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ABSTRACT

Horus: A Security Assessment Framework for Android Crypto Wallets

Md Shahab Uddin

Crypto wallet apps help cryptocurrency users to create, store, and manage keys, sign

transactions, and keep track of funds. However, if these apps are not adequately protected,

attackers can exploit security vulnerabilities in them to steal the private keys and gain own-

ership of the users’ wallets. We develop a semi-automated security assessment framework,

Horus1, specifically designed to analyze crypto wallet Android apps. We perform semi-

automated analysis on 311 crypto wallet apps and manually inspect the top 18 most popular

wallet apps from the Google Play Store. Our analysis includes capturing runtime behavior,

reverse-engineering the apps, and checking for security standards crucial for wallet apps

(e.g., random number generation and private key confidentiality). We reveal several severe

vulnerabilities, including, for example, storing plaintext key revealing information in 111

apps which can lead to losing wallet ownership, and storing past transaction information in

11 apps which may lead to user deanonymization.

1Horus is one of the ancient Egyptian deities. The Eye of Horus is an ancient Egyptian symbol of
protection.
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Chapter 1

Introduction

1.1 Overview

Bitcoin is the world’s most popular cryptocurrency, its value has recently surpassed

US$60,000 [64] and is getting wider adoption in businesses. Other cryptocurrencies like

Ethereum, and Litecoin have established their footprints and going strong among the cryp-

tocurrency users. The combined market cap of more than 6000 cryptocurrencies has reached

a new high of US$1.24 trillion in 2021 [81]. Unfortunately, this massive growth of cryp-

tocurrencies is also attracting malicious actors to find and exploit vulnerabilities in cryp-

tocurrency related technologies. The cryptocurrency community has witnessed no less than

34 attacks, breaches, and scams in 2020 alone [34, 65], and attackers have stolen approxi-

mately US$4 billion [63] worth of assets from users.

Crypto wallets, being an ingrained part of the cryptocurrency ecosystem, also encounter

attacks ranging from deanonymization to password cracking [35, 69, 74]. Due to their
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importance, past work analyzed several crypto wallet apps. For example, He et al. [51]

assessed critical attack surfaces in two wallet apps and demonstrated proof-of-concept at-

tacks. Haigh et al. [50] analyzed the forensic artifacts of seven wallet apps, and designed

a Trojan attack by repackaging a wallet app to steal user credentials; they chose to ana-

lyze non-HD (Hierarchical Deterministic [89]) wallets, although HD-wallets are gaining

adoption in recent years and are preferred over non-HD wallets in terms of security and

portability.

To perform a comprehensive and scalable analysis of current and popular wallet apps

(the number of which is growing, currently in the range of hundreds), we developed a

semi-automated test framework, Horus. Our framework combines both static and dynamic

analysis of crypto wallet apps and can assess whether industry best practices are being fol-

lowed in the app implementation. Horus has three major components: (1) scraper module,

which can collect a large data set of specific categories of apps from the Google Play Store;

(2) static analysis module, which looks for API pattern to determine if proper security

standards are followed in the app implementation; and (3) dynamic analysis module, which

searches for key revealing information stored in the app’s artifacts (e.g., shared preference

files, database files, and log files) on the device.

Using these components, we collect 311 wallet apps and analyze them for security

risks. We conduct a manual inspection of the top 18 crypto wallet apps (part of 311 apps)

in the Google Play Store to understand the apps’ security practices and evaluate the security

risk associated with them. We use popular open-source vulnerability analysis tools, such
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as Androbugs2 and Qark.3 Syntax-based static analysis tools often fall short to determine

vulnerabilities accurately [72]. We have noticed two issues with this approach, (1) a sig-

nificant number of false-positive vulnerabilities and (2) the discovered vulnerabilities are

generic and do not represent issues specifically applicable to wallet apps. To complement

static analysis tools, we also conduct a dynamic analysis to better understand the apps’

workflow, and explore a broader set of vulnerabilities, including plaintext key storage, and

exported components. In the final step, we inspect the decompiled apps’ code to verify our

findings and understand the app’s operational mechanism in greater detail. The main obser-

vation that follows from our analysis is that critical security standards applicable for wallet

apps are missing in the app’s binary, which indicates those standards are not implemented

or have not been considered in the apps’ development process. Additionally, the apps’ key

revealing information is handled insecurely (e.g., saved as plaintext or encrypted using a

poorly chosen encryption configuration). Our framework can accurately identify critical

issues in wallet apps, and our automated analysis results are consistent with the manual

inspection results.

Several design components of our semi-automated framework take into consideration

the implicit and varying nature of the wallet apps. Firstly, a wallet-import step varies sig-

nificantly from one app to another due to the heterogeneous user interface, and the effort

requires to make it a generalized automated step is non-trivial. To overcome this prob-

lem, we develop a semi-automated framework with a reduced-effort manual step (see Sec-

tion 3.3). Secondly, most apps are still non-HD wallets, because app development is slower

2https://github.com/AndroBugs/AndroBugs_Framework
3https://github.com/linkedin/qark/
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in comparison to the latest recommendation of the community, and do not support wallet

portability features. We developed a separate workflow to analyze non-HD wallet apps (see

Section 3.3.2). Lastly, some wallet apps are heavily obfuscated, which hinders our reverse

engineering phase. To circumvent this problem, we focus on artifact analysis instead of

the obfuscated code. This technique also enables us to be compatible with mobile apps de-

veloped using hybrid and cross-platform frameworks (e.g., PhoneGap, Flutter) along with

native apps developed for Android and iOS. In this work, we keep our focus limited to

analyzing Android apps.

1.2 Contributions

Our contributions can be summarized as follows:

1. We develop a semi-automated framework, Horus, to statically analyze wallet apps

(fully automated), and perform dynamic analysis (with limited manual interactions).

