

Sepideh Malektaji

A thesis

In

The Concordia Institute

For

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at

Concordia University

Montreal, Quebec, Canada

May 2022

© Sepideh Malektaji, 2022

Machine Learning for Next-generation Content Delivery Networks:

Deployment, Content Placement, and Performance Management

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Sepideh Malektaji

Entitled: Machine Learning for Next-generation Content Delivery Networks:

Deployment, Content Placement, and Performance Management

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information and System Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

External Examiner

External to Program

Examiner

Examiner

 Thesis Supervisor (s)

Approved by

 Graduate Program Director

May 31, 2022

Date of Defence ___

 Dean, Gina Cody School of Engineering and Computer Science

Dr. Mohammad Mannan

Dr. Roch Glitho

Dr. Jamal Bentaher

Dr. Chadi Assi

Dr. Anjali Agrawal

Dr. Hanan Lutfiyya

Dr. John Xiuou Zhang

Dr. Mourad Debbabi

iii

ABSTRACT

Machine Learning for Next-generation Content Delivery Networks:

Deployment, Content Placement, and Performance Management

Sepideh Malektaji, Ph.D.

Concordia University, 2022

With the explosive demands for data and the growth in mobile users, content delivery

networks (CDNs) are facing ever-increasing challenges to meet end-users quality-of-

experience requirements, ensure scalability and remain cost-effective. These challenges

encourage CDN providers to seek a solution by considering the new technologies available

in today’s computer network domain. Network Function Virtualization (NFV) is a relatively

new network service deployment technology used in computer networks. It can reduce

capital and operational costs while yielding flexibility and scalability for network operators.

Thanks to the NFV, the network functions that previously could be offered only by specific

hardware appliances can now run as Virtualized Network Functions (VNF) on commodity

servers or switches. Moreover, a network service can be flexibly deployed by a chain of

VNFs, a structure known as the VNF Forwarding Graph or VNF-FG. Considering these

advantages, the next-generation CDN will be deployed using NFV infrastructure. However,

using NFV for service deployment is challenging as resource allocation in a shared

infrastructure is not easy. Moreover, the integration of other paradigms (e.g., edge computing

and vehicular network) into CDN will compound the complexity of content placement and

performance management for the next-generation CDNs. In this regard, due to their impacts

on final service and end-user perceived quality, the challenges in service deployment,

content placement, and performance management should be addressed carefully. In this

thesis, advanced machine learning methods are utilized to provide algorithmic solutions for

the abovementioned challenges of the next generation CDNs.

iv

Regarding the challenges in the deployment of the next-generation CDNs, we propose two

deep reinforcement learning-based methods addressing the joint problems of VNF-FG’s

composition and embedding, as well as function scaling and topology adaptation. As for content

placement challenges, a deep reinforcement learning-based approach for content migration in an

edge-based CDN with vehicular nodes is proposed. The proposed approach takes advantage of the

available caching resources in the proximity of the full local caches and efficiently migrates

contents at the edge of the network. Moreover, for managing the performance quality of an

operating CDN, an unsupervised machine learning anomaly detection method is provided. The

proposed method uses clustering to enable easier performance analysis for next-generation CDNs.

Each proposed method in this thesis is evaluated by comparison to the state-of-the-art approaches.

Moreover, when applicable, the optimality gaps of the proposed methods are investigated as well.

v

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor Dr.

Roch Glitho for his continuous support throughout my Ph.D., for his patience, motivation,

and immersed kindness. Thanks for always believing in me and encouraging me even in my

weakest moments.

I am also thankful to my thesis committee: Dr. Chadi Assi, Dr. Jamal Bentaher, Dr.

Anjali Agrawal, and Dr. Hanan Lutfoyya, for their insightful and constructive comments

and also for the questions which incented me to widen my research from various

perspectives.

Furthermore, I would like to thank all my colleagues in TLSE Lab at Concordia

University, especially my friends Marsa Rayani and Vahid Malaki. Also, Special thanks to

Diala Naboulsi, Amin Ebrahimzadeh, and Dr. Halima Elbiaze for their help and advice.

 I would like to thank my father, MohammadTaghi Malektaji, and my mother,

Rakhshandeh Momeni, who helped me throughout my life and provided me with moral and

emotional support. Words cannot express how grateful I am to my family for all of the

sacrifices that they have made on my behalf.

Last but not least, I would like to express my very special thanks to my brother, Siavash

Malektaji, the strongest and kindest person I know. Thank you brother; you have made such

a huge impact on my life. I would not be the person I am today without you. You were and

will always be my hero and role model in life.

I dedicate this Ph.D. thesis to my brother, his lovely wife, Sogol Asghari, and my

beautiful yet-to-be-born niece, as they are the light of my life.

vi

Contents

List of Figures…………………………………………………………………………………....x

List of Tables…………………………………………………………………………………...xii

List of Acronyms………………………………………………………………………………xiii

1. Chapter 1: Introduction…………………………………………………………………….…1

 1.1 Overview……………………………………………………………………………....1

 1.2 Challenges and Thesis Contributions……………………………………………….…2

 1.2.1 Challenges..……………………………………………………………………...….2

 1.2.2 Thesis Contributions……………….…………………………………………...….3

 1.2.2.1 Joint VNF-FG Composition and Embedding for the Next-generation CDN's

……………………..Deployment……………………………………………………….……….3

 1.2.2.2 Joint VNF-FG Function Scaling and Topology Adaptation for the Next

……………………..generation CDN's Deployment………………………………………….…4

 1.2.2.3 Content Placement for the Next-generation CDN…………………………4

 1.2.2.4 Performance Management for the Next-generation CDN…………………5

 1.3 Background Information……………………………………………………………….5

 1.3.1 General Principles of Content Delivery Networks……………….…………......….5

 1.3.2 Deployment, Content Placement, and Performance Management in CDN…...…....6

 1.3.3 Machine Learning Algorithm ……………………………………...……….….…..8

 1.4 Thesis Outline…………………………………………………………………….........9

2. Chapter 2: Related Work……………………………………………………………...…….10

 2.1 Requirements………………………………………………………………………….10

vii

2.1.1 General Requirements…………………….………………….………………….10

2.1.2 Specific Requirements…………………………………………………………...11

 2.1.2.1 Requirements for NFV-based deployment of CDN Deployment……….11

 2.1.2.2 Requirements for content placement in CDN with mobile edge nodes ...12

 2.1.2.3 Requirements for performance management in CDN…………………...12

 2.2 Related Work………………………………………………………………………….13

 2.2.1 VNF-FG Composition and Embedding Related Work……………………...........13

 2.2.1.1 Joint VNF-FG Composition and Embedding …………………..……….13

 2.2.1.2 Disjoint VNF-FG Composition and Embedding ……………….……….17

 2.2.2 VNF-FG Function Scaling and Topology Adaptation Related Work…..………..18

 2.2.2.1 VNF-FG Function Scaling…………………. …………………..……....19

 2.2.2.2 VNF-FG Topology Adaptation ………………………………….……...20

 2.2.3 CDN Content Placement Related Work…..……………..……..…………….......21

 2.2.3.1 Content Placement Approaches with content priority schemes …...…....21

 2.2.3.2 DRL-based approaches for edge content caching ……………….……...22

 2.2.4 CDN Performance Management Related Work…………..…….……..………....23

 2.3 Conclusion…………………………………………………………………………….26

3. Chapter 3: Joint VNF-FG Composition and Embedding for CDN Deployment……………27

 3.1 Introduction………………………………………………………………………...…27

 3.2 System Model and Problem Formulation…………..………………………………....28

 3.2.1 System Model……………………………………....……………………...........28

 3.2.2 Problem Formulation…………………………….....……………………...........33

 3.3 Deep Reinforcement Learning for Joint VNF-FG Composition and Embedding34

 3.3.1 System States, Actions, and Reward…………………….………………............34

viii

 3.3.2 RL and DRL………. …………………………….....……………………...........36

 3.3.3 Deep Dynamic Joint VNF-FG Composition and Embedding (DDJCE) Framework

………. ……………………………...…………………...........37

 3.3.4 Branching Dueling Q network with Action Filtering ………. ..…………...........42

 3.4 Performance Evaluation…….…………………………………………………...……45

 3.4.1 Simulation Settings ………. ………………………………….…………...........46

 3.4.2 Optimality Gap ………. …………………...………………….…………...........46

 3.4.3 Convergence and Performance Comparison with other Deep Learning Methods

 ………………………………………………………………………………………………….47

3.4.4 Performance Comparison with Joint and Disjoint Composition and Embedding

………Heuristics………………………………………………………………………...49

 3.4.5 Impact of VNF Dependency ………. ……………………………………….......50

 3.4.6 Scalability………………… ………. ……………………………………….......51

 3.5 Conclusion………………….………………………………………………...…….…52

4. Chapter 4: Joint VNF-FG Function Scaling and Topology Adaptation for CDN Deployment

…………………………………………………………………………………………....53

 4.1 Introduction……………………………………………………………………………53

 4.2 System Model……………………………………………………………………...….54

 4.3 Problem Formulation………………………………………………………….………56

4.4 Deep Reinforcement Learning for Joint VNF-FG Function Scaling and Topology

Adaptation………………………………………………………………………………….60

 4.4.1 System States, Actions, and Reward…………………….………………............60

 4.4.2 Deep Q Learning for VNF-FG Function Scaling and Topology Adaptation61

 4.4.3 Joint Function Scaling and Topology Adaptation (JFSTA) Algorithm ………....64

ix

 4.5 Performance Evaluation…….………………………………………...……………….65

 4.5.1 Optimality Gap ………. …………………...………………….…………...........66

 4.5.2 Convergence and Performance Comparison with Other Deep Learning Network

……………..Architectures …………..…………………...………………….…………...........68

 4.5.3 Performance Comparison with Disjoint Method ………. …………………........69

 4.5.4 Performance Comparison with Joint Method ….………. …………………........70

 4.6 Conclusion………………….……………………………………………………....…72

5. Chapter 5: Content Placement for CDN ………………………………………..…………73

 5.1 Introduction……………………………………………………………………………73

 5.2 System Model…………………………………………………………...…………….74

 5.3 Optimization Formulation for Content Migration …………...……………….………79

 5.3.1 Content Migration Cost...…………………...………………….…………...........79

 5.3.2 Delay cost of low-priority contents...………………………….…………...........80

 5.3.3 Delay cost of high-priority contents...………………………….…………..........82

 5.3.4 Objective Function and Constraints...………………………….…………..........84

 5.4 RL-based Content Migration……………………………………………………….....85

 5.4.1 System States…………………………………………….………………............84

 5.4.2 System Actions….……………………………………….………………............85

 5.4.3 Reward Function….………………..…………………….………………............87

 5.4.4 Design of the deep RL agent….………………..………….…………….............88

 5.4.5 DDQN…………….………………..…………………….………………............88

 5.4.6 DDQN with LSTM.………………..…………………….………………............90

 5.5 Performance Evaluation…….…………………………………..…………………..…93

 5.5.1 Simulation Settings ………. …………………...………………...………...........93

x

 5.5.2 Comparison with the optimal solution ………. …………………...………….....95

 5.5.3 Performance Comparison with with existing deep learning methods …..…........96

 5.5.4 Performance Comparison with Non-learning methods ….………...………........97

 5.5.5 Scalability and Cost Improvement Percentages ….………..………………........98

 5.6 Conclusion………………….…………………………………..…………………..…99

6. Chapter 6: Performance Management for CDN ……………………………….………...100

 6.1 Introduction……………………………………………………………...…………...100

 6.2 KPI Clustering Framework………..…………………………………………………102

 6.2.1 KPIs Representation.….……………………...………….………………..........101

 6.2.2 Similarity Measure…….……………………...………….………………..........104

 6.2.3 Clustering Algorithm.….……...……………...………….………………..........104

 6.2.4 Selection of Clusters.….……...……………...…………..………………..........105

 6.3 Performance Evaluation……………….….…………………..………...……………106

 6.3.1 Dataset……………. ….……………………...………….………………..........106

 6.3.2 Sessions Clusters…...….……...……………...………….…………….….........106

 6.4 Conclusion………………….……………………………………………...……...…109

7. Chapter 7: Conclusion and Future Work ………………………....……………..………110

 7.1 Conclusion………..………………………………………………...……………..…110

 7.1.1 CDN Deployment…..….……………………...………….………………..........110

 7.1.2 CDN Content Placement.……………………...………….………………..........111

 7.1.3 CDN Performance Management….…………...………….………………..........111

 7.2 Future Work………………………………………………………...……………..…111

 7.2.1 CDN Deployment Future Work …..….…………………..………………..........112

xi

 7.2.2 CDN Content Placement Future Work...……...………….………………..........112

 7.2.3 CDN Performance Management Future Work ….……….………………..........112

Bibliography …………………………………………………………………………………..113

x

List of Figures

Figure 3.1 Example of a VNF service request, request specifications, and a dependency graph

…………..………………..……………………………………………...........................….........30

Figure 3.2 High-level view of the proposed framework, its components and their

interactions.….……..……………………………………………………………….…...…….....37

Figure 3.3 Overview of our Reward Calculator component and its interactions with SDA and

NRUA ………... …………..………………..………………………………………........…........39

Figure 3.4 Architecture of the utilized BDQN enhanced with action filtering mechanism. The

number of neurons of each layer is shown on top of the layer.…………………….…….……......42

Figure 3.5 Substrate network topology comprised of forwarding and VNF-capable nodes and

bidirectional links …………..………………..…………………………………………...….......44

Figure 3.6 Optimality gap (in percentage) of our proposed DDJCE framework vs. the number of

episodes.………………………………………………………………………...…….…..….......46

Figure 3.7 Reward vs. time step for different methods …………..……...…………….....…........47

Figure 3.8 Average embedding cost vs. average VNFR size for four different methods …............48

Figure 3.9 Average embedding cost vs. average DoF for four different methods …….....…..........50

Figure 3.10 Total embedding cost improvement (in percentage) of our proposed DDJCE method

vs. the number of nodes, with respect to other methods. The shaded region shows the values

obtained in different runs of our proposed DDJCE method…………………….………...……....51

Figure 4.1 (a) Original VNF-FG and its embedding to the substrate network, (b) joint function

scaling and topology adaptation techniques. …………..………………..….………….....…........55

Figure 4.2 Schematic view of DQN-Selection network enhanced with action filtering technique

…………………….……………………………………………………………………….…......61

Figure 4.3 Optimality gap (in percentage) of our proposed JFSTAF framework vs. the number of

episodes……..……………………………………... …………..………………..…….....….......66

Figure 4.4 Total cost vs. episode for different deep Q-Learning architectures ……..….....……....67

Figure 4.5 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with

disjoint methods).…………………….………………………………………………………......68

xi

Figure 4.6 Number of active physical nodes vs. number of VNFs in the original VNF-FG

(performance comparison with a joint method)………………………………………………......69

Figure 4.7 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with

a joint method).……………………………………………………….………….…...…………..70

Figure 5.1 System view and an example of an edge-based CDN with vehicular nodes …..….....74

Figure 5.2 Illustration of the three different cases for calculating the sojourn time ….…..….........80

Figure 5.3 A schematic view of the agent and its interactions with the environment, including the

structure of our deployed LSTM cell …………..………………..……………………......….......86

Figure 5.4 Proposed algorithm’s optimality gap …………………….…..………………….........94

Figure 5.5 Total cost vs. episode evolution …………..………………..…………….........….......95

Figure 5.6 Total cost vs. average size of high-priority content ….……..……………...….............96

Figure 5.7 Total cost improvement………... …………..………………..……………......….......97

Figure 6.1 Sessions (a,b) in cluster 4; Sessions (c,d) in cluster 2…………………….…...….......106

Figure 6.2 Summary of the obtained clusters …………..………………..…………….....…......107

xii

List of Tables

Table 2.1 VNF-FG composition and embedding related work evaluation…………….....….......16

Table 2.2 VNF-FG adaptation related work evaluation………………….…………….....……...19

Table 2.3 Content placement related work evaluation………………….……………..................22

Table 2.4 Performance management related work evaluation.………….…………….....……....25

Table 3.1 Input Parameters and variables.………….………………………..……….....….........32

Table 4.1 Input Parameters and variables.………….………………………..……….....….........57

Table 5.1 Input Parameters and variables.………….………………………..……….....….........78

xiii

List of Acronyms

ANN Artificial Neural Network

BDQN Branching Dueling Q Network

CDDQN Conventional Double Deep Q Network

CDN Content Delivery Network

DBR Download Bit Rate

DDJCE Deep Dynamic Joint VNF-FG Composition and Embedding

DDQN Double Deep Q Network

DNN Deep Neural Network

DQL Deep Q Learning

DQN-AF Deep Q network with Action Filtering

DRL Deep Reinforcement Learning

DRLCM Deep Reinforcment Learning Content Migration

GBFSO Greedy-BestFit Function Scaling-Only

HD High Defenition

IaaS Infrastructure as a Service

ILP Integer Linear Programming

JFSTA Joint VNF-FG Function Scaling and Topology Adaptation Algorithm

KPI Key Performance Indicator

LRU Least Recently Used

LSTM Long Short Term Memory

MDP Markov Decision Process

ML Machine Learning

NFV Network Function Virtualization

NRUA Network Resource Utilization Analyzer

PBDQN Plain Branching Dualing Q-network

QL Quality Level

QoE Quality of Experience

xiv

QoS Quality of Service

RA Resource Allocation

RFTAO Random-FirstFit Topology Adaptation-Only

RL Reinforcement Learning

RNN Recurrent Neural Network

SDA Service Demand Analyzer

SRLCM Simplified Reinforcment Learning Content Migration

SUMO Simulation for Urban MObility

SVM Support Vector Machine

TRLCM Traditional Reinforcment Learning Content Migratio

VM Virtual Machine

VNF-FG Virtual Network Function Forwarding Graph

VNFR Virtual Network Function Request

VoD Video on Demand

1

Chapter 1

1. Introduction

1.1 Overview

Content Delivery Networks (CDNs) are a group of network elements organized for the efficient

delivery of content to end-users over a large scale [1]. In this regard, CDNs rely on a set of

strategically placed surrogate servers (a.k.a replica servers) to replicate content from an origin

server (a.k.a content server) so that they can offer content delivery services with reduced latency.

Today, CDNs play a pivotal role in the delivery of content to end-users across the internet. The

demand for CDNs is predicted to increase exponentially, and its market is predicted to rise from

$11.76 billion in 2019 to $49.61 billion in 2025 [2]. To that end, CDNs need to cope with the

exponential data demand growth, straining their infrastructure. Moreover, they need to satisfy end-

users quality-of-experience (QoE) requirements, ensure scalability and remain cost-effective.

These challenges encourage CDN providers to seek solutions by considering the new technologies

arising in the modern computer network domain.

Network Function Virtualization (NFV) is a network service deployment technology that has

recently emerged. Thanks to the NFV, the network functions that previously could be offered only

2

by specific hardware appliances can now run as Virtualized Network Functions (VNF) on

commodity servers or switches. In that regard, by virtualizing the network resources, NFV

technology provides opportunities for network optimization, cost reduction, and scalability [3].

1.2 Challenges and Thesis Contributions

1.2.1 Challenges

Considering the advantages, the next-generation CDN will be deployed on shared infrastructure

using NFV technology. However, the use of NFV for CDN deployment is not easy. To that end,

not only new deployment challenges should be addressed but also with the integration of new

technologies, one can expect new challenges in the operation and management of CDNs. In the

following, some examples of these issues faced by modern CDNs are discussed:

• VNF-FG resource allocation for CDN deployment: Resource allocation in a shared and

complex infrastructure is not easy. In the NFV ecosystem, a network service (e.g., a content

delivery service) is a set of chained VNFs (called VNF forwarding graph or VNF-FG) through

which the service traffic should traverse one by one. To this end, the following Resource

Allocation (RA) problems [4] need to be addressed: 1) VNF-FG Composition: Determining the

number and order of VNFs in VNF-FG, 2) VNF-FG embedding: Allocating physical resources to

the VNFs and their connecting links, and 3) VNF-FG scheduling: efficient scheduling of the shared

resources among embedded VNFs. Each of these RA challenges contributes to the costs and

service quality of the final network service and thus should be addressed carefully.

• VNF-FG adaptation for CDN deployment: An already deployed and running VNF-FG

that enables a content delivery service could become inefficient as the service demands increase

and network conditions fluctuate [3]. To that end, not only the number of VNF instances needs to

be adjusted (a process known as function scaling or horizontal scaling), but also the topology of

the VNF-FG and its mapping to the physical network may need proper adjustments via so-called

topology adaptation.

• Content placement for CDN operation: The next-generation CDN can be integrated with

other paradigms (e.g., edge computing and vehicular network). The operational decisions in this

heterogeneous and complex environment will be challenging. For example, for an edge-based

CDN that consists of fixed and mobile caches, decisions on placement, migration, and removal of

3

contents are challenging. Since these decisions could have vital impacts on the content delivery

quality, they should be carefully investigated [5].

• Performance monitoring for CDN management: Monitoring users’ experience in the

content delivery process is of paramount importance for CDNs. Throughout their operations, CDN

providers target the satisfaction of users’ expectations in terms of Quality of Experience (QoE). In

this context, CDN providers need to acquire knowledge of users’ QoE, identify QoE degradations,

and investigate their potential root causes. However, due to the complexity of the CDN ecosystem,

tracking the QoE evolution and detecting the degradation is quite challenging.

1.2.2 Thesis Contributions

Unfortunately, the challenges of the next-generation CDNs presented in Section 1.2.1 are not

yet fully addressed. This Ph.D. thesis proposes the use of advanced Machine Learning (ML)

algorithms to tackle these challenges in three categories of deployment, content placement, and

performance management. To that end, it makes four main contributions. The two first

contributions address the service deployment, whereas the third and fourth contributions target

CDN content placement and performance management, respectively. These contributions are

presented as follows

1.2.2.1 Dynamic Joint VNF Forwarding Graph Composition and

Embedding: A Deep Reinforcement Learning Framework [6]

The first contribution is an ML-based deployment algorithm for joint VNF-FG composition and

embedding. In the literature (e.g. [7-11]), the composition and embedding stages of VNF-FGs are

usually targeted separately, which may result in undesired solutions. In this contribution, we

propose a joint VNF-FG composition and embedding solution, which considers the variations of

service demands while also accounting for dynamic network conditions. Specifically, our proposed

solution relies on deep reinforcement learning empowered by two components for estimating

dynamic parameters: network resource utilization and service demand analyzers. Moreover, to

efficiently explore the problem's large discrete action space, we utilize a specialized branching Q-

network and enhance it with an action filtering mechanism. We evaluate our proposed method

against joint and disjoint composition and embedding heuristics as well as versus other deep

4

learning-based methods. Our results show that the proposed method can achieve up to a 95%

improvement in embedding cost compared to our benchmarks.

1.2.2.2 Joint VNF-FG Function Scaling and Topology Adaptation for the

Next-generation CDNs’ Deployment [12]

The second contribution of this thesis is a joint VNF-FG function scaling and topology

adaptation method. This method targets the necessary adaptations of already deployed and running

VNF-FGs that have become inefficient by the increase of the service demands and fluctuations of

network conditions. Given that function scaling and topology adaptation may have mutual

correlations, a disjoint approach could lead to inefficient results. Thus, in our method, not only the

number of VNF instances are adjusted, but also the topology of the VNF-FG and its mapping to

the physical network are properly altered. In this contribution, we propose a deep reinforcement

learning (DRL)-based joint framework, which takes advantage of a Deep Double Q network

architecture enhanced with action filtering to jointly update the function and topology of the

already deployed VNF-FGs. Our evaluation results show that the proposed method achieves up to

a 93% cost improvement compared to our benchmarks.

1.2.2.3 Content placement for the Next-generation CDNs [13] [14]

The third contribution is a framework for content placement in edge-based CDNs with vehicular

nodes. In this contribution, based on real-life situations, we consider a dynamic and heterogeneous

environment consisting of mobile and fixed caches where contents have pre-assigned high and low

priorities and developed a use case from a vehicular network to illustrate the motivation of our

work. Our proposed method considers the available caching capacity in edge caches so that upon

the arrival of high-priority contents, instead of just removing the low-priority contents from full

caches, it migrates low-priority contents between edge caches to create enough space to

accommodate high-priority contents. We implement our DRL migration agent with a deep double-

Q learner method empowered by LSTM memory cells. The simulation results show up to 70% in

cost improvements compared to the existing methods.

1.2.2.4 Performance Management for the Next-generation CDNs [15]

Users’ viewing experience in the video delivery process is of paramount importance for Content

Delivery Networks (CDNs). Throughout their operations, CDN providers target the satisfaction of

5

users’ expectations in terms of Quality of Experience (QoE). In this context, CDN providers need

to acquire knowledge of users’ QoE and correlate observations through different video sessions to

identify QoE degradations and investigate their potential root causes. In the absence of users’

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators

(KPIs) throughout video sessions. This allows assessing the Quality of Service (QoS) offered to

users, influencing their QoE. However, due to the large number of sessions handled by CDN

operators, it is not possible to conduct such an analysis manually. In this work, we introduce a

framework that allows to automatically group a large set of video sessions into a small number of

representative clusters, with each cluster containing video sessions with similar patterns of KPIs.

The framework builds upon a set of features representing the evolution of KPIs over a session. It

relies on an unsupervised machine learning algorithm to form the clusters. We evaluate the

framework over a real-world dataset with traffic logs relating to thousands of sessions. The

obtained results underline the capabilities of the proposed framework.

1.3 Background Information

This subsection presents the background information that is relevant to our research domain

and it covers the following topics: The general principles of CDN, service deployment, content

placement, and performance management. Moreover, the general principles of machine learning

methods will be discussed in this subsection.

1.3.1 General Principles of Content Delivery Networks

Content Delivery Networks (CDNs) consist of a collection of Web servers distributed over

multiple locations with the main objective of delivering content to end-users with reduced latency.

They were traditionally provisioned with static Web technologies but are now mostly integrated

with modern technologies such as cloud computing. The main entities of a CDN are content servers

(a.k.a origin servers), surrogate servers (sometimes called replica servers), and a controller [1].

Content servers hold the original copy of the content that end-users want to access. Surrogate

servers are the servers in which the content of the origin server is replicated. They are deployed in

strategic locations to enable the rapid delivery of content to end-users. They also enable load

balancing and efficient resource usage. The controller uses certain criteria (e.g., content

6

availability, physical distance, and network conditions) to choose the most appropriate surrogate

server for each end user's request and redirect the request to the selected server.

1.3.1.1 Cloud-based Content Delivery Networks

Cloud computing has several inherent advantages, such as scalability, on-demand resource

allocation, flexible pricing model (pay-as-you-go), and easy applications and services provisioning

[1]. CDNs can leverage these advantages. An example of a cloud-based CDN is MetaCDN [16].

In cloud-based CDN, replica servers are provisioned as cloud applications on top of Infrastructure

as a Service (IaaS) [1]. However, cloud-based CDNs still face issues in meeting end-users

expectations when it comes to latency. The distance between surrogate servers (possibly residing

in the cloud) and end-users remains the main roadblock. Thereby the edge computing paradigm

can be utilized by the next generation CDNs to address the issue of latency [17].

1.3.1.2 Cloud-based Content Delivery Networks with Edge Nodes

The next-generation CDN could be seen as an extended cloud-based CDN with edge caching

resources. Indeed, moving the location of the caches closer to the edge of the network has the

advantage of reducing the latency required for accessing and delivering users’ requests [17]. In

particular, caching at the edge node, such as base stations, roadside units, or even on vehicles’

onboard units allows the delivery of content to mobile users with limited need for backhaul usage

to connect to a remote surrogate server and thus to reduce the latency [17].

1.3.2 Deployment, Content Placement, and Performance Management of

The Next-generation CDN

1.3.2.1 Deployment of the next-generation CDNs

The next-generation CDN is envisioned to be deployed on shared NFV-based infrastructure.

Network Function Virtualization (NFV) [3] is a newly emerged network service deployment

technology. The network functions that previously could be offered only by specific hardware

appliances can now run as Virtualized Network Functions (VNF) on commodity servers or

switches. Therefore, it reduces the capital and operational costs while yielding flexibility and

scalability for the network operators. To this end, in the NFV paradigm, network services are

deployed as an ordered set of VNFs called VNF-FG. In this regard, the so-called NFV resource

allocation (NFV-RA) problem should be addressed [4]. The NFV-RA comprises three stages: (i)

7

composition of the VNF forwarding graph, (ii) embedding of the VNF-FG on the given substrate

network, and (iii) scheduling of VNFs on the substrate nodes/links.

With the help of NFV, multiple virtual networks (e.g., content delivery networks) can be created

and managed on top of shared physical infrastructure, and that is a significant opportunity to reduce

capital and operational costs while yielding flexibility and scalability for network operators [3].

1.3.2.2 Content Placement for the next-generation CDNs

Content Placement (CP) algorithms [5] determine the selection of the contents to be stored in

the surrogate servers in traditional CDNs. They directly affect meeting the end-user demands with

the expected quality of service [5] and thus are quite important. They were conventionally

categorized into either pull or push-based, considering how they are retrieved from origin servers

to surrogate servers. With the integration of the new paradigms (e.g., Edge computing and NFV),

the next-generation CDNs could consist of edge-based local caches in the vicinity of end-users,

and they can be even dynamic. In this regard, advanced CP decisions are needed to determine the

placement of content not only on surrogate servers but also on these edge caches as well.

1.3.2.3 Performance Management of the next-generation CDNs

In this contribution, we introduce a framework for the analysis of Key Performance Indicators

(KPIs) in large-scale CDN systems so that in the absence of users’ feedback on their QoE, CDN

providers can monitor and analyze the performance evolutions throughout video sessions. Since it

is not possible to conduct such an analysis manually, we introduce a framework that allows to

automatically group a large set of video sessions into a small number of representative clusters,

with each cluster containing video sessions with similar patterns of KPIs. The framework builds

upon a set of features representing the evolution of KPIs over a session. It relies on an unsupervised

machine learning algorithm to form the clusters. We evaluate the framework over a real-world

dataset with traffic logs relating to thousands of sessions. The obtained results underline the

capabilities of the proposed framework. Our framework employs an unsupervised machine

learning algorithm to automatically form clusters of video sessions, presenting similar evolution

of KPIs.

8

1.3.3 Machine Learning Algorithms

Machine Learning (ML) algorithms [18] are the process of automatic learning from a collected

set of data or experiences. They build data-driven models by automatic analysis and thus provide

efficiency and cost-effectiveness in computing processes [18]. Considering the availability of true

labels for the data, ML methods can be categorized into supervised and unsupervised learnings.

Moreover, Reinforcement Learning (RL) is another branch of the ML algorithm that learns with

continuous interaction with the environment. The recent integration of Deep Neural Network

(DNN) with RL has introduced a powerful ML tool called Deep Reinforcement Learning (DRL).

A method that has been successfully and widely used in many different domains. Indeed, because

of the interdisciplinary nature of ML algorithms in general, they play pivotal roles in various fields,

including engineering, medical, and computing [18]. In the following subsections, we provide

background on each of the ML classes (i.e., supervised, unsupervised, and reinforcement learning).

In supervised learning methods, the model is built over a collection of pairs of input and desired

output [18]. The model will be trained so that a mapping function between input and output space

be found. Consequently, the model will be tested over another input-output set (i.e., a testing set)

that was not used for training. When the goal is to predict a continuous or quantitative output value,

the corresponding problem to be solved is called regression, whereas the prediction of a categorical

or qualitative output is known as a classification problem [18]. Support Vector Machines (SVMs),

Artificial Neural Nets (ANN), logistic regression, naive Bayes, and random forests are some of

the widely used supervised learning algorithms. Their application in communication systems

includes channel decoder and email spam classification [19].

