodes meet the given utilization 

constraints during the service usage time but also make sure that QoS constraints are not violated. 

To this end, a candidate solution 𝑀𝑟 is feasible only if it satisfies the following constraints: 

Constraint 1: The throughput of the given solution 𝑀𝑟 should meet the required throughput 𝑞𝑟
𝑚𝑖𝑛 

during the service usage time: 

𝑞𝑟
𝑚𝑖𝑛 ≤ 𝑞(𝑀𝑟 , 𝑡), ∀𝑡 ≥ 𝑇0 (3-8) 

Constraint 2: The processing demands of VNFs should be smaller than the available processing 

resources of their hosting nodes in 𝒩′
𝑟:  
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(∑  𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑖∀(𝑟,𝑖)|𝑓𝑟,𝑖∈𝜅𝑀𝑟,𝑗
)

𝑊CPU(𝑛𝑗)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩′𝑟,

≤ 1 − 𝑢𝑗(𝑡)⏞      
𝐴𝑣𝑎𝑖𝑙.  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

 (3-9) 

where the term  𝑑𝑟,𝑖(𝑡) ×  𝑃𝑓𝑟,𝑖 is the CPU demand of 𝑓𝑟,𝑖 ∈ 𝐾𝑀𝑟,𝑗. The right-hand side of Eq. (3-

9) computes the ratio of the available processing resource at the physical node 𝑛𝑗 ∈ 𝒩
′
𝑟 at time 

𝑡 ≥ 𝑇0,  while the left-hand side is the ratio of the cumulative demanded processing resource of all 

VNFs hosted by the node 𝑛𝑗  to the processing capacity of the node 𝑛𝑗 . 

Constraint 3: Similar to Constraint 2, this constraint ensures that the bandwidth demands of VNFs 

in 𝑀𝑟 is smaller than the available bandwidth resources of the corresponding embedding links in 

ℇ𝑟: 

∑  𝑑𝑟,𝑖(𝑡) × ℛ𝑓𝑖,𝑖∀(𝑟,𝑖)|𝑓𝑟,𝑖∈𝜅𝑀𝑟,𝑗

𝑊BW(𝑒𝑣,𝑧)

∀𝑡 ≥ 𝑇0∀𝑛𝑗 ∈ 𝒩′𝑟 , ∀(𝑣, 𝑧)|𝑒𝑣,𝑧 ∈ 𝜑𝑗,𝑘, 𝑛𝑘, 𝑛𝑗 ∈ 𝒩′𝑟

≤ 1 − 𝑢𝑣,𝑧(𝑡)⏞      
𝐴𝑣𝑎𝑖𝑙.  𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜

 (3-10) 

 

where the right-hand side of the equation computes the ratio of the available bandwidth resource 

at the physical link 𝑒𝑣,𝑧 ∈ 𝜑𝑗,𝑘, where 𝜑𝑗,𝑘 is the path that, according to 𝑀𝑟, connects node 𝑛𝑗  to 

𝑛𝑘, while the left-hand side is the ratio of cumulative bandwidth demand from the link 𝑒𝑣,𝑧 to its 

bandwidth capacity.  

With all these considerations in mind, we define our objective function as follows: 

𝑚𝑖𝑛𝑀𝑟|∀𝑟∈ℛ ∫ 𝐶𝑀𝑟(𝑡)𝑇0≤𝑡
⋅ 𝑑𝑡

𝑠. 𝑡. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1,2, 𝑎𝑛𝑑 3
          (3-11) 

which aims to find the least costly mapped forwarding graph for the given VNFR 𝑟 ∈  ℛ while 

satisfying the QoS and capacity constraints given by Eqs. (3-8), (3-9), and (3-10). 

3.3 Deep Reinforcement Learning for Joint VNF-FG Composition and 

Embedding 

The VNF-FG composition and embedding sub-problems have both proven to be NP-hard [72] 

[73]. Moreover, variations of network resources as well as date rate demands of the incoming 
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requests further compound this complexity. In the following, we present the main MDP 

components designed for our joint composition and embedding problem. 

 

3.3.1  System States, Actions, and Reward 

Let S represent the set of states. The state is denoted by Eq. (3-12): 

𝑠𝑡 =< 𝐼𝐷𝑟 , 𝑀𝑟 , 𝐴𝑟 >
𝑡 (3-12) 

The state contains three main components: (i) ID 𝐼𝐷𝑟 of the selected VNFR 𝑟 ∈  ℛ, for which 

we seek to find a joint composition and embedding solution, (ii) constructed mapped forwarding 

graph 𝑀𝑟 for the request specified by 𝐼𝐷𝑟, and (iii) an auxiliary graph 𝐴𝑟 indicating the VNFs in 

𝐹𝑟 ,  which are not yet chained into the VNF-FG and also not yet mapped to the physical nodes. 

Moreover, 𝐴𝑟 also reflects the dependency relation between the remaining VNFs indicated by 𝐷𝑟. 

Note that the system state 𝑠𝑡 does not include the dynamics of network resource utilization and/or 

service demands as these dynamic parameters are considered in the system reward computations, 

to be discussed later on. We denote 𝒜(𝑠𝑡) as the total set of actions in the state 𝑠𝑡 =

< 𝐼𝐷𝑟 , 𝑀𝑟 , 𝐴𝑟 >
𝑡∈ 𝑆. The action is denoted by Eq. (3-13): 

𝑎𝑡 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡, 𝜑𝑠𝑒𝑙𝑒𝑐𝑡 >
𝑡∈ 𝒜(𝑠𝑡)  (3-13) 

The action is a 3-tuple containing the following components: (i) selected VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡  from 𝐹𝑟, 

as the next candidate VNF in the constructed mapped forwarding graph specified by 𝑀𝑟, (ii) 

selected physical node 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑡  for hosting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡

𝑡 , and (iii) selected path 𝜑𝑠𝑒𝑙𝑒𝑐𝑡
𝑡  to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡  

(i.e., host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 ), to 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡−1  (i.e., host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡−1 ). After selecting action 𝑎𝑡, the system 

state will transition to 𝑠𝑡+1. As such, 𝑎𝑡 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡, 𝜑𝑠𝑒𝑙𝑒𝑐𝑡 >
𝑡
will be added to 𝑀𝑟 . 

Also 𝐴𝑟 will be updated by omitting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡  and all its incoming links. This is done to relax the 

dependency relation of other VNFs and the selected VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 . In other words, since the VNF 

𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 already exists in 𝑀𝑟 and hence the dependency relation is already satisfied its dependent 

VNFs in 𝐹𝑟 could be selected for the next VNFs in future elements of 𝑀𝑟 until it is completed and 

consequently, the VNF-FG is fully composed. 
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Next, we design our reward function, which needs to take into account the embedding cost and 

constraints 1, 2, and 3, given by Eqs. (3-8)-(3-10). To that end, we define the reward of selecting 

the action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) in the state 𝑠𝑡 ∈ 𝑆 as follows:  

𝑅(𝑠𝑡, 𝑎𝑡) = {
−(𝐶𝑀𝑟(𝑡) + Ω × |𝐴𝑟|) 𝐸𝑞𝑠. (3 − 8) − (3 − 10)𝑎𝑟𝑒 𝑡𝑟𝑢𝑒,

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3-14) 

where we assign a negative infinity to the reward if 𝑀𝑟 is not feasible; otherwise, the reward 

considers the cost of 𝑀𝑟 along with the penalizing term Ω × |𝐴𝑟|, where Ω is the penalty coefficient 

and |𝐴𝑟|  is the number of remaining VNFs of 𝐹𝑟 that have not been mapped yet. 

3.3.2  RL and DRL 

MDP framework provides the necessary mathematical formalism for applying the 

Reinforcement Learning (RL) approach, which is a widely used strategy to solve complex 

problems. In RL, an agent automatically learns the dynamic parameters and updates its decisions 

through its interactions with the environment. One of the most widely used RL strategies is the so-

called Q-learning [20], which successively updates the evaluation of the long-term quality (also 

known as Q value) of actions at each state. It is known that Q-learning is a simple yet effective 

way for an agent to learn how to act optimally [20]. However, in most real-world problems with 

large state/action spaces, Q-learning becomes inefficient as exploring all the states and taking all 

the possible actions could be impossible [21]. The designed action in our problem includes the 

selection of a path in a substrate network.  

Clearly, the number of paths even in a small network could grow large, thus leading to a large 

action space. A viable way of learning efficiently in such environments with huge state/action 

space is to use function approximation for estimating the Q value [42]. The revival hybrid approach 

of combing Deep Neural Network (DNN) with RL algorithm has proven to be effective, and it is 

now widely being used in different domains under the so-called deep reinforcement learning 

(DRL), also known as deep Q-learning (DQL). In this work, to approximate the Q values for 

unmet states/actions, we use a specialized variant of the deep dueling Q network [20] and enhance 

it with a branching [70] technique to ease the complexity of computing Q values along with action 

filtering [71] technique to reduce the size of the action space. In the following, we present our 

proposed framework and the customized structure of the utilized Q-network. 
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3.3.3  Deep Dynamic Joint VNF-FG Composition and Embedding (DDJCE) Framework 

Fig. 3.2 illustrates our proposed Deep Dynamic Joint VNF-FG Composition and Embedding 

(DDJCE) framework. As shown in Fig. 3.2, the “DDJCE Core Algorithm” is the main component 

of our framework. It receives the set of VNF service requests as the input and computes the joint 

composition and embedding solutions in the form of mapped forwarding graphs. To this end, 

through its searching process, the “DDJCE Core Algorithm” constructs our system states and then 

makes a set of decisions (e.g., the next VNF to be added to the VNF-FG and its embedding node 

and path) after formulating them as the actions of the system. After constructing the state-action 

pairs, the “DDJCE Core Algorithm” sends them to the our “Reward Calculator” component, which 

in turn interacts with two analyzers, namely, Network Resource Utilization Analyzer (NRUA) and 

Service Demand Analyzer (SDA), to collect the required estimated parameters (e.g., resource 

utilization and service demand data rate) for calculation of the reward. Once the reward is 

computed, it will be sent to DDJCE Core Algorithm, where the experience (containing the current 

state, action, reward, and also the next state) is collected and sent to the replay buffer to be stored.  

Once the replay buffer is sufficiently filled, the “DDJCE Core Algorithm” extracts random batches 

of samples, which are then used to train a specialized Branching Duelling Q-network (BDQN). 

Once the specialized Q-network is trained, the DDJCE core algorithm uses it to obtain the mapped 

Figure 3.2 High-level view of the proposed framework, its components and their interactions. 
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forwarding graphs for the received requests. In the following, we describe the various components 

in technically greater detail and then present the structure of our utilized Q-network. 

DDJCE Core Algorithm: Our proposed “DDJCE Core Algorithm,” which is illustrated in 

Algorithm 1, performs the following tasks: (i) generating the experiences to be stored in the replay 

buffer, (ii) randomly extracting the experience batches, (iii) training the BDQN network with these 

batches, and (iv) calculating the mapped forwarding graph solutions using the trained Q-network 

To be more specific, the algorithm starts with random initialization of the BDQN network (see line 

1 of Algorithm 1). Also, we set a memory for storing the experiences (i.e., line 2 of Algorithm 1). All 

received VNFRs are collected in ℛ (i.e., line 3 of Algorithm 1). Request index r and state index i are 

then initialized (i.e., line 4 of Algorithm 1). Next, we select a random request r from ℛ and initialize the 

loop index iter (i.e., line 7 of Algorithm 1). The loop index ‘iter’ is incremented at each step until a 

predefined maximum number max_iteration of iterations (i.e., line 8 of Algorithm 1). We initialize the 

mapped forwarding graph 𝑀𝑟 of request r to an empty list, whereas the auxiliary graph 𝐴𝑟 is initialized 

with a copy of the dependency graph 𝐷𝑟  of request r (i.e., line 9 of Algorithm 1). Also, in order to set 

the starting point to the ingress node of request r, we initialize the variable 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
0  to 𝑛𝑟,𝑠 (i.e., line 10 

of Algorithm 1). The state 𝑠𝑖−1 is also built by making a 3-tuple < 𝐼𝐷𝑟 , 𝐴𝑟 , 𝑀𝑟 >. In line 12 of 

Algorithm 1, we identify VNFs belonging to 𝐴𝑟  that has no outgoing arrows (i.e., does not depend on 

any other VNFs) and collect them in set 𝐵𝑖. Moreover, the physical nodes that are ready to host at least 

an element of 𝐵𝑖 are collected in the variable 𝑂𝑖 (i.e., line 13 of Algorithm 1). Similarly, all the possible 

paths with a maximum length of Φ𝑚𝑎𝑥that connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
0  to the request egress node 𝑛𝑟,𝑑 are collected 

in the variable ∅𝑖 (i.e., line 14 of Algorithm 1). We construct the 𝒜(𝑠𝑖−1)  of possible actions in the 

current state as follows (i.e., line 15 of Algorithm 1): 

𝒜(𝑠𝑖−1) = 𝐵𝑖 × 𝑂𝑖 × ∅. 

Following an ɛ-greedy strategy, the algorithm switches between the exploration and exploitation phases 

(i.e., lines 16-17 of Algorithm 1). If we are in the exploration phase, a random action 𝑎𝑖  is selected as 

follows (i.e., line 18 of Algorithm 1):  

𝑎𝑖 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑖 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑖 , ϕ𝑠𝑒𝑙𝑒𝑐𝑡
𝑖 >∈ 𝒜(𝑠𝑖−1). 
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On the other hand, if the algorithm is in the exploitation phase, we select the action that maximizes the 

Q-value rather than selecting a random one (i.e., line 20 of Algorithm 1). Next, we update 𝐴𝑟  by 

removing 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑖   and all its incoming links (i.e., line 22 of Algorithm 1). Moreover, we update 𝑀𝑟 by 

appending 𝑎𝑖 to it (i.e., line 23 of Algorithm 1). Next, we calculate the reward using Eq. (3-14) which 

requires not only the information of the updated 𝑀𝑟 and 𝐴𝑟 , but also estimations of other parameters 

(e.g., resource utilization and demand data rate). Thus, the calculation of reward is done by a separate 

component called “Reward Calculator,” which will be explained later on. In line 25 of Algorithm 1, we 

set the state 𝑠𝑖 to  < 𝐼𝐷𝑟 , 𝐴𝑟 , 𝑎𝑖 > and then increment the request counter iter and state counter i by 

one. We then create a 4-tuple experience as follows:  
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< 𝑠𝑖−1, 𝑎𝑖, 𝑅(𝑠𝑖, 𝑎𝑖), 𝑠𝑖 >            (3-15) 

which is sent to the replay buffer to be stored (see line 26 of Algorithm 1). Next, the algorithm checks 

whether the replay buffer contains enough experiences (i.e., line 27 of Algorithm 1). If it is filled with 

enough experiences, a random batch of size β will be extracted and will be sent to the specialized Q-

network for training (i.e., line 28 of Algorithm 1). This process is repeated until 𝐴𝑟  becomes empty, 

which indicates that all the VNFs and their dependency links are considered in 𝑀𝑟 and a candidate 

solution for request r is obtained. The algorithm continues to generate further solutions for the same 

request (i.e., lines 8-31 of Algorithm 1) until the number of iterations reaches a predefined threshold, 

when we move on to the next request (i.e., lines 5-32 of Algorithm 1). This process is repeated until ℛ 

becomes empty, meaning that all the given requests have been considered for training our specialized 

Q-network, thus making it ready to generate desired joint composition and embedding solutions. 

Figure 3.3 Overview of our Reward Calculator component and its interactions with SDA and NRUA. 
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Reward Calculator: Fig. 3.3 illustrates an overview of our Reward Calculator component. In our 

design, reward represents the short-term consequence of a selected action in a given state. To that 

end, our reward calculation relies on evaluating the mapped forwarding graph 𝑀𝑟 and the auxiliary 

graph 𝐴𝑟 , which are updated after selecting 𝑎𝑡 in 𝑠𝑡 (see line 24 of Algorithm 1). After receiving 

the updated mapped forwarding graph from DDJCE Core Algorithm, the “𝑀𝑟  Analyzer” inside 

Reward Calculator identifies the used physical nodes and links (i.e., 𝒩′
𝑟  and 𝜀𝑟) as well as the 

topology of 𝑀𝑟. The identified physical resources (i.e., 𝒩′
𝑟  and 𝜀𝑟)  will be sent to the Network 

Resource Utilization Analyzer (NRUA), which estimates their utilization values for the usage 

period 𝑡 ≥ 𝑇0. Moreover, the corresponding request identifier 𝐼𝐷𝑟 is sent to Service Demand 

Analyzer (SDA), which  

estimates the corresponding initial entering data rate 𝑑̌𝑟,𝑠(𝑡) for the usage period  𝑡 ≥ 𝑇0. Having 

the topology of 𝑀𝑟, the estimated initial entering data rate 𝑑̌𝑟,𝑠(𝑡) of service request r as well as 

the ratio  𝑅𝑓𝑟,𝑖 of outgoing data rate to incoming data rate of VNFs in 𝐹𝑟  (available from VNFR 

specification), our VNF Data Rate Computation Unit computes the amount of data rate that will 

enter each VNF at time 𝑡 ≥ 𝑇0. Specifically, the output of the VNF Data Rate Computation Unit 

is given by: 

{𝑑̃𝑟,𝑖(𝑡) | 𝑇0  ≤ 𝑡, ∀𝑓𝑟,𝑖 ∈ 𝐹𝑟} (3-16) 

where 𝑑̌𝑟,𝑖(𝑡) is the estimated data rate entering the VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 in 𝑀𝑟. The estimated data rate 

entering each VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 in the VNF-FG can be obtained by multiplying the estimated data rate 

𝑑̌𝑟,𝑖−1(𝑡) of the previous VNF by the ratio  𝑅𝑓𝑟,𝑖  of outgoing to the incoming data rate of the 

selected VNF. Receiving the estimated values, the next step for computing the reward value is to 

validate the constraints 1, 2, and 3 given by Eq. (3-8)-(3-10) (see Fig. 3.3). Once the constraints 

are validated, the reward is obtained using Eq. (3-14) and sent to DDJCE Core Algorithm for 

further processing (see Algorithm 1). In the following, we describe NRUA and SDA in detail. 

As shown in Figs. 3.2 and 3.3, the Reward Calculator interacts with two components, NRUA and 

SDA. NRUA is responsible for estimating the resource availability of the nodes and links identified 

by the Reward Calculator for the service usage time period 𝑡 < 𝑇0. Letting 𝒩′
𝑟 and ℇ𝑟 to denote 

the sets of physical nodes and links identified by the Reward Calculator, the output of NRUA is 

as follows: 
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{𝑢̃𝑝(𝑡), 𝑢̃𝑣,𝑧(𝑡)|𝑇0  ≤ 𝑡 , ∀𝑛𝑝 ∈ 𝒩𝓇
′ , ∀𝑒𝑣,𝑧 ∈ ℰ𝓇} (3-17) 

where 𝑢̃𝑝(𝑡) and 𝑢̃𝑣,𝑧(𝑡) are the estimated resource utilization of node 𝑛𝑝 ∈ 𝒩
′
𝑟 and physical link 

𝑒𝑣,𝑧 ∈ ℇ𝑟, for the service usage time period 𝑡 ≥ 𝑇0, respectively. The estimation in NRUA is 

carried out by tracking and analyzing the traces available in dataset D1, which contains the past 

observations of resource utilization of physical nodes and links for the pre-service usage time 

period 𝑡 < 𝑇0. Formally stated, D1 contains the followings: 

𝐷1 ∋ {𝑢𝑝(𝑡), 𝑢𝑣,𝑧(𝑡)|𝑡 < 𝑇0, ∀𝑛𝑝 ∈ 𝒩
′, ∀𝑒𝑣,𝑧 ∈ ℰ} (3-18) 

Similarly, SDA estimates the initial data rate of a service request specified by the Reward 

Calculator. Specifically, the output of SDA is as follows: 

{𝑑̃𝑟,𝑠(𝑡) | 𝑇0  ≤ 𝑡 } (3-19) 

 where 𝑑̃𝑟,𝑠(𝑡)  is the estimated initial entering data rate of request r, which is carried out by 

tracking and analyzing the traces available in dataset D2. Similar to D1, D2 contains the past 

observations of the requested services' initial entering data rate for the pre-service usage time 

period of 𝑡 < 𝑇0. Formally stated, D2 contains the followings: 

𝐷2 ∋ {𝑑𝑟,𝑠(𝑡)|  𝑡 < 𝑇0, ∀𝑟 ∈ ℛ} (3-20) 

3.3.4  Branching Dueling Q network with Action Filtering 

Recall that a single action 𝑎𝑡 in our design contains three dimensions 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡 ,  𝑎𝑛𝑑 𝜑𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 .  

This makes our problem belong to the domain of multi-discrete action space problems [70]. It is 

important to note that a DQN may have a large number of neurons in its output layer. This, as a 
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result, requires a huge amount of memory, thus leading to inefficient training [70]. Moreover, such 

a simple structure is prone to overestimation and an unstable training process [70]. In the 

following, after discussing these issues in more detail, we present our solution to overcome them. 