2. We conduct an automated analysis of 311 crypto wallet apps on the Android plat-

form. Additionally, we inspect the top 18 most popular crypto wallet apps, with

combined downloads of 47M+ and in total 85M+ of 311 apps, in Google Play Store

to understand the apps’ security practices and evaluate the security risk associated

with them.

3. We reveal that 111/311 of the apps store key revealing information in plaintext and 18

HD wallet apps store the encryption key without additional protections, i.e., without

Android keystore or Android Hardware Security Module (HSM). Moreover, 11/311

4



apps store transaction information that can lead to deanonymization. Only 3/311

apps use HSM the secure storage solution to protect key revealing information.

4. We find that the Android user dictionary can be leveraged to derive the mnemonic

phrase used to generate the private key. Only 20/311 apps implement custom key-

boards to safeguard against this attack.

Most of the work presented in this thesis has been published in [83].

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we first present an overview of

related works on desktop, web, hardware, and Android wallet apps, applicable attacks on

wallet apps, and finally analysis frameworks for Android apps. In Chapter 3, we introduce

our framework Horus and present the techniques we use to collect data sets, conduct static

and dynamic analysis. In Chapter 4, we present experimental results of our analysis and

discuss the impact of our findings. In Chapter 5, we discuss capabilities and limitations

of our framework Horus and include best practices and recommendations for wallet app

developers and users respectively. Finally, in Chapter 6, we present our concluding remarks

and future work.

5



Chapter 2

Background

In this section, we provide brief descriptions of some wallet-related terminologies and our

threat model.

Crypto wallet apps generally generate new addresses, store private keys securely, and

help automate transactions. Some wallets can handle only one type of cryptocurrency (e.g.,

Bitcoin), and others can handle multiple types of cryptocurrencies. Furthermore, there are

two types of wallets: Hierarchical Deterministic (HD) wallet [89], and non-HD wallet.

HD wallets organize user accounts by one or more seed values and utilize open-source

community-driven protocols to perform each operation, such as generating seeds and cre-

ating private keys. A HD wallet can deterministically generate all private-public key pairs

used by the user, which ensures portability between multiple wallet implementations. Ad-

ditionally, a HD wallet can generate practically unlimited number of key pairs for different

transactions which ensures user’s privacy and security by diversifying user’s funds over

multiple addresses. On the other hand, a non-HD wallet randomly generates keys (i.e., no
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connection or hierarchy between the keys); such unrelated keys are also known as Just-a-

Bunch-of-Keys (JBOK).

2.1 Bitcoin Improvement Proposal (BIP)

Several open-source community-driven protocols known as BIP [28] facilitate various crypto

wallet functions. Each proposal is responsible for a specific goal, and the Bitcoin commu-

nity can propose, rectify, establish, approve or reject proposals by consensus. As of March

13, 2021, there are 140 BIPs [28], but 3 BIPs are primarily relevant for HD-wallet apps.

(1) BIP 32 which defines a tree structure to populate public-private key pairs from a seed.

The seed allows the wallet to be interchangeable with different implementations/devices,

and implies the wallet does not need to be backed up often; just saving the seed is enough

to recreate the tree structure of keys [89]. (2) BIP 39 which defines both generating a

mnemonic phrase and how to create a seed from the phrase, as compared to a hexadecimal

random seed, a phrase is easier to remember and store for users. This proposal also defines

a list of 2048 common English words to be selected for mnemonic phrases. The chosen

words for a mnemonic phrase and their order are needed to regenerate the same seed after-

ward. The word list is also available in multiple languages [67]. (3) BIP 44 which defines a

syntax to enable a multi-account hierarchy of keys based on BIP 32. The syntax expresses

purpose, coin type, account, address indices to generate proper keys [66]. The proposal

defines how to generate any number of cryptocurrency-specific child keys. Figure 1 shows

the life-cycle of a typical BIP.
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Figure 1: Life-cycle of a typical BIP.

2.2 Bitcoin Address Format

There are currently three Bitcoin address formats4 available, each of which consists of

between 26 to 35 alphanumeric characters. Generally, a wallet may not support all address

formats.

Pay-to-Public-Key-Hash (P2PKH): Introduced in 2010, it is the hash of public key and is

now known as the legacy address. The format supports standard transactions in Bitcoin,

with one public key address transacting a value to another address. The vast majority

of transactions on the Bitcoin blockchain are P2PKH. The address format starts with 1.

However, it is not compatible with Segregated Witness (SegWit), but fortunately, Bitcoin

can be sent from P2PKH to SegWit address with higher fees [32].

4https://allprivatekeys.com/bitcoin-address-format
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Figure 2: Workflow of a P2PKH transaction type.

Pay-to-Script-Hash (P2SH): The address begins with 3 and allows the transaction to be

sent to a script hash which has a set of requirements that must be fulfilled before the value

can be transacted. For example, the script could require multiple keys such as in a multi-

signature transaction or need a password or any requirements one can build into the script.

It offers more functionality than a legacy address, and it’s most commonly employed for a

multi-signature address where multiple digital signatures have to occur for the transaction

to be authorized.

Figure 3: Workflow of a P2SH transaction type.

Bech32: It uses a 32-character set comprising the lower case alphabet and digits 2-7. It

is more compact than other addresses to store in QR code. This address begins with bc1

and includes a 6-character checksum. The address is widely supported in terms of wallets,

but not widely used. Less than 1% of Bitcoin is currently stored in this address format,

but it is improving over time. More people are turning to Bech32 because there are lower

transaction fees involved.
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2.3 HD Wallet Generation Steps

A mnemonic phrase is generated using the standardized process defined in BIP 39. The

most common phrase length is 12 and 24 words. In Android wallets, the 12-word length

phrase is prevalent. First, a random sequence of 12/24 words is selected, providing 128-256

bits of entropy [24], see Figure 4. Then, the Password-Based Key Derivation Function 2

(PBKDF2) key derivation function is used to derive a 512-bit seed from the word sequence,

see Figure 5. This seed can be used to deterministically generate an HD wallet [89]. An

HD wallet root consists of a pair of master private key and a master chain code. Next, a

master public key is generated from the master private key, see Figure 6. Both the master

private key and the master chain code are used to generate child keys using BIP 44 [66].