Q-Learning [20] is the most widely used reinforcement algorithm. Q-learning works by

successively updating the evaluation of the long-term quality (the Q value) of actions at each state.

It is a simple way for an agent to learn how to act optimally [20]. We note, however, that classic

Q-learning is limited to tasks with a small number of states and actions [20]. Moreover, in the Q-

learning algorithm, all the states should be met, and all the actions should be experienced. Those

restrictions are impractical in most real-world problems, as they deal with environments that are

extremely complex and dynamic, and their states are large and vary rapidly over time. The only

way to learn anything in these types of dynamic situations (where we have dynamic state-space)

is to generalize from previously experienced states to new states [20]. The required generalization

9

is often called function approximation [20]. To approximate the Q values for unmet states/actions,

one can use a deep neural network (DNN)-based approach, which relies on nonlinear gradient-

descent function approximation [20]. This approach eliminates the need for visiting all the

state/action pairs to compute the Q values. First proposed in [21], this revival hybrid approach is

now widely used in different domains under the so-called deep reinforcement learning (DRL) or

deep Q-learning (DQL) method [19].

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents the motivating scenarios, the

driven requirements, and a thorough review of the state-of-the-art. Chapter 3 presents a deep

learning framework for joint VNF-FG composition and embedding for CDN deployment. In

chapter 4, we discuss a joint function scaling and topology adaptation method. In chapter 5, a

content placement method for CDN with mobile nodes is presented. Moreover, we present our

unsupervised KPI clustering framework for CDN performance management in chapter 6. Finally,

Chapter 7 concludes the thesis and presents the future work.

10

Chapter 2

2. Related Work

In this chapter, we first present a list of requirements for algorithms in CDNs, and then we

survey the state-of-the-art accordingly.

2.1 Requirements

We divide the set of requirements into two classes of CDN general requirements and specific

requirements that correspond to contributions made in this thesis.

2.1.1 General Requirements

QoS/QoE: The primary goal of CDN is to deliver quality content to the end-users. In this

regard, The CDN algorithms not only should consider QoS metrics (such as latency jitter, etc.) but

also should take into account the perceived quality of the end-users by considering indicative QoE

metrics.

Cost: Another important objective in CDN algorithms is to ensure cost-efficiency. In this

regard, the algorithm should be able to minimize the costs, which could be the budgets for the

deployment or operation of the CDNs.

11

2.1.2 Specific Requirements

The requirements discussed in this section are specific to contributions made in this thesis and

are divided into three classes: requirements for NFV-based deployment of CDN, CDN content

placement, and performance management requirements.

2.1.2.1 Requirements for NFV-based deployment of CDN

Considering the advantages, the next-generation CDN will be deployed on shared infrastructure

using NFV technology. In such an environment, the content delivery service is deployed by a set

of chained VNFs (called VNF forwarding graph or VNF-FG) through which the service traffic

should traverse one by one and finally reach the end-users. To this end, the following requirements

should be satisfied:

Consideration of CDN’s dynamic service demand: The incoming traffic demand for content

delivery service is highly dynamic. For example, the demand for live streaming peaks during a

football match, and these variations should be considered in the NFV-based deployment of CDNs.

Consideration of dynamic condition in CDN underlying physical network: Since the

resources of the substrate network are shared among different service flows, the network resource

congestion conditions are highly dynamic. For instance, the congested link between two physical

nodes may dissolve shortly after a streaming application is terminated.

Joint CDN service’s VNF-FG composition and embedding: Deployment of a CDN with

disjoint VNF-FG composition and embedding may lead to violation of service requirements and

consequently deteriorate the end-users perceived quality.

Joint CDN service’s VNF-FG function scaling and topology adaptation: a well-performing

CDN deployed by VNFs, could become inefficient as the service demands increase and network

conditions fluctuate [3]. To that end, not only the number of VNF instances need to be adjusted (a

process known as function scaling or horizontal scaling), but also the topology of the VNF-FG and

its mapping to the physical network may need proper adjustments via so-called topology

adaptation. Moreover, since function scaling and topology adaptation could have mutual

12

correlations, they need to be considered joint, or otherwise undesirable results leading to QoE

degradation might happen.

2.1.2.2 Requirements for content placement in CDN with mobile edge nodes

The content placement in an edge-based CDN with vehicular nodes has a vital impact on the

transmission delay and consequently on the end users' QoE. In this environment, it is crucial to

account for the followings:

Consideration of mobility for both end-users and edge caches: An edge-based CDN [17]

can consist of not only mobile end-users but also dynamic local caches that are deployed over

vehicles.

Consideration of low- and high-priority content: In a CDN with mobile edge caches, the

caching priority of contents could vary widely. As an example, consider a vehicular network

consisting of autonomous and non-autonomous vehicles [23] [24]. In this network, the caching

priority of certain contents, such as high definition maps (HD maps), would generally be higher

than that of infotainment contents. Since vehicles' onboard sensors are limited to line-of-sight,

autonomous vehicles rely heavily on these maps to plan precisely and maneuver correctly on the

road. These machine-readable HD maps model the surface of the road to an accuracy of 10-20 cm

and therefore have large volumes.

Consideration of the limited capacity of edge caches: Unfortunately, the local caches have

limited capacities, and when they are fully occupied, it may sometimes be necessary to remove

their lower-priority content to accommodate higher-priority content. At other times, it may be

necessary to return previously removed content to local caches. Downloading this content from

surrogate servers is costly from the perspective of network usage and potentially detrimental to the

end-user QoE in terms of delay.

 2.1.2.3 Requirements for Performance management in CDN

The CDN provider must track and analyze performance evolution. In the absence of users’

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators

(KPIs) throughout video sessions. This would allow the CDN provider to learn about QoS and

QoE offered to users, identify possible drops, and know whether they are caused by issues inside

13

or outside the CDN’s domain. To that end, we derive the following requirements for a framework

targeting QoS and QoE analysis for CDN providers.

Scalability: A CDN provider operates over a large scale, handling demand from a large set of

users as well as a large set of content. A QoS and QoE analysis framework should therefore operate

efficiently over a large scale.

Flexibility: Multiple KPIs that reflect users’ QoE can be collected by the CDN provider. A

QoS and QoE analysis framework needs to be flexible to account for multiple KPIs.

Automation: As analyzing and correlating KPIs cannot be handled manually over a large scale,

a QoS and QoE analysis framework needs to offer automated procedures.

Fine granularity: Users’ QoE can fluctuate over time throughout a single video session. A

QoS and QoE analysis framework, therefore, needs to target the analysis of corresponding

fluctuations.

2.2 Related work

In this section, we will discuss the works from the literature that are closely related to each of

the thesis contributions. We first discuss and analyze the works related to service deployment and

present them into two categories of the VNF-FG composition and embedding and VNF-FG

function scaling and topology adaptation. After that, we review the works related to content

placement and performance management in CDNs.

2.2.1 VNF-FG Composition and Embedding Related Work

In this section, we first review the few research works that target the joint problem of VNF-FG

composition and embedding and then evaluate some of the recent disjoint methods. In our

evaluation, we regard the general requirements and the requirements for NFV-based deployment

of CDN discussed in Sections 2.1.1 and 2.1.2.1, respectively.

2.2.1.1 Joint VNF-FG Composition and Embedding

Despite its determinant value, the joint consideration of VNF-FG composition and embedding

remains relatively under-examined; only relatively few works consider VNF-FG composition and

14

embedding together. Based on the structure of the heuristic, we classify these works into two

categories of one- (e.g. [7], [25], [8], and [9]) and two-stage (e.g., [26], [10], [11], [27], and [28])

algorithms.

One-stage heuristics: In one-stage algorithms, for each requested VNF in a VNFR, the order

and physical node that will host the VNF are determined simultaneously in a single step. Ref. [7]

is one of the earliest one-stage works that considers VNF-FG composition and embedding

simultaneously. The authors of [7] proposed their recursive CoordVNF heuristic for the

coordination of VNF-FG composition and embedding with the objective of minimizing bandwidth

usage. Comparable to CoordVNF is the so-called JoraNFV algorithm, proposed in [25], which

coordinates the three phases of resource allocation, VNF-FG composition, embedding, and

scheduling. The JoraNFV algorithm is designed to minimize a rather comprehensive cost model

consisting of capital, operating, and link costs. To this end, the problem is formulated as a mixed-

integer linear programming (MILP) problem, addressed by a single-stage heuristic. The correlation

of VNF-FG composition and embedding and their joint impact on network operator revenue were

extensively studied in [8], where the authors presented an ILP formulation of the chain

composition and embedding problem with the objective of maximizing revenue of resource

sharing. In [9], certain VNF embedding constraints, known as location constraints, are considered.

These constraints enforce limitations on the number of nodes that can host specific VNFs and thus

complicate the joint problem of VNF-FG composition and embedding. After presenting an ILP

formulation of the joint problem, these authors proposed an exact method followed by a greedy-

based heuristic algorithm for large-scale problems.

Two-stage heuristics: Two-stage algorithms begin with the composition (or selection) of a

single VNF-FG (or a subset of all possible VNF-FGs). In this composition stage, not only VNFRs

but also some embedding-related restrictions will be observed. The composed VNF-FG (or the

selected subset of them) will then go through the embedding stage. In this stage, with an embedding

objective (e.g., minimizing the costs, maximizing revenue, etc.), either the algorithm produces (if

possible) an embedding solution for the composed VNF-FG or the most appropriate solution

among the previously selected VNF-FGs satisfying the embedding objective will be chosen. If

embedding of the composed VNF-FG is not possible or the objective is not well satisfied by either

of the VNF-FGs in the selected set, the algorithm returns to the composition stage and looks for

15

alternative VNF-FG(s). For example, in [26], the authors proposed a two-stage heuristic algorithm

to jointly compose and embed the service requests. In the first stage, an order of VNFs (i.e., a

VNF-FG) is determined such that the embedding cost is minimized. To this end, the proposed

heuristic considers the following two aspects: (i) the location of the candidate node to host a given

VNF and (ii) the ratio of the outgoing data rate over the incoming data rate for a given VNF. The

allocation of resources for the composed VNF-FG is then carried out in the next stage (the

embedding stage). In this stage, if any assigned node becomes over-utilized, a node splitting

mechanism is triggered, which alters the structure of the composed VNF-FG. As a result, the

acceptance ratio of the service requests will be improved.

Relatively only a few two-stage heuristic works consider QoS parameters such as availability,

latency, and reliability in their joint VNF-FG composition and embedding solutions. As for the

availability of a given service function, the failure of both embedding nodes and VNFs should be

considered. To this end, the authors of [10] introduced the concept of traffic-weighted availability,

which is defined as the fraction of traffic that can be supported considering the availability state of

the underlying infrastructure. With the help of this newly introduced metric, the authors of [10]

solve the VNF-FG composition and embedding problem while guaranteeing availability.

However, the method presented in [10] is only applicable for applications that can tolerate a certain

range of bandwidth reduction. Alternatively, a probability-based availability and backup model

for VNF-FG is presented in [11], where the authors propose a two-stage heuristic for VNF-FG

composition and embedding while ensuring availability.

Latency and reliability, two important QoS metrics, were considered in [27] and [28],

respectively. In [27], the authors target latency minimization for applications that require different

service functions on forwarding and backward traffic. To this end, they define a problem called

Hybrid VNF-FG Composition and Embedding and, considering the substrate network

provisioning state, propose two approximation algorithms that minimize the latency of the

constructed service function. The work in [28] studies the trade-off between reliability and per-

server load in a bipartite forwarding graph using a probabilistic model. For the joint optimization

of a VNF-FG and the embedding, they provide a mixed ILP formulation to maximize end-to-end

reliability and propose a two-stage Block coordinate descent (BCD)-based heuristic to solve it. We

note that none of the existing joint composition and embedding solutions supports service demand

16

dynamics (The first requirement in Section 2.1.2.1) or network condition variations (The second

requirement in Section 2.1.2.1). Therefore, these two requirements remain unmet by all these

related works.

Table 2.1 VNF-FG composition and embedding related work evaluation

 Requirements

Related Works

Requirements

General

Requirements
VNF-based Deployment Requirements

QoS/

QoE
Cost

VNF-FG

Composition and

embedding

Service

Demand

Dynamic

s

network Condition

Dynamics

M. Beck et al., [7] ✓ ✓ ✓(Joint approach)

x

x

Araujo et al., [8] ✓ ✓ ✓(Joint approach)

x

x

Spinnewyn et al., [9] ✓ ✓ ✓(Joint approach)

x

x

Gour et al., [10] ✓ ✓ ✓(Joint approach)

x

✓

Wang et al., [11] ✓ ✓ ✓(Joint approach)

x

✓

Chen et al., [29] ✓ ✓
Composition

Only

x

x

Bian et al., [30] ✓ x
Composition

Only
x x

Ning et al., [31] ✓ ✓
Composition

Only
x ✓

Pham et al., [34] ✓ ✓ Embedding Only x x

Wu et al., [35] ✓ ✓ Embedding Only ✓ x

Pei et al., [36] ✓ ✓ Embedding Only x ✓

17

2.2.1.2 Disjoint VNF-FG Composition and Embedding

Here we first present the disjoint approaches targeting VNF-FG composition and then proceed

with recently published embedding-only studies. In this regard, we review both Machine Learning

(ML)-based and non-ML-based methods.

VNF-FG Composition: Following an intent-based service design approach, the authors in [29]

propose a semantic-based VNF-FG composer called CompRess, in which users' intents are

translated into multiple possible VNF-FGs. However, their VNF-FG composition design does not

provide a particular solution as to the best ordering pattern for requested VNFs. In [30], researchers

formulate the VNF-FG composition problem as a non-cooperative game to reduce request latency

while considering (fixed) network congestion. The work in [31] considers the heterogeneity of

today's Internet traffic and proposes a dynamic DRL-based VNF-FG composition that regards

traditional IP-based traffic (known as background traffic) patterns and updates the VNF-FG

chaining accordingly, aiming at minimizing the service's flow path delay. In [32], the authors first

formulate the VNF-FG composition problem as a binary integer program and then use a deep belief

network (a supervised learning model) to obtain the best chaining strategy. Their strategy aims at

minimizing the end-to-end delay while respecting VNF-FG's request constraints. Despite the

consideration of the substrate network dynamics, both works discussed above (i.e. [31] and [32])

unrealistically assume service requests to be static.

VNF-FG Embedding: As exhaustively surveyed in [4] and more recently [33], there are

multiple approaches (e.g., Markov approximation, Game theory, DRL, etc.) for VNF embedding.

For example, [34] uses a sample-based Markov approximation approach and further enhances it

with a matching game to tackle the complexity of the VNF-FG embedding problem. Game theory

is also widely used to address the challenges in VNF embedding. In [35], for instance, researchers

propose a user-network cooperation-based method to minimize the VNF-FG embedding cost while

considering the service response time in a dynamic workload (but fixed network congestion)

condition. In fact, the automated learning ability of DRL approaches makes them suitable for the

dynamic VNF-FG embedding problem, and there are indeed numerous DRL-based embedding

works. Some examples are [36], [37], [38], [39], [40], and [41]. In [36], the authors propose a

DRL-based method called “DDQN-VNFPA.” Their proposed learning method includes offline

18

training while aiming to minimize the embedding cost. Although substrate network dynamics are

considered in “DDQN-VNFPA,” the service network requests are assumed to be fixed.

Embedding cost minimization was also targeted in [39], in which the authors propose

“DeepOpt,” an RL embedding method that is empowered with Graph Neural Network (GNN)

instead of the more commonly used feedforward neural networks to improve the applicability of

their solution for different network structures. However, their approach considers static network

conditions and service demands.

The work in [37] proposes an actor-critic-based algorithm called “UNREAL_MD,” in which

the feedback of the environment is quantified by a queuing model that evaluates the delay of the

embedded VNF-FG. “NFVdeep,” an adaptive online method that considers not only the variation

of VNFR requirements but also the changes in substrate network conditions, is proposed in [38].

This work aims to minimize the operating cost while maximizing the total throughput. It uses a

serialization-and-backtracking method to handle the large action space of the embedding problem.

More recently, in [40], researchers propose “DDQP,” a dynamic DRL-based method to robustly

deploy both active and standby VNF-FG instances considering both the variation of service

demand and network conditions with the objective of minimizing resource waste. The dynamics

of underlying substrate networks are also considered in [41], in which complex VNFs are first

decomposed into smaller VNF components, and then a DRL-based delay minimizing scheme

decides on their placements. To improve the results, the authors apply both the experience reply

and target network mechanisms in their scheme. To summarize, even though the related works

described above all exploit the advanced features of a DRL method, to the best of our knowledge,

no work has applied a DRL approach to solving VNF-FG composition and embedding problems

jointly while considering the dynamics of substrate network conditions and service requests.

2.2.2 VNF-FG Adaptation Related Work

We classify the related work of VNF-FG deployment into two groups of function scaling and

topology adaptation. We note that while there exist a number of works on function scaling only

and topology adaptation only, the joint approach has not been studied before. In our evaluation,

we consider the general requirements and the requirements for NFV-based deployment of CDN

discussed in Sections 2.1.1 and 2.1.2.1, respectively

19

Table 2.2 VNF-FG adaptation related work evaluation

 Requirements

Related Works

Requirements

General

Requirements
VNF-FG Adaptation Requirements

QoS/

QoE
Cost

VNF-FG

Function

Scaling and

Topology

Adaptation

Service

Demand

Dynamic

s

network Condition

Dynamics

Fei et al., [42] ✓ x
Function Scaling

Only

✓

x

Panday et al., [44] ✓ x
Function Scaling

Only

✓

x

Subramanya et al., [45] ✓ x
Function Scaling

Only

✓

x

Luo et al., [46] ✓ ✓
Function Scaling

Only

✓

x

Lang et al., [47] ✓ ✓
Function Scaling

Only

✓

x

Houidi et al., [48] ✓ ✓
Topology

Adaptation Only
✓ x

Liu et al., [49] ✓ ✓
Topology

Adaptation Only
✓ ✓

2.2.2.1 VNF-FG Function Scaling

Adjusting the number of instantiated VNFs in response to a rise in network traffic has been

investigated in some recent works (e.g., [42], [43], [44], [45], [46], and [47]. Most of these works

rely on predicting the rise of VNF demand, which is considered as a trigger for scaling. In [42], a

20

simple pre-determined threshold-based load monitoring mechanism was used for initiating the

scaling procedure. However, the complications of calculating these thresholds and their dependent

parameters are not discussed. In [44], a Gated Recurrent Unit (GRU) was proposed as a resource

demand predictor. However, once the increase in service demand is predicted and the action of

scaling is decided, the whole service function chain is scaled, though the imposed cost of such a

decision was not discussed. In [45], the authors targeted the VNF auto-scaling in multi-domain

networks by leveraging centralized, and federated learning prediction approaches. The future

numbers of VNF instances are calculated as a function of the predicted traffic demands. However,

only a general form of resource allocation cost is considered, while other costs such as instantiation

of new VNFs and state copying are ignored. Both Refs. [44] and [45] use oversimplified cost

models. Similar to [45], a VNF deployment and migration method for heterogeneous edge and

cloud environments was proposed in [43]. However, the migration in their work is considered as

a mechanism for accommodating the rejected VNF-FG requests rather than a scaling mechanism

for the original VNF-FG. In [46], a dependent rounding online algorithm was proposed to ensure

that enough VNF instances are deployed in case of network traffic fluctuations. In [47], a

supervised learning agent (which is trained by generated labeled data) determines the required

number of VNF instances according to the changes in service demand. While Refs. [46] and [47]

consider a rather comprehensive cost model, the topologies of the VNF-FGs are assumed to be

fixed. In other words, in these works, the connectivity of the VNFs in a service chain does not

change in the scaling process.

2.2.2.2 VNF-FG Topology Adaptation

Here, we review the existing works that target VNF-FG topology adaptation (or expansion) in

response to a rise in service demand. We review the papers that make modifications in the structure

of the VNF-FG but exclude those works that preserve the initial VNF-FG and only apply the

modifications to the embedding graph, e.g., [38], [40]. In [48], the authors studied the VNF-FG

extension problem and proposed two heuristics, namely, Steiner Tree-based and

eigendecomposition-based algorithms, to minimize the rejection of extension requests when the

demand increases. In their work, the initially embedded graph remains unaltered while additional

nodes and links are simply attached to the edge of the graph as a response to the changes in the

demand of the users. However, there are situations where the whole VNF-FG needs to be modified

21

or that adding new VNFs just to the edge of the graph could not be feasible. For instance, a

particular VNF may need to be reached in between two other VNFs and not at the edge of the

graph. The authors of [49] considered the dynamicity of mobile users as well as the changes in

their service demand, aiming to adjust the deployed VNF-FG accordingly. To that end, they first

formulated the problem as an Integer Linear Programming (ILP) and solved it using the Column

Generation (CG) approach. However, in their work to decrease the complexity, the order of VNFs

is reserved. Also, [49] only considers VNF-FGs with simple typologies, thus having limited

applicability in real-world scenarios. None of these works provide a general framework where both

function scaling and topology adaptation can both be leveraged.

2.2.3 CDN Content Placement Related Work

Using the general requirements and the specific requirements for content placement for CDN

with mobile edge nodes discussed in Sections 2.1.1 and 2.1.2.2, respectively, we discuss the related

work for content placement. We first review the existing research works that target the edge

content placement and delivery problem in CDNs while considering a content priority scheme.

Next, we review the recent DRL-based approaches in the edge caching domain.

2.2.3.1 Content Placement Approaches with content priority schemes

There are very few works that consider specific content priority schemes in CDNs with edge

nodes. Most of them focus on priority content dissemination rather than caching technology. The

work in [50], for instance, proposes a priority-based content propagation scheme that accelerates

safety content delivery for a set of moving vehicles and provides the forwarding of non-safety

contents based on popularity. Similarly, in [51], an information-centric dissemination protocol for

safety information in vehicular ad-hoc networks was proposed. The authors of [52] proposed an

architecture that uses a data cognitive engine to determine user priority (based on the users' health

situation) and allocates edge resources (including edge caching resources) accordingly through a

resource-cognitive engine. However, none of the above-mentioned works consider the limited

caching capability of edge caches in their solutions, and so none of them propose a strategy for

content eviction.

22

Table 2.3 Content placement related work evaluation

Requirements

Related Works

Requirements

General

Requirements
Content Placement Requirements

QoS/

QoE
Cost

High- Low

priority

contents

Mobility

Limited Size of

Edge Caches

Khan et al., [50]
✓

x ✓ ✓ x

Meuser et al., [51]
✓

x ✓ ✓ ✓

Chen et al., [52]
✓

x ✓ x x

Zhu et al., [53] x
✓

x ✓ x

Hu et al., [55]
✓

x x ✓ x

He et al., [56]
✓

✓

x x ✓

Yu et al., [57]
✓

✓

x ✓ ✓

Qiao et al., [58]
✓

✓

x ✓ x

Gomaa et al., [59] x ✓ x x ✓

2.2.3.2 DRL-based approaches for edge content caching

The use of deep reinforcement learning (DRL) has become quite popular in the networking

domain. In a recent work, the authors of [19] conducted a comprehensive survey on DRL

applications for solving a variety of networking problems (e.g., dynamic network access, wireless

23

caching, and data rate control). Specifically, as stated in [19], the adoption of DRL for edge caching

has received more attention than other networking issues. Zhu et al. [53] advocated the use of DRL

by examining key challenges in mobile edge caching and then mapping them with unique DRL

aspects. The existing edge caching DRL-based approaches can be classified into two categories:

(i) works that use DRL for learning specific caching parameters (e.g., content popularity [54] or

cache expiration time), and (ii) DRL approaches that target multiple aspects in their caching policy

design [55],[56] (e.g., networking and computation). Falling into the first category, the authors in

[54] propose a DRL-based cache replacement scheme for a single BS, where the content popularity

is learned by considering the cache hit rate as the system reward. Similarly, in their recent work

[57], Yu et al. propose a federated learning approach to predict content popularity for connected

vehicles and provide a mobility-aware cache replacement policy. Many recent works in the

vehicular network domain belong to the second category. For instance, Hu et al. [55] proposed

integrated networking, caching, and computing optimization framework for connected vehicles

that sets both operational excellence and cost efficiency as objectives. They adopted deep

reinforcement learning to overcome the high level of complexity caused by the joint optimization

problem. However, they do not suggest a strategy for the case of full edge caches. Similarly, in the

recent work of Qiao et al. [58], DRL is utilized to solve the joint optimization of content placement

and delivery problems in the vehicular networks, formulated as a double time-scale Markov

decision process. Gomaa et al. [59] proposed a dynamic orchestration framework for

communication, caching, and computing resources in a software-defined and virtualized vehicular

network. They applied DRL to obtain a close-to-optimal policy for integrated resource allocation.

However, no concrete solution for the case of full edge caches is proposed. Considering that

resources in edge caches are indeed limited, it is quite probable that these caches become fully

occupied. Therefore, having no strategy for these cases is a notable shortcoming of these DRL-

based edge caching methods.

2.2.4 CDN Performance Management Related Work

In the following, we present CDN performance management works and evaluate them

according to the general and specific set of requirements listed in Sections 2.1.1 and 2.1.2.3.

Several studies have aimed at investigating the impact of specific events in the CDN system on

the QoS and QoE over individual video sessions. Fan et al. [60] studied the impact of changes in

24

the CDN redirection mechanism on the latency perceived by users. The study was conducted over

a large scale. However, only one KPI was considered, i.e., latency. Casas et al. [61] also analyzed

the impact of events in CDNs on the QoE of users. To this end, the authors propose automated

approaches that operate over a large scale and consider multiple KPIs. However, their work does

not consider the fluctuations of KPIs throughout sessions. Shafiq et al. [62] studied the impact of

network dynamics on user abandonment behavior. Their analysis was conducted over a large scale,

over multiple KPIs, and relies on an automated approach. Nevertheless, KPIs fluctuations over

individual sessions were not considered.

Other studies have aimed at identifying the mapping between QoS and QoE metrics in CDNs

using traffic datasets. Li et al. [63] studied the correlations between video download throughput

and user engagement. A large-scale analysis of a single KPI, i.e., download throughput, is

conducted. However, it does not account for its fluctuations. Lian et al. [64] studied correlations

between performance and QoE metrics. The correlations were considered for multiple KPIs

through automated approaches. However, the evolution of KPIs is not considered, and the analysis

is led over a small scale. Orsolic et al. [65] predict the QoE level of a session according to a set of

KPI features. The evolution of multiple KPIs is considered over individual sessions with an

automated approach for prediction. However, the study is conducted over a small scale.

Multiple studies focus on the analysis of anomalies based on CDN traffic datasets. Giordano et

al. [66] propose a method to identify changes in the CDN cache selection policy. Their method

operates over a large scale, considers multiple KPIs, and is automated. Nevertheless, it does not

account for the evolution of KPIs throughout sessions. Wu et al. [67] focus on the detection of

video freeze events in video sessions. They propose an automated method that operates over a

large scale, considering the evolution of only one KPI over each session, i.e., the inter-segment

duration. Dimopoulos et al. [68] propose a framework to diagnose the root cause of mobile video

QoE issues. The framework adopts an automated approach that covers multiple KPIs. However, it

operates over a small scale and does not account for the evolution of KPIs across video sessions.

In turn, Zhu et al. [69] also target the diagnosis of QoE issues. They propose an automated

approach that allows identifying the root cause of large latency increases over a large scale.

Nevertheless, they only account for latency and do not consider its evolution through video

sessions.

25

Table 2.4 Performance management related work evaluation

Requirements

Related Works

Requirements

General

Requirements

Performance

Management Requirements

QoS/

QoE
Cost Scalability Flexibility Automation

Fine

 Granularity

Fan et al., [60]
✓

✓ ✓ x x ✓

Casas et al., [61]
✓

x ✓ ✓ ✓ x

Shafiq et al., [62]
✓

✓ ✓ ✓ ✓ x

Li et al., [63]
✓

x ✓ x x x

Lian et al., [64]
✓

x x ✓ ✓ ✓

Orsolic et al., [65]
✓

✓

x ✓ ✓ ✓

In summary, none of the previous studies meets all requirements listed in Sections 2.1.1 and

2.1.2.3. Some studies were conducted over a small scale, and thus did not meet our scalability

requirement. Many works do not consider multiple KPIs, leaving the flexibility requirement

unsatisfied. All but two papers introduce automated procedures for their studies, meeting the

automation requirement. As for fine granularity, only two studies fulfilled that requirement. While

none of the previous works meets all our requirements, our KPIs analysis framework does

accomplish that. Our framework forms clusters of video sessions, presenting a similar evolution

of KPIs, using unsupervised machine learning tools. To the best of our knowledge, we are the first

to investigate the evolution of KPIs throughout video sessions using unsupervised machine

learning tools. Our framework provides a clear understanding of the evolution of KPIs throughout

video sessions. It operates by considering the fine-grained evolution of multiple KPIs, throughout

26

each session, it adopts an automated approach and operates over a large scale, thereby meeting all

requirements listed in Sections 2.1.1 and 2.1.2.3

2.3 Conclusion

In this chapter, we first presented sets of general and contribution-specific requirements. After

that, we surveyed the related work. Table 2.1and Table 2.2 provide a summary of the reviewed

papers, respectively. For each paper, we show the requirements which are met and the ones which

are not met. As it can be seen, none of the reviewed works satisfy all our requirements.

27

Chapter 3

3. Joint VNF-FG Composition and Embedding

for CDN Deployment1

3.1 Introduction

Deploying a CDN with the NFV paradigm is not easy. For example, considering the complex

and dynamic nature of a CDN, resource allocation (RA) remains a challenging topic for the

deployment of content delivery services. On the other hand, the two seemingly separated stages of

a VNF forwarding graph (i.e., composition and embedding) can have inter-related impacts on the

eventual service performance and the embedding cost and thus should be jointly considered. This

chapter focuses on the joint VNF-FG composition and embedding problem and proposes a joint

framework where the variations of service demands as well as dynamic network conditions are

1 This chapter is based on a submitted paper:

- Sepideh Malektaji, Amin Ebrahimzadeh, Marsa Rayani, Vahid Maleki Raee, Halima Elbiaze, and Roch Glitho, “Dynamic Joint

VNF Forwarding Graph Composition and Embedding: A Deep Reinforcement Learning Framework” revised version submitted

to IEEE Transactions On Network and Service Management.

28

simultaneously considered. To manage the complexity of the problem, we formulate it as a

Markov Decision Process and design our Reinforcement Learning (RL)-based framework that

relies on a Q-learning approach [20], which makes simultaneous decisions regarding both the

ordering and embedding of requested VNFs. Next, to cope with the huge discrete multi-

dimensional action space, we utilize a variant of the Deep Q Network (DQN) approach, the

Branching Dueling Q network (BDQN) [70], and further enhance it with an action filtering

mechanism [71]. This step reduces the action space and helps explore the problem search space

more efficiently. Given the set of VNF service requests (VNFRs), along with their QoS

requirements, our proposed framework calculates the mapped forwarding graph of each VNFR,

which not only determines a proper ordering of the requested VNFs (i.e., VNF-FG composition),

it also specifies the hosted physical nodes and links for the requested VNFs and their connections

(i.e., VNF-FG embedding). More specifically, the obtained mapped forwarding graph minimizes

the accumulated embedding cost over the usage service period while meeting the VNFR-specific

service throughput requirements. In doing so, we empower our framework with the so-called

resource utilization analyzer and service demand analyzer, which estimate the time-varying service

demand and network resource utilization, respectively.

