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Abstract

Supervised Deep Learning with Finite Element Synthetic Data for Force Estimation in
Robotic-assisted Surgery

Kian Mirniazy

The prevalence of robot-assisted minimally invasive surgery on the liver has increased exponen-

tially. Having accurate, real-time knowledge of force during robotic-assisted surgical procedures is

vital for safe surgery. Many techniques have been proposed in the literature to tackle this concern,

from deploying force sensors to physics-based modeling of the robot and, more recently, learning-

based force prediction. For a high-fidelity force measurement, sensors should be integrated at the

instrument’s tip, close to the surgical site, which brings sterilization, biocompatibility, and MRI

compatibility concerns. On the other hand, Dynamic robot modeling may be precise in a specific

setting, but it suffers from the lack of generalization encountering unseen settings. Considering the

drawbacks and deficits of mentioned methods, indirect force estimation via deflection measurement

through imaging techniques is investigated as an alternative solution, generally done via machine

learning methods. Almost all previous studies are either supervised learning, where data are la-

beled with ex-vivo ground truth, or unsupervised or semi-supervised learning, where outcomes are

promising but not adequate. This study investigated indirect force prediction for the human liver

through a developed deep autoencoder model as a supervised deep learning method trained via

synthetic data generated by finite element (FE) simulation. This method took advantage of vari-

ous patient-specific livers parameters and geometries extracted from CT images. The Hyperelastic

modeling of the soft tissue is considered and assessed with various hyperelastic models. The uncer-

tainty due to the surgical tool’s occlusion is addressed in this model, and a novel state vector was

proposed to improve the accuracy and generalisability of the prediction. In addition, the impact of
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the bounded region on the model’s accuracy was evaluated. It was shown that the proposed method

could predict the external force on an unseen tissue with different geometry and mechanical prop-

erties. The accuracy of force prediction considering tool occlusion noise diminishes by 4.2 percent,

which is in an acceptable range. The accuracy of presented model for various scenarios ranges from

95 to 88 percent. Model’s results have been evaluated by predicting the force encountering the sur-

face deformation of an unseen liver geometry and constitutive model where the mean absolute error

of prediction is 0.249 Newton.
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Chapter 1

Introduction

1.1 Background and Motivation

Sensing Haptic feedback has been undoubtedly an essential enhancement for minimally invasive

surgeries, especially in robotic aided surgeries where tangible force feedback plays a vital role in

maintaining the efficiency of the procedure, from increasing the surgeon’s proficiency to manually

palpating tissue, assessing tissue characteristics to prevent applying excessive forces which leads to

a safer surgery that decreases trauma and damage to healthy tissue and also prevents the exertion of

insufficient force that might be applied when grasping tissue or sutures, leading to slippage, loss of

control, and loose intracorporeal knots.

Safe and effective tissue handling is an important skill, and sensing haptic feedback plays a vital

role in maintaining the efficiency of the surgical procedure. To date, several research have been

devised to tackle this problem. One method to acquire haptic feedback can be provided by mounted

force sensors in the environment, such as external force sensors or at the end-effector, i.e., internal

sensors. Even though commercially available force sensors have been proven to be effective for

measuring forces in various applications, the particular case of surgical environment imposes severe

constraints on their applicability and efficacy in terms of biocompatibility and sterilizability [1].

Furthermore, the surgical instrument is guided to the surgical site through a trocar. The interaction

forces in the surgical site are dissipated due to frictional forces at the instrument’s entry port. Ad-

ditionally, adding force sensing capabilities for those robotic systems primarily designed without

1



Figure 1.1: Haptic feedback enhances surgeon’s dexterity and improves post operation outcomes

force sensors is not easily affordable. In addition, force sensors are mostly non-functional close to

a magnetic field, such as MRI in the surgical site [2, 3].

In the context of tissue handling and force modulation, different approaches are introduced to

the surrogate measuring of tool-to-tissue interaction in robotic-assisted minimally invasive surgeries

(RAMIS) [4].

Another approach is skill assessment, which can be done through video review using qualitative

rubrics. Deficits in rating consistency, timeliness of feedback, and time demands on raters are the

main drawbacks of this method. Obviously, this method does not provide real-time applicability in

the clinical context. Robot dynamic modeling is another method that has been developed recently

to estimate force at the tip by estimating the joint’s torques. Due to the dynamics of the cable-driven

arm, these models typically do not generalize properly.

Learning-based force perception (LBFP) is introduced as a promising solution to overcome the

limitations mentioned above. This method can use visual data acquired from the surgical site. In

LBFP, deformation of the soft tissue can serve as a basis for the approximated force. In chapter 2,

each method will be explained in details.
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1.2 Research Objective and Aim

This study aims to present a learning-based model that deploys synthetic data of tissue defor-

mation generated by finite element simulation of the patient-specific liver 3D model. The data

mentioned above is labeled with relative external force and preoperative information to surrogate

the utilization of a force sensor to measure forces where it is not feasible to employ an actual sensor.

Deep neural network (DNN) as one of the most advanced techniques for nonlinear regression prob-

lems was opted. The complex modeling capabilities of a DNN, combined with its high accessibility

nowadays, provide new opportunities in the field of Surgical innovations.

It is worth mentioning that most previous LBFP studies employed labeled and acquired data

experimentally. Typically the experiment is operated in an artificial phantom or a portion of an

inanimate organ. Hence these data acquisitions are constrained to a limited number of samples, and

the model shows a lower accuracy in encountering unseen biomechanical properties. One alternative

to providing a training dataset is using a digital twin in a virtual environment. A digital twin is an

ingenious concept that helps on organizing different areas of expertise, and a growing interest is

observable in the engineering fields [5]. One important category of digital twins is the finite element

model (FEM), which is used to find the system’s behavior under external loads. Examples of using

FE generated data for training datasets can be found in [6, 7, 8], with structural health monitoring

application

The current master’s thesis objective is to develop a framework that deploys DNN for real-

time force prediction concerning surgical invivo conditions such as boundary conditions, organ

hyperelasticity, and 3D geometry. The model is trained on a synthetic dataset generated by FEM-

based digital twins of liver tissue in MIS to provide a novel approach to estimate force based on

visual information of tissue in minimally invasive surgeries. The goal within the time span of this

thesis is to enhance the accuracy and generalisability of learning-based force estimation DNN to

predict the force exerted on the liver surface based on the bounded region of MIS and preoperative

information of the organ.

3



1.3 Thesis Contribution

• 3D reconstruction of patient-specific liver models associated with its hyperelastic constitutive

model and boundary interaction.

• Finite element modeling of soft liver tissue with ANSYS FEA package.

• Parameterize and automatize the FEM pre and post-processing steps to retrieve over 23000

simulations for various design points (force exertion) and 3D liver geometries.

• Propose and implement a deformation-based Deep learning model to take ROI deformation

and map it to force components.

• Propose a novel state vector that comprises pre-deformation state geometrical and constitutive

features of the organ for a more accurate deep neural network.

1.4 Thesis Layout

This thesis continues with a comprehensive literature review in chapter 2, where previous studies

and background knowledge and relevant approaches and methods are widely discussed. In addition,

it covers recent advances in machine and deep learning applications in force feedback estimation. It

concludes with a reflection on the found information and the substantiation of the research gap this

work fits.

To overcome the drawbacks mentioned in chapter 2, The generated dataset based on the patient’s

CT scan is explained, and the finite element modeling and related considerations such as hyperelas-

tic modeling, boundary conditions, and parametrization of the simulation to grasp sufficient amount

of data is discussed in chapter 3 in details.

In chapter 4, Machine learning and Deep learning implementation have been elaborated, and

the proposed method and its features are explained. The mathematical concept beyond the method

would be pointed out. Chapter 5 includes result that is obtained from our proposed model and the

comparison with previous studies. Finally, chapter 6 concludes and answers devised questions and

objectives of this study.
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Chapter 2

Literature Review

2.1 Force and Haptic Feedback

Haptic perception is the information and control related to or proceeding from the sense of

touch that can be kinaesthetic (the force and position in the joints and muscles) and cutaneous

(tactile, related to the skin) [9]. Haptic feedback has the potential to provide superior performance

and reliability in master-slave robotic applications [10]. For teleoperation, measuring forces that

cause deformation and translation will provide the required feedback[11].

The most common solution to measure forces in experimental systems is to mount regular,

commercially available force/torque sensors to the robot externally [12, 13, 14]. MC2E robot is an

example that can measure the distal organ-instrument interactions with a sensor mounted outside of

a patient’s region [15]. They introduced a compact and lightweight robot for MIS mounted on the

patient and offered a specialized kinematic design dedicated to MIS, which provides an invariant

center at the fulcrum point. Another project was the BlueDRAGON which was developed at the Uni-

versity of Washington that records both the kinematics and dynamics (positions and forces/torques

in 6 DOF) of two laparoscopic tools [16]. This technique can be practical for a range of applica-

tions, where the rigidity of the tools allows the accurate reading of the forces even further from the

tip of the instrument. However, the main drawback is the dimensional constraints of surgical tools,

especially during MIS procedures, where the oversized sensors can only be mounted relatively far

from the tool tip, which results in less accuracy of the measurements due to high friction at the

5



trocars [17].

One other general force measurement approach is integrating small size sensors that can be

added to the instrument’s tip within the surgical site. Many materials can be used where torques and

forces cause an elastic deformation of the sensor bodies. Strain gauges are widely accepted. How-

ever, an array of them is needed to provide accurate force sensing in multiple degrees of freedom of

motion. Several micro force sensors have been developed based on MEMS, Piezoelectric, optical,

and Bragg sensors [18]. However, such technology has yet to see commercial application since its

limitation to meet the criteria of biocompatibility, sterilizability, and cost-effectiveness. In addition,

force sensors are mostly non-functional close to a magnetic field, such as MRI-guided surgeries

[2, 3, 19].

To date, many approaches have been introduced to measure tool-to-tissue interaction in robotic-

assisted minimally invasive surgeries [4]. From skill assessment to robot’s dynamic models that

estimate force at the tip by estimation of joint torques but due to dynamics of the cable-driven arm,

these models typically do not generalize adequately.