Note that there is no way to verify the words and their order in a phrase. If the user

adds/removes/scrambles the phrase’s words, a new seed is generated, leading to some other

wallet keys. The phrase, seed, master private/public keys, and master chain code are all key

revealing information and should be protected with equal importance.

Figure 4: Generating entropy to mnemonic code steps.
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Figure 5: Mnemonic code to seed generation steps.

Figure 6: Seed to master private key and master chain code generation steps.

2.4 Wallet Import Format (WIF)

WIF formatted private keys improve the ease of typing and copy-pasting (include an error-

checking mechanism to detect mistakes during typing or copy-pasting). WIF uses Base58
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encoding (similar to Base64) and avoids ambiguous characters like 0, O, and I, l. WIF

formatted keys are shorter than the real private keys. For example, Bitcoin’s private key

length is 64 bytes, and WIF formatted key length is 51 bytes. Base58 address also includes

4 bytes of SHA256 error-check code for automatically detecting copying errors. The error-

check also reduces attacks where an address, that closely resembles an actual address, can

be created by an attacker.

2.5 Wallet Transactions

A wallet transaction consists of two addresses and transferring coins between them. A

transaction requires the receiver’s public key and the sender’s private key [29]. A sender

can transfer any number of coins that the sender owns to the receiver’s public key (or

the receiver’s address). The sender digitally signs the transaction with her private key to

prove the transaction has been initiated and conducted by herself. Transactions happen in

a network where both the sender and the receiver participate, known as the mainnet. There

is also a parallel network named testnet [11], used for testing purposes, but testnet coins do

not have any real value. Mainnet and testnet are two separate networks, and entities cannot

transfer coins between them.

12



Figure 7: Bitcoin wallet transaction.

2.6 Threat Model

We assume the attacker can install a malicious app on the victim’s device with the following

capabilities (or a subset of those). The app can have virtual keyboard permission, or it is

a keyboard app itself, which is set default by the user. This capability is required for user

dictionary attack. The malicious app can take a screenshot of the device. We assume

the device is not rooted by the user; however, a malicious app can successfully root the

device. Root capability is required to capture key revealing information and to exploit

cryptographic vulnerabilities. Attackers can have physical access to the unlocked device

for a few minutes to exploit the allow backup attack. Note that not all these capabilities are

required for all of our attacks.
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2.7 Related Work

2.7.1 Desktop/Web Wallets Analysis

Several wallet app analyses have been carried out in recent years, which expose vulnerabil-

ities and propose new defenses. Volety et al. [87] performed offline brute force dictionary

attacks on the mnemonic phrase to gain access to two wallet apps. Guri et al. [48] infected

a cold wallet with malicious code during the installation phase and get hold of the private

keys. Further, Koerhuis et al. [56] conducted forensic analysis on two popular cryptocur-

rencies, Monero and Verge, in the desktop environment. They analyze the host machine’s

volatile memory, network traffic, hard disks and find critical artifacts like seed and plain-

text passphrase. A similar study was carried out on Bitcoin by Zollner et al. [93]. Kaushal

et al. [54] identified a variety of security threats to Bitcoin wallets including transaction

suppression, theft, hijacking, etc. They recommend using only the Bitcoin core as it is

safe against all feasible attacks. Gentilal et al. [43] designed a platform-specific optimized

system to add flexibility and reliability to a Bitcoin wallet that is deployed in a non-trusted

environment. They utilize an ARM extension named TrustZone to make the system re-

silient to side-channel and dictionary attacks.

2.7.2 Hardware Wallets Analysis

Hardware wallets for cryptocurrency are another category of wallets that highlights the

functionality to prevent malware from hijacking digital wallets because the transaction
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signing takes place on the hardware wallet and the private key never leaves the secure hard-

ware wallet environment. However, studies show a substantial number of successful Man

In The Middle (MITM) attacks on the hardware wallets [14]. Different producers make

hardware wallets compatible with different interfaces, therefore the security depends on

wallets integration, rather than on hardware wallet itself [80]. On the other hand, Pedro et

al. [77] demonstrated two side-channel attacks on open source hardware wallets by extract-

ing user PIN used for verification function and extracting the private key from the Elliptic

Curve Digital Signature Algorithm (EC-DSA) scalar multiplication. Marcedone et al. [61]

showed attacks on hardware wallets mounted by malicious hardware vendors and propose

a Two-Factor Signatures (2FS) scheme that protects hardware wallets from such attacks.

Thomas et al. [82] conducted memory analysis of cryptocurrency hardware wallet clients

and develops a tool named FOREnSics of HArDware CryptOcurrency Wallets (FORE-

SHADOW) to analyze memory dumps in Windows systems. Arapinis et al. [25] identified

the properties and security parameters of Bitcoin wallets and defines a framework named

Universal Composition (UC). The framework allows to capture wallet components’ details

and their interactions and they also define an attack under protocol deviation. Gkaniatsou

et al. [45] demonstrated low-level protocol attacks on popular Ledger wallet communica-

tion and blamed the lack of well-defined security proprieties that Bitcoin wallets should

conform with.
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2.7.3 Android Wallets Analysis

Several studies also look into the security of Android wallet apps. He et al. [51] demon-

strated two attack scenarios by capturing sensitive information from a device display using

accessibility permissions and obtaining user input via USB debugging. This analysis is con-

ducted on only two wallet apps (not among the top 50 wallets in the Google Play Store).

