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Abstract

Root Cause Analysis Frameworks for Information Systems

Vu Hong Hai Phan

Telecommunications systems have evolved to include an ever-growing number of inter-

dependent hardware and software components with complex interactions. This exponential

increase in complexity affects the reliability and stability of network systems. This thesis

provides two systematic approaches to improve the speed and quality of the Root Cause

Analysis task in telecommunications systems.

The first approach introduces a new fault analysis framework based on association rule

mining and evaluates it for telecommunication systems. The approach describes a strategy

using association rules to specifically target faults while improving runtime performance

relative to the standard Apache Spark implementation. It also introduces a novel filtering

strategy called Cover Set filtering that prunes and merges rule sets to produce high-quality,

concise and interpretable results. The proposed framework is evaluated with real-world

telecommunication datasets. Compared with other strategies, we demonstrate a better rule

diversity in general and a sufficiently compact fault analysis.

The second approach tackles Root Cause Analysis from the causal perspective. It is

based on Counterfactuals and Nearest Neighbour Matching concepts to identify fault types

and highlight the most fault contributing variables. The proposed framework is a proof of

concept for finding the root cause of problems based on the causal learning technique. It

is demonstrated to be highly compatible with numerical data and highly robust with noisy

data.
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In conclusion, the proposed frameworks improve the quality and performance of fault

troubleshooting tasks in telecommunication systems. Last but not least, the proposed

frameworks can be adapted to other information systems with minor modifications.
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Chapter 1

Introduction

This chapter provides an overview of the main topic of this dissertation.

1.1 Motivation

In many disciplines, errors, faults or problems are unavoidable. To reduce the impact of

failures and potentially prevent them in the future, practitioners need to perform a series of

thorough investigations to find their root causes. In engineering, the process of investigating

the cause of problems is referred to as Root Cause Analysis.

In the telecommunication field, Root Cause Analysis is a vital component of the op-

erating workflow. As networking technology evolves, the systems complexity becomes

increasingly challenging for operators to monitor and resolve problems. Such complexity

comes from the variety and volume of interactions between network components, which

are already difficult for human operators to track manually. Unfortunately, identifying the

root cause of problems is still an open research question due to many obstacles: complex

component interactions, numerous points of failure, systems high evolution rate, limited

time and cost. Therefore, the need for research on automatic root cause analysis methods

is obvious.

1.2 Context

This work was performed in collaboration with EXFO Inc., a company focusing on network

testing, monitoring and analysis. The work presented in this thesis is based on real-world

problems and data of EXFO. It aims to develop methods and techniques to identify the root
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cause of network failure under the constraint of big data and time limits. The developed

solutions are validated by telecommunication experts and proved to be promising solutions

for deploying in real-world systems. The proposed solutions can also be used for root cause

analysis in other information systems without significant modification.

1.3 Plan of the thesis

This dissertation is divided into five chapters. This current chapter provides an overview

and context of the research. Chapter 2 will introduce the necessary technical background

of the proposed approaches along with some related works. Chapter 3 and Chapter 4 are

organized as separate conference papers and propose solution based on association rule

and causal discovery approach respectively. Chapter 5.1 will provide the conclusions, open

problems and future works.

The work from Chapter 3 has been published in IEEE Bigdata 2021 proceeding and

submitted to US Patent Office:

• H-H Phan-Vu, B Jaumard, T Glatard, J Whatley, S Nadeau. “A Scalable Multi-factor

Fault Analysis Framework for Information Systems”. Discriminative Pattern Mining

Workshop, IEEE BigData 2021. In this work, I contribute the methodology, experi-

ments and the initial draft. Dr. Jaumard and Dr. Glatard provide academic guidance,

feedback and manuscript modification. Whatley and Nadeau provide technical guid-

ance, result evaluation and manuscript modification.

• H-H Phan-Vu, B Jaumard, T Glatard, J Whatley, S Nadeau. “Identification of clusters

of elements causing network performance degradation or outage”. Patent (Pending)

17/649219. In this work, I contribute the methodology. Dr. Jaumard and Dr. Glatard

provide academic guidance and feedback. Whatley and Nadeau provide technical

guidance and feedback.

The work of Chapter 4 will be submitted as another publication.
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Chapter 2

Problem Statement and Background

This chapter starts with a detailed description of the research problem of this thesis, i.e., the

fault analysis of a network system. After that, it will provide basic foundations for the work

in Chapter 3 and Chapter 4. Some related works are also summarized in each respective

section.

2.1 Fault Analysis in Telecommunications networks

Root Cause Analysis (RCA), also known as Fault Localization or Fault Analysis is the pro-

cess of determining the sources of a problem or event. Root Cause Analysis is a crucial part

of many disciplines, including industrial process control, IT operations, medical diagnosis,

or epidemiology. In telecommunications, Root Cause Analysis is an essential component

that helps reduce downtime and increases the information systems’ stability. The work

in [20] reviews standard techniques for solving RCA problems, including the five whys,

fault tree analysis, Ishikawa diagrams and Pareto charts. All of them require one or many

human analysts.

In telecommunications and network systems, fault analysis is commonly performed by

professional experts. Usually, the network operators record the technical state of the net-

work into a log file. The records can contain information related to the provided service,

network and users. There are two primary types of records: Call Data Records (CDRs),

which are created every time a subscriber establishes a call, and Service Data Records

(SDRs), which are created when there is a new Internet connection in the network. Table 1

is an example of the data records from the telecommunication network; each row corre-

sponds to a newly established call, and each column corresponds to a feature; the Status
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column describes if the call attempt is succeeded or not. The task of RCA is to identify the

values of the elements that cause the degradation. However, even very experienced pro-

fessionals cannot envision all possible explanatory factors to diagnose faults present in the

data. Thus, when systems become more complex, traditional diagnostic approaches can

lead to bias and might miss new or unusual patterns in the data. Further, manual explo-

rations by experts can be time-consuming and computationally inefficient.

Table 1: An example of the records used for diagnosis

Timestamp Cell ID Device type Service Interface Status

0 a1b1 ip5s s1 i1 failed

1 a1b1 ss10 s2 i2 successful

2 a1b2 ip8x s1 i3 successfull

As the complexity of information systems increases each year, the need for reliable

methods to analyze large amounts of data from various input sources, representing many

components of a system, has become increasingly important. Furthermore, uncovering the

areas in a complex system that are possible root causes or at least warrant further investiga-

tion has become so challenging that human operators can no longer keep up with this task.

Thus, automation of fault analysis is necessary to ensure service reliability and customer

satisfaction experience in telecommunications systems.

2.2 Root Cause Analysis as Feature Association Problem

Many studies have created automated fault analysis or RCA for information systems. One

can divide these automated techniques into two main categories: deterministic and stochas-

tic [45].

In deterministic fault analysis models, there is no uncertainty when constructing mod-

els or getting inferences. The works in [6, 35, 42, 57] use a finite state machine as part of

the reasoning process. However, such expert systems require many handcrafted features

and can lack robustness. Some other techniques use supervised classification models to

predict possible causes, such as Decision Trees [8] or Support Vector Machines [11, 55].

These techniques, however, can only provide predicted possible causes with minimal ex-

planations. In addition, they can be difficult to enrich with prior knowledge, and will not

easily generalize to new problems when the underlying data changes.
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Stochastic methods used to find the possible causes of problems are robust and can be

applied to many related tasks without significant modifications. The works in [14, 54] are

among the first works using a neural network to detect and resolve faults in communica-

tion networks. While they are resilient to noise and inconsistencies in the data, stochastic

methods are often hard to interpret due to the requirement to make assumptions about the

data and set parameters and can therefore produce unexpected results. Another key issue

with stochastic methods, especially deep learning classifiers, is that they are not designed

for generating multiple dimensional results.

In [26], the authors introduced a framework using Apriori and FP-Growth [18], i.e., the

two main association rule mining techniques, to find values strongly correlated with errors.

When describing fault analysis as a rule finding problem, one can relate it to the Subgroup

discovery [32], a special case of general rule learning. However, the goal of fault analysis

is directed toward finding fault sources, whereas the target of Subgroup discovery also

includes non-fault classes. The methods proposed in Chapter 3 of this thesis are most akin

to the multivariable (multi-factor) fault correlation made possible by the high computational

availability in recent years.

2.3 Causal Inference for Root Cause Analysis

Causal inference [33] is the process of estimating the effect of a treatment on the outcome

of a data analysis, i.e., the data investigation for root cause analysis in the context of the

study of this thesis.

There are two main approaches for learning causal relationships: Randomized Con-

trolled Experiments (RCT) or Observational data. In RCT, participants are randomly as-

signed to either the treatment group or the control group, and the expected difference be-

tween these groups is the outcome of the variable being studied. However, such an ex-

periment process is very expensive from a computational perspective and also requires

substantial amounts of expert knowledge, e.g., to identify the values to divide the popula-

tion into identical (i.e., same distribution) groups. For large systems, such a process is very

complex to be put in practice concerning the partitioning process of equivalent groups.

Therefore, data-driven methods are favored to find causal relations from observational

data, also referred to as Observational Causal Discoveries [16]. Observational data con-

tains groups of individuals taking different treatments and outcomes from these treatments.

Deducting causality from observational data is still a challenging task and there are multiple

work directions to tackle it, all are based on Reichenbach’s common cause principle [58]:
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“if variables are dependent then they are either causal to each other (in either direction) or

driven by a common driver”. There are two main systematic approaches: Structure Causal

Models (SCM) [33] and Potential Outcome Framework (POF) [41], which are logically

equivalent. In SCM, the causal mechanisms are described using causal graphs and causal

equations, which provides the ability to learn causal relations among any variable but re-

quires knowing the complete causal graph. In contrast, the Potential Outcome Framework

(POF) does not require such knowledge, which is more suitable for the goal of discovering

the causal relationships in the context of this work. In the remainder of this section, we will

provide the basic definitions of POF and their equivalent with the context of this work.