2.1.1 Skill Assessment and Automated Performance Metrics

An alternative approach to improve surgeons’ tissue handling and force modulation abilities is

skill assessment that can be done through video review using qualitative rubrics [20, 21]. Deficits

in rating consistency, timeliness of feedback, and time demands on raters are the main drawbacks

of this method. Obviously, in the context of clinical application, this method can not provide real-

time feedback. Another approach to evaluation is automated performance metrics (APMs) that are

quantitative measures of skill [22]. While APMs for skill categories such as economy of motion and

bi-manual dexterity are well known and easily measurable by querying the robot state and kinemat-

ics, APMs for measuring tissue handling are difficult to implement without either environmental or

end-effector force sensing, leading to force APMs being excluded from clinical studies.

2.1.2 Robot’s Dynamic Model

Robot’s dynamic modeling is another method that has been recently deployed to estimate force

at the end effector [23, 24, 25]. A sensorless model-based approach for contact force and torque

6



Figure 2.1: Robot-assisted minimally invasive surgery manipulation.

Figure 2.2: Dynamic model of dVRK slave arm to estimate the wrench interaction via joint torque

estimation. Pique et al. have modeled the dynamics of the dVRK slave arm to use the joint torques

obtained from the measured motor currents and subtract the torques resulting from the dynamics of

the robot arm, Fig. 2.2. Hence the residual torques are due to the external forces and torques acting

on the tool, obtained through the inverse transpose of the Jacobian matrix. It is evident that due to

the dynamics of the cable-driven arm, these models typically do not generalize adequately.

2.2 Deformation-based Force Perception

Haptic feedback can be derived from other sources of information, where the bending of the

tools or an appropriate dynamic model of the soft tissue elasticity parameters can serve as a basis

for approximate force computation [26]. Hence to overcome the mentioned limitation of other

models and techniques, deformation-based force perception (DBFP) is introduced as a promising

7



solution that uses the visual information of deformed tissue to compute the exerted force.

The history of combining force and visual feedback goes back to the late 90s when Zhou et

al. presented a sensor fusion framework to integrate an optical microscope with a visually-servo

micro-assembly system [27]. They measured the force in a force-controlled micro-positioning task

based on the principles of optical beam deflection. Since then, many researchers have presented

ideas to improve force measurement and estimation using visual feedback. This method has the

advantage of using data acquired from imaging modalities along with additional references such as

Stereo endoscopic images.

2.2.1 Image Processing and 3D Reconstruction for Visual Feedback

In order to estimate the interaction forces applied to a deformable object based on visual infor-

mation, a broad range of image processing techniques can be utilized to collect accurate and reliable

information. The vision system is required to detect the deformable objects in the captured images

and track them over time [28]. To this end, image preprocessing, segmentation, and object recogni-

tion are carried out to provide visual feedback. The speed of the vision systems highly depends on

the speed of the localization and recognition stages [29].

The image preprocessing includes image filtering, data extraction, and an optional data reduc-

tion step if the data is significantly more than needed for time-efficient visual information extraction.

In image filtering, some of the low-level details of the image may be missed. Although preprocess-

ing results in missing a portion of information, denoising helps the user extract more reliable infor-

mation from the position of the deformable object. Considering the volume of visual data collected

in the vision system, processing all of them in the subsequent steps increases the computation time

excessively, which is a critical problem, especially in real-time applications.

Segmentation culminates in more time-efficient information extraction since it avoids the irrel-

evant computation of the whole environment. Segmentation helps the user to limit the tracking area

to the close vicinity of the object, called the region of interest (ROI). Threshold, Edge detection,

and region extraction are the best to known techniques for this purpose. The segmented image is

then fed to the object recognition stage in which features of the object are extracted to be used in the

following matching steps during a task. Feature detection is based on exploring a point of interest
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(POI) in the image.

2.2.2 Physic-based Models

After the idea of vision and force sensing integration was presented [27], researchers developed

and employed it, particularly for different tasks, including micromanipulation. Later, most of the

research concentrated on image-based force measurement. The estimation has been taken towards

techniques based on the model of the deformable objects. Most studies spotted problems with med-

ical interventions in either exvivo or invivo scenarios. This method has the advantage of using data

acquired from imaging modalities and additional references such as stereo endoscopic images. For

instance, a vision-based contact force estimation method utilizing the FE model of the deformable

object and its nodal displacements was presented in [30].

Another study measured the forces applied to the deformable tissues using visual feedback in a

small single-port neurosurgical robot. Using a series of depth maps extracted from a stereo endo-

scope, they estimated the force. The reference shape of the soft tissue was obtained by processing

the pre-operative CT images. Then, a surface mesh-based model making use of a spring-damper

system was employed to model the object deformation [31].

The forces applied to soft tissue in a robotic surgery were estimated by Noohi et al. using

a phenomenological nonlinear model and template matching-based methods for the deformation

reconstruction [32]. They validated the estimation accuracy in an ex vivo experiment on a lamb

liver. The advantage of this research was employing the concept of virtual template in the modeling

of surface deformation without prior knowledge of the shape of the undeformed object.

In another study, the forces applied to a soft tissue were estimated using a force-displacement

model created based on a second-order polynomial fitting. Considering tool-occluded images, the

displacement at the tool-tissue contact point was determined by probabilistic tracking of the unre-

stricted movement of the points close to the tool’s tip. The resulting 3D displacement was used to

model 3D tissue deformations [33].

A method presented by Haouchine et al. constructs a depth map of the environment, which is

mapped to a finite element mesh with properties consistent with the manipulated tissue [34]. They

aim to recover the external force f from the displacement of the tip of the instrument. Therefore,
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Figure 2.3: The first learning-based scheme to image-based force measurement [35]

they considered the 3D positions of the instrument as constraints that will impose the motion of the

mechanical model. The displacement of the instrument will generate forces according to the stress-

strain relation of the equation of deformation. Assuming the 3D displacement of the instrument

tip is stored in the vector p, these constraints are modeled by adjoined 2m Lagrangian multipliers

collected in vector l that yields the multiplier-augmented form. In an exvivo experiment, this method

correctly approximated the trends of the interaction forces, but with an offset and scaling. The

authors noted that the method’s accuracy is dependent on the proposed anchoring points of the

finite-element mesh.

2.2.3 Learning-based Approach

Attentions are towards using ML and DL to surrogate previous methods to measure interaction

forces during the surgical procedure. Learning-based force estimation was represented for the first

time in 2003 where the author proposed the application of artificial neural networks (ANN) [35].

They measured the forces applied to a deformable object based on template matching-based image

processing algorithms in macro-scale and micro-scale scenarios as demonstrated in Fig. 2.3.

In general, the training of neural networks as an optimization problem requires a considerably
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large dataset, which is not easily accessible in the context of medical applications. Providing an ap-

propriate training dataset, the time and computation strength needed for the training are contributing

factors that should be considered, especially in the medical and healthcare systems. The success-

ful application of the convolutional neural networks (CNN) in computer vision-based tasks such as

pattern recognition enticed its utilization in medical applications.

2.2.4 Recurrent Neural Networks for Force Prediction

A recurrent neural network (RNN) is a type of artificial neural network which uses sequential

data or time-series data. These deep learning algorithms are commonly used for ordinal or temporal

problems. The backpropagation algorithm of a recurrent neural network is modified to include the

unfolding in time to train the network’s weights. This algorithm is based on computing the gradient

vector and is called backpropagation in time or the BPTT algorithm. In force prediction of soft

tissues, many researchers considered the previous state of tissue accountable for the final formation

and dynamically analyzed it. RNN is the leading architecture that is used in these studies. Further-

more, It is occasionally seen that to prevent an expected deficit in RNN, vanishing gradient problem,

long short term memory (LSTM) has been implemented. On the other hand, many consider a quasi-

static process where initial (neutral) and final formation suffices to study tissue behavior adequately.

Aviles and his fellow researchers initiated a series of research on the vision-based force prediction

utilizing learning-based methods, a significant improvement in the LBFP. In the first step, they

used an RNN, trained based on the Levenberg-Marquardt algorithm for a 3D vision-based force

estimation task in MIS [36]. As mentioned above, RNNs are highly functional. There are com-

plex dependencies between input and output variables of the network, input signals are significantly

noisy, and considering temporal information is essential. The methodology comprises two modules

of stereo vision and force measurement. They retrieved the deformation produced by the applied

force using an energy minimization strategy and a cubic B-spline model of the object. In contrast,

the latter extracted the relationship between the vision module’s output and the robot’s kinematic

variables to calculate the force vector. The accuracy and computational performance of the method

were validated by a static simulated tissue (heart) made of rubber silicone. The advantage of this
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Figure 2.4: RNN-based scheme for vision based force prediction by [36]

method was that no knowledge of material properties was needed. The article did not provide de-

tailed information about the network training and testing dataset. The model has been trained on a

dataset with an ex-vivo setting.

Despite the robustness of this method with the ability to deal with noisy data and create complex

input-output relations, the main concern with using RNNs for force estimation is the vanishing

gradient problem [37]. The problem arises when the gradient of the error function is relevantly tiny,

which prevents the network weights from being updated. The problem was tackled by employing

a long short-term memory RNN architecture (RNN-LSTM) to preserve information for a more

extended period, enforce constant error flow, and estimate the applied forces. This paper showed a

performance improvement of up to 4% compared to the base research described.

In 2016 this research was further extended by improving the robustness and accuracy of the

force estimation by integrating a fuzzy approach to the force estimation module, resulting in a deep

neural-fuzzy system 2.5. This paper used the same approach, RNN-LSTM, to learn the properties of

soft tissues [38]. The authors investigated the displacement error of soft tissue at the contact point

in different force estimation architectures with and without neural networks or fuzzy systems and

showed a significant improvement. They also compared the accuracy of the proposed approach with

previously published methods and showed an improvement ranging from 35% to 85% [32, 39, 40].
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Figure 2.5: Deep neuro-fuzzy approaches to vision-based force estimation presented in [38]

They modified the vision module to accommodate complex behaviors of the deformation struc-

ture. They reformulated the total energy of the lattice points of the deformable tissue to tackle the

tool partial-occlusion issue [41]. By dimensionality reduction via correlation-based feature selection

and keeping only force related features, they reduced complexity and accelerated the performance

of the deep network. The results showed the proposed method’s robustness, accuracy, and stability

over long periods. One limitation of the work was that the authors had not considered the organ

dynamics during the experimental acquisition of the ex vivo datasets.