Hu et al. [52] devised 3 proof-of-concept attacks targeting deanonymization, spamming,

and violating Peer-to-Peer (P2P) protocol requirements of Bitcoin. Capturing clipboard

values [57] also presents a significant risk to crypto wallet apps, e.g., when importing non-

HD wallet keys from another app/device, or when copying mnemonic phrases. Haigh et

al. [50] analyzed the forensic artifacts of seven wallet apps and develop a Trojan Proof of

Concept (POC) by repackaging a wallet app that can steal the users’ passwords. Gangwal

et al. [12] used machine learning to identify a wallet app by tracing a user’s network ac-

tivity. Voskobojnikov et al. [88] analyzed 6,859 Play Store app reviews, related to User

Experience (UX), of the top five mobile crypto wallet apps. The analysis suggests that both

new and experienced users face significant struggles with the UX that might lead to dan-

gerous errors or irreversible monetary losses. They also reveal misconceptions of the user

such as some users believed that the transactions are free, reversible, and could be canceled

anytime.

2.7.4 Android App Attacks Applicable to Wallets

Several studies identified and analyzed attacks on Android platform. The primary target

of the attacks are not wallet apps but have impacts on wallet apps and can potentially be
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leveraged to exploit wallet apps. User Interface (UI) deception attacks that include click-

jacking, phishing, and activity hijacking [39] in Android, are generally applicable for any

wallet app. Diao et al. [37] utilized interrupt information stored in /proc/interrupts and

presents two attacks to infer unlock patterns and get the foreground app status. By lever-

aging the UI refresh pattern, an attacker can fingerprint the foreground app and can launch

a phishing attack without requiring any permissions. Sai et al. [76] conducted static code

analysis and network data analysis to discover common security vulnerabilities in Android

apps. The experiment is based on The Open Web Application Security Project (OWASP)

mobile top 10 vulnerabilities and takes banking and trading apps as a baseline. Reardon et

al. [73] monitored runtime behavior and network traffic of apps to find out the side chan-

nels and covert channels that are used to leak sensitive data. Moreover, they describe how

the permission model of Android can be exploited to gain access to sensitive data. Ren et

al. [75] demonstrated task hijacking attacks utilizing Android’s accessibility permissions

and claims the attack can affect millions of Android apps. The exploitation uses Android

Task Structure (ATS) to passively inject malicious UI in legit apps and displays a fake/-

malicious UI to lure the user to enter their credentials. Chen et al. [33] proposed a new

type of attack called UI state inference attack, which uses shared memory to infer the UI

state changes and can be exploited to hijack sensitive information, such as user credentials.

The attack can obtain sensitive information from the user’s taken screenshots and does not

require any permissions. Xu et al. [91] showed mobile phone’s motion sensors, such as

accelerometer, gyroscope, etc. can be exploited as the side channel to acquire data from

the user. This study reveals an attacker can detect the location where the user taps on the
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screen and can log the user’s PIN/password.

2.7.5 Analysis Frameworks for Android Apps

Bergandano et al. [27] developed a hybrid analysis tool by following OWASP guidelines

that analyze vulnerabilities in varying categories of apps (e.g., wallet, food, social). The

work lacks manual inspection; thus, the tool’s conclusion is unverifiable and focuses on

generic vulnerabilities instead of taking into account any specific nature of the apps. Droid-

Safe [47] is a state-of-the-art Android static analysis tool that performs an app-level anal-

ysis to figure out potential information leakage in apps. It attempts to track both Intent

and Remote Procedure Call (RPC) calls but lacks Inter-Component Communication (ICC),

where two apps exchange data between them through a separate ICC. AndroidLeaks [44]

is also a static analysis tool that states the ability to automatically determine private data

leakage in Android apps, including phone information, GPS location, WiFi data, and audio

recorded with a microphone. However, the tool fails to take context into account, prevent-

ing accurate analysis of many legitimate scenarios. To overcome the static analysis tool’s

false alarm issue, AppAudit [90] takes a dynamic analysis approach to simulate part of the

program and perform checks at each program state. The goal of this tool is to reveal data

leakage by apps and figure out the source of the data leakage. However, AppAudit still re-

lies on static analysis to identify vulnerabilities and only uses dynamic analysis to confirm

static analysis results and minimize false alarms. Ali-Gombe et al. [13] also took a hybrid

approach called AspectDroid that detects suspicious behaviors in apps. In the static phase,

apps have been repackaged with custom code inserted that performs logging and analytics
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functionality. Then, dynamic analysis tracks and logs the runtime events of the app. The

authors claim the tool can detect known malware apps correctly with an F-Score of 98%.

Contrary to prior studies, we explicitly focused on crypto wallet apps and discovered

several new attack surfaces specifically applicable to Android wallets.
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Chapter 3

Horus: Our Analysis Framework

The purpose of developing Horus is to automate the analysis process of wallet apps and

discover issues in the apps’ implementation. The idea and rationale behind building this

framework and design decisions for different wallets are explained in this section. An

overview of our evaluation methodology is presented in Figure 8. There are two modules

for app analysis in Horus: static analysis module and dynamic analysis module.

Figure 8: Overview of proposed framework.
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3.1 Data-set Collection

Google Play Store search displays only the popular apps based on its search algorithm

but does not provide a comprehensive list of all the apps matched with a search term [26,

71]. Conversely, a web search engine provides an exhaustive list of apps matched with the

provided search term. We develop a specialized search engine scraper module based on a

generic scraper tool, Search Engine Scraper,5 for collecting a large set of apps. Our scraper

module can search, parse results, remove duplicate app IDs, and download the Android

Application Package (APK) files from Google Play Store automatically. We have used

search term “site:play.google.com “bitcoin” “wallet”.”

We use the search engine bing .com due to API restrictions in google.com (up to 100

pages, but multiple test runs from the same IP address may result in the IP being blocked

before this limit is reached). We use a user agent value to appear as a desktop browser to

the search engine, and introduce a random delay before scraping each new search result

page to emulate normal usage and avoid any API restrictions.