Typically, the deep neural network in the DQL algorithm is responsible for estimating the Q value 

Q(s, a) of a given state and action using a set of parameters 𝜃. Using the well-known Bellman 

equation [20], the parameters of the Q-network are updated using the gradient descant update rule 

formulated as follows:           

θ𝑡+1 = θ𝑡 + α(𝑌𝑡
𝑄 − 𝑄(𝑠𝑡, 𝑎𝑡; θ𝑡)) ∇𝜃𝑡𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) (3-21) 

Where             

𝑌𝑡
𝑄 = 𝑅𝑡+1 + γmax 1𝑎 𝑄(𝑠𝑡+1, 𝑎; θ𝑡) (3-22) 

which represents the target value in a conventional DQN algorithm. In Eq. 22, 𝑅𝑡+1 is the 

immediate reward for taking action 𝑎𝑡 in state 𝑠𝑡 and α is the gradient step size. According to Eq.s 

21  and 22, the parameters of the Q-network are updated using a target value, which is computed 

using the same set of parameters 𝜃𝑡, causing an oscillated training, a problem known as moving 

Figure 3.4 Architecture of the utilized BDQN enhanced with action filtering mechanism. The number of neurons of 

each layer is shown on top of the layer. 
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Q-targets, which can lead to overestimation [20]. To tackle this, the widely used strategy proposed 

by [21] is to use two Q-networks simultaneously: (1) an online network: a network with parameters 

𝜃 and (2) a target network with parameter 𝜃’ where the two parameters are switched symmetrically 

after passing the predefined steps in training. Accordingly, Eq. (3-22) is updated as follows: 

𝑌𝑡
𝐷𝑜𝑢𝑏𝑙𝑒𝑄 = 𝑅𝑡+1 + γ𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎; θ𝑡); θ𝑡

′) (3-23) 

It is proven that the method of using two Q-networks, also known as Double DQN (DDQN), leads 

to better performance compared to conventional DQN methods [20]. However, it is still 

inapplicable to our framework, as our problem has a large discrete multi-dimensional action space, 

which makes it difficult to explore with conventional DQN or even DDQN networks [21]. To 

overcome this issue, we adopt a Branching Dueling Q Network (BDQN) [70], which can be viewed 

as a variant of the Dueling Q-network [81]. The key idea behind this is that for large action space 

problems, the Q value can be estimated without redundant computations for low-/similar-valued 

actions in a given state. For example, in our problem, all the actions that suggest using the already 

placed VNFs as the next element in VNF-FG can be accounted as such low- and similar-valued 

actions. To this end, the DQN structure is modified into an architecture with separate streams, each 

stream corresponding to an action dimension as well as a specialized stream for sharing an 

estimated (scalar) representation of state value denoted by V(𝑠𝑡). For instance, consider the multi-

dimensional action 𝑎𝑡 =< 𝑎1, … ,  𝑎𝑑, … , 𝑎𝑁 > with N dimensions, where each action dimension 

 𝑎𝑑 can have n discrete values  𝑎𝑑,1, … , 𝑎𝑑,𝑛. According to [70], instead of computing Q values 

for each action, we can use Q values of each dimension (i.e., 𝑄𝑑(𝑠𝑡, 𝑎𝑑)), which can be obtained 

as follows:               

𝑄𝑑(𝑠𝑡, 𝑎𝑑) = 𝑉(𝑠𝑡) + (𝐴𝑑(𝑠𝑡, 𝑎𝑑) −
1

𝑛
∑ 𝐴𝑑(𝑠𝑡, 𝑎𝑑,𝑖)

𝑖=1,…,𝑛

) (3-24) 

Where 𝐴𝑑(𝑠𝑡, 𝑎𝑑) is the advantage function representing the state-dependent value of the 

dimension 𝑎𝑑 in 𝑠𝑡, which is a concept borrowed from the Dueling DQN architecture [70]. The 

value of V(𝑠𝑡) and 𝐴𝑑(𝑠𝑡, 𝑎𝑑) are tuned simultaneously in the training process of BDQN. 

The architecture of our proposed Q-network is shown in Fig. 3.4, where we further enhance the 

BDQN architecture with an action space reduction technique called action filtering [71]. First, the 

action filtering component decodes the current state 𝑠𝑡 to reconstruct its building components 

𝐼𝐷𝑟 , 𝐴𝑟 , 𝑎𝑛𝑑 𝑀𝑟. Next, each component is investigated, and the set of invalid actions is identified.  
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Then, a corresponding binary action filtering matrix 𝔹𝑠𝑡of size d × n (d is the number of 

dimensions and n being the number of possible actions in each dimension) is generated. We set 

𝑏𝑖,𝑗 of 𝔹𝑠𝑡  to zero, if the corresponding action is invalid; otherwise, it is set to one. This matrix 

will be injected into the network to explicitly modify the Q values corresponding to these actions. 

For instance, consider 𝜎𝑟,|𝑀𝑟| =< 𝑓𝑟,3, 𝑛8, [𝑒7,8] > as the last element of the 𝑀𝑟 (given by Eq. (3-

7)) and 𝜑𝑖
𝑡 = [𝑒5,3, 𝑒 3,2] as a candidate path. Clearly, any action that contains 𝜑𝑖

𝑡 in its third 

dimension should be marked invalid because 𝜑𝑖
𝑡does not originate from the node 𝑛8 and cannot 

embed the connecting link between 𝑓𝑟,3 and the next selected VNF of 𝑀𝑟. Accordingly, the element 

𝑏3,𝑖of matrix 𝔹𝑠𝑡will be set to be zero, indicating that the corresponding action is invalid. 

 

3.4 Performance Evaluation  

In this section, we evaluate our proposed algorithm. Our DDJCE core algorithm and its 

interactions with the BDQN network are implemented in the OpenAI Gym toolkit [75] via a 

customized environment. The simulation scenarios are con- ducted on Google Cloud Platform 

using a VM instance with 10 vCPUs and 37 GB memory. As for the BDQN, we use Tensorflow 

2.5.0 [76] to instantiate the network. Moreover, to ensure convergence and model efficiency, we 

Figure 3.5 Substrate network topology comprised of forwarding and VNF-capable nodes and bidirectional links 

[74] [78] 
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utilize Keras Tuner Framework [77] to automate the search for tuning the network hyper-

parameters. 

3.4.1  Simulation Settings 

We consider the substrate network topology shown in Fig. 3.5, which has widely been used for 

performance evaluation in closely related works, e.g., [74], [78]. Accordingly, in our different 

scenarios, we add/drop links/nodes to scale up/down the network when needed. Moreover, the 

CPU and bandwidth capacities of nodes and links are set randomly in the range [1-5] GHz, and 

[100 Mbps, 1 Gbps]. As for the resource requests and nodes utilization, to ensure a realistic 

scenario, we use the recently published Google cluster trace data set [79][80] (published in 2020), 

available with the platform Google BigQuery, which is an extension of the previously published 

dataset from 2011. Detailed statistic analysis for this data set is accessible from [80]. Moreover, 

the embedding costs related parameters 𝜁, 𝛾, Γ, and  𝜉 are set to 10, 5, 5, and 1000 (all in unit of 

currency), respectively. We consider the same parameter settings for all the following simulation 

scenarios unless otherwise stated. 

3.4.2  Optimality Gap 

Since finding the optimal solution for the joint composition and embedding problem is time-

consuming, we scale down the network shown in Fig. 3.5 into a small network with only nine 

nodes and 26 links and perform an exhaustive search to find the optimal joint composition and 

embedding for just a single service request of 4 VNFs with a dependency graph that has 46 degrees 

of freedom. We used an exhaustive search approach to find the optimum solution to the cost 

minimization problem formulated by Eq. (3-5) while satisfying Constraints 1, 2, and 3. To evaluate 

the optimality gap of our proposed framework along with the impact of training on the results, we 

conduct the comparison by collecting the solutions found by our framework as well as their 

corresponding embedding costs every 500 episodes using Eq. (3-5). 

Fig. 3.6 shows the optimality gap measured by the absolute relative difference (in percentage) 

between the embedding cost achieved by our DDJCE framework and that of the optimal solution. 

We observe from Fig. 3.6 that the optimality gap is significant during the initial 500 episodes. 

Nevertheless, as the model keep training, the optimality gap decreases significantly. More 
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specifically, starting from an optimality gap of 200%, our proposed DDJCE framework reduces 

the embedding cost down to 10.63% after it is sufficiently trained. An important aspect to note  

here is that it takes more than 5 hours for the exhaustive search to find the optimal solution in such 

a small scenario, which deals with only a single service request with only four requested VNFs, 

while our framework requires 2 hours of training to reduce the optimality gap by 90%. Clearly, 

considering multiple and more complex requests would compound the complexity, thus 

prolonging the search process of the exhaustive search approach even more. 

3.4.3 Convergence and Performance Comparison with other Deep Learning 

Methods 

In the following, we investigate the convergence behavior of our proposed DDJCE framework 

against two other Deep Q- learning-based methods with different Q-network structures: 

(i) DDQN [21] consists of two conventional Q-networks and (2) PBDQN [70], a Plain Branching 

Dualing Q-network without any action filtering. While the DDQN is the most widely used 

improvement version of DQN, the PBDQN is designed to improve the performance of DDQN 

even further in environments with large discrete action spaces. To tune the hyper-parameters 

automatically (including the learning rate), we have used Keras Tunner for all the three Q-

Figure 3.6 Optimality gap (in percentage) of our proposed DDJCE framework vs. the number of episodes. 
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networks: DDJCE, DDQN, and PBDQN. Moreover, they all receive the same batch size (30 

samples in each batch) and use the same technique to draw samples from their individual 

experience replay buffers. For this scenario, we use the standard substrate network shown in Fig. 

3.5 as the DDQN could not converge in the scaled version of this network. 

Fig. 3.7 illustrates the reward vs. time step for different methods. We observe from this figure 

that the DDQN and PBDQN methods perform closely during the initial episodes, but they 

eventually converge to different values. Also, despite the momentary superiority of DDQN 

(around time steps 2500 to 5000), the PBDQN shortly surpasses the DDQN method, converging 

to a higher reward. The extra training required for constructing a shared representation of states 

could be the reason for such behavior during the initial time steps. This emphasizes the 

importance of training for PBDQN, which continues to evolve into exploring even more 

rewarding solutions, as opposed to DDQN, which seems to be trapped in local optima shortly 

after 5000-time steps. 

According to Fig. 3.7, the behavior of our proposed DDJCE is significantly different from the 

DDQN and PBDQN methods, as it achieves a much higher reward within the initial   100 steps 

and continues to evolve into even higher rewards. We believe that our deployed action filtering 

technique is the key reason behind such superior performance of our proposed DDJCE 

framework. This is because by decreasing the number of actions in each state, the search space is 

reduced as well, enabling a more efficient search process toward better solutions.

Figure 3.7 Reward vs. time step for different methods. 
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3.4.4 Performance Comparison with Joint and Disjoint Composition and 

Embedding Heuristics  

Next, we evaluate the performance of our proposed DDJCE framework against three 

benchmarks, namely, RCE [82], GCE [83], and 2SJCE [84]. While the RCE and GCE methods are 

widely used disjoint approaches based on random and greedy heuristics, respectively, the 2SJCE 

method relies on a two-stage joint embedding and composition approach. However, it does not 

consider the variations of resource utilization and/or service demands and solely focuses on 

stationary values of those parameters at the arrival time of VNFRs. While RCE chooses random 

solutions from different possible VNF-FG embeddings, GCE takes the VNF requests along with 

their VNF-FGs as the input and then searches for less costly embedding solutions. The 2SJCE 

method follows a two-stage search procedure to obtain both the composition and embedding 

solutions for each VNFR. For this scenario, we use the standard substrate network shown in Fig. 

3.5 and run our simulations for different values of VNFR size (i.e., the average number of VNFs 

in each VNFR) from 4 to 10. Fig. 3.8 illustrates the average embedding cost vs. VNFR size for 

different methods plotted with their corresponding 95% confidence intervals. As shown in Fig. 

3.8, the average embedding cost of the RCE method, which relies on a random composition and 

embedding, is always significantly larger than other methods. This is because the only criteria 

Figure 3.8 Average embedding cost vs. average VNFR size for four different methods. 
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considered in RCE are the feasibility of the resultant VNF- FG composition and embedding 

solution. On the other hand, the average embedding cost of the GCE method is smaller compared 

to that of the RCE method. However, we observe from Fig. 3.8 that the GCE method is associated 

with wide error bars, which indicate that the embedding cost varies strongly across different 

VNFRs. Specifically, while GCE may be able to find low-cost embedding solutions for a few 

VNFRs, it fails to achieve such high-quality solutions for the others. Interestingly, we observe that 

the minimum cost achieved by the GCE method is even smaller than that of DDJCE, though the 

embedding costs of other requests are so large that on average GCE performs inferior in 

comparison with our proposed method. This happens because our proposed DDJCE method aims 

to obtain low-cost solutions while considering all the requests simultaneously, whereas the GCE 

(and also RCE) investigate the requests sequentially, without considering the consequences of the 

embedding outcome of a solution on those of others. On the other hand, as it can be observed in 

Fig. 3.8, the 2SJCE method, which is a joint approach, performs similar to GCE, as it fails to 

consider the fluctuations of dynamic parameters (i.e., resource utilization and service demand) and 

their impact on embedding cost. Moreover, given that the 2SJCE method cannot estimate the 

network condition, it fails to take advantage of the soon-to-be freed overloaded resources for 

VNF-FG embedding. 

3.4.5 Impact of VNF Dependency 

In this scenario, we evaluate the impact of VNF dependency (measured in terms of average degree-

of-freedom (DoF)) on the performance of our proposed DDJCE method in comparison with RCE, 

GCE, and 2SJCE benchmarks. Recall that a small value of DoF indicates a strong dependency 

between VNFs of a request, whereas a high value shows a loose dependency between them (see 

also Eq. (3-1)). Average embedding cost vs. DoF for the different methods under consideration is 

shown in Fig. 3.9. There we observe that the average embedding cost of our proposed DDJCE 

method decreases as the average DoF increases. The 2SJCE method also shows the same kind of 

behavior, as it is able to decrease the average cost for an increasing DoF. This is because by 

increasing DoF, the number of possible solutions for VNF-FG composition increases, which in 

turn increases the chance of finding a VNF-FG that may lead to a less costly embedding solution. 
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Unlike DDJCE and 2SJCE method, we observe from Fig. 3.9 that increasing the DoF does not 

have any meaningful impact on the performance of  RCE and GCE methods, as they do not have 

any particular strategy to explore through different VNF-FGs to decrease the embedding cost. 

3.4.6  Scalability 

In the following, we explore the scalability of our proposed DDJCE method. To do so, we increase 

the size of the standard substrate network shown in Fig 3.5 to contain as many as 20 nodes and 

88 links. Also, we consider a batch of 10 service requests, where the average number of VNFs for 

each request is increased to 10. Under these conditions, we evaluate the cost improvement (in 

percentage) of our proposed DDJCE framework with respect to the RCE, GCE, and 2SJCE 

methods. Fig. 3.10 shows the cost improvement vs. the number of nodes. As shown in Fig. 3.10, 

even though there is a slight drop in the improvement of our proposed DDJCE method with respect 

to RCE method when the number of nodes increases from 7 to 10 (which may be due to the 

chaotic behavior of the RCE method), the cost improvement gradually increases up to 95%. In 

addition, we observe significant improvement (of 75%) with respect to the 2SJCE method, 

indicating the beneficial impact of estimating the dynamic parameters, which is deployed in our 

proposed DDJCE method. Such improvements demonstrate that the DDJCE framework is not only 

Figure 3.9 Average embedding cost vs. average DoF for four different methods. 
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applicable in scaled scenarios but also becomes more effective in larger networks where more 

embedding opportunities for a given VNF-FG are held. We believe that the reason for this 

superiority is rooted in the sophisticated structure of the neural network that is used as a function 

approximator in DDJCE framework, which automatically explores the large search space of the 

given (scaled) scenario. We note that since the cost improvement achieved by our proposed DDJCE 

method slightly varies in different runs of the algorithm, we reflect these variations via the shaded 

regions shown in Fig. 3.10. 

 

3.5 Conclusion  

In this chapter, we have proposed a deep reinforcement learning-based joint VNF-FG 

composition and embedding framework for the deployment of the next generation of CDNs. We 

evaluate the performance of our proposed framework with different structures for Q-networks and 

also conduct evaluations against the widely used joint and disjoint composition and embedding 

methods. Compared to the benchmarks, the proposed framework improves the embedding cost up 

to a 95%. Moreover, using the optimal solution found by the exhaustive search as the basis, we 

investigate the optimality gap of our framework. 

Figure 3.10 Total embedding cost improvement (in percentage) of our proposed DDJCE method vs. the number of 

nodes, with respect to other methods. The shaded region shows the values obtained in different runs of our proposed 

DDJCE method. 
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Chapter 4 

 

4. Joint VNF-FG Function Scaling and Topology 

Adaptation for CDN Deployment1 

4.1 Introduction 

After the initial deployment, to remain efficient, a CDN needs to be adapted, taking into account 

the changing factors in its ecosystem. Moreover, considering the frequent changes in user demand, 

application requirements, and traffic conditions, the performance degradation of an already 

deployed content delivery service could be quite probable. In this regard, the initial VNF-FG of 

the content delivery service and the service embedding map need to be modified and scaled, if 

needed.  

In this chapter, we propose a joint function scaling and topology adaptation method, which 

supports not only the horizontal scaling but also VNF reordering and connectivity changes in a 

given VNF-FG. Given that the VNF-FG composition and embedding problems have been proved 

                                                 
1 This chapter is based on a  submitted paper:  

 

- Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, and Roch Glitho, “Joint VNF-FG Function Scaling and Topology 

Adaptation using Deep Reinforcement Learning” submitted to IEEE Transactions on Emerging Topics In Computing . 
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to be NP-hard [72][73], the complexity of the problem at hand (which can be considered as VNF-

FG re-composition and re-embedding) is also NP-hard. To tackle this complexity, we formulate 

the problem as a Markov Decision Process (MDP) and solve it using our proposed Reinforcement 

Learning (RL)-based framework, which relies on a Q-Learning approach [20]. Our proposed 

framework aims to jointly execute function scaling and topology adaptation on the given VNF-

FG. To cope with the huge discrete multi-dimensional action space, we utilize a Deep Double Q 

Network (DQN) and further enhance it with an action filtering mechanism [71]. This step is 

instrumental in reducing the action space, thus helping explore the problem search space more 

efficiently. Given the QoS threshold, our proposed framework identifies the necessary 

modifications of the original VNF-FG and determines a proper embedding that minimizes the re-

embedding cost. We evaluated the performance of our proposed framework against different 

network architectures and conducted performance evaluations comparing with both joint and 

disjoint benchmarks. The results show that our proposed method achieves up to a 93% cost 

improvement compared to the benchmarks. 

The rest of this chapter is organized as follows. First, it presents the system model, followed by 

the formulation of the targetted problem. Then, it discusses the proposed DRL-based joint function 

scaling and topology adaptation. After that, it presents the simulation parameters and settings, 

followed by the validation results. We will conclude this chapter at the end. 

4.2 System Model  

1) Substrate network: 𝐺 = (𝒩, ℰ), where 𝒩 and ℰ are the sets of |𝒩| physical nodes and |ℰ| 

directed links, respectively. Each 𝑒𝑝,𝑞 ∈ ℇ represents the direct physical link connecting physical 

nodes 𝑛𝑝 and 𝑛𝑞, ∀𝑛𝑝, 𝑛𝑞 ∈ 𝒩. Also, we let the set 𝒫𝑝,𝑞
𝑚𝑎𝑥 contain all the paths such as 𝜑𝑝,𝑞 

connecting the node np to nq with a maximum path length of φmax hops. Each node 𝑛𝑞 ∈ 𝒩 

has a processing capacity WCPU(np). Similarly, each link 𝑒𝑝,𝑞 ∈ ℇ has a bandwidth capacity 

WBW(p,q). 

2) VNF service request (VNFR): We assume that a VNF request is attributed to the following 

parameters [26]: 
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1) Ingress node 𝑛𝑠 ∈ 𝒩 and egress node 𝑛𝑑 ∈ 𝒩, which are the physical nodes from which the first 

VNF of the requested VNF-FG originates and at which the last VNF terminates, respectively. 

2) Set 𝐹(𝑡) = {𝑓1, 𝑓2, … , 𝑓|𝐹(𝑡)|} of |𝐹(𝑡)| number of required VNFs at time t, along with their 

dependency graph 𝐷, which is an acyclic directed graph representing the dependency relations 

between VNFs. Note that in our formulation, all instances, regardless of their VNF types, are 

indexed individually so that two different VNF instances could have similar types (e.g., load 

balancer, firewall, etc.) 

3) The entering data rate to the ingress node (i.e., 𝑛𝑠) denoted by 𝑑𝑠(𝑡). Correspondingly, 𝑑𝑖(𝑡) 

denotes the entering data rate to VNF 𝑓𝑖 ∈ 𝐹(𝑡) at time t. 

4) Ratio 𝑅𝑓𝑖 of outgoing data rate to incoming data rate of VNF  𝑓𝑖 ∈ 𝐹(𝑡). 

5) Processing resource demand 𝑃𝑓𝑖 per bandwidth for VNF  𝑓𝑖 ∈ 𝐹(𝑡).  

We assume that all the service request parameters explained above remain unchanged except for 

the entering data rate  𝑑𝑠(𝑡), and the set of required VNFs 𝐹(𝑡), which may vary over time due to 

an increase in service demand and function scaling, respectively. 

3) Mapped forwarding graph: Let the mapped forwarding graph 𝑀(𝑡)be an ordered list of |𝑀(𝑡)| 

distinct elements at time t. Each element <  𝜑𝑘,𝑗 , 𝑓𝑖 , 𝑛𝑗 ,  𝜑𝑗,𝑝 >
t is a 4-tuple containing four 

components  𝜑𝑘,𝑗, 𝑓𝑖, 𝑛𝑗 , and  𝜑𝑗,𝑝, where  𝜑𝑘,𝑗 ∈ 𝒫𝑘,𝑗
𝑚𝑎𝑥, 𝑓𝑖 ∈ 𝐹(𝑡), 𝑛𝑗 ∈ 𝒩, and  𝜑𝑗,𝑝 ∈ 𝒫𝑗,𝑝

𝑚𝑎𝑥. As 

such, ℎ𝑡ℎ  element of 𝑀(𝑡), which is 𝜎ℎ,𝑘,𝑗,𝑖,𝑝
𝑡 =<  𝜑𝑘,𝑗, 𝑓𝑖 , 𝑛𝑗 ,  𝜑𝑗,𝑝 >

t, indicates that at time 𝑡, the 

VNF 𝑓𝑖 ∈ 𝐹(𝑡) should be embedded in the physical node 𝑛𝑗 ∈ 𝒩 and connects to the previously 

embedded VNF, through the embedding path  𝜑𝑘,𝑗.  Moreover, the embedded VNF should be 

connected to the next embedding node through the path  𝜑𝑗,𝑝. To sum up, each element of the 𝑀(𝑡) 

specifies not only the hosting node for each VNF, but also its connections (i.e., entering and 

outgoing paths) to the previous and next embedded VNFs. This structure, as a result, allows 

formulating VNF-FGs with complex topologies. Moreover, we define 𝒩𝑀(𝑡) and ℰ𝑀(𝑡) as the 

sets of nodes and links involved in the structure of 𝑀(𝑡), respectively. 

4) Resource utilization: Resources of physical nodes and links are shared among different service 

flows. Given that the resource consumption patterns of these flows are dynamic, the available 
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resources on the substrate nodes and links will change frequently. Let 𝑢𝑗(𝑡)and 𝑢𝑣,𝑧(𝑡) represent 

the CPU and bandwidth utilization of node 𝑛𝑗 ∈ 𝒩 and link 𝑒𝑣,𝑧 ∈ ℇ in time t, respectively.  