2.2.5 Convolutional Neural Network Force Prediction Models

As discussed in section 1, convolutional neural networks (CNN) have been widely used in liter-

ature to estimate force, based on a stereoscopic image of deformed tissue that is mainly labeled with

the force, which is generally measured through an exvivo setting [42]. One of the main drawbacks of

image-based CNN is the perturbation caused by the change in viewpoint and lighting. In literature,

one of the most famous architectures that have been widely used for image-based classification and

regression is a deep residual network and, specifically, ResNet-50 [43]. This model was the winner

of the ImageNet challenge in 2015. The ResNet-50 model consists of 5 stages, each with a convo-

lution and identity block. Each convolution block has three convolution layers, and each identity

block also has three convolution layers. The ResNet-50 has over 23 million trainable parameters, as

shown in Fig. 2.6 and a pre-trained version of the network trained on more than millions of images

13



Figure 2.6: ResNet50, Deep residual network

executed on the ImageNet database. In literature, this architecture is the backbone of many models

that deploy images to execute the task.

As it is pictured in Fig. 2.6 the Resnet 50 architecture contains the following element:

• A convolution with a kernel size of 7 * 7 and 64 different kernels all with a stride of size 2,

giving us one layer.

• Max pooling with a stride size of 2.

• A 1 * 1 * 64 kernel following a 3 * 3 * 64 kernel and a 1 * 1 * 256 kernel, These three layers

are repeated three times, giving us nine layers in this step.

• Next, see the kernel of 1 * 1 * 128 after that, a kernel of 3 * 3 * 128, and at last, a kernel of 1

* 1 * 512. This step was repeated four times so, giving us 12 layers in this step.

• After that, there is a kernel of 1 * 1 * 256 and two more kernels with 3 * 3 * 256 and 1 * 1 *

1024, and this is repeated 6 times, giving us a total of 18 layers.

• And then again a 1 * 1 * 512 kernel with two more of 3 * 3 * 512 and 1 * 1 * 2048 and this

were repeated three times, giving us a total of 9 layers.

• After that, an average pool is done and end it with a fully connected layer containing 1000

nodes and a softmax function.

Gassert et al. estimated the interaction forces of instruments and tissue in a RAMIS directly

from OCT image volumes [44]. They introduced a novel Siamese 3D CNN architecture that takes
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Figure 2.7: CNN based SIAMSE architecture presented by [44]

an undeformed reference volume and a deformed sample volume as inputs and outputs the three

components of the force vector as shown in Fig. 2.7. The authors employed a deep residual archi-

tecture with bottlenecks to increase efficiency. They compared the Siamese approach to methods

that use different volumes and 2D projections. A robotic setup was used to obtain ground-truth

force vector for a silicone-made phantom and a porcine tissue.

The results showed that the accuracy of this method outperforms single-path methods. More-

over, the use of volume data resulted in significantly higher performance compared to processing

only surface information.

Stereo images can be used in DBFP to construct a depth map of the environment, which is

mapped to a finite element mesh with properties consistent with the manipulated tissue. Having a

suitable biomechanical model of the soft tissue, the imaging techniques can be used to measure the

deflection and find the interaction forces in real-time. Convolutional neural network encodes visual

information. Apart from vision perception, like a surgeon’s intuition in hand-eye coordination,

some studies considered the robot state a condition vector comprising joint currents and the tool’s

tip position. In 2020, Chua et al. presented a force estimation neural network that uses RGB
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images and robot state as inputs [45]. Using a self-collected exvivo dataset, they compared the

network to variants that included only a single input type. They evaluated how they generalized to

new viewpoints, workspace positions, materials, and tools. They found that vision-based networks

were sensitive to shifts in viewpoints, while state-only networks were robust to changes in the

workspace. The network with both state and vision inputs had the highest accuracy for an unseen

tool and was moderately robust to changes in viewpoints. They introduced a single-framed vision-

state convolutional network that deploys a robot force-torque state and the vision acquired from

monocular images on an artificial tissue.

Skin = [Pi, Oi, Qi] (1)

They achieved a promising result that the network with robot state concatenated to CNN decreases

force estimation error and generalizes better for unseen settings. However, in-vivo applicability

remained questionable, and the model is trained based on a force sensor mounted in an experimental

setting, so the moment is not considered actively.

2.2.6 Unsupervised Learning Models

In general, The models discussed in sections 2.2.4 and 2.2.5 are ANN-based methods that use

supervised learning architectures to find the relation between vision features and the corresponding

forces, which inevitably necessitate the utilization of ground-truth data. However, most of the video

sequences related to robotic surgery are not provided with ground truth which is the main limitation.

In order to tackle this problem, researchers started to gradually transit from the supervised net-

works to unsupervised architectures. In 2018, Marban and fellow scientists used a semi-supervised

learning framework to solve this issue. Hence, an unsupervised network, called convolutional auto-

encoder (CAE), was employed to extract the feature vectors of the frames in an unlabeled video

sequence [46]. Then, an LSTM network was trained in a supervised learning setting using available

ground truth force data. The encoder network of the CAE, which was serially connected with the

LSTM network, was trained partially to minimize the difference between the ground truth and the

estimated force data. Fig. 2.8 and 2.9.
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Figure 2.8: Encoder- LSTM model used in the semi-supervised learning stage in [46]

Figure 2.9: Design of the two-layer LSTM network with Coupled Input-Forget Gates (LSTM-CIFG)
in [47]
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Considering the scarcity of datasets addressing the force estimation tasks, the experiments were

validated using a custom dataset experimentally collected by the authors. The proposed approach

was experimentally validated on a silicone-made digestive apparatus. The results were promising,

but the force estimation was not accurate enough for operational purposes. In 2019, Marban et

al. presented a method for estimating a 6D vector of forces and torques (in the 3D space) in both

pushing and pulling telesurgical tasks based on the CNN and LSTM networks [47].

Results obtained from these studies are remarkable, but the way they translate to RMIS is vague

since they achieve high accuracy on relatively simple material compression tasks or use fewer com-

plex manipulators and maneuvers. For instance, Unseen viewpoints and tissue biomechanical pa-

rameters can cause major error [48].

2.3 Research Gap

A thorough look over the aforementioned studies highlights that these models are either as-

sociated with the experimental dataset, i.e., exvivo data as labeled ground truth or designate an

unsupervised approach where results are promising but not adequate in the clinical application con-

text. Therefore, one of the main concerns in the presented solutions is the lack or absence of invivo

considerations. Eventually, these models need to enhance the MI surgeons’ perception of force

magnitude where the organ is in the body with interaction with other organs and muscles, etc. In

addition, in MIS, generally, a portion of the organ is observable through the stereoscopic camera,

and assessment should be based on information conveyed from this segment. At the same time, the

deformation occurs over the entire organ.

Another substantial drawback in previous studies is the lack of generalization. As most of the

data are labeled and acquired experimentally, typically, the experiment is operated in an artificial

phantom or a portion of an inanimate organ. Hence, these data acquisitions are constrained to a

limited number of samples. The model shows a lower accuracy in encountering unseen material

biomechanical properties considerations are missing in most of these models. On top of these

limitations, in an ex-vivo setting, a simplified geometry is generally employed and geometrical.

Boundary conditions do not address the actual status, diminishing the models’ invivo compatibility.
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2.4 Study Overview

One alternative to providing a training dataset in the absence of an adequate labeled dataset is

a digital twin in a virtual environment. A digital twin is an ingenious concept that helps organize

different areas of expertise, and a growing interest is observable in the engineering field. One

important category of digital twins is the finite element model (FEM), which is used to find the

system’s behavior under external loads. Examples of using FE generated data for training dataset

can be found in literature, as mentioned in chapter 1, with a structural health monitoring application.

In this study, finite element modeling (FEM) is used to provide synthetic data of liver defor-

mation in external force where liver 3D geometries are extracted from CT scan images. In order

to consider invivo compatibility, the dataset is presented by simulating patient-specific liver mod-

els with regard to the organ biomechanics and neighboring boundary conditions. Biomechanical

characteristics of the soft tissue were obtained from experimental uniaxial, bi-axial, and shear stress

tests from previous studies [49]. Developed models are used under various loading conditions,

and the point cloud of the deformed shape is used as the primary training dataset. Note that, in

the actual surgery, the point cloud of the deformed tissue can be obtained using imaging methods.

Hence the proposed model is potentially a vision-based force prediction model. Considering the

limitation of the field of view in the surgical site, the point cloud dataset is preprocessed to cap-

ture a limited region, referred to as the region of interest (ROI). To have a large enough dataset,

over twenty-three thousand simulations have been retrieved on ANSYS software [50]. This pro-

cess has been parameterized, automatized, and restored with the aid of ANSYS parametric design

Language codes. To equip the model with a distinctive ability to encounter various liver models

and conditions, pre-operative information that describes the model hyperelasticity and undeformed

geometrical parameters will be used to achieve a robust and accurate learning-based force percep-

tion model and generalize its applicability for various constitutive models. This study intended to

predict the external force through a DNN model. The DNN accepts the invivo deformation point

cloud as the input and maps it to the relevant external force. For better performance, dimensionality

reduction techniques is deployed to extract the hierarchical features from the input, improving the

nonlinear regression accuracy. Deep autoencoder (DAE) has been deployed for downsampling and
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encoding the input compared to principal component analysis (PCA). Furthermore, this study pro-

posed a novel state vector that includes the geometrical and biomechanical parameters of the liver

and the ROI. The DNN hyperparameters were tuned to obtain the highest accuracy. Results high-

light a remarkable improvement in the accuracy compared to a model without the state vector. To

validate results and their robustness in invivo application, they are compared them with the ground

truth obtained from an unseen FE simulation of the liver, knowing that imitating the invivo condi-

tion in an experimental setting is a serious barrier. On the other hand, a simplified exvivo evaluation

would not assess the proposed model’s strength based on the aforementioned reasons.
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Chapter 3

Biomechanical Modelling; 3D

Reconstruction and Simulation Analysis

3.1 Liver Biomechanics

This study surrogate intra-operative data of liver deformation in minimally invasive surgery with

finite element simulation of the organ to enhance our machine with reliable labeled data. Drawbacks

in the ex-vivo setting would impact the in-vivo applicability of vision-based models as mentioned in

chapter 1. To acquire a comprehensive dataset to imitate the in-vivo characteristics of a hyperelastic

tissue, the actual patients’ liver organs was designated. The liver is the organ with a significant

portion of minimally invasive surgeries operated on [51]. Knowing that the liver is a hyperelas-

tic medium where stress is highly dependent on the strain range, methods that can demonstrate its

biomechanical characteristics were assessed to model the tissue accurately and the boundary condi-

tions that impact its dynamic.