We scraped 24,800 search results and found a total of 636 APK links, with 442 unique

app IDs. We use PlaystoreDownloader6 to download the latest version of the app from the

play store. We encountered some exceptions during app download, including some apps

are unavailable in our location (Canada), some apps are available only via the early access

program, and some apps are incompatible with our device. Eventually, we downloaded 392

apps and found 82 apps were not wallet apps although the term “wallet” appears in their

5https://github.com/tasos-py/Search-Engines-Scraper
6https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
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Application ID Version Downloads HD? Supported Coins

asia.coins.mobile 3.5.22 5M+ No BTC, XRP, ETH, BCH
co.bitx.android.wallet 7.6.0 5M+ No BTC, ETH, XRP, USDC
co.mona.android 3.84.0 1M+ Yes 80+ coins
com.binance.dev 1.36.3 5M+ No 200+ coins
com.bitcoin.mwallet 6.9.10 1M+ Yes BTC, BCH
com.breadwallet 4.7.0 1M+ Yes BTC, XBT, BCH, ETH
com.coinomi.wallet 1.20.0 1M+ Yes 125+ coins
com.mycelium.wallet 3.8.6.1 1M+ Yes BTC, ETH, ERC-20
com.paxful.wallet 1.7.1.534 1M+ No BTC, USDT
com.polehin.android 3.4.9 1M+ No 100+ coins
com.unocoin.unocoinwallet 3.4.7 1M+ No BTC, ETH, XRP, LTC
com.wallet.crypto.trustapp 1.26.5 5M+ Yes 50+ coins
com.xapo 5.3 1M+ No BTC
de.schildbach.wallet 8.08 5M+ No BTC
exodusmovement.exodus 21.1.28 1M+ Yes 50+ coins
org.toshi 23.3.357 1M+ Yes 100+ coins
piuk.blockchain.android 8.4.7 10M+ Yes BTC, ETH, BCH, XLM
zebpay.Application 3.12.02 1M+ No BTC, ETH, XRP, EOS

Table 1: Top 18 most downloaded wallet apps in Google Play Store (accessed: 2021-02-
03). No indicates non-HD wallet app and Yes indicates HD wallet app.

description; such apps include Bitcoin key generator, currency exchange service, etc. We

filtered out non-wallet apps and obtained a collection of 311 wallet apps. We shortlisted

the most popular 18 wallet apps in Google Play Store for further manual inspection due to

their high user base (with at least 1M+ downloads), see Table 1.

3.2 Static Analysis Module

The static analysis module of Horus looks for API patterns to determine if a particular

functionality or security feature is implemented in the app. For instance, a wallet app must

implement a custom keyboard; otherwise, it is vulnerable to user dictionary attacks; see
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Section 4.2. We verify if the APIs required to implement a custom keyboard in Android are

called in the app. If the API calls are found, the functionality is assumed to be implemented

in the app.

To determine the API calls in an app, Horus takes an APK file as input and constructs

a call graph of the app using Androguard.7 A call graph contains the class name, method

name, descriptors, and access flags. Each node in the call graph is a method, and the

actual calls with arguments are denoted by edges. For root detection, the app checks

the execution of su command [55], or the existence of a list of root enabler apps [38]

on the device. The call, Runtime.exec() is used to check the existence of su binary and

PackageManager.getPackageInfo() is used to check the existence of a root enabler app.

The API calls in the app’s call graph indicate the app is checking whether the device is

rooted. All the API calls required to implement a functionality constructs an API signa-

ture. Table 2 depicts the API signatures we use to determine the existence of the security

standard in an app. Below, we discuss several security standards that we verify using our

static module.

3.2.1 Secure Random Generator Usage

A secure random number generator is crucial for crypto wallet apps. According to BIP

39 [67], to create a mnemonic phrase, the client must use an entropy of length 128-256 bits.

7https://github.com/androguard/androguard
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Type API Signature Usage

Root
Detection

Runtime.exec() Execute runtime command, e.g. su
PackageManager.getPackageInfo() Get installed app’s information
Os.stat() System call for runtime command execution
Os.access() System call to query installed app

Integrity
Check

PackageManager.getPackageInfo() Get installed app’s information
Context.getPackageCodePath() App installer file path
ZipFile.init() Execute operation on installer file
RandomAccessFile.init() Read, write in system file

Custom
Keyboard

KeyboardView.setKeyboard() Replaces default keyboard app
OnKeyboardActionListener.onKey() Listeners for input key
InputMethodService.onCreateInputView() Callback when the keyboard view is created
InputConnection.commitText() Commit the user input to app
InputMethod Handles keyboard type depending on input field

Biometric
Authentication

BiometricManager Provides biometric utilities
BiometricPrompt Handles biometric authentication
FingerprintManager Defines types of authentication (Deprecated)
BiometricService Updates system server for fingerprint
FingerprintService Updates system server for fingerprint (Deprecated)

Screenshots
Disabled

Windows.setFlags() Uses for full screen access
View.setDrawingCacheEnabled() Access to the current view displayed

Hardware
module

KeyStore.getInstance() Returns a keystore object of specified type
KeyGenParameterSpec.Builder.isStrongBoxBacked() Requesting Android to use hardware module
StrongBoxUnavailableException Exception if the hardware module is absence

Random Generator SecureRandom Cryptographically strong random number generator

Dynamic
Code Loading

DexClassLoader Loads classes from JAR or APK file
dex2oat Utility program used to install and update apps
libart An so file related to ART
DexFile Loads DEX files (Deprecated)
PathClassLoader A class loader implementation from local file system

Table 2: API signatures to check for feature existence.; the Type column denotes the secu-
rity standard type, the API Signature column points to the API calls and individual class
names required to implement the security standard, and the Usage column indicates the use
case of each API call.
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A seed is generated from the mnemonic phrase and is used to create the master private/pub-

lic keys. If the random number generator is predictable, it affects the key generation ob-

jective. In Android, /dev/urandom [85] is used to generate seed for SecureRandom [23],

which is the recommended API to generate a cryptographically strong random number.

3.2.2 Implementing Custom Keyboard

Once a wallet app generates a mnemonic phrase, it asks the user to enter the mnemonic

phrase for verification. To import an existing wallet into a new app, the user also needs

to enter the mnemonic phrase via keyboard. If the user uses a third-party keyboard app,

it can capture all user inputs [20], including the mnemonic phrase. Additionally, the app

is vulnerable to user dictionary attack. A wallet app should have a custom keyboard trig-

gered while taking any key revealing input and possibly randomize the keyboard’s key

location [59].