5) QoS model: Considering service throughput as our QoS parameter, let 𝑞𝑚𝑖𝑛 denote the 

minimum acceptable throughput, which is defined as the minimum acceptable amount of outgoing 

data rate of the service request from the egress node 𝑛𝑑 ∈ 𝒩. Let 𝑞𝑀(𝑡) estimate the end-to-end 

throughput of the mapped forwarding graph 𝑀(𝑡) at time t. Since the graph topology of the 𝑀(𝑡) 

can be decomposed into sequential and/or parallel structural patterns, 𝑞𝑀(𝑡) will be equal to the 

minimum throughput provided by the physical nodes and links in  𝑀(𝑡) .  

4.3  Problem Formulation 

Let us consider the time 𝑡 = 𝑇0 as the critical time instant for the mapped forwarding graph 

𝑀(𝑡), where 𝑞(𝑀(𝑡 = 𝑇0)) < 𝑞𝑚𝑖𝑛. We assume that this condition triggers the adjustment of 

𝑀(𝑡). Let 𝑀1 and 𝑀2 denote the original and modified mapped forwarding graphs at time 𝑡 = 𝑇0, 

respectively, which are given by: 

𝑀1= M(𝑇0
−) and 𝑀1= M(𝑇0

+) (4-1) 

 

  

Figure 4.1 (a) Original VNF-FG and its embedding to the substrate network, (b) joint function scaling 

and topology adaptation techniques. 
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For illustration, let us consider  the examples depicted in Figs. 4.1.a and 4.1.b, where a content 

delivery service is realized via the deployment of three VNFs, namely, transcoder VNF 𝑓𝑡𝑟, 

compressor VNF 𝑓𝑐𝑝, and cache VNF 𝑓𝑐𝑎. As illustrated in Fig. 4.1.a, the original VNF-FG of the 

content delivery service with the three VNFs 𝑓𝑡𝑟, 𝑓𝑐𝑝, and 𝑓𝑐𝑎 is given. In this service, the 

transcoding function should be executed before the compressing and caching functions, and this 

order restriction is represented by the arrows from VNFs 𝑓𝑐𝑝 and 𝑓𝑐𝑎  to VNF 𝑓𝑡𝑟 in the given 

dependency graph. Let us assume that node 𝑛5 is a forwarding node which is incapable of hosting 

any VNF. Figure 4.1.a depicts the embedding map of the service, which specifies the allocation of 

Table 4.1 Input parameters and Variables 
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physical resources to the VNF-FG. Consider a scenario in which the service demand increases and 

function 𝑓𝑐𝑎 hosted on node 𝑛3 is particularly overloaded. Moreover, let us assume that the link 

𝑒5,6 connecting nodes 𝑛5 to 𝑛6 is also congested. In a joint function scaling and topology adaptation 

approach, as depicted in Fig. 4.1.b, a new instance of the overloaded VNF 𝑓𝑐𝑎  is instantiated, 

followed by modifying the order of functions, thus altering the topology of the VNF-FG (see Fig. 

4.1.b). This in turn, leads to a modified service embedding map, where not only a smaller amount 

of load is carried by the congested link 𝑒5,6, but also the two instances of VNF 𝑓𝑐𝑎 can be executed 

in parallel. Using the system model presented in Section 4.2, 𝑀1 and 𝑀2 can be presented as 

follows: 

M1 = [ < [𝑒𝑠,2], 𝑓𝑡𝑟 , 𝑛2, [𝑒2,3] >,< [𝑒2,3], 𝑓𝑐𝑎, 𝑛3, [𝑒3,5, 𝑒5,6] >, < [𝑒3,5, 𝑒5,6], 𝑓𝑐𝑝, 𝑛6, [𝑒6,𝑑] >] 
(4-2) 

M2 = [ < [𝑒𝑠,2], 𝑓𝑡𝑟, 𝑛2, [𝑒2,3] >,< [𝑒2,3], 𝑓𝑐𝑎, 𝑛3, [𝑒3,5, 𝑒5,6] >, < [𝑒2,3], 𝑓𝑐𝑝, 𝑛3, [𝑒3,4] >

,< [𝑒3,4], 𝑓𝑐𝑎, 𝑛4, [𝑒4,𝑑] >,< [𝑒3,5, 𝑒5,6], 𝑓𝑐𝑎, 𝑛6, [𝑒6,𝑑] >] 

(4-3) 

where 𝑒𝑠,2, 𝑒6,𝑑 and  𝑒4,𝑑 are the links connecting the ingress node 𝑛𝑠 to 𝑛2 and nodes 𝑛6 and 

𝑛4 to egress node 𝑛𝑑, respectively. In Transforming 𝑀1 to 𝑀2 𝑏esides new paths and changes in 

VNFs’ order (i.e., topology adaptation), a new instance of 𝑓𝑐𝑎 is also created so that the two 

instances of this VNF are hosted on different nodes 𝑛5 to 𝑛4  (i.e., a realization of function scaling).  

Cost 𝐶𝑇𝑜𝑡𝑎𝑙  of transforming the original mapped forwarding graph 𝑀1 to the modified mapped 

forwarding graph 𝑀2 can be broken down into three partial costs as follows: 

1- 𝐶𝛿1,2  which is the differentiated resource usage between 𝑀1 and 𝑀2 and is computed by 

subtracting the accumulated physical resources (computing and bandwidth) consumption costs of 

elements in 𝑀1 from that of 𝑀2. Moreover, to encourage consolidation and limit the number of 

active computing resources (i.e., active physical nodes), the difference in the number of active 

nodes between 𝑀1  and 𝑀2 is also accounted for in this partial cost. 

2- 𝐶𝑛𝑒𝑤 which is the aggregation cost of instantiating new VNFs [85], which are those that are 

newly added to 𝑀2 comparing to 𝑀1, and  

3- 𝐶𝑚𝑖𝑔 which is the aggregation cost of state copying for migrating VNFs, which are those that, 

in transitioning of 𝑀1  to 𝑀2, move from one physical node to the other node. 

We then define our cost minimization problem as follows:  



59 

 

 min
𝑀2|𝑀1

(𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝛿1,2 + 𝐶𝑛𝑒𝑤 + 𝐶𝑚𝑖𝑔) (4-4) 

Subject to Constraints 1-3, which are described in the following: 

Constraint 1: This constraint ensures that the throughput of 𝑀2(𝑖. 𝑒. , 𝑞(𝑀2))satisfies the 

minimum acceptable throughput threshold 𝑞𝑚𝑖𝑛: 

𝑞𝑀2(t) ≥ 𝑞
𝑚𝑖𝑛 (4-5) 

Constraint 2: The processing demands of VNFs in 𝑀2 should be smaller than the available 

processing resources of their hosting nodes: 

(∑ 𝑑𝑖(𝑡) × 𝑃𝑓𝑖∀𝑓𝑖|𝑓𝑖∈𝜅𝑀2,𝑗
)

𝑊CPU(𝑛𝑗)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩𝑀2

≤ 1 − 𝑢𝑗(𝑡)⏞      
𝐴𝑣𝑎𝑖𝑙.  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

 (4-6) 

where 𝒩2 denotes the set of all physical nodes involved in 𝑀2 and 𝜅𝑀2,𝑗 denotes all the VNFs  

embedded on  node 𝑛𝑗 ∈ 𝒩𝑀2.  The term 𝑑𝑖(𝑡) × 𝑃𝑓𝑖is the CPU demand of 𝑓𝑖 ∈ 𝜅𝑀2,𝑗. The right-

hand side of Eq. (4-6) represents the ratio of the available processing resources at the physical 

node 𝑛𝑗 ∈ 𝒩𝑀2 at time 𝑡 > 𝑇0,  while the left-hand side is the ratio of the cumulative requested 

processing resources of all VNFs hosted by the node 𝑛𝑗  to the processing capacity of the node 𝑛𝑗 . 

Constraint 3: Similar to Constraint 2, this constraint ensures that the bandwidth demands of 

VNFs in 𝑀2 are smaller than the available bandwidth resources of the corresponding embedding 

links in ℰ𝑀2 (i.e., the set of all the physical links involved in 𝑀2):  

(∑ 𝑑𝑖(𝑡) × ℛ𝑓𝑖∀𝑓𝑖|𝑓𝑖∈𝜅𝑀2,𝑗
) ×

1

| 𝜑𝑗,𝑜𝑢𝑡|

𝑊BW(𝑒𝑣,𝑧)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩𝑀2 , ∀(𝑣, 𝑧)|𝑒𝑣,𝑧 ∈ φ𝑗,𝑘, 𝑛𝑘 , 𝑛𝑗 ∈ 𝒩𝑀2

≤ 1 − 𝑢𝑣,𝑧(𝑡)⏞      
𝐴𝑣𝑎𝑖𝑙.  𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜

 (4-7) 

where the right-hand side is the ratio of the available bandwidth resource at the physical link 𝑒𝑣,𝑧 

∈  𝜑𝑗,𝑘, where  𝜑𝑗,𝑘 is the path that, according to 𝑀2, connects node 𝑛𝑗  to 𝑛𝑘 (i.e., an outgoing path 

from 𝑛𝑗). Also,  | 𝜑𝑗,𝑜𝑢𝑡 | is the number of all outgoing paths from 𝑛𝑗 , including  𝜑𝑗,𝑘, which, as 𝑀2 

dictates, connect 𝑛𝑗  to the next VNF host nodes. The left-hand side of Eq. (4-7) is the ratio of 

cumulative bandwidth demand from the link 𝑒𝑣,𝑧 to its bandwidth capacity.
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4.4  Deep Reinforcement Learning For Efficient VNF-FG Function 

Scaling and Topology Adaptation 

In the following, we present our proposed DRL-based solution. The search space of the 

problem under study is not only large, but it can also grow exponentially as the problem size 

increases. To tackle the problem in a computationally efficient manner, we first design an MDP 

[20] framework tailored to our problem and then leverage it to propose our DRL solution, which 

relies on Deep Q Learning (DQL).  

4.4.1  System States, Actions, and Rewards 

Let  𝑆 represent the set of states. The state denoted by 𝑠𝑖 =< 𝑀2, 𝐴 >
𝑖∈  𝑆 contains two main 

components: (i) The modified mapped forwarding graph 𝑀2 and (ii) an auxiliary graph 𝐴 

specifying the VNFs in 𝐹(𝑡), including the new instances added as the result of function scaling, 

which are not yet chained into 𝑀2. Furthermore, we denote 𝒜 as the total set of actions in the state 

𝑠𝑖 ∈ 𝒮. The action 𝑎𝑗 =< φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

>∈ 𝒜(𝑠𝑖) is a 4-tuple containing the 

following components: (i) the selected entering path φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 (i.e., the host node 

of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) to 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗−1

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗−1

), (ii) VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected as the next candidate 

VNF in the modified mapped forwarding graph 𝑀2, (iii) physical node 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected to host 

𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, and (iv) outgoing path φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) to 

𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗+1

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗+1

). After selecting action 𝑎𝑗 the system state will transition to 

𝑠𝑖+1. As such, the element σ𝑖+1 = 𝑎𝑗, will be added to 𝑀2. Consequently, the auxiliary graph 𝐴 

will be updated by omitting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 indicating that this VNF instance is now considered in the 𝑀2. 

Next, we design our reward function, which takes into account the cost and Constraints 1, 2, and 

3 given by Eqs(4-4)(4-7). We define the reward 𝑅(𝑠𝑖, 𝑎𝑗) of selecting action 𝑎𝑗 ∈ 𝒜(𝑠𝑖) in state 

𝑠𝑖 ∈ 𝒮 as follows: 

𝑅(𝑠𝑖, 𝑎𝑗)

= {
−(𝐶𝑡𝑜𝑡𝑎𝑙 + Ω × |𝐴|) 𝐸𝑞𝑠.  (4 − 5) − (4 − 7) 𝑎𝑟𝑒 𝑡𝑟𝑢𝑒,

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                   

(4-8) 
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where 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶δ1,2 + 𝐶𝑛𝑒𝑤 + 𝐶𝑚𝑖𝑔 (4-9) 

In Eq. (4-8), we assign a negative infinity value to the reward if, according to constraints 1, 2, and 

3, 𝑀2 is not feasible; otherwise, the reward considers the total cost of transforming 𝑀1 to 𝑀2 (i.e., 

𝐶𝑡𝑜𝑡𝑎𝑙) along with the penalizing term Ω × |𝐴|, where Ω is the penalty coefficient and |𝐴| is the 

number of VNF instances in ℱ(𝑡) that remain to be mapped. 

4.4.2  Deep Q Learning for VNF-FG Function Scaling and Topology 

Adaptation 

The MDP components presented in Section 4.4.1 provide the required mathematical formalism 

for applying Q-Learning, which is a widely used branch of reinforcement learning algorithms [20]. 

By successively updating the evaluation of the long-term quality (also known as the Q value) of 

actions at each state, Q-Learning provides a simple yet effective way for an agent to learn how to 

act optimally [20]. However, in most real-world problems with large state/action spaces, Q-

Learning becomes inefficient, as exploring all the states and taking all the possible actions is often 

impossible [21]. In our designed MDP components, as presented in Section 4.4.1, action 𝑎𝑗 ∈

𝒜(𝑠𝑖) includes the selection of entering and outgoing paths (i.e., φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) for each 

VNF-host node pair. Clearly, even in a small network, the number of paths could become 

extremely large, thus leading to a very large action space. In such environments with huge 

state/action spaces, a possible way for learning efficiently is to approximate the Q values of state 

and actions [21]. To that end, using a Deep Neural Network (DNN) that estimates these Q values 

(DQN) has proven to be effective [21], and it is now widely used in different domains under the 

so-called deep reinforcement learning (DRL) label, also known as deep Q-Learning (DQL). 

However, the use of nonlinear function approximations (such as DNN) can lead to unstable or 

even diverge results [21]. This is due to the fact that the true values of the Q function used for 

training, calculated by summation of the current reward and maximum Q value of the next state, 

is a function of the Q value itself and thus vary by changes in the estimation of Q values.   

Using two deep Q networks (also known as Double Deep Q-Learning or DDQN) can eliminate 

the correlations between the true Q values and their estimations, thus stabilizing the results. 
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Figure 4.2 Schematic view of DQN-Selection network enhanced with action filtering technique. 

In this work, we utilized two DQNs, namely, 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 with parameter θ𝑡 and 𝐷𝑄𝑁 −

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 with parameter 𝜃′𝒕. Both networks are fed with the same batch of experiences (where 

an experience comprises a state, action, reward, and next state). Also, after a predefined number 

of iterations,  θ𝑡
′  is updated by the value of θ𝑡. In this setting, in exploiting phase, the actions are 

selected by 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, whereas the output of 𝐷𝑄𝑁 − 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 is treated as the true 

values for tuning of 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 parameter (i.e., θ𝑡) in backpropagation calculations.  

Yet another effective technique for problems with huge action space is the so-called Action 

Filtering [71], which can further reduce the action space. In this technique, in each state, the Q 

values for irrelevant actions are explicitly set to zero. For instance, as discussed in Section 4.4.1, 

in our problem, action 𝑎𝑗 =< ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

> comprises the entering and 

outgoing paths (i.e., ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

). However, only a subset of paths, which can connect 

the host nodes of two successive embedded VNFs (successive in accordance to 𝑀2), should be 

considered as candidates for ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

. Also, the nodes that can not be reached within 

a predetermined maximum number of hops from ingress or egress nodes should be excluded for 

hosting of VNFs. In our framework, a separate action filtering entity in DQN-Selection receives  
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each state and identifies such low-value actions in that state, and correspondingly generates an 

action filtering vector with size |𝒜|. This vector contains binary coefficients for each possible 

action so that by multiplying to the output of the last layer of 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 explicitly set the 

Q values of irrelevant actions to zero. Figure 4.2 depicts a schematic view of 𝐷𝑄𝑁 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

with its state-input encoding and action filtering entity.      
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4.4.3  Joint Function Scaling and Topology Adaptation (JFSTA) 

Algorithm 

Algorithm 1 presents the pseudo-code of our proposed framework. The algorithm starts with 

random initialization of the two Q networks, DQN-Selection and DQN-Evaluation. Then a 

memory for storing the experiences is initialized (line 3 of Algorithm 1) while setting the main 

loop and state iterating indices 𝑖𝑡𝑒𝑟 and 𝑖 as 1 and 0, respectively (line 4 of Algorithm 1). The loop 

index 𝑖𝑡𝑒𝑟 is compared with a predefined maximum number max_iteration (line 5 of Algorithm 

1). If loop index 𝑖𝑡𝑒𝑟 is smaller than max_iteration, the main loop is executed (lines 5-38). The 

modified mapped forwarding graph 𝑀2, which is the desired output, is initialized by an empty list 

while the auxiliary graph is initialized as 𝐴 = {𝐹(𝑡)|𝑡 ≤ 𝑇0}. Therefore, at this point (line 6), 𝐴 

contains all the VNFs in the original mapped forwarding graph (i.e., the VNFs in  𝑀1). Next, the 

overloaded VNFs in the original VNF-FG (i.e., set 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑) are identified. As such, 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 

contains all the VNFs of 𝑀1 that reside on the node with the lowest throughput (line 7 of Algorithm 

1). Next, the minimum throughput condition (Constraint 1) is checked. If the minimum throughput 

𝑞(𝑀2) of 𝑀2 is smaller than 𝑞𝑚𝑖𝑛 we try to modify 𝑀2. To that end, a random VNF 𝑓𝑟𝑎𝑛𝑑 is 

selected from the set 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑. The selected VNF is actually a candidate for function scaling. 

Next, the auxiliary graph 𝐴 is updated by adding a new instance of 𝑓𝑟𝑎𝑛𝑑. Note that to cover the 

cases where more than one instance of 𝑓𝑟𝑎𝑛𝑑 is needed, 𝑓𝑟𝑎𝑛𝑑 is not dropped from 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 so 

that re-selecting 𝑓𝑟𝑎𝑛𝑑 in future iterations remains possible. Next, the state 𝑠𝑖 =< 𝑀2, 𝐴 > is built 

(line 11 of Algorithm 1). At this point, our original problem is already downgraded to a smaller 

problem of finding a properly mapped forwarding graph for VNFs inside 𝐴. 𝑀2 is then constructed 

by considering all the VNFs specified by A (see the most inner WHILE loop presented by lines 

12-36). In line 13, we identify the VNFs belonging to 𝐴 that, according to the dependency graph 

(i.e., graph D), do not depend on any other VNFs in this set and collect them in the set 𝐵𝑖. 

Moreover, the physical nodes that are ready to host at least one element of 𝐵𝑖 are collected in the 

set 𝑂𝑖 (line 14 of Algorithm 1). Similarly, all the possible paths with a maximum length of ϕ𝑚𝑎𝑥 

are collected in the set 𝑂𝑖 (line 15 of Algorithm 1). In line 16, 𝒜(𝑠𝑖), which is the set of all possible 

actions in the current state (i.e., 𝑠𝑖), is constructed as 𝒜(𝑠𝑖) = 𝑂𝑖 × 𝐵𝑖 × 𝑂𝑖 × 𝑂𝑖.  
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Following an 𝜀-greedy strategy, the algorithm switches between the exploration and 

exploitation phases. In the exploration phase, a random action 𝑎𝑗 =<

ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

>∈ 𝒜(𝑠𝑖) is selected. In the exploitation phase, the algorithm 

chooses the action that, according to  DQN-Selection, maximizes the Q-value (line 21 of Algorithm 

1). Next, 𝑀2 is updated by appending 𝑎𝑗 (lines 23 of Algorithm 1). 𝐴 is also updated by removing 

the VNF instance 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 indicating that it is already considered in 𝑀2 (line 24 of Algorithm 1). 

Next, we calculate the reward using Eq. (4-8). Then the next state 𝑠𝑖+1  =   < 𝑀2, 𝐴 > will be 

constructed. Then, the experience < 𝑠𝑖, 𝑎𝑗, 𝑅(𝑠𝑖, 𝑎𝑗), 𝑠𝑖+1 >, will be sent to the replay buffer to be 

stored (see line 27 of Algorithm 1). Next, the algorithm checks whether the replay buffer contains 

enough experience (line 28 of Algorithm 1). If so, a random batch of size β will be extracted and 

sent to DQN-Selection and DQN-Evaluation for training (line 30 of Algorithm 1). A forward pass 

to DQN-Evaluation provides the true values for DQN-Selection, which will be used for parameter 

tuning of this Q network (lines 31 and 32 of Algorithm 1). If the replay buffer does not contain 

enough experiences, the batch extraction and training will be postponed to future iterations. 

Increasing the state index 𝑖 by one (line 34 of Algorithm 1), this process is repeated until 𝐴 becomes 

empty, which indicates that all the VNFs in 𝑀1 along with the new instances are now considered 

in 𝑀2. If the throughput of the constructed 𝑀2 is larger than 𝑞𝑚𝑖𝑛, 𝑀2 is a candidate solution. The 

algorithm continues to generate further solutions until the number of iterations reaches a 

predefined threshold, indicating that the training of Q-networks is completed. 

4.5  Performance Evaluation 

In the following, we evaluate the performance of our proposed algorithm, which has been 

implemented using the OpenAI Gym toolkit [72] via a customized environment. The simulations 

were conducted on a Google Cloud Platform using a VM instance with 10 vCPUs and 37 GB of 

memory. For implementing the Q networks, we used Tensorflow 2.5.0 [76]. To ensure 

convergence and model efficiency, we utilized the Keras Tuner Framework [77] to automate the 

tuning of the hyper-parameters. 

In our evaluations, we have considered the substrate network topology that is shown in Fig. 3.5 

[74][78]. This substrate network topology consists of 15 nodes (including forwarding and VNF-

capable node) and 52 bidirected links. Accordingly, in our scenarios, we add/drop links/nodes to 
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scale up/down this substrate network as needed. The CPU and bandwidth capacities of nodes and 

links were set randomly in the range [1-5] GHz and [100 Mbps, 1 Gbps], respectively. As for the 

resource requests and node utilization, to ensure a realistic scenario, we used values proportional 

to the recently published Google cluster traces [79] available with the platform Google BigQuery. 

The number of VNF instances in the original VNF-FG is selected in the range [3, 10]. The 

embedding map of the original VNF-FG is also set randomly. In these settings, for each episode 

of our simulation scenario, a random substrate node of the original embedding map is selected as 

the overloaded node (i.e., the service throughput bottleneck) and, consequently, the VNFs hosted 

on this node are considered candidates for the function scaling. Moreover, to avoid exploding the 

action size, we limit the maximum number of instances and number of branches (i.e., number of 

entering/outgoing paths to/from each VNF hosting node) to 2 and 3, respectively. The cost of new 

instantiation and state copying of a single VNF is set to 100 and 10 (in unit of currency), 

respectively. The costs of consuming a unit of CPU and bandwidth are 10 and 5 (both in unit of 

currency), respectively.  