3.1.1 Liver Anatomy

The liver is the largest gland (average length of about 28 cm, average height of about 16 cm and

average most significant thickness of about 8 cm) in the human body with numerous physiological

functions: to filter, metabolize, recycle, detoxify, produce, store, and destroy [52]. It is located in

the right hypochondriac and epigastric regions. The liver has a fibrous coat, the so-called Glisson’s
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capsule. Its rheological behavior is quite different from the glandular parenchyma. Five vessel types

run through the liver parenchyma: biliary and lymphatic ducts on the one hand and blood vessels

(internal portal supply, hepatic arterial tree, and collecting venous network) on the other hand. The

portal vein, which conveys blood from the digestive tract to be detoxified and metabolized, is deep

into the proper hepatic artery and common bile duct. This region is thus supposed to be wholly

stable.

Generally, The right liver extremity is thick and rounded, while the left one is thin and flattened.

The anterior border is thin, sharp, and free. The posterior border is connected to the diaphragm by

the coronary ligament. The upper surface, covered by the peritoneum, is divided by the suspensory

ligament. The lower surface is connected with the gallbladder within the GB fossa, the stomach,

the duodenum, the right kidney, and the right part of the transverse colon. These organs are in

contact with the liver surface, but they do not interact strongly with the liver; hence they can not be

considered a supporting organ. The inferior vena cava travels along the posterior surface, often in a

groove. The connection implies another strong fitting condition [53].

3.2 Liver 3D Model Reconstruction

As stated in chapter 1 our 3D model has been constructed based on the computed tomography

(CT) DICOM images. The images used in this project came from the 2017 liver tumor segmenta-

tion challenge (LiTS)( Christ, 2017 ), a competition organized by the international conference on

medical image computing and computer-assisted intervention (MICCAI 2017) in conjunction with

the IEEE international symposium on biomedical imaging (ISBI 2017) whose objectives were the

automatic liver segmentation and tumor segmentation, and tumor load estimation. This dataset is

publicly available and consists of 130 scans of abdominal CT images from six different medical

centers.

This study deployed 3D Slicer software to reconstruct the organ geometries that are used in

FEM to provide a broad range of 3D models. 3D Slicer is a powerful visualization tool that allows

the exploration of the imaging datasets in two, three, and four dimensions. Slicer enables the fusion

of functional and anatomical data and provides a variety of generic and specialized tools for their
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Figure 3.1: CT scan DICOM: liver segmentation extracted for 3D reconstruction

processing, and multi-modal analysis [54]. The generated model in the SRT file format would be

prepared (smoothened and warped) afterward, which leads to a finer mesh generation. Twenty-four

different geometries have been extracted from patients’ DICOM images, and simulation for the

various setting has been executed to enhance our training dataset’s generalisability (Fig. 3.2).

3.3 Liver Constitutive Model

The robustness of the FE simulations depends on many factors, such as the process of segmen-

tation and the constitutive model that characterizes the mechanical behavior, and last but not least,

the boundary conditions. For the modeling of the liver in FE software, first, the liver soft tissue

is considered an incompressible, isotropic, hyper-elastic medium, which is characterized by strain

energy density function as a part of Helmholtz energy [55]. Neglecting the thermal part, it yields:

σPK2 =
∂W

∂E
(2)
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Figure 3.2: Patient specific liver 3d models reconstructed from DICOM images

Figure 3.3: Mesh generated for a liver 3D model by ANSYS SpaceClaim
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WhereW is the strain density function and E is the Green-Lagrangian strain tensor. The stretch

ratio, the ratios of initial and final lengths in the principal directions, is defined as:

λ = 1 + εEng (3)

Hence, the Green–Lagrange strain tensor is:

Ei = (λi − 1) +
1

2
(λi − 1)2 (4)

∂Ei
∂λi

= λi (5)

Having, Cauchy stress as σi = (1 + εi)
2σPK2
i , we have:

σi = λi
∂W

∂λi
(6)

The invariant-based continuum mechanics approach defines the strain energy density function

for anisotropic, hyperelastic material as a function of invariants. The invariants are computed via

the product of the deformation gradient with its transpose.

I1 = λ21 + λ22 + λ23 (7)

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1 (8)

I3 = λ21λ
2
2λ

2
3 = J2 (9)

The rate of change of the strain energy density W (E) equals the rate of mechanical work done

on the material per unit reference volume.

dW

dt
=
∂W

∂Fij

∂Fij
∂t

(10)
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where:

F = I +∇ × U (11)

To obtain a proper biomechanical behavior of tissue, different hyperelasticity models such as

Mooney-Rivlin, Ogden, and Yeoh are assigned. We calculated the mean of stress magnitudes rele-

vant to the specified range of strain and applied these models considering the strain energy density

function as a function of invariants of the left Cauchy–Green deformation tensor [56]. The strain

energy density function for various models are given as follows:

Mooney-Rivlin:

W =
∑
i

∑
j

Cij(I1 − 3)i(I2 − 3)j +D(J − 1)2 (12)

Ogden:

W =

N∑
i

2µi
α2
i

(λαi
1 + λαi

2 + λαi
3 − 3) +

K1

2
(J − a)2 (13)

Yeoh:

W =
∑
i

Ci(I1 − 3)i (14)

Results as second Piola Kirchhoff stress versus Green Lagrangian strain curve for different

ranges of strain rate and the mean values are demonstrated in Fig. 3.4 and Fig. 3.5 [57]. Each

models parameter were curvefitted and obtained by ANSYS Structural module and results are shown

in Tables 3.1, 3.2 and 3.3 .

A uniaxial tensile test was simulated based on mentioned-above models as shown in Fig. 3.6

and compared the result with that relevant value that is extracted from experiments in [49] studies.

Fig. 3.7 shows that the Mooney-Rivlin model results in a more accurate simulation. Hence, five

parameter Mooney-Rivlin model was deployed (Eq.15) to simulate the liver’s nonlinear hyperelastic

behavior. The accuracy metric is NRMSE, and the results are shown in table 3.4
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Figure 3.4: Stress-Strain graph of various confined compression experiments

Figure 3.5: Stress-Strain graph of various shear test experiments
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Table 3.1: Mooney-Rivlin parameters obtained from from shear and confined compression test

Components Parameters V alues N ×mm−4

Liver Density 1.051
C01 863.5
C10 -584.5
C11 3228.7
C20 -6228.9
C02 3328.3

Table 3.2: Ogden parameters obtained from shear and confined compression test

Components Parameters V alues N ×mm−4

Liver Density 1.051
µ1 187.13
α1 499.13
µ1 10.65
α1 15.03

W = C10

(
Ī1 − 3

)
+ C01

(
Ī2 − 3

)
+ C11

(
Ī1 − 3)(Ī1 − 3

)
+C20

(
Ī1 − 3

)2
+ C20

(
Ī1 − 3

)2
+

1

d

(
J̄ − 1

)2 (15)

3.4 Boundary Condition

Liver contact with other organs and muscles are considered to imitate the realistic condition

of tissue deformation. The stiffness of normal and tangential elastic foundation for coronary and

triangular ligament that connects the posterior side of the liver to the diaphragm is considered 56.3±

19.2N/mm. The inferior vena cava (IVC) travels along the posterior surface and holds a fixed

support condition that constrains the neighborhood nodes. The rib’s interaction on the anterior face

Table 3.3: Yeoh parameters obtained from shear and confined compression test

Components Parameters V alues N ×mm−4

Liver Density 1.051
C10 0.00161
C20 0.0125
C30 0.00531
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Figure 3.6: Uniaxial test simulation based on different hyper-elastic models

Figure 3.7: Stress-Strain graph of various uniaxial models vs. experimental data
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Table 3.4: NRMAE of uniaxial test simulation based off various hyperelastic models

Mooney −Rivlin Ogden Y eoh

0.12 0.18 0.21

constrains the zone with just tangential motion, so the normal motion is estimated zero [58]. The

lower face connection to abdominal organs through hepatoduodenal and hepatogastric ligaments

can be estimated as an elastic foundation with a lower stiffness of 42.6± 10.2N/mm [59].

3.5 Finite Element Modelling

To consider the impact of the unobserved region in the region of interest study, instead of partial

analysis, we assess the entire geometry’s biomechanical behavior with the exertion of an external

force and the presence of boundary conditions as indicated previously. External surface deformation

of ROI can be extracted afterward. ANSYS 2021 R1 software and the static structural module are

deployed for this simulation [60]. Seizing and number of meshes vary with regards to the liver

geometry. On average, Twenty thousand nodes were generated using tetrahedral mesh. However,

the surface nodes were extracted since our observations in minimally invasive surgeries are generally

bounded to the surface of ROI.

Twenty-five liver 3D models were studied, and forces in the range of actual MIS were exerted on

various positions. In order to realistically analyze the soft tissue, as shown in the previous section

Mooney-Rivlin with the lowest normalized root mean squared error has been assigned. It is worth

mentioning, the Mooney-Rivlin model does not give any unique insight into material behavior.

It is merely curve-fits of various polynomials to test data. The numerical values of coefficients

resulting from the curve-fits are entered into FEA programs for use in mechanical analyses. The

FEA program knows how stiff the tissue is based on the values of the coefficients. Coefficients were

obtained through curve fitting of the nonlinear stress-strain graph of soft tissue experimentation that

was grasped from literature.

The Ansys’s static structural module is used. Large deflection has been considered with plain

strain analysis with auto time stepping and one hundred initial time steps and a maximum of one
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Figure 3.8: Nodal displacement of liver simulation retrieved on ANSYS 2021R1

thousand timesteps computed via direct solver. Boundary conditions were imposed on the liver, as

illustrated earlier. Since the tangential elastic foundation is not defined based on the boundary’s

elasticity in the mechanical module, the specified boundary conditions based on the nodal elastic

configuration was implemented and defined by the APDL code. APDL is an acronym for ANSYS

parametric design language, a powerful scripting language that provides customized automation in

preprocessing, solving, and post-processing of ANSYS simulations. APDL is the foundation for

features, many of which are not exposed in the workbench mechanical.