3.2.3 Disabling Screenshot-taking

This is another critical risk avoidance feature for wallet apps. Any malicious app with the

capability of taking a screenshot can capture the screen content during the wallet import

phase. Moreover, a user may take a screenshot of the mnemonic phrase to save it as a

backup. This image is saved in the gallery, and any app with reading storage permission

can access the file. Crypto wallet apps must call Android API to disable the screenshot-

taking feature for sensitive screens.
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3.2.4 Two Factor Authentication (2FA)

2FA or biometric authentication, if supported by the device, should be implemented before

performing any sensitive operation. We observe a significant number of wallet apps do not

require user registration. An unauthorized user can perform a transaction with a few min-

utes of physical access to the device, assuming it is unlocked. Some apps require the user

to set a PIN code and ask for the PIN code when confirming a transaction. However, a PIN

code can be as short as a 4-digits number, which can be brute-forced or seen by shoulder

surfing. A 2FA should be incorporated in each wallet app as second-layer protection.

3.2.5 Integrity Check

App’s signature verification to check integrity ensures that the app has not been tampered

with and installed from a legit source (e.g., Google Play Store). Integrity can also be

ensured by calculating the hash of the installed APK file and comparing it with the hash

of the authenticated APK file. The solution is not foolproof and can be bypassed in a

repackaged app. However, integrity checking is a widely adopted practice in financial apps

and is considered a self-defense mechanism. The wallet app must perform integrity checks

as another layer of security before starting to operate.

3.2.6 Root Detection

An app can be made more secure by implementing 2FA or strong encryption; however,

no security on the app end works if the device itself is compromised. Malware apps can
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have root providers included in the binary and may gain root privilege without the user’s

consent [92]. This privilege can be exploited in many ways, from monitoring activities of

other apps to sending key revealing information to a malicious back-end.

3.2.7 Hardware Security Module

Recent Android smartphones have a separate computing environment, which provides ad-

ditional security to keep key revealing information safe, called hardware security mod-

ule [19]. The key revealing information is stored in a secure enclave that is also protected

in a rooted device and safe against brute force attack by utilizing rate limiting. The solution

is not foolproof; there is still room for information disclosure if the device contains a ma-

licious keyboard app or a clipboard listener. Nevertheless, the hardware security module

provides substantial improvements over any other storage solutions and should be used by

wallet apps to secure key revealing information. To determine the existence of HSM in the

device and to perform operations on HSM, Android provides high level APIs (Table 2) that

abstract out the different hardware module implementation provided by vendor.

3.2.8 Dynamic Code Loading

Dynamic code loading defines an act of the app to load and execute additional code pro-

vided from the server after the app is installed. This additional piece of code is not bundled

with the app itself and can be downloaded at any later point in time based on the user’s

device capability and user’s behavior. Dynamic code loading does not require user inter-

action and is capable to disregard the operating system’s code loading authority. This can
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present a threat to the user’s privacy and security and allows the developer to update the

app without the user’s consent. This capability facilitates injecting malicious code that can

be exploited by an attacker [58].

3.2.9 Manual Inspection

For in-depth inspection of the top 18 wallet apps, we use four state-of-the-art analysis

tools, AndroBugs, Qark, MobSF8 and Cryptoguard [70]. The tools look for generic vul-

nerabilities by following a defined set of rules and patterns and do not require the app to

run. The first three tools start with decompiling the app code and looking for several vul-

nerabilities, including runtime command execution, Secure Socket Layer (SSL) certificate

verification, cryptographic API misuses, and webview vulnerabilities. The first three tools

mark the found vulnerabilities with different severity labels (e.g., Critical, Warning, Info)

and we consider only the critical vulnerabilities. The last tool, Cryptoguard, exposes cryp-

tographic API misuses (e.g., predictable keys, constant passwords, vulnerable certificate

verification) by implementing forward and backward program slicing techniques. Crypto-

guard defines 16 categories of vulnerabilities for Android apps and looks for those in APK

files. We observe that Cryptoguard failed to generate output for some of the apps (e.g.,

co.mona.android, com.wallet.crypto.trustapp, piuk.blockchain.android, etc.). The reason

for the failure is insufficient memory for the Java Runtime Environment (JRE). To over-

come this issue, we allocate 32GB RAM for the process to run and adopt some techniques,

8https://github.com/MobSF/Mobile-Security-Framework-MobSF
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such as, forcefully calling the garbage collector after each category of vulnerability analy-

sis of an app and restarting the process to release the allocated memory used for each app

analysis before starting the analysis of a new app. This allows us to minimize the total

number of failed analyses, however, the issue still persists and requires additional technical

investigation which is beyond our scope.

We use reverse engineering to discover vulnerabilities in the app code by decompil-

ing the APK file. Reverse engineering reveals permissions usage in the app for malicious

purposes, logic bombs, Trojan code, etc. We also use reverse engineering to verify the

findings of analysis tools on the source-code level to understand the impact of the vulner-

abilities. Sometimes the app code is obfuscated by renaming code components, such as

folders, classes, variables, into a shorter, unintelligible name [17]. It is difficult to get out

any meaningful information from the obfuscated code; we skip the app in such cases. We

use Apktool9 and JD-GUI10 for our reverse engineering step. Apktool can decode resources

from the Android APK file, and JD-GUI is a Java decompiler and code browser.