4.5.1  Optimality Gap  

To evaluate the performance of our proposed JSTAF algorithm against the optimal solution, 

we consider a small-size problem instance. To do so, we select a subset of the substrate network 

shown in Fig 3.5, which consists of 9 nodes and 26 bidirected links. We use the exhaustive search 

approach to find the optimal solution of joint function scaling and topology adaptation of three 

randomly composed and embedded VNF-FGs, each comprising 5 VNFs. Figure 4.3. depicts the 

gap (measured in terms of the absolute relative difference in percentage) between the solutions 

found by our algorithm in every 700 episodes for different learning rates of 1.0, 0.1, 0.01, 0.001, 

and the average cost of the optimally modified VNF-FGs. As shown in the figure, the value of the 

learning rate has a significant impact on the optimality gap and its convergence. More specifically, 

higher values of learning rate (i.e., between 0.1 and 1.0) lead to poor and diverged results. This 

happens mainly because with the large values of the learning rate, rather than reaching the exact 

optimal values, the parameters of the neural network oscillate around these optimal settings on 

each update. On the other hand, too small values of learning rate (i.e., below 0.001) could lead to 

a prolonged convergence. We observe in Fig. 4.3 that the optimality gap of the learning rate of 

0.001 is trapped in local optima, thus hitting a plateau at 300%.  
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Figure 4.3 Optimality gap (in percentage) of our proposed JFSTAF framework vs. the number of episodes. 

This demonstrates that the gradient descent algorithm used in our proposed JFSTAF algorithm is 

very sensitive to the learning rate parameter, which can be tuned carefully. As suggested by our 

obtained results shown in Fig. 4.3 we set the learning rate to 0.01 from now on. We also observe 

from Fig. 4.3  that the gap is significant during the initial 700 episodes. This observation is not 

surprising since in the initial episodes, the JFSTAF algorithm merely explores random solutions. 

As the number of episodes grows, the optimality gap gradually decreases. More starting, starting 

with an optimality gap of 500%, our JFSTAF algorithm reduces the gap down to 33% after being 

sufficiently training. An important consideration here is that the exhaustive search method takes 

more than 7 hours to find the optimal solutions for the considered small-size VNF-FGs, whereas 

it takes our proposed JFSTAF algorithm about 2 hours to be sufficiently trained until it reduces 

the optimality gap by 80%. This highlights the scalability of our proposed algorithm, especially 

for large-size problem instants and more complex VNF-FGs.
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4.5.2  Convergence and Performance Comparison with Other Deep 

Learning Network Architectures 

Figure 4.4 Total cost vs. episode for different deep Q-Learning architectures. 

To evaluate the convergence performance of our proposed VNF-FG Joint Function Scaling and 

Topology Adaptation Framework (JFSTAF) and its architecture design choices, we compare it 

with two widely used and classical Q-network architectures: (i) DQN-AF: a single  Q-network 

[86] with action filtering entity and (ii) CDDQN: a Conventional Double Deep Q network without 

action filtering [21]. We have fed all three Q-networks JFSTAF, DQN-AF, and CDDQN with the 

same batch size of 30 samples and used the same technique to draw samples from their individual 

experience replay buffers. Figure 4.4 depicts the convergence performance of different methods. 

We observe from the figure that the DQN-AF method performs poorly compared to other methods 

JFSTAF and CDDQN. More specifically, even after 20,000 episodes, the DQN-AF method 

converges to a very large cost value of around 1500 unit of currency. This is a direct consequence 

of the limitation of a single Q-network because the Q network is trained by its own Q value 

estimations. On the other hand, the CDDQN and JFSTAF methods converge to almost the same 

cost value. However, it is evident from Fig. 4.4 that our proposed JFSTAF method converges at a 

higher rate (around episode 8000) compared to the CDDQN method. This demonstrates the 

empowering impact of the action filtering technique, which reduces the action size efficiently by 

identifying more valuable actions, thus allowing for faster convergence. 
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4.5.3  Performance Comparison with Disjoint Method 

Figure 4.5 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with disjoint methods). 

Next, we examine the performance gains of our JFSTAF in comparison with heuristic-based 

function scaling-only and topology adaptation-only methods. Since greedy and random heuristics 

are widely used in the literature [82], [83], [3] for comparison, we design a Greedy-BestFit 

Function Scaling-Only (GBFSO) [83] and a Random-FirstFit Topology Adaptation-Only 

(RFTAO) [82] algorithms. In our design, the GBFSO algorithm increases the number of 

overloaded VNF instances (i.e., the VNFs that are hosted on the overloaded substrate node in the 

original mapped forwarding graph) to the maximum possible number of instances per VNF (i.e., 

3 in our scenario) and embed them in a way that it imposes the least possible embedding cost using 

the best-fit approach. The RFTAO algorithm, on the other hand, randomly reorders the existing 

VNF instances while respecting the dependency graph and embeds them to the nearest available 

nodes from their original host using the first fit approach. Moreover, in our simulation, we realized 

two scenarios, A and B. In scenario A, the minimum acceptable throughput is increased by 20%, 

whereas in scenario B, an 80% increase has been made to the minimum acceptable throughput.  

Figure 4.5 illustrates the total cost vs. the number of VNFs in the original VNF-FGs. In this 

figure, two sets of curves are depicted. The solid curves represent scenario A (where the minimum 

acceptable throughput is increased by 20%), whereas the dashed curves represent Scenario B 

(where an 80% increase has been made to the minimum acceptable throughput). Clearly, satisfying 

the higher minimum throughput requires more resources, thus imposing higher costs for all 

algorithms under consideration. However, we observe from Fig. 4.5 that our proposed JFSTAF 
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algorithm outperforms the two disjoint methods in both Scenarios A and B for a given number of 

VNFs increasing from 4 to 10. This highlights the beneficial impact of the joint consideration of 

function scaling and topology adaptation in cases with divergent requests' parameters. Specifically, 

according to Fig. 4.5, our proposed JFSTAF achieves a performance gain of up to 73% and 93% 

compared to the RFTAO and GBFSO methods, respectively. Moreover, according to Fig. 4.5, 

GBFSO imposes higher costs compared to the RFTAO algorithm. This happens because even if 

the most efficient embedding solution has been selected for the modified VNF-FG, the GBFSO 

algorithm always maximizes the number of VNF instances, thus leading to the consumption of 

more resources. The results also show that the random ordering of VNFs (without any function 

scaling) in the RFTAO algorithm leads to a high cost. This is mainly due to the fact that reordering 

the VNFs in the VNF-FG results in the utilization of new paths, thus increasing the resource 

consumption cost as well as the state copying costs. Finally, we observe that adding 6 VNFs to the 

original VNF-FG makes the costs of the RFTAO and GBFSO algorithms (averaged over Scenarios 

A and B) about five times larger. By contrast, our proposed JFSTAF algorithm experiences a 

maximum of only 3.2 times increase in the total cost. 

4.5.4  Performance Comparison with a Joint Method 

Figure 4.6 Number of active physical nodes vs. number of VNFs in the original VNF-FG (performance comparison 

with a joint method). 
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Figure 4.7 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with a joint method). 

Given that there is no existing work on joint function scaling and topology adaptation, we 

implement a random-based joint method as our benchmark, where the order, connectivity, and the 

number of VNF instances are randomly modified, and the first feasible mapped forwarding graph 

(according to Eqs. (4-5)-(4-7)) is selected as the solution. We refer to this method as the random-

based joint approach and compare its performance with our proposed JFSTAF algorithm in terms 

of the number of active physical nodes for Scenarios A and B, explained in Section 4.4.3. Figure 

4.6 illustrates the number of active physical nodes vs. the number of VNFs in the original VNF-

FG. Clearly, having a higher acceptable minimum throughput enforces both methods to place VNF 

instances on different nodes to encourage parallel executions, which leads to a higher throughput. 

Nevertheless, as shown in  Fig. 4.6, our proposed JFSTAF algorithm requires a smaller number of 

active nodes in both Scenarios A and B, mainly because it directly takes into account this parameter 

in its cost model (i.e., see Eq. (4-4)). The random-based joint benchmark, on the other hand, 

scatters the VNF instances across existing physical nodes arbitrarily since it ignores the impact of 

the number of active physical nodes on the total cost in its search process. 

Finally, the total cost vs. the number of VNFs in the original VNF-FGs for the two joint methods, 

random based and JFSTAF, in Scenarios A and B is depicted in Fig 4.7. As shown in the figure, 

our proposed JFSTAF algorithm outperforms the random-based joint benchmark in both Scenarios 

A and B for a given number of VNFs in the original VNF-FG. We note that for the small number 
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of VNFs in the original VNF-FG, the total costs of both methods are almost the same in both 

Scenarios A and B. This is because there are not many choices for reordering of VNFs, as the 

number of VNFs is too small. Also, the choices for function scaling are rather limited. On the other 

hand, as the number of VNFs increases, the difference between our proposed JFSTAF method and 

the random-based joint method becomes significant, achieving a maximum cost improvement of 

60%.  

4.6 Conclusions 

In this chapter, we studied the VNF-FG scaling problem, which arises from changes in user 

demand, application requirements, and traffic conditions. To that end, we proposed our joint 

function scaling and topology adaptation method, which supports not only the horizontal scaling 

but also VNF reordering and connectivity changes in a given VNF-FG. Converting the problem to 

an MDP framework, we have designed state, action, and reward components accordingly. To 

tackle the issue with a large state/action space, we approximate Q values by using two Deep Q 

networks while applying an action filtering technique to further reduce the size of the action space. 

We evaluated the performance of our proposed framework against different network architectures 

and conducted performance evaluations comparing with both joint and disjoint benchmarks. The 

results show that our proposed method achieves up to a 93% cost improvement compared to the 

benchmarks. 
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Chapter 5 

 

5. Content Placement for CDN1 

 

5.1 Introduction 

 

Once a CDN is deployed, different parameters should be optimized to ensure efficient 

operation. To that end, consider an edge-based CDN  with caches close to end-users. Even though 

utilizing edge caches and bringing the contents closer to end-users potentially provide increased 

QoS, it also imposes costs for CDN providers. For example, the contents might be needed to 

migrate between edge nodes after their initial placement. Making the content migration decision 

is challenging since it corresponds to different costs such as content uploading\downloading costs 

and bandwidth occupation costs. Moreover, the edge cache's characteristics, such as their specific 

cost model, limited capacity, and the possibility to be mobile, made the initial content placement 

and migration decisions complex. Moreover, in a CDN that delivers contents of low- or high 

priority, the migration decisions would be even more challenging because the cost model and the 

                                                 
1 This chapter is based on the following  published papers: 

 

  - Sepideh Malektaji, Somayeh Kianpisheh, and Roch Glitho,“Purging-Aware Content Placement in Fog-Based Content Delivery     

Networks.” In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp. 1-3. IEEE, 2018 

 

- Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, and Somayeh Kianpishe. “Deep Reinforce- 

ment Learning-based Content Migration for Edge Content Delivery Networks with Vehicular Nodes.” IEEE Transac- 

tions on Network and Service Management 2021. 
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acceptable QoS level for high-priority content might not be the same as those for low-priority 

contents. 

This chapter proposes a content migration method for edge content delivery networks with 

vehicular nodes. In such CDNs, local caches can offload their contents to neighboring edge caches 

whenever feasible instead of removing them when fully occupied. This process ensures that more 

contents remain in the vicinity of end-users. We propose a deep reinforcement learning approach 

to selecting which contents to migrate and to which neighboring cache to migrate while 

minimizing the corresponding cost. Our simulation scenarios realized up to a 70% reduction of 

content access delay cost compared to conventional strategies with and without content migration. 

The remainder of this chapter is organized as follows: we first provide the system model and 

present our optimization formulation. We then present our proposed DRL-based content migration 

method in detail, followed by the performance evaluation of the framework. Finally, the 

conclusion will be provided for this chapter in the last subsection. 

5.2 System Model  

Figure 5.1 illustrates a high-level view of our system model with an example of the problem 

under study. In Fig. 5.1, certain mobile caches, such as autonomous vehicles in an area (referred 

to as targeted caches), send their requests for high-priority contents to the CDN controller. These 

high-priority contents could be HD maps and are denoted by 𝐶High. Some targeted mobile caches, 

such as vehicle ‘A’ in Fig. 5.1, may already be fully occupied with low-priority contents denoted 

by  𝐶Low.  This condition triggers our proposed algorithm to find a desirable solution. The content 

migration algorithm would free up enough space in target caches to accommodate high-priority 

contents. However, instead of dropping the low-priority contents, the algorithm provides a new 

placement for them so that the low-priority contents migrate to nearby available caching resources 

and thus remain in the vicinity of the target caches. Such a content migration consumes resources 

both from the host and the destination node. It also consumes scarce bandwidth resources and thus 

is not cost-free. Our algorithm considers these costs and accordingly proposes a low-cost content 

migration solution. It also determines a low-cost delivery strategy for high-priority content from 

edge caches to target caches.  
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For example, in Fig. 5.1, the content migration solution could be as follows: Assume a low-

priority content 𝐶Low fully occupies vehicle ‘A’'s mobile cache. However, vehicle ‘A’ needs to 

cache a high-priority content 𝐶High. Considering the different migration solution costs, the 

algorithm could come up with the following strategy: The low-priority content 𝐶Low cached in 

vehicle ‘A’ should be migrated to neighbor cache ‘B’ via a vehicle-to-vehicle (V2V) link [87]. 

This would free up enough space in the cache of vehicle ‘A’ to store 𝐶High. As for the high-priority  

content delivery strategy, fixed cache ‘F’ can deliver 𝐶High to mobile cache ‘A’ via a vehicle-to-

infrastructure (V2I) link [87]. The received high-priority content 𝐶High can then be delivered from 

vehicle ‘A’ to the other targeted caches such as vehicle ’D’ via a V2V link. This example is valid 

based on the assumption that vehicle ‘A’ and both vehicles ‘B’ and ‘D’ stay within the coverage 

ranges of fixed cache `F' and vehicle `A', respectively, long enough for the contents to be 

transferred successfully. We note that any other migration and delivery strategies could impose a 

higher cost on the system. In the following, we present the modeling of our considered content 

migration problem, followed by an explanation of the cost calculation for content migration. 

Figure 5.1 System view and an example of an edge-based CDN with vehicular nodes 
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Edge Caches: we consider a CDN system that consists of mobile and fixed edge caches as 

well as CDN cloud servers. Let 𝛭 = {𝑒𝑗  }𝑗=1
𝑀
 and  𝐹 = {𝑒𝑓 }𝑓=1

𝐹
 denote the sets of mobile and 

fixed caches with a total number of M and F caches, respectively. The total set 𝐸 = 𝑀 ∪ 𝐹 consists 

of all the fixed and mobile caches, consisting of a total of  𝑁 = 𝑀 + 𝐹  edge caches. Each cache 

𝑒𝑖 ∈ 𝐸 has limited caching and processing capacities denoted by 𝐿𝑠𝑡𝑜𝑟(𝑒𝑖) and 𝐿𝑝𝑟𝑜𝑐(𝑒𝑖) 

respectively. 

Coverage regions of caches: Each cache (fixed or mobile) 𝑒𝑖 ∈ 𝐸 has a circular coverage 

region with a diameter ℓ𝑖. The coverage area of fixed caches is usually larger than mobile caches, 

and it can cover a segment of a bidirected road or an intersection of the road. We denote the set of 

fixed caches that have a road intersection in their coverage as 𝐹+and those that only cover straight 

segments of roads as 𝐹−. Note that the total set of fixed edge caches is 𝐹 = 𝐹+ ∪ 𝐹−. 

Locations and mobility of caches: Let 𝑙𝑖(𝑡) be the location of the cache 𝑒𝑖 ∈ 𝑀 at time t, 

and 𝑙𝑓 be the location of the fixed cache 𝑒𝑓 ∈ 𝐹. The velocity of mobile cache 𝑒𝑖 ∈ 𝑀 at time t, is 

denoted by 𝑣𝑖(t). For the movement of mobile caches, we adopt a probabilistic model, where 

mobile caches follow a probabilistic approach in the selection of their direction in a grid-like 

environment. At each intersection, the mobile cache chooses to keep moving in the same direction 

or to change direction. The probability of going straight is denoted by 𝜇 𝑆 while taking a left or a 

right occurs with the probability of 𝜇 𝐿 and 𝜇 𝑅, respectively. 

Contents: Contents in the considered CDN system have either low or high priority. Let 

𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝐶𝐿𝑜𝑤(𝑡) denote the high- and low-priority content sets with sizes of size(𝐶𝐿𝑜𝑤(𝑡)) and 

size(𝐶𝐻𝑖𝑔ℎ(𝑡).), respectively. 𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝐶𝐿𝑜𝑤(𝑡)  contain |𝐶𝐿𝑜𝑤(𝑡) | and |𝐶𝐻𝑖𝑔ℎ(𝑡)|  number of 

individual contents denoted as 𝑐ℎ
ℎ𝑖𝑔ℎ

∈ 𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝑐𝑙
𝑙𝑜𝑤 ∈ 𝐶𝐿𝑜𝑤(𝑡), respectively. Following the 

above-mentioned notations, 𝐶(𝑡) =  𝐶𝐿𝑜𝑤(𝑡) ∪ 𝐶𝐻𝑖𝑔ℎ(𝑡) denotes the total contents at the edge caches 

at time t, where |𝐶(𝑡)| represents the total number of individual contents 𝑐𝑘 ∈ |𝐶(𝑡)|, and size(𝐶(𝑡)) 

is the total size of the set 𝐶(𝑡) in bytes. 

Requests: Let 𝑅𝑘,𝑖(𝑡) denotes the set of requests for content 𝑐𝑘 ∈  𝐶(𝑡) received by cache 

𝑒𝑖 ∈ 𝐸 at time 𝑡. |𝑅𝑘,𝑖(𝑡)| also denotes the exact total number of such requests at time t. These 

requests might come from the users in coverage of 𝑒𝑖 or requests of other caches redirected to it. 

We assume each request needs W processing units for fulfillment. Therefore  𝑅𝑒𝑞𝑀𝑎𝑥 (𝑒𝑖) = 
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𝐿𝑝𝑟𝑜𝑐(𝑒𝑖)

𝑊
 specifies the maximum number of requests that 𝑒𝑖 can serve simultaneously given that it 

has the requested content. 

Target caches: In this paper, we label a mobile cache that must locate high-priority content 

as ‘Target Cache’. One example of such mobile caches is autonomous vehicles that need to 

repeatedly cache an updated version of the HD maps (i.e., high-priority contents) [87]. Let 𝑄(𝑡) =

{𝑒𝑞 }𝑞=1
𝑄
  denotes the set of target caches for contents 𝐶𝐻𝑖𝑔ℎ(𝑡). Note that the set of target caches 

can change in time. If at least one target cache in the set 𝑄(𝑡) does not have enough free storage 

to accommodate 𝐶𝐻𝑖𝑔ℎ(𝑡), then the content migration strategy should be applied. As a result of 

applying content migration, a new placement solution for existing low priority contents will be 

obtained where target caches free space to store the high priority contents. Moreover, our algorithm 

also determines the best delivery strategy for high-priority content. Our proposed algorithm also 

determines the best delivery strategy for the high-priority content. Note that, as mentioned earlier, 

we assume a hierarchical structure in CDN caches so that the contents first arrive at fixed caches 

(i.e., RSUs) and from there are distributed to mobile caches. Thus, the delivery strategy for high-

priority content considers the transmission of 𝐶𝐻𝑖𝑔ℎ(𝑡) from fixed caches to target caches. 

Delay: The average communication delay 𝐷𝑖,𝑗(𝑡, 𝐵) for transmitting a data of length B (in 

bytes) from the edge cache 𝑒𝑗   to 𝑒𝑖, where 𝑒𝑗   and 𝑒𝑖  ∈ 𝐸   at time t is estimated as follows 

𝐷𝑖,𝑗(𝑡, 𝐵) = {

0                                          𝑖𝑓 𝑖 = 𝑗 
𝐵

£𝑖,𝑗(𝑡)
+ 𝜏𝑖,𝑗                             𝑖 ≠ 𝑗, 
                                         

                                                                     (5-1) 

where £𝑖,𝑗(𝑡) and 𝜏𝑖,𝑗 are the data rate and propagation delay between edge cache 𝑒𝑖  to 𝑒𝑗    at time 

t, respectively. Further, we model the average communication delay between the edge caches and 

remote cloud server as a fixed value 𝑑∞(which is dominated by the propagation delay, assuming 

that the remote cloud server is located hundreds of miles away). 

Power consumption and bandwidth occupation: Migrating contents from one edge cache 

to another consumes electrical power, as the source and destination edge caches need to upload 

and download the content, respectively. We define 𝑔𝑖 and 𝑝𝑖as the power consumption cost on 

edge cache 𝑒𝑖  for uploading and downloading one byte, respectively. In addition, network 

bandwidth will be occupied while migrating the contents. we denote ∅ as the bandwidth 

occupation cost for transmitting one byte for one unit of distance in the edge network.
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Table 5.1 Input Parameters and variables 
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5.3 Optimization Formulation for Content Migration 

In this section, we introduce the set of input parameters and decision variables considered in 

our formulation and then explain our objective function and constraints. Table 5.1 delineates some 

of the important inputs and variables used in our formulation. 

1) 𝑦𝑖,𝑙(𝑡): A binary decision variable which is 1 when low priority content 𝑐𝑙
𝑙𝑜𝑤  is in the edge 

cache  𝑒𝑖 at time t (otherwise, it is 0). 

2) 𝑥𝑓,ℎ(𝑡): A binary decision variable which is 1 when high priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

is in the fixed 

edge cache 𝑒𝑓  at time t (otherwise, it is 0). 

3) 𝑧𝑖,𝑗,𝑘(𝑡): An integer decision variable between 0 and 𝑅𝑒𝑞𝑀𝑎𝑥 (𝑒𝑖). This variable identifies the 

number of requests for content 𝑐𝑘 ∈ 𝐶(𝑡) redirected from 𝑒𝑗   to 𝑒𝑖 at time t. Note that for the special 

cases where 𝑖 = 𝑗 the parameter 𝑧𝑖,𝑗,𝑙(𝑡) represents the number of requests for content 𝑐𝑘 which 

are received and also directly processed by 𝑒𝑗  itself. 