The remainder of this chapter is organized as follows: we first provide the system model and

problem formulation. We then present our proposed DRL-based joint framework in detail,

followed by the performance evaluation of the framework. Finally, in the last subsection, the

conclusion will be provided for this chapter.

3.2 System Model and Problem Formulation

3.2.1 System Model

In our system model, to differentiate the duration of the data collecting from the actual

service usage periods, we view time as two consecutive intervals, namely, pre-service usage

time and service usage time. Pre-service usage time is of duration 𝑇0 and refers to t < 𝑇0,

whereas service usage time corresponds to t ≥ 𝑇0.

1) Substrate network: Substrate network is modeled as a directed graph 𝐺 = (𝒩, ℰ),

where 𝒩 and ℰ are the sets of |𝒩| physical nodes and |ℰ| directed links, respectively. Each

𝑒𝑝,𝑞 ∈ ℇ represents the direct physical link connecting physical nodes 𝑛𝑝 and 𝑛𝑞, ∀𝑛𝑝, 𝑛𝑞 ∈

29

𝒩. Also, we let the set 𝒫𝑝,𝑞
𝑚𝑎𝑥 contain all the paths such as 𝜑𝑝,𝑞 connecting the node np to

nq with a maximum path length of φmax hops. Accordingly, |φmax |is the number of all

existing paths in G with a maximum of φmax hops. Each node 𝑛𝑞 ∈ 𝒩 has a processing

capacity WCPU(np). Similarly, each link 𝑒𝑝,𝑞 ∈ ℇ has a bandwidth capacity WBW(p,q).

2) VNF service request (VNFR): Let ℛ be the set of | ℛ | received VNFRs, each with a

unique ID number. Services of the VNFRs should become available during the service usage

time (i.e., t < T0). Further, we assume that VNFR 𝑟 ∈ ℛ is attributed to the following parameters

[26]:

1) Ingress node 𝑛𝑟,𝑠 ∈ 𝒩 and egress node 𝑛𝑟,𝑑 ∈ 𝒩, which are the physical nodes from which

the first VNF of the requested VNF-FG originates and at which the last VNF terminates, respectively.

2) The initial entering data rate at the beginning of the service usage time denoted by:

𝑑𝑟,𝑠 = {𝑑𝑟,𝑠(𝑡)|𝑡 = 𝑇0 }

Where 𝑑𝑟,𝑖(𝑡) denotes the entering data rate to VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 for t ≥ T0.

3) Set 𝐹𝑟 = {𝑓𝑟,1, 𝑓𝑟,2, … , 𝑓𝑟,|𝐹𝑟|} of |𝐹𝑟| required VNFs along with their dependency graph 𝐷𝑟,

which is an acyclic-directed graph with |𝐹𝑟| vertices and |𝐿𝑟| directed links representing the

dependency relations between VNFs. We denote ζ(𝐷𝑟) as the Degree of Freedom (DoF) [103] of

the dependency graph 𝐷𝑟, which is given by:

ζ(𝐷𝑟) = |ℱ𝓇| × (|ℱ𝓇| − 1) − |ℒ𝓇| (3-1)

4) Ratio 𝑅𝑓𝑟,𝑖 of outgoing data rate to incoming data rate of VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟.

5) Processing resource demand 𝑃𝑓𝑟,𝑖 per bandwidth for VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟.

We assume that all the service request parameters explained above remain unchanged during

the service usage period (i.e., t ≥ 𝑇0) except for the entering data rate 𝑑𝑟,𝑠(𝑡), which may vary

over time. Figure 3.1 illustrates an example of a VNFR and its specifications.

3) Mapped forwarding graph: Let the mapped forwarding graph 𝑀𝑟 of VNFR 𝑟 ∈ ℛ be an

ordered list of |𝑀𝑟| distinct elements. Each element of 𝑀𝑟 is a 3-tuple containing three components

𝑓𝑟,𝑖, 𝑛𝑗 , and 𝜑𝑘,𝑗, where 𝑓𝑟,𝑖 ∈ 𝐹𝑟, 𝑛𝑗 ∈ 𝒩, and 𝜑𝑘,𝑗 ∈ 𝒫𝑘, 𝑗
𝑚𝑎𝑥 . To that end, we denote the ℎ𝑡ℎ

element of 𝑀𝑟 as follows:

σ𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖, 𝑛𝑗 , 𝜑𝑘,𝑗 > (3-2)

30

Additionally, let us define the function Π𝑏(σ𝑟,ℎ
𝑖,𝑗,𝑘
) that returns component b (b = 1, 2, 3) of σ𝑟,ℎ

𝑖,𝑗,𝑘
.

Π𝑏(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = {

𝑓𝑟,𝑖 𝑖𝑓 𝑏 = 1

𝑛𝑗 𝑖𝑓 𝑏 = 2

φ𝑘,𝑗 𝑖𝑓 𝑏 = 3
 (3-3)

As such, element h of 𝑀𝑟, which is σ𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖, 𝑛𝑗 , 𝜑𝑘,𝑗 >, indicates that the h-th VNF in

the composed VNF-FG for request 𝑟 ∈ ℛ is Π1(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = 𝑓𝑟,𝑖 ∈ ℱ𝓇 and this VNF should be

embedded in the physical node Π2(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = 𝑛𝑗 ∈ 𝒩 and connected to the previously embedded

VNF, i.e., Π1(σ𝑟,ℎ−1
𝑖,𝑗,𝑘

), through the embedding path Π3(σ𝑟,ℎ
𝑖,𝑗,𝑘
) = φ𝑘,𝑗 ∈ 𝒫𝑘,𝑗

𝓂𝒶𝓍. Here, 𝑛𝑘 =

Π2(σ𝑟,ℎ−1
𝑖,𝑗,𝑘

), while assuming:

Π2(σ𝑟,0
𝑖,𝑗,𝑘
)= 𝑛𝑠 and Π2(σ𝑟,|𝑀𝑟|

𝑖,𝑗,𝑘
) = 𝑛𝑑 (3-4)

Since each physical node 𝑛𝑗 ∈ 𝒩 can host more than one VNF, we define 𝐾𝑀𝑟,𝑗 as the set of

VNFs of 𝑀𝑟 that are hosted on the physical node 𝑛𝑗 . We also define ℇ𝑟 ⊆ ℇ and 𝒩𝑟 ⊆ 𝒩 as the

sets of physical links and nodes involved in 𝑀𝑟, respectively. Note that 𝒩𝑟 can also contain the

Figure 3.1 Example of a VNF service request, request specifications, and a dependency graph.

31

forwarding nodes which do not host any VNFs. Therefore, we define 𝒩′
𝑟 ⊆ 𝒩𝑟, as the set of

physical nodes that, according to 𝑀𝑟 host at least a VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟.

4) Resource utilization and service demand: Resources of physical nodes and links are shared

among different service flows. Given that the resource consumption patterns of these flows are

dynamic, available resources on substrate nodes and links will change frequently. Let 𝑢𝑗(𝑡) and

𝑢𝑣,𝑧(𝑡) represent the CPU and bandwidth utilization of node 𝑛𝑗 ∈ 𝒩 and link 𝑒𝑣,𝑧 ∈ ℇ for t ≥ 0,

respectively.

5) QoS model: Service throughput as an important QoS parameter is critical to be considered

in NFV resource allocation problems. In this regard, we consider service throughput as our QoS

parameter specified by the service level agreement (SLA). We denote the minimum acceptable

throughput as 𝑞𝑟
𝑚𝑖𝑛, and define it as the minimum acceptable amount of outgoing data rate of

service request 𝑟 ∈ ℛ from the egress node 𝑛𝑟,𝑑 ∈ 𝒩. Let 𝑞𝑀𝑟(𝑡) be the end-to-end throughput of

the mapped forwarding graph 𝑀𝑟 at time t, t ≥ T0. Since the graph topology of the 𝑀𝑟 can be

decomposed into sequential and/or parallel structural patterns, 𝑞𝑀𝑟(𝑡) will be equal to the

minimum throughput provided by the physical nodes and links in 𝑀𝑟 .

6) Cost model: We model the embedding cost 𝐶𝑀𝑟(𝑡), ∀t ≥ T0, of mapped forwarding graph

𝑀𝑟 = (𝜎𝑟,1, … , 𝜎𝑟,|𝑀|) as follows:

𝐶𝑀𝑟(𝑡) = (∑ 𝐶σ𝑟,ℎ(𝑡)

ℎ=|𝑀𝑟|

ℎ=1

) + |𝒩𝑟| × 𝜈 (3-5)

where 𝜈 is the activation cost per physical node, |𝒩𝑟 | is the number of activated nodes in 𝒩𝑟 , and

𝐶𝜎𝑟,ℎ(𝑡)is the embedding cost of element 𝜎𝑟,ℎ
𝑖,𝑗,𝑘

=< 𝑓𝑟,𝑖, 𝑛𝑗 , 𝜑𝑘,𝑗 >∈ 𝑀𝑟 , ∀𝑡 ≥ 𝑇0, given by

𝐶σ𝑟,ℎ(𝑡) = 𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑟,𝑖 × γ𝑗 + ξ𝑖,𝑗 + ∑ (𝑑𝑟,𝑖(𝑡) × 𝑅𝑓𝑟,𝑖 × Γ𝑣,𝑧),

𝑣,𝑧|𝑒𝑣,𝑧∈𝜑𝑘,𝑗

 (3-6)

Where 𝛾𝑗 and Γ𝑣,𝑧 are the costs of utilizing a unit of CPU and a unit of bandwidth resource from

node 𝑛𝑗 and link 𝑒𝑣,𝑧, respectively. Also, ξ𝑖,𝑗 denotes the fixed cost of instantiating VNF 𝑓𝑟,𝑖 at

node 𝑛𝑗 . We note that the term 𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑟,𝑖 in Eq. (3-6) computes the CPU demand of 𝑓𝑟,𝑖

from its hosting node 𝑛𝑗 at time t, ∀𝑡 ≥ 𝑇0. Also, 𝑑𝑟,𝑖(𝑡) and 𝑃𝑓𝑟,𝑖 denote the entering data rate

32

and processing resource demand per bandwidth for VNF 𝑓𝑟,𝑖, respectively. In Eq. (3-6), the term

 𝑑𝑟,𝑖(𝑡) × 𝑅𝑓𝑟,𝑖 accounts for the bandwidth resource required for connecting 𝑓𝑟,𝑖 to the next VNF

in 𝑀𝑟.

Table 3.1 Input Parameters and Variables

33

3.2.2 Problem Formulation

In the following, we formally formulate the problem under study, while Table 3.1 delineates the

important parameters and variables. Following the system model presented above, 𝑀𝑟 would be a

candidate joint composition and embedding solution for VNFR 𝑟 ∈ ℛ. To better explain the

structure of a candidate solution, let us consider an examplar solution (i.e. 𝑀𝑟) for the VNFR

depicted in Fig. 3.1. Let 𝑀𝑟 be as follows:

M𝑟 = [< 𝑓𝑟,5, 𝑛2, [𝑒1,2] >,< 𝑓𝑟,4, 𝑛4, [𝑒2,3, 𝑒3,4] >, < 𝑓𝑟,4, 𝑛4, [𝑒2,3, 𝑒3,4] >, < 𝑓𝑟,2, 𝑛5, [𝑒4,5] >,

< 𝑓𝑟,1, 𝑛7, [𝑒5,7] >, < 𝑓𝑟,3, 𝑛8, [𝑒7,8] >]

(3-7)

As such, 𝑀𝑟 not only suggests a VNF-FG for VNFR r (i.e., [𝑓𝑟,5, 𝑓𝑟,4, 𝑓𝑟,2𝑓𝑟,1, 𝑓𝑟,3]), but it also

determines its embedding graph. The latter, for instance, indicates that the first VNF in the

suggested VNF-FG, 𝑓𝑟,5, should be placed on node 𝑛2 and connected to the previous hosting node

(i.e., the ingress node 𝑛1) through path 𝑒1,2 (which here happens to be a single link). The second

VNF in the VNF-FG, 𝑓𝑟,4, should be placed on node 𝑛4 and connected to the previous hosting

node 𝑛2 through path [𝑒2,3, 𝑒3,4]. Similarly, other elements determine the mapping of the composed

VNF-FG (i.e. [𝑓𝑟,5, 𝑓𝑟,4, 𝑓𝑟,2𝑓𝑟,1, 𝑓𝑟,3]).

To ensure feasibility, a candidate composition and embedding solution 𝑀𝑟 should be evaluated for

various constraints, as the resources of the substrate network are shared among different flows. It

is therefore critical to not only verify whether the selected links/nodes meet the given utilization

constraints during the service usage time but also make sure that QoS constraints are not violated.

To this end, a candidate solution 𝑀𝑟 is feasible only if it satisfies the following constraints:

Constraint 1: The throughput of the given solution 𝑀𝑟 should meet the required throughput 𝑞𝑟
𝑚𝑖𝑛

during the service usage time:

𝑞𝑟
𝑚𝑖𝑛 ≤ 𝑞(𝑀𝑟 , 𝑡), ∀𝑡 ≥ 𝑇0 (3-8)

Constraint 2: The processing demands of VNFs should be smaller than the available processing

resources of their hosting nodes in 𝒩′
𝑟:

34

(∑ 𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑖∀(𝑟,𝑖)|𝑓𝑟,𝑖∈𝜅𝑀𝑟,𝑗
)

𝑊CPU(𝑛𝑗)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩′𝑟,

≤ 1 − 𝑢𝑗(𝑡)⏞
𝐴𝑣𝑎𝑖𝑙. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

 (3-9)

where the term 𝑑𝑟,𝑖(𝑡) × 𝑃𝑓𝑟,𝑖 is the CPU demand of 𝑓𝑟,𝑖 ∈ 𝐾𝑀𝑟,𝑗. The right-hand side of Eq. (3-

9) computes the ratio of the available processing resource at the physical node 𝑛𝑗 ∈ 𝒩
′
𝑟 at time

𝑡 ≥ 𝑇0, while the left-hand side is the ratio of the cumulative demanded processing resource of all

VNFs hosted by the node 𝑛𝑗 to the processing capacity of the node 𝑛𝑗 .

Constraint 3: Similar to Constraint 2, this constraint ensures that the bandwidth demands of VNFs

in 𝑀𝑟 is smaller than the available bandwidth resources of the corresponding embedding links in

ℇ𝑟:

∑ 𝑑𝑟,𝑖(𝑡) × ℛ𝑓𝑖,𝑖∀(𝑟,𝑖)|𝑓𝑟,𝑖∈𝜅𝑀𝑟,𝑗

𝑊BW(𝑒𝑣,𝑧)

∀𝑡 ≥ 𝑇0∀𝑛𝑗 ∈ 𝒩′𝑟 , ∀(𝑣, 𝑧)|𝑒𝑣,𝑧 ∈ 𝜑𝑗,𝑘, 𝑛𝑘, 𝑛𝑗 ∈ 𝒩′𝑟

≤ 1 − 𝑢𝑣,𝑧(𝑡)⏞
𝐴𝑣𝑎𝑖𝑙. 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜

 (3-10)

where the right-hand side of the equation computes the ratio of the available bandwidth resource

at the physical link 𝑒𝑣,𝑧 ∈ 𝜑𝑗,𝑘, where 𝜑𝑗,𝑘 is the path that, according to 𝑀𝑟, connects node 𝑛𝑗 to

𝑛𝑘, while the left-hand side is the ratio of cumulative bandwidth demand from the link 𝑒𝑣,𝑧 to its

bandwidth capacity.

With all these considerations in mind, we define our objective function as follows:

𝑚𝑖𝑛𝑀𝑟|∀𝑟∈ℛ ∫ 𝐶𝑀𝑟(𝑡)𝑇0≤𝑡
⋅ 𝑑𝑡

𝑠. 𝑡. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1,2, 𝑎𝑛𝑑 3
 (3-11)

which aims to find the least costly mapped forwarding graph for the given VNFR 𝑟 ∈ ℛ while

satisfying the QoS and capacity constraints given by Eqs. (3-8), (3-9), and (3-10).

3.3 Deep Reinforcement Learning for Joint VNF-FG Composition and

Embedding

The VNF-FG composition and embedding sub-problems have both proven to be NP-hard [72]

[73]. Moreover, variations of network resources as well as date rate demands of the incoming

35

requests further compound this complexity. In the following, we present the main MDP

components designed for our joint composition and embedding problem.

3.3.1 System States, Actions, and Reward

Let S represent the set of states. The state is denoted by Eq. (3-12):

𝑠𝑡 =< 𝐼𝐷𝑟 , 𝑀𝑟 , 𝐴𝑟 >
𝑡 (3-12)

The state contains three main components: (i) ID 𝐼𝐷𝑟 of the selected VNFR 𝑟 ∈ ℛ, for which

we seek to find a joint composition and embedding solution, (ii) constructed mapped forwarding

graph 𝑀𝑟 for the request specified by 𝐼𝐷𝑟, and (iii) an auxiliary graph 𝐴𝑟 indicating the VNFs in

𝐹𝑟 , which are not yet chained into the VNF-FG and also not yet mapped to the physical nodes.

Moreover, 𝐴𝑟 also reflects the dependency relation between the remaining VNFs indicated by 𝐷𝑟.

Note that the system state 𝑠𝑡 does not include the dynamics of network resource utilization and/or

service demands as these dynamic parameters are considered in the system reward computations,

to be discussed later on. We denote 𝒜(𝑠𝑡) as the total set of actions in the state 𝑠𝑡 =

< 𝐼𝐷𝑟 , 𝑀𝑟 , 𝐴𝑟 >
𝑡∈ 𝑆. The action is denoted by Eq. (3-13):

𝑎𝑡 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡, 𝜑𝑠𝑒𝑙𝑒𝑐𝑡 >
𝑡∈ 𝒜(𝑠𝑡) (3-13)

The action is a 3-tuple containing the following components: (i) selected VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 from 𝐹𝑟,

as the next candidate VNF in the constructed mapped forwarding graph specified by 𝑀𝑟, (ii)

selected physical node 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 for hosting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡

𝑡 , and (iii) selected path 𝜑𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡

(i.e., host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡), to 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡−1 (i.e., host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡−1). After selecting action 𝑎𝑡, the system

state will transition to 𝑠𝑡+1. As such, 𝑎𝑡 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡, 𝜑𝑠𝑒𝑙𝑒𝑐𝑡 >
𝑡
will be added to 𝑀𝑟 .

Also 𝐴𝑟 will be updated by omitting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 and all its incoming links. This is done to relax the

dependency relation of other VNFs and the selected VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 . In other words, since the VNF

𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 already exists in 𝑀𝑟 and hence the dependency relation is already satisfied its dependent

VNFs in 𝐹𝑟 could be selected for the next VNFs in future elements of 𝑀𝑟 until it is completed and

consequently, the VNF-FG is fully composed.

36

Next, we design our reward function, which needs to take into account the embedding cost and

constraints 1, 2, and 3, given by Eqs. (3-8)-(3-10). To that end, we define the reward of selecting

the action 𝑎𝑡 ∈ 𝒜(𝑠𝑡) in the state 𝑠𝑡 ∈ 𝑆 as follows:

𝑅(𝑠𝑡, 𝑎𝑡) = {
−(𝐶𝑀𝑟(𝑡) + Ω × |𝐴𝑟|) 𝐸𝑞𝑠. (3 − 8) − (3 − 10)𝑎𝑟𝑒 𝑡𝑟𝑢𝑒,

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3-14)

where we assign a negative infinity to the reward if 𝑀𝑟 is not feasible; otherwise, the reward

considers the cost of 𝑀𝑟 along with the penalizing term Ω × |𝐴𝑟|, where Ω is the penalty coefficient

and |𝐴𝑟| is the number of remaining VNFs of 𝐹𝑟 that have not been mapped yet.

3.3.2 RL and DRL

MDP framework provides the necessary mathematical formalism for applying the

Reinforcement Learning (RL) approach, which is a widely used strategy to solve complex

problems. In RL, an agent automatically learns the dynamic parameters and updates its decisions

through its interactions with the environment. One of the most widely used RL strategies is the so-

called Q-learning [20], which successively updates the evaluation of the long-term quality (also

known as Q value) of actions at each state. It is known that Q-learning is a simple yet effective

way for an agent to learn how to act optimally [20]. However, in most real-world problems with

large state/action spaces, Q-learning becomes inefficient as exploring all the states and taking all

the possible actions could be impossible [21]. The designed action in our problem includes the

selection of a path in a substrate network.

Clearly, the number of paths even in a small network could grow large, thus leading to a large

action space. A viable way of learning efficiently in such environments with huge state/action

space is to use function approximation for estimating the Q value [42]. The revival hybrid approach

of combing Deep Neural Network (DNN) with RL algorithm has proven to be effective, and it is

now widely being used in different domains under the so-called deep reinforcement learning

(DRL), also known as deep Q-learning (DQL). In this work, to approximate the Q values for

unmet states/actions, we use a specialized variant of the deep dueling Q network [20] and enhance

it with a branching [70] technique to ease the complexity of computing Q values along with action

filtering [71] technique to reduce the size of the action space. In the following, we present our

proposed framework and the customized structure of the utilized Q-network.

37

3.3.3 Deep Dynamic Joint VNF-FG Composition and Embedding (DDJCE) Framework

Fig. 3.2 illustrates our proposed Deep Dynamic Joint VNF-FG Composition and Embedding

(DDJCE) framework. As shown in Fig. 3.2, the “DDJCE Core Algorithm” is the main component

of our framework. It receives the set of VNF service requests as the input and computes the joint

composition and embedding solutions in the form of mapped forwarding graphs. To this end,

through its searching process, the “DDJCE Core Algorithm” constructs our system states and then

makes a set of decisions (e.g., the next VNF to be added to the VNF-FG and its embedding node

and path) after formulating them as the actions of the system. After constructing the state-action

pairs, the “DDJCE Core Algorithm” sends them to the our “Reward Calculator” component, which

in turn interacts with two analyzers, namely, Network Resource Utilization Analyzer (NRUA) and

Service Demand Analyzer (SDA), to collect the required estimated parameters (e.g., resource

utilization and service demand data rate) for calculation of the reward. Once the reward is

computed, it will be sent to DDJCE Core Algorithm, where the experience (containing the current

state, action, reward, and also the next state) is collected and sent to the replay buffer to be stored.

Once the replay buffer is sufficiently filled, the “DDJCE Core Algorithm” extracts random batches

of samples, which are then used to train a specialized Branching Duelling Q-network (BDQN).

Once the specialized Q-network is trained, the DDJCE core algorithm uses it to obtain the mapped

Figure 3.2 High-level view of the proposed framework, its components and their interactions.

38

forwarding graphs for the received requests. In the following, we describe the various components

in technically greater detail and then present the structure of our utilized Q-network.

DDJCE Core Algorithm: Our proposed “DDJCE Core Algorithm,” which is illustrated in

Algorithm 1, performs the following tasks: (i) generating the experiences to be stored in the replay

buffer, (ii) randomly extracting the experience batches, (iii) training the BDQN network with these

batches, and (iv) calculating the mapped forwarding graph solutions using the trained Q-network

To be more specific, the algorithm starts with random initialization of the BDQN network (see line

1 of Algorithm 1). Also, we set a memory for storing the experiences (i.e., line 2 of Algorithm 1). All

received VNFRs are collected in ℛ (i.e., line 3 of Algorithm 1). Request index r and state index i are

then initialized (i.e., line 4 of Algorithm 1). Next, we select a random request r from ℛ and initialize the

loop index iter (i.e., line 7 of Algorithm 1). The loop index ‘iter’ is incremented at each step until a

predefined maximum number max_iteration of iterations (i.e., line 8 of Algorithm 1). We initialize the

mapped forwarding graph 𝑀𝑟 of request r to an empty list, whereas the auxiliary graph 𝐴𝑟 is initialized

with a copy of the dependency graph 𝐷𝑟 of request r (i.e., line 9 of Algorithm 1). Also, in order to set

the starting point to the ingress node of request r, we initialize the variable 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
0 to 𝑛𝑟,𝑠 (i.e., line 10

of Algorithm 1). The state 𝑠𝑖−1 is also built by making a 3-tuple < 𝐼𝐷𝑟 , 𝐴𝑟 , 𝑀𝑟 >. In line 12 of

Algorithm 1, we identify VNFs belonging to 𝐴𝑟 that has no outgoing arrows (i.e., does not depend on

any other VNFs) and collect them in set 𝐵𝑖. Moreover, the physical nodes that are ready to host at least

an element of 𝐵𝑖 are collected in the variable 𝑂𝑖 (i.e., line 13 of Algorithm 1). Similarly, all the possible

paths with a maximum length of Φ𝑚𝑎𝑥that connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
0 to the request egress node 𝑛𝑟,𝑑 are collected

in the variable ∅𝑖 (i.e., line 14 of Algorithm 1). We construct the 𝒜(𝑠𝑖−1) of possible actions in the

current state as follows (i.e., line 15 of Algorithm 1):

𝒜(𝑠𝑖−1) = 𝐵𝑖 × 𝑂𝑖 × ∅.

Following an ɛ-greedy strategy, the algorithm switches between the exploration and exploitation phases

(i.e., lines 16-17 of Algorithm 1). If we are in the exploration phase, a random action 𝑎𝑖 is selected as

follows (i.e., line 18 of Algorithm 1):

𝑎𝑖 =< 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑖 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑖 , ϕ𝑠𝑒𝑙𝑒𝑐𝑡
𝑖 >∈ 𝒜(𝑠𝑖−1).

39

On the other hand, if the algorithm is in the exploitation phase, we select the action that maximizes the

Q-value rather than selecting a random one (i.e., line 20 of Algorithm 1). Next, we update 𝐴𝑟 by

removing 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑖 and all its incoming links (i.e., line 22 of Algorithm 1). Moreover, we update 𝑀𝑟 by

appending 𝑎𝑖 to it (i.e., line 23 of Algorithm 1). Next, we calculate the reward using Eq. (3-14) which

requires not only the information of the updated 𝑀𝑟 and 𝐴𝑟 , but also estimations of other parameters

(e.g., resource utilization and demand data rate). Thus, the calculation of reward is done by a separate

component called “Reward Calculator,” which will be explained later on. In line 25 of Algorithm 1, we

set the state 𝑠𝑖 to < 𝐼𝐷𝑟 , 𝐴𝑟 , 𝑎𝑖 > and then increment the request counter iter and state counter i by

one. We then create a 4-tuple experience as follows:

40

< 𝑠𝑖−1, 𝑎𝑖, 𝑅(𝑠𝑖, 𝑎𝑖), 𝑠𝑖 > (3-15)

which is sent to the replay buffer to be stored (see line 26 of Algorithm 1). Next, the algorithm checks

whether the replay buffer contains enough experiences (i.e., line 27 of Algorithm 1). If it is filled with

enough experiences, a random batch of size β will be extracted and will be sent to the specialized Q-

network for training (i.e., line 28 of Algorithm 1). This process is repeated until 𝐴𝑟 becomes empty,

which indicates that all the VNFs and their dependency links are considered in 𝑀𝑟 and a candidate

solution for request r is obtained. The algorithm continues to generate further solutions for the same

request (i.e., lines 8-31 of Algorithm 1) until the number of iterations reaches a predefined threshold,

when we move on to the next request (i.e., lines 5-32 of Algorithm 1). This process is repeated until ℛ

becomes empty, meaning that all the given requests have been considered for training our specialized

Q-network, thus making it ready to generate desired joint composition and embedding solutions.

Figure 3.3 Overview of our Reward Calculator component and its interactions with SDA and NRUA.

41

Reward Calculator: Fig. 3.3 illustrates an overview of our Reward Calculator component. In our

design, reward represents the short-term consequence of a selected action in a given state. To that

end, our reward calculation relies on evaluating the mapped forwarding graph 𝑀𝑟 and the auxiliary

graph 𝐴𝑟 , which are updated after selecting 𝑎𝑡 in 𝑠𝑡 (see line 24 of Algorithm 1). After receiving

the updated mapped forwarding graph from DDJCE Core Algorithm, the “𝑀𝑟 Analyzer” inside

Reward Calculator identifies the used physical nodes and links (i.e., 𝒩′
𝑟 and 𝜀𝑟) as well as the

topology of 𝑀𝑟. The identified physical resources (i.e., 𝒩′
𝑟 and 𝜀𝑟) will be sent to the Network

Resource Utilization Analyzer (NRUA), which estimates their utilization values for the usage

period 𝑡 ≥ 𝑇0. Moreover, the corresponding request identifier 𝐼𝐷𝑟 is sent to Service Demand

Analyzer (SDA), which

estimates the corresponding initial entering data rate 𝑑̌𝑟,𝑠(𝑡) for the usage period 𝑡 ≥ 𝑇0. Having

the topology of 𝑀𝑟, the estimated initial entering data rate 𝑑̌𝑟,𝑠(𝑡) of service request r as well as

the ratio 𝑅𝑓𝑟,𝑖 of outgoing data rate to incoming data rate of VNFs in 𝐹𝑟 (available from VNFR

specification), our VNF Data Rate Computation Unit computes the amount of data rate that will

enter each VNF at time 𝑡 ≥ 𝑇0. Specifically, the output of the VNF Data Rate Computation Unit

is given by:

{𝑑̃𝑟,𝑖(𝑡) | 𝑇0 ≤ 𝑡, ∀𝑓𝑟,𝑖 ∈ 𝐹𝑟} (3-16)

where 𝑑̌𝑟,𝑖(𝑡) is the estimated data rate entering the VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 in 𝑀𝑟. The estimated data rate

entering each VNF 𝑓𝑟,𝑖 ∈ 𝐹𝑟 in the VNF-FG can be obtained by multiplying the estimated data rate

𝑑̌𝑟,𝑖−1(𝑡) of the previous VNF by the ratio 𝑅𝑓𝑟,𝑖 of outgoing to the incoming data rate of the

selected VNF. Receiving the estimated values, the next step for computing the reward value is to

validate the constraints 1, 2, and 3 given by Eq. (3-8)-(3-10) (see Fig. 3.3). Once the constraints

are validated, the reward is obtained using Eq. (3-14) and sent to DDJCE Core Algorithm for

further processing (see Algorithm 1). In the following, we describe NRUA and SDA in detail.

As shown in Figs. 3.2 and 3.3, the Reward Calculator interacts with two components, NRUA and

SDA. NRUA is responsible for estimating the resource availability of the nodes and links identified

by the Reward Calculator for the service usage time period 𝑡 < 𝑇0. Letting 𝒩′
𝑟 and ℇ𝑟 to denote

the sets of physical nodes and links identified by the Reward Calculator, the output of NRUA is

as follows:

42

{𝑢̃𝑝(𝑡), 𝑢̃𝑣,𝑧(𝑡)|𝑇0 ≤ 𝑡 , ∀𝑛𝑝 ∈ 𝒩𝓇
′ , ∀𝑒𝑣,𝑧 ∈ ℰ𝓇} (3-17)

where 𝑢̃𝑝(𝑡) and 𝑢̃𝑣,𝑧(𝑡) are the estimated resource utilization of node 𝑛𝑝 ∈ 𝒩
′
𝑟 and physical link

𝑒𝑣,𝑧 ∈ ℇ𝑟, for the service usage time period 𝑡 ≥ 𝑇0, respectively. The estimation in NRUA is

carried out by tracking and analyzing the traces available in dataset D1, which contains the past

observations of resource utilization of physical nodes and links for the pre-service usage time

period 𝑡 < 𝑇0. Formally stated, D1 contains the followings:

𝐷1 ∋ {𝑢𝑝(𝑡), 𝑢𝑣,𝑧(𝑡)|𝑡 < 𝑇0, ∀𝑛𝑝 ∈ 𝒩
′, ∀𝑒𝑣,𝑧 ∈ ℰ} (3-18)

Similarly, SDA estimates the initial data rate of a service request specified by the Reward

Calculator. Specifically, the output of SDA is as follows:

{𝑑̃𝑟,𝑠(𝑡) | 𝑇0 ≤ 𝑡 } (3-19)

 where 𝑑̃𝑟,𝑠(𝑡) is the estimated initial entering data rate of request r, which is carried out by

tracking and analyzing the traces available in dataset D2. Similar to D1, D2 contains the past

observations of the requested services' initial entering data rate for the pre-service usage time

period of 𝑡 < 𝑇0. Formally stated, D2 contains the followings:

𝐷2 ∋ {𝑑𝑟,𝑠(𝑡)| 𝑡 < 𝑇0, ∀𝑟 ∈ ℛ} (3-20)

3.3.4 Branching Dueling Q network with Action Filtering

Recall that a single action 𝑎𝑡 in our design contains three dimensions 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 , 𝑛𝑠𝑒𝑙𝑒𝑐𝑡

𝑡 , 𝑎𝑛𝑑 𝜑𝑠𝑒𝑙𝑒𝑐𝑡
𝑡 .