3.3 Dynamic Analysis Module

In the dynamic analysis module, we look for key revealing information in apps’ internal

file structures. If the device is rooted or the target app allows backup, malicious apps or

actors can capture the target app’s internal files. If the internal files contain key revealing

9https://ibotpeaches.github.io/Apktool/
10https://github.com/skylot/jadx
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information (e.g., plaintext private key), a malicious actor can easily access such informa-

tion. In general, the master private key is the most critical information that needs to be

protected by wallet apps. Other such critical items include the mnemonic phrase, seed,

and master chain code—all of which should be protected with equal importance as of the

master private key. Note that a mnemonic phrase is used to generate a seed value, which

is used to generate its corresponding private key. Similarly, the master public key and any

of the child’s private key is enough to recreate the master private key [49]. Therefore, it is

imperative to secure all key revealing items along with the master private key. Our goal is

to seek answers to the following questions: Are wallet apps storing the above-mentioned

key revealing information in plaintext on the device? If encrypted, which encryption algo-

rithm is used? Can we identify the encryption key used to perform the encryption, and if

yes, where is the encryption key stored?

3.3.1 HD Wallet Analysis Workflow

A HD wallet can recreate the hierarchical tree of keys from a mnemonic phrase. In our

HD wallet workflow, we maintain four lists as follows. (1) Key revealing information: A

list of secret information that can be used to regenerate the master private key. In addition

to the master private key itself, this list includes mnemonic phrase, seed, seed hex value,

BIP 32 private key, and master chain code. (2) Candidate encryption key: Key revealing

information should be encrypted before storing on the device. Candidate encryption key

is a list of all possible encryption keys that wallet apps can use to encrypt key revealing

information. We find traces that the encryption keys are stored in the app’s internal files.
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Using Horus, we can verify how widespread the practice is to store encryption keys locally.

(3) Cipher key revealing information: Each item of the key revealing information list is

encrypted and the resulting ciphertext is encoded using Base64 and then appended to this

list. (4) Search term: A combined list of key revealing information and cipher key revealing

information. We use this list of items as a search term and look for each item of this list in

the wallet’s artifact.

To start the dynamic analysis, we install the target app on a rooted device. We generate

a mnemonic phrase and import the same phrase in all HD wallet apps. We use a fixed

email, username, PIN, password, and phone number in all the apps for account creation

and verification as needed by the app. We append this fixed information in the candidate

encryption key list as potential encryption keys.

Using a mnemonic phrase, Horus gets key revealing information list, and by parsing in-

ternal files, Horus get candidate encryption key list. Horus iterates through the key reveal-

ing information list and applies encryption algorithms available in the Android platform

to encrypt each of the items in key revealing information by using items from candidate

encryption key list as the encryption key. One such operation is as follows, we take the

first element of key revealing information, encrypt it with AES using the first element of

candidate encryption key, and add the resulting ciphertext in search term. We then repeat

the same operation with the next element of candidate encryption key, and so on. When

done, we use a different encryption algorithm (e.g., Blowfish) and go through the same list

of candidate encryption key and repeat the process. All the key revealing information is

also appended as-is to search term list because the key revealing information can also be
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found in internal files without any encryption. Horus reads all the app’s internal files to

find traces of the elements in search term. If any of the search term elements are found,

then the wallet app is exploitable if the internal files are exposed.

Horus generates a mnemonic phrase used for all HD wallet apps throughout the anal-

ysis. Horus starts a tcpdump11 session to capture all network requests and clear the logcat

buffer for capturing a new session. At this stage, we import the mnemonic phrase in the

app. Then, Horus takes the app ID as input and pulls all internal files, tcpdump generated

network dump files, from the connected emulator/device, and reads the files sequentially.

Horus identifies common file extensions (e.g., xml, db, pcap) and uses an appropriate

parser to extract the file content. In case of an XML file, Horus parses the XML file

and reads the content and appends all string values in candidate encryption key. For the

SQLite database file, we develop a parser that lists all tables in the database and reads all

the values in the tables and appends them in the same list. We get a pcap file from tcpdump

containing network request logs, and we use a Python library Scapy12 to parse the pcap

file and extract the content. Horus can also parse log files and take fixed email, username,

PIN, and password used as input. All the parsed content and input are considered potential

encryption keys and listed in candidate encryption key list.

Horus reads all internal artifacts again and runs a fuzzy search, using fuzzywuzzy,13

for the items listed in search term. We record the search result whether search term items

are found and whether in plaintext or encrypted form. Note that all candidate encryption

11https://www.tcpdump.org/
12https://scapy.net/
13https://github.com/seatgeek/fuzzywuzzy
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key items cannot be used directly as encryption keys. AES requires blocks of 16 bytes

key, whereas a PIN is a four-digit number. Thus, a PIN cannot be used as a key. We

use four common hashing algorithms (MD5, SHA1, SHA256, and SHA512) to generate a

digest for each candidate encryption key and use the digest instead as an encryption key.

Throughout our reverse engineering step, we observed that the hashing technique to convert

a non-suitable key into a proper encryption key is followed in many wallet apps.

3.3.2 Non-HD Wallet Analysis Workflow

A non-HD wallet generates a list of public-private key pairs, and there is no relationship

among the keys. Non-HD wallets manage many keys; each public-private key pairs are

used for only one transaction. The downside of this approach is that the user needs to

take backup regularly, ideally after each transaction. This approach is not convenient and

error-prone. Additionally, there is a risk of key exposure if the backup is not handled with

caution. In Horus, non-HD wallet workflow is different from HD wallet workflow because,

in an HD wallet, keys can be generated predictably with a known mnemonic phrase, but

there is no relation among the generated keys in non-HD wallet. Therefore, we look for

key patterns in the internal files in the non-HD wallet workflow. For instance, Bitcoin

public addresses start with character 1 or 3 [78], are 34 characters long, and formatted as

Base58; Ethereum public addresses start with 0x and are 42 characters long. We consider

different key formats as well. For example, Bitcoin private keys can be in standard 256-

bit hex format (64 bytes long), or WIF format [60] (51 bytes long) and start with 5. The
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prerequisite steps of performing dynamic analysis on HD wallets are applicable for non-

HD wallets except importing the wallet. Instead of importing the wallet, the keys are

generated using the app itself. Different apps of course generate different keys; however,

the key format is identical. We incorporate a pattern matching regex to look for Bitcoin

public/private addresses and their various derivatives [40] in the app’s internal files.