5.3.1. Content Migration Cost    

Content migration cost at time t consists of three partial cost components, namely ∁𝟏(t), 

 ∁𝟐(𝒕) and  ∁𝟑(𝒕). The first partial cost, ∁1(𝑡), is the cumulative cost of power consumption 

associated with uploading contents from edge caches, given by 

 

∁1(𝑡) =  ∑ ∑ Λ𝑙,𝑖 . (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

|𝐶𝑙𝑜𝑤(𝑡)|

𝑙=1

𝑁

𝑖=1

                                                                        (5

− 2) 

Where  

 

(A − B)+  =  {
1,     𝑖𝑓 𝐴 > 𝐵

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                                                                             (5

− 3) 

 

For each content 𝑐𝑙
𝑙𝑜𝑤, (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡)) is equal to 1 when content𝑐𝑙

𝑙𝑜𝑤 is uploaded from 𝑒𝑖. 

In this case, the non-negligible cost of Λ𝑙,𝑖 =  𝑠𝑖𝑧𝑒(𝑐𝑙
𝑙𝑜𝑤). 𝑔𝑖 will be imposed on the system due to 

content uploading.  
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Similarly, the cumulative cost of power consumption  ∁𝟐 (𝒕) associated with downloading contents 

from edge caches at time t is given by                                             

∁2(𝑡) =  ∑ ∑ V𝑙,𝑖. (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

                                                                 (5 − 4)

|𝐶𝑙𝑜𝑤(𝑡)|

𝑙=1

𝑁

𝑖=1

 

In this case, the non-negligible cost of V𝑙,𝑖 =  𝑠𝑖𝑧𝑒(𝑐𝑙
𝑙𝑜𝑤). 𝑝𝑖 will be imposed on the system due to 

content downloading.  

The cost  ∁𝟑(𝒕) of bandwidth occupation involved in migrating contents between edge caches is 

given by 

∁𝟑(𝒕) = ∑ ∑ 𝚫𝒍. |𝒍𝒊(𝒕) − 𝒍𝒋(𝒕)|.
|𝑪𝒍𝒐𝒘(𝒕)|

𝒍=𝟏
𝑵
𝒊,𝒋=𝟏,𝒊≠𝒋 (𝒚𝒊,𝒍(𝒕 − 𝟏) − 𝒚𝒊,𝒍(𝒕))

+

. (𝒚𝒋,𝒍(𝒕) − 𝒚𝒋,𝒍(𝒕 − 𝟏))
+

                 (5-5) 

Where the term (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

. (𝑦𝑗,𝑙(𝑡) − 𝑦𝑗,𝑙(𝑡 − 1))
+

becomes  non-zero only when 

content 𝑐𝑙
𝐿𝑜𝑤is uploaded from 𝑒𝑖 and downloaded into 𝑒𝑗. Moreover, letting Φ be the bandwidth 

occupation cost for transmitting one byte over a unit of distance, Δ𝑙 =  𝑆𝑖𝑧𝑒 (𝑐𝑙
𝐿𝑜𝑤 ).Φ will be 

equal to the bandwidth occupation cost for transferring 𝑐𝑙
𝐿𝑜𝑤 over a unit of distance. As (5-5) 

suggests, the associated bandwidth occupation cost can be calculated by multiplying Δ𝑙 by the 

distance |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|between source and destination. The content migration cost, 𝐶𝑀 is then 

obtained by summing the three partial costs  ∁𝟏(𝒕), ∁𝟐(𝒕), and ∁𝟑(𝒕) accumulated over the 

observation time period [𝑡0, 𝑡𝑘] as follows:  

∁𝑀 =   ∫ [∁1(t)  + ∁2(t)  +  ∁3(𝑡)]. 𝑑𝑡
𝑡𝑘
𝑡0

 

5.3.2. Delay cost of low-priority contents 

To calculate the delay cost of low-priority contents, we assume that the content popularity 

follows a Zipf distribution [56] [59], with α being the Zipf slope (0 <  α <  1). Assuming 𝑐𝑙
𝑙𝑜𝑤 is 

the 𝑙'th most popular content, the probability of content 𝑐𝑙
𝑙𝑜𝑤 being requested is 

1

ρ.𝑙α
, where ρ =

∑ 1
𝑙⁄

𝑠𝑖𝑧𝑒(𝐶𝐿𝑜𝑤(𝑡))
𝑙=1 . With the assumption that the low-priority content requests follow a Poisson 

process with parameter β [56][59], the average request rate λ𝑙 of content 𝑐𝑙
𝑙𝑜𝑤 can be calculated by 

 𝜆𝑙 =
𝛽

𝜌.𝑙𝛼
. The delay cost ∁𝑨  of accessing low-priority contents is given by: 

   ∁𝑨=∫ ∑ ∑  𝝀𝚤. 𝛄 [𝑫𝒊,𝒋(𝒕, Þ𝒊,𝒋,𝜾). 𝒛𝒊,𝒋,𝒍(𝒕). 𝒚𝒊,𝒍(𝒕) + 𝒅∞. (|𝑹𝒍,𝒊(𝒕)| − 𝒛𝒊,𝒋,𝒍(𝒕). 𝒚𝒊,𝒍(𝒕))]. 𝐝𝐭,
|𝑪𝑳𝒐𝒘(𝒕)|
𝜾=𝟏

𝑵
𝒊,𝒋 =𝟏,𝒊≠𝒋

𝒕𝒌
𝒕𝟎

         (5-7) 

(6) 
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Where the term 𝑧𝑖,𝑗,𝑙(𝑡). 𝑦𝑖,𝑙(𝑡) counts the number of requests for content 𝑐𝑙
𝐿𝑜𝑤 that are sent to the 

edge cache 𝑒𝑖And 𝛄 is the cost of a unit delay for accessing one byte of low-priority content. 

However, some of the requests may not be fulfilled successfully, which occurs when the receiving 

edge node leaves the radio coverage of the transmitter node before the whole content has been 

transmitted.  

To compute the successfully transmitted bytes of 𝑐𝑙
𝐿𝑜𝑤We first obtain the sojourn time 𝛿𝑖,𝑗(𝑡) 

in the coverage area of 𝑒𝑖. Depending on the type of the caches (i.e., fixed or mobile) and their 

area, we may deal with one of the following three cases to calculate the sojourn time 𝛿𝑖,𝑗(𝑡) as 

shown in Fig. 5.2. 

Case 1: The two caches 𝑒𝑗 and 𝑒𝑖 are both mobile, i.e., 𝑒𝑗,𝑒𝑖 ∈ 𝑀 (see Fig 5.2a). In this case, 

the sojourn time 𝛿𝑖,𝑗(𝑡) is given by Eq. (5-8a) 

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|]

+.
𝑟𝑖,𝑗

|𝑣𝑖(𝑡)−𝑣𝑗(𝑡)|
,     if 𝑒𝑗 , 𝑒𝑖 ∈ 𝑀             (5-8a) 

 

In Eq. (5-8a) 𝑟𝑖,𝑗 is the length of road path within the coverage of  𝑒𝑖 traversed by 𝑒𝑗 (see Fig. 5.2a. 

) In this equation, the term [
ℓ𝑖

2
− |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|]

+is equal to 1 only if 𝑒𝑗 resides within the coverage 

of 𝑒𝑖  at time t; otherwise, it is zero. Also, |𝑣𝑖(𝑡) − 𝑣𝑗(𝑡)| is the relative speed of 𝑒𝑗 with respect to  

𝑒𝑖.  

Figure 5.2 Illustration of the three different cases for calculating the sojourn time 𝜹𝒊,𝒋(𝒕)  
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Case 2: In this case, 𝑒𝑗 is mobile, whereas 𝑒𝑖 is a fixed cache covering a straight road segment; 

i.e., 𝑒𝑗 ∈ 𝑀 and 𝑒𝑖 ∈ 𝐹−  (see Fig. 5.2b). We can then calculate 𝛿𝑖,𝑗(𝑡) as follows: 

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖 − 𝑙𝑗(𝑡)|]

+.
𝑟𝑖,𝑗
𝔰

𝑣𝑗(𝑡)
,      if 𝑒𝑗  ∈ 𝑀 and 𝑒𝑖  ∈ 𝐹

−                            (5-8b) 

Where 𝑟𝑖,𝑗
𝔰  is the length of straight road path within the coverage of fixed edge cache 𝑒𝑖 traversed 

by 𝑒𝑗 (see Fig. 5.2b. ). 

Case 3: In the third case, 𝑒𝑗 is mobile and 𝑒𝑖 is a fixed cache covering a road intersection; i.e., 𝑒𝑗 ∈ 

𝑀 and 𝑒𝑖 ∈ 𝐹+  (see Fig. 5.2c). We can then calculate 𝛿𝑖,𝑗(𝑡) as follows: 

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖 − 𝑙𝑗(𝑡)|]

+.
𝜂𝔰𝑟𝑖,𝑗

𝔰 +𝜂𝐿𝑟𝑖,𝑗
𝐿 +𝜂𝑅𝑟𝑖,𝑗

𝑅

𝑣𝑗(𝑡)
,   if 𝑒𝑗  ∈ 𝑀 and 𝑒𝑖  ∈ 𝐹

+            (5-8c) 

where 𝑟𝑖,𝑗
𝔰   is the length of straight road path within the coverage of fixed edge cache 𝑒𝑖 traversed 

by  𝑒𝑗, while 𝜂𝔰 is the probability that mobile caches follow a straight road. 𝑟𝑖,𝑗
𝐿  is the length of left 

road path within the coverage of fixed edge cache 𝑒𝑖 traversed by 𝑒𝑗, while 𝜂𝐿 is the probability 

that a mobile cache takes a left turn. Further, 𝑟𝑖,𝑗
𝑅  is the length of the right road path within the 

coverage of fixed edge cache 𝑒𝑖 traversed by 𝑒𝑗, while 𝜂𝑅 is the probability that a mobile cache 

takes a right turn. We note that upon facing an intersection along its path, a mobile cache follows 

the straight road or takes a left or right turn with probabilities 𝜂𝔰, 𝜂𝐿 , and 𝜂𝑅 , respectively. 

 By setting 𝐷𝑖,𝑗(𝑡, 𝐵) = 𝛿𝑖,𝑗(𝑡) in Eq. (5-1), the number of bytes that can be transferred from 𝑒𝑖 to 

𝑒𝑗 can be computed (i.e., the term [𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡)). Specifically, the number of successfully 

transmitted bytes of 𝑐𝑙
𝐿𝑜𝑤 from edge cache 𝑒𝑖 to 𝑒𝑗 can be obtained as follows: 

Þ𝒊,𝒋,𝜾(𝑡)  =  𝑚𝑖𝑛{𝒚𝒊,𝒍(𝒕). ([𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡), 𝑠𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)}                                       (5-9) 

It should be noted that in Eq. (5-9), any requests for the remaining bytes of 𝑐𝑙
𝐿𝑜𝑤 that can not be 

served from any edge caches are assumed to be redirected to cloud servers for fulfillment. 

5.3.3. Delay cost of high-priority contents 

Target cache 𝑒𝑞 ∈ 𝑄(𝑡), can download the high priority contents 𝐶𝐻𝑖𝑔ℎ(𝑡) either directly from 

fixed caches or from other target caches that have already received the high priority contents. 
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However, if 𝑒𝑞 can not receive 𝐶𝐻𝑖𝑔ℎ(𝑡) from any other edge caches due to, for instance, their 

isolated location or high speed, it should download all or the remaining parts of those contents 

from CDN cloud servers.  

We define the so-called dominating cache Ɗ(t) as a subset of target caches that can transmit the 

contents to the rest of the target caches with at most ℴ hops. Note that Ɗ(t) ⊆ 𝑄(𝑡) and that it is 

identified by means of graph theory. Let the contact graph 𝐺(𝑡)  =  (𝑒𝑞|∀𝑞 ∈ 𝑄(𝑡), 𝐸(𝑡)) be the 

representation of the target caches' topology at time t, where E(t) is the set of edges showing the 

connectivity among the target caches. In this regard, edge 𝜉𝑞,𝑝 (𝑡) ∈ 𝐸(𝑡) exists if and only if the 

target caches 𝑒𝑞 to 𝑒𝑝 are in the transmission range of each other at time t. The set of dominating 

nodes in the contact graph can be identified in polynomial time by the algorithm proposed in [58]. 

Depending on its path, dominating cache 𝑒𝑢 ∈ 𝐷(𝑡) receives a high-priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

∈

𝐶𝐻𝑖𝑔ℎ(𝑡)  in a continuous manner while switching from one fixed cache range to another. The 

number of bytes in content 𝑐ℎ
ℎ𝑖𝑔ℎ

 downloaded from 𝑒𝑓 varies according to the amount of time 𝑒𝑢 ∈

𝐷(𝑡) spends in the coverage area of the fixed cache 𝑒𝑓. Recall that 𝛿𝑖,𝑗(𝑡) (estimated by Eq. (5-8)) 

is the duration time that 𝑒𝑢 ∈ 𝐷(𝑡) remains within the coverage range of fixed cache 𝑒𝑓. Using 

𝛿𝑢,𝑓(𝑡), the number of successfully transmitted bytes of content  𝑐ℎ
ℎ𝑖𝑔ℎ

from fixed cache 𝑒𝑓 to target 

cache 𝑒𝑢 ∈ 𝐷(𝑡) can be calculated as follows:   

Ѵ𝑢,𝑓,ℎ(t) = min {𝑥𝑓,ℎ(𝑡) . ([𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡)), 𝑠𝑖𝑧𝑒( 𝑐ℎ
ℎ𝑖𝑔ℎ

)}                                   (5-10) 

Considering (5-1), the delay in downloading high-priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

 from the fixed edge cache 

𝑒𝑓 to 𝑒𝑢 ∈ 𝐷(𝑡) can be obtained as: 

ℑ 𝑢,𝑓,ℎ = 𝐷𝑢,𝑓(𝑡, Ѵ𝑢,𝑓,ℎ(t))                                     (5-11)                                         

We note that when 𝑒𝑢 ∈ 𝐷(𝑡) is out of the range of any fixed cache, the request should be 

redirected to the cloud, and the remaining portions of the high-priority content downloaded from 

CDN cloud servers. The high-priority content delivery cost for target caches can then be obtained 

as follows:  

𝐶𝐷 = ∫ ( ∑ ∑ ∑.

F

𝑓=1

[ℑ 𝑢,𝑓,ℎ + [|𝑅ℎ,𝑓(𝑡)| − 𝑧𝑓,𝑢,ℎ(𝑡). 𝑥𝑓,ℎ(𝑡)]. 𝑑∞]

|𝐶𝐻𝑖𝑔ℎ(𝑡)|

ℎ=1𝑢|𝑒𝑢∈𝐷(𝑡)

𝜓)
𝑡𝑘

𝑡0

. 𝑑𝑡            

(5-12) 
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 ≤ 𝐿𝑠𝑡𝑜𝑟(𝑒𝑞
𝑀𝐸𝐶) 

Where 𝜓 is the delay cost per second of downloading one byte of high-priority content. 

5.3.4. Objective Function and Constraints 

The objective is to minimize the total cost as an aggregation of content migration cost and 

content delay cost in a given CDN system. Let wM, wA and wD denote the weights of the costs 

𝐶𝑀, 𝐶𝐴, 𝑎𝑛𝑑 𝐶𝐷, respectively. The objective function Փ over the observation time period [𝑡0, 𝑡𝑘] is 

then given by 

𝑚𝑖𝑛 Փ = 𝑤𝑀. ∁𝑀 + 𝑤𝐴. ∁𝐴 +𝑤𝐷 . ∁𝐷                                                                                               (5

− 13) 

subject to the following constraints: 

∑ ∑ 𝑧𝑖,𝑗,𝑙(𝑡).𝑗={1,..|𝑀}𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|} 𝑦𝑖,𝑙(𝑡) ≤ 𝑅𝑚𝑎𝑥(𝑒𝑖),   ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑇 , ∀1 ≤ 𝑖 ≤ 𝑀          (5 −

14𝑎)                                       

 ∑ ∑ ([
ℓ𝑓
2
⁄ − (𝑙𝑢(𝑡) − 𝑙𝑓)]

+

.ℎ={1,..,|𝐶𝐻𝑖𝑔ℎ(𝑡)|}𝑢|𝑒𝑢∈𝐷(𝑡) 𝑥𝑓,ℎ(𝑡)) +

∑ ∑ 𝑧𝑓,𝑗,𝑙(𝑡). 𝑦𝑓,𝑙(𝑡)𝑗={1,..|𝑀}𝑙={1,..,|𝐶𝐿𝑜𝑤(𝑡)|} ≤ 𝑅𝑚𝑎𝑥(𝑒𝑓)                 ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀1 ≤ 𝑓 ≤ 𝐹        

 

 

∑ 𝑦𝑣,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)

𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|}

≤                                         ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘,    ∀𝑒𝑣 ∈ {𝑀 − 𝑄(t)} 

  

∑ 𝑦𝑞,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤) + 𝑠𝑖𝑧𝑒(𝐶𝐻𝑖𝑔ℎ(𝑡)))𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|}      

∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘,    ∀𝑞|𝑒𝑞 ∈ 𝑄(𝑡) 

 

∑ 𝑦𝑓,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|} + ∑ 𝑥𝑓,ℎ(𝑡). 𝑆𝑖𝑧𝑒(𝑐ℎ

ℎ𝑖𝑔ℎ
)ℎ={1,..|𝐶𝐻𝑖𝑔ℎ(𝑡)|}  

∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀𝑓|𝑒𝑓 ∈ 𝐹         

Constraint (5-14a) ensures that the maximum number of content requests that can be served 

simultaneously from the mobile edge cache 𝑒𝑖 ∈ 𝑀 is not exceeded. Similarly, constraint (5-14b) 

indicates a set of constraints on the number of requests for contents that can be handled 

     (5-14e) 

(5-14d) 

𝐿𝑠𝑡𝑜𝑟(𝑒𝑣)           

≤ 𝐿𝑠𝑡𝑜𝑟(𝑒𝑓
𝐹𝐸𝐶) 

(5-14c) 

(5-14b) 
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simultaneously by the fixed cache 𝑒𝑓 ∈ 𝐹. Note that [
ℓ𝑓
2
⁄ − (𝑙𝑢(𝑡) − 𝑙𝑓)]

+

computes the number 

of dominating caches covered by 𝑒𝑓 at time t. Therefore, the number of requests for downloading 

high-priority contents is calculated by the first term in constraint (5-14b), while the second term 

computes the number of requests for low-priority contents. Constraint (5-14c) represents the 

capacity constraints for non-target caches 𝑒𝑣 ∈ {𝑀 − 𝑄(𝑡)}. Similarly, the capacity constraints of 

target mobile caches are specified by constraint (5-14d). Note that each target mobile cache, in 

addition to the contents already cached in it, should also have space for high-priority contents; this 

is ensured by constraint (5-14d). Finally, constraint (5-14e) represents the capacity constraints on 

fixed caches. 

5.4  RL-based Content Migration 

Here we define the main components of the MDP in our content migration problem.  

5.4.1 System States 

The state of the system at time t should represent (i) the placement of both low- and high-

priority contents on the edge caches at that time and (ii) the content delivery state of the system. 

The delivery state of the system is defined as the participation level of each edge cache in the 

delivery of requested contents. This participation level is quantified by the number of redirection 

requests that each edge cache performs at time t. To formally present the system states set, we 

define  𝕐𝑐𝑙(𝑡),  𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡) as the realization sets of random variables 

𝑦𝑖,𝑙(𝑡), 𝑥𝑓,ℎ(𝑡), 𝑧𝑖,𝑗,𝑙(𝑡)  at time t, respectively. We note that 𝕐𝑐𝑙(𝑡),  𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡)  are given 

by: 

𝕐𝑐𝑙(𝑡) = [𝑌1,𝑙(𝑡), 𝑌2,𝑙(𝑡)… , 𝑌𝑁,𝑙(𝑡)] (5-15) 

𝕏𝑐ℎ(𝑡) =  [𝑋1,ℎ(𝑡), 𝑋2,ℎ(𝑡)… , 𝑋𝐹,ℎ(𝑡)] (5-16) 

 

and 

ℤ𝑐𝑙(𝑡) =  

[𝑍1,1,𝑙(𝑡)  𝑍1,2,𝑙(𝑡)  , … , 𝑍1,𝑁,𝑙(𝑡)

⋮ ⋱ ⋮
𝑍𝑁,1,𝑙(𝑡) 𝑍𝑁,2,𝑙(𝑡), … ., 𝑍𝑁,𝑁,𝑙(𝑡)]

 (5-17) 



86 

 

 

where 𝑌𝑖,𝑙(𝑡), 𝑋𝑓,ℎ(𝑡), 𝑎𝑛𝑑 𝑍𝑖,𝑗,𝑙(𝑡) are the exact values of random variables 

𝑦𝑖,𝑙(𝑡), 𝑥𝑓,ℎ(𝑡), 𝑎𝑛𝑑 𝑧𝑖,𝑗,𝑙(𝑡) at time t, respectively. We then encapsulate𝕐𝑐𝑙(𝑡),  𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡)   

in the vector 𝒳𝑐ℎ,𝑐𝑙 given by 

𝒳𝑐ℎ,𝑐𝑙 = [𝕐𝑐𝑙(𝑡),  𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡) ] (5-18) 

Finally, the state 𝑠𝑡of the system at time t can be calculated as follows:  

𝑆𝑡 = [⋃𝜒
𝑐ℎ,𝑐𝑙(𝑡): 𝑐ℎ ∈ 𝐶

𝐻𝑖𝑔ℎ(𝑡), 𝑐𝑙 ∈ 𝐶
𝐿𝑜𝑤(𝑡)] (5-19) 

 

5.4.2 System Actions 

The agent can take action by migrating, caching, or dropping the contents from edge caches or 

by redirecting requests between them. To better explain these possible actions, we divide them 

into three types. The first type of action is to migrate, cache, or drop the low-priority content 𝑐𝑙 ∈

𝐶𝐿𝑜𝑤(𝑡) in edge caches (both fixed and mobile caches). We refer to this action type as “Act.Type1”. 