This makes our problem belong to the domain of multi-discrete action space problems [70]. It is

important to note that a DQN may have a large number of neurons in its output layer. This, as a

43

result, requires a huge amount of memory, thus leading to inefficient training [70]. Moreover, such

a simple structure is prone to overestimation and an unstable training process [70]. In the

following, after discussing these issues in more detail, we present our solution to overcome them.

Typically, the deep neural network in the DQL algorithm is responsible for estimating the Q value

Q(s, a) of a given state and action using a set of parameters 𝜃. Using the well-known Bellman

equation [20], the parameters of the Q-network are updated using the gradient descant update rule

formulated as follows:

θ𝑡+1 = θ𝑡 + α(𝑌𝑡
𝑄 − 𝑄(𝑠𝑡, 𝑎𝑡; θ𝑡)) ∇𝜃𝑡𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) (3-21)

Where

𝑌𝑡
𝑄 = 𝑅𝑡+1 + γmax 1𝑎 𝑄(𝑠𝑡+1, 𝑎; θ𝑡) (3-22)

which represents the target value in a conventional DQN algorithm. In Eq. 22, 𝑅𝑡+1 is the

immediate reward for taking action 𝑎𝑡 in state 𝑠𝑡 and α is the gradient step size. According to Eq.s

21 and 22, the parameters of the Q-network are updated using a target value, which is computed

using the same set of parameters 𝜃𝑡, causing an oscillated training, a problem known as moving

Figure 3.4 Architecture of the utilized BDQN enhanced with action filtering mechanism. The number of neurons of

each layer is shown on top of the layer.

44

Q-targets, which can lead to overestimation [20]. To tackle this, the widely used strategy proposed

by [21] is to use two Q-networks simultaneously: (1) an online network: a network with parameters

𝜃 and (2) a target network with parameter 𝜃’ where the two parameters are switched symmetrically

after passing the predefined steps in training. Accordingly, Eq. (3-22) is updated as follows:

𝑌𝑡
𝐷𝑜𝑢𝑏𝑙𝑒𝑄 = 𝑅𝑡+1 + γ𝑄(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎; θ𝑡); θ𝑡

′) (3-23)

It is proven that the method of using two Q-networks, also known as Double DQN (DDQN), leads

to better performance compared to conventional DQN methods [20]. However, it is still

inapplicable to our framework, as our problem has a large discrete multi-dimensional action space,

which makes it difficult to explore with conventional DQN or even DDQN networks [21]. To

overcome this issue, we adopt a Branching Dueling Q Network (BDQN) [70], which can be viewed

as a variant of the Dueling Q-network [81]. The key idea behind this is that for large action space

problems, the Q value can be estimated without redundant computations for low-/similar-valued

actions in a given state. For example, in our problem, all the actions that suggest using the already

placed VNFs as the next element in VNF-FG can be accounted as such low- and similar-valued

actions. To this end, the DQN structure is modified into an architecture with separate streams, each

stream corresponding to an action dimension as well as a specialized stream for sharing an

estimated (scalar) representation of state value denoted by V(𝑠𝑡). For instance, consider the multi-

dimensional action 𝑎𝑡 =< 𝑎1, … , 𝑎𝑑, … , 𝑎𝑁 > with N dimensions, where each action dimension

 𝑎𝑑 can have n discrete values 𝑎𝑑,1, … , 𝑎𝑑,𝑛. According to [70], instead of computing Q values

for each action, we can use Q values of each dimension (i.e., 𝑄𝑑(𝑠𝑡, 𝑎𝑑)), which can be obtained

as follows:

𝑄𝑑(𝑠𝑡, 𝑎𝑑) = 𝑉(𝑠𝑡) + (𝐴𝑑(𝑠𝑡, 𝑎𝑑) −
1

𝑛
∑ 𝐴𝑑(𝑠𝑡, 𝑎𝑑,𝑖)

𝑖=1,…,𝑛

) (3-24)

Where 𝐴𝑑(𝑠𝑡, 𝑎𝑑) is the advantage function representing the state-dependent value of the

dimension 𝑎𝑑 in 𝑠𝑡, which is a concept borrowed from the Dueling DQN architecture [70]. The

value of V(𝑠𝑡) and 𝐴𝑑(𝑠𝑡, 𝑎𝑑) are tuned simultaneously in the training process of BDQN.

The architecture of our proposed Q-network is shown in Fig. 3.4, where we further enhance the

BDQN architecture with an action space reduction technique called action filtering [71]. First, the

action filtering component decodes the current state 𝑠𝑡 to reconstruct its building components

𝐼𝐷𝑟 , 𝐴𝑟 , 𝑎𝑛𝑑 𝑀𝑟. Next, each component is investigated, and the set of invalid actions is identified.

45

Then, a corresponding binary action filtering matrix 𝔹𝑠𝑡of size d × n (d is the number of

dimensions and n being the number of possible actions in each dimension) is generated. We set

𝑏𝑖,𝑗 of 𝔹𝑠𝑡 to zero, if the corresponding action is invalid; otherwise, it is set to one. This matrix

will be injected into the network to explicitly modify the Q values corresponding to these actions.

For instance, consider 𝜎𝑟,|𝑀𝑟| =< 𝑓𝑟,3, 𝑛8, [𝑒7,8] > as the last element of the 𝑀𝑟 (given by Eq. (3-

7)) and 𝜑𝑖
𝑡 = [𝑒5,3, 𝑒 3,2] as a candidate path. Clearly, any action that contains 𝜑𝑖

𝑡 in its third

dimension should be marked invalid because 𝜑𝑖
𝑡does not originate from the node 𝑛8 and cannot

embed the connecting link between 𝑓𝑟,3 and the next selected VNF of 𝑀𝑟. Accordingly, the element

𝑏3,𝑖of matrix 𝔹𝑠𝑡will be set to be zero, indicating that the corresponding action is invalid.

3.4 Performance Evaluation

In this section, we evaluate our proposed algorithm. Our DDJCE core algorithm and its

interactions with the BDQN network are implemented in the OpenAI Gym toolkit [75] via a

customized environment. The simulation scenarios are con- ducted on Google Cloud Platform

using a VM instance with 10 vCPUs and 37 GB memory. As for the BDQN, we use Tensorflow

2.5.0 [76] to instantiate the network. Moreover, to ensure convergence and model efficiency, we

Figure 3.5 Substrate network topology comprised of forwarding and VNF-capable nodes and bidirectional links

[74] [78]

46

utilize Keras Tuner Framework [77] to automate the search for tuning the network hyper-

parameters.

3.4.1 Simulation Settings

We consider the substrate network topology shown in Fig. 3.5, which has widely been used for

performance evaluation in closely related works, e.g., [74], [78]. Accordingly, in our different

scenarios, we add/drop links/nodes to scale up/down the network when needed. Moreover, the

CPU and bandwidth capacities of nodes and links are set randomly in the range [1-5] GHz, and

[100 Mbps, 1 Gbps]. As for the resource requests and nodes utilization, to ensure a realistic

scenario, we use the recently published Google cluster trace data set [79][80] (published in 2020),

available with the platform Google BigQuery, which is an extension of the previously published

dataset from 2011. Detailed statistic analysis for this data set is accessible from [80]. Moreover,

the embedding costs related parameters 𝜁, 𝛾, Γ, and 𝜉 are set to 10, 5, 5, and 1000 (all in unit of

currency), respectively. We consider the same parameter settings for all the following simulation

scenarios unless otherwise stated.

3.4.2 Optimality Gap

Since finding the optimal solution for the joint composition and embedding problem is time-

consuming, we scale down the network shown in Fig. 3.5 into a small network with only nine

nodes and 26 links and perform an exhaustive search to find the optimal joint composition and

embedding for just a single service request of 4 VNFs with a dependency graph that has 46 degrees

of freedom. We used an exhaustive search approach to find the optimum solution to the cost

minimization problem formulated by Eq. (3-5) while satisfying Constraints 1, 2, and 3. To evaluate

the optimality gap of our proposed framework along with the impact of training on the results, we

conduct the comparison by collecting the solutions found by our framework as well as their

corresponding embedding costs every 500 episodes using Eq. (3-5).

Fig. 3.6 shows the optimality gap measured by the absolute relative difference (in percentage)

between the embedding cost achieved by our DDJCE framework and that of the optimal solution.

We observe from Fig. 3.6 that the optimality gap is significant during the initial 500 episodes.

Nevertheless, as the model keep training, the optimality gap decreases significantly. More

47

specifically, starting from an optimality gap of 200%, our proposed DDJCE framework reduces

the embedding cost down to 10.63% after it is sufficiently trained. An important aspect to note

here is that it takes more than 5 hours for the exhaustive search to find the optimal solution in such

a small scenario, which deals with only a single service request with only four requested VNFs,

while our framework requires 2 hours of training to reduce the optimality gap by 90%. Clearly,

considering multiple and more complex requests would compound the complexity, thus

prolonging the search process of the exhaustive search approach even more.

3.4.3 Convergence and Performance Comparison with other Deep Learning

Methods

In the following, we investigate the convergence behavior of our proposed DDJCE framework

against two other Deep Q- learning-based methods with different Q-network structures:

(i) DDQN [21] consists of two conventional Q-networks and (2) PBDQN [70], a Plain Branching

Dualing Q-network without any action filtering. While the DDQN is the most widely used

improvement version of DQN, the PBDQN is designed to improve the performance of DDQN

even further in environments with large discrete action spaces. To tune the hyper-parameters

automatically (including the learning rate), we have used Keras Tunner for all the three Q-

Figure 3.6 Optimality gap (in percentage) of our proposed DDJCE framework vs. the number of episodes.

48

networks: DDJCE, DDQN, and PBDQN. Moreover, they all receive the same batch size (30

samples in each batch) and use the same technique to draw samples from their individual

experience replay buffers. For this scenario, we use the standard substrate network shown in Fig.

3.5 as the DDQN could not converge in the scaled version of this network.

Fig. 3.7 illustrates the reward vs. time step for different methods. We observe from this figure

that the DDQN and PBDQN methods perform closely during the initial episodes, but they

eventually converge to different values. Also, despite the momentary superiority of DDQN

(around time steps 2500 to 5000), the PBDQN shortly surpasses the DDQN method, converging

to a higher reward. The extra training required for constructing a shared representation of states

could be the reason for such behavior during the initial time steps. This emphasizes the

importance of training for PBDQN, which continues to evolve into exploring even more

rewarding solutions, as opposed to DDQN, which seems to be trapped in local optima shortly

after 5000-time steps.

According to Fig. 3.7, the behavior of our proposed DDJCE is significantly different from the

DDQN and PBDQN methods, as it achieves a much higher reward within the initial 100 steps

and continues to evolve into even higher rewards. We believe that our deployed action filtering

technique is the key reason behind such superior performance of our proposed DDJCE

framework. This is because by decreasing the number of actions in each state, the search space is

reduced as well, enabling a more efficient search process toward better solutions.

Figure 3.7 Reward vs. time step for different methods.

49

3.4.4 Performance Comparison with Joint and Disjoint Composition and

Embedding Heuristics

Next, we evaluate the performance of our proposed DDJCE framework against three

benchmarks, namely, RCE [82], GCE [83], and 2SJCE [84]. While the RCE and GCE methods are

widely used disjoint approaches based on random and greedy heuristics, respectively, the 2SJCE

method relies on a two-stage joint embedding and composition approach. However, it does not

consider the variations of resource utilization and/or service demands and solely focuses on

stationary values of those parameters at the arrival time of VNFRs. While RCE chooses random

solutions from different possible VNF-FG embeddings, GCE takes the VNF requests along with

their VNF-FGs as the input and then searches for less costly embedding solutions. The 2SJCE

method follows a two-stage search procedure to obtain both the composition and embedding

solutions for each VNFR. For this scenario, we use the standard substrate network shown in Fig.

3.5 and run our simulations for different values of VNFR size (i.e., the average number of VNFs

in each VNFR) from 4 to 10. Fig. 3.8 illustrates the average embedding cost vs. VNFR size for

different methods plotted with their corresponding 95% confidence intervals. As shown in Fig.

3.8, the average embedding cost of the RCE method, which relies on a random composition and

embedding, is always significantly larger than other methods. This is because the only criteria

Figure 3.8 Average embedding cost vs. average VNFR size for four different methods.

50

considered in RCE are the feasibility of the resultant VNF- FG composition and embedding

solution. On the other hand, the average embedding cost of the GCE method is smaller compared

to that of the RCE method. However, we observe from Fig. 3.8 that the GCE method is associated

with wide error bars, which indicate that the embedding cost varies strongly across different

VNFRs. Specifically, while GCE may be able to find low-cost embedding solutions for a few

VNFRs, it fails to achieve such high-quality solutions for the others. Interestingly, we observe that

the minimum cost achieved by the GCE method is even smaller than that of DDJCE, though the

embedding costs of other requests are so large that on average GCE performs inferior in

comparison with our proposed method. This happens because our proposed DDJCE method aims

to obtain low-cost solutions while considering all the requests simultaneously, whereas the GCE

(and also RCE) investigate the requests sequentially, without considering the consequences of the

embedding outcome of a solution on those of others. On the other hand, as it can be observed in

Fig. 3.8, the 2SJCE method, which is a joint approach, performs similar to GCE, as it fails to

consider the fluctuations of dynamic parameters (i.e., resource utilization and service demand) and

their impact on embedding cost. Moreover, given that the 2SJCE method cannot estimate the

network condition, it fails to take advantage of the soon-to-be freed overloaded resources for

VNF-FG embedding.

3.4.5 Impact of VNF Dependency

In this scenario, we evaluate the impact of VNF dependency (measured in terms of average degree-

of-freedom (DoF)) on the performance of our proposed DDJCE method in comparison with RCE,

GCE, and 2SJCE benchmarks. Recall that a small value of DoF indicates a strong dependency

between VNFs of a request, whereas a high value shows a loose dependency between them (see

also Eq. (3-1)). Average embedding cost vs. DoF for the different methods under consideration is

shown in Fig. 3.9. There we observe that the average embedding cost of our proposed DDJCE

method decreases as the average DoF increases. The 2SJCE method also shows the same kind of

behavior, as it is able to decrease the average cost for an increasing DoF. This is because by

increasing DoF, the number of possible solutions for VNF-FG composition increases, which in

turn increases the chance of finding a VNF-FG that may lead to a less costly embedding solution.

51

Unlike DDJCE and 2SJCE method, we observe from Fig. 3.9 that increasing the DoF does not

have any meaningful impact on the performance of RCE and GCE methods, as they do not have

any particular strategy to explore through different VNF-FGs to decrease the embedding cost.

3.4.6 Scalability

In the following, we explore the scalability of our proposed DDJCE method. To do so, we increase

the size of the standard substrate network shown in Fig 3.5 to contain as many as 20 nodes and

88 links. Also, we consider a batch of 10 service requests, where the average number of VNFs for

each request is increased to 10. Under these conditions, we evaluate the cost improvement (in

percentage) of our proposed DDJCE framework with respect to the RCE, GCE, and 2SJCE

methods. Fig. 3.10 shows the cost improvement vs. the number of nodes. As shown in Fig. 3.10,

even though there is a slight drop in the improvement of our proposed DDJCE method with respect

to RCE method when the number of nodes increases from 7 to 10 (which may be due to the

chaotic behavior of the RCE method), the cost improvement gradually increases up to 95%. In

addition, we observe significant improvement (of 75%) with respect to the 2SJCE method,

indicating the beneficial impact of estimating the dynamic parameters, which is deployed in our

proposed DDJCE method. Such improvements demonstrate that the DDJCE framework is not only

Figure 3.9 Average embedding cost vs. average DoF for four different methods.

52

applicable in scaled scenarios but also becomes more effective in larger networks where more

embedding opportunities for a given VNF-FG are held. We believe that the reason for this

superiority is rooted in the sophisticated structure of the neural network that is used as a function

approximator in DDJCE framework, which automatically explores the large search space of the

given (scaled) scenario. We note that since the cost improvement achieved by our proposed DDJCE

method slightly varies in different runs of the algorithm, we reflect these variations via the shaded

regions shown in Fig. 3.10.

3.5 Conclusion

In this chapter, we have proposed a deep reinforcement learning-based joint VNF-FG

composition and embedding framework for the deployment of the next generation of CDNs. We

evaluate the performance of our proposed framework with different structures for Q-networks and

also conduct evaluations against the widely used joint and disjoint composition and embedding

methods. Compared to the benchmarks, the proposed framework improves the embedding cost up

to a 95%. Moreover, using the optimal solution found by the exhaustive search as the basis, we

investigate the optimality gap of our framework.

Figure 3.10 Total embedding cost improvement (in percentage) of our proposed DDJCE method vs. the number of

nodes, with respect to other methods. The shaded region shows the values obtained in different runs of our proposed

DDJCE method.

53

Chapter 4

4. Joint VNF-FG Function Scaling and Topology

Adaptation for CDN Deployment1

4.1 Introduction

After the initial deployment, to remain efficient, a CDN needs to be adapted, taking into account

the changing factors in its ecosystem. Moreover, considering the frequent changes in user demand,

application requirements, and traffic conditions, the performance degradation of an already

deployed content delivery service could be quite probable. In this regard, the initial VNF-FG of

the content delivery service and the service embedding map need to be modified and scaled, if

needed.

In this chapter, we propose a joint function scaling and topology adaptation method, which

supports not only the horizontal scaling but also VNF reordering and connectivity changes in a

given VNF-FG. Given that the VNF-FG composition and embedding problems have been proved

1 This chapter is based on a submitted paper:

- Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, and Roch Glitho, “Joint VNF-FG Function Scaling and Topology

Adaptation using Deep Reinforcement Learning” submitted to IEEE Transactions on Emerging Topics In Computing .

54

to be NP-hard [72][73], the complexity of the problem at hand (which can be considered as VNF-

FG re-composition and re-embedding) is also NP-hard. To tackle this complexity, we formulate

the problem as a Markov Decision Process (MDP) and solve it using our proposed Reinforcement

Learning (RL)-based framework, which relies on a Q-Learning approach [20]. Our proposed

framework aims to jointly execute function scaling and topology adaptation on the given VNF-

FG. To cope with the huge discrete multi-dimensional action space, we utilize a Deep Double Q

Network (DQN) and further enhance it with an action filtering mechanism [71]. This step is

instrumental in reducing the action space, thus helping explore the problem search space more

efficiently. Given the QoS threshold, our proposed framework identifies the necessary

modifications of the original VNF-FG and determines a proper embedding that minimizes the re-

embedding cost. We evaluated the performance of our proposed framework against different

network architectures and conducted performance evaluations comparing with both joint and

disjoint benchmarks. The results show that our proposed method achieves up to a 93% cost

improvement compared to the benchmarks.

The rest of this chapter is organized as follows. First, it presents the system model, followed by

the formulation of the targetted problem. Then, it discusses the proposed DRL-based joint function

scaling and topology adaptation. After that, it presents the simulation parameters and settings,

followed by the validation results. We will conclude this chapter at the end.

4.2 System Model

1) Substrate network: 𝐺 = (𝒩, ℰ), where 𝒩 and ℰ are the sets of |𝒩| physical nodes and |ℰ|

directed links, respectively. Each 𝑒𝑝,𝑞 ∈ ℇ represents the direct physical link connecting physical

nodes 𝑛𝑝 and 𝑛𝑞, ∀𝑛𝑝, 𝑛𝑞 ∈ 𝒩. Also, we let the set 𝒫𝑝,𝑞
𝑚𝑎𝑥 contain all the paths such as 𝜑𝑝,𝑞

connecting the node np to nq with a maximum path length of φmax hops. Each node 𝑛𝑞 ∈ 𝒩

has a processing capacity WCPU(np). Similarly, each link 𝑒𝑝,𝑞 ∈ ℇ has a bandwidth capacity

WBW(p,q).

2) VNF service request (VNFR): We assume that a VNF request is attributed to the following

parameters [26]:

55

1) Ingress node 𝑛𝑠 ∈ 𝒩 and egress node 𝑛𝑑 ∈ 𝒩, which are the physical nodes from which the first

VNF of the requested VNF-FG originates and at which the last VNF terminates, respectively.

2) Set 𝐹(𝑡) = {𝑓1, 𝑓2, … , 𝑓|𝐹(𝑡)|} of |𝐹(𝑡)| number of required VNFs at time t, along with their

dependency graph 𝐷, which is an acyclic directed graph representing the dependency relations

between VNFs. Note that in our formulation, all instances, regardless of their VNF types, are

indexed individually so that two different VNF instances could have similar types (e.g., load

balancer, firewall, etc.)

3) The entering data rate to the ingress node (i.e., 𝑛𝑠) denoted by 𝑑𝑠(𝑡). Correspondingly, 𝑑𝑖(𝑡)

denotes the entering data rate to VNF 𝑓𝑖 ∈ 𝐹(𝑡) at time t.

4) Ratio 𝑅𝑓𝑖 of outgoing data rate to incoming data rate of VNF 𝑓𝑖 ∈ 𝐹(𝑡).

5) Processing resource demand 𝑃𝑓𝑖 per bandwidth for VNF 𝑓𝑖 ∈ 𝐹(𝑡).

We assume that all the service request parameters explained above remain unchanged except for

the entering data rate 𝑑𝑠(𝑡), and the set of required VNFs 𝐹(𝑡), which may vary over time due to

an increase in service demand and function scaling, respectively.

3) Mapped forwarding graph: Let the mapped forwarding graph 𝑀(𝑡)be an ordered list of |𝑀(𝑡)|

distinct elements at time t. Each element < 𝜑𝑘,𝑗 , 𝑓𝑖 , 𝑛𝑗 , 𝜑𝑗,𝑝 >
t is a 4-tuple containing four

components 𝜑𝑘,𝑗, 𝑓𝑖, 𝑛𝑗 , and 𝜑𝑗,𝑝, where 𝜑𝑘,𝑗 ∈ 𝒫𝑘,𝑗
𝑚𝑎𝑥, 𝑓𝑖 ∈ 𝐹(𝑡), 𝑛𝑗 ∈ 𝒩, and 𝜑𝑗,𝑝 ∈ 𝒫𝑗,𝑝

𝑚𝑎𝑥. As

such, ℎ𝑡ℎ element of 𝑀(𝑡), which is 𝜎ℎ,𝑘,𝑗,𝑖,𝑝
𝑡 =< 𝜑𝑘,𝑗, 𝑓𝑖 , 𝑛𝑗 , 𝜑𝑗,𝑝 >

t, indicates that at time 𝑡, the

VNF 𝑓𝑖 ∈ 𝐹(𝑡) should be embedded in the physical node 𝑛𝑗 ∈ 𝒩 and connects to the previously

embedded VNF, through the embedding path 𝜑𝑘,𝑗. Moreover, the embedded VNF should be

connected to the next embedding node through the path 𝜑𝑗,𝑝. To sum up, each element of the 𝑀(𝑡)

specifies not only the hosting node for each VNF, but also its connections (i.e., entering and

outgoing paths) to the previous and next embedded VNFs. This structure, as a result, allows

formulating VNF-FGs with complex topologies. Moreover, we define 𝒩𝑀(𝑡) and ℰ𝑀(𝑡) as the

sets of nodes and links involved in the structure of 𝑀(𝑡), respectively.

4) Resource utilization: Resources of physical nodes and links are shared among different service

flows. Given that the resource consumption patterns of these flows are dynamic, the available

56

resources on the substrate nodes and links will change frequently. Let 𝑢𝑗(𝑡)and 𝑢𝑣,𝑧(𝑡) represent

the CPU and bandwidth utilization of node 𝑛𝑗 ∈ 𝒩 and link 𝑒𝑣,𝑧 ∈ ℇ in time t, respectively.

5) QoS model: Considering service throughput as our QoS parameter, let 𝑞𝑚𝑖𝑛 denote the

minimum acceptable throughput, which is defined as the minimum acceptable amount of outgoing

data rate of the service request from the egress node 𝑛𝑑 ∈ 𝒩. Let 𝑞𝑀(𝑡) estimate the end-to-end

throughput of the mapped forwarding graph 𝑀(𝑡) at time t. Since the graph topology of the 𝑀(𝑡)

can be decomposed into sequential and/or parallel structural patterns, 𝑞𝑀(𝑡) will be equal to the

minimum throughput provided by the physical nodes and links in 𝑀(𝑡) .

4.3 Problem Formulation

Let us consider the time 𝑡 = 𝑇0 as the critical time instant for the mapped forwarding graph

𝑀(𝑡), where 𝑞(𝑀(𝑡 = 𝑇0)) < 𝑞𝑚𝑖𝑛. We assume that this condition triggers the adjustment of

𝑀(𝑡). Let 𝑀1 and 𝑀2 denote the original and modified mapped forwarding graphs at time 𝑡 = 𝑇0,

respectively, which are given by:

𝑀1= M(𝑇0
−) and 𝑀1= M(𝑇0

+) (4-1)

Figure 4.1 (a) Original VNF-FG and its embedding to the substrate network, (b) joint function scaling

and topology adaptation techniques.

57

For illustration, let us consider the examples depicted in Figs. 4.1.a and 4.1.b, where a content

delivery service is realized via the deployment of three VNFs, namely, transcoder VNF 𝑓𝑡𝑟,

compressor VNF 𝑓𝑐𝑝, and cache VNF 𝑓𝑐𝑎. As illustrated in Fig. 4.1.a, the original VNF-FG of the

content delivery service with the three VNFs 𝑓𝑡𝑟, 𝑓𝑐𝑝, and 𝑓𝑐𝑎 is given. In this service, the

transcoding function should be executed before the compressing and caching functions, and this

order restriction is represented by the arrows from VNFs 𝑓𝑐𝑝 and 𝑓𝑐𝑎 to VNF 𝑓𝑡𝑟 in the given

dependency graph. Let us assume that node 𝑛5 is a forwarding node which is incapable of hosting

any VNF. Figure 4.1.a depicts the embedding map of the service, which specifies the allocation of

Table 4.1 Input parameters and Variables

58

physical resources to the VNF-FG. Consider a scenario in which the service demand increases and

function 𝑓𝑐𝑎 hosted on node 𝑛3 is particularly overloaded. Moreover, let us assume that the link

𝑒5,6 connecting nodes 𝑛5 to 𝑛6 is also congested. In a joint function scaling and topology adaptation

approach, as depicted in Fig. 4.1.b, a new instance of the overloaded VNF 𝑓𝑐𝑎 is instantiated,

followed by modifying the order of functions, thus altering the topology of the VNF-FG (see Fig.

4.1.b). This in turn, leads to a modified service embedding map, where not only a smaller amount

of load is carried by the congested link 𝑒5,6, but also the two instances of VNF 𝑓𝑐𝑎 can be executed

in parallel. Using the system model presented in Section 4.2, 𝑀1 and 𝑀2 can be presented as

follows:

M1 = [< [𝑒𝑠,2], 𝑓𝑡𝑟 , 𝑛2, [𝑒2,3] >,< [𝑒2,3], 𝑓𝑐𝑎, 𝑛3, [𝑒3,5, 𝑒5,6] >, < [𝑒3,5, 𝑒5,6], 𝑓𝑐𝑝, 𝑛6, [𝑒6,𝑑] >]
(4-2)

M2 = [< [𝑒𝑠,2], 𝑓𝑡𝑟, 𝑛2, [𝑒2,3] >,< [𝑒2,3], 𝑓𝑐𝑎, 𝑛3, [𝑒3,5, 𝑒5,6] >, < [𝑒2,3], 𝑓𝑐𝑝, 𝑛3, [𝑒3,4] >

,< [𝑒3,4], 𝑓𝑐𝑎, 𝑛4, [𝑒4,𝑑] >,< [𝑒3,5, 𝑒5,6], 𝑓𝑐𝑎, 𝑛6, [𝑒6,𝑑] >]

(4-3)

where 𝑒𝑠,2, 𝑒6,𝑑 and 𝑒4,𝑑 are the links connecting the ingress node 𝑛𝑠 to 𝑛2 and nodes 𝑛6 and

𝑛4 to egress node 𝑛𝑑, respectively. In Transforming 𝑀1 to 𝑀2 𝑏esides new paths and changes in

VNFs’ order (i.e., topology adaptation), a new instance of 𝑓𝑐𝑎 is also created so that the two

instances of this VNF are hosted on different nodes 𝑛5 to 𝑛4 (i.e., a realization of function scaling).

Cost 𝐶𝑇𝑜𝑡𝑎𝑙 of transforming the original mapped forwarding graph 𝑀1 to the modified mapped

forwarding graph 𝑀2 can be broken down into three partial costs as follows:

1- 𝐶𝛿1,2 which is the differentiated resource usage between 𝑀1 and 𝑀2 and is computed by

subtracting the accumulated physical resources (computing and bandwidth) consumption costs of

elements in 𝑀1 from that of 𝑀2. Moreover, to encourage consolidation and limit the number of

active computing resources (i.e., active physical nodes), the difference in the number of active

nodes between 𝑀1 and 𝑀2 is also accounted for in this partial cost.

2- 𝐶𝑛𝑒𝑤 which is the aggregation cost of instantiating new VNFs [85], which are those that are

newly added to 𝑀2 comparing to 𝑀1, and

3- 𝐶𝑚𝑖𝑔 which is the aggregation cost of state copying for migrating VNFs, which are those that,

in transitioning of 𝑀1 to 𝑀2, move from one physical node to the other node.

We then define our cost minimization problem as follows:

59

 min
𝑀2|𝑀1

(𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝛿1,2 + 𝐶𝑛𝑒𝑤 + 𝐶𝑚𝑖𝑔) (4-4)

Subject to Constraints 1-3, which are described in the following:

Constraint 1: This constraint ensures that the throughput of 𝑀2(𝑖. 𝑒. , 𝑞(𝑀2))satisfies the

minimum acceptable throughput threshold 𝑞𝑚𝑖𝑛:

𝑞𝑀2(t) ≥ 𝑞
𝑚𝑖𝑛 (4-5)

Constraint 2: The processing demands of VNFs in 𝑀2 should be smaller than the available

processing resources of their hosting nodes:

(∑ 𝑑𝑖(𝑡) × 𝑃𝑓𝑖∀𝑓𝑖|𝑓𝑖∈𝜅𝑀2,𝑗
)

𝑊CPU(𝑛𝑗)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩𝑀2

≤ 1 − 𝑢𝑗(𝑡)⏞
𝐴𝑣𝑎𝑖𝑙. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

 (4-6)

where 𝒩2 denotes the set of all physical nodes involved in 𝑀2 and 𝜅𝑀2,𝑗 denotes all the VNFs

embedded on node 𝑛𝑗 ∈ 𝒩𝑀2. The term 𝑑𝑖(𝑡) × 𝑃𝑓𝑖is the CPU demand of 𝑓𝑖 ∈ 𝜅𝑀2,𝑗. The right-

hand side of Eq. (4-6) represents the ratio of the available processing resources at the physical

node 𝑛𝑗 ∈ 𝒩𝑀2 at time 𝑡 > 𝑇0, while the left-hand side is the ratio of the cumulative requested

processing resources of all VNFs hosted by the node 𝑛𝑗 to the processing capacity of the node 𝑛𝑗 .