The atomic research object in causal inference is the unit, e.g., an individual or a par-

ticular time point. In this thesis, the equivalent of a unit is a data record; the term “record”,

“data point”, “sample” will be used interchangeably. A treatment is an action that applies

to a unit, i.e., assign a group of values to a group of a unit’s features. In terms of Associ-

ation Rules, a unit’s counterpart is a data record and a treatment’s counterpart is a basket.

The outcome is the result of the treatment applied to a unit. In the RCA context, it is

the recorded final status (fail/success) or Key Performance Indicators (KPIs) values. The

observed outcome is the actual outcome of the treatment while counterfactual outcome is

the outcome of the unit’s treatment if the unit has taken a different treatment. Compared

to Association Rules approach, the casual framework provides the concept of “what if”

scenarios in the term of counterfactual.

There are two main problems in causal inference: learning the causal effects and learn-

ing causal relations [16]. Learning causal effects aims to understand the method to quantify

the interaction between events, while learning causal relations seeks to formulate the inter-

action of events. According to Pearl [33], these are from an observational perspective and

interventional perspective, respectively. In both perspectives, learning causal relations or

Causal discovery for cross-sectional data (i.e., no regard for differences in time) is the most

investigated causal task [31]. Generally, Root Cause Analysis (RCA) can be described as

a Causal Discovery task with big data and latent variable constraints. However, RCA can

also be described as a learning causal effects task with some modification. The detailed

justification can be found in Chapter 4.

2.4 Other Related Works

In addition to the previously mentioned approaches, several other approaches should be

mentioned. They include Classification, Feature Importance Estimation, and Abductive
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Reasoning.

RCA can be viewed as a classification task where the goal is to find the groups of

interested variables related to the event. In [15], the authors proposed an offline method

based on classification models to identify dependencies among system variables and events

automatically, followed by a summarization step. The framework operates on graphs and

visualization tools. Concretely, the proposed method aimed to create a knowledge base

automatically based on the “influence matrix” concept, where the interaction between vari-

ables is described. In [4], the authors aim at two objects: to detect anomaly states in virtual

network infrastructure and diagnosis the root cause of these states. The former is achieved

by an unsupervised learning k-Means, while the latter is performed by a Support Vec-

tor Machine classifier. In the RCA stage, a graph that describes the dependencies among

events in the system was created where the nodes are misbehaving components and edges

are propagation paths. SVM one-class classification is applied to determine if there is an

edge between two nodes in the graph. Alaeddini and Dogan [3] proposed a Baysian net-

work architecture for capturing the cause-effect relationship using a list of pre-determined

patterns. Overall, the classification approach can take advantage of advanced machine

learning models but require a limited pre-determined number of possible causal-effect can-

didates and may also require extensive model training.

RCA can also be considered a Feature Importance Estimation task for an individual

event. Therefore, solving Feature Importance Estimation problems can also be considered

as an alternative for solving RCA. From that interpretation, RCA can be solved either indi-

rectly or directly. In the indirect approach, we first need to build a classification model with

input measurements as input features and the event (normal/failure) as labels and then ex-

tract the importance of features for each sample or groups of samples as the wanted causal

factors [7, 27, 39]. Opposite to the indirect approach, the direct approach does not require

access to any classification model. The feature importances are directly extracted from the

data itself. The approaches that can be considered include Prototypes and Criticisms [23]

or Counterfactual Explanations [38].

Finally, Abductive Reasoning, Abductive Inference or Abduction [22] is a logical rea-

soning process that extracts the precondition from a consequence. In RCA, the abduction

of an event is based on a given theory relating the events with their effects and a set of

observed effects. For computational purposes, Abductive Reasoning is often implemented

under the Markov Logic Networks, a formal combination of logical formulas and prob-

abilities. In [43] and [57], the prior knowledge about the systems is previously injected

into the inference network, the inference about the root causes of events are extracted such

7



that it fits the scenario with the highest probability given the observed events. Abductive

Reasoning is also considered a rule-based approach, which gives exceptional computation

efficiency but requires extensive engineering efforts and is not suitable for highly evolving

systems.

8



Chapter 3

Root Cause Analysis with Association
Rules

3.1 Introduction

Despite the concept behind fault analysis are causality and explanation, a fault analysis

model does not necessarily satisfy all the requirements of a causal model. There are wide

ranges of aspects and requirements that can affect the nature of the fault analysis prob-

lem. The first concern is about the intent, whether to only obtain the group of compo-

nents/interactions that caused the problem or obtain the explanation. The second aspect is

problem complexity, which involves the time allowed to spend, the system size, the effect

of error propagation, the system’s evolution rate and the number of involved components

(single or multiple causality). A third important aspect is the required knowledge about the

domain (about the problem) and the system (about the diagnosing system) [45]. From these

requirements, we define a framework for generic postmortem fault analysis which works

with generic information systems and has the following properties: (1) be able to provide

possible problem causal components/interactions; (2) be able to work with any problem

complexity; (3) work as an assisted generation model: it requires some partial knowledge

about possible causal components and investigating the results; (4) be easy for operators to

understand the model and interpret the results.

Our proposed model for fault analysis is based on the concept of Frequent Pattern Min-

ing (FPM), also known as association rule mining [2], which is an effective avenue for fault

analysis due to its ability to identify multi-factor patterns associated with system statuses in

complex systems. Although there is potential in FPM for fault analysis, strategies to reduce
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the high-computational cost of FPM and improve the quality of the resulting associations

are critical for real-world applications.

In this work, the key contributions are:

(i) analysis and demonstrate that frequent pattern mining is an appropriate approach for

fault analysis of complex systems

(ii) improvement of FP-growth and a new filtering procedure that further reduces the

size of the set of filtered rules, while improving its performance (support/confidence)

metrics, result interpretability and scalability

(iii) expert validation of the refinements and increased scalability of the improved al-

gorithms on two real-world telecommunication datasets consisting of 3G and 4G

call-data-records

(iv) generic tools (i.e., combination of similarity matrices with various metrics) for com-

paring different sets of filtered rules, in which rules are compared on their meaning,

and not only on their analytical expressions.

3.2 Fault Analysis and Association Rules

This section reviews approaches for fault analysis and presents background information on

association rules.

3.2.1 Frequent pattern mining

First introduced in [2] for market basket transactions, Frequent Pattern Mining (FPM)

has become a widely used method in many big data related tasks such as recommen-

dation systems, Web mining, bioinformatics, and medical diagnosis [25, 50]. FPM is

used to find meaningful patterns, associations, or clusters from a data set consisting of

transaction records, such as a transactional database. Consider a transactional database

T = {t1, t2, . . . , tN} that contains N records, where ti ⊆ I represents a basket containing

one or multiple items from I = {i1, i2, . . . , iM}, the set of all possible items. For each item-

set X ⊆ I , the support of X is defined as follows. Let σ(X) be the number of transactions

containing itemset X:

σ(X) = |{ti : ti ∈ T,X ⊆ ti}. (1)

10



The support [2] of X is the proportion of transactions containing X , calculated as follows:

support(X) =
σ(X)

N
. (2)

An itemset is called frequent (frequent pattern) when its support is greater than a pre-

defined threshold.

Association rules defined from frequent patterns show the co-occurrence between item-

sets. An association rule takes the form of X → Y , where X and Y are disjoint itemsets,

X is called antecedent and Y is called consequent.

In addition to support, confidence is also used to measure the “relevance” of rules. The

confidence of a rule determines the probability of the consequent given the antecedent:

confidence(X → Y ) =
σ(X ∪ Y )

σ(X)
. (3)

The brute-force approach to compute every possible rule is extremely expensive. For

M unique items, the number of all available rules is 3M−2M+1+1 [50]. Therefore, in most

applications, only rules with support and confidence greater than predefined thresholds are

kept. In the case where association rule mining is used for a certain type of consequents

(i.e., faults), we are mostly interested in the support of the antecedent, defined as the rule

cover:

cover(X → Y ) := support(X). (4)

The exclusive use of support and confidence can produce misleading results. For ex-

ample, consider the scenario where X and Y are frequent itemsets and support(X) as well

as confidence(X → Y ) both satisfy the pre-defined thresholds. In this case, X → Y is

accepted while in reality, X and Y can be mutually independent. To address this potential

for misleading results, the lift (also known as interest) [5] metric is defined:

lift(X → Y ) :=
σ(X ∪ Y )

σ(X)× σ(Y )
=

P (X, Y )

P (X)× P (Y )
. (5)

The lift metric compares the observed frequency of a pattern against the baseline frequency

computed as if the antecedent and consequent were independent. When lift > 1, the an-

tecedent and the consequent are dependent to some extent, while lift ≤ 1 indicates indepen-

dence or anti-correlation. In this work, lift is mainly used as a preliminary filter to construct

rules where the antecedent and consequent are significantly related.

Finally, to measure the proportion of all observed faults explained by a rule, we define
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the impact measurement.

impact(X → Y ) :=
σ(X ∪ Y )

σ(Y )
. (6)

3.3 Fault analysis framework

A high-level view of the fault analysis framework is illustrated in Figure 1. The following

sub-sections describe these components in details.