This type of action will cause changes in the values of 𝕐𝑐𝑙(𝑡 + 1) with respect to 𝕐𝑐𝑙(𝑡). To 

represent this type, a binary vector 𝑎𝑐𝑙
𝕐 (t) of size N is used, where N is the total number of edge 

caches. A value of 1 for the i’th element of the vector 𝑎𝑐𝑙
𝕐 (t) indicates a zero to one or vice versa 

change in the i’th element of 𝕐𝑐𝑙(𝑡) (i.e. 𝑌𝑖,𝑙(𝑡)'s value ), whereas a value of 0 would indicate no 

change in the value of 𝑌𝑖,𝑙(𝑡). The second type of action, “Act.Type2”, is the caching (or dropping) 

of the high-priority content 𝑐ℎ ∈ 𝐶
𝐻𝑖𝑔ℎ(𝑡) on (from) fixed caches for their later delivery to targeted 

caches. The effect on the values of 𝕏𝑐ℎ(𝑡) will be similar to that of “Act.Type1”, and we represent 

it by a binary vector 𝑎𝑐ℎ
𝕩 (t) of size F, where F is the number of fixed edge caches. The third type of 

action, “Act.Type3”, considers redirecting the low-priority contents' requests between edge 

caches. This type of action affects the values of  ℤ𝑐𝑙(𝑡) and we denote it by a binary matrix 𝑎𝑐𝑙
ℤ (t) 

of size N×N. Thus, three types of action can be recognized, “Act.Type1”, “Act.Type2” and 

“Act.Type3”, implemented by 𝑎𝑐𝑙
𝕐 (t), 𝑎𝑐ℎ

𝕩 (t), and 𝑎𝑐𝑙
ℤ (t) respectively, each indicating the possible 

changes in the corresponding state vectors' values. The overall action 𝑎𝑡 at time t is then 

summarized by 
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𝑎𝑡 = {< 𝑎𝑐𝑙
𝕐 (t), 𝑎𝑐ℎ

𝕏 (t), 𝑎𝑐𝑙
ℤ (t) >  | 𝑐𝑙 ∈ 𝐶

𝐿𝑜𝑤(𝑡) , 𝑐ℎ ∈ 𝐶
𝐻𝑖𝑔ℎ(𝑡)} (5-20) 

5.4.3 Reward Function 

Upon performing an action, the agent needs an immediate feedback to assess the short-term 

quality of the performed action. This feedback is quantified by the value of a reward function. Our 

reward function ℝ(𝑠𝑡, 𝑎𝑡)is given by 

ℝ(𝑠𝑡, 𝑎𝑡) =  −(∁𝑀(𝑡) + ∁𝐴(𝑡) + ∁𝐷(𝑡))   (5-21) 

which is defined based on the aggregation of the migration cost ∁𝑀(𝑡), the low-priority contents' 

access delay ∁𝐴(𝑡), and the high-priority contents download cost ∁𝐷(𝑡)  the current time slot. Note 

that the reward function computed by (5-21) only quantifies the short-term impact of the performed 

action 𝑎𝑡 as an immediate feedback. 

 5.4.4 Design of the deep RL agent 

Figure 5.3 A schematic view of the agent and its interactions with the environment, including the structure of our 

deployed LSTM cell 
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Unlike non-learning approaches, the RL agent automatically learns the ever-changing 

environment and updates its decisions through its interactions. Figure 5.3 illustrates a schematic 

view of our agent and these interactions. We will refer to Fig. 5.3  and Algorithm 1 as we explain 

the theoretical steps of our work. Specifically, our approach is based on Q-learning, one of the 

most widely used RL strategies [20]. Q-learning works by successively updating the evaluation of 

the long-term quality (the Q value) of actions at each state. It is a simple way for an agent to learn 

how to act optimally [20]. We note, however, that classic Q-learning is limited to tasks with a 

small number of states and actions [20][21]. Moreover, in the Q-learning algorithm, all the states 

should be met, and all the actions should be experienced. Those restrictions are impractical in our 

problem, as it deals with an environment that is extremely complex and dynamic, and its states are 

large and vary rapidly over time. The only way to learn anything in these types of dynamic 

situations (where we have dynamic state-space) is to generalize from previously experienced states 

to new states [20]. The required generalization is often called function approximation. In this study, 

to approximate the Q values for unmet states/actions, we use a deep neural network (DNN)-based 

approach, which relies on nonlinear gradient-descent function approximation. This approach 

eliminates the need for visiting all the state/action pairs to compute the Q values. First proposed in 

[86], this revival hybrid approach is now widely used in different domains under the so-called deep 

reinforcement learning (DRL) or deep Q-learning (DQL) method. 

In this work, since our problem concerns a sequential decision-making process, we exploit 

an advanced version of DQL, a double deep Q-network (DDQN) with LSTM memory cells. In the 

rest of this section, we first explain the motivation for choosing this specific Q network 

architecture, and then we discuss the limitations of conventional recurrent neural networks and 

explain how LSTM memory cells can overcome those limitations, ending with our DDQN 

algorithm for content migration. 

 5.4.5 DDQN 

Q-Learning is a model-free reinforcement algorithm to estimate Q values for state-action pairs. 

The Q value of a state-action pair can be interpreted as an expected discounted reward accumulated 

over a long time period. As an example, in a given state 𝑠 ∈ 𝑆  (𝑆 being the set of all the states) 

with two possible actions 𝑎1, 𝑎2 ∈ 𝐴 (𝐴 being the set of all the possible actions), if 𝑄(𝑠, 𝑎1) >

𝑄(𝑠, 𝑎2), then choosing 𝑎1 over 𝑎2 will result in a higher accumulated reward over the long term. 

The detailed mathematical explanation can be found within the well-known Bellman equation [20]. 
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The Q-Learning algorithm starts by initializing the Q values for all state-action pairs by setting 

them to zero. Next, it  recursively computes and updates the Q value of a given pair as follows: 

 

𝑄𝑛𝑒𝑤(𝑠, 𝑎)  =  𝑄𝑜𝑙𝑑(𝑠, 𝑎) +  𝛼. [𝑅 + 𝛾.𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄
𝑜𝑙𝑑(𝑠, 𝑎)] (5-22) 

 

Where R is the reward of performing action 𝑎 ∈  𝐴 in state 𝑠, 𝑠′ ∈  𝑆 is the next state, 𝛼 ∈  [0,1] 

denotes the learning rate, and 𝛾 ∈  [0,1] is the discounting rate. The Q update continues until all 

the states are met, and all the actions have been experienced. At this point, the final Q value, Q∗(s, 

a), determines the best action 𝑎∗∈ A at a given state as follows: 

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
∗(𝑠, 𝑎)  

It is important to note that in our considered problem, there is no final state, especially given 

that the states vary over time (mobile caches move and new high-priority contents arrive). 

Therefore, an approximation method is required for the Q values of unmet states [21]. In a deep Q 

network (DQN), a multi-layered neural network is utilized to estimate the Q values. At state 𝑠𝑡The 

learning agent takes action 𝑎𝑡 based on policy ɛ, which is initially purely random and gradually 

improves as the agent becomes more experienced. Let us denote the reward and the resulting state 

as 𝑅𝑡 and 𝑠𝑡+1, respectively. The tuple 𝑒𝑡 =< 𝑠𝑡, 𝑎𝑡, 𝑅𝑡+1, 𝑠𝑡+1 > represents the experience of the 

agent at time t stored in a buffer called the experience replay buffer. Periodically, the samples of 

the agent's experience will be drawn randomly to form the learning batches. These learning batches 

are then used to feed the DQN and update the estimated Q values. 

For a given state-action pair <𝑠𝑡, 𝑎𝑡>, 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)is the DQN current estimation of the Q 

value. Here, 𝜃𝑡 is the parameter of the Q network at time t. The gradient descent update rule for 

the parameter 𝜃𝑡 will be applied as follows:  

𝜽𝑡+1 = 𝜽𝑡 + 𝛼(𝑌𝑡
𝑄 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)). ∇𝜃𝑡𝑄(𝑠𝑡, 𝑎𝑡; 𝜽𝑡)  (5-23) 
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where 𝛼 is the gradient step size and 𝑌𝑡
𝑄

denotes the target Q value with the current parameter 𝜃𝑡, 

which is calculated by  

𝑌𝑡
𝑄 = 𝑹𝑡 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜽𝑡)           (5-24) 

With the update rule (5-23), the parameter 𝜃𝑡  of the DQN will be tuned so that 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) moves 

towards 𝑌𝑡
𝑄  with step size 𝛼. Note, however, that in doing so, 𝑌𝑡

𝑄
 itself is computed by the 

maximum value of 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡). This loop, in turn, will cause an over-optimistic and unstable 

approximation of the Q values, which can degrade the accuracy of the results [21]. This can be 

avoided using a technique first proposed by Van Hasselt [21], where two DQNs are trained in 

parallel. The first DQN, 𝑄𝑆𝑒𝑙𝑒𝑐𝑡(𝑠, 𝑎; 𝜃𝑡), referred to as DQN-Selection, with parameter 𝜃𝑡 is used 

for the selection of actions, whereas the second DQN, 𝑄𝐸𝑣𝑎𝑙(𝑠, 𝑎; 𝜃𝑡), referred to as  DQN-

evaluation, with parameter 𝜃′𝑡 is trained for the evaluation of the actions. With these settings, the 

target Q value for the DDQN will be computed as follows: 

   𝑌𝑡
𝑄 = 𝑹𝑡 + 𝛾 . 𝑄

𝐸𝑣𝑎𝑙(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
𝑆𝑒𝑙𝑒𝑐𝑡(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜽′𝑡)  (5-25) 

Accordingly, the error function Er(𝜃𝑡) of DDQN at time t is given by: 

𝐸𝑟(𝜽𝑡) =
1

2
[𝑌𝑡
𝑄 − 𝑄𝑆𝑒𝑙𝑒𝑐𝑡(𝑠𝑡+1, 𝑎; 𝜃𝑡)]

2 (5-26) 

After each forward pass, Er(𝜃𝑡) will be recalculated. Following the back propagation procedure 

and the derivation chain rule, the contribution of each DDQN parameter to the error will be 

obtained. The gradient descent update rule that is given by Eq. (5-23) uses this calculated value to 

update the parameters. Periodically, the values of 𝜃𝑡 will be copied to 𝜃′𝑡. After sufficient training, 

the parameters will be tuned such that the error value becomes quite small. For illustration, we 

depict the interactions of two networks 𝑄𝑆𝑒𝑙𝑒𝑐𝑡 and 𝑄𝐸𝑣𝑎𝑙 in Fig. 5.3. The decoupling of the 

selection and evaluation Q-networks in the learning process has proven to be successful in 

reducing over-optimism and therefore producing more stable and reliable learning results [21]. 

5.4.6 DDQN with LSTM cells 

As the DDQN continues to learn, the impact of some important experiences in the distant 

past could be replaced by more recent experiences. This problem, which is also referred to as the 

vanishing gradient [21], [86], [88], is a well-known obstacle in the learning path of gradient-based 
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approaches such as RNN [90]. The vanishing gradient makes the learning process time-consuming 

and may lead to inaccurate results [90]. Consider the gradient update rule in a DNN given by Eq. 

(5-23). After passing many gradient update steps and when t becomes large enough, the error and 

the gradient term (𝑌𝑡
𝑄 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)). ∇𝜃𝑡𝑄(𝑠𝑡 , 𝑎𝑡; 𝜽𝑡) becomes so small that the values of 𝜽𝑡 do not 

change significantly. Insufficient decaying error backflows to the initial layers of the neural 

network, thus hampering the learning process [88]. To avoid this issue, the authors of [90] have 

suggested using long short-term memory (LSTM) cells, which are deployed in the hidden layers 

of the given DNN to ensure the flow of decaying error in the backpropagation process in later 

learning steps, thereby allowing the learning process to continue. It is worth noting that the LSTM 

architecture is now widely used in many DNN applications [86], [88], [90] and has been proven 

to outperform the simple feedforward DNNs [90].  

Figure 5.3 depicts the structure of our deployed LSTM cell. The LSTM cell is comprised of 

three inputs, 𝑀𝑡−1, 𝑌𝑡−1, and 𝑠𝑡, which are the previous memory state of the cell, the previous 

output of the cell (i.e., the previous predicted value), and the current input of the network, 

respectively. The two inputs 𝑀𝑡−1 and 𝑌𝑡−1 of the cell are initialized to be all zeros at time t=0. 

The LSTM cell outputs two vector values, 𝑌𝑡, 𝑎𝑛𝑑 𝑀𝑡 which are the current output (i.e., predicted 

value), and the current memory state of the cell, respectively. As shown in Fig. 5.3, an LSTM cell 

consists of three gates: (i) forget, (ii) input, and (iii) output, each containing a sigmoid activation 

function denoted by 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 The output of the sigmoid functions of the forget, input, 

and output gates are 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡, respectively. Each of these activation functions has its own 

weights and bias as follows: 𝑊𝑓 and 𝑏𝑓 for the forget gate, 𝑊𝑖 and 𝑏𝑖 for the input gate, and 𝑊𝑜 

and 𝑏𝑜 for the output gate. All these parameters are randomly initialized at the beginning. With 

these settings, the forward pass formulas of an LSTM cell are as follows: 

𝑓𝑡 = σ(𝑊𝑓[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑓), 

𝑖𝑡 = σ(𝑊𝑖[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑖), 

𝑜𝑡 = σ(𝑊𝑜[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑜), 

𝑀𝑡 = 𝑀𝑡−1⊗𝑓𝑡⊕ (𝑖𝑡⊗ tanh([𝑌𝑡−1, 𝑠𝑡])), 

𝑌𝑡 = tanh(𝑀𝑡) ⊗ 𝑜𝑡, 
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where [𝑌𝑡−1, 𝑠𝑡] is the concatenation of vectors 𝑌𝑡−1 and 𝑠𝑡, while the element-wise 

multiplication and summation are denoted as ⊗ and ⊕, respectively, and  𝑡𝑎𝑛ℎ is the hyperbolic 

tangent function. During training, the cell parameters 𝑊𝑖, 𝑏𝑖, 𝑊𝑜, 𝑏𝑜, 𝑊𝑓, and 𝑏𝑓 are tuned using 
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the back propagation, and stochastic gradient descent update rules explained in Section 5.4.4. Note 

that in our proposed algorithm, the LSTM cell is embedded in the hidden layers of the DQN-

Evaluation, as shown in Fig. 5.3.  

Algorithm 1 illustrates the main steps of our double deep Q-Learning algorithm used for 

solving our content migration problem. The algorithm starts with observing the initial state, 𝑠1. A 

series of iterations are then followed while the algorithm switches between exploration and 

exploitation phases. Parameters ϵ (exploration rate) and λ (a random value in the range [0,1]) are 

used to control these phases. A random action and its type are selected in the exploration phase 

(see lines 10-23), while in the exploitation phase, DQN-selection will determine the action (see 

line 25). The action, reward, and next state are then collected and stored in buffer 𝒟 (line 29). A 

batch of experiences is then randomly retrieved from 𝒟 (line 30). The target value of DQN-

selection (i.e., 𝑌𝑡
𝑄

) can be computed by the use of DQN-evaluation (line 31). This target value will 

be used for computing the error function 𝐸𝑟(θ𝑡)Which is the average error of all samples of β (line 

32). The parameters of DQN-selection will be updated by performing a gradient descent step on 

𝐸𝑟(θ𝑡) with respect to θ𝑡 (line 33). Finally, every 𝜏̅ steps, the parameters of the DQN-selection are 

copied to DQN-evaluation (line 34). 

5.5 Performance Evaluation 

To ensure that our simulated evaluations are conducted based on realistic scenarios, we used 

the SUMO (Simulation for Urban MObility) simulator [91]. As for the DDQN, we used 

TensorFlow 1.6.0 [76], Google's open-source machine learning library. In particular, we utilize 

“tf.contrib.rnn.LSTMCell” and “keras.models'' classes to instantiate the two four-layer DNNs, 

DQN-selection and DQN-Evaluation, with LSTM cells in hidden layers of the latter DNN. To 

assure convergence, we rely on the Keras class “ReduceLRONplatue" to automatically update the 

learning rate. All the simulation tests were conducted on a machine with 2.67 GHz Intel Xeon 

CPU E5640 and 32 GB of memory. 

5.5.1 Simulation Settings 

In our simulations, we considered an n × n bidirected road grid environment [92] where each 

grid cell covers an area of 0.25 km2. The number of grid cells, mobile caches, and fixed caches are 

specified in each evaluation scenario. In this grid structure, mobile caches move with an average 
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velocity of 30 km/hour, and with the parameters 𝜂𝒮 = 0.5, 𝜂𝐿= 0.25 and 𝜂ℛ = 0.25, set according 

to the Manhattan model, the most popular model for mobility in urban areas [92]. Each fixed cache 

has a capacity of 1.5 GB of memory and four processing units. Each mobile cache was provided 

with a 700 MB memory and one processing unit.  

We assume that the fixed edge caches can handle up to 20 requests at a time and that each 

mobile cache can handle a maximum of 5 requests simultaneously. While the fixed edge caches 

have a 60-meter diameter circular coverage, the mobile caches can cover a circular area of only 10 

meters in diameter. In addition, 40 low-priority contents of various sizes from 50 to 120 MB are 

randomly placed so that 8 of the mobile caches are fully occupied. In the beginning, we assume 

that 5 of these full mobile caches are targeted caches. 

 In the simulation scenario, high-priority contents arrive according to a Poisson process with 

an average arrival rate of 5 contents per time unit. The sizes of these contents are similar to the 

sizes of the low-priority contents' ranges: from 50 to 120 MB. We set the delay for transmitting 1 

MB of content (high or low priority) from cloud servers to an edge cache node (fixed or mobile) 

and the delay from each cache node to the users of its coverage as 0.5 and 0.2 milliseconds [93], 

respectively. 

 The average cost of the power consumption required by edge caches to upload and download 

1 MB is set to 2 units of currency, while the average cost of transferring 1 MB between the edge 

caches for one hop is set at three units. The costs of each second of delay in accessing 1 MB of 

low- and high-priority content are set to 5 and 10 units of currency, respectively (timely access to 

high-priority content is critical, and so its delay costs twice as much).  

To set up the learning process, the actions selected in the initial 700 time slots are totally 

random and are used initially to fill the experience replay buffer in order to start the learning 

process. In each time slot (for t>700), 30 samples of experience are extracted from the replay buffer 

to form the learning batch.
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5.5.2 Comparison with the optimal solution 

To evaluate the performance of our proposed DRLCM algorithm against that of the optimal 

solution, we consider a small-scale scenario with only two mobile and two fixed edge caches. The 

road structure in this scenario is a two × two bidirected road grid, with the other parameters the 

same as the scenario previously explained. We let our learning method collect experiences about 

the environment while learning for a maximum of 10,000 episodes. We pause the simulation 

scenario every 2,000 episodes and perform an exhaustive search to find the optimal solution 

considering the positioning of mobile caches and content arrivals at that time. Figure 5.4 shows 

the absolute difference between the optimal solution and the DRLCM at every 2,000th episode. 

While the method is still in its exploration phase, the gap is considerably higher for the initial 

episodes. However, it decreases significantly as the episodes pass. At the end of 10,000 episodes, 

the DRLCM managed to decrease this gap by more than 97%. An important consideration here is 

that it takes more than 1 hour for each exhaustive search to find the optimal solution in this small-

scale scenario, and that is only one snapshot of the whole system. Clearly, it is not possible to 

conduct exhaustive searches each time mobile edge caches change their position. 

Figure 5.4 Proposed algorithm’s optimality gap  
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5.5.3 Performance comparison with existing deep learning methods 

We investigate the convergence performance of our proposed DRLCM with two other deep 

learning approaches, namely, SRLCM, a simplified Q-Learning version with Double RNNs and 

no LSTM cells [55], and TRLCM, a learning method with a single RNN and no LSTM cells [86], 

i.e., a traditional deep Q-Learning method. While the learning structure of the SRLCM method has 

been widely used in many recent studies [55],[56], and [94], TRLCM represents a classical version 

of the deep Q-Learning approach [86]. The evaluation scenario consists of 12 fixed and 20 mobile 

edge caches in a 5×5 road grid environment. Figure 5.5 depicts the total cost (in unit of currency) 

vs. episodes for different methods. According to Fig. 5.5, all three deep learning-based methods 

perform closely for the first episodes. This is mainly due to the fact that at the beginning, there is 

no knowledge about the environment, and so all the methods choose somewhat random actions. 

However, due to their different learning structures, they converge to different values. The policy 

learning of TRLCM seems to stop soon after completing 7,500 episodes, whereas the total costs 

achieved by the SRLCM and DRLCM methods keep decreasing. Finally, around the 15,000’th 

episode, the SRLCM method reaches a cost value of 1,500 and levels out. In contrast, our proposed 

DRLCM method continuously decreases the total cost as the number of episodes increases. 

Clearly, our proposed DRLCM method outperforms the other two deep learning methods. This 

high performance is attributed to the use of LSTM memory cells, which allow the DRLCM agent 

to remember the most valuable experiences that it had in its past observations.  

Figure 5.5 Total cost vs. episode evolution 
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5.5.4 Performance Comparison with Non-learning Methods 

In the next set of evaluation scenarios, we compare the performance of our proposed method with 

methods based on the least recently used (LRU) eviction strategy [8], which is the most common 

non-learning cache replacement method. The five LRU-based approaches are explained below:   

LRU-NoMig: LRU contents are deleted from the targeted full caches to free up space for the newly 

arrived high-priority contents. 

 LRU-FirstFit: LRU contents are migrated from the targeted full caches to the closest edge caches 

that have enough capacity to store them. 

LRU-BestFit: LRU contents are migrated from the targeted full caches to the edge caches with 

the minimum caching capacities that can accommodate the migrated contents. 

LRU-WorstFit: LRU contents are migrated from the targeted full caches to the edge caches with 

maximum caching capacities that can accommodate the migrated contents. 

LRU-Random: LRU contents are migrated from the targeted full caches to the random edge caches 

with enough space to accommodate the migrated contents. 

Figure 5.6. Total cost vs. average size of high-priority content  
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We compare the performance of our proposed method with methods based on the least recently 

used (LRU) eviction strategy [8], which is the most common non-learning cache replacement 

method. The five LRU-based approaches are LRU-NoMig, LRU-FirstFit, LRU-BestFit, LRU-

WorstFit, and LRU-Random. The total cost vs. the average size of arrived high-priority contents 

(in MB) is shown in Fig. 5.6, which helps to compare the performance of the five non-learning 

methods with that of our proposed DRLCM method. As shown in Fig. 5.6, when the size of high-

priority contents increases from 50 to 120 MB, the cost increases in all methods, which is expected, 

as all methods try to free up more space to accommodate such high-priority contents. Therefore, a 

larger amount of content will be migrated/deleted, and higher costs will be imposed. Further, we 

observe from Fig. 5.6 that the costly process of re-downloading the deleted contents imposes the 

largest cost to the LRU-NoMig method. The cost of the LRU-Nomig is even slightly larger than 

that of the LRU-Random approach, which randomly migrates LRU contents to the available edge 

caches instead of deleting them.  