Constraint 3: Similar to Constraint 2, this constraint ensures that the bandwidth demands of

VNFs in 𝑀2 are smaller than the available bandwidth resources of the corresponding embedding

links in ℰ𝑀2 (i.e., the set of all the physical links involved in 𝑀2):

(∑ 𝑑𝑖(𝑡) × ℛ𝑓𝑖∀𝑓𝑖|𝑓𝑖∈𝜅𝑀2,𝑗
) ×

1

| 𝜑𝑗,𝑜𝑢𝑡|

𝑊BW(𝑒𝑣,𝑧)

∀𝑡 > 𝑇0, ∀𝑛𝑗 ∈ 𝒩𝑀2 , ∀(𝑣, 𝑧)|𝑒𝑣,𝑧 ∈ φ𝑗,𝑘, 𝑛𝑘 , 𝑛𝑗 ∈ 𝒩𝑀2

≤ 1 − 𝑢𝑣,𝑧(𝑡)⏞
𝐴𝑣𝑎𝑖𝑙. 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜

 (4-7)

where the right-hand side is the ratio of the available bandwidth resource at the physical link 𝑒𝑣,𝑧

∈ 𝜑𝑗,𝑘, where 𝜑𝑗,𝑘 is the path that, according to 𝑀2, connects node 𝑛𝑗 to 𝑛𝑘 (i.e., an outgoing path

from 𝑛𝑗). Also, | 𝜑𝑗,𝑜𝑢𝑡 | is the number of all outgoing paths from 𝑛𝑗 , including 𝜑𝑗,𝑘, which, as 𝑀2

dictates, connect 𝑛𝑗 to the next VNF host nodes. The left-hand side of Eq. (4-7) is the ratio of

cumulative bandwidth demand from the link 𝑒𝑣,𝑧 to its bandwidth capacity.

60

4.4 Deep Reinforcement Learning For Efficient VNF-FG Function

Scaling and Topology Adaptation

In the following, we present our proposed DRL-based solution. The search space of the

problem under study is not only large, but it can also grow exponentially as the problem size

increases. To tackle the problem in a computationally efficient manner, we first design an MDP

[20] framework tailored to our problem and then leverage it to propose our DRL solution, which

relies on Deep Q Learning (DQL).

4.4.1 System States, Actions, and Rewards

Let 𝑆 represent the set of states. The state denoted by 𝑠𝑖 =< 𝑀2, 𝐴 >
𝑖∈ 𝑆 contains two main

components: (i) The modified mapped forwarding graph 𝑀2 and (ii) an auxiliary graph 𝐴

specifying the VNFs in 𝐹(𝑡), including the new instances added as the result of function scaling,

which are not yet chained into 𝑀2. Furthermore, we denote 𝒜 as the total set of actions in the state

𝑠𝑖 ∈ 𝒮. The action 𝑎𝑗 =< φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

>∈ 𝒜(𝑠𝑖) is a 4-tuple containing the

following components: (i) the selected entering path φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 (i.e., the host node

of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) to 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗−1

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗−1

), (ii) VNF 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected as the next candidate

VNF in the modified mapped forwarding graph 𝑀2, (iii) physical node 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected to host

𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, and (iv) outgoing path φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 selected to connect 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) to

𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗+1

 (i.e., the host node of 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗+1

). After selecting action 𝑎𝑗 the system state will transition to

𝑠𝑖+1. As such, the element σ𝑖+1 = 𝑎𝑗, will be added to 𝑀2. Consequently, the auxiliary graph 𝐴

will be updated by omitting 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 indicating that this VNF instance is now considered in the 𝑀2.

Next, we design our reward function, which takes into account the cost and Constraints 1, 2, and

3 given by Eqs(4-4)(4-7). We define the reward 𝑅(𝑠𝑖, 𝑎𝑗) of selecting action 𝑎𝑗 ∈ 𝒜(𝑠𝑖) in state

𝑠𝑖 ∈ 𝒮 as follows:

𝑅(𝑠𝑖, 𝑎𝑗)

= {
−(𝐶𝑡𝑜𝑡𝑎𝑙 + Ω × |𝐴|) 𝐸𝑞𝑠. (4 − 5) − (4 − 7) 𝑎𝑟𝑒 𝑡𝑟𝑢𝑒,

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(4-8)

61

where

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶δ1,2 + 𝐶𝑛𝑒𝑤 + 𝐶𝑚𝑖𝑔 (4-9)

In Eq. (4-8), we assign a negative infinity value to the reward if, according to constraints 1, 2, and

3, 𝑀2 is not feasible; otherwise, the reward considers the total cost of transforming 𝑀1 to 𝑀2 (i.e.,

𝐶𝑡𝑜𝑡𝑎𝑙) along with the penalizing term Ω × |𝐴|, where Ω is the penalty coefficient and |𝐴| is the

number of VNF instances in ℱ(𝑡) that remain to be mapped.

4.4.2 Deep Q Learning for VNF-FG Function Scaling and Topology

Adaptation

The MDP components presented in Section 4.4.1 provide the required mathematical formalism

for applying Q-Learning, which is a widely used branch of reinforcement learning algorithms [20].

By successively updating the evaluation of the long-term quality (also known as the Q value) of

actions at each state, Q-Learning provides a simple yet effective way for an agent to learn how to

act optimally [20]. However, in most real-world problems with large state/action spaces, Q-

Learning becomes inefficient, as exploring all the states and taking all the possible actions is often

impossible [21]. In our designed MDP components, as presented in Section 4.4.1, action 𝑎𝑗 ∈

𝒜(𝑠𝑖) includes the selection of entering and outgoing paths (i.e., φ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and φ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

) for each

VNF-host node pair. Clearly, even in a small network, the number of paths could become

extremely large, thus leading to a very large action space. In such environments with huge

state/action spaces, a possible way for learning efficiently is to approximate the Q values of state

and actions [21]. To that end, using a Deep Neural Network (DNN) that estimates these Q values

(DQN) has proven to be effective [21], and it is now widely used in different domains under the

so-called deep reinforcement learning (DRL) label, also known as deep Q-Learning (DQL).

However, the use of nonlinear function approximations (such as DNN) can lead to unstable or

even diverge results [21]. This is due to the fact that the true values of the Q function used for

training, calculated by summation of the current reward and maximum Q value of the next state,

is a function of the Q value itself and thus vary by changes in the estimation of Q values.

Using two deep Q networks (also known as Double Deep Q-Learning or DDQN) can eliminate

the correlations between the true Q values and their estimations, thus stabilizing the results.

62

Figure 4.2 Schematic view of DQN-Selection network enhanced with action filtering technique.

In this work, we utilized two DQNs, namely, 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 with parameter θ𝑡 and 𝐷𝑄𝑁 −

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 with parameter 𝜃′𝒕. Both networks are fed with the same batch of experiences (where

an experience comprises a state, action, reward, and next state). Also, after a predefined number

of iterations, θ𝑡
′ is updated by the value of θ𝑡. In this setting, in exploiting phase, the actions are

selected by 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, whereas the output of 𝐷𝑄𝑁 − 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 is treated as the true

values for tuning of 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 parameter (i.e., θ𝑡) in backpropagation calculations.

Yet another effective technique for problems with huge action space is the so-called Action

Filtering [71], which can further reduce the action space. In this technique, in each state, the Q

values for irrelevant actions are explicitly set to zero. For instance, as discussed in Section 4.4.1,

in our problem, action 𝑎𝑗 =< ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

> comprises the entering and

outgoing paths (i.e., ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

). However, only a subset of paths, which can connect

the host nodes of two successive embedded VNFs (successive in accordance to 𝑀2), should be

considered as candidates for ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 and ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

. Also, the nodes that can not be reached within

a predetermined maximum number of hops from ingress or egress nodes should be excluded for

hosting of VNFs. In our framework, a separate action filtering entity in DQN-Selection receives

63

each state and identifies such low-value actions in that state, and correspondingly generates an

action filtering vector with size |𝒜|. This vector contains binary coefficients for each possible

action so that by multiplying to the output of the last layer of 𝐷𝑄𝑁 − 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 explicitly set the

Q values of irrelevant actions to zero. Figure 4.2 depicts a schematic view of 𝐷𝑄𝑁 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

with its state-input encoding and action filtering entity.

64

4.4.3 Joint Function Scaling and Topology Adaptation (JFSTA)

Algorithm

Algorithm 1 presents the pseudo-code of our proposed framework. The algorithm starts with

random initialization of the two Q networks, DQN-Selection and DQN-Evaluation. Then a

memory for storing the experiences is initialized (line 3 of Algorithm 1) while setting the main

loop and state iterating indices 𝑖𝑡𝑒𝑟 and 𝑖 as 1 and 0, respectively (line 4 of Algorithm 1). The loop

index 𝑖𝑡𝑒𝑟 is compared with a predefined maximum number max_iteration (line 5 of Algorithm

1). If loop index 𝑖𝑡𝑒𝑟 is smaller than max_iteration, the main loop is executed (lines 5-38). The

modified mapped forwarding graph 𝑀2, which is the desired output, is initialized by an empty list

while the auxiliary graph is initialized as 𝐴 = {𝐹(𝑡)|𝑡 ≤ 𝑇0}. Therefore, at this point (line 6), 𝐴

contains all the VNFs in the original mapped forwarding graph (i.e., the VNFs in 𝑀1). Next, the

overloaded VNFs in the original VNF-FG (i.e., set 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑) are identified. As such, 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑

contains all the VNFs of 𝑀1 that reside on the node with the lowest throughput (line 7 of Algorithm

1). Next, the minimum throughput condition (Constraint 1) is checked. If the minimum throughput

𝑞(𝑀2) of 𝑀2 is smaller than 𝑞𝑚𝑖𝑛 we try to modify 𝑀2. To that end, a random VNF 𝑓𝑟𝑎𝑛𝑑 is

selected from the set 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑. The selected VNF is actually a candidate for function scaling.

Next, the auxiliary graph 𝐴 is updated by adding a new instance of 𝑓𝑟𝑎𝑛𝑑. Note that to cover the

cases where more than one instance of 𝑓𝑟𝑎𝑛𝑑 is needed, 𝑓𝑟𝑎𝑛𝑑 is not dropped from 𝐹𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 so

that re-selecting 𝑓𝑟𝑎𝑛𝑑 in future iterations remains possible. Next, the state 𝑠𝑖 =< 𝑀2, 𝐴 > is built

(line 11 of Algorithm 1). At this point, our original problem is already downgraded to a smaller

problem of finding a properly mapped forwarding graph for VNFs inside 𝐴. 𝑀2 is then constructed

by considering all the VNFs specified by A (see the most inner WHILE loop presented by lines

12-36). In line 13, we identify the VNFs belonging to 𝐴 that, according to the dependency graph

(i.e., graph D), do not depend on any other VNFs in this set and collect them in the set 𝐵𝑖.

Moreover, the physical nodes that are ready to host at least one element of 𝐵𝑖 are collected in the

set 𝑂𝑖 (line 14 of Algorithm 1). Similarly, all the possible paths with a maximum length of ϕ𝑚𝑎𝑥

are collected in the set 𝑂𝑖 (line 15 of Algorithm 1). In line 16, 𝒜(𝑠𝑖), which is the set of all possible

actions in the current state (i.e., 𝑠𝑖), is constructed as 𝒜(𝑠𝑖) = 𝑂𝑖 × 𝐵𝑖 × 𝑂𝑖 × 𝑂𝑖.

65

Following an 𝜀-greedy strategy, the algorithm switches between the exploration and

exploitation phases. In the exploration phase, a random action 𝑎𝑗 =<

ϕ1,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, 𝑛𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

, ϕ2,𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

>∈ 𝒜(𝑠𝑖) is selected. In the exploitation phase, the algorithm

chooses the action that, according to DQN-Selection, maximizes the Q-value (line 21 of Algorithm

1). Next, 𝑀2 is updated by appending 𝑎𝑗 (lines 23 of Algorithm 1). 𝐴 is also updated by removing

the VNF instance 𝑓𝑠𝑒𝑙𝑒𝑐𝑡
𝑗

 indicating that it is already considered in 𝑀2 (line 24 of Algorithm 1).

Next, we calculate the reward using Eq. (4-8). Then the next state 𝑠𝑖+1  =   < 𝑀2, 𝐴 > will be

constructed. Then, the experience < 𝑠𝑖, 𝑎𝑗, 𝑅(𝑠𝑖, 𝑎𝑗), 𝑠𝑖+1 >, will be sent to the replay buffer to be

stored (see line 27 of Algorithm 1). Next, the algorithm checks whether the replay buffer contains

enough experience (line 28 of Algorithm 1). If so, a random batch of size β will be extracted and

sent to DQN-Selection and DQN-Evaluation for training (line 30 of Algorithm 1). A forward pass

to DQN-Evaluation provides the true values for DQN-Selection, which will be used for parameter

tuning of this Q network (lines 31 and 32 of Algorithm 1). If the replay buffer does not contain

enough experiences, the batch extraction and training will be postponed to future iterations.

Increasing the state index 𝑖 by one (line 34 of Algorithm 1), this process is repeated until 𝐴 becomes

empty, which indicates that all the VNFs in 𝑀1 along with the new instances are now considered

in 𝑀2. If the throughput of the constructed 𝑀2 is larger than 𝑞𝑚𝑖𝑛, 𝑀2 is a candidate solution. The

algorithm continues to generate further solutions until the number of iterations reaches a

predefined threshold, indicating that the training of Q-networks is completed.

4.5 Performance Evaluation

In the following, we evaluate the performance of our proposed algorithm, which has been

implemented using the OpenAI Gym toolkit [72] via a customized environment. The simulations

were conducted on a Google Cloud Platform using a VM instance with 10 vCPUs and 37 GB of

memory. For implementing the Q networks, we used Tensorflow 2.5.0 [76]. To ensure

convergence and model efficiency, we utilized the Keras Tuner Framework [77] to automate the

tuning of the hyper-parameters.

In our evaluations, we have considered the substrate network topology that is shown in Fig. 3.5

[74][78]. This substrate network topology consists of 15 nodes (including forwarding and VNF-

capable node) and 52 bidirected links. Accordingly, in our scenarios, we add/drop links/nodes to

66

scale up/down this substrate network as needed. The CPU and bandwidth capacities of nodes and

links were set randomly in the range [1-5] GHz and [100 Mbps, 1 Gbps], respectively. As for the

resource requests and node utilization, to ensure a realistic scenario, we used values proportional

to the recently published Google cluster traces [79] available with the platform Google BigQuery.

The number of VNF instances in the original VNF-FG is selected in the range [3, 10]. The

embedding map of the original VNF-FG is also set randomly. In these settings, for each episode

of our simulation scenario, a random substrate node of the original embedding map is selected as

the overloaded node (i.e., the service throughput bottleneck) and, consequently, the VNFs hosted

on this node are considered candidates for the function scaling. Moreover, to avoid exploding the

action size, we limit the maximum number of instances and number of branches (i.e., number of

entering/outgoing paths to/from each VNF hosting node) to 2 and 3, respectively. The cost of new

instantiation and state copying of a single VNF is set to 100 and 10 (in unit of currency),

respectively. The costs of consuming a unit of CPU and bandwidth are 10 and 5 (both in unit of

currency), respectively.

4.5.1 Optimality Gap

To evaluate the performance of our proposed JSTAF algorithm against the optimal solution,

we consider a small-size problem instance. To do so, we select a subset of the substrate network

shown in Fig 3.5, which consists of 9 nodes and 26 bidirected links. We use the exhaustive search

approach to find the optimal solution of joint function scaling and topology adaptation of three

randomly composed and embedded VNF-FGs, each comprising 5 VNFs. Figure 4.3. depicts the

gap (measured in terms of the absolute relative difference in percentage) between the solutions

found by our algorithm in every 700 episodes for different learning rates of 1.0, 0.1, 0.01, 0.001,

and the average cost of the optimally modified VNF-FGs. As shown in the figure, the value of the

learning rate has a significant impact on the optimality gap and its convergence. More specifically,

higher values of learning rate (i.e., between 0.1 and 1.0) lead to poor and diverged results. This

happens mainly because with the large values of the learning rate, rather than reaching the exact

optimal values, the parameters of the neural network oscillate around these optimal settings on

each update. On the other hand, too small values of learning rate (i.e., below 0.001) could lead to

a prolonged convergence. We observe in Fig. 4.3 that the optimality gap of the learning rate of

0.001 is trapped in local optima, thus hitting a plateau at 300%.

67

Figure 4.3 Optimality gap (in percentage) of our proposed JFSTAF framework vs. the number of episodes.

This demonstrates that the gradient descent algorithm used in our proposed JFSTAF algorithm is

very sensitive to the learning rate parameter, which can be tuned carefully. As suggested by our

obtained results shown in Fig. 4.3 we set the learning rate to 0.01 from now on. We also observe

from Fig. 4.3 that the gap is significant during the initial 700 episodes. This observation is not

surprising since in the initial episodes, the JFSTAF algorithm merely explores random solutions.

As the number of episodes grows, the optimality gap gradually decreases. More starting, starting

with an optimality gap of 500%, our JFSTAF algorithm reduces the gap down to 33% after being

sufficiently training. An important consideration here is that the exhaustive search method takes

more than 7 hours to find the optimal solutions for the considered small-size VNF-FGs, whereas

it takes our proposed JFSTAF algorithm about 2 hours to be sufficiently trained until it reduces

the optimality gap by 80%. This highlights the scalability of our proposed algorithm, especially

for large-size problem instants and more complex VNF-FGs.

68

4.5.2 Convergence and Performance Comparison with Other Deep

Learning Network Architectures

Figure 4.4 Total cost vs. episode for different deep Q-Learning architectures.

To evaluate the convergence performance of our proposed VNF-FG Joint Function Scaling and

Topology Adaptation Framework (JFSTAF) and its architecture design choices, we compare it

with two widely used and classical Q-network architectures: (i) DQN-AF: a single Q-network

[86] with action filtering entity and (ii) CDDQN: a Conventional Double Deep Q network without

action filtering [21]. We have fed all three Q-networks JFSTAF, DQN-AF, and CDDQN with the

same batch size of 30 samples and used the same technique to draw samples from their individual

experience replay buffers. Figure 4.4 depicts the convergence performance of different methods.

We observe from the figure that the DQN-AF method performs poorly compared to other methods

JFSTAF and CDDQN. More specifically, even after 20,000 episodes, the DQN-AF method

converges to a very large cost value of around 1500 unit of currency. This is a direct consequence

of the limitation of a single Q-network because the Q network is trained by its own Q value

estimations. On the other hand, the CDDQN and JFSTAF methods converge to almost the same

cost value. However, it is evident from Fig. 4.4 that our proposed JFSTAF method converges at a

higher rate (around episode 8000) compared to the CDDQN method. This demonstrates the

empowering impact of the action filtering technique, which reduces the action size efficiently by

identifying more valuable actions, thus allowing for faster convergence.

69

4.5.3 Performance Comparison with Disjoint Method

Figure 4.5 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with disjoint methods).

Next, we examine the performance gains of our JFSTAF in comparison with heuristic-based

function scaling-only and topology adaptation-only methods. Since greedy and random heuristics

are widely used in the literature [82], [83], [3] for comparison, we design a Greedy-BestFit

Function Scaling-Only (GBFSO) [83] and a Random-FirstFit Topology Adaptation-Only

(RFTAO) [82] algorithms. In our design, the GBFSO algorithm increases the number of

overloaded VNF instances (i.e., the VNFs that are hosted on the overloaded substrate node in the

original mapped forwarding graph) to the maximum possible number of instances per VNF (i.e.,

3 in our scenario) and embed them in a way that it imposes the least possible embedding cost using

the best-fit approach. The RFTAO algorithm, on the other hand, randomly reorders the existing

VNF instances while respecting the dependency graph and embeds them to the nearest available

nodes from their original host using the first fit approach. Moreover, in our simulation, we realized

two scenarios, A and B. In scenario A, the minimum acceptable throughput is increased by 20%,

whereas in scenario B, an 80% increase has been made to the minimum acceptable throughput.

Figure 4.5 illustrates the total cost vs. the number of VNFs in the original VNF-FGs. In this

figure, two sets of curves are depicted. The solid curves represent scenario A (where the minimum

acceptable throughput is increased by 20%), whereas the dashed curves represent Scenario B

(where an 80% increase has been made to the minimum acceptable throughput). Clearly, satisfying

the higher minimum throughput requires more resources, thus imposing higher costs for all

algorithms under consideration. However, we observe from Fig. 4.5 that our proposed JFSTAF

70

algorithm outperforms the two disjoint methods in both Scenarios A and B for a given number of

VNFs increasing from 4 to 10. This highlights the beneficial impact of the joint consideration of

function scaling and topology adaptation in cases with divergent requests' parameters. Specifically,

according to Fig. 4.5, our proposed JFSTAF achieves a performance gain of up to 73% and 93%

compared to the RFTAO and GBFSO methods, respectively. Moreover, according to Fig. 4.5,

GBFSO imposes higher costs compared to the RFTAO algorithm. This happens because even if

the most efficient embedding solution has been selected for the modified VNF-FG, the GBFSO

algorithm always maximizes the number of VNF instances, thus leading to the consumption of

more resources. The results also show that the random ordering of VNFs (without any function

scaling) in the RFTAO algorithm leads to a high cost. This is mainly due to the fact that reordering

the VNFs in the VNF-FG results in the utilization of new paths, thus increasing the resource

consumption cost as well as the state copying costs. Finally, we observe that adding 6 VNFs to the

original VNF-FG makes the costs of the RFTAO and GBFSO algorithms (averaged over Scenarios

A and B) about five times larger. By contrast, our proposed JFSTAF algorithm experiences a

maximum of only 3.2 times increase in the total cost.

4.5.4 Performance Comparison with a Joint Method

Figure 4.6 Number of active physical nodes vs. number of VNFs in the original VNF-FG (performance comparison

with a joint method).

71

Figure 4.7 Total cost vs. number of VNFs in the original VNF-FG (performance comparison with a joint method).

Given that there is no existing work on joint function scaling and topology adaptation, we

implement a random-based joint method as our benchmark, where the order, connectivity, and the

number of VNF instances are randomly modified, and the first feasible mapped forwarding graph

(according to Eqs. (4-5)-(4-7)) is selected as the solution. We refer to this method as the random-

based joint approach and compare its performance with our proposed JFSTAF algorithm in terms

of the number of active physical nodes for Scenarios A and B, explained in Section 4.4.3. Figure

4.6 illustrates the number of active physical nodes vs. the number of VNFs in the original VNF-

FG. Clearly, having a higher acceptable minimum throughput enforces both methods to place VNF

instances on different nodes to encourage parallel executions, which leads to a higher throughput.

Nevertheless, as shown in Fig. 4.6, our proposed JFSTAF algorithm requires a smaller number of

active nodes in both Scenarios A and B, mainly because it directly takes into account this parameter

in its cost model (i.e., see Eq. (4-4)). The random-based joint benchmark, on the other hand,

scatters the VNF instances across existing physical nodes arbitrarily since it ignores the impact of

the number of active physical nodes on the total cost in its search process.

Finally, the total cost vs. the number of VNFs in the original VNF-FGs for the two joint methods,

random based and JFSTAF, in Scenarios A and B is depicted in Fig 4.7. As shown in the figure,

our proposed JFSTAF algorithm outperforms the random-based joint benchmark in both Scenarios

A and B for a given number of VNFs in the original VNF-FG. We note that for the small number

72

of VNFs in the original VNF-FG, the total costs of both methods are almost the same in both

Scenarios A and B. This is because there are not many choices for reordering of VNFs, as the

number of VNFs is too small. Also, the choices for function scaling are rather limited. On the other

hand, as the number of VNFs increases, the difference between our proposed JFSTAF method and

the random-based joint method becomes significant, achieving a maximum cost improvement of

60%.

4.6 Conclusions

In this chapter, we studied the VNF-FG scaling problem, which arises from changes in user

demand, application requirements, and traffic conditions. To that end, we proposed our joint

function scaling and topology adaptation method, which supports not only the horizontal scaling

but also VNF reordering and connectivity changes in a given VNF-FG. Converting the problem to

an MDP framework, we have designed state, action, and reward components accordingly. To

tackle the issue with a large state/action space, we approximate Q values by using two Deep Q

networks while applying an action filtering technique to further reduce the size of the action space.

We evaluated the performance of our proposed framework against different network architectures

and conducted performance evaluations comparing with both joint and disjoint benchmarks. The

results show that our proposed method achieves up to a 93% cost improvement compared to the

benchmarks.

73

Chapter 5

5. Content Placement for CDN1

5.1 Introduction

Once a CDN is deployed, different parameters should be optimized to ensure efficient

operation. To that end, consider an edge-based CDN with caches close to end-users. Even though

utilizing edge caches and bringing the contents closer to end-users potentially provide increased

QoS, it also imposes costs for CDN providers. For example, the contents might be needed to

migrate between edge nodes after their initial placement. Making the content migration decision

is challenging since it corresponds to different costs such as content uploading\downloading costs

and bandwidth occupation costs. Moreover, the edge cache's characteristics, such as their specific

cost model, limited capacity, and the possibility to be mobile, made the initial content placement

and migration decisions complex. Moreover, in a CDN that delivers contents of low- or high

priority, the migration decisions would be even more challenging because the cost model and the

1 This chapter is based on the following published papers:

 - Sepideh Malektaji, Somayeh Kianpisheh, and Roch Glitho,“Purging-Aware Content Placement in Fog-Based Content Delivery

Networks.” In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp. 1-3. IEEE, 2018

- Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, and Somayeh Kianpishe. “Deep Reinforce-

ment Learning-based Content Migration for Edge Content Delivery Networks with Vehicular Nodes.” IEEE Transac-

tions on Network and Service Management 2021.

74

acceptable QoS level for high-priority content might not be the same as those for low-priority

contents.

This chapter proposes a content migration method for edge content delivery networks with

vehicular nodes. In such CDNs, local caches can offload their contents to neighboring edge caches

whenever feasible instead of removing them when fully occupied. This process ensures that more

contents remain in the vicinity of end-users. We propose a deep reinforcement learning approach

to selecting which contents to migrate and to which neighboring cache to migrate while

minimizing the corresponding cost. Our simulation scenarios realized up to a 70% reduction of

content access delay cost compared to conventional strategies with and without content migration.

The remainder of this chapter is organized as follows: we first provide the system model and

present our optimization formulation. We then present our proposed DRL-based content migration

method in detail, followed by the performance evaluation of the framework. Finally, the

conclusion will be provided for this chapter in the last subsection.

5.2 System Model

Figure 5.1 illustrates a high-level view of our system model with an example of the problem

under study. In Fig. 5.1, certain mobile caches, such as autonomous vehicles in an area (referred

to as targeted caches), send their requests for high-priority contents to the CDN controller. These

high-priority contents could be HD maps and are denoted by 𝐶High. Some targeted mobile caches,

such as vehicle ‘A’ in Fig. 5.1, may already be fully occupied with low-priority contents denoted

by 𝐶Low. This condition triggers our proposed algorithm to find a desirable solution. The content

migration algorithm would free up enough space in target caches to accommodate high-priority

contents. However, instead of dropping the low-priority contents, the algorithm provides a new

placement for them so that the low-priority contents migrate to nearby available caching resources

and thus remain in the vicinity of the target caches. Such a content migration consumes resources

both from the host and the destination node. It also consumes scarce bandwidth resources and thus

is not cost-free. Our algorithm considers these costs and accordingly proposes a low-cost content

migration solution. It also determines a low-cost delivery strategy for high-priority content from

edge caches to target caches.

75

For example, in Fig. 5.1, the content migration solution could be as follows: Assume a low-

priority content 𝐶Low fully occupies vehicle ‘A’'s mobile cache. However, vehicle ‘A’ needs to

cache a high-priority content 𝐶High. Considering the different migration solution costs, the

algorithm could come up with the following strategy: The low-priority content 𝐶Low cached in

vehicle ‘A’ should be migrated to neighbor cache ‘B’ via a vehicle-to-vehicle (V2V) link [87].

This would free up enough space in the cache of vehicle ‘A’ to store 𝐶High. As for the high-priority

content delivery strategy, fixed cache ‘F’ can deliver 𝐶High to mobile cache ‘A’ via a vehicle-to-

infrastructure (V2I) link [87]. The received high-priority content 𝐶High can then be delivered from

vehicle ‘A’ to the other targeted caches such as vehicle ’D’ via a V2V link. This example is valid

based on the assumption that vehicle ‘A’ and both vehicles ‘B’ and ‘D’ stay within the coverage

ranges of fixed cache `F' and vehicle `A', respectively, long enough for the contents to be

transferred successfully. We note that any other migration and delivery strategies could impose a

higher cost on the system. In the following, we present the modeling of our considered content

migration problem, followed by an explanation of the cost calculation for content migration.

Figure 5.1 System view and an example of an edge-based CDN with vehicular nodes

76

Edge Caches: we consider a CDN system that consists of mobile and fixed edge caches as

well as CDN cloud servers. Let 𝛭 = {𝑒𝑗 }𝑗=1
𝑀
 and 𝐹 = {𝑒𝑓 }𝑓=1

𝐹
 denote the sets of mobile and

fixed caches with a total number of M and F caches, respectively. The total set 𝐸 = 𝑀 ∪ 𝐹 consists

of all the fixed and mobile caches, consisting of a total of 𝑁 = 𝑀 + 𝐹 edge caches. Each cache

𝑒𝑖 ∈ 𝐸 has limited caching and processing capacities denoted by 𝐿𝑠𝑡𝑜𝑟(𝑒𝑖) and 𝐿𝑝𝑟𝑜𝑐(𝑒𝑖)

respectively.

Coverage regions of caches: Each cache (fixed or mobile) 𝑒𝑖 ∈ 𝐸 has a circular coverage

region with a diameter ℓ𝑖. The coverage area of fixed caches is usually larger than mobile caches,

and it can cover a segment of a bidirected road or an intersection of the road. We denote the set of

fixed caches that have a road intersection in their coverage as 𝐹+and those that only cover straight

segments of roads as 𝐹−. Note that the total set of fixed edge caches is 𝐹 = 𝐹+ ∪ 𝐹−.

Locations and mobility of caches: Let 𝑙𝑖(𝑡) be the location of the cache 𝑒𝑖 ∈ 𝑀 at time t,

and 𝑙𝑓 be the location of the fixed cache 𝑒𝑓 ∈ 𝐹. The velocity of mobile cache 𝑒𝑖 ∈ 𝑀 at time t, is

denoted by 𝑣𝑖(t). For the movement of mobile caches, we adopt a probabilistic model, where

mobile caches follow a probabilistic approach in the selection of their direction in a grid-like

environment. At each intersection, the mobile cache chooses to keep moving in the same direction

or to change direction. The probability of going straight is denoted by 𝜇 𝑆 while taking a left or a

right occurs with the probability of 𝜇 𝐿 and 𝜇 𝑅, respectively.