The problem is then parameterized, and approximately twenty-four thousand of various sets of force

magnitude, exertion point, and liver geometries have been defined. In order to generate sufficient

data to be further deployed in deep learning training, each geometrical and elastomechanical sim-

ulation setting has been parameterized for thousand sets of various force components. Bellow, the

algorithm of the deformation point cloud is shown. Simulations were retrieved from a licensed

version of ANSYS 2021 R1 in Concordia University. Fig 3.8 demonstrates the setting of Ansys

mechanical for the simulation mentioned above.

APDL commanding is used to automate retrieving simulations and restoring them in a specified

directory. This powerful scripting tool enables us to generate as much data as required to implement

deep learning accurately and accordingly. Results have been retrieved and exported as samples

are shown in Fig. 3.9. For each geometry and selected exertion coordinate, Force components are

defined randomly relevant to the range of forces in actual surgeries. For each setting, thousands of
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Algorithm 1 ROI deformation extraction Algorithm
1: Initialize gLi , p

e
i , E(s)

2: CLi ← E(s)
Require: D(x, y, z), Design point comply the hyper-elasticity criterion

for I = 1 : N do
while p ≥ 1e− 7 do

Compute stiffness Matrix K
−p. = ∆KU
u← u+ ∆u
Compute residual p

end while
for I = 1 : 3 do

Set, displacement, U, Xi

Get, numnode, node, count
Get, nd sig(L), node, U, Xi

Open, ‘Dis i’ , CSV
Write, nd sig(L), (E13.6)

end for
for i = 1, S do

if d(Disi, p
e) ≤ Threshold then

U ← Roi i,Xi

else Pass
end if

end for
end for
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Liver:01,Exertion:01 Liver:01,Exertion:02 Liver:01,Exertion:03

Liver:02,Exertion:01 Liver:03,Exertion:01 Liver:04,Exertion:01

Figure 3.9: FEA simulation for various liver model, various hyperelasticity and exertion position

simulations were executed, parametrized, and stored automatically. It is worth mentioning that the

range of force components is chosen to comply with the continuum hyperelastic behavior of the

medium [61].
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Chapter 4

Data Processing and Deep Neural

Network

4.1 Deep Learning

Machine Learning systems have been proven to be a robust tool for numerous applications,

from identifying objects in images to speech-to-text transcription, matching news, items, posts,

or products relevant to user’s preference, and selecting desired search results. Increasingly, these

applications use a class of techniques called deep learning. Deep learning provides computational

models composed of multiple processing layers that, as Lecun stated, learn a representation of

data with multiple abstraction levels that are effectively designated for speech recognition, vision-

based recognition, object detection and segmentation, drug discovery, and genomics. Deep learning

discovers intricate structures in large data sets by using the backpropagation algorithm to indicate

how a machine should change its internal parameters that are used to compute the representation in

each layer from the representation in the previous layer.

Multilayer perceptron (MLP) consists of input, hidden, and output layers. Each layer comprises

neurons that acquire an activation function. An activation function is a function in an artificial

neuron that delivers an output based on inputs. Activation functions in artificial neurons are an

essential part of the role of artificial neurons in modern artificial neural networks that resemble a

biological neuron’s function. A deep-learning architecture is a multilayer stack of simple modules,
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all (or most) of which are subject to learning, and many compute nonlinear input-output mappings.

Each module in the stack transforms its input to increase both the selectivity and the invariance of

the representation. With multiple nonlinear layers, say a depth of 2 to 20, a system can implement

incredibly intricate functions of its inputs that are simultaneously sensitive to minute details, as

shown in Fig. 4.1.

Backpropagation computes the gradient of the loss function concerning the network’s weights

for a single input-output example. It does so efficiently, unlike a naive direct computation of the

gradient for each weight individually. This efficiency makes it feasible to use gradient methods

for training multilayer networks, updating weights to minimize loss; gradient descent, or variants

such as stochastic gradient descent, are commonly used. The backpropagation algorithm works

by computing the gradient of the loss function for each weight by the chain rule, computing the

gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations

of the intermediate terms chain rule. Other intermediate quantities are used in the derivation of

backpropagation; they are introduced as needed below. Bias terms are not treated specially, as they

correspond to a weight with a fixed input of 1. For the purpose of backpropagation, the specific loss

function and activation functions do not matter as long as they and their derivatives can be evaluated

efficiently.

g(x) = fL(WLFL−1(WL−1...f1(W 1x)...) (16)

4.2 Proposed Method

Our method is a learning-based force estimation implemented by a deep neural network. In

order to diminish the noise and perturbation that occurs in the image-based CNN, a deformation

point cloud was used, which in practice can be acquired from stereoscopic images of surgery through

existing 3D reconstruction techniques and depth imaging [62]. Fig. 4.2 demonstrate the procedure

schematically.

Our project concentrates on the model that takes surface 3D point cloud as an input with pre-

operative information of the patient organ and predicts the magnitudes and directions of the forces.
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Figure 4.1: Back propagation optimization in Neural networks
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Figure 4.2: Proposed model schematic, learning-based DNN with pre-operative state vector
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Figure 4.3: Synthetic dataset generated from digital twin of patient specific liver 3D model

This model has been trained on the surface point cloud obtained from FEA simulation as a digital

twin of actual in-vivo hyperelastic deformation of live soft tissue. In practice, this point cloud

can be extracted from MIS stereoscopic images. As shown in Fig. 4.3 the synthetic dataset has

been generated via FEA simulation of a patient-specific liver 3D model that would be extracted

and reconstructed from CT scan images. The reconstruction procedure is out of the scope of our

research and has been addressed and studied remarkably in the literature.

It is also worth mentioning that technologies such as time of flight can be designated to acquire

a 3D depth mapping of MIS surroundings, and recently researchers have proposed its application

in surgical sites [63]. Therefore the 3D point cloud obtained from our FEA simulation on various

patient’s actual liver geometries would surrogate the reconstructed 3D point cloud of the actual liver

in MIS.

The model is trained based on a 3D FEA simulation of the patient-specific liver model. The

surface deformation point cloud has been used as the input of our DNN. A portion of the surface

that is typically observable in MIS images, AKA, region of interest, is used in our method, which

complies with the actual limitation of surgeries. Fig. 4.4 pictures the procedure step by step.

This study’s models are trained based on four different scenarios to assess the DNN models’

generalisability and investigate various features’ impact on prediction accuracy. The first scenario’s
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Figure 4.4: Proposed model; simulation pointcloud input to the deep neural network

dataset comprises one liver geometry with a fixed exertion point and identical hyperelasticity. In

the second scenario, geometry and hyperelasticity are identical, but the exertion position and the

force components are variable. The third scenario includes a variable geometry, unlike the previous

one. Hyperelasticity is the only constant term in this dataset and the fourth scenario in which all

mentioned parameters vary. We have included pre-operative information in our model to consider

these characteristics. A state vector comprises liver geometry undeformed state, exertion, centroid

position, and hyperelasticity.

S = S(Cundef , CundefROI , CdefROI , Ix,y,z, P, Ci) (17)

Where Cundef is the undeformed liver model centroid. CundefROI and CdefROI are undeformed and

deformed ROI centroids, respectively. Ix,y,z is the second moment of inertia for a global axis and

can be written as :

-IyxIyy − Iyz
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-Izx − IzyIzz

In the proposed state vector, P is the force exertion position, and Cis are Mooney Rivlin’s

constants of hyperelasticity that vary in different tissues and geometries.

Ixx =
∫
m(y2 + z2)dmIxy =

∫
m(xy)dmIyy =

∫
m(x2 + z2)dmIxz =

∫
m(xz)dmIzz =

∫
m(x2 + y2)dmIyz =

∫
m(yz)dm

(18)

P is the force exertion position that can be the mean value of all nodal coordinates, and finally,

Ci that are Mooney Rivlin constants of hyperelasticity that vary in different tissues and geometries.

The state vector is then concatenated to the latent representation of deformed geometry on the sur-

face of the region of interest. Various surface deformation portions have been studied to culminate

in the highest accuracy.

The downsampled code was added to the state vector and was nonlinearly mapped to the force

components, Fx, Fy, Fz . A multilayer fully connected Perceptron has been used to execute the

nonlinear regression. For each scenario based on the dataset, various hyperparameters have been

used. These parameters are optimized based on a hyperparameter optimization algorithm executed

by the AX API package in Python. We run a total of 200 trials, and each trial evaluates the possible

combinations of hyperparameter values and spits out the scores output. Results will be discussed in

the chapter 5.

This process keeps track of the history of parameters and scores and makes an intelligent guess

of the following better set of parameters. The rectifier activation function (Relu) is used, and the

Adam optimizer and RMSPROP, the most popular optimizer based on the stochastic gradient de-

scent approach, are deployed. Adam can be looked at as a combination of RMSprop and stochastic

gradient descent (SGD) with momentum. It uses estimations of the first and second moments of the

gradient to adapt the learning rate for each neural network weight. Two performance metrics were

used to train and evaluate the accuracy of the DL model, including mean squared error (MSE) and
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mean absolute error (MAE). For each deformation caused by an external force, the MSE is defined

by Eq. (19).

MSE =
1

n

n∑
i=1

(Fi − F̂i)2 (19)

Where Fi is the external force component, MAE is defined as:

MAE =
1

n

n∑
i=1

(Fi − F̂i) (20)

4.3 Data Preprocessing

Our model’s input consists of spatial coordinates of liver surface deformed state with respect to

a global coordinate system. Each node’s displacement was retrieved from the ANSYS simulation

and added to its undeformed components for the same coordinate system.

Xdef = Xundef + ∆X (21)

This input will then be standardized and normalized. Standardization of datasets is a common

requirement for many machine learning estimators. Due to our input order of magnitudes, this

step is irreplaceable since some features vary in orders of magnitude and are larger than others. It

might dominate the objective function and make the estimator unable to learn from other features

correctly as expected. Furthermore, to provide an input independent of the coordinate origin, this

step is essential.