Data 
Pre-processing

Data 
 Discretization

Association rule
mining Rule Filtering

Figure 1: Framework for fault analysis in big data environment

3.3.1 Pre-processing

The data used for mining association rules typically comes from structured data: tabular

data where rows correspond to event records and columns to event parameters or the system

state. The size of such data grows considerably in complex systems, with hundreds of

columns and millions of rows. A common option for storage is the Hadoop Distributed

File System (HDFS) [44], which is ideal for a use-case where the features most relevant for

a problem of interest are pre-selected in parsing.

Since our model is designed to be an assisted generation model, the first pre-processing

problem is selecting fields of interest. In many cases, there are hundreds of columns in

the database and only some of them will be relevant for fault localization and analysis. In-

cluding them all would not only greatly increase computational complexity, it would also

add a lot of irrelevant characteristics to the generated rules. Unfortunately, since potential

problematic candidate fields are task dependent, choosing fields algorithmically, as in the

case of automated generation models, is a difficult task. To further complicate field se-

lection, data can be organized with certain fields representing objective characteristics of

the record (e.g., hardware version), measurements, or even the result of predefined rules to

characterize problems. Thus, as many of these characteristics might be useful depending

on the use case for fault analysis, field selection must be determined carefully.

In order to select the most relevant columns for the use-case, columns were chosen

primarily based on the recommendations of the experts for their relevance to the problem
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at hand. Once selected, data from the remaining columns are converted to the market-basket

structure commonly used in FPM: each basket corresponds to a row and items are defined

as <column_name>= <value>. To reduce the number of items in the mining process,

every item not containing the target faults are removed.

3.3.2 Data discretization

Frequent pattern mining algorithms are designed to work with discrete data, such as cat-

egories and discrete ranges. Consequently, all continuous values must be transformed

through a process called Discretization or Binning prior to use in FPM. There are multiple

possible approaches for discretization, such as equal frequency discretization (EFD), equal

width discretization (EWD), statistic-based discretization (ChiMerge, StatDisc), etc. [28].

The selection of the right discretization method must consider the number and distri-

bution of the generated categories. When many categories are generated, the frequency of

each category is reduced, which decreases the likelihood that an individual bin is part of

a frequent pattern or that many adjacent bins appear in different rules describing the same

causal group. The number of generated categories also increases computational times, as

more items must be evaluated. Finally, the distribution of generated categories can also

directly affect the quality of the discovered rules by skewing the original data distribution.

In this study, we consider the use of three classical discretization methods [17]: Equal

Width Discretization (EWD), Equal Frequency Discretization (EFD) and rounding to inte-

gers (a particular case of EWD). The EWD method divides numerical values into k bins

of equal interval length, where k is predefined. The EFD method divides numerical values

into k bins such that each bin contains approximately the same number of data points. The

main difficulty in applying either method is in selecting the best number of bins k.

The rules created from discretized items need an interval merging step to increase

the quality. Concretely, when two rules differ only in neighbouring intervals, the two

rules are merged to become one rule with the union of both intervals. For example, two

rules {i1, i2, . . . , [vt, vt+1), . . . , im} → Y and {i1, i2, . . . , [vt+1, vt+2), . . . , im} → Y , can

be merged to into {i1, i2, . . . , [vt, vt+2), . . . , im} → Y if their measurements are approxi-

mately equal.

3.3.3 Mining of association rules

Several factors influence algorithm selection for the mining of association rules. First, there

can be large differences in the number of rules generated depending on the dataset used to
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produce these rules. For instance, fault analysis conducted on data from regular system

logs will require a low support threshold because faults are not frequent, while analysing

rules for logs of a system failure can use a much higher threshold. To address this issue,

we propose to apply the frequent pattern mining algorithm to find clusters of items that are

associated with system faults. A second factor is the scalability of the algorithm, as many

fault diagnosis tasks are conducted on datasets with millions of entries. Finally, it must

be decided whether the algorithm should produce deterministic or approximate results.

Although efficient, approximation mining algorithms may lack important frequent patterns

necessary to characterize a fault.

In this work, we used a modified version of the FP-Growth [18] algorithm which we

modified to extract frequent patterns and generate association rules for the target faults. The

FP-Growth algorithm consists of two steps: (i) Construct frequent-pattern trees (FP-trees)

and (ii) Generate frequent itemsets from FP-trees. An FP-tree is a tree-like data structure

where the root is labelled as “NULL” and other nodes contain three fields: item-name that

represents the item, count that records the number of transactions that contains items from

the root to the current node, and node-link that points to other nodes in the same tree that

represent the same item. FP-trees often come with a look-up table storing the actual items

and pointers (item-names) to the first node that contains the item.

Frequent itemsets are generated by traversing FP-trees in a bottom-up fashion where

the support count of a combination is the count of the deepest node in the corresponding

path. The tree traversal can subsequently be done using a divide and conquer algorithm.

In our variation, the look-up table for FP-trees is optimized by removing any item that is

not related to the fault, i.e. item ik is ignored if σ(ik, fault) = 0. The fault-related items

are encoded using integers when scanning the dataset for the first time (determining items’

support count phase). This helps to reduce the size of the trees and make moving data more

efficient.

After obtaining frequent patterns, the association rules are usually extracted based on

the confidence threshold. In this work, we improved this rule generation phase by targeting

the target fault directly, where the consequents are faults. Since the rule extraction phase is

based on the previous frequent patterns, we can reduce the number of rules generated with

a frequency constraint based on a specific target consequent (i.e., the target faults).

One can argue that FP-Growth can be applied directly to the fault-related transactions

to generate frequent patterns based on the impact threshold (i.e., the support threshold for

the fault-related transactions) and compute confidence, support and lift in a post-processing
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step. This approach requires traversing the data at least one more time and does not guar-

antee the reductions of antecedent candidates.

3.3.4 Filtering of association rules

In this framework, the process of mining in Section 3.3.3 and selecting rules performs

in two different stages. The reason is that the result of FPM contains many interactions

of elements, therefore, although merging the extraction and selection process can lead to

a significant reduction in compute resources, it can also lead to biased results by covering

unpopular / exotic models. The design into different stages helps to increase interpretability

by allowing the human operator to retrace all the rules generated if he has any doubts about

the result.

When using frequent pattern mining for fault analysis, the number of found rules is

bounded by an exponential function of the number of unique items 2M , which can result in

the production of too many rules to offer insight into a fault. The number of rules can be

considerably reduced by applying thresholds for support, confidence and lift, but this can

lead to ignoring interesting patterns which could have values in fault analysis. Thus, tuning

these thresholds to ensure the result’s compactness and interpretability is a challenge. In

addition, filtered rules also contain many redundant rules that describe the same association.

Different filtering methods have been devised to address this issue. In [49], other

measurements are used as filtering/ranking after obtaining the mined rules. In FAR filter-

ing [13], the best rules are selected using an iterative procedure based on the highest support

and highest confidence. The authors of [21] proposed a rule with a selection method based

on hierarchical clustering, which we referred to as HC filtering. In [26] (FB filtering) pro-

posed a filtering method based on support and lift for controlling the condition on the rule

antecedents’ lengths. In [51], mining and selecting rules happen concurrently, which in-

volves traversing the transaction database for at least a logarithmic factor of the number of

transactions..

To address the drawback of the unfocused generation of excessive and overlapping

rules, we introduce a novel Cover Set (CS) filtering procedure, which consists of two parts:

a pruning algorithm (Algorithm 1) and a merging algorithm (Algorithm 2). The CS filtering

is motivated by real-world set of rules for dealing with the potential root causes of a failure,

and their order of priority based on their explanatory factors to the failure.

Pruning in the Cover Set filtering algorithm leverages the following observations: con-

sider a set of items that are “good enough” at explaining a fault. For such a set, adding
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a new item to the set should not add much value since the original set of items already

explains the fault. In other words, the goal is to reduce the number of rules that describe

the same group of possible root cause items so that each rule is as concise as possible. In

the Cover Set filtering algorithm, the relaxation terms ε-supp, ε-conf are in a range of [0,

1). Since the antecedents’ support vary from dataset to dataset, the ε-supp threshold is

designed to control the support decline rate.

Algorithm 1 Cover Set: pruning

Input: Set of rules R = {Xi → Y : i = 1 . . . n},
support relaxation term ε-supp, confidence relaxation term ε-conf

Output: Rule cover ∆p

∆p := ∅
while |R| ≠ 0 do
ri ← (Xi → Y ) ∈ R where i = argmax

rj∈R
cover(rj)

∆p ← ∆p ∪ {ri}
R← R \ {ri}
for rk ∈ R, Xi ⊂ Xk do
s← [cover(ri)− cover(rk)] /cover(ri) ≥ ε-supp
c← confidence(rk)− confidence(ri) ≤ ε-conf
if s ∨ c then
R← R \ {rk}

end if
end for

end while

An additional merging step is used to combine rules, further compressing the results

for fault analysis. To do this, the following reasoning is applied: if there exist two rules

X1 → Y , X2 → Y with heavily dependent antecedents P (X, Y ) ≈ P (X) ≈ P (Y ) and

the items from their antecedents coinciding, those antecedents can be merged to one larger

antecedent. Not only a larger antecedent helps to investigate a problem, but it also reduces

the number of rules that needs to be considered. The merging procedure is described in

Algorithm 2. Although merging can help reduce the number of rules, it also decreases the

quality (confidence) of merged rules, the detail effect will be discussed in Section 3.4.7.

The filters have two hyperparameters: ε-supp and ε-conf, which have been defined empiri-

cally for now, future work could study a theoretical approach to automatically define these

hyperparameters based on data characteristics.