Contents: Contents in the considered CDN system have either low or high priority. Let

𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝐶𝐿𝑜𝑤(𝑡) denote the high- and low-priority content sets with sizes of size(𝐶𝐿𝑜𝑤(𝑡)) and

size(𝐶𝐻𝑖𝑔ℎ(𝑡).), respectively. 𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝐶𝐿𝑜𝑤(𝑡) contain |𝐶𝐿𝑜𝑤(𝑡) | and |𝐶𝐻𝑖𝑔ℎ(𝑡)| number of

individual contents denoted as 𝑐ℎ
ℎ𝑖𝑔ℎ

∈ 𝐶𝐻𝑖𝑔ℎ(𝑡) and 𝑐𝑙
𝑙𝑜𝑤 ∈ 𝐶𝐿𝑜𝑤(𝑡), respectively. Following the

above-mentioned notations, 𝐶(𝑡) = 𝐶𝐿𝑜𝑤(𝑡) ∪ 𝐶𝐻𝑖𝑔ℎ(𝑡) denotes the total contents at the edge caches

at time t, where |𝐶(𝑡)| represents the total number of individual contents 𝑐𝑘 ∈ |𝐶(𝑡)|, and size(𝐶(𝑡))

is the total size of the set 𝐶(𝑡) in bytes.

Requests: Let 𝑅𝑘,𝑖(𝑡) denotes the set of requests for content 𝑐𝑘 ∈ 𝐶(𝑡) received by cache

𝑒𝑖 ∈ 𝐸 at time 𝑡. |𝑅𝑘,𝑖(𝑡)| also denotes the exact total number of such requests at time t. These

requests might come from the users in coverage of 𝑒𝑖 or requests of other caches redirected to it.

We assume each request needs W processing units for fulfillment. Therefore 𝑅𝑒𝑞𝑀𝑎𝑥 (𝑒𝑖) =

77

𝐿𝑝𝑟𝑜𝑐(𝑒𝑖)

𝑊
 specifies the maximum number of requests that 𝑒𝑖 can serve simultaneously given that it

has the requested content.

Target caches: In this paper, we label a mobile cache that must locate high-priority content

as ‘Target Cache’. One example of such mobile caches is autonomous vehicles that need to

repeatedly cache an updated version of the HD maps (i.e., high-priority contents) [87]. Let 𝑄(𝑡) =

{𝑒𝑞 }𝑞=1
𝑄
 denotes the set of target caches for contents 𝐶𝐻𝑖𝑔ℎ(𝑡). Note that the set of target caches

can change in time. If at least one target cache in the set 𝑄(𝑡) does not have enough free storage

to accommodate 𝐶𝐻𝑖𝑔ℎ(𝑡), then the content migration strategy should be applied. As a result of

applying content migration, a new placement solution for existing low priority contents will be

obtained where target caches free space to store the high priority contents. Moreover, our algorithm

also determines the best delivery strategy for high-priority content. Our proposed algorithm also

determines the best delivery strategy for the high-priority content. Note that, as mentioned earlier,

we assume a hierarchical structure in CDN caches so that the contents first arrive at fixed caches

(i.e., RSUs) and from there are distributed to mobile caches. Thus, the delivery strategy for high-

priority content considers the transmission of 𝐶𝐻𝑖𝑔ℎ(𝑡) from fixed caches to target caches.

Delay: The average communication delay 𝐷𝑖,𝑗(𝑡, 𝐵) for transmitting a data of length B (in

bytes) from the edge cache 𝑒𝑗 to 𝑒𝑖, where 𝑒𝑗 and 𝑒𝑖 ∈ 𝐸 at time t is estimated as follows

𝐷𝑖,𝑗(𝑡, 𝐵) = {

0 𝑖𝑓 𝑖 = 𝑗
𝐵

£𝑖,𝑗(𝑡)
+ 𝜏𝑖,𝑗 𝑖 ≠ 𝑗,

 (5-1)

where £𝑖,𝑗(𝑡) and 𝜏𝑖,𝑗 are the data rate and propagation delay between edge cache 𝑒𝑖 to 𝑒𝑗 at time

t, respectively. Further, we model the average communication delay between the edge caches and

remote cloud server as a fixed value 𝑑∞(which is dominated by the propagation delay, assuming

that the remote cloud server is located hundreds of miles away).

Power consumption and bandwidth occupation: Migrating contents from one edge cache

to another consumes electrical power, as the source and destination edge caches need to upload

and download the content, respectively. We define 𝑔𝑖 and 𝑝𝑖as the power consumption cost on

edge cache 𝑒𝑖 for uploading and downloading one byte, respectively. In addition, network

bandwidth will be occupied while migrating the contents. we denote ∅ as the bandwidth

occupation cost for transmitting one byte for one unit of distance in the edge network.

78

Table 5.1 Input Parameters and variables

79

5.3 Optimization Formulation for Content Migration

In this section, we introduce the set of input parameters and decision variables considered in

our formulation and then explain our objective function and constraints. Table 5.1 delineates some

of the important inputs and variables used in our formulation.

1) 𝑦𝑖,𝑙(𝑡): A binary decision variable which is 1 when low priority content 𝑐𝑙
𝑙𝑜𝑤 is in the edge

cache 𝑒𝑖 at time t (otherwise, it is 0).

2) 𝑥𝑓,ℎ(𝑡): A binary decision variable which is 1 when high priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

is in the fixed

edge cache 𝑒𝑓 at time t (otherwise, it is 0).

3) 𝑧𝑖,𝑗,𝑘(𝑡): An integer decision variable between 0 and 𝑅𝑒𝑞𝑀𝑎𝑥 (𝑒𝑖). This variable identifies the

number of requests for content 𝑐𝑘 ∈ 𝐶(𝑡) redirected from 𝑒𝑗 to 𝑒𝑖 at time t. Note that for the special

cases where 𝑖 = 𝑗 the parameter 𝑧𝑖,𝑗,𝑙(𝑡) represents the number of requests for content 𝑐𝑘 which

are received and also directly processed by 𝑒𝑗 itself.

5.3.1. Content Migration Cost

Content migration cost at time t consists of three partial cost components, namely ∁𝟏(t),

 ∁𝟐(𝒕) and ∁𝟑(𝒕). The first partial cost, ∁1(𝑡), is the cumulative cost of power consumption

associated with uploading contents from edge caches, given by

∁1(𝑡) = ∑ ∑ Λ𝑙,𝑖 . (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

|𝐶𝑙𝑜𝑤(𝑡)|

𝑙=1

𝑁

𝑖=1

 (5

− 2)

Where

(A − B)+ = {
1, 𝑖𝑓 𝐴 > 𝐵

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (5

− 3)

For each content 𝑐𝑙
𝑙𝑜𝑤, (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡)) is equal to 1 when content𝑐𝑙

𝑙𝑜𝑤 is uploaded from 𝑒𝑖.

In this case, the non-negligible cost of Λ𝑙,𝑖 = 𝑠𝑖𝑧𝑒(𝑐𝑙
𝑙𝑜𝑤). 𝑔𝑖 will be imposed on the system due to

content uploading.

80

Similarly, the cumulative cost of power consumption ∁𝟐 (𝒕) associated with downloading contents

from edge caches at time t is given by

∁2(𝑡) = ∑ ∑ V𝑙,𝑖. (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

 (5 − 4)

|𝐶𝑙𝑜𝑤(𝑡)|

𝑙=1

𝑁

𝑖=1

In this case, the non-negligible cost of V𝑙,𝑖 = 𝑠𝑖𝑧𝑒(𝑐𝑙
𝑙𝑜𝑤). 𝑝𝑖 will be imposed on the system due to

content downloading.

The cost ∁𝟑(𝒕) of bandwidth occupation involved in migrating contents between edge caches is

given by

∁𝟑(𝒕) = ∑ ∑ 𝚫𝒍. |𝒍𝒊(𝒕) − 𝒍𝒋(𝒕)|.
|𝑪𝒍𝒐𝒘(𝒕)|

𝒍=𝟏
𝑵
𝒊,𝒋=𝟏,𝒊≠𝒋 (𝒚𝒊,𝒍(𝒕 − 𝟏) − 𝒚𝒊,𝒍(𝒕))

+

. (𝒚𝒋,𝒍(𝒕) − 𝒚𝒋,𝒍(𝒕 − 𝟏))
+

 (5-5)

Where the term (𝑦𝑖,𝑙(𝑡 − 1) − 𝑦𝑖,𝑙(𝑡))
+

. (𝑦𝑗,𝑙(𝑡) − 𝑦𝑗,𝑙(𝑡 − 1))
+

becomes non-zero only when

content 𝑐𝑙
𝐿𝑜𝑤is uploaded from 𝑒𝑖 and downloaded into 𝑒𝑗. Moreover, letting Φ be the bandwidth

occupation cost for transmitting one byte over a unit of distance, Δ𝑙 = 𝑆𝑖𝑧𝑒 (𝑐𝑙
𝐿𝑜𝑤).Φ will be

equal to the bandwidth occupation cost for transferring 𝑐𝑙
𝐿𝑜𝑤 over a unit of distance. As (5-5)

suggests, the associated bandwidth occupation cost can be calculated by multiplying Δ𝑙 by the

distance |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|between source and destination. The content migration cost, 𝐶𝑀 is then

obtained by summing the three partial costs ∁𝟏(𝒕), ∁𝟐(𝒕), and ∁𝟑(𝒕) accumulated over the

observation time period [𝑡0, 𝑡𝑘] as follows:

∁𝑀 = ∫ [∁1(t) + ∁2(t) + ∁3(𝑡)]. 𝑑𝑡
𝑡𝑘
𝑡0

5.3.2. Delay cost of low-priority contents

To calculate the delay cost of low-priority contents, we assume that the content popularity

follows a Zipf distribution [56] [59], with α being the Zipf slope (0 < α < 1). Assuming 𝑐𝑙
𝑙𝑜𝑤 is

the 𝑙'th most popular content, the probability of content 𝑐𝑙
𝑙𝑜𝑤 being requested is

1

ρ.𝑙α
, where ρ =

∑ 1
𝑙⁄

𝑠𝑖𝑧𝑒(𝐶𝐿𝑜𝑤(𝑡))
𝑙=1 . With the assumption that the low-priority content requests follow a Poisson

process with parameter β [56][59], the average request rate λ𝑙 of content 𝑐𝑙
𝑙𝑜𝑤 can be calculated by

 𝜆𝑙 =
𝛽

𝜌.𝑙𝛼
. The delay cost ∁𝑨 of accessing low-priority contents is given by:

 ∁𝑨=∫ ∑ ∑ 𝝀𝚤. 𝛄 [𝑫𝒊,𝒋(𝒕, Þ𝒊,𝒋,𝜾). 𝒛𝒊,𝒋,𝒍(𝒕). 𝒚𝒊,𝒍(𝒕) + 𝒅∞. (|𝑹𝒍,𝒊(𝒕)| − 𝒛𝒊,𝒋,𝒍(𝒕). 𝒚𝒊,𝒍(𝒕))]. 𝐝𝐭,
|𝑪𝑳𝒐𝒘(𝒕)|
𝜾=𝟏

𝑵
𝒊,𝒋 =𝟏,𝒊≠𝒋

𝒕𝒌
𝒕𝟎

 (5-7)

(6)

81

Where the term 𝑧𝑖,𝑗,𝑙(𝑡). 𝑦𝑖,𝑙(𝑡) counts the number of requests for content 𝑐𝑙
𝐿𝑜𝑤 that are sent to the

edge cache 𝑒𝑖And 𝛄 is the cost of a unit delay for accessing one byte of low-priority content.

However, some of the requests may not be fulfilled successfully, which occurs when the receiving

edge node leaves the radio coverage of the transmitter node before the whole content has been

transmitted.

To compute the successfully transmitted bytes of 𝑐𝑙
𝐿𝑜𝑤We first obtain the sojourn time 𝛿𝑖,𝑗(𝑡)

in the coverage area of 𝑒𝑖. Depending on the type of the caches (i.e., fixed or mobile) and their

area, we may deal with one of the following three cases to calculate the sojourn time 𝛿𝑖,𝑗(𝑡) as

shown in Fig. 5.2.

Case 1: The two caches 𝑒𝑗 and 𝑒𝑖 are both mobile, i.e., 𝑒𝑗,𝑒𝑖 ∈ 𝑀 (see Fig 5.2a). In this case,

the sojourn time 𝛿𝑖,𝑗(𝑡) is given by Eq. (5-8a)

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|]

+.
𝑟𝑖,𝑗

|𝑣𝑖(𝑡)−𝑣𝑗(𝑡)|
, if 𝑒𝑗 , 𝑒𝑖 ∈ 𝑀 (5-8a)

In Eq. (5-8a) 𝑟𝑖,𝑗 is the length of road path within the coverage of 𝑒𝑖 traversed by 𝑒𝑗 (see Fig. 5.2a.

) In this equation, the term [
ℓ𝑖

2
− |𝑙𝑖(𝑡) − 𝑙𝑗(𝑡)|]

+is equal to 1 only if 𝑒𝑗 resides within the coverage

of 𝑒𝑖 at time t; otherwise, it is zero. Also, |𝑣𝑖(𝑡) − 𝑣𝑗(𝑡)| is the relative speed of 𝑒𝑗 with respect to

𝑒𝑖.

Figure 5.2 Illustration of the three different cases for calculating the sojourn time 𝜹𝒊,𝒋(𝒕)

82

Case 2: In this case, 𝑒𝑗 is mobile, whereas 𝑒𝑖 is a fixed cache covering a straight road segment;

i.e., 𝑒𝑗 ∈ 𝑀 and 𝑒𝑖 ∈ 𝐹− (see Fig. 5.2b). We can then calculate 𝛿𝑖,𝑗(𝑡) as follows:

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖 − 𝑙𝑗(𝑡)|]

+.
𝑟𝑖,𝑗
𝔰

𝑣𝑗(𝑡)
, if 𝑒𝑗 ∈ 𝑀 and 𝑒𝑖 ∈ 𝐹

− (5-8b)

Where 𝑟𝑖,𝑗
𝔰 is the length of straight road path within the coverage of fixed edge cache 𝑒𝑖 traversed

by 𝑒𝑗 (see Fig. 5.2b.).

Case 3: In the third case, 𝑒𝑗 is mobile and 𝑒𝑖 is a fixed cache covering a road intersection; i.e., 𝑒𝑗 ∈

𝑀 and 𝑒𝑖 ∈ 𝐹+ (see Fig. 5.2c). We can then calculate 𝛿𝑖,𝑗(𝑡) as follows:

𝛿𝑖,𝑗(𝑡) = [
ℓ𝑖

2
− |𝑙𝑖 − 𝑙𝑗(𝑡)|]

+.
𝜂𝔰𝑟𝑖,𝑗

𝔰 +𝜂𝐿𝑟𝑖,𝑗
𝐿 +𝜂𝑅𝑟𝑖,𝑗

𝑅

𝑣𝑗(𝑡)
, if 𝑒𝑗 ∈ 𝑀 and 𝑒𝑖 ∈ 𝐹

+ (5-8c)

where 𝑟𝑖,𝑗
𝔰 is the length of straight road path within the coverage of fixed edge cache 𝑒𝑖 traversed

by 𝑒𝑗, while 𝜂𝔰 is the probability that mobile caches follow a straight road. 𝑟𝑖,𝑗
𝐿 is the length of left

road path within the coverage of fixed edge cache 𝑒𝑖 traversed by 𝑒𝑗, while 𝜂𝐿 is the probability

that a mobile cache takes a left turn. Further, 𝑟𝑖,𝑗
𝑅 is the length of the right road path within the

coverage of fixed edge cache 𝑒𝑖 traversed by 𝑒𝑗, while 𝜂𝑅 is the probability that a mobile cache

takes a right turn. We note that upon facing an intersection along its path, a mobile cache follows

the straight road or takes a left or right turn with probabilities 𝜂𝔰, 𝜂𝐿 , and 𝜂𝑅 , respectively.

 By setting 𝐷𝑖,𝑗(𝑡, 𝐵) = 𝛿𝑖,𝑗(𝑡) in Eq. (5-1), the number of bytes that can be transferred from 𝑒𝑖 to

𝑒𝑗 can be computed (i.e., the term [𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡)). Specifically, the number of successfully

transmitted bytes of 𝑐𝑙
𝐿𝑜𝑤 from edge cache 𝑒𝑖 to 𝑒𝑗 can be obtained as follows:

Þ𝒊,𝒋,𝜾(𝑡) = 𝑚𝑖𝑛{𝒚𝒊,𝒍(𝒕). ([𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡), 𝑠𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)} (5-9)

It should be noted that in Eq. (5-9), any requests for the remaining bytes of 𝑐𝑙
𝐿𝑜𝑤 that can not be

served from any edge caches are assumed to be redirected to cloud servers for fulfillment.

5.3.3. Delay cost of high-priority contents

Target cache 𝑒𝑞 ∈ 𝑄(𝑡), can download the high priority contents 𝐶𝐻𝑖𝑔ℎ(𝑡) either directly from

fixed caches or from other target caches that have already received the high priority contents.

83

However, if 𝑒𝑞 can not receive 𝐶𝐻𝑖𝑔ℎ(𝑡) from any other edge caches due to, for instance, their

isolated location or high speed, it should download all or the remaining parts of those contents

from CDN cloud servers.

We define the so-called dominating cache Ɗ(t) as a subset of target caches that can transmit the

contents to the rest of the target caches with at most ℴ hops. Note that Ɗ(t) ⊆ 𝑄(𝑡) and that it is

identified by means of graph theory. Let the contact graph 𝐺(𝑡) = (𝑒𝑞|∀𝑞 ∈ 𝑄(𝑡), 𝐸(𝑡)) be the

representation of the target caches' topology at time t, where E(t) is the set of edges showing the

connectivity among the target caches. In this regard, edge 𝜉𝑞,𝑝 (𝑡) ∈ 𝐸(𝑡) exists if and only if the

target caches 𝑒𝑞 to 𝑒𝑝 are in the transmission range of each other at time t. The set of dominating

nodes in the contact graph can be identified in polynomial time by the algorithm proposed in [58].

Depending on its path, dominating cache 𝑒𝑢 ∈ 𝐷(𝑡) receives a high-priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

∈

𝐶𝐻𝑖𝑔ℎ(𝑡) in a continuous manner while switching from one fixed cache range to another. The

number of bytes in content 𝑐ℎ
ℎ𝑖𝑔ℎ

 downloaded from 𝑒𝑓 varies according to the amount of time 𝑒𝑢 ∈

𝐷(𝑡) spends in the coverage area of the fixed cache 𝑒𝑓. Recall that 𝛿𝑖,𝑗(𝑡) (estimated by Eq. (5-8))

is the duration time that 𝑒𝑢 ∈ 𝐷(𝑡) remains within the coverage range of fixed cache 𝑒𝑓. Using

𝛿𝑢,𝑓(𝑡), the number of successfully transmitted bytes of content 𝑐ℎ
ℎ𝑖𝑔ℎ

from fixed cache 𝑒𝑓 to target

cache 𝑒𝑢 ∈ 𝐷(𝑡) can be calculated as follows:

Ѵ𝑢,𝑓,ℎ(t) = min {𝑥𝑓,ℎ(𝑡) . ([𝛿𝑖,𝑗(𝑡) − 𝜏𝑖,𝑗]. £𝑖,𝑗(𝑡)), 𝑠𝑖𝑧𝑒(𝑐ℎ
ℎ𝑖𝑔ℎ

)} (5-10)

Considering (5-1), the delay in downloading high-priority content 𝑐ℎ
ℎ𝑖𝑔ℎ

 from the fixed edge cache

𝑒𝑓 to 𝑒𝑢 ∈ 𝐷(𝑡) can be obtained as:

ℑ 𝑢,𝑓,ℎ = 𝐷𝑢,𝑓(𝑡, Ѵ𝑢,𝑓,ℎ(t)) (5-11)

We note that when 𝑒𝑢 ∈ 𝐷(𝑡) is out of the range of any fixed cache, the request should be

redirected to the cloud, and the remaining portions of the high-priority content downloaded from

CDN cloud servers. The high-priority content delivery cost for target caches can then be obtained

as follows:

𝐶𝐷 = ∫ (∑ ∑ ∑.

F

𝑓=1

[ℑ 𝑢,𝑓,ℎ + [|𝑅ℎ,𝑓(𝑡)| − 𝑧𝑓,𝑢,ℎ(𝑡). 𝑥𝑓,ℎ(𝑡)]. 𝑑∞]

|𝐶𝐻𝑖𝑔ℎ(𝑡)|

ℎ=1𝑢|𝑒𝑢∈𝐷(𝑡)

𝜓)
𝑡𝑘

𝑡0

. 𝑑𝑡

(5-12)

84

 ≤ 𝐿𝑠𝑡𝑜𝑟(𝑒𝑞
𝑀𝐸𝐶)

Where 𝜓 is the delay cost per second of downloading one byte of high-priority content.

5.3.4. Objective Function and Constraints

The objective is to minimize the total cost as an aggregation of content migration cost and

content delay cost in a given CDN system. Let wM, wA and wD denote the weights of the costs

𝐶𝑀, 𝐶𝐴, 𝑎𝑛𝑑 𝐶𝐷, respectively. The objective function Փ over the observation time period [𝑡0, 𝑡𝑘] is

then given by

𝑚𝑖𝑛 Փ = 𝑤𝑀. ∁𝑀 + 𝑤𝐴. ∁𝐴 +𝑤𝐷 . ∁𝐷 (5

− 13)

subject to the following constraints:

∑ ∑ 𝑧𝑖,𝑗,𝑙(𝑡).𝑗={1,..|𝑀}𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|} 𝑦𝑖,𝑙(𝑡) ≤ 𝑅𝑚𝑎𝑥(𝑒𝑖), ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑇 , ∀1 ≤ 𝑖 ≤ 𝑀 (5 −

14𝑎)

 ∑ ∑ ([
ℓ𝑓
2
⁄ − (𝑙𝑢(𝑡) − 𝑙𝑓)]

+

.ℎ={1,..,|𝐶𝐻𝑖𝑔ℎ(𝑡)|}𝑢|𝑒𝑢∈𝐷(𝑡) 𝑥𝑓,ℎ(𝑡)) +

∑ ∑ 𝑧𝑓,𝑗,𝑙(𝑡). 𝑦𝑓,𝑙(𝑡)𝑗={1,..|𝑀}𝑙={1,..,|𝐶𝐿𝑜𝑤(𝑡)|} ≤ 𝑅𝑚𝑎𝑥(𝑒𝑓) ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀1 ≤ 𝑓 ≤ 𝐹

∑ 𝑦𝑣,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)

𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|}

≤ ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀𝑒𝑣 ∈ {𝑀 − 𝑄(t)}

∑ 𝑦𝑞,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤) + 𝑠𝑖𝑧𝑒(𝐶𝐻𝑖𝑔ℎ(𝑡)))𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|}

∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀𝑞|𝑒𝑞 ∈ 𝑄(𝑡)

∑ 𝑦𝑓,𝑙(𝑡). 𝑆𝑖𝑧𝑒(𝑐𝑙
𝐿𝑜𝑤)𝑙={1,..|𝐶𝑙𝑜𝑤(𝑡)|} + ∑ 𝑥𝑓,ℎ(𝑡). 𝑆𝑖𝑧𝑒(𝑐ℎ

ℎ𝑖𝑔ℎ
)ℎ={1,..|𝐶𝐻𝑖𝑔ℎ(𝑡)|}

∀ 𝑡0 ≤ 𝑡 ≤ 𝑡𝑘, ∀𝑓|𝑒𝑓 ∈ 𝐹

Constraint (5-14a) ensures that the maximum number of content requests that can be served

simultaneously from the mobile edge cache 𝑒𝑖 ∈ 𝑀 is not exceeded. Similarly, constraint (5-14b)

indicates a set of constraints on the number of requests for contents that can be handled

 (5-14e)

(5-14d)

𝐿𝑠𝑡𝑜𝑟(𝑒𝑣)

≤ 𝐿𝑠𝑡𝑜𝑟(𝑒𝑓
𝐹𝐸𝐶)

(5-14c)

(5-14b)

85

simultaneously by the fixed cache 𝑒𝑓 ∈ 𝐹. Note that [
ℓ𝑓
2
⁄ − (𝑙𝑢(𝑡) − 𝑙𝑓)]

+

computes the number

of dominating caches covered by 𝑒𝑓 at time t. Therefore, the number of requests for downloading

high-priority contents is calculated by the first term in constraint (5-14b), while the second term

computes the number of requests for low-priority contents. Constraint (5-14c) represents the

capacity constraints for non-target caches 𝑒𝑣 ∈ {𝑀 − 𝑄(𝑡)}. Similarly, the capacity constraints of

target mobile caches are specified by constraint (5-14d). Note that each target mobile cache, in

addition to the contents already cached in it, should also have space for high-priority contents; this

is ensured by constraint (5-14d). Finally, constraint (5-14e) represents the capacity constraints on

fixed caches.

5.4 RL-based Content Migration

Here we define the main components of the MDP in our content migration problem.

5.4.1 System States

The state of the system at time t should represent (i) the placement of both low- and high-

priority contents on the edge caches at that time and (ii) the content delivery state of the system.

The delivery state of the system is defined as the participation level of each edge cache in the

delivery of requested contents. This participation level is quantified by the number of redirection

requests that each edge cache performs at time t. To formally present the system states set, we

define 𝕐𝑐𝑙(𝑡), 𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡) as the realization sets of random variables

𝑦𝑖,𝑙(𝑡), 𝑥𝑓,ℎ(𝑡), 𝑧𝑖,𝑗,𝑙(𝑡) at time t, respectively. We note that 𝕐𝑐𝑙(𝑡), 𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡) are given

by:

𝕐𝑐𝑙(𝑡) = [𝑌1,𝑙(𝑡), 𝑌2,𝑙(𝑡)… , 𝑌𝑁,𝑙(𝑡)] (5-15)

𝕏𝑐ℎ(𝑡) = [𝑋1,ℎ(𝑡), 𝑋2,ℎ(𝑡)… , 𝑋𝐹,ℎ(𝑡)] (5-16)

and

ℤ𝑐𝑙(𝑡) =

[𝑍1,1,𝑙(𝑡) 𝑍1,2,𝑙(𝑡) , … , 𝑍1,𝑁,𝑙(𝑡)

⋮ ⋱ ⋮
𝑍𝑁,1,𝑙(𝑡) 𝑍𝑁,2,𝑙(𝑡), … ., 𝑍𝑁,𝑁,𝑙(𝑡)]

 (5-17)

86

where 𝑌𝑖,𝑙(𝑡), 𝑋𝑓,ℎ(𝑡), 𝑎𝑛𝑑 𝑍𝑖,𝑗,𝑙(𝑡) are the exact values of random variables

𝑦𝑖,𝑙(𝑡), 𝑥𝑓,ℎ(𝑡), 𝑎𝑛𝑑 𝑧𝑖,𝑗,𝑙(𝑡) at time t, respectively. We then encapsulate𝕐𝑐𝑙(𝑡), 𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡)

in the vector 𝒳𝑐ℎ,𝑐𝑙 given by

𝒳𝑐ℎ,𝑐𝑙 = [𝕐𝑐𝑙(𝑡), 𝕏𝑐ℎ(𝑡) and ℤ𝑐𝑙(𝑡)] (5-18)

Finally, the state 𝑠𝑡of the system at time t can be calculated as follows:

𝑆𝑡 = [⋃𝜒
𝑐ℎ,𝑐𝑙(𝑡): 𝑐ℎ ∈ 𝐶

𝐻𝑖𝑔ℎ(𝑡), 𝑐𝑙 ∈ 𝐶
𝐿𝑜𝑤(𝑡)] (5-19)

5.4.2 System Actions

The agent can take action by migrating, caching, or dropping the contents from edge caches or

by redirecting requests between them. To better explain these possible actions, we divide them

into three types. The first type of action is to migrate, cache, or drop the low-priority content 𝑐𝑙 ∈

𝐶𝐿𝑜𝑤(𝑡) in edge caches (both fixed and mobile caches). We refer to this action type as “Act.Type1”.

This type of action will cause changes in the values of 𝕐𝑐𝑙(𝑡 + 1) with respect to 𝕐𝑐𝑙(𝑡). To

represent this type, a binary vector 𝑎𝑐𝑙
𝕐 (t) of size N is used, where N is the total number of edge

caches. A value of 1 for the i’th element of the vector 𝑎𝑐𝑙
𝕐 (t) indicates a zero to one or vice versa

change in the i’th element of 𝕐𝑐𝑙(𝑡) (i.e. 𝑌𝑖,𝑙(𝑡)'s value), whereas a value of 0 would indicate no

change in the value of 𝑌𝑖,𝑙(𝑡). The second type of action, “Act.Type2”, is the caching (or dropping)

of the high-priority content 𝑐ℎ ∈ 𝐶
𝐻𝑖𝑔ℎ(𝑡) on (from) fixed caches for their later delivery to targeted

caches. The effect on the values of 𝕏𝑐ℎ(𝑡) will be similar to that of “Act.Type1”, and we represent

it by a binary vector 𝑎𝑐ℎ
𝕩 (t) of size F, where F is the number of fixed edge caches. The third type of

action, “Act.Type3”, considers redirecting the low-priority contents' requests between edge

caches. This type of action affects the values of ℤ𝑐𝑙(𝑡) and we denote it by a binary matrix 𝑎𝑐𝑙
ℤ (t)

of size N×N. Thus, three types of action can be recognized, “Act.Type1”, “Act.Type2” and

“Act.Type3”, implemented by 𝑎𝑐𝑙
𝕐 (t), 𝑎𝑐ℎ

𝕩 (t), and 𝑎𝑐𝑙
ℤ (t) respectively, each indicating the possible

changes in the corresponding state vectors' values. The overall action 𝑎𝑡 at time t is then

summarized by

87

𝑎𝑡 = {< 𝑎𝑐𝑙
𝕐 (t), 𝑎𝑐ℎ

𝕏 (t), 𝑎𝑐𝑙
ℤ (t) > | 𝑐𝑙 ∈ 𝐶

𝐿𝑜𝑤(𝑡) , 𝑐ℎ ∈ 𝐶
𝐻𝑖𝑔ℎ(𝑡)} (5-20)

5.4.3 Reward Function

Upon performing an action, the agent needs an immediate feedback to assess the short-term

quality of the performed action. This feedback is quantified by the value of a reward function. Our

reward function ℝ(𝑠𝑡, 𝑎𝑡)is given by

ℝ(𝑠𝑡, 𝑎𝑡) = −(∁𝑀(𝑡) + ∁𝐴(𝑡) + ∁𝐷(𝑡)) (5-21)

which is defined based on the aggregation of the migration cost ∁𝑀(𝑡), the low-priority contents'

access delay ∁𝐴(𝑡), and the high-priority contents download cost ∁𝐷(𝑡) the current time slot. Note

that the reward function computed by (5-21) only quantifies the short-term impact of the performed

action 𝑎𝑡 as an immediate feedback.

 5.4.4 Design of the deep RL agent

Figure 5.3 A schematic view of the agent and its interactions with the environment, including the structure of our

deployed LSTM cell

88

Unlike non-learning approaches, the RL agent automatically learns the ever-changing

environment and updates its decisions through its interactions. Figure 5.3 illustrates a schematic

view of our agent and these interactions. We will refer to Fig. 5.3 and Algorithm 1 as we explain

the theoretical steps of our work. Specifically, our approach is based on Q-learning, one of the

most widely used RL strategies [20]. Q-learning works by successively updating the evaluation of

the long-term quality (the Q value) of actions at each state. It is a simple way for an agent to learn

how to act optimally [20]. We note, however, that classic Q-learning is limited to tasks with a

small number of states and actions [20][21]. Moreover, in the Q-learning algorithm, all the states

should be met, and all the actions should be experienced. Those restrictions are impractical in our

problem, as it deals with an environment that is extremely complex and dynamic, and its states are

large and vary rapidly over time. The only way to learn anything in these types of dynamic

situations (where we have dynamic state-space) is to generalize from previously experienced states

to new states [20]. The required generalization is often called function approximation. In this study,

to approximate the Q values for unmet states/actions, we use a deep neural network (DNN)-based

approach, which relies on nonlinear gradient-descent function approximation. This approach

eliminates the need for visiting all the state/action pairs to compute the Q values. First proposed in

[86], this revival hybrid approach is now widely used in different domains under the so-called deep

reinforcement learning (DRL) or deep Q-learning (DQL) method.