StandardScaler method from the Scikit-learn library pre-processing class in Python was used

to standardizes features by removing the mean and scaling to unit variance. The standard score of

sample X is calculated as:

Z = (X − U)/S (22)

where U is the mean of the training samples or zero if with mean=False and S is the standard

deviation of the training samples or one if with std=False.

Centering and scaling happen independently on each feature by computing the relevant statistics
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on the samples in the training set. Mean and standard deviation are then stored to be used on later

data using the transform function.

4.4 Downsampling and Dimensionality Reduction

A legitimate, adequate data set is indeed required to implement feed-forward deep learning

properly. As indicated in chapter 1, our proposed method comprises of dimensionality reduction

part to reduce the relatively extensive size input of the deformation point cloud. This study investi-

gated different powerful techniques such as principal component analysis (PCA) and auto-encoder

to execute accurate and effective downsampling that retains the most important features of the input

vector for a precise force estimation. Practically speaking, our model uses partial surface nodal

coordinates of deformed geometry that is acquired from the FEA simulation. The input is down-

sampled via mentioned techniques, and the outcome is compared in chapter 5. In the following, the

implementations is discussed in detail.

4.4.1 Principal Component Analysis

Principal component analysis (PCA) is a hierarchical coordinate system based on singular value

decomposition [64]. The PCA is widely used in statistical shape analysis and is chosen as this

study’s surface deformation encoding method. Principal components analysis (PCA) is one of the

central uses of the SVD, providing a data-driven, hierarchical coordinate system to represent high-

dimensional correlated data. This coordinate system involves the correlation matrices. Importantly,

PCA pre-processes the data by mean subtraction and sets the variance to unity before performing

the SVD. The geometry of the resulting coordinate system is determined by principal components

(PCs) that are uncorrelated (orthogonal) to each other but have a maximal correlation with the

measurements. Matrix of X can be decomposed as:

X = UΣV T (23)
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Figure 4.5: will change to equation later

Where U is left singular vector εC(nn), V is right singular vectors εC(mm) that are orthogonal and

is a diagonal matrix εC(mm). For Matrix X with rather massive amount of data, X , the mean matrix

would be defined as:

The covariance matrix can be defined as a product of the mean subtract matrix and its transpose:

C = BT .B (24)

Where:

B = X − X̃ (25)

Principle component matrix T will be defined as:

T = B.W (26)

Where W is the eigenvector of the covariance matrix. Knowing that eigenvalue of covariance matrix

equal singular value square and W is orthogonal, it yields;

X − X̄ =
M∑
m=1

αm.
√
γm.Wm

T (27)

M can be chosen from one to any principal component direction that suffices approximation

accuracy. The feature scaling and normalization of data and implementation of PCA are computed

through Scikit-learn Library in Python, which uses the LAPACK implementation of the full SVD

to provide routines for solving systems of singular value problems. The hierarchical coordinates
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Figure 4.6: Autoencoder neural network architecture

demonstrate data distribution for each direction. Surface deformation encoding can be depicted as

a neural network with linear activation, and each link’s weight is equal to the relevant components

of eigenvectors, scaled by relative root square eigenvalue, wm/
√
λm.

4.4.2 AutoEncoder

Autoencoder is one type of feedforward neural networks that comprises of encoding and decod-

ing sections. The code or downsampled section as shown in fig 4.6 is a representation of important

features that describe the input and output characteristics.

Input is encoded through layers and decoded to the same output afterward. The code is a com-

pact ”summary” or ”compression” of the input, also called the latent-space representation.

Autoencoders are data-specific, meaning they will only be able to compress data similar to what

they have been trained on. It is lossy, which means that the decompressed outputs will be degraded

compared to the original inputs and they are learned automatically from data examples, which is a

valuable property: it means that it is easy to train specialized instances of the algorithm that will

perform well on a specific type of input.

As illustrated above, The input, which in our case is simulated deformation of the liver surface

point cloud, passes through the encoder, which is a fully-connected ANN, to produce the code. The

decoder, which has a similar ANN structure, produces the output only using the code. The goal is to
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get an identical output similar to the input. Note that the decoder architecture is the mirror image of

the encoder. This is not a requirement, but it is typically the case. The only requirement is that the

dimensionality of the input and output needs to be the same. Anything in the middle can be played

with. In AutoEncoder implementation, the Sigmoid activation function is traditionally used in most

cases. In the sigmoid activation function, also called the logistic function, the input is transformed

into a value between 0.0 and 1.0. Inputs larger than 1.0 are transformed to the value 1.0. Similarly,

values much smaller than 0.0 are snapped to 0.0. The shape of the function for all possible inputs

is an S-shape from zero up through 0.5 to 1.0. A general drawback is that they saturate. This

means large values snap to 1.0 and small values snap to zero. Hence it is most sensitive to changes

around the mid-point of their input, such as 0.5 for sigmoid. The limited sensitivity and saturation

of the function happen regardless of whether the summed activation from the node provided as input

contains valuable information or not.

Rectified linear unit (ReLU) and its extension Leaky ReLU were tested. Many advantages have

been detected by using leaky ReLU, such as computational simplicity and representational sparsity,

which means it can output a genuine zero value. The leaky rectifier allows for a slight, non-zero

gradient when the unit is saturated and not active. This extension aims to fix the ”dying ReLU”

problem. Instead of the function being zero when x < 0, a leaky ReLU will have a slight positive

slope. Hence the function computes

f(x) = (x < 0)(αx) + 1(x ≥ 0)(x)f(x) = (x < 0)(αx) + 1(x ≥ 0)(x) (28)

Denoising AutoEncoder

In order to consider uncertainty due to the surgical tool occlusion that impacts the accuracy

of the 3D reconstruction procedure, an intentional noise was imposed on input, surrounding the

exertion point to imitate the presence of the surgical tool and denoised the input via a denoising

autoencoder model as illustrated in Fig. 4.7 Results concerning the presence of tool occlusion were

discussed in the following chapter.
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Figure 4.7: Denoising autoencoder neural network architecture used in the proposed model

4.5 Nonlinear Regression

The code extracted from DAE is then added to the state vector. Through a fully connected

multilayer perceptron, this flattened vector has been mapped to the nodal force magnitudes. DL is

an optimization problem, and a set of hyperparameters needs to be determined for higher accuracy,

i.e., lower error. For this purpose, many techniques are introduced, such as grid search and random

search to optimize the ANN parameters such as the number of hidden neurons and layers, learning

rate, dropout, etc. Adam optimizer was used to train the model. PyTorch API AX package is used

for tunning hyperparameters [65]. For any set of given hyperparameter values, this function returns

the mean and standard deviation of the error based on the ten-fold cross-validation evaluation.

The implementation algorithm based on the proposed model is shown in Algorithm 2. The ROI

deformation point cloud is fed to the DNN model. Features are extracted via autoencoder with

leaky relu activation and batch normalization at each layer, then concatenated by the state vector.

It is mapped to the external force components. Optimizer is implemented Via Keras Library, and
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arguments are defined as below:

• learning rate: A Tensor, floating point value, or a schedule that is a tf.Keras.optimizers.schedules.

LearningRateSchedule, or a callable that takes no arguments and returns the actual value to

use The learning rate. Defaults to 0.001.

• beta 1: A float value or a constant float tensor, or a callable that takes no arguments and

returns the actual value. The exponential decay rate for the first moment is estimated default

to 0.9.

• beta 2: A float value or a constant float tensor, or a callable that takes no arguments and re-

turns the actual value, The exponential decay rate for the second moment estimates. Defaults

to 0.999.

• epsilon: A small constant for numerical stability. This epsilon is ”epsilon hat” in the Kingma

and Ba paper (in the formula just before Section 2.1). Defaults to 1e−7.

• amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper ”On

the Convergence of Adam and beyond”. Defaults to False.

• name: Optional name for the operations created when applying gradients. Defaults to ”Adam”.

• **kwargs: Keyword arguments. Allowed to be one of ”clipnorm” or ”clipvalue”. ”clipnorm”

(float) clips gradients by norm; ”clipvalue” (float) clips gradients by value.

4.6 Hyperparameter Optimization and Cross Validation

The solution hypothesized by deep learning allows computers to learn from experience and

understand the phenomena in terms of a hierarchy of concepts [66], with each concept defined in

terms of its relation to more straightforward concepts. Hyperparameters are the main parameters that

must be defined before the training step, while model parameters will be learned through training

procedures. Deep learning is an optimization problem, and a set of hyperparameters needs to be

determined to result in higher accuracy, i.e., lower loss. For this purpose, many algorithms can be
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Algorithm 2 Force nonlinear mapping from downsampled point cloud deformation concatenated
by state vector.
Require: Roi D εR3, Deformation point cloud for region of interest.