16



Algorithm 2 Cover Set: merging
Input: Result of Cover Set: pruning ∆p, support relaxation term ε-supp, confidence relax-

ation ε-conf
Output: The final cover ∆

for ri, rj ∈ ∆p do
C1 ← |confidence(ri)− confidence(rj)| ≤ ε-conf
C2 ← |cover(Xi ∪Xj)− cover(Xi)|/cover(Xi) ≤ ε-supp
C3 ← |cover(Xi ∪Xj)− cover(Xj)|/cover(Xi) ≤ ε-supp
if C1 ∧ C2 ∧ C3 then
∆← ∆ \ {ri, rj}
∆← ∆ ∪ (Xi ∪Xj → Y )

end if
end for

3.4 Experiments

Two cellular network datasets were used to assess the proposed fault analysis framework.

Along with the evaluation of the rules for these datasets, the time execution performance of

the modified FPM was evaluated as well as the consequences of discretization methods, and

an evaluation of the impact of different filters on the interpretability. For client’s privacy

reasons, we cannot provide the public version of the dataset.

Table 2: Fault distribution of datasets

Status 3G dataset 4G dataset

Count support Count support

Normal 14,578,263 87.8% 1,458,773 96.4%

Dropped 258,829 1.6% 8,984 0.6%

Blocked 1,333,789 8.0% 4,330 0.3%

Non-Progress 440,664 2.6% 88 0.1%

Undefined 0 0.0% 39,906 2.6%

3.4.1 3G cellular network dataset

The first dataset was extracted from a 3G cellular network over 24 hours. The fault distri-

bution in the dataset is presented in Table 2. The data consists of approximately 16 million

rows with 28 columns. We selected 16 columns, all categorical types, as candidates for

fault analysis as they relate to call status failures. Of the possible call failure outcomes
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there are three categories: Dropped, Blocked and Non-Progressed. The most common fail-

ure category for this dataset is Blocked call, which accounts for approximately 8.0% of all

records and is the fault analyzed for this use case. After converting to items of the form

<column_name>= <value>, the dataset contains 16,286 unique pairs.

The rules extracted from the dataset are presented in Table 3. The support and con-

fidence thresholds were chosen manually to balance the execution time, the number of

produced rules, and the quality of the rules following multiple experiments. The most

common reason for blocked calls were an Undefined service type (not to be confused

with the Undefined call status category), with a high impact score of 77.9%. It corresponds

to cell towers block calls with Undefined service type, leading to an interrupted session

or a call failure. Another common, albeit less prevalent, rule demonstrated that calls were

more often blocked during Handover.

Table 3: Top 10 rules extracted from the 3G dataset for status Blocked, sorted by impact
(support threshold s = 1e−4, confidence threshold c = 0.8, ε−supp = 5e−2, ε−conf =
5e − 2). To improve readability, features common to multiple rules are factorized. Cell
Names are anonymized.

Antecedent cover confidence lift impact

Service = Undefined 0.0625 1.0 12.5 77.9%

Establishment Cause = Handover

Cell Name = 1 0.0093 0.824 10.3 9.52 %

Cell Name = 2 0.0069 0.848 10.6 7.28 %

Cell Name = 3 0.0031 0.839 10.5 3.24 %

Cell Name = 4 0.0010 0.864 10.8 1.04 %

Cell Name = 5 0.0008 0.896 11.2 0.914%

Cell Name = 6 0.0008 0.892 11.1 0.856%

Cell Name = 7 0.0006 0.859 10.7 0.691%

Cell Name = 8 0.0005 0.828 10.3 0.526%

Cell Name = 9 0.0005 0.866 10.8 0.504%

3.4.2 4G cellular network dataset

FPM was also applied to a 4G dataset to analyze faults related to a more modern cellular

network. This dataset contains approximately 1.6 million rows from 23 selected columns,
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containing 15 numerical columns. As in the previous dataset, there are three categories

of call status failure (Dropped, Blocked and Non-progressed) and the distribution of call

statuses is detailed in Table 2. The Undefined category is excluded from the analysis as

not directly associated to call status failure. 4G being a more mature technology, there is

a considerably lower incidence of call failures overall. The most common type of fault in

this dataset is Dropped calls.

The top 10 extracted rules are presented in Table 4. From the results, the most common

reason for dropped calls is a failed attempt to reconnect during Handover. Tuple (Estab-

lishment cause = LTE reestablishment, Handover Attempts = Failed, Handover Successful

= Failed) is present in the first rule (highest impact) and in most of the top-10, highest

impact rules. It clearly indicates that unsuccessful Handover is the predominant cause

of dropped calls. The additional items forming each rule help characterize and reduce the

possible causes of dropped calls. For example, very low uplink signal-to-interference-plus-

noise (UL SINR) of [−5.0,−4.0) is likely a contributing factor for dropped calls and is

present in many of the rules. In a more specific example, in the second most impacting

rule, item Cell Frequency UID = Band A indicates that this specific frequency band is

more strongly associated with dropped call than the others. In general, faults were not as

common in the 4G network dataset as in the 3G dataset. Besides, impact distributions were

more uniform, with the highest impact rule at 29.82% and the lowest in the top-10 at 2.75%.

The 4th rule is redundant, considering the 5th rule due to the current ε-supp condition is set

to 0.05 while the difference in support is 0.12. Nevertheless, the 4th and 5th rules reassure

the importance role of Handover to the failures.

In this experiment, discretization methods have been applied on numerical columns

(e.g., UL SINR, End cell Quality). The impact of the discretization methods is discussed

in Section 3.4.4.
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Table 4: Top 10 rules extracted from the 4G dataset for status Dropped, sorted by impact
(support threshold s = 1e−4, confidence threshold c = 0.6, ε−supp = 5e−2, ε−conf =
5e− 2). Cell Names are anonymized.

Antecedent Cover (×10−4) confidence lift impact

Carrier Aggregation Flag Set = False

Establishment cause = LTE reestablishment

Handover Attempts = Failed

Handover Successful = Failed

27.59 0.64 108.06 29.82%

Carrier Aggregation Flag Set = True

Cell Frequency UID = Band A

Handover Attempts = Failed

Handover Successful = Failed

UL SINR = [-5.0, -4.0)

12.08 0.61 103.03 12.44%

Carrier Aggregation Flag Set = True

Connection Type = Data

Handover Attempts = Failed

Handover Successful = Failed

UL SINR = [-5.0, -4.0)

User Equipment Category = B

5.03 0.66 110.62 5.57%

Carrier Aggregation Flag Set = False

Cell Frequency UID = Band B

Establishment cause = LTE reestablishment

4.03 0.67 113.25 4.57%

Carrier Aggregation Flag Set = False

Cell Frequency UID = Band B

Establishment cause = LTE reestablishment

Handover Attempts = Failed

Handover Successful = Failed

3.52 0.77 128.88 4.54%

Establishment cause = LTE-mo-data

UL SINR = [-5.0, -4.0)

User Equipment Category = B

3.37 0.65 108.82 3.66%

Avg. Channel Quality = [3.0, 2.0)

Carrier Aggregation Flag Set = True

Handover Attempts = Failed

Handover Successful = Failed

UL SINR = [-5.0, -4.0)

3.11 0.62 105.09 3.27%

Avg. Channel Quality = [4.0, 3.0)

Carrier Aggregation Flag Set = True

Handover Attempts = Failed

Handover Successful = Failed

UL SINR = [-5.0, -4.0)

2.89 0.64 107.10 3.09%

Handover Successful = Failed

UL SINR = [-5.0, -4.0)

End cell Quality = -20.0

2.67 0.66 111.27 2.97%

End cell UID = 5380

Establishment cause = LTE reestablishment

2.50 0.78 132.02 2.75%
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3.4.3 Performance improvement

Experiments were conducted to compare runtimes of two Association rule generation strate-

gies based on FP-Growth: the implementation available in Spark [56] and the novel imple-

mentation described in Section 3.3.3. The runtime was measured in a Spark cluster with 8

workers, 1 executor per worker, 4GB RAM per worker, and 1 CPU core per worker. For

each minimum support threshold, Association rule generation was executed 7 times and

the average runtime was reported. As can be seen in Figure 2, our modified association

rule generation resulted in a significantly shorter average execution time for all minimum

support thresholds.
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Figure 2: Runtime to generate association rules in seconds.

As anticipated, the runtime of Association rule generation increased exponentially when

decreasing the minimum support threshold value. The improved performance observed

with our modified Association rule generation comes from the reduced number of gener-

ated association rules to evaluate. For such an experiment to be conclusive, the support

threshold must be chosen carefully to ensure a sufficient number of “interesting” rules and

runtime. The support threshold of 10E-4 was chosen to consider a sufficiently broad rule

set while ensuring achievable execution time. The key reason to restrict rules from being

formed with low support is that these rules have a much higher chance of being spurious,

only existing by coincidence. Further, restricting support prior to rule formation improves
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runtime performance, as previously discussed.

On the other hand, the confidence threshold only impacts the number of generated rules

and is chosen to facilitate interpretability. The confidence threshold is decided based on

dataset characteristics and the observed output, with the best confidence threshold of 0.8

for the 3G dataset, and 0.6 for the 4G dataset. Consequently, such an approach will likely

involve some level of domain-specific expert tuning prior to integration into a system.

3.4.4 Impact of discretization methods

The 4G dataset was used to evaluate the effect of discretization of numerical columns on

runtime, the number of resulting association rules and the quality of results. The 3G dataset

does not have numerical columns and, thus, is excluded from this analysis.

The EFD method is considered first when it comes to converting numerical columns

into categorical columns. This method is widely used in many machine learning prob-

lems since it treats the generated categories equally. The numerical values are divided into

intervals so that each interval contains approximately an equal number of datapoints.

When applying the equal frequency method to FPM, some drawbacks need to be con-

sidered. First, it changes numerical values into equally distributed categories, which means

that when building the FP-tree, items in each newly generated category are either present

in the tree or not at all. The second drawback is that the generated rules can have lower

confidence, since the faults usually happen within a small interval of value.