5.5.5 Scalability and Cost Improvement Percentages  

we increased the total number of edge caches from 32 to 75 and the high-priority content sizes 

from 50 to 120 MB. Figure 5.7 depicts the improvement of cost (in percentage) vs. the number of 

edge cashes. It can be inferred from Fig. 5.7 that the improvement made by our proposed DRLCM 

method not only remains for a scaled version of the scenario but increases up to 70% in comparison 

with the LRU-NoMig approach, which does not support any content migration. This observation 

reveals the value of an appropriate decision to keep the content at the ed ge instead of performing 

Figure 5.7. Total cost improvement  
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content deletions. Note that even though increasing the number of edge caches makes the scenario 

more complex, it ensures that more caching and processing resources become available at the edge.  

5.5 Conclusions 

In this chapter, we have proposed a deep reinforcement learning (DRL) content migration 

technique for a hierarchical edge-based CDN. Based on real-life situations, we considered a 

dynamic and heterogeneous environment consisting of mobile and fixed caches where contents 

have pre-assigned high and low priorities and developed a use case from a vehicular network to 

illustrate the motivation of our work. Our proposed method considers the available caching 

capacity in edge caches so that upon the arrival of high-priority contents, instead of just removing 

the low-priority contents from full caches, it migrates low-priority contents between edge caches 

to create enough space to accommodate high-priority contents. We implemented our DRL 

migration agent with a deep double-Q learner method empowered by LSTM memory cells. The 

simulation results show up to 70% in cost improvements compared to the existing methods.



100 

 

 

 

 

 

 

Chapter 6 

 

6. Performance Management for CDNs1 

6.1 Introduction 

Performance management is an essential task for CDN providers. In that regard, they need to 

acquire knowledge of users’ QoE and correlate observations through different video sessions to 

identify QoE degradations and investigate their potential root causes. In the absence of users’ 

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators 

(KPIs) throughout video sessions. This allows for assessing the Quality of Service (QoS) offered 

to users, influencing their QoE. However, due to the large number of sessions handled by CDN 

operators, it is not easy to conduct such an analysis. Tens of thousands of video requests are 

received by a country-wide CDN provider on a daily basis, according to our investigations. 

Analyzing and correlating the KPIs among corresponding sessions is simply not possible 

manually. Automated approaches are thus needed to allow for this analysis over a massive set of 

sessions. In this chapter, we focus on analyzing the evolution of KPIs across video sessions for 

                                                 
1 This chapter is based on a  published paper: 

 

- Sepideh Malektaji, Diala Naboulsi, Roch Glitho, Alexander Polyantsev, Ali El Essaili, Cyril Iskander, and Richard 

Brunner. “Video sessions KPIs clustering framework in CDNs.” In 2019 16th IEEE Annual Consumer Communica- 

tions Networking Conference (CCNC), pp. 1-6. IEEE, 2019. 
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QoS and QoE analysis, using unsupervised machine learning tools. Moreover, we propose a 

framework that allows the automatic formation of clusters of video sessions, presenting similar 

evolution of KPIs. We capture the dynamics of KPIs over each session through a set of 

representative features. Using the k-means clustering algorithm, we build upon collected features 

to form clusters of video sessions, with each containing similar sessions in terms of KPIs evolution. 

The framework is evaluated over a real-world traffic dataset covering thousands of sessions 

collected over the infrastructure of a country-wide CDN provider. We show that our framework 

allows distinguishing meaningful clusters. The obtained results underline the capabilities of the 

proposed framework.   

The rest of the chapter is organized as follows. First, we introduce the proposed framework, 

including the KPI representations and the clustering algorithm used in this framework. We then 

cover the evaluation of the framework, and finally, we conclude the work in the last subsection. 

6.2  KPIs Clustering Framework 

In this section, we present our video sessions clustering framework. Our framework allows 

video sessions to be grouped into a set of clusters, each associated with a specific pattern in the 

evolution of KPIs. The evolution of a KPI over time, throughout a video session, can be captured 

through an irregular time series representation. Various clustering approaches can be employed 

accordingly: raw data-based clustering, feature-based clustering, and model-based clustering [14]. 

Video sessions typically last for a long duration. Therefore, the time series representing the 

evolution of their KPIs are also long. Moreover, they have unequal lengths, representing the user’s 

watching time of a particular video content. In contrast to other approaches, a feature-based 

clustering approach allows us to cope with these two aspects. We, therefore, adopt this type of 

approach in our framework. In the following, we first describe the features that we employ to 

represent the evolution of KPIs throughout a session. The similarity measure on which the 

clustering step relies to group sessions is then presented, followed by a description of the clustering 

algorithm. Finally, we describe how clusters are selected.
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6.2.1 KPIs Representation 

Our framework operates over a set of sessions 𝑆. We employ 𝑠 ∈ 𝑆 to refer to an individual 

session in 𝑆. A session 𝑠 spans over a time interval 𝑇𝑠, a set of time instants 𝑡.  We consider a set 

𝐼 of KPIs. The evolution of KPI 𝑖 ∈ 𝐼 throughout session 𝑠 ∈ 𝑆 is captured via an irregular time 

series 𝑖𝑠 = { 𝑖𝑠
𝑡 , ∀ 𝑡 ∈ 𝑇𝑠} where 𝑖𝑠

𝑡 is the value of KPI 𝑖 ∈ 𝐼 at time instant 𝑡 ∈ 𝑇𝑠 over session 

𝑠 ∈ 𝑆.  

We rely on the derived time series representation of KPIs 𝑖𝑠 to extract a set of features 𝑉 that 

capture the evolution of KPIs throughout a session. The set of features 𝑉 has been chosen as the 

set of features considered in [96]. There, the authors showed that the set of features 𝑉 allows to 

successfully represent the evolution of a time series. Each feature 𝑣 ∈ 𝑉 captures a specific facet 

of the evolution of the KPI in question throughout a session. For each KPI 𝑖 ∈ 𝐼, we extract the 

following six features 𝑉 for a session 𝑠 ∈ 𝑆 , as detailed below.    

Average. The average value of KPI 𝑖 ∈ 𝐼 of all samples during session 𝑠 ∈ 𝑆 is obtained with 

Equation (1).  

 

𝜇𝑠,𝑖 = 
1 

|𝑇𝑠|
∑ 𝑖𝑠

𝑡

𝑡∈𝑇𝑠

 (6-1) 

 

Standard deviation. The standard deviation of KPI 𝑖 ∈ 𝐼, over all its samples in session  𝑠 ∈ 𝑆, is 

derived with Equation (6-2).  

 

𝜎𝑠,𝑖 = √
1

|𝑇𝑠|
∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
2

𝑡∈𝑇𝑠

 (6-2) 

 

Skewness. Skewness is a measure that characterizes the shape of a mathematical distribution. It 

captures the level of symmetry in the distribution with respect to its central point. For a KPI 𝑖 ∈ 𝐼 
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over a session 𝑠 ∈ 𝑆, it is derived with Equation (6-3).  

 

𝑊𝑠,𝑖 = 
1

|𝑇𝑠|𝜎𝑠,𝑖
3 ∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
3

𝑡∈𝑇𝑠

 (6-3) 

 

Kurtosis. Kurtosis is another measure that allows characterizing the shape of a mathematical 

distribution. It captures whether the distribution is heavy-tailed or light-tailed. A distribution with 

a light tail tends to have low kurtosis. For a KPI 𝑖 ∈ 𝐼 over session 𝑠 ∈ 𝑆, the Kurtosis can be 

obtained using Equation (6-4).  

 

𝐾𝑠,𝑖 = 
1

|𝑇𝑠|𝜎𝑠,𝑖
4 ∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
4

𝑡∈𝑇𝑠

 (6-4) 

 

Energy. Energy measures the strength of a time series. It is obtained based on the non-uniform 

Discrete Fourier transform (DFT) of a time series. Assuming 𝑓𝑠,𝑖
𝑗
∈ 𝐹 is the 𝑗th discrete Fourier 

component for KPI 𝑖 ∈ 𝐼 in session 𝑠 ∈ 𝑆, and that 𝐹 is the complete set, the energy is derived with 

Equation (6-5).  

 

𝐸𝑠,𝑖 = 
1

|𝐹|
∑ |𝑓𝑠,𝑖

𝑗
|

𝑓
𝑠,𝑖
𝑗
∈𝐹

 
(6-5) 

 

MLE. The Maximum Lyapunov Exponent measures the randomness for a time series by 

quantifying the average logarithmic rate of separation of two nearby subsets of the time series. For 

a KPI 𝑖 ∈ 𝐼 over a session 𝑠 ∈ 𝑆, it is obtained based on Equation (6-6).  

 

𝑀𝑠,𝑖= lim
𝑡→∞

1

𝑇𝑠
𝑙𝑛

|𝑖𝑠
𝑡+𝛿−𝑖𝑠

𝑡|

|𝑖𝑠
𝑡0+𝛿−𝑖𝑠

𝑡0|
 (6-6) 
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6.2.2 Similarity Measure 

 

After deriving the six features for each KPI 𝑖 ∈ 𝐼, over session 𝑠 ∈ 𝑆 , we construct a vector 𝑉𝑠 

encompassing these features for a session 𝑠 ∈ 𝑆 as follows: 

 

𝑉𝑠 = [𝜇𝑠,𝑖, 𝜎𝑠,𝑖,𝑊𝑠,𝑖, 𝐾𝑠,𝑖, 𝐸𝑠,𝑖, 𝑀𝑠,𝑖 | ∀𝑖 ∈ 𝐼] 

 

Each of the features is rescaled to the interval [0,1] by considering the minimum and maximum 

value of the feature of interest across all observations. Rescaling is done so that each feature 

contributes approximately proportionately to the similarity measure. We use 𝑣𝑠,𝑖 to refer to the 

rescaled feature 𝑣 ∈ 𝑉 of KPI 𝑖 ∈ 𝐼 over session 𝑠 ∈ 𝑆. This allows us to define a rescaled vector 

𝑉𝑠
′ of features for a session 𝑠 ∈ 𝑆, as follows:  

 

𝑉𝑠
′ = [ 𝑣𝑠,𝑖 | ∀𝑖 ∈ 𝐼, 𝑣 ∈ 𝑉] 

 

We capture the degree of similarity between a pair of sessions 𝑠 and 𝑟 by calculating the Euclidean 

distance between the corresponding rescaled vectors using Equation (6-7). 

 

𝑑(𝑠, 𝑟) =  [∑∑(𝑣𝑠,𝑖 − 𝑣𝑟,𝑖)
2

𝑖∈𝐼𝑣∈𝑉

]

1/2

 (6-7) 

 

6.2.3 Clustering Algorithm 

To obtain the set of video sessions clusters, we employ the widely-known 𝑘-means clustering 

algorithm [97]. It has been selected due to its superior performance compared to other approaches, 

e.g., hierarchical clustering techniques, as shown in the literature [97] as well as our experiments. 

𝑘-means clustering algorithm is an unsupervised machine learning algorithm that allows grouping 

a set of observations into a given number 𝑘 of clusters. It relies on a vectorial representation of 

observations, in our case, the derived vectors  𝑉𝑠
′, for each session 𝑠 ∈ 𝑆 and for a similarity 

measure among them, in our case computed based on the Euclidean distance, as described 

previously. Given a random initial selection of  𝑘 centroids for clusters, the algorithm operates by 

alternating between the two following steps until no more changes are possible. 
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Assignment step: For each session, the algorithm computes the average distance between the 

session and all 𝑘 centroids. Then, the session is assigned to the cluster with the smallest distance.

  

Update step: Once all sessions are assigned to a cluster in the assignment step, the centroid for 

each cluster is updated. The new centroid is obtained by computing the mean for vectors that 

correspond to the sessions in the cluster. 

6.2.4 Selection of Clusters 

The 𝑘-means clustering algorithm allows clustering video sessions into a given number 𝑘 of 

clusters. Multiple strategies exist for choosing the best 𝑘 value. In our work, we use clustering 

indices to compare multiple clustering solutions and choose the best one. For that, we run 𝑘-means 

algorithm for different values of 𝑘. A clustering index can then compare the different solutions 

and select the best value of 𝑘 for the final clusters. We combine the results of the following three 

indices. 

The Calinski-Harabasz (CH) index [98] quantifies the dispersion level among clusters against 

within clusters dispersion. The best value of 𝑘 is considered as the one leading to the largest value 

of 𝐶𝐻.   

The Silhouette (SI) index [99], for a single data point, in our case a session, allows measuring 

how similar it is to the cluster where it belongs compared to other clusters. The average value of 

the Silhouette index over all the sessions indicates the consistency level in the clustering. The 

larger the value, the better the clustering. 

The Davies Bouldin (DB) index [100] evaluates consistency in a clustering solution. It measures 

the within-cluster distances against between-cluster distances. A lower value of the DB index 

translates into a better clustering.   

Combining the indices: To combine the outcome of the 𝐶𝐻, 𝑆𝐼, and 𝐷𝐵 indices to find the proper 

number of clusters, we follow a ranking method. For each index, we assign a rank to each value 

of 𝑘. The value of 𝑘 that has the highest aggregated rank, according to the different indices, is 

considered to represent the best clustering solution.  
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6.3  Performance Evaluation 

We summarize here our assessment of our framework, starting with a presentation of the 

dataset we utilized. The clusters of sessions that the framework generated are described next. 

6.3.1 Dataset 

The dataset we used to evaluate our framework was collected over the infrastructure of a real-

world CDN provider. This CDN provider offers both VoD and live video content. The dataset 

encompasses sessions covering the transfer of these two types of content at a country-scale level. 

The initial dataset was collected for several days in 2016, with tens of thousands of content requests 

received on a daily basis. For each content request, the transfer of each of its chunks was tracked 

through data logs, with diverse information relating to the client, the content, and the streaming 

node. For our evaluations, we operate over a subset of 6000 sessions occurring on a typical working 

day. For our evaluations, we considered two major KPIs, the Download Bit Rate (DBR) and the 

Quality Level (QL). The DBR is the rate at which bits are transferred from the surrogate server to 

the user. The QL represents instead the bit rate at which the video is encoded. Depending on the 

streaming technique used, the QL can change over time according to a user’s requests (e.g., as in 

the case of adaptive bit rate streaming). Aside from being available in the dataset, these two KPIs 

have been selected for our evaluation because of their correlation with users’ QoE, as shown in 

previous studies ([101] and [62]). However, our framework is generic enough to account for other 

KPIs that can be collected over the CDN system. 

6.3.2 Sessions Clusters 

We now discuss the outcome of our framework after its application to the obtained dataset. We 

start from the number of clusters selected. Recall that to obtain the best number of clusters, we rely 

on different clustering indices with multiple runs of the k-means clustering algorithm. We 

considered cases ranging from two to nine clusters. Among these options, the different clustering 

indices ranked the case of nine clusters as the best choice. Therefore, in the rest of the section, we 

analyze the corresponding nine clusters. We first examine the sessions that are grouped into the 

same clusters. We portray in Fig. 6.1 the evolution of the DBR and the QL over two sessions 

selected from cluster 4 and cluster 2, respectively. For cluster 4, we can see in Fig. 6.1.a and 
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Fig.6.1.b that the two sessions present a similar evolution in terms of DBR and QL, with strong 

upwards variations in DBR and a constant QL.  

In turn, the sessions selected from cluster 2, shown in Fig. 6.1.c and Fig. 6.1.d, present similar 

DBR and QL variations; each is characterized by a single prominent peak for DBR and a constant 

QL with a few drops at the beginning. These observations illustrate our framework’s ability to 

identify similarities in the KPI patterns between sessions.  

Moreover, by comparing the sessions in Fig. 6.1, we can observe that the sessions in cluster 4 

are significantly different from those in cluster 2, which also shows the capability of our framework 

to separate sessions with distinct KPIs patterns into different clusters. Similar observations also 

hold for the other clusters. We observed that sessions grouped inside the same cluster present very 

similar patterns in terms of DBR and QL evolution, while the sessions in different categories are 

clearly distinguishable. Furthermore, the identified patterns are informative for CDNs on users' 

QoS and QoE, as follows. 

(a) (b) 

(c) (d) 

Fig. 6.1 Sessions (a,b) in cluster 4; Sessions (c,d) in cluster 2. 
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In Fig. 6.2, we portray the evolution of the DBR and QL for a sample session from each cluster. 

The sample session is the closest session to the centroid of the cluster and is, therefore, 

representative of the patterns in the corresponding cluster. As can be seen, each cluster presents 

distinct patterns for KPIs evolution. Cluster 3 has strong variations in both DBR and QL. This 

   

(a) Cluster 0- A few peaks of DBR at the 
starting and ending points of the session, 

variations in QL.  

(b) Cluster 1- Variations and a few drops in 
DBR, a few drops in QL.  

(c) Cluster 2-  A single peak of DBR at the 
end of the session, constant QL with a few 

drops at the beginning.  

   

(d) Cluster 3- Strong variations in both DBR 

and QL.  

(e) Cluster 4-  Upward variations in DBR, 

constant QL.  

(f) Cluster 5-  Variations in both DBR and 

QL, mostly towards smaller values.  

   

(h) Cluster 6-  Variations in DBR with peaks 
at starting and ending of the session, 

constant QL.  

(i) Cluster 7-  Upward variations in DBR, 
constant QL.  

(j) Cluster 8- Significant drops in DBR and a 
few drops in QL. 

 

(c) (d) 

Fig. 6.2 Summary of obtained clusters. 
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reflects unstable network conditions throughout the video streaming, leading to frequent switching 

in QL of the viewed content. These frequent switches can significantly degrade the users' QoE 

[102]. It is thus critical for the CDN provider to identify this pattern. Similar behavior is perceived 

in Cluster 5, with variations in both DBR and QL. However, in this case, variations are less 

prominent. Important variations in DBR and QL are also observed in Cluster 0. Nevertheless, a 

single high peak in DBR enables the distinction of corresponding sessions in a separate cluster. 

Clusters 1, 2, and 8 present a few QL drops with distinct DBR patterns. Cluster 2 shows a 

constant QL with a few drops at the beginning and a single peak of DBR at the end of the session. 

The low QL values at the beginning of a streaming session are important to analyze as they have 

a significant influence on the user’s decision to carry on a streaming session [102]. Similarly, 

Cluster 1 is characterized by a few drops in QL together with variations and drops in DBR. There, 

the drops in QL and DBR at the end of the session are especially critical, as they could have 

resulted in the user abandoning the session. Similarly, cluster 8 presents a few drops in QL and 

some notable drops in DBR. Particularly important are the DBR drops that go below the stable QL 

and can reach zero. Such drops can lead to undesirable video stalling behavior that affects users’ 

QoE [102]. 

In contrast to the other patterns, clusters 6, 4, and 7 present a constant QL, including sessions 

with constant bitrate streaming. Cluster 6 is characterized by variations in DBR with peaks at its 

session’s starting and ending points. However, as the DBR values remain greater than the constant 

QL, based on these two KPIs, the video streaming would go smoothly. Both Cluster 4 and Cluster 

7 exhibit a constant QL with upward variations in DBR that are more prominent in Cluster 4. 

However, both these clusters also present DBR drops below QL levels that can lead to interruptions 

in video streaming.  Overall, we notice the framework is capable of identifying meaningful clusters 

of sessions with distinct KPIs patterns that are informative for CDNs on users' QoS and QoE.   

6.4  Conclusion 

In this work, we introduce a framework for the analysis of KPIs in large-scale CDN systems. 

The framework employs an unsupervised machine learning algorithm to automatically form 

clusters of video sessions, presenting similar evolution of KPIs. We evaluate the framework over 

a real-world dataset. The results underline its ability to create meaningful clusters.  



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

7. Conclusion and Future Work 

7.1  Conclusion 

Due to the inherently complex and dynamic nature of CDNs, several issues need to be 

addressed to realize the next generation of CDNs. These issues include CDN deployment, content 

placement, and performance management.  This thesis proposes a number of ML-based solutions 

to address these issues.  

7.1.1 CDN Deployment  

To provide a cost-efficient CDN deployment solution, in chapter 3, we proposed a deep 

reinforcement learning-based joint VNF-FG composition and embedding framework that 

considers the variations of service demands as well as the substrate network congestion. The 

proposed method improved the embedding cost by up to 95%.  Moreover, we demonstrated that 
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our proposed method could reach as close as 10.63% to the optimal solution within an acceptable 

time duration. 

Moreover, to enable adaptability in CDN deployment, in chapter 4, we addressed another 

resource allocation issue. In there, we proposed a joint function scaling and topology adaptation 

method, which supports not only the horizontal scaling but also VNF reordering and connectivity 

changes in a given VNF-FG. We evaluated the performance of our proposed framework against 

different neural network architectures and conducted performance evaluations comparing with 

both joint and disjoint benchmarks. The results show that our proposed method achieves up to a 

93% cost improvement compared to the benchmarks. 

7.1.1 CDN Content Placement    

To meet the QoS/QoE requirements in the operation of an edge-based CDN, we proposed a 

deep reinforcement learning (DRL) content placement and migration technique that considers the 

available caching capacity in the end-users neighboring edge caches. Our proposed method 

eliminates the need for time-consuming retransmission of the selected content from remote servers 

by enabling a content migration strategy. The simulation results show up to 70% in cost 

improvements compared to the existing methods. 

7.1.1 CDN Performance Management     

To provide an automated performance management solution for CDN, we introduce a 

framework for analyzing KPIs in large-scale CDN systems. The framework employs an 

unsupervised machine learning algorithm to automatically form clusters of video sessions, 

presenting similar evolution of KPIs. We evaluate the framework over a real-world dataset. The 

results underline its ability to create meaningful clusters that can provide valuable insights for 

further root cause analysis for CDNs. 

7.2 Future Work 

This thesis presented significant contributions toward realizing the next generation of CDNs 

by addressing challenges in the deployment, content placement, and performance management of 

CDNs. Yet, there exist several research directions for the future.



112 

 

 

7.2.1 CDN Deployment Future Work  

 In chapter 3, to provide a dynamic resource allocation solution, we employed two analyzers 

that use historical data and estimate dynamic parameters such as service demand and physical 

network congestion. However, an interesting future research direction could be integrating 

advanced ML algorithms to build predictive models for these parameters. Such models can help 

CDN providers to design proactive solutions enabling faster and more efficient deployment and 

adaptation strategies. 

7.2.2 Content Placement Future Work 

As a future research direction, our work in chapter 5 can be extended by considering an 

additional caching layer consisting of drone caches. Even though the use of caches installed on 

drones provides flexibility for content delivery, their high mobility compounds the complexity of 

the problem and hence requires further investigations. 

7.2.3 Performance Management Future Work 

The performance management framework proposed in chapter 6 can be extended to provide a 

root cause analysis solution. To that end, the patterns discovered in each cluster could be further 

analyzed using cutting-edge pattern recognition ML tools. Once the clusters with performance 

degrading patterns are identified, interesting root cause information can be fetched from the 

sessions belonging to those clusters. For instance, if most video sessions in the problematic cluster 

are served by the same server, the server might be overloaded and could be the root cause of 

performance degradation.      