D = number of simulations
DL ε[AE,MLP ], Where AE: AutoEncoder, MLP: Multi-Layer Perceptron
eDL = Number of epochs
bDL = Batch size
LDL = learning rate
θDL = [w, bi, hi]
ODL = [O1, ..., Ol] where ODL,i = [Oi,1, ..., Oi,n]
Code = AE Training (e, b,X, c, l, θ)
for i = 1 : l, Where l: Number of autoencoder hidden layers do

for j = 1 : len(Ol), Where len(Ol): Number of autoencoder hidden neurons in Layer l do
O1,j= Leaky RELU (X ∗W + bj)
Oi,j= Leaky RELU (Oi−1 ∗W + bj)
Code = AE Training (e,b,Roi,l,Optimizer=’ADAM’)

end for
end for
S=[Cundef , ROIundef , ROIdef , Ixyz, pe, CMR]
Code← Code + S
for i = 1 : l, Where l: Number of MLP hidden layers do

for j = 1 : len(Ol), Where len(Ol): Number of MLP hidden neurons in Layer l do
O1,j= RELU (X ∗W + bj)
Oi,j= RELU (Oi−1 ∗W + bj)
Force = MLP Training (eMLP , bMLP ,Code,l,Optimizer=’ADAM’)

end for
end for
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used, such as Grid Search and Random Search, to optimize the ANN parameters such as the number

of hidden neurons and layers, learning rate, dropout, etc. PyTorch API AX package is utilized. AX

( Adaptive Experience) is an open-source package from PyTorch that helps find minima for any

function over the range of defined parameters. It is commonly used in ML and DL to optimize the

hyperparameters that result in a minimum loss. The optimization is applied by running multiple

runs of training, each with a different set of parameters and returning ones with the lowest loss. Ax

finds minimas for both continuous parameters such as learning rate and discrete parameters such as

the size of a hidden layer. For any set of given hyperparameter values, this function returns the mean

and standard deviation of the score (MSE) based on cross-validation or CV score. It uses Bayesian

optimization for the former and bandit optimization for the latter. Bayesian optimization provides

a principled technique based on the Bayes Theorem to direct a search for a global optimization

problem that is efficient and effective. It works by building a probabilistic model of the objective

function, called the surrogate function, that is then searched efficiently with an acquisition function

before candidate samples are chosen to evaluate the actual objective function. Even though the

package is from Pytorch, it will work for any function as long as it returns a single value that needs

to be minimized. these parameters are:

• Number of hidden Layers

• Number of neurons per layer

• Learning rate

• Activation function

• Optimizer settings

48



Chapter 5

Results and Evaluation

5.1 Deformation of Soft tissue

Our model utilizes the 3D depth map, and the deformation is mapped to force magnitudes

considering preoperative state parameters as explained thoroughly. To compare the accuracy of

devised model, knowing the fact that almost all of the recently proposed models in the literature

are trained based on labeled data that are obtained experimentally ( ex-vivo setting), this model is

trained based on a simulation that imitates the experimental setting of the study in [45].

5.1.1 Surgical tools’ occlusion

Apart from the deviation that may occur due to changes in camera and lighting setting and their

impact on the stereoscopic image and the prediction, respectively, one significant noise can be the

presence of the tool itself, which in our model will cause a perturbation in 3D reconstruction. Hence

as discussed previously, the closest nodes to the exertion position were eliminated from our machine

input, and results have been observed and compared with the ground truth. Fig. 5.1 demonstrates the

predicted force applied on an artificial cubic phantom with and without the presence of tool noise.

5.1.2 Region of Interest Impact

To extend the invivo compatibility, our model utilizes the surface point cloud of the patient-

specific liver model as the machine input, which eventually will be mapped to force components
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Figure 5.1: Force prediction for the experimental setting obtained from [67] with surgical tool
perturbation

relevant to the deformation. It is worth mentioning that not the whole surface of the organ would be

assessed, and it can be shown that it is indeed unnecessary to deploy the whole surface. A portion

of the exertion position’s surface would suffice a reasonably accurate prediction. Fig. 5.2 shows the

model’s accuracy for various portions of the region of interest (ROI). It is discernible that eighteen

percent of surface area in the exertion position neighborhood would bring sufficient accuracy, and

adding more surface will not increase the accuracy remarkably.

To assess our proposed model’s robustness, accuracy, and generalisability, four scenarios based

on synthetic data were devised, where our model is trained, considering the variability of exertion

point, hyperelastic properties, and liver geometries.

5.2 Scenario I : Fixed Exertion Point, Identical Geometry, Identical

Hyperelasticity

A liver 3D model has been reconstructed from CT images and studied with a single exertion

point and variable force magnitudes and direction. Based on Bayesian optimization, hyperparame-

ters are tuned using PyTorch’s AX package, and a total number of 200 trials has been executed as
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Figure 5.2: Model accuracy as a function of ROI percentage

shown in table 5.1.

Ten fold cross validation score has been monitored for each trial as shown in Fig. 5.3. Table 5.2

specify the results with least CV score, i.e. highest accuracy.

Figure 5.3: Hyperparameter tunning with AX package powered by PYTORCH for scenario I

Fig. 5.4 shows the evaluation and training error through training epochs, and it confirms the
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Table 5.1: Hyperparameters optimization results with highest CV score

CV score LR DO HN HL BS

0.0153 0.0013 0.0133 2 128 32
0.0371 0.0002 0.0200 2 76 16
0.0416 0.0135 0.0247 3 291 64
0.0379 0.0003 0.0105 3 283 256
0.0270 0.0013 0.0133 2 271 64
0.0346 0.0132 0.0207 2 64 64
0.0335 0.0001 0.0187 2 290 16
0.0198 0.0027 0.0032 2 70 16
0.0314 0.0158 0.0140 3 20 64
0.0228 0.0187 0.0142 3 152 32

LR = Learning rate
do = drop out

HL = Hidden Layer
HN = Hidden Neurons

BS= Batch size

Table 5.2: Hyperparameter with lowest CV score

Learning rate 0.0014602
Dropout rate 0.0152328

Hidden Layers 4
Neurons per layer 175

Batch size 64
Keras CV 0.067

convergence of training, which is not over or under fitted. Fig. 5.5 shows the predicted force com-

ponents compared to the ground truth for scenario I and 5.6 shows the deviation of force prediction

from target value.

5.3 Scenario II : Variable Exertion Point, Identical Geometry, Identi-

cal Hyperelasticity

Variable force exertion point on a liver 3D model has been studied, and numerous FEA sim-

ulations have been retrieved for the model’s training. Table 5.3 shows the hyperparameter tuning

and Fig. 5.7 pictures the CV score for 200 trial. Table 5.4 shows the optimal combination. Fig. 5.8

shows the training SGD optimization over the number of epochs, i.e., training history.
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Figure 5.4: Training and evaluation error history over numbers of epochs for scenario I

Fig. 5.9 shows the test dataset prediction versus the ground truth of force magnitude, and for clar-

ification, in Fig. 5.10 deviation from ground truth has been demonstrated. The MSE metrics for

different liver geometries are plotted in Fig. 5.11.

As discussed in Chapter 4, principle component analysis and autoencoder were used for down-

sampling the input data. Fig. 5.12 shows the accuracy of the MSE error for various models based

on PCA and AE.

To assess our proposed model’s robustness, accuracy, and generalisability, four scenarios were

considered based on synthetic data, where our model is trained, considering the variability of exer-

tion point, hyperelastic properties, and liver geometries.

5.4 Scenario III : Variable Exertion Point, Identical Geometry, Vari-

able Hyperelasticity

The following results of the model trained for a liver 3D model with various exertion points

and variable hyperelasticity are shown. Table 5.5 shows the samples of Bayesian optimization and
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Figure 5.5: Test data force components prediction for scenario I

tunning of hyperparameters, where the best results are shown in table 5.6. Fig. 5.13 shows the Cv

score based on 10 fold cross-validation of mean squared error function.

Fig. 5.14 confirms the convergence of training and evaluation error as the model is not over or

underfitted. Same as previous section force prediction for 500 test set are depicted in Fig. 5.15

and for a better observation deviation of test dataset prediction versus ground truth are shown in

Fig. 5.16.

5.5 Scenario IV : Variable Exertion point, Variable Geometry, Vari-

able Hyperelasticity

Finally, A model that is trained on the dataset with various liver model and variable constitutive

model and exertion coordinates. Tables 5.7 and 5.8 show the hyperparamter tunning and relative
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Figure 5.6: Randomly selected frame of force prediction vs. ground truth for scenario I

optimums. Fig. 5.17 shows the iteration versus CV score. Fig. 5.18 shows the training and evalua-

tion error function convergence and force prediction over test dataset and randomly selected frames

are shown in figures 5.19 and 5.20.

It is discernible that force prediction is independent of the direction of the force as shown in

Figs. 5.5,5.9,5.15 and 5.19. Variational parameters diminish the accuracy as the model generalizes

various conditions and features. However, the evaluation metrics are in an acceptable range. The

force prediction’s mean absolute error for training and test datasets is shown in Newton as well as

the accuracy of the prediction with and without the presence of the proposed novel state vector in

Fig. 5.21. The improvement is remarkable when the state vector is included, as illustrated in Table

5.9.

5.6 Validation: Encountering Unseen Liver Geometry and Hyperelas-

ticity

To validate and assess the model’s generalisability and accuracy, this study has tested the trained

model on inputs obtained from an unseen liver geometry with unseen hyperelastic parameters.
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Table 5.3: Hyperparameters tunning results of PYTORCH’s AX optimization for second scenario

CV score Trial LR DO HL HN Batchsize

0 0.133008 0 0.000743 0.22896 1 290 64
23 0.189100 1 0.000146 0.0855886 2 267 256
115 0.071752 2 0.005245 0.26859 4 246 256
127 0.077281 3 0.008370 0.026772 2 118 64
139 0.084166 4 0.000771 0.030622 4 66 64
... ... ... ... ... ... ... ...

107 0.211679 195 0.008312 0.430908 1 145 8
108 0.091804 196 0.027259 0.022274 4 175 16
109 0.318355 197 0.041932 0.022399 4 150 8
110 0.090140 198 0.001035 0.026025 2 228 128
111 0.076729 199 0.000683 0.040717 3 214 8

LR = Learning rate
do = drop out

HL = Hidden Layer
HN = Hidden Neurons

BS= Batch size

Table 5.4: Hyperparameter with lowest CV score

Learning rate 0.0014602
Dropout rate 0.0152328

Hidden Layers 4
Neurons per layer 175

Batch size 64
Keras CV 0.067

Fig. 5.22 signals the predicted force compared to the unseen setting ground truth. The mechani-

cal accuracy is over eighty-one percent.
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Figure 5.7: Hyperparameter tunning with AX Package powered by PYTORCH for scenario II

Figure 5.8: Training and evaluation error history over numbers of epochs for scenario II
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Figure 5.9: Test data force components prediction for scenario II

Figure 5.10: Randomly selected frame of force prediction vs. ground truth for a scenario II
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Figure 5.11: MSE for the model of scenario II trained on different liver geometries

Figure 5.12: Principle component analysis vs autoencoder downsampling Impact in accuracy
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Table 5.5: Hyperparameters optimization results with highest Cross Validation score

CV score Trial LR DO HL HN Batchsize

0 0.076371 0 0.000188 0.035400 3 89 128
23 0.056859 1 0.001059 0.141951 3 241 16
115 0.055120 2 0.002885 0.025074 1 31 64
127 0.051696 3 0.047055 0.174349 1 295 32
139 0.095365 4 0.000235 0.010089 2 21 16
... ... ... ... ... ... ... ...