Alternatively, the equal-width binning can be a promising option, but still requires

choosing the correct number of bins. As a general rule, the number of bins should be

large enough to avoid considering only popular items. On the other hand, selecting a very

large number of bins will reduce the support and impact of all generated rules and require

O(N log(N)) (sorting then traverse) operations to recombine the neighboring rules.
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Table 5: Effect of discretization methods on runtime and size of the result, support threshold
= 1e− 4 and confidence threshold = 5e− 2

Method

Bins per

numerical

columns

Runtime

(hours)

Number of

rules

Kept

numerical

values (%)

10 0.73 62,814 100.00

20 0.46 45,716 ”

EFD 40 0.39 22,375 ”

80 0.36 12,676 ”

100 0.34 11,030 ”

10 5.10 125,713 100.00

20 2.26 32,823 99.99

EWD 40 0.76 15,332 99.98

80 0.48 9,447 99.96

100 0.44 8,704 99.96

Categories⇝

integers
100 (average) 0.33 7,936 97.79

Table 5 compares the runtime, the number of resulting association rules and the quality

of results related to each binning method. We have observed for the 4G dataset that by

increasing the number of bins, the execution time decreases In addition, when the size of

the intervals becomes too large, the quality of the results deteriorates considerably (due to

loss of information). From these results, the Categories⇝ integer method provides the best

results.

3.4.5 Quality of filtered rules

Filtering improves interpretability by reducing the number of rules required to explain a

given set of faults. In this section, we investigate the quality of generated rules and com-

pare with 3 other filter methods: FB, FAR and HC filtering (Section 3.3.4). While the

number of rules before filtering was far too high to be practical or actionable, filtering sig-

nificantly reduced the number of rules generated in both datasets, see Table 6. Despite the

large number of deleted rules, the total impact remained close to the value obtained before

filtering, which shows that the filtered rules describe very well the root causes for 3G, and

a slightly less for 4G.
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Other characteristics of the filtered results such as the number of rules, number of items

found across all rules, the average length of the rules and diversity are shown in Table 6. For

the FB filter, the support and confidence filter conditions are all set to 1.01. For the CS filter,

the number of required rules is set to 30. There are no hyper-parameters for FAR filter. In

particular, rule diversity indicates how well the algorithm produces a diverse set of rules to

characterize the fault. In the 3G dataset, Cover Set (CS) filtering has an item diversity ratio

(items over rules) higher than FB but lower than FAR. HC filtering was not possible due to

the memory requirements exceeding the capacity of our computing infrastructure. While

HC filtering offers the best diversity for the 4G dataset, CS filtering had the second-best

diversity score. In the last row of Table 6, we report the results with the top-10 rules of CS

filtering, sorted according to their impact values, which acts as a brief report for the human

operator.

Table 6: Comparison of filtering methods

Method 3G dataset 4G dataset

Number Number Avg. length Diversity Total Number Number Avg. length Diversity Total

of rules of items of antecedent (# items/ # rules) impact (%) of rules of items of antecedent (# items/ # rules) impact (%)

Before filtering 107,147 218 7.31 2 ×10−3 100.00 511 78 4.10 0.15 54.50

FB filtering 285 90 3.56 0.31 100.00 146 33 4.03 0.23 54.50

HC filtering N/A N/A N/A N/A N/A 30 31 5.33 1.03 51.28

FAR filtering 11 15 3.55 1.36 99.98 20 14 4.45 0.70 38.84

CS filtering 59 66 3.27 1.11 100.00 42 29 3.97 0.69 50.79

CS filtering @ top10 10 25 5.30 2.50 82.97 10 15 4.10 1.50 29.82

Quantitative analysis of the quality of filtering methods is difficult. There are multiple

desiderata for good compact set of rules: (i) The size of the set: the smaller the set, the

better for human tracking; (ii) Coverage of the set: the filtered set should be able to provide

a high fraction, ideally of all, potential root cause items; (iii) Quality of the measurements:

the higher support and confidence of each individual rule in the set, the better it helps to

perform the fault analysis; (iv) The correlation between rules in the set: the rules should

have no high similarity between them. In other words, each rule should explain a different

perspective (e.g., root cause) of the fault analysis.

The desiderata mentioned above are strongly entangled For example, high coverage

often increases the size of the set, or a set of rules that have high confidence cannot cover

all of the data. In this work, we give great preference to desiderata (iv). In an ideal scenario,

the similarity matrix of the resulting rule sets should be the identity matrix, or the rules to

be proved equivalent.
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3.4.6 Intersection and similarity of filtered rule sets

To further compare the filtering strategies, the intersection of the filtered rule sets is de-

picted in Figure 3. Although there is some overlap between the different sets of filtered

rules, the results appear to produce different subsets of the rules. We then deepen this ob-

servation, with the idea of checking whether we have different rules or similar/equivalent

rules in the subsets that seem not to intersect. The result of the investigation is that the ap-

parent intersections of small sets are misleading because many of the rules are equivalent

in terms of support and confidence, while not having exactly the same expression.

Even though comparing association rules is a classical topic [49], determining the best

set of rules that can explain the targeted faults is still a challenge. In this work, we evalu-

ated the similarity between rules using the Conditional Market-basket Probability Distance

(CMPD) from [47]. The similarity between two rules ri : Xi → Y and rj : Xj → Y is

defined by the probability that two rules are valid for the same basket and is calculated as

follows:

s(ri, rj) =
|σ (rij) |

|σ (ri) |+ |σ (rj) | − |σ (rij) |
, (7)

where rij = (Xi ∪ Xj) → Y . Rules without a common basket have a similarity of 0

and rules with an identical set of baskets have a similarity of 1. This similarity measure is

expensive because it involves considering all the original data, with millions of records, to

calculate the similarity between each pair of rules. Therefore, it is only suitable for small

scale diagnosis, not to be used directly for rule filtering.

The similarity matrix of the rules produced by CS filter, as measured by (7), is shown

in Figure 4. Therein, we observed multiple groups, in which the rules are highly similar.

Comparing pairwise similar rules, there are two noticeable ways that can explain this:

(1) Highly probability dependent items (often appears together in the data), for example,

the pairs

Handover Attempts = Failed; Handover Successful = Failed

or end_cell=A; start_cell=A

are the only different items among the rules, in these cases, these rules can be merged.

However, there is a delicate compromise to be found between merging rules, and

keeping the support/confidence values as high as possible.

(2) Two rules contain very different items but are applied on the same set of baskets.

This is the most difficult case to solve. Because looking at the dataset is expensive,

it is not easy to avoid this issue.
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Figure 3: Intersections of the set of filtered rules. Two rules are considered similar if they
have the same antecedent and consequent.
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Figure 4: Similarity matrix the rules produced by CS filter in 4G dataset. The rules are
reordered to form clusters of high similarity rules. The redundant areas are depicted with
brighter colors.

We can also validate the rule similarities between two sets of rules produced by two

different filtering algorithms in 4G dataset. Figures 5(a), 5(b), and 5(c) depict the similarity

of rules from the CS filter to those from the FB, HC, FAR filters, respectively. For the FB

filter, we only consider the first 100 rules according to their support, since the others have

negligible support.

Note that these similarity matrices allow an evaluation of the set of rules which do not

seem to intersect, as well as an identification of redundant rules, but do not validate the

quality of the filters.

Observing Figure 5(a), we can conclude that the rules from CS and FB are quite similar

since every rule in CS has at least one highly similar rule from FB and vice versa. We also

observe an acceptable redundancy from the rules in CS as well as FB. If there are more

than 1 high similarity element from the matrix in the same row, it means these according to

rules from FB can be replaced by the according to rule from CS and vice versa.
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(c) CS vs. FAR filters

Figure 5: Similarity matrix when comparing CS to other filters that work with rule-level.
Rules are reordered using reverse Cuthill-Mckee algorithm [10] with 0.5 threshold binarize
to move the large similarity pair closer to the main diagonal.

Figure 5(c) highlights a similar significant group of rules generated by CS and FAR fil-

ters. The redundant rule set in the CS group can be explained by the self-similarity observed

in Figure 4 while the redundancy of some FAR rules is caused by the selection of rules with

the highest support/confidence. There is also a key difference between CS and FAR, the two

rules with respective antecedents
{︁

Start cell UID=9678, Handover Successful=False, Con-

nection Type=Data, Establishment cause=Cat. 1
}︁

and
{︁

Start cell UID=9678, Handover

Attempts=False, Connection Type=Data, Handover Successful=False
}︁

do not appear in

CS filter’s result. The reason is that these rules are replaced by the rule with the antecedent{︁
User Equipment Category=B, Handover Successful=Failed, Handover Attempts=Failed,

Connection Type=Data, Carrier Aggregation Flag Set=True, UL SINR=[−5.0,−4.0)
}︁

in

CS. This case shown the limitation of filter based on the items set relation only. Once

again, this problem can be overcome by observing the dataset every time making a filter

decision, which is costly. The same problem also observed when comparing CS to HC in

Figure 5(b) where the rules with Start cell UID=9678 is ignored.
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Figures 5(a), 5(b) and 5(c) also show that the redundancy from FB, HC and FAR algo-

rithms is higher comparing to CS filter.

From this analysis, we concluded that while CS filter still produces redundant rules or

ignores some good rules, it is better than other filters that apply with the rule level. When

comparing to filter by using dataset directly, CS also retains a good performance, while

cost a negligible computation resource. In the next subsection, we will discuss the effect of

pruning and merging thresholds on the quality and quantity of rule sets in CS filter.