In this work, since our problem concerns a sequential decision-making process, we exploit

an advanced version of DQL, a double deep Q-network (DDQN) with LSTM memory cells. In the

rest of this section, we first explain the motivation for choosing this specific Q network

architecture, and then we discuss the limitations of conventional recurrent neural networks and

explain how LSTM memory cells can overcome those limitations, ending with our DDQN

algorithm for content migration.

 5.4.5 DDQN

Q-Learning is a model-free reinforcement algorithm to estimate Q values for state-action pairs.

The Q value of a state-action pair can be interpreted as an expected discounted reward accumulated

over a long time period. As an example, in a given state 𝑠 ∈ 𝑆 (𝑆 being the set of all the states)

with two possible actions 𝑎1, 𝑎2 ∈ 𝐴 (𝐴 being the set of all the possible actions), if 𝑄(𝑠, 𝑎1) >

𝑄(𝑠, 𝑎2), then choosing 𝑎1 over 𝑎2 will result in a higher accumulated reward over the long term.

The detailed mathematical explanation can be found within the well-known Bellman equation [20].

89

The Q-Learning algorithm starts by initializing the Q values for all state-action pairs by setting

them to zero. Next, it recursively computes and updates the Q value of a given pair as follows:

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄𝑜𝑙𝑑(𝑠, 𝑎) + 𝛼. [𝑅 + 𝛾.𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄
𝑜𝑙𝑑(𝑠, 𝑎)] (5-22)

Where R is the reward of performing action 𝑎 ∈ 𝐴 in state 𝑠, 𝑠′ ∈ 𝑆 is the next state, 𝛼 ∈ [0,1]

denotes the learning rate, and 𝛾 ∈ [0,1] is the discounting rate. The Q update continues until all

the states are met, and all the actions have been experienced. At this point, the final Q value, Q∗(s,

a), determines the best action 𝑎∗∈ A at a given state as follows:

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
∗(𝑠, 𝑎)

It is important to note that in our considered problem, there is no final state, especially given

that the states vary over time (mobile caches move and new high-priority contents arrive).

Therefore, an approximation method is required for the Q values of unmet states [21]. In a deep Q

network (DQN), a multi-layered neural network is utilized to estimate the Q values. At state 𝑠𝑡The

learning agent takes action 𝑎𝑡 based on policy ɛ, which is initially purely random and gradually

improves as the agent becomes more experienced. Let us denote the reward and the resulting state

as 𝑅𝑡 and 𝑠𝑡+1, respectively. The tuple 𝑒𝑡 =< 𝑠𝑡, 𝑎𝑡, 𝑅𝑡+1, 𝑠𝑡+1 > represents the experience of the

agent at time t stored in a buffer called the experience replay buffer. Periodically, the samples of

the agent's experience will be drawn randomly to form the learning batches. These learning batches

are then used to feed the DQN and update the estimated Q values.

For a given state-action pair <𝑠𝑡, 𝑎𝑡>, 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)is the DQN current estimation of the Q

value. Here, 𝜃𝑡 is the parameter of the Q network at time t. The gradient descent update rule for

the parameter 𝜃𝑡 will be applied as follows:

𝜽𝑡+1 = 𝜽𝑡 + 𝛼(𝑌𝑡
𝑄 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡)). ∇𝜃𝑡𝑄(𝑠𝑡, 𝑎𝑡; 𝜽𝑡) (5-23)

90

where 𝛼 is the gradient step size and 𝑌𝑡
𝑄

denotes the target Q value with the current parameter 𝜃𝑡,

which is calculated by

𝑌𝑡
𝑄 = 𝑹𝑡 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜽𝑡) (5-24)

With the update rule (5-23), the parameter 𝜃𝑡 of the DQN will be tuned so that 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) moves

towards 𝑌𝑡
𝑄 with step size 𝛼. Note, however, that in doing so, 𝑌𝑡

𝑄
 itself is computed by the

maximum value of 𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡). This loop, in turn, will cause an over-optimistic and unstable

approximation of the Q values, which can degrade the accuracy of the results [21]. This can be

avoided using a technique first proposed by Van Hasselt [21], where two DQNs are trained in

parallel. The first DQN, 𝑄𝑆𝑒𝑙𝑒𝑐𝑡(𝑠, 𝑎; 𝜃𝑡), referred to as DQN-Selection, with parameter 𝜃𝑡 is used

for the selection of actions, whereas the second DQN, 𝑄𝐸𝑣𝑎𝑙(𝑠, 𝑎; 𝜃𝑡), referred to as DQN-

evaluation, with parameter 𝜃′𝑡 is trained for the evaluation of the actions. With these settings, the

target Q value for the DDQN will be computed as follows:

 𝑌𝑡
𝑄 = 𝑹𝑡 + 𝛾 . 𝑄

𝐸𝑣𝑎𝑙(𝑠𝑡+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
𝑆𝑒𝑙𝑒𝑐𝑡(𝑠𝑡+1, 𝑎; 𝜃𝑡); 𝜽′𝑡) (5-25)

Accordingly, the error function Er(𝜃𝑡) of DDQN at time t is given by:

𝐸𝑟(𝜽𝑡) =
1

2
[𝑌𝑡
𝑄 − 𝑄𝑆𝑒𝑙𝑒𝑐𝑡(𝑠𝑡+1, 𝑎; 𝜃𝑡)]

2 (5-26)

After each forward pass, Er(𝜃𝑡) will be recalculated. Following the back propagation procedure

and the derivation chain rule, the contribution of each DDQN parameter to the error will be

obtained. The gradient descent update rule that is given by Eq. (5-23) uses this calculated value to

update the parameters. Periodically, the values of 𝜃𝑡 will be copied to 𝜃′𝑡. After sufficient training,

the parameters will be tuned such that the error value becomes quite small. For illustration, we

depict the interactions of two networks 𝑄𝑆𝑒𝑙𝑒𝑐𝑡 and 𝑄𝐸𝑣𝑎𝑙 in Fig. 5.3. The decoupling of the

selection and evaluation Q-networks in the learning process has proven to be successful in

reducing over-optimism and therefore producing more stable and reliable learning results [21].

5.4.6 DDQN with LSTM cells

As the DDQN continues to learn, the impact of some important experiences in the distant

past could be replaced by more recent experiences. This problem, which is also referred to as the

vanishing gradient [21], [86], [88], is a well-known obstacle in the learning path of gradient-based

91

approaches such as RNN [90]. The vanishing gradient makes the learning process time-consuming

and may lead to inaccurate results [90]. Consider the gradient update rule in a DNN given by Eq.

(5-23). After passing many gradient update steps and when t becomes large enough, the error and

the gradient term (𝑌𝑡
𝑄 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)). ∇𝜃𝑡𝑄(𝑠𝑡 , 𝑎𝑡; 𝜽𝑡) becomes so small that the values of 𝜽𝑡 do not

change significantly. Insufficient decaying error backflows to the initial layers of the neural

network, thus hampering the learning process [88]. To avoid this issue, the authors of [90] have

suggested using long short-term memory (LSTM) cells, which are deployed in the hidden layers

of the given DNN to ensure the flow of decaying error in the backpropagation process in later

learning steps, thereby allowing the learning process to continue. It is worth noting that the LSTM

architecture is now widely used in many DNN applications [86], [88], [90] and has been proven

to outperform the simple feedforward DNNs [90].

Figure 5.3 depicts the structure of our deployed LSTM cell. The LSTM cell is comprised of

three inputs, 𝑀𝑡−1, 𝑌𝑡−1, and 𝑠𝑡, which are the previous memory state of the cell, the previous

output of the cell (i.e., the previous predicted value), and the current input of the network,

respectively. The two inputs 𝑀𝑡−1 and 𝑌𝑡−1 of the cell are initialized to be all zeros at time t=0.

The LSTM cell outputs two vector values, 𝑌𝑡, 𝑎𝑛𝑑 𝑀𝑡 which are the current output (i.e., predicted

value), and the current memory state of the cell, respectively. As shown in Fig. 5.3, an LSTM cell

consists of three gates: (i) forget, (ii) input, and (iii) output, each containing a sigmoid activation

function denoted by 𝜎(𝑥) = (1 + 𝑒−𝑥)−1 The output of the sigmoid functions of the forget, input,

and output gates are 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡, respectively. Each of these activation functions has its own

weights and bias as follows: 𝑊𝑓 and 𝑏𝑓 for the forget gate, 𝑊𝑖 and 𝑏𝑖 for the input gate, and 𝑊𝑜

and 𝑏𝑜 for the output gate. All these parameters are randomly initialized at the beginning. With

these settings, the forward pass formulas of an LSTM cell are as follows:

𝑓𝑡 = σ(𝑊𝑓[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑓),

𝑖𝑡 = σ(𝑊𝑖[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑖),

𝑜𝑡 = σ(𝑊𝑜[𝑌𝑡−1, 𝑠𝑡] + 𝑏𝑜),

𝑀𝑡 = 𝑀𝑡−1⊗𝑓𝑡⊕ (𝑖𝑡⊗ tanh([𝑌𝑡−1, 𝑠𝑡])),

𝑌𝑡 = tanh(𝑀𝑡) ⊗ 𝑜𝑡,

92

where [𝑌𝑡−1, 𝑠𝑡] is the concatenation of vectors 𝑌𝑡−1 and 𝑠𝑡, while the element-wise

multiplication and summation are denoted as ⊗ and ⊕, respectively, and 𝑡𝑎𝑛ℎ is the hyperbolic

tangent function. During training, the cell parameters 𝑊𝑖, 𝑏𝑖, 𝑊𝑜, 𝑏𝑜, 𝑊𝑓, and 𝑏𝑓 are tuned using

93

the back propagation, and stochastic gradient descent update rules explained in Section 5.4.4. Note

that in our proposed algorithm, the LSTM cell is embedded in the hidden layers of the DQN-

Evaluation, as shown in Fig. 5.3.

Algorithm 1 illustrates the main steps of our double deep Q-Learning algorithm used for

solving our content migration problem. The algorithm starts with observing the initial state, 𝑠1. A

series of iterations are then followed while the algorithm switches between exploration and

exploitation phases. Parameters ϵ (exploration rate) and λ (a random value in the range [0,1]) are

used to control these phases. A random action and its type are selected in the exploration phase

(see lines 10-23), while in the exploitation phase, DQN-selection will determine the action (see

line 25). The action, reward, and next state are then collected and stored in buffer 𝒟 (line 29). A

batch of experiences is then randomly retrieved from 𝒟 (line 30). The target value of DQN-

selection (i.e., 𝑌𝑡
𝑄

) can be computed by the use of DQN-evaluation (line 31). This target value will

be used for computing the error function 𝐸𝑟(θ𝑡)Which is the average error of all samples of β (line

32). The parameters of DQN-selection will be updated by performing a gradient descent step on

𝐸𝑟(θ𝑡) with respect to θ𝑡 (line 33). Finally, every 𝜏̅ steps, the parameters of the DQN-selection are

copied to DQN-evaluation (line 34).

5.5 Performance Evaluation

To ensure that our simulated evaluations are conducted based on realistic scenarios, we used

the SUMO (Simulation for Urban MObility) simulator [91]. As for the DDQN, we used

TensorFlow 1.6.0 [76], Google's open-source machine learning library. In particular, we utilize

“tf.contrib.rnn.LSTMCell” and “keras.models'' classes to instantiate the two four-layer DNNs,

DQN-selection and DQN-Evaluation, with LSTM cells in hidden layers of the latter DNN. To

assure convergence, we rely on the Keras class “ReduceLRONplatue" to automatically update the

learning rate. All the simulation tests were conducted on a machine with 2.67 GHz Intel Xeon

CPU E5640 and 32 GB of memory.

5.5.1 Simulation Settings

In our simulations, we considered an n × n bidirected road grid environment [92] where each

grid cell covers an area of 0.25 km2. The number of grid cells, mobile caches, and fixed caches are

specified in each evaluation scenario. In this grid structure, mobile caches move with an average

94

velocity of 30 km/hour, and with the parameters 𝜂𝒮 = 0.5, 𝜂𝐿= 0.25 and 𝜂ℛ = 0.25, set according

to the Manhattan model, the most popular model for mobility in urban areas [92]. Each fixed cache

has a capacity of 1.5 GB of memory and four processing units. Each mobile cache was provided

with a 700 MB memory and one processing unit.

We assume that the fixed edge caches can handle up to 20 requests at a time and that each

mobile cache can handle a maximum of 5 requests simultaneously. While the fixed edge caches

have a 60-meter diameter circular coverage, the mobile caches can cover a circular area of only 10

meters in diameter. In addition, 40 low-priority contents of various sizes from 50 to 120 MB are

randomly placed so that 8 of the mobile caches are fully occupied. In the beginning, we assume

that 5 of these full mobile caches are targeted caches.

 In the simulation scenario, high-priority contents arrive according to a Poisson process with

an average arrival rate of 5 contents per time unit. The sizes of these contents are similar to the

sizes of the low-priority contents' ranges: from 50 to 120 MB. We set the delay for transmitting 1

MB of content (high or low priority) from cloud servers to an edge cache node (fixed or mobile)

and the delay from each cache node to the users of its coverage as 0.5 and 0.2 milliseconds [93],

respectively.

 The average cost of the power consumption required by edge caches to upload and download

1 MB is set to 2 units of currency, while the average cost of transferring 1 MB between the edge

caches for one hop is set at three units. The costs of each second of delay in accessing 1 MB of

low- and high-priority content are set to 5 and 10 units of currency, respectively (timely access to

high-priority content is critical, and so its delay costs twice as much).

To set up the learning process, the actions selected in the initial 700 time slots are totally

random and are used initially to fill the experience replay buffer in order to start the learning

process. In each time slot (for t>700), 30 samples of experience are extracted from the replay buffer

to form the learning batch.

95

5.5.2 Comparison with the optimal solution

To evaluate the performance of our proposed DRLCM algorithm against that of the optimal

solution, we consider a small-scale scenario with only two mobile and two fixed edge caches. The

road structure in this scenario is a two × two bidirected road grid, with the other parameters the

same as the scenario previously explained. We let our learning method collect experiences about

the environment while learning for a maximum of 10,000 episodes. We pause the simulation

scenario every 2,000 episodes and perform an exhaustive search to find the optimal solution

considering the positioning of mobile caches and content arrivals at that time. Figure 5.4 shows

the absolute difference between the optimal solution and the DRLCM at every 2,000th episode.

While the method is still in its exploration phase, the gap is considerably higher for the initial

episodes. However, it decreases significantly as the episodes pass. At the end of 10,000 episodes,

the DRLCM managed to decrease this gap by more than 97%. An important consideration here is

that it takes more than 1 hour for each exhaustive search to find the optimal solution in this small-

scale scenario, and that is only one snapshot of the whole system. Clearly, it is not possible to

conduct exhaustive searches each time mobile edge caches change their position.

Figure 5.4 Proposed algorithm’s optimality gap

96

5.5.3 Performance comparison with existing deep learning methods

We investigate the convergence performance of our proposed DRLCM with two other deep

learning approaches, namely, SRLCM, a simplified Q-Learning version with Double RNNs and

no LSTM cells [55], and TRLCM, a learning method with a single RNN and no LSTM cells [86],

i.e., a traditional deep Q-Learning method. While the learning structure of the SRLCM method has

been widely used in many recent studies [55],[56], and [94], TRLCM represents a classical version

of the deep Q-Learning approach [86]. The evaluation scenario consists of 12 fixed and 20 mobile

edge caches in a 5×5 road grid environment. Figure 5.5 depicts the total cost (in unit of currency)

vs. episodes for different methods. According to Fig. 5.5, all three deep learning-based methods

perform closely for the first episodes. This is mainly due to the fact that at the beginning, there is

no knowledge about the environment, and so all the methods choose somewhat random actions.

However, due to their different learning structures, they converge to different values. The policy

learning of TRLCM seems to stop soon after completing 7,500 episodes, whereas the total costs

achieved by the SRLCM and DRLCM methods keep decreasing. Finally, around the 15,000’th

episode, the SRLCM method reaches a cost value of 1,500 and levels out. In contrast, our proposed

DRLCM method continuously decreases the total cost as the number of episodes increases.

Clearly, our proposed DRLCM method outperforms the other two deep learning methods. This

high performance is attributed to the use of LSTM memory cells, which allow the DRLCM agent

to remember the most valuable experiences that it had in its past observations.

Figure 5.5 Total cost vs. episode evolution

97

5.5.4 Performance Comparison with Non-learning Methods

In the next set of evaluation scenarios, we compare the performance of our proposed method with

methods based on the least recently used (LRU) eviction strategy [8], which is the most common

non-learning cache replacement method. The five LRU-based approaches are explained below:

LRU-NoMig: LRU contents are deleted from the targeted full caches to free up space for the newly

arrived high-priority contents.

 LRU-FirstFit: LRU contents are migrated from the targeted full caches to the closest edge caches

that have enough capacity to store them.

LRU-BestFit: LRU contents are migrated from the targeted full caches to the edge caches with

the minimum caching capacities that can accommodate the migrated contents.

LRU-WorstFit: LRU contents are migrated from the targeted full caches to the edge caches with

maximum caching capacities that can accommodate the migrated contents.

LRU-Random: LRU contents are migrated from the targeted full caches to the random edge caches

with enough space to accommodate the migrated contents.

Figure 5.6. Total cost vs. average size of high-priority content

98

We compare the performance of our proposed method with methods based on the least recently

used (LRU) eviction strategy [8], which is the most common non-learning cache replacement

method. The five LRU-based approaches are LRU-NoMig, LRU-FirstFit, LRU-BestFit, LRU-

WorstFit, and LRU-Random. The total cost vs. the average size of arrived high-priority contents

(in MB) is shown in Fig. 5.6, which helps to compare the performance of the five non-learning

methods with that of our proposed DRLCM method. As shown in Fig. 5.6, when the size of high-

priority contents increases from 50 to 120 MB, the cost increases in all methods, which is expected,

as all methods try to free up more space to accommodate such high-priority contents. Therefore, a

larger amount of content will be migrated/deleted, and higher costs will be imposed. Further, we

observe from Fig. 5.6 that the costly process of re-downloading the deleted contents imposes the

largest cost to the LRU-NoMig method. The cost of the LRU-Nomig is even slightly larger than

that of the LRU-Random approach, which randomly migrates LRU contents to the available edge

caches instead of deleting them.

5.5.5 Scalability and Cost Improvement Percentages

we increased the total number of edge caches from 32 to 75 and the high-priority content sizes

from 50 to 120 MB. Figure 5.7 depicts the improvement of cost (in percentage) vs. the number of

edge cashes. It can be inferred from Fig. 5.7 that the improvement made by our proposed DRLCM

method not only remains for a scaled version of the scenario but increases up to 70% in comparison

with the LRU-NoMig approach, which does not support any content migration. This observation

reveals the value of an appropriate decision to keep the content at the ed ge instead of performing

Figure 5.7. Total cost improvement

99

content deletions. Note that even though increasing the number of edge caches makes the scenario

more complex, it ensures that more caching and processing resources become available at the edge.

5.5 Conclusions

In this chapter, we have proposed a deep reinforcement learning (DRL) content migration

technique for a hierarchical edge-based CDN. Based on real-life situations, we considered a

dynamic and heterogeneous environment consisting of mobile and fixed caches where contents

have pre-assigned high and low priorities and developed a use case from a vehicular network to

illustrate the motivation of our work. Our proposed method considers the available caching

capacity in edge caches so that upon the arrival of high-priority contents, instead of just removing

the low-priority contents from full caches, it migrates low-priority contents between edge caches

to create enough space to accommodate high-priority contents. We implemented our DRL

migration agent with a deep double-Q learner method empowered by LSTM memory cells. The

simulation results show up to 70% in cost improvements compared to the existing methods.

100

Chapter 6

6. Performance Management for CDNs1

6.1 Introduction

Performance management is an essential task for CDN providers. In that regard, they need to

acquire knowledge of users’ QoE and correlate observations through different video sessions to

identify QoE degradations and investigate their potential root causes. In the absence of users’

feedback on their QoE, CDN providers can monitor and analyze Key Performance Indicators

(KPIs) throughout video sessions. This allows for assessing the Quality of Service (QoS) offered

to users, influencing their QoE. However, due to the large number of sessions handled by CDN

operators, it is not easy to conduct such an analysis. Tens of thousands of video requests are

received by a country-wide CDN provider on a daily basis, according to our investigations.

Analyzing and correlating the KPIs among corresponding sessions is simply not possible

manually. Automated approaches are thus needed to allow for this analysis over a massive set of

sessions. In this chapter, we focus on analyzing the evolution of KPIs across video sessions for

1 This chapter is based on a published paper:

- Sepideh Malektaji, Diala Naboulsi, Roch Glitho, Alexander Polyantsev, Ali El Essaili, Cyril Iskander, and Richard

Brunner. “Video sessions KPIs clustering framework in CDNs.” In 2019 16th IEEE Annual Consumer Communica-

tions Networking Conference (CCNC), pp. 1-6. IEEE, 2019.

101

QoS and QoE analysis, using unsupervised machine learning tools. Moreover, we propose a

framework that allows the automatic formation of clusters of video sessions, presenting similar

evolution of KPIs. We capture the dynamics of KPIs over each session through a set of

representative features. Using the k-means clustering algorithm, we build upon collected features

to form clusters of video sessions, with each containing similar sessions in terms of KPIs evolution.

The framework is evaluated over a real-world traffic dataset covering thousands of sessions

collected over the infrastructure of a country-wide CDN provider. We show that our framework

allows distinguishing meaningful clusters. The obtained results underline the capabilities of the

proposed framework.

The rest of the chapter is organized as follows. First, we introduce the proposed framework,

including the KPI representations and the clustering algorithm used in this framework. We then

cover the evaluation of the framework, and finally, we conclude the work in the last subsection.

6.2 KPIs Clustering Framework

In this section, we present our video sessions clustering framework. Our framework allows

video sessions to be grouped into a set of clusters, each associated with a specific pattern in the

evolution of KPIs. The evolution of a KPI over time, throughout a video session, can be captured

through an irregular time series representation. Various clustering approaches can be employed

accordingly: raw data-based clustering, feature-based clustering, and model-based clustering [14].

Video sessions typically last for a long duration. Therefore, the time series representing the

evolution of their KPIs are also long. Moreover, they have unequal lengths, representing the user’s

watching time of a particular video content. In contrast to other approaches, a feature-based

clustering approach allows us to cope with these two aspects. We, therefore, adopt this type of

approach in our framework. In the following, we first describe the features that we employ to

represent the evolution of KPIs throughout a session. The similarity measure on which the

clustering step relies to group sessions is then presented, followed by a description of the clustering

algorithm. Finally, we describe how clusters are selected.

102

6.2.1 KPIs Representation

Our framework operates over a set of sessions 𝑆. We employ 𝑠 ∈ 𝑆 to refer to an individual

session in 𝑆. A session 𝑠 spans over a time interval 𝑇𝑠, a set of time instants 𝑡. We consider a set

𝐼 of KPIs. The evolution of KPI 𝑖 ∈ 𝐼 throughout session 𝑠 ∈ 𝑆 is captured via an irregular time

series 𝑖𝑠 = { 𝑖𝑠
𝑡 , ∀ 𝑡 ∈ 𝑇𝑠} where 𝑖𝑠

𝑡 is the value of KPI 𝑖 ∈ 𝐼 at time instant 𝑡 ∈ 𝑇𝑠 over session

𝑠 ∈ 𝑆.

We rely on the derived time series representation of KPIs 𝑖𝑠 to extract a set of features 𝑉 that

capture the evolution of KPIs throughout a session. The set of features 𝑉 has been chosen as the

set of features considered in [96]. There, the authors showed that the set of features 𝑉 allows to

successfully represent the evolution of a time series. Each feature 𝑣 ∈ 𝑉 captures a specific facet

of the evolution of the KPI in question throughout a session. For each KPI 𝑖 ∈ 𝐼, we extract the

following six features 𝑉 for a session 𝑠 ∈ 𝑆 , as detailed below.

Average. The average value of KPI 𝑖 ∈ 𝐼 of all samples during session 𝑠 ∈ 𝑆 is obtained with

Equation (1).

𝜇𝑠,𝑖 =
1

|𝑇𝑠|
∑ 𝑖𝑠

𝑡

𝑡∈𝑇𝑠

 (6-1)

Standard deviation. The standard deviation of KPI 𝑖 ∈ 𝐼, over all its samples in session 𝑠 ∈ 𝑆, is

derived with Equation (6-2).

𝜎𝑠,𝑖 = √
1

|𝑇𝑠|
∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
2

𝑡∈𝑇𝑠

 (6-2)

Skewness. Skewness is a measure that characterizes the shape of a mathematical distribution. It

captures the level of symmetry in the distribution with respect to its central point. For a KPI 𝑖 ∈ 𝐼

103

over a session 𝑠 ∈ 𝑆, it is derived with Equation (6-3).

𝑊𝑠,𝑖 =
1

|𝑇𝑠|𝜎𝑠,𝑖
3 ∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
3

𝑡∈𝑇𝑠

 (6-3)

Kurtosis. Kurtosis is another measure that allows characterizing the shape of a mathematical

distribution. It captures whether the distribution is heavy-tailed or light-tailed. A distribution with

a light tail tends to have low kurtosis. For a KPI 𝑖 ∈ 𝐼 over session 𝑠 ∈ 𝑆, the Kurtosis can be

obtained using Equation (6-4).

𝐾𝑠,𝑖 =
1

|𝑇𝑠|𝜎𝑠,𝑖
4 ∑(𝑖𝑠

𝑡 − 𝜇𝑠,𝑖)
4

𝑡∈𝑇𝑠

 (6-4)

Energy. Energy measures the strength of a time series. It is obtained based on the non-uniform

Discrete Fourier transform (DFT) of a time series. Assuming 𝑓𝑠,𝑖
𝑗
∈ 𝐹 is the 𝑗th discrete Fourier

component for KPI 𝑖 ∈ 𝐼 in session 𝑠 ∈ 𝑆, and that 𝐹 is the complete set, the energy is derived with

Equation (6-5).

𝐸𝑠,𝑖 =
1

|𝐹|
∑ |𝑓𝑠,𝑖

𝑗
|

𝑓
𝑠,𝑖
𝑗
∈𝐹

(6-5)

MLE. The Maximum Lyapunov Exponent measures the randomness for a time series by

quantifying the average logarithmic rate of separation of two nearby subsets of the time series. For

a KPI 𝑖 ∈ 𝐼 over a session 𝑠 ∈ 𝑆, it is obtained based on Equation (6-6).

𝑀𝑠,𝑖= lim
𝑡→∞

1

𝑇𝑠
𝑙𝑛

|𝑖𝑠
𝑡+𝛿−𝑖𝑠

𝑡|

|𝑖𝑠
𝑡0+𝛿−𝑖𝑠

𝑡0|
 (6-6)

104

6.2.2 Similarity Measure

After deriving the six features for each KPI 𝑖 ∈ 𝐼, over session 𝑠 ∈ 𝑆 , we construct a vector 𝑉𝑠

encompassing these features for a session 𝑠 ∈ 𝑆 as follows:

𝑉𝑠 = [𝜇𝑠,𝑖, 𝜎𝑠,𝑖,𝑊𝑠,𝑖, 𝐾𝑠,𝑖, 𝐸𝑠,𝑖, 𝑀𝑠,𝑖 | ∀𝑖 ∈ 𝐼]

Each of the features is rescaled to the interval [0,1] by considering the minimum and maximum

value of the feature of interest across all observations. Rescaling is done so that each feature

contributes approximately proportionately to the similarity measure. We use 𝑣𝑠,𝑖 to refer to the

rescaled feature 𝑣 ∈ 𝑉 of KPI 𝑖 ∈ 𝐼 over session 𝑠 ∈ 𝑆. This allows us to define a rescaled vector

𝑉𝑠
′ of features for a session 𝑠 ∈ 𝑆, as follows:

𝑉𝑠
′ = [𝑣𝑠,𝑖 | ∀𝑖 ∈ 𝐼, 𝑣 ∈ 𝑉]

We capture the degree of similarity between a pair of sessions 𝑠 and 𝑟 by calculating the Euclidean

distance between the corresponding rescaled vectors using Equation (6-7).

𝑑(𝑠, 𝑟) = [∑∑(𝑣𝑠,𝑖 − 𝑣𝑟,𝑖)
2

𝑖∈𝐼𝑣∈𝑉

]

1/2

 (6-7)

6.2.3 Clustering Algorithm

To obtain the set of video sessions clusters, we employ the widely-known 𝑘-means clustering

algorithm [97]. It has been selected due to its superior performance compared to other approaches,

e.g., hierarchical clustering techniques, as shown in the literature [97] as well as our experiments.

𝑘-means clustering algorithm is an unsupervised machine learning algorithm that allows grouping

a set of observations into a given number 𝑘 of clusters. It relies on a vectorial representation of

observations, in our case, the derived vectors 𝑉𝑠
′, for each session 𝑠 ∈ 𝑆 and for a similarity

measure among them, in our case computed based on the Euclidean distance, as described

previously. Given a random initial selection of 𝑘 centroids for clusters, the algorithm operates by

alternating between the two following steps until no more changes are possible.

105

Assignment step: For each session, the algorithm computes the average distance between the

session and all 𝑘 centroids. Then, the session is assigned to the cluster with the smallest distance.

Update step: Once all sessions are assigned to a cluster in the assignment step, the centroid for

each cluster is updated. The new centroid is obtained by computing the mean for vectors that

correspond to the sessions in the cluster.

6.2.4 Selection of Clusters

The 𝑘-means clustering algorithm allows clustering video sessions into a given number 𝑘 of

clusters. Multiple strategies exist for choosing the best 𝑘 value. In our work, we use clustering

indices to compare multiple clustering solutions and choose the best one. For that, we run 𝑘-means

algorithm for different values of 𝑘. A clustering index can then compare the different solutions

and select the best value of 𝑘 for the final clusters. We combine the results of the following three

indices.

The Calinski-Harabasz (CH) index [98] quantifies the dispersion level among clusters against

within clusters dispersion. The best value of 𝑘 is considered as the one leading to the largest value

of 𝐶𝐻.

The Silhouette (SI) index [99], for a single data point, in our case a session, allows measuring

how similar it is to the cluster where it belongs compared to other clusters. The average value of

the Silhouette index over all the sessions indicates the consistency level in the clustering. The

larger the value, the better the clustering.

The Davies Bouldin (DB) index [100] evaluates consistency in a clustering solution. It measures

the within-cluster distances against between-cluster distances. A lower value of the DB index

translates into a better clustering.

Combining the indices: To combine the outcome of the 𝐶𝐻, 𝑆𝐼, and 𝐷𝐵 indices to find the proper

number of clusters, we follow a ranking method. For each index, we assign a rank to each value

of 𝑘. The value of 𝑘 that has the highest aggregated rank, according to the different indices, is

considered to represent the best clustering solution.