107 0.065477 195 0.002081 0.124934 4 45 8
108 0.333177 196 0.035932 0.069025 4 214 256
109 0.272884 197 0.002720 0.211302 4 37 256
110 0.107698 198 0.005425 0.143373 2 53 256
111 0.048810 199 0.003455 0.131242 1 207 128

LR = Learning rate
do = drop out

HL = Hidden Layer
HN = Hidden Neurons

BS= Batch size

Figure 5.13: Hyperparameter tunning with AX package powered by PYTORCH for scenario III

Table 5.6: Hyperparameter with lowest CV score of scenario III

Learning rate 0.00023584
Dropout rate 0.013347

Hidden Layers 4
Neurons per layer 273

Batch size 16
Keras CV 0.038
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Figure 5.14: Training and evaluation error history over numbers of epochs for scenario III

Figure 5.15: Test data force components prediction for scenario III
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Figure 5.16: Randomly selected frame of force prediction vs. ground truth for a scenario III

Table 5.7: Hyperparameters optimization results with highest Cross Validation score

CV score Trial LR DO HL HN Batchsize

0 0.057502 0 0.001466 0.088588 3 78 128
23 0.087833 1 0.001231 0.220350 2 195 64
115 0.920242 2 0.281379 0.431975 4 91 128
127 0.104570 3 0.008620 0.323838 3 277 64
139 2.812525 4 0.211940 0.261156 2 72 8
... ... ... ... ... ... ... ...

107 0.068487 195 0.000282 0.045984 1 186 64
108 0.338773 196 0.159757 0.318697 2 161 8
109 0.042253 197 0.000753 0.029664 3 297 256
110 0.333722 198 0.052195 0.072273 4 239 256
111 0.042190 199 0.000102 0.014943 4 289 128

LR = Learning rate
do = drop out

HL = Hidden Layer
HN = Hidden Neurons

BS= Batch size
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Figure 5.17: Hyperparameter tunning with AX Package powered by PYTORCH for scenario IV

Table 5.8: Hyperparameter with lowest CV score of scenario IV

Learning rate 0.024722
Dropout rate 0.020683

Hidden Layers 3
Neurons per layer 240

Batch size 256
Keras CV 0.0694

Figure 5.18: Training and evaluation error history over numbers of epochs for scenario IV
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Figure 5.19: Test data force components prediction for scenario IV

Figure 5.20: Randomly selected frame of force prediction vs. ground truth for a scenario IV
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Figure 5.21: Absolute error of force prediction for different scenarios

Table 5.9: Prediction accuracy for different scenarios

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4
Deformation 92.12 78.14 69.11 65.66

Deformation + State 95.76 91.22 88.53 84.81

Figure 5.22: Absolute error of force prediction for different scenarios
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Chapter 6

Conclusion

This thesis presented a study to predict the force exerted on the liver soft tissue based on visual

information of surface deformation along with preoperative information of the organ. Unlike most

previous research where data are collected and labeled experimentally, the organ deformation was

simulated, considering actual boundary conditions and the biomechanical characteristics to provide

the hyperelastic deformation synthetic dataset. The patient-specific liver digital twins have been

reconstructed from CT images, and various hyperelastic models were assessed for various exertion

positions concerning liver geometrical factors. Twenty-four thousand simulations have been exe-

cuted and automatized to provide a sufficient amount of labeled data for the training purpose of a

deep neural network. Considering the scale of our simulation number, retrieving and restoring the

simulation is highly time-consuming and not manually practical. Therefore, ANSYS parametric

design language (APDL), a powerful scripting language, has been used to customize simulation

features to automatize the process of simulation, retrieving, and restoring the results, which reduces

the time consumed remarkably and enables us to create as much data as needed. Simulations were

used to train the machine to predict the force that caused the specific deformation of the geometry.

Our research shows that a limited region of surface observation neighboring the position of exer-

tion, named region of interest (ROI), is adequate for our prediction. Knowing the prior information

on the liver model, it was concluded that approximately less than 20 percent of the total surface

would produce a good result. Hence, all our prediction has been performed based on an 18 percent

ROI. Our model has been trained based on the point cloud of the surface deformation of ROI. In

66



practice, this point cloud can be acquired from the patient’s in-vivo stereoscopic image of MIS with

3D map reconstruction techniques that have been widely addressed in the literature. Thanks to re-

cent improvements in image processing and computer vision techniques mentioned, 3D geometry

can be acquired in real-time.

One of the main drawbacks of image-based convolutional networks is the impact of stereo cam-

era and lighting position in the image that may cause perturbation and error in force prediction. By

using the 3D point cloud as the input in our model, this issue would be prevented significantly.

As mentioned previously, proposed models mainly deployed labeled data from exvivo settings

since measuring forces in an invivo setting and labeling the data is not technically feasible. Hence

the acquired data in experiments are generally limited due to the simplified models in terms of ge-

ometry, biomechanical parameters, and the actual behavior of the tissue in operating conditions. Our

model generalizes these features since it is viable to change mentioned parameters in the simulation

easily. In contrast, in experiments, these changes are relatively costly. In the context of machine

learning, it is almost impossible to diversify the experimental data with respect to these features

to give the machine the capability to distinguish the differences that these features may impose

on the final results. In addition, Unlike the experiment limitation, our model considers the organ

boundary interaction with other organs. In other words, experiments are mainly implemented on a

well-defined geometry of an artificial tissue or a piece of a cadaver. The organ biomechanics and

the impact of other organs’ contact are not considered; therefore, the in-vivo applicability of these

models is pretty questionable. Additionally, a denoising model was presented, named denoising

autoencoder, to diminish the uncertainty caused due to tool’s occlusion in the MIS region.

Not only does our model consider various patient-specific liver models, but also various exertion

positions can be assessed. Results have been illustrated in chapter 5 for four scenarios in each, and

the machine was trained based on the provided dataset and state vector of preoperative information.

Since the presence of the surgical tool in the image would deteriorate the 3D reconstruction and

act as noise, this model has addressed that issue by eliminating a portion of nodes surrounding the

exertion point to consider this perturbation as if we do not have access to this region. Although

this assumption reduces the accuracy, it is still higher than the previous method, and it is worth

mentioning that this result can be obtained for an invivo setting.
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6.1 Future Works

This study can be continued in different aspects. From enhancing the patient-based liver models

datasets to include more information about various geometries, especially with the presence of

tumors. Since genuinely biomechanical specifications of tumors vary from the liver tissue, this

matter would impact the overall behavior of the organ encountering an external force.

Furthermore, Through transfer learning, the trained model on the FEA dataset can be linked

to actual surgery data to improve the compatibility of the proposed model. Undoubtedly the same

approach can be deployed for any other organ with a reliable and realistic dataset derived from an

accurate simulation.
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[4] T. Haidegger, B. Benyó, L. Kovács, and Z. Benyó, “Force sensing and force control for surgical

robots,” IFAC Proceedings Volumes, vol. 42, no. 12, pp. 401–406, 2009.

[5] T. Ritto and F. Rochinha, “Digital twin, physics-based model, and machine learning applied

to damage detection in structures,” Mechanical Systems and Signal Processing, vol. 155, p.

107614, 2021.

[6] P. Seventekidis and D. Giagopoulos, “A combined finite element and hierarchical deep learn-

ing approach for structural health monitoring: Test on a pin-joint composite truss structure,”

Mechanical Systems and Signal Processing, vol. 157, p. 107735, 2021.

[7] P. Seventekidis, D. Giagopoulos, A. Arailopoulos, and O. Markogiannaki, “Structural health

monitoring using deep learning with optimal finite element model generated data,” Mechanical

Systems and Signal Processing, vol. 145, p. 106972, 2020.

[8] A. Fernandez-Navamuel, D. Zamora-Sánchez, Á. J. Omella, D. Pardo, D. Garcia-Sanchez, and
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[23] F. Piqué, M. N. Boushaki, M. Brancadoro, E. De Momi, and A. Menciassi, “Dynamic model-

ing of the da vinci research kit arm for the estimation of interaction wrench,” in 2019 Interna-

tional Symposium on Medical Robotics (ISMR). IEEE, 2019, pp. 1–7.

[24] M. Wang and Y. Zeng, “Asking the right questions to elicit product requirements,”

International Journal of Computer Integrated Manufacturing, vol. 22, no. 4, pp. 283–298,

Apr. 2009. [Online]. Available: http://dx.doi.org/10.1080/09511920802232902

[25] G. A. Fontanelli, F. Ficuciello, L. Villani, and B. Siciliano, “Modelling and identification of the

da vinci research kit robotic arms,” in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2017, pp. 1464–1469.

71

http://dx.doi.org/10.1080/09511920802232902


[26] A. Gao, N. Liu, M. Shen, M. EMK Abdelaziz, B. Temelkuran, and G.-Z. Yang, “Laser-profiled

continuum robot with integrated tension sensing for simultaneous shape and tip force estima-

tion,” Soft Robotics, vol. 7, no. 4, pp. 421–443, 2020.

[27] Y. Zhou, B. J. Nelson, and B. Vikramaditya, “Integrating optical force sensing with visual

servoing for microassembly,” Journal of Intelligent and Robotic Systems, vol. 28, no. 3, pp.

259–276, 2000.

[28] L. Soler, S. Nicolau, P. Pessaux, D. Mutter, and J. Marescaux, “Real-time 3d image reconstruc-

tion guidance in liver resection surgery,” Hepatobiliary surgery and nutrition, vol. 3, no. 2,

p. 73, 2014.

[29] M. T. Thai, P. T. Phan, T. T. Hoang, S. Wong, N. H. Lovell, and T. N. Do, “Advanced intelligent

systems for surgical robotics,” Advanced Intelligent Systems, vol. 2, no. 8, p. 1900138, 2020.

[30] C. W. Kennedy and J. P. Desai, “A vision-based approach for estimating contact forces: Appli-

cations to robot-assisted surgery,” Applied Bionics and Biomechanics, vol. 2, no. 1, pp. 53–60,

2005.

[31] W. Kim, S. Seung, H. Choi, S. Park, S. Y. Ko, and J.-O. Park, “Image-based force estimation of

deformable tissue using depth map for single-port surgical robot,” in 2012 12th International

Conference on Control, Automation and Systems. IEEE, 2012, pp. 1716–1719.
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