3.4.7 Sensitivity of the parameters in the filtering algorithm

In the CS filtering, the condition for removing and merging the rules in the final rule set

are governed by the support and confidence parameters. For the pruning phase, increasing

ε-supp increases the removal of parent rules (in terms of set) while increasing ε-conf allows

keeping the parent rules with high confidence and replacing the child rule in the final result.

Note that since every parent rule has lower or equal support, compared to the child rule,

therefore, the removing condition is satisfied when the support condition is satisfied or the

confidence condition is not. In the merging phase, the ε-supp makes sure the two rules are

highly dependent, which means the rules are applied in two highly similar baskets. The ε-

conf governs the quality of merged rules: even if two rules are highly dependent, merging

them can produce a bad rule when the confidence difference between them is noticeable.

For example, by increasing the ε-conf from 0.05 to 0.1, we get a less meaningful rule set

with very negligible redundancy, which is shown in Figure 6.
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Figure 6: Similarity matrix of CS filter, ε-supp= 5e− 2, ε-conf = 1e− 1.
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3.5 Conclusions

This work proposes a novel fault analysis strategy for information systems that uses a

target-specific FPM followed by a filtering and merging procedure. The proposed frame-

work was evaluated on two real-world telecommunication use-cases with incremental dif-

ficulty from a 3G to a 4G network. The use of target specificity significantly reduces

runtime (by a factor of 2-3 with support threshold 10−4), opening the door to a wide range

of applications in big data environments. The proposed Cover Set (CS) filter then reduces

the number of rules, which increases the interpretability of the results and contributes to

shorten the time to resolution of network faults.

The validation by telecommunications experts has confirmed the improved interpretabil-

ity and scalability of the newly proposed framework. In both datasets, the analysis of

dropped calls indicated that they were mostly due to failed attempts to reconnect during

Handover, a common issue when experiencing signal quality degradation. In addition,

ranking by impact metric emphasizes the prevalence of certain rules across the network

and allows an operator to deepen the investigation of faults. In particular, this strategy

highlights the most problematic cells in order of their contribution to dropped calls for the

3G dataset, giving the optimal sequence for further investigation. When inspecting the rules

for the 4G dataset, the presence of rules combining unsuccessful handover with very low

call-quality-indicator and up-link interference confirms the network conditions generally

leading to dropped calls.

While this strategy offers a general approach that is valuable in a data-agnostic sce-

narios, the addition of automatic feature selection and rules post-processing analysis could

increase the interest for an integration of the proposed framework into a cellular network

automatic fault analysis system. Such a system would require clear and actionable insights

from the established rules.

In the comparison with other filtering algorithms, we provided generic tools to provide

comparison of filtered rules, even when these rules only share the same role, but expressed

differently.

Overall, the performance and interpretability improvements provided by our filtering

framework allow the processing of larger datasets with less effort from human operators.

Consequently, a more specific analysis of the root causes could be considered, for example

at the level of cell towers or specific regions.
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Chapter 4

Root Cause Analysis with Causal
Inference and Embeddings

This chapter will first provide an overview of causal learning methods and their applica-

tion to Root Cause Analysis. Next, Section 4.1 will provide the related materials for the

proposed methodology, the detail of which can be found in Section 4. The experiments in

Section 4.4 will evaluate the proposed methodology with synthetic and real-world datasets.

The conclusions and future improvements are provided in Section 4.5.

4.1 Introduction

In this thesis, we are working on the RCA task for cross-sectional data, assuming that the

treatment variables are independent and the outcome is the result of the treatment variables’

interactions. Concretely, given the set of D treatment variables (i.e., pairs of feature and

value) x1, . . . , xD and the outcome y, the goal is to determine whether y changes if xi is

modified for every i ∈ {1, . . . , D}. Straightforwardly, this problem can be considered as a

causal discovery problem. There are two main classical approaches to answer this causal

discovery question: Constraint-based (CB) and Score-based (SB) algorithms.

CB algorithms reduce the number of candidates using the conditional independence

assumption [46]. The most well-known constraint-based algorithm is Peter-Clark (PC) al-

gorithm, proposed by Sprites et al. [46]. PC algorithm consists of two steps: 1) learning an

undirected (skeleton) graph from data and 2) assigning the directions of the edges. Variants

of the PC algorithm such as PC-stable, parallel-PC, Copula-PC [36] were introduced to
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improve the performance of PC with big data and mix-type data. On the other hand, SB al-

gorithms relax the conditional independence using a score-based learner, which grades the

score of the candidate causal graphs [36]. The locally optimal solutions can be found using

heuristics approaches such as GES [9], or Fast GES [37]. Other approaches using causal

graphs can be found in [16]. Generally, the causal discovery approach requires immense

computational resources and can provide a more accurate answer.

With the assumption that all covariates are not causally related, RCA can also be con-

sidered a causal effect learning task where the covariates are all considered as treatments. In

causal inference, matching methods [48] aim to ensure that the differences between treated

and control groups (on all background covariates: observed and unobserved) are minimum,

for instance, the differences between a group of treated and a group of untreated patients can

be attributed to the effect of treatment. Research studies using matching methods have been

scattered across disciplines such as, e.g., statistics [40], sociology [30], or economics [19].

Generally, matching methods aim to estimate the causal effects of treatments and can be

divided into Nearest Neighbour Matching, Subclassification and Weighting. Among these

methods, Nearest Neighbour Matching is the most common [48].

4.2 Related materials

In this section, we will describe the Dimensionality reduction and Clustering techniques

that are used in the experiments. As discussed above, the proposed method requires that

the original data is transformed into a lower-dimensional space and divided into different

groups. Other techniques for data embedding and clustering can be found in [1, 53].

4.2.1 Dimensionality reduction

In the context of this thesis, we decided to investigate the Principal Component Analysis

(PCA) in conjunction with other techniques, as PCA is one of the most computationally

economical embedding method. We next briefly recall the key features of PCA.

Principal component analysis

Principal Component Analysis (PCA) is a linear dimensionality reduction method proposed

by Karl Pearson [34]. The principal components correspond to the directions of the axes

where there is the most variance (most information): they are characterized by the eigen-

vectors of the data covariance matrix. Eigenvalues are then the coefficients attached to
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eigenvectors, which give the amount of variance carried in each principal component. We

next define the feature vector as a matrix that has as columns the eigenvectors of the com-

ponents with greater significance. The low-dimensional representation of the data is the

result of a projection that retain the data’s variance as much as possible. More precisely,

PCA solves the following eigenvalue problem:

cov(X)M = λM (8)

where M is the linear mapping, cov(X) is the sample covariance matrix of the data X

and λ is the eigenvalue vector. The eigenvalue problem is solved for the selected d largest

eigenvalues (components). For dimensional reduction tasks, the value of d is often much

smaller than the dimension of the original data. The value of d is often chosen as a trade-off

between the information losses and the compression effectiveness. The lower-dimensional

data is computed by a mapping into the linear basis M:

X′ = XM (9)

There are multiple methods to solve the eigenvalue problem. The most common ones are

the Singular value decomposition (SVD) when the data size is small or a Randomized

method [29] for large data sizes.

t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a statistical non-linear dimen-

sional reduction method developed by Van der Maaten and Hinton [52] and widely used

for data visualization in two- or three-dimensions space. There are two stages in t-SNE: 1)

construct a probability distribution over pairs of datapoints in original space and 2) recon-

struct these distances using Student t-distribution in the embedded space.

For a set of N high-dimensional objects x1, . . . , xN , the similarity of xi and xj is com-

puted as the symmetrized probability pij : pij = (pj|i + pi|j)/2N , where

pj|i =
exp (−||xi − xj||2/2σ2

i ])∑︁
k ̸=i exp (−||xi − xk||2/2σ2

i )
(10)

where pi|i = 0 , σi is the Gaussian kernel’s bandwidth, and
∑︁

j pj|i = 1 The lower-

dimensional similarities, denoted by qij , are then constructed based on the Student t-distribution
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(one-degree of freedom):

qij =
(1 + ||yi − yj||2)−1∑︁

k

∑︁
l ̸=k (1 + ||yk − yl||2)−1 . (11)

The location of the corresponding projection yi of xi is determined by minimizing the

Kullback-Leibler [24] divergences using gradient descent:

KL(P ||Q) =
∑︂
i ̸=j

pij log
pij
qij

. (12)

4.2.2 Clustering

This subsection will provide an overview of the Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) clustering method. In this work, we chose the density-based

clustering method because of its ability to adapt to complex data distribution.

DBSCAN

While k-means is the most popular clustering algorithm, it also assumes spherical data

clusters, which is not the case in many real-world datasets with complex structures. Fur-

thermore, clustering of large datasets also requires the ability to remove outliers and noise,

which k-means does not provide.

These issues can be solved using the density-based clustering paradigm. Density-based

clustering is a non-parametric method with no assumption about the number of clusters and

data distribution. In density-based clustering, clusters are viewed as regions of high data

point density (i.e., all points can be reached with a small distance), separated by low data

point density regions and the sparest areas treated as noise.

One of the most well-known density-based clustering methods is Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN) [12]. In DBSCAN, the density is

estimated using the number of points in a fixed-radius neighbourhood, and two points are

connected if they are in each other’s neighbourhood. Concretely, given a radius threshold

ε and the minimum number of neighbour MinPts, a point p is called core point if there

are at least MinPts points (including p) within the distance ε of p. A point q is con-

sidered directly density-reachable from the core point p if q is in that neighbourhood of

p (asymmetric relationship). A point q is called density-reachable from p if q belong to

the transitive closure of directly density-reachable points of p, i.e. there are a list of point
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p1, . . . , pn such that pi+1 is directly density-reachable from pi and p1 = p, pn = q. Two

points are called density-connected if there is a third point from which both are density-

reachable. A cluster is maximal set of density-connected points. The points that not belong

to any cluster are called outlier or noise points.