113 

 

 

Bibliography: 

[1] Zolfaghari B, Srivastava G, Roy S, Nemati HR, Afghah F, Koshiba T, Razi A, Bibak K, Mitra P, Rai BK. Content 

delivery networks: State of the art, trends, and future roadmap. ACM Computing Surveys (CSUR). 2020 Apr 

16;53(2):1-34. 

[2] “Content delivery network (CDN) market—Growth, trends, and forecast (2020–2025),” Mordor Intell., 

Hyderabad,India,Rep.,2019.[Online].Available:https://www.mordorintelligence.com/industryreports/content-

delivery-market 

[3] He M, Alba AM, Basta A, Blenk A, Kellerer W. Flexibility in softwarized networks: Classifications and research 

challenges. IEEE Communications Surveys & Tutorials. 2019 Jan 14;21(3):2600-36. 

[4] Herrera JG, Botero JF. Resource allocation in NFV: A comprehensive survey. IEEE Transactions on Network and 

Service Management. 2016 Aug 5;13(3):518-32. 

[5] Salahuddin MA, Sahoo J, Glitho R, Elbiaze H, Ajib W. A survey on content placement algorithms for cloud-based 

content delivery networks. IEEE Access. 2017 Sep 19;6:91-114. 

 [6] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, “Dynamic Joint VNF Forwarding Graph 

composition and placement: A Deep Reinforcement Learning Framework” submitted work IEEE Transactions on 

Network and Service Management. 

[7] M. T. Beck and J. F. Botero, “Coordinated allocation of service function chains,” in Proc. IEEE Global 

Communications Conference (GLOBE-COM), 2015, pp. 1–6. 

[8] S. M. Ara ́ujo, F. S. de Souza, and G. R. Mateus, “A composition selection mechanism for chaining and placement 

of virtual network functions,” in Proc. IEEE International Conference on Network and Service Management (CNSM), 

2019, pp. 1–5. 

[9] B. Spinnewyn, P. H. Isolani, C. Donato, J. F. Botero, and S. Latr, “Coordinated service composition and embedding 

of 5G location-constrained network functions,” IEEE Transactions on Network and Service Management, vol. 15, no. 

4, pp. 1488–1502, 2018. 

[10] R. Gour, G. Ishigaki, J. Kong, and J. P. Jue, “Availability-guaranteed slice composition for service function chains 

in 5G transport networks,” IEEE/OSA Journal of Optical Communications and Networking, vol. 13, no. 3, pp. 14–24, 

2021. 

[11] M. Wang, B. Cheng, S. Zhao, B. Li, W. Feng, and J. Chen, “Availability-aware service chain composition and 

mapping in NFV-enabled net-works,” in Proc. IEEE International Conference on Web Services (ICWS), 2019, pp. 

107–115. 



114 

 

[12] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, “Joint VNF-FG Function Scaling and 

Topology Adaptation using Deep Reinforcement Learning” submitted work IEEE Transactions on Emerging Topics 

in Computing. 

 [13] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, and Somayeh Kianpishe. “Deep 

Reinforcement Learning-based Content Migration for Edge Content Delivery Networks with Vehicular Nodes.” IEEE 

Transactions on Network and Service Management 2021. 

 [14] Sepideh Malektaji, Somayeh Kianpisheh, and Roch Glitho,“Purging-Aware Content Placement in Fog-Based 

Content Delivery Networks.” In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp. 1-3. 

IEEE, 2018. 

[15] Sepideh Malektaji, Diala Naboulsi, Roch Glitho, Alexander Polyantsev, Ali El Essaili, Cyril Iskander, and 

Richard Brunner. “Video sessions KPIs clustering framework in CDNs.” In 2019 16th IEEE Annual Consumer 

Communications Networking Conference (CCNC), pp. 1-6. IEEE, 2019. 

[16] Broberg J, Buyya R, Tari Z. MetaCDN: Harnessing ‘Storage Clouds’ for high-performance content delivery. 

Journal of Network and Computer Applications. 2009 Sep 1;32(5):1012-22. 

[17] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow and P. A. Polakos, "A Comprehensive Survey 

on Fog Computing: State-of-the-Art and Research Challenges," in IEEE Communications Surveys & Tutorials, vol. 

20, no. 1, pp. 416-464, Firstquarter 2018, doi: 10.1109/COMST.2017.2771153. 

[18] Sun, Yaohua, et al. "Application of machine learning in wireless networks: Key techniques and open 

issues." IEEE Communications Surveys & Tutorials 21.4 (2019): 3072-3108. 

[19] Luong, Nguyen Cong, et al. "Applications of deep reinforcement learning in communications and networking: A 

survey." IEEE Communications Surveys & Tutorials 21.4 (2019): 3133-3174. 

[20] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018. 

[21] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double q-

learning." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. No. 1. 2016 

[22] Benkacem I, Taleb T, Bagaa M, Flinck H. Optimal VNFs placement in CDN slicing over multi-cloud 

environment. IEEE Journal on Selected Areas in Communications. 2018 Mar 12;36(3):616-27. 

[23] Wang W, Lan R, Gu J, Huang A, Shan H, Zhang Z. Edge caching at base stations with device-to-device 

offloading. IEEE Access. 2017 Mar 7;5:6399-410. 

[24] Su Z, Hui Y, Xu Q, Yang T, Liu J, Jia Y. An edge caching scheme to distribute content in vehicular networks. 

IEEE Transactions on Vehicular Technology. 2018 Apr 9;67(6):5346-56. 



115 

 

[25] Wang L, Lu Z, Wen X, Knopp R, Gupta R. Joint optimization of service function chaining and resource allocation 

in network function virtualization. IEEE Access. 2016 Nov 17;4:8084-94. 

[26] Li J, Shi W, Ye Q, Zhuang W, Shen X, Li X. Online joint VNF chain composition and embedding for 5G 

networks. In2018 IEEE Global Communications Conference (GLOBECOM) 2018 Dec 9 (pp. 1-6). IEEE. 

[27] Zheng D, Peng C, Liao X, Tian L, Luo G, Cao X. Towards latency optimization in hybrid service function chain 

composition and embedding. InIEEE INFOCOM 2020-IEEE Conference on Computer Communications 2020 Jul 6 

(pp. 1539-1548). IEEE. 

[28] Kang J, Simeone O, Kang J. On the trade-off between computational load and reliability for network function 

virtualization. IEEE Communications Letters. 2017 Apr 25;21(8):1767-70. 

[29] Chen X, Yu H, Xu S, Du X. CompRess: Composing overlay service resources for end‐to‐end network slices 

using semantic user intents. Transactions on Emerging Telecommunications Technologies. 2020 Jan;31(1):e3728. 

[30] Bian S, Huang X, Shao Z, Gao X, Yang Y. Service chain composition with resource failures in NFV systems: A 

game-theoretic perspective. IEEE Transactions on Network and Service Management. 2020 Dec 16;18(1):224-39. 

[31] Ning Z, Wang N, Tafazolli R. Deep Reinforcement Learning for NFV-based Service Function Chaining in Multi-

Service Networks. In2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR) 

2020 May 11 (pp. 1-6). IEEE. 

[32] Pei J, Hong P, Li D. Virtual network function selection and chaining based on deep learning in SDN and NFV-

enabled networks. In2018 IEEE International Conference on Communications Workshops (ICC Workshops) 2018 

May 20 (pp. 1-6). IEEE. 

[33] Yang S, Li F, Trajanovski S, Yahyapour R, Fu X. Recent advances of resource allocation in network function 

virtualization. IEEE Transactions on Parallel and Distributed Systems. 2020 Aug 17;32(2):295-314. 

[34] Pham C, Tran NH, Ren S, Saad W, Hong CS. Traffic-aware and energy-efficient vNF placement for service 

chaining: Joint sampling and matching approach. IEEE Transactions on Services Computing. 2017 Feb 20;13(1):172-

85. 

[35] Wu B, Zeng J, Ge L, Shao S, Tang Y, Su X. Resource allocation optimization in the NFV-enabled MEC network 

based on game theory. InICC 2019-2019 IEEE International Conference on Communications (ICC) 2019 May 20 (pp. 

1-7). IEEE. 

[36] Pei J, Hong P, Pan M, Liu J, Zhou J. Optimal VNF placement via deep reinforcement learning in SDN/NFV-

enabled networks. IEEE Journal on Selected Areas in Communications. 2019 Dec 13;38(2):263-78. 

[37] N. Yuan, W. He, J. Shen, X. Qiu, S. Guo and W. Li, "Delay-Aware NFV Resource Allocation with Deep 

Reinforcement Learning," NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, 2020, 

pp. 1-7, doi: 10.1109/NOMS47738.2020.9110377. 



116 

 

[38] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang, “NFVdeep: Adaptive online service 

function chain deployment with deep reinforcement learning,” in Proc. ACM International Symposium on Quality of 

Service, 2019, pp. 1–10. 

[39] P. Sun, J. Lan, J. Li, Z. Guo and Y. Hu, "Combining Deep Reinforcement Learning With Graph Neural Networks 

for Optimal VNF Placement," in IEEE Communications Letters, vol. 25, no. 1, pp. 176-180, Jan. 2021, doi: 

10.1109/LCOMM.2020.3025298. 

[40] L. Wang, W. Mao, J. Zhao and Y. Xu, "DDQP: A Double Deep Q-Learning Approach to Online Fault-Tolerant 

SFC Placement," in IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 118-132, March 

2021, doi: 10.1109/TNSM.2021.3049298. 

[41] X. Fu, F. R. Yu, J. Wang, Q. Qi and J. Liao, "Dynamic Service Function Chain Embedding for NFV-Enabled 

IoT: A Deep Reinforcement Learning Approach," in IEEE Transactions on Wireless Communications, vol. 19, no. 1, 

pp. 507-519, Jan. 2020, doi: 10.1109/TWC.2019.2946797. 

[42] Fei X, Liu F, Jin H, Li B. FlexNFV: Flexible network service chaining with dynamic scaling. IEEE Network. 

2020 Feb 11;34(4):203-9. 

[43] Zhang Q, Liu F, Zeng C. Online Adaptive interference-aware VNF deployment and migration for 5G network 

slice. IEEE/ACM Transactions on Networking. 2021 May 25;29(5):2115-28. 

[44] Pandey S, Hong JW, Yoo JH. GRU and EdgeQ-Learning based Traffic Prediction and Scaling of SFC. In2021 

IEEE 7th International Conference on Network Softwarization (NetSoft) 2021 Jun 28 (pp. 124-132). IEEE. 

[45] Subramanya T, Riggio R. Centralized and federated learning for predictive VNF autoscaling in multi-domain 5G 

networks and beyond. IEEE Transactions on Network and Service Management. 2021 Jan 11;18(1):63-78. 

[46] Luo Z, Wu C. An online algorithm for VNF service chain scaling in datacenters. IEEE/ACM Transactions on 

Networking. 2020 Mar 24;28(3):1061-73. 

[47] Lange S, Kim HG, Jeong SY, Choi H, Yoo JH, Hong JW. Predicting vnf deployment decisions under dynamically 

changing network conditions. In2019 15th International Conference on Network and Service Management (CNSM) 

2019 Oct 21 (pp. 1-9). IEEE. 

[48] Houidi O, Soualah O, Louati W, Zeghlache D. Dynamic VNF forwarding graph extension algorithms. IEEE 

Transactions on Network and Service Management. 2020 Apr 28;17(3):1389-402. 

[49] Liu J, Lu W, Zhou F, Lu P, Zhu Z. On dynamic service function chain deployment and readjustment. IEEE 

Transactions on Network and Service Management. 2017 Jun 5;14(3):543-53. 

[50] Khan I, Zhang T, Xu X, Shan S, Khan A, Ahmad S. Priority-based content dissemination in content centric 

vehicular networks. In2018 2nd IEEE Advanced Information Management, Communicates, Electronic and 

Automation Control Conference (IMCEC) 2018 May 25 (pp. 2005-2009). IEEE. 



117 

 

[51] Meuser T, Richerzhagen B, Stavrakakis I, Nguyen TA, Steinmetz R. Relevance-aware information dissemination 

in vehicular networks. In2018 IEEE 19th International Symposium on" A World of Wireless, Mobile and Multimedia 

Networks"(WoWMoM) 2018 Jun 12 (pp. 588-599). IEEE. 

[52] Chen M, Qian Y, Hao Y, Li Y, Song J. Data-driven computing and caching in 5G networks: Architecture and 

delay analysis. IEEE Wireless Communications. 2018 Feb 28;25(1):70-5. 

[53] Zhu H, Cao Y, Wang W, Jiang T, Jin S. Deep reinforcement learning for mobile edge caching: Review, new 

features, and open issues. IEEE Network. 2018 Nov 29;32(6):50-7. 

[54] Zhong C, Gursoy MC, Velipasalar S. A deep reinforcement learning-based framework for content caching. 

In2018 52nd Annual Conference on Information Sciences and Systems (CISS) 2018 Mar 21 (pp. 1-6). IEEE. 

[55] Hu RQ. Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning. IEEE 

Transactions on Vehicular Technology. 2018 Aug 27;67(11):10190-203. 

[56] He Y, Zhao N, Yin H. Integrated networking, caching, and computing for connected vehicles: A deep 

reinforcement learning approach. IEEE Transactions on Vehicular Technology. 2017 Oct 6;67(1):44-55. 

[57] Yu Z, Hu J, Min G, Zhao Z, Miao W, Hossain MS. Mobility-aware proactive edge caching for connected vehicles 

using federated learning. IEEE Transactions on Intelligent Transportation Systems. 2020 Aug 31;22(8):5341-51. 

[58] Qiao G, Leng S, Maharjan S, Zhang Y, Ansari N. Deep reinforcement learning for cooperative content caching 

in vehicular edge computing and networks. IEEE Internet of Things Journal. 2019 Oct 22;7(1):247-57. 

[59] Gomaa H, Messier GG, Williamson C, Davies R. Estimating instantaneous cache hit ratio using markov chain 

analysis. IEEE/ACM transactions on Networking. 2012 Dec 10;21(5):1472-83. 

[60] Fan X, Katz-Bassett E, Heidemann J. Assessing affinity between users and CDN sites. InInternational Workshop 

on Traffic Monitoring and Analysis 2015 Apr 21 (pp. 95-110). Springer, Cham. 

[61] Casas P, D'Alconzo A, Fiadino P, Bär A, Finamore A, Zseby T. When YouTube does not work—Analysis of 

QoE-relevant degradation in Google CDN traffic. IEEE Transactions on Network and Service Management. 2014 Dec 

4;11(4):441-57. 

[62] Shafiq MZ, Erman J, Ji L, Liu AX, Pang J, Wang J. Understanding the impact of network dynamics on mobile 

video user engagement. ACM SIGMETRICS Performance Evaluation Review. 2014 Jun 16;42(1):367-79. 

[63] Li Z, Wu Q, Salamatian K, Xie G. Video delivery performance of a large-scale VoD system and the implications 

on content delivery. IEEE Transactions on Multimedia. 2015 Mar 27;17(6):880-92. 

[64] Li W, Spachos P, Chignell M, Leon-Garcia A, Zucherman L, Jiang J. Understanding the relationships between 

performance metrics and QoE for over-the-top video. In2016 IEEE International Conference on Communications 

(ICC) 2016 May 22 (pp. 1-6). IEEE. 



118 

 

[65] Orsolic I, Pevec D, Suznjevic M, Skorin-Kapov L. A machine learning approach to classifying YouTube QoE 

based on encrypted network traffic. Multimedia tools and applications. 2017 Nov;76(21):22267-301. 

[66] Giordano D, Traverso S, Grimaudo L, Mellia M, Baralis E, Tongaonkar A, Saha S. YouLighter: A cognitive 

approach to unveil YouTube CDN and changes. IEEE Transactions on Cognitive Communications and Networking. 

2015 Jun;1(2):161-74. 

[67] Wu T, Huysegems R, Bostoen T. Scalable network-based video-freeze detection for HTTP adaptive streaming. 

In2015 IEEE 23rd International Symposium on Quality of Service (IWQoS) 2015 Jun 15 (pp. 95-104). IEEE. 

[68] Dimopoulos G, Leontiadis I, Barlet-Ros P, Papagiannaki K, Steenkiste P. Identifying the root cause of video 

streaming issues on mobile devices. In Proceedings of the 11th ACM Conference on Emerging Networking 

Experiments and Technologies 2015 Dec 1 (pp. 1-13). 

[69] Zhu Y, Helsley B, Rexford J, Siganporia A, Srinivasan S. LatLong: Diagnosing wide-area latency changes for 

CDNs. IEEE Transactions on Network and Service Management. 2012 Jul 6;9(3):333-45. 

[70] Tavakoli A, Pardo F, Kormushev P. Action branching architectures for deep reinforcement learning. 

InProceedings of the AAAI Conference on Artificial Intelligence 2018 Apr 29 (Vol. 32, No. 1). 

[71] Kanervisto A, Scheller C, Hautamäki V. Action space shaping in deep reinforcement learning. In2020 IEEE 

Conference on Games (CoG) 2020 Aug 24 (pp. 479-486). IEEE. 

[72] Li D, Hong P, Xue K, Pei J. Virtual network function placement and resource optimization in NFV and edge 

computing enabled networks. Computer Networks. 2019 Apr 7;152:12-24. 

[73] Chemodanov D, Calyam P, Esposito F. A near optimal reliable composition approach for geo-distributed latency-

sensitive service chains. InIEEE INFOCOM 2019-IEEE Conference on Computer Communications 2019 Apr 29 (pp. 

1792-1800). IEEE. 

[74] G. Wang, G. Feng, T. Q. Quek, S. Qin, R. Wen, and W. Tan, “Reconfiguration in network slicing—optimizing 

the profit and performance,” IEEE Transactions on Network and Service Management, vol. 16, no. 2, pp. 591–605, 

2019. 

[75] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI gym,” 

arXiv preprint arXiv:1606.01540, 2016. 

[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., 

“Tensorflow: A system for large-scale machine learning,” in 12th {USENIX} symposium on operating systems design 

and implementation ({OSDI} 16), 2016, pp. 265–283. 

[77] T. O’Malley, “Hyperparameter tuning with Keras Tuner,” 2020. 



119 

 

[78] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network slice reconfiguration by exploiting deep 

reinforcement learning with large action space,” IEEE Transactions on Network and Service Management, vol. 17, 

no. 4, pp. 2197–2211, 2020 

[79] J. Wilkes, “Yet more Google compute cluster trace data,” Google research blog, 2020. 

[80] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, and J. Wilkes, “Borg: the 

next generation,” in Proc. ACM European Conference on Computer Systems, 2020, pp. 1–14 

[81] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network architectures for deep 

reinforcement learning,” in Proc. PMLR International Conference on Machine Learning, 2016, pp. 1995–2003. 

[82] X. Lin, D. Guo, Y. Shen, G. Tang, and B. Ren, “DAG-SFC: Minimize the embedding cost of SFC with parallel 

VNFs,” in ACM Proc. International Conference on Parallel Processing, 2018, pp. 1–10 

[83] H. Cao, J. Du, H. Zhao, D. X. Luo, N. Kumar, L. Yang, and F. R.Yu, “Resource-ability assisted service function 

chain embedding and scheduling for 6G networks with virtualization,” IEEE Transactions on Vehicular Technology, 

vol. 70, no. 4, pp. 3846–3859, 2021. 

[84] Z. Wang, J. Zhang, T. Huang, and Y. Liu, “Service function chain composition, placement, and assignment in 

data centers,” IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1638–1650, 2019. 

[85] Jahromi NT, Kianpisheh S, Glitho RH. Online VNF placement and chaining for value-added services in content 

delivery networks. In2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN) 

2018 Jun 25 (pp. 19-24). IEEE. 

[86] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, 

Chen Y. Mastering the game of go without human knowledge. nature. 2017 Oct;550(7676):354-9. 

[87] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen,“Toward efficient content delivery for automated driving 

services: An edge computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, Jan. 2018. 

[88] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based action recognition using spatio-temporal 

LSTM network with trust gates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, 

pp. 3007–3021, Nov. 2017. 

[89] Y. Bin, Y. Yang, F. Shen, N. Xie, H. T. Shen, and X. Li, “Describing video with attention-based bidirectional 

LSTM,” IEEE Transactions on Cybernetics, vol. 49, no. 7, pp. 2631–2641, May 2018. 

[90] K. Greff, R. K. Srivastava, J. Koutn ́ık, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,” 

IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, July 2016. 



120 

 

[91] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and applications of SUMO-

simulation of urban mobility,” International Journal on Advances in Systems and Measurements, vol. 5, no. 3&4, Dec. 

2012. 

[92] A. Hanggoro and R. F. Sari, “Performance evaluation of the Manhattan mobility model in vehicular Ad-hoc 

networks for high mobility vehicle,” in Proc. IEEE International Conference on Communication, Networks and 

Satellite (COMNETSAT), 2013, pp. 31–36. 

[93] G. Li, J. Wang, J. Wu, and J. Song, “Data processing delay optimization in mobile edge computing,” Wireless 

Communications and Mobile Computing, vol. 2018, Feb. 2018. 

[94] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and learning algorithms for containers 

in fog computing,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, Feb.2018. 

[95] Liao TW. Clustering of time series data—a survey. Pattern recognition. 2005 Nov 1;38(11):1857-74. 

[96] Teemu et al. "Feature-based clustering for electricity use time series data." Adaptive and Natural Computing 

Algorithms, 401-412, 2009. 

[97] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Transactions on neural networks. 2005 May 9;16(3):645-

78. 

[98] Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics-theory and Methods. 

1974 Jan 1;3(1):1-27. 

[99] Wang K, Wang B, Peng L. CVAP: validation for cluster analyses. Data Science Journal. 2009 Apr 

24:0904220071-. 

[100] Davies DL, Bouldin DW. A cluster separation measure. IEEE transactions on pattern analysis and machine 

intelligence. 1979 Apr(2):224-7. 

[101] Menkovski V, Exarchakos G, Liotta A, Sánchez AC. Quality of experience models for multimedia streaming. 

International Journal of Mobile Computing and Multimedia Communications (IJMCMC). 2010 Oct 1;2(4):1-20. 

[102] Juluri P, Tamarapalli V, Medhi D. Measurement of quality of experience of video-on-demand services: A 

survey. IEEE Communications Surveys & Tutorials. 2015 Feb 6;18(1):401-18. 

[103] Klein, D. J., and M. Randić. "Innate degree of freedom of a graph." Journal of Computational Chemistry 8.4 

(1987): 516-521. 

 

 

 