106

6.3 Performance Evaluation

We summarize here our assessment of our framework, starting with a presentation of the

dataset we utilized. The clusters of sessions that the framework generated are described next.

6.3.1 Dataset

The dataset we used to evaluate our framework was collected over the infrastructure of a real-

world CDN provider. This CDN provider offers both VoD and live video content. The dataset

encompasses sessions covering the transfer of these two types of content at a country-scale level.

The initial dataset was collected for several days in 2016, with tens of thousands of content requests

received on a daily basis. For each content request, the transfer of each of its chunks was tracked

through data logs, with diverse information relating to the client, the content, and the streaming

node. For our evaluations, we operate over a subset of 6000 sessions occurring on a typical working

day. For our evaluations, we considered two major KPIs, the Download Bit Rate (DBR) and the

Quality Level (QL). The DBR is the rate at which bits are transferred from the surrogate server to

the user. The QL represents instead the bit rate at which the video is encoded. Depending on the

streaming technique used, the QL can change over time according to a user’s requests (e.g., as in

the case of adaptive bit rate streaming). Aside from being available in the dataset, these two KPIs

have been selected for our evaluation because of their correlation with users’ QoE, as shown in

previous studies ([101] and [62]). However, our framework is generic enough to account for other

KPIs that can be collected over the CDN system.

6.3.2 Sessions Clusters

We now discuss the outcome of our framework after its application to the obtained dataset. We

start from the number of clusters selected. Recall that to obtain the best number of clusters, we rely

on different clustering indices with multiple runs of the k-means clustering algorithm. We

considered cases ranging from two to nine clusters. Among these options, the different clustering

indices ranked the case of nine clusters as the best choice. Therefore, in the rest of the section, we

analyze the corresponding nine clusters. We first examine the sessions that are grouped into the

same clusters. We portray in Fig. 6.1 the evolution of the DBR and the QL over two sessions

selected from cluster 4 and cluster 2, respectively. For cluster 4, we can see in Fig. 6.1.a and

107

Fig.6.1.b that the two sessions present a similar evolution in terms of DBR and QL, with strong

upwards variations in DBR and a constant QL.

In turn, the sessions selected from cluster 2, shown in Fig. 6.1.c and Fig. 6.1.d, present similar

DBR and QL variations; each is characterized by a single prominent peak for DBR and a constant

QL with a few drops at the beginning. These observations illustrate our framework’s ability to

identify similarities in the KPI patterns between sessions.

Moreover, by comparing the sessions in Fig. 6.1, we can observe that the sessions in cluster 4

are significantly different from those in cluster 2, which also shows the capability of our framework

to separate sessions with distinct KPIs patterns into different clusters. Similar observations also

hold for the other clusters. We observed that sessions grouped inside the same cluster present very

similar patterns in terms of DBR and QL evolution, while the sessions in different categories are

clearly distinguishable. Furthermore, the identified patterns are informative for CDNs on users'

QoS and QoE, as follows.

(a) (b)

(c) (d)

Fig. 6.1 Sessions (a,b) in cluster 4; Sessions (c,d) in cluster 2.

108

In Fig. 6.2, we portray the evolution of the DBR and QL for a sample session from each cluster.

The sample session is the closest session to the centroid of the cluster and is, therefore,

representative of the patterns in the corresponding cluster. As can be seen, each cluster presents

distinct patterns for KPIs evolution. Cluster 3 has strong variations in both DBR and QL. This

(a) Cluster 0- A few peaks of DBR at the
starting and ending points of the session,

variations in QL.

(b) Cluster 1- Variations and a few drops in
DBR, a few drops in QL.

(c) Cluster 2- A single peak of DBR at the
end of the session, constant QL with a few

drops at the beginning.

(d) Cluster 3- Strong variations in both DBR

and QL.

(e) Cluster 4- Upward variations in DBR,

constant QL.

(f) Cluster 5- Variations in both DBR and

QL, mostly towards smaller values.

(h) Cluster 6- Variations in DBR with peaks
at starting and ending of the session,

constant QL.

(i) Cluster 7- Upward variations in DBR,
constant QL.

(j) Cluster 8- Significant drops in DBR and a
few drops in QL.

(c) (d)

Fig. 6.2 Summary of obtained clusters.

109

reflects unstable network conditions throughout the video streaming, leading to frequent switching

in QL of the viewed content. These frequent switches can significantly degrade the users' QoE

[102]. It is thus critical for the CDN provider to identify this pattern. Similar behavior is perceived

in Cluster 5, with variations in both DBR and QL. However, in this case, variations are less

prominent. Important variations in DBR and QL are also observed in Cluster 0. Nevertheless, a

single high peak in DBR enables the distinction of corresponding sessions in a separate cluster.

Clusters 1, 2, and 8 present a few QL drops with distinct DBR patterns. Cluster 2 shows a

constant QL with a few drops at the beginning and a single peak of DBR at the end of the session.

The low QL values at the beginning of a streaming session are important to analyze as they have

a significant influence on the user’s decision to carry on a streaming session [102]. Similarly,

Cluster 1 is characterized by a few drops in QL together with variations and drops in DBR. There,

the drops in QL and DBR at the end of the session are especially critical, as they could have

resulted in the user abandoning the session. Similarly, cluster 8 presents a few drops in QL and

some notable drops in DBR. Particularly important are the DBR drops that go below the stable QL

and can reach zero. Such drops can lead to undesirable video stalling behavior that affects users’

QoE [102].

In contrast to the other patterns, clusters 6, 4, and 7 present a constant QL, including sessions

with constant bitrate streaming. Cluster 6 is characterized by variations in DBR with peaks at its

session’s starting and ending points. However, as the DBR values remain greater than the constant

QL, based on these two KPIs, the video streaming would go smoothly. Both Cluster 4 and Cluster

7 exhibit a constant QL with upward variations in DBR that are more prominent in Cluster 4.

However, both these clusters also present DBR drops below QL levels that can lead to interruptions

in video streaming. Overall, we notice the framework is capable of identifying meaningful clusters

of sessions with distinct KPIs patterns that are informative for CDNs on users' QoS and QoE.

6.4 Conclusion

In this work, we introduce a framework for the analysis of KPIs in large-scale CDN systems.

The framework employs an unsupervised machine learning algorithm to automatically form

clusters of video sessions, presenting similar evolution of KPIs. We evaluate the framework over

a real-world dataset. The results underline its ability to create meaningful clusters.

110

Chapter 7

7. Conclusion and Future Work

7.1 Conclusion

Due to the inherently complex and dynamic nature of CDNs, several issues need to be

addressed to realize the next generation of CDNs. These issues include CDN deployment, content

placement, and performance management. This thesis proposes a number of ML-based solutions

to address these issues.

7.1.1 CDN Deployment

To provide a cost-efficient CDN deployment solution, in chapter 3, we proposed a deep

reinforcement learning-based joint VNF-FG composition and embedding framework that

considers the variations of service demands as well as the substrate network congestion. The

proposed method improved the embedding cost by up to 95%. Moreover, we demonstrated that

111

our proposed method could reach as close as 10.63% to the optimal solution within an acceptable

time duration.

Moreover, to enable adaptability in CDN deployment, in chapter 4, we addressed another

resource allocation issue. In there, we proposed a joint function scaling and topology adaptation

method, which supports not only the horizontal scaling but also VNF reordering and connectivity

changes in a given VNF-FG. We evaluated the performance of our proposed framework against

different neural network architectures and conducted performance evaluations comparing with

both joint and disjoint benchmarks. The results show that our proposed method achieves up to a

93% cost improvement compared to the benchmarks.

7.1.1 CDN Content Placement

To meet the QoS/QoE requirements in the operation of an edge-based CDN, we proposed a

deep reinforcement learning (DRL) content placement and migration technique that considers the

available caching capacity in the end-users neighboring edge caches. Our proposed method

eliminates the need for time-consuming retransmission of the selected content from remote servers

by enabling a content migration strategy. The simulation results show up to 70% in cost

improvements compared to the existing methods.

7.1.1 CDN Performance Management

To provide an automated performance management solution for CDN, we introduce a

framework for analyzing KPIs in large-scale CDN systems. The framework employs an

unsupervised machine learning algorithm to automatically form clusters of video sessions,

presenting similar evolution of KPIs. We evaluate the framework over a real-world dataset. The

results underline its ability to create meaningful clusters that can provide valuable insights for

further root cause analysis for CDNs.

7.2 Future Work

This thesis presented significant contributions toward realizing the next generation of CDNs

by addressing challenges in the deployment, content placement, and performance management of

CDNs. Yet, there exist several research directions for the future.

112

7.2.1 CDN Deployment Future Work

 In chapter 3, to provide a dynamic resource allocation solution, we employed two analyzers

that use historical data and estimate dynamic parameters such as service demand and physical

network congestion. However, an interesting future research direction could be integrating

advanced ML algorithms to build predictive models for these parameters. Such models can help

CDN providers to design proactive solutions enabling faster and more efficient deployment and

adaptation strategies.

7.2.2 Content Placement Future Work

As a future research direction, our work in chapter 5 can be extended by considering an

additional caching layer consisting of drone caches. Even though the use of caches installed on

drones provides flexibility for content delivery, their high mobility compounds the complexity of

the problem and hence requires further investigations.

7.2.3 Performance Management Future Work

The performance management framework proposed in chapter 6 can be extended to provide a

root cause analysis solution. To that end, the patterns discovered in each cluster could be further

analyzed using cutting-edge pattern recognition ML tools. Once the clusters with performance

degrading patterns are identified, interesting root cause information can be fetched from the

sessions belonging to those clusters. For instance, if most video sessions in the problematic cluster

are served by the same server, the server might be overloaded and could be the root cause of

performance degradation.

113

Bibliography:

[1] Zolfaghari B, Srivastava G, Roy S, Nemati HR, Afghah F, Koshiba T, Razi A, Bibak K, Mitra P, Rai BK. Content

delivery networks: State of the art, trends, and future roadmap. ACM Computing Surveys (CSUR). 2020 Apr

16;53(2):1-34.

[2] “Content delivery network (CDN) market—Growth, trends, and forecast (2020–2025),” Mordor Intell.,

Hyderabad,India,Rep.,2019.[Online].Available:https://www.mordorintelligence.com/industryreports/content-

delivery-market

[3] He M, Alba AM, Basta A, Blenk A, Kellerer W. Flexibility in softwarized networks: Classifications and research

challenges. IEEE Communications Surveys & Tutorials. 2019 Jan 14;21(3):2600-36.

[4] Herrera JG, Botero JF. Resource allocation in NFV: A comprehensive survey. IEEE Transactions on Network and

Service Management. 2016 Aug 5;13(3):518-32.

[5] Salahuddin MA, Sahoo J, Glitho R, Elbiaze H, Ajib W. A survey on content placement algorithms for cloud-based

content delivery networks. IEEE Access. 2017 Sep 19;6:91-114.

 [6] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, “Dynamic Joint VNF Forwarding Graph

composition and placement: A Deep Reinforcement Learning Framework” submitted work IEEE Transactions on

Network and Service Management.

[7] M. T. Beck and J. F. Botero, “Coordinated allocation of service function chains,” in Proc. IEEE Global

Communications Conference (GLOBE-COM), 2015, pp. 1–6.

[8] S. M. Ara ́ujo, F. S. de Souza, and G. R. Mateus, “A composition selection mechanism for chaining and placement

of virtual network functions,” in Proc. IEEE International Conference on Network and Service Management (CNSM),

2019, pp. 1–5.

[9] B. Spinnewyn, P. H. Isolani, C. Donato, J. F. Botero, and S. Latr, “Coordinated service composition and embedding

of 5G location-constrained network functions,” IEEE Transactions on Network and Service Management, vol. 15, no.

4, pp. 1488–1502, 2018.

[10] R. Gour, G. Ishigaki, J. Kong, and J. P. Jue, “Availability-guaranteed slice composition for service function chains

in 5G transport networks,” IEEE/OSA Journal of Optical Communications and Networking, vol. 13, no. 3, pp. 14–24,

2021.

[11] M. Wang, B. Cheng, S. Zhao, B. Li, W. Feng, and J. Chen, “Availability-aware service chain composition and

mapping in NFV-enabled net-works,” in Proc. IEEE International Conference on Web Services (ICWS), 2019, pp.

107–115.

114

[12] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, “Joint VNF-FG Function Scaling and

Topology Adaptation using Deep Reinforcement Learning” submitted work IEEE Transactions on Emerging Topics

in Computing.

 [13] Sepideh Malektaji, Amin Ebrahimzadeh, Halima Elbiaze, Roch Glitho, and Somayeh Kianpishe. “Deep

Reinforcement Learning-based Content Migration for Edge Content Delivery Networks with Vehicular Nodes.” IEEE

Transactions on Network and Service Management 2021.

 [14] Sepideh Malektaji, Somayeh Kianpisheh, and Roch Glitho,“Purging-Aware Content Placement in Fog-Based

Content Delivery Networks.” In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp. 1-3.

IEEE, 2018.

[15] Sepideh Malektaji, Diala Naboulsi, Roch Glitho, Alexander Polyantsev, Ali El Essaili, Cyril Iskander, and

Richard Brunner. “Video sessions KPIs clustering framework in CDNs.” In 2019 16th IEEE Annual Consumer

Communications Networking Conference (CCNC), pp. 1-6. IEEE, 2019.

[16] Broberg J, Buyya R, Tari Z. MetaCDN: Harnessing ‘Storage Clouds’ for high-performance content delivery.

Journal of Network and Computer Applications. 2009 Sep 1;32(5):1012-22.

[17] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow and P. A. Polakos, "A Comprehensive Survey

on Fog Computing: State-of-the-Art and Research Challenges," in IEEE Communications Surveys & Tutorials, vol.

20, no. 1, pp. 416-464, Firstquarter 2018, doi: 10.1109/COMST.2017.2771153.

[18] Sun, Yaohua, et al. "Application of machine learning in wireless networks: Key techniques and open

issues." IEEE Communications Surveys & Tutorials 21.4 (2019): 3072-3108.

[19] Luong, Nguyen Cong, et al. "Applications of deep reinforcement learning in communications and networking: A

survey." IEEE Communications Surveys & Tutorials 21.4 (2019): 3133-3174.

[20] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[21] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double q-

learning." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. No. 1. 2016

[22] Benkacem I, Taleb T, Bagaa M, Flinck H. Optimal VNFs placement in CDN slicing over multi-cloud

environment. IEEE Journal on Selected Areas in Communications. 2018 Mar 12;36(3):616-27.

[23] Wang W, Lan R, Gu J, Huang A, Shan H, Zhang Z. Edge caching at base stations with device-to-device

offloading. IEEE Access. 2017 Mar 7;5:6399-410.

[24] Su Z, Hui Y, Xu Q, Yang T, Liu J, Jia Y. An edge caching scheme to distribute content in vehicular networks.

IEEE Transactions on Vehicular Technology. 2018 Apr 9;67(6):5346-56.

115

[25] Wang L, Lu Z, Wen X, Knopp R, Gupta R. Joint optimization of service function chaining and resource allocation

in network function virtualization. IEEE Access. 2016 Nov 17;4:8084-94.

[26] Li J, Shi W, Ye Q, Zhuang W, Shen X, Li X. Online joint VNF chain composition and embedding for 5G

networks. In2018 IEEE Global Communications Conference (GLOBECOM) 2018 Dec 9 (pp. 1-6). IEEE.

[27] Zheng D, Peng C, Liao X, Tian L, Luo G, Cao X. Towards latency optimization in hybrid service function chain

composition and embedding. InIEEE INFOCOM 2020-IEEE Conference on Computer Communications 2020 Jul 6

(pp. 1539-1548). IEEE.

[28] Kang J, Simeone O, Kang J. On the trade-off between computational load and reliability for network function

virtualization. IEEE Communications Letters. 2017 Apr 25;21(8):1767-70.

[29] Chen X, Yu H, Xu S, Du X. CompRess: Composing overlay service resources for end‐to‐end network slices

using semantic user intents. Transactions on Emerging Telecommunications Technologies. 2020 Jan;31(1):e3728.

[30] Bian S, Huang X, Shao Z, Gao X, Yang Y. Service chain composition with resource failures in NFV systems: A

game-theoretic perspective. IEEE Transactions on Network and Service Management. 2020 Dec 16;18(1):224-39.

[31] Ning Z, Wang N, Tafazolli R. Deep Reinforcement Learning for NFV-based Service Function Chaining in Multi-

Service Networks. In2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR)

2020 May 11 (pp. 1-6). IEEE.

[32] Pei J, Hong P, Li D. Virtual network function selection and chaining based on deep learning in SDN and NFV-

enabled networks. In2018 IEEE International Conference on Communications Workshops (ICC Workshops) 2018

May 20 (pp. 1-6). IEEE.

[33] Yang S, Li F, Trajanovski S, Yahyapour R, Fu X. Recent advances of resource allocation in network function

virtualization. IEEE Transactions on Parallel and Distributed Systems. 2020 Aug 17;32(2):295-314.

[34] Pham C, Tran NH, Ren S, Saad W, Hong CS. Traffic-aware and energy-efficient vNF placement for service

chaining: Joint sampling and matching approach. IEEE Transactions on Services Computing. 2017 Feb 20;13(1):172-

85.

[35] Wu B, Zeng J, Ge L, Shao S, Tang Y, Su X. Resource allocation optimization in the NFV-enabled MEC network

based on game theory. InICC 2019-2019 IEEE International Conference on Communications (ICC) 2019 May 20 (pp.

1-7). IEEE.

[36] Pei J, Hong P, Pan M, Liu J, Zhou J. Optimal VNF placement via deep reinforcement learning in SDN/NFV-

enabled networks. IEEE Journal on Selected Areas in Communications. 2019 Dec 13;38(2):263-78.

[37] N. Yuan, W. He, J. Shen, X. Qiu, S. Guo and W. Li, "Delay-Aware NFV Resource Allocation with Deep

Reinforcement Learning," NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, 2020,

pp. 1-7, doi: 10.1109/NOMS47738.2020.9110377.

116

[38] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang, “NFVdeep: Adaptive online service

function chain deployment with deep reinforcement learning,” in Proc. ACM International Symposium on Quality of

Service, 2019, pp. 1–10.

[39] P. Sun, J. Lan, J. Li, Z. Guo and Y. Hu, "Combining Deep Reinforcement Learning With Graph Neural Networks

for Optimal VNF Placement," in IEEE Communications Letters, vol. 25, no. 1, pp. 176-180, Jan. 2021, doi:

10.1109/LCOMM.2020.3025298.

[40] L. Wang, W. Mao, J. Zhao and Y. Xu, "DDQP: A Double Deep Q-Learning Approach to Online Fault-Tolerant

SFC Placement," in IEEE Transactions on Network and Service Management, vol. 18, no. 1, pp. 118-132, March

2021, doi: 10.1109/TNSM.2021.3049298.

[41] X. Fu, F. R. Yu, J. Wang, Q. Qi and J. Liao, "Dynamic Service Function Chain Embedding for NFV-Enabled

IoT: A Deep Reinforcement Learning Approach," in IEEE Transactions on Wireless Communications, vol. 19, no. 1,

pp. 507-519, Jan. 2020, doi: 10.1109/TWC.2019.2946797.

[42] Fei X, Liu F, Jin H, Li B. FlexNFV: Flexible network service chaining with dynamic scaling. IEEE Network.

2020 Feb 11;34(4):203-9.

[43] Zhang Q, Liu F, Zeng C. Online Adaptive interference-aware VNF deployment and migration for 5G network

slice. IEEE/ACM Transactions on Networking. 2021 May 25;29(5):2115-28.

[44] Pandey S, Hong JW, Yoo JH. GRU and EdgeQ-Learning based Traffic Prediction and Scaling of SFC. In2021

IEEE 7th International Conference on Network Softwarization (NetSoft) 2021 Jun 28 (pp. 124-132). IEEE.

[45] Subramanya T, Riggio R. Centralized and federated learning for predictive VNF autoscaling in multi-domain 5G

networks and beyond. IEEE Transactions on Network and Service Management. 2021 Jan 11;18(1):63-78.

[46] Luo Z, Wu C. An online algorithm for VNF service chain scaling in datacenters. IEEE/ACM Transactions on

Networking. 2020 Mar 24;28(3):1061-73.

[47] Lange S, Kim HG, Jeong SY, Choi H, Yoo JH, Hong JW. Predicting vnf deployment decisions under dynamically

changing network conditions. In2019 15th International Conference on Network and Service Management (CNSM)

2019 Oct 21 (pp. 1-9). IEEE.

[48] Houidi O, Soualah O, Louati W, Zeghlache D. Dynamic VNF forwarding graph extension algorithms. IEEE

Transactions on Network and Service Management. 2020 Apr 28;17(3):1389-402.

[49] Liu J, Lu W, Zhou F, Lu P, Zhu Z. On dynamic service function chain deployment and readjustment. IEEE

Transactions on Network and Service Management. 2017 Jun 5;14(3):543-53.

[50] Khan I, Zhang T, Xu X, Shan S, Khan A, Ahmad S. Priority-based content dissemination in content centric

vehicular networks. In2018 2nd IEEE Advanced Information Management, Communicates, Electronic and

Automation Control Conference (IMCEC) 2018 May 25 (pp. 2005-2009). IEEE.

117

[51] Meuser T, Richerzhagen B, Stavrakakis I, Nguyen TA, Steinmetz R. Relevance-aware information dissemination

in vehicular networks. In2018 IEEE 19th International Symposium on" A World of Wireless, Mobile and Multimedia

Networks"(WoWMoM) 2018 Jun 12 (pp. 588-599). IEEE.

[52] Chen M, Qian Y, Hao Y, Li Y, Song J. Data-driven computing and caching in 5G networks: Architecture and

delay analysis. IEEE Wireless Communications. 2018 Feb 28;25(1):70-5.

[53] Zhu H, Cao Y, Wang W, Jiang T, Jin S. Deep reinforcement learning for mobile edge caching: Review, new

features, and open issues. IEEE Network. 2018 Nov 29;32(6):50-7.

[54] Zhong C, Gursoy MC, Velipasalar S. A deep reinforcement learning-based framework for content caching.

In2018 52nd Annual Conference on Information Sciences and Systems (CISS) 2018 Mar 21 (pp. 1-6). IEEE.

[55] Hu RQ. Mobility-aware edge caching and computing in vehicle networks: A deep reinforcement learning. IEEE

Transactions on Vehicular Technology. 2018 Aug 27;67(11):10190-203.

[56] He Y, Zhao N, Yin H. Integrated networking, caching, and computing for connected vehicles: A deep

reinforcement learning approach. IEEE Transactions on Vehicular Technology. 2017 Oct 6;67(1):44-55.

[57] Yu Z, Hu J, Min G, Zhao Z, Miao W, Hossain MS. Mobility-aware proactive edge caching for connected vehicles

using federated learning. IEEE Transactions on Intelligent Transportation Systems. 2020 Aug 31;22(8):5341-51.

[58] Qiao G, Leng S, Maharjan S, Zhang Y, Ansari N. Deep reinforcement learning for cooperative content caching

in vehicular edge computing and networks. IEEE Internet of Things Journal. 2019 Oct 22;7(1):247-57.

[59] Gomaa H, Messier GG, Williamson C, Davies R. Estimating instantaneous cache hit ratio using markov chain

analysis. IEEE/ACM transactions on Networking. 2012 Dec 10;21(5):1472-83.

[60] Fan X, Katz-Bassett E, Heidemann J. Assessing affinity between users and CDN sites. InInternational Workshop

on Traffic Monitoring and Analysis 2015 Apr 21 (pp. 95-110). Springer, Cham.

[61] Casas P, D'Alconzo A, Fiadino P, Bär A, Finamore A, Zseby T. When YouTube does not work—Analysis of

QoE-relevant degradation in Google CDN traffic. IEEE Transactions on Network and Service Management. 2014 Dec

4;11(4):441-57.

[62] Shafiq MZ, Erman J, Ji L, Liu AX, Pang J, Wang J. Understanding the impact of network dynamics on mobile

video user engagement. ACM SIGMETRICS Performance Evaluation Review. 2014 Jun 16;42(1):367-79.

[63] Li Z, Wu Q, Salamatian K, Xie G. Video delivery performance of a large-scale VoD system and the implications

on content delivery. IEEE Transactions on Multimedia. 2015 Mar 27;17(6):880-92.

[64] Li W, Spachos P, Chignell M, Leon-Garcia A, Zucherman L, Jiang J. Understanding the relationships between

performance metrics and QoE for over-the-top video. In2016 IEEE International Conference on Communications

(ICC) 2016 May 22 (pp. 1-6). IEEE.

118

[65] Orsolic I, Pevec D, Suznjevic M, Skorin-Kapov L. A machine learning approach to classifying YouTube QoE

based on encrypted network traffic. Multimedia tools and applications. 2017 Nov;76(21):22267-301.

[66] Giordano D, Traverso S, Grimaudo L, Mellia M, Baralis E, Tongaonkar A, Saha S. YouLighter: A cognitive

approach to unveil YouTube CDN and changes. IEEE Transactions on Cognitive Communications and Networking.

2015 Jun;1(2):161-74.

[67] Wu T, Huysegems R, Bostoen T. Scalable network-based video-freeze detection for HTTP adaptive streaming.

In2015 IEEE 23rd International Symposium on Quality of Service (IWQoS) 2015 Jun 15 (pp. 95-104). IEEE.

[68] Dimopoulos G, Leontiadis I, Barlet-Ros P, Papagiannaki K, Steenkiste P. Identifying the root cause of video

streaming issues on mobile devices. In Proceedings of the 11th ACM Conference on Emerging Networking

Experiments and Technologies 2015 Dec 1 (pp. 1-13).

[69] Zhu Y, Helsley B, Rexford J, Siganporia A, Srinivasan S. LatLong: Diagnosing wide-area latency changes for

CDNs. IEEE Transactions on Network and Service Management. 2012 Jul 6;9(3):333-45.

[70] Tavakoli A, Pardo F, Kormushev P. Action branching architectures for deep reinforcement learning.

InProceedings of the AAAI Conference on Artificial Intelligence 2018 Apr 29 (Vol. 32, No. 1).

[71] Kanervisto A, Scheller C, Hautamäki V. Action space shaping in deep reinforcement learning. In2020 IEEE

Conference on Games (CoG) 2020 Aug 24 (pp. 479-486). IEEE.

[72] Li D, Hong P, Xue K, Pei J. Virtual network function placement and resource optimization in NFV and edge

computing enabled networks. Computer Networks. 2019 Apr 7;152:12-24.

[73] Chemodanov D, Calyam P, Esposito F. A near optimal reliable composition approach for geo-distributed latency-

sensitive service chains. InIEEE INFOCOM 2019-IEEE Conference on Computer Communications 2019 Apr 29 (pp.

1792-1800). IEEE.

[74] G. Wang, G. Feng, T. Q. Quek, S. Qin, R. Wen, and W. Tan, “Reconfiguration in network slicing—optimizing

the profit and performance,” IEEE Transactions on Network and Service Management, vol. 16, no. 2, pp. 591–605,

2019.

[75] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI gym,”

arXiv preprint arXiv:1606.01540, 2016.

[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al.,

“Tensorflow: A system for large-scale machine learning,” in 12th {USENIX} symposium on operating systems design

and implementation ({OSDI} 16), 2016, pp. 265–283.

[77] T. O’Malley, “Hyperparameter tuning with Keras Tuner,” 2020.

119

[78] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network slice reconfiguration by exploiting deep

reinforcement learning with large action space,” IEEE Transactions on Network and Service Management, vol. 17,

no. 4, pp. 2197–2211, 2020

[79] J. Wilkes, “Yet more Google compute cluster trace data,” Google research blog, 2020.

[80] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-Balter, and J. Wilkes, “Borg: the

next generation,” in Proc. ACM European Conference on Computer Systems, 2020, pp. 1–14

[81] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network architectures for deep

reinforcement learning,” in Proc. PMLR International Conference on Machine Learning, 2016, pp. 1995–2003.

[82] X. Lin, D. Guo, Y. Shen, G. Tang, and B. Ren, “DAG-SFC: Minimize the embedding cost of SFC with parallel

VNFs,” in ACM Proc. International Conference on Parallel Processing, 2018, pp. 1–10

[83] H. Cao, J. Du, H. Zhao, D. X. Luo, N. Kumar, L. Yang, and F. R.Yu, “Resource-ability assisted service function

chain embedding and scheduling for 6G networks with virtualization,” IEEE Transactions on Vehicular Technology,

vol. 70, no. 4, pp. 3846–3859, 2021.

[84] Z. Wang, J. Zhang, T. Huang, and Y. Liu, “Service function chain composition, placement, and assignment in

data centers,” IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1638–1650, 2019.

[85] Jahromi NT, Kianpisheh S, Glitho RH. Online VNF placement and chaining for value-added services in content

delivery networks. In2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)

2018 Jun 25 (pp. 19-24). IEEE.

[86] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A,

Chen Y. Mastering the game of go without human knowledge. nature. 2017 Oct;550(7676):354-9.

[87] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen,“Toward efficient content delivery for automated driving

services: An edge computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, Jan. 2018.

[88] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based action recognition using spatio-temporal

LSTM network with trust gates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12,

pp. 3007–3021, Nov. 2017.

[89] Y. Bin, Y. Yang, F. Shen, N. Xie, H. T. Shen, and X. Li, “Describing video with attention-based bidirectional

LSTM,” IEEE Transactions on Cybernetics, vol. 49, no. 7, pp. 2631–2641, May 2018.

[90] K. Greff, R. K. Srivastava, J. Koutn ́ık, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, July 2016.

120

[91] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and applications of SUMO-

simulation of urban mobility,” International Journal on Advances in Systems and Measurements, vol. 5, no. 3&4, Dec.

2012.

[92] A. Hanggoro and R. F. Sari, “Performance evaluation of the Manhattan mobility model in vehicular Ad-hoc

networks for high mobility vehicle,” in Proc. IEEE International Conference on Communication, Networks and

Satellite (COMNETSAT), 2013, pp. 31–36.

[93] G. Li, J. Wang, J. Wu, and J. Song, “Data processing delay optimization in mobile edge computing,” Wireless

Communications and Mobile Computing, vol. 2018, Feb. 2018.

[94] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration modeling and learning algorithms for containers

in fog computing,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, Feb.2018.

[95] Liao TW. Clustering of time series data—a survey. Pattern recognition. 2005 Nov 1;38(11):1857-74.

[96] Teemu et al. "Feature-based clustering for electricity use time series data." Adaptive and Natural Computing

Algorithms, 401-412, 2009.

[97] Xu R, Wunsch D. Survey of clustering algorithms. IEEE Transactions on neural networks. 2005 May 9;16(3):645-

78.

[98] Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics-theory and Methods.

1974 Jan 1;3(1):1-27.

[99] Wang K, Wang B, Peng L. CVAP: validation for cluster analyses. Data Science Journal. 2009 Apr

24:0904220071-.

[100] Davies DL, Bouldin DW. A cluster separation measure. IEEE transactions on pattern analysis and machine

intelligence. 1979 Apr(2):224-7.

[101] Menkovski V, Exarchakos G, Liotta A, Sánchez AC. Quality of experience models for multimedia streaming.

International Journal of Mobile Computing and Multimedia Communications (IJMCMC). 2010 Oct 1;2(4):1-20.

[102] Juluri P, Tamarapalli V, Medhi D. Measurement of quality of experience of video-on-demand services: A

survey. IEEE Communications Surveys & Tutorials. 2015 Feb 6;18(1):401-18.

[103] Klein, D. J., and M. Randić. "Innate degree of freedom of a graph." Journal of Computational Chemistry 8.4

(1987): 516-521.