4.3 Nearest Neighbour Matching in intermediate subspace

This section will provide the detail of the proposed approach using NNM in an intermediate

lower-dimensional subspace of the covariates.

One of the most used methods for randomized experiments for estimating causal effects

is neighbour matching [48]. The well-matched samples from treated and control groups

are assigned to randomized experiments and help reduce selection bias of the covariates.

In this case, with observational data, the matching methods are employed to investigate the

contributions of one or more feature values to the outcomes.

In the Root Cause Analysis context, the causal relationship between the features’ value

and the outcome can come from multiple causal structures, corresponding to multiple fail-

ure events in the same dataset. Furthermore, the goal of causal inference for RCA is to

provide the specific values of the variables that cause the problems. For example, in a

cellular network, failed connections can be caused by a bad cell tower, hand-over problem

or blocked signal. Therefore, the first step is to split data into groups, where each group

only represents one type of causal structure. After that, for each group, the effectiveness

of treatments on the outcome, i.e., the effect of features’ value on the final status, can be

estimated by comparing the normal and abnormal records by the matching method. In the

view of the matching framework, the normal records and abnormal records play the roles

of the factual and counterfactual outcome, respectively.

Since most of the data is high dimensional, the distance metric should be susceptible to

irrelevant information due to the problem with high dimensional data. Another problem is

the effect of group size: matching results can be driven mainly by a small part of the groups,

leading to bias. Therefore, there will be a need for some restrictions on the number of

considered neighbours. This restriction also helps to navigate when there are poor matches

(i.e., the dissimilarity between two groups is significant).

The proposed framework consists of the following steps: 1) projecting original covari-

ates to an intermediate lower-dimensionality subspace; 2) dividing the dataset into small

groups of similar covariates; 3) in each divided group, find counterfactual examples of each

abnormal record using NNM and gather the critical difference treatments and 4) summary
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to critical difference treatments of the whole dataset.

For the above mentioned reasons, we proposed a method that consists of the following

steps:

1. Project the raw feature vector into a lower-dimensional space (embedding). This

process applies to all data points. Due to the nature of high-dimensional and high

volume data, we need to trade-off between the quality and complexity of the embed-

ding technique. In this work, we apply PCA first to reduce the data’s dimensional to

an acceptable size before applying t-SNE. Projecting data into a lower-dimensional

space increases the significance of the distance metric, in this case Euclidean, thus

increasing the precision of neighbour clustering/selection.

2. Divide failure instances into clusters using a clustering method on the embedded

space using DBSCAN.

3. For each cluster:

(a) Find k normal neighbors for each failure instance in the embedded space.

(b) Calculate the dissimilarity in the original space between the failure instance X

and its non-failure neighbours Ni: DS(X,Ni) = [|x1−Ni,1|, |x2−Ni,2|, . . . , |xd−
Ni,d|]. Each component in the dissimilarity vector corresponds to a feature xi

in the original space. By sorting DS(X,Ni) in descending order, we can get a

ranking list of top-ranked features that are likely associated with the cause of

the failure.

(c) The ranking can be aggregated to get the most important features for the current

failure instance, i.e., the top features that contribute to the difference between

a failure data point and its normal neighbours. Let us call these features the

selected features cluster.

4. Report all the selected feature cluster.

The formal definition is presented in the Algorithm 3. The missing value of the original

data (numerical columns) will be replaced by the average values. After that, the category

columns are one-hot encoded, and the numerical columns are normalized. The data will

be transformed into an intermediate subspace dimension using one or more embedding

methods, and the detail can be found in the Experiments section 3.4. After the above-

mentioned steps, the data will be fetched to the Algorithm 3 as the input dataset X of D
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dimensional. The data will be transformed into an intermediate subspace of d dimensional

using one or more embedding methods, and the detail can be found in the Experiments

section 3.4. A clustering function g on the dataset E will also be required for divided the

dataset into smaller groups with highly related samples. The domain of c is d, and the

co-domain is called S = {s1, s2, . . . , st}.

Algorithm 3 k:1 nearest neighbour matching with embedding

Input: The D−dimensional dataset X = {x1, x2, . . . , xm} with list of normal/abnormal
label Y = {y1, y2, . . . , ym}, yi ∈ 0, 1; a clustering function g() that assigns a data point
to its corresponding cluster in the set of S clusters; a pre-defined threshold p, 0 < p < 1;

Output: Clusters of variables G
Step 1: E = {e1, e2, . . . , em} is the d−dimensional representation of the original dataset
X , d < D. ▷ Embedding step
Step 2: Set of clusters S = {s1, s2, . . . , st}, where S is the co-domain of the clustering
function c(). ▷ Clustering step
G← ∅
for s ∈ S do
g ← zero vector of D-dimensional
for x ∈ X, yi = 1, c(x) = s do

Find set of k nearest normal neighbours of x
for t ∈ k do
dt ← (|x1 − t1|, |x2 − t2|, . . . , |xD − tD|)
g ← g + dt

end for
end for
F ← argsort(g) ▷ sort the variables based on their contribution to the difference
between normal and abnormal records
G← G ∪ {F1, . . . , Ft}, t← inf{j ≤ D|

∑︁j
i=1 Ni

||N ||L1 | ≥ p} ▷ select the top
t contributed variables such that the sum of the top t variables’ contribution over all
variables’ smaller than p

end for

4.4 Experiments

This section demonstrates and evaluates the proposed method with multiple datasets. The

first two experiments were performed using two synthetic datasets: without causal relation-

ship (randomly generated) and with linear causal relationship (randomly generated with

fault-associated features). We also experiment with the 4G Telecommunication dataset

described in Chapter 3.4.
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4.4.1 Validation with synthetic datasets

We evaluated our approach using two synthetic datasets generated as follows:

Purely Random data S1: 10 numerical features drawn uniformly from [0, 1]; 10 categor-

ical features drawn uniformly from {0, . . . , 10}. The failure ratio is set to 0.2, and

failures status (abnormal) is assigned randomly to the samples. The rest are deemed

normal. Since the abnormal are assigned randomly, the dataset contains no causal

relationship.

Random data with weak signal S2: 10 numerical columns drawn uniformly in [0,1]; 10

categorical columns drawn uniformly from {0, . . . , 10}; 3 columns drawn from

Lognormal(0, 0.5) with the chance associated with fault 1.0, 0.8 and 0.5 respectively,

namely prob_1, prob_2 and prob_3; failure rate 0.2. In this data set, there are signif-

icant associations between the features values of the last 3 columns with the failures.
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Figure 7: Normal and Failure samples in the embedding space. The data is generated from
i.i.d. random uniform distributions.
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Figure 8: Normal and Failure samples in the embedding space of S2 . The data is gener-
ated from i.i.d. random uniform distributions except for 3 columns, which associated with
Failure samples. There are 4 clusters for Failure samples.

The embedded representation of dataset S1 (purely random) is shown in Figure 7. When

performing k : 1 nearest neighbour matching using Algorithm 3. The data set is first em-

bedded in a 40-dimensional representation using PCA and then a 2-dimensional representa-

tion with t-SNE. We used DBSCAN with 5 minimum neighbours and 2 minEps distance in

this experiment. As observed in Figure 7, zero clustered sample can be found, and there is

no output of causal factors. Hence, the proposed k : 1 nearest neighbour matching method

provides the anticipated answer: there is no root-cause factor for this data root cause from

observed variables in this dataset.

The embedded version of dataset S2 (random with weak signal) is shown in Figure 8.

After performing nearest neighbour matching, four abnormal clusters can be observed in

Figure 8. The figure clearly shows the contribution of fault-associated features that can

be used to create and separate the group of Normal and Abnormal data points. Therefore,

even when there are few weak fault associations with the original features, the proposed

algorithm can still provide the fault associate feature groups. The found causal factors are

represent in the Table 7.

Results obtained on the two synthetic datasets show that the proposed method works

correctly in noisy environments where the input features have weak or zero association
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with the outcome. However, this result still can not be interpreted as causation.

Table 7: Fault associated values extracted from Random noise with three fault-associated
columns data set

Cluster Group Number of failures in cluster

0 prob_3=(−10.0,−1.02],
prob_2=(−10.0,−2.25],
prob_1=(−10.0, 0.93]

44

1 prob_2=(−10.0,−2.25],
prob_3=(7.11, 10.01],

prob_1=(−10.0, 0.93]

39

2 prob_3=(−10.0,−1.02],
prob_2=(9.70, 12.49],

prob_1=(−10.0, 0.93]

8

3 prob_2=(−10.0,−2.25],
prob_1=(−10.0, 0.95],
prob_3=(28.5, 81.07]

13

4.4.2 Validation on real-world datasets

In this section, we will experiment with the proposed method on 30% of the 4G dataset

in Chapter 3.4. For the sake of comparison, the data is reduced to two dimensions using

the PCA algorithm. The output are presented by Figure 9 and 10. From these figures,

we can conclude that the abnormal and normal outcomes are barely distinguishable; hence

the quality of the matching groups will be poorly if only using PCA without t-SNE. This

latter issue demonstrates the side effect of projecting high-dimensional data to a lower-

dimensional space using a linear method.
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Figure 9: 2-component PCA project of all data records.
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Figure 10: 2-component PCA project of non-normal data records.

Figure 11 shows the projection of the cluster from 40-component PCA and 2-component
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t-SNE using DBSCAN (eps = 2,min_samples = 5) clustering. We can observe clearly-

separated clusters of abnormal records in the embedded space. The group of the clustered

samples are distinguished using different colour coding.

Figure 11: The embedding projection of non-normal outcome extracted from k:1 nearest
neighbour matching using PCA(40 components) + t-SNE (2 dimensions) embedding with
DBSCAN cluster.

The output of Algorithm 3 is shown in Table 8. The most popular causal factors group

corresponds to the total 7% of the data. The outputs should be interpreted as "the observed

variables together or alone will likely cause a problem". However, since there is no clear

objective function to optimize, the Algorithm 3 results are challenging to track. Therefore,

we re-employed the comparison in Chapter 3.4.6 to demonstrate the similarity between

FPM and the Matching method. The result in Figure 12 shows that only a part of match-

ing’s result is compatible with FPM’s result. We observed that the results from the two

methods are mostly different. There are two main contributors to that problem. Firstly,

the matching method’s result is the result of voting, which implies that the variables may

not all coincide. Secondly, the proposed method’s indirect objective and the information

losses when applying embedding to the high dimensional data have lots of one-hot encoded

features that also contribute to the difference.
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Figure 12: Comparison between matching method and FPM on 4G dataset.
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Table 8: The extracted top fault-contribute features from the Random noise with fault-
associated data

ID Group N

2 User Equipment Category=3.0, Establishment cause=LTE Mobile sig-

nalling, UL SINR=(13.97, 15.94], Avg. Channel Quality=(9.17, 10.57],

Delay=(234.0, 390.0], Start cell UID=96, Carrier Aggregation Flag

Set=True

198

12 First location coverage=(-107.36, -103.5] 55

0 UL SINR=(13.97, 15.94], Coverage=(-109.5, -105.5], End cell Qual-

ity=(-12.13, -10.25], Avg. Channel Quality=(9.17, 10.57], Start

cell Quality=(-11.25, -10.25], First location coverage=(-112.5, -

107.36], Delay=(468.0, 624.0], Last location coverage=(-112.5, -

107.39], First location signal quality=(-11.84, -10.34], Last location

signal quality=(-11.86, -10.44], Download(B)=(32247.0, 304845.49],

Uploaded(B)=(6324.0, 22674.4], Start cell UID=70

39

26 UL SINR=(10.75, 13.97], Avg. Channel Quality=(9.17, 10.57],

End cell UID=54, Start cell UID=106, End cell Quality=(-12.13, -

10.25], Start cell Quality=(-11.25, -10.25], Coverage=(-105.5, -101.5],

Delay=(234.0, 390.0], Last location signal quality=(-11.86, -10.44],

First location signal quality=(-13.26, -11.84], First location cover-

age=(-107.36, -103.5], Last location coverage=(-107.39, -103.5], Up-

loaded(B)=(6324.0, 22674.4], Download(B)=(32247.0, 304845.49]

35

18 UL SINR=(10.75, 13.97], Avg. Channel Quality=(8.03, 9.17], End

cell Quality=(-12.13, -10.25], Start cell Quality=(-11.46, -11.25],

Start cell UID=80, Coverage=(-113.5, -109.6], End cell UID=80,

First location signal quality=(-11.84, -10.34], Last location signal

quality=(-11.86, -10.44], First location coverage=(-112.5, -107.36],

Delay=(1562.0, 14920.0], Last location coverage=(-112.5, -107.39],

Download(B)=(32247.0, 304845.49], Uploaded(B)=(2483.8, 6324.0]

35

4 End cell UID=400, UL SINR=(10.75, 13.97], Start cell UID=400,

User Equipment Category=11, Avg. Channel Quality=(8.03, 9.17],

Coverage=(-109.5, -105.5], End cell Quality=(-10.25, -8.75], De-

lay=(468.0, 624.0], Start cell Quality=(-10.25, -8.75], First loca-

tion coverage=(-107.36, -103.5], Last location coverage=(-107.39, -

103.5], Last location signal quality=(-11.86, -10.44], First location sig-

nal quality=(-11.84, -10.34], Uploaded(B)=(6324.0, 22674.4], Down-

load(B)=(32247.0, 304845.49]

31
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4.5 Conclusion

This chapter proposes a concrete causal-based framework approach for fault analysis in

information systems with cross-sectional data records. The proposed framework was eval-

uated on two synthetic datasets and one real-world telecommunication use case of 4G net-

work. The framework proves that it can provide better approaches with numerical data

types compared to the proposed method in the previous chapter.

The result of experiments with synthetic data proves the robustness of the proposed

algorithm. The result from the 4G dataset are highly interpretable and are compatible with

the previous result. When analyzing the result from 4G dataset, we found a high degree

of dissimilarity with the result from the previous chapter. Mainly because of different

natures of forming and interpreting the result. Others come from the separating nature

of components in the method. Computational-wise, the proposed method is significantly

faster than the association rule methods while still providing a high degree of transparency.

Despite many advantages, the proposed method still retains three main problems. Firstly,

the components in the method are formed using different criteria, which can lead to a bad

quality result. Secondly, there are no clear evaluation criteria for the final result due to the

nature of the data, which can be critical to evaluating future models. Lastly, the assump-

tion of causal independence between components in the network and lack of propagating

method between timestamps can also lead to a low-quality result.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

This research aimed to increase the efficiency and efficacy of Root Cause Analysis for

information systems, especially telecommunication networks, in the context of big data

requirements.

Chapter 2 provided details about Root Cause Analysis and a concise review of possible

approaches. It also provided a detailed analysis for choosing the proposed methods in the

later chapters.

In Chapter 3, we proposed a novel fault analysis strategy for information systems that

uses a target-specific Frequent Pattern Mining approach followed by a filtering and merging

procedure. The proposed framework was evaluated on two real-world telecommunication

use-cases with incremental difficulty from a 3G to a 4G cellular network. The use of target

specificity significantly reduces runtime (by a factor of 2-3 with support threshold 10−4),

opening the door to a wide range of applications in big data environments. The proposed

Cover Set (CS) filter then reduces the number of rules, which increases the interpretabil-

ity of the results and helps reduce the time to resolution of faults. In comparison with

other filtering algorithms, we provided generic tools to provide a comparison of filtered

rules, even when these rules only share the same role but are expressed differently. The

validation by telecommunications experts has confirmed the improved interpretability and

scalability of the newly proposed framework. While this strategy offers a general approach

that is valuable in a data-agnostic scenario, the addition of automatic feature selection and

rules post-processing analysis could significantly improve the performance of the proposed
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framework in cellular network automatic fault analysis systems. Such a system would re-

quire clear and actionable insights from the established rules.

In Chapter 4, we demonstrated a different method for solving the Root Cause Analysis

problem from the causality perspective. The proposed method was evaluated with synthetic

datasets and demonstrated robust and accurate in noisy environments. When qualitatively

evaluated with the 4G dataset, the proposed method demonstrated to be robust with numer-

ical data, provided more detailed results and promised to be faster than Association rule

approaches. However, there are still more improvements that should be considered before

deploying it in real-world systems. The automatic evaluations should be investigated in

more detail, which can help experts reduce the investigation time and improve result ac-

curacy. The components of the proposed method are currently optimized independently,

which also contributes to the difficulty of finding the optimal solutions. The results should

also be interpreted carefully since the method would likely suffer from the Rashomon effect

(i.e. multiple contradictor interpretations for an event).

Overall, the proposed methods in this research provided a solution to the research ques-

tion of improving the performance of Root Cause Analysis in telecommunication networks

and information systems in general by reducing the search space size. While the proposed

framework based on Association rules in Chapter 3 is a good prototype, the method based

in Chapter 4 still needs to be improved. The methods and their results are highly inter-

pretable to system operators, which helps improve the accuracy and reduce the models’

troubleshooting time.

5.2 Future works

Root Cause Analysis is a vast topic that involves many techniques and approaches, ranging

from Finite-state machine and First-order logic to Unsupervised learning and Reasoning.

After all, Root Cause Analysis’s ultimate goal is to become fully automatic, which means

there is no need for human labour in the deduction process. However, it will require many

significant breakthroughs in Machine Learning, specifically Reasoning and Causality Dis-

covery, before operators voluntarily withdraw the human from the analysis process. In the

meantime, multiple future works can be addressed to help improve the Root Cause Analysis

framework’s efficiency and efficacy:

Automatic identifying and removing background variables. Background variables

are the variables that are not related to the problem in the systems. In telecommunication
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networks, most variables in the log records are background variables and must be manu-

ally removed by the experts before fetching the data to the analysis step. The background

variables can change depending on the network configuration and the analysis task. An

automatic variable selector will facilitate the adaptation of the Root Cause Analysis frame-

work on a broad spectrum of networks and analysis intents.

Fault propagation problems. In real-world systems, a component failure can create

a chain of failure reactions, which increases the difficulty of the diagnosis task. In many

diagnosis methods, including our proposed methods in Chapter 3 and 4, for the sake of

simplicity, the fault propagation is often deemed non-exist, which is often not fully correct.

To thoroughly analyze the problem requires processing the data in a time-series manner

(non i.i.d. data), which promises to provide a better answer for the fault causal but will

require more computing resources.

Analysising non-frequent failures. Root Cause Analysis often couples with the Anomaly

Detection module, which often triggers if the error rate is beyond some pre-determined

threshold. As the network resilience improves, the failure rate can be significantly low, and

some infrequent failures can become chronic problems if not addressed. In this case, the

proposed methods in this work can still be applied after removing some of the non-failure

data in the total data records. However, this approach requires a carefully designed removal

mechanism. Another method is to design the Root Cause Analysis as an infrequent pattern

mining problem, which will be better suitable in terms of computing efficiency.
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