3.3.3 Transactions Workflow

For both HD and non-HD wallets, we make a small transaction [29] of a fixed amount

to a pre-defined address. Horus looks for the predefined receiver’s address and the fixed

amount value in the wallet app’s internal files. After a transaction is completed, the transac-

tion history should not be saved in the device. If the receiver’s address and the transaction

value are present in the app’s internal files, it stores past transactions and can be abused for

deanonymization if the app’s internal files are exposed.

To emulate wallet transactions, we use Bitcoin testnet [11]. Since not all wallet apps

support testnet transactions, we make transactions with only testnet compatible wallet apps.

To collect testnet coins, we use coinfaucet14 and mempool,15 two freely available services

to distribute testnet coins.

3.3.4 Manual Inspection

For in-depth analysis of the top 18 wallet apps, we monitor the apps’ workflow and response

based on the app’s interaction. Our goal is to understand the app’s workflow and its process
14https://coinfaucet.eu/en/btc-testnet/
15https://testnet-faucet.mempool.co/
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to generate and store key revealing information. We observe changes in the app’s internal

files (e.g., shared preference files, database files, log files, file IO) based on the activity we

perform using the app.

An Android app consists of 4 components: Activity, Service, Broadcast Receiver, and

Content Provider. Android enforces a sandbox mechanism to protect the components,

where no app gains access to other app’s components by default. However, an app can

export its components and let other apps access the components. If a component, such as

a service, is exported and not protected with permissions, then any app can start and bind

to the service. Any app on the device can invoke all the exported components in the target

app. We manually verify if it is possible to send a crafted intent from any other app to

activate the exported components in the target app and make it perform the malicious task.

We use three state-of-the-art tools, Drozer16, Frida17 and Crylogger[68]. We use Drozer

to list all exported components, universally accessible URIs using which any other app can

ask for key revealing information from the target app and SQL Injection attack surface in

the app. We use Frida to monitor critical operations in the app, e.g., database operations,

file IO, and method trace to determine passing arguments and the return value of a method.

We also use Frida to trace app logs, bypass SSL pinning, and bypass root detection. We use

an additional wrapper tool, House18 over Frida for ease of use. Both Drozer and Frida are

used for monitoring and intercepting the app workflow. We use Crylogger to dynamically

monitor cryptographic API usage and their parameters to detect crypto rules violation.

16https://github.com/fsecurelabs/drozer/
17https://frida.re/
18https://github.com/nccgroup/house
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This tool uses Android Monkey19 to generate random events in the app UI and capture

logs of crypto API usage. There are 26 defined rules in the tool and each app is verified

against these rules. Some rules require two executions of the app and the tool checks if

some values are present or being used on multiple executions of the app. We observe

that 31 apps in our data set did not produce any output because of the unavailability of

libraries in the emulator environment or the unsupported architecture of the emulator. We

configure Monkey to generate 30,000 events on each app, which is an optimal balance

between sufficient events and the time required to capture an app’s logs. However, Monkey

cannot perform complex operations, such as importing keys or login, and generated events

are random and therefore not comprehensive. To compensate for this issue, we modify the

flow of the tool and manually navigate all the available screens of top apps to trigger all

available functionalities of the apps and let the tool capture the crypto API usage logs.

19https://developer.android.com/studio/test/monkey
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Chapter 4

Experimental Results

We use the LDPlayer20 emulator, running Android 7.1.2 for all automated analysis, and

Alcatel 5041C, running Android 8.1.0 for manual experiments. We use LDPlayer for its

faster execution. The two different Android versions we use to cover a large part of con-

temporary Android phone users. Dynamic analysis requires a rooted device and we root

the device using Magisk.21 We analyze 311 wallet apps using Horus and manually inspect

the top 18 most popular apps. In this section, we present some of our main findings and

corresponding security risks.

4.1 Storing Key Revealing Information

Our dynamic analysis identifies 239 apps (77%) as non-HD wallets, 71 apps (23%) as HD

wallets, by verifying whether the wallet has the functionality to create or import a wallet

20https://www.ldplayer.net/
21https://github.com/topjohnwu/Magisk
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using a mnemonic phrase. In total, 111 apps (87 non-HD wallets and 24 HD wallets) store

key revealing information in plaintext. In 47/71 HD wallet apps use encryption to store

key revealing information; however, 18 of those apps store the encryption key without

additional protections. In most cases, where we found an encryption key, the key is located

in the SharedPreference file. In other cases, the key is located in a readable internal file,

or it is a user-provided PIN (e.g., 4-6 digits). Among the top 18 apps, 3 apps store a key

revealing information in plaintext, and 4 apps store key revealing information encrypted

with a known encryption key from our list of candidate encryption key. The secure storage

solution in Android is HSM, but only 3/311 apps are using HSM. If HSM is not available,

then Android keystore should be used, which provides the best available solution provided

the Android OS itself is not compromised. The user-provided PIN should not be used as the

encryption key because it is brute-forceable. 11 of 311 apps store transaction information

on the device, leading to deanonymization if the internal files are exposed. The transaction

storage feature is advertised as a usability feature of the wallet so that the user can view

all previous transactions. However, the transactions can be obtained on-demand without

storing the information on the device. To violet the anonymity of the collected transaction

information, an attacker is required to know the identity of the owner of the device.

4.2 User Dictionary Attack

On all Android devices, the keyboard app uses a user dictionary (database of words, lo-

cales, and frequency count) for predictive text input. In wallet apps, the mnemonic phrase
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asia.coins.mobile ✗

co.bitx.android.wallet ✗ AES SharedPref
co.mona.android
com.binance.dev
com.bitcoin.mwallet
com.breadwallet ✗ AES SharedPref
com.coinomi.wallet
com.mycelium.wallet ✗ AES SharedPref ✗

com.paxful.wallet ✗

com.polehin.android ✗

com.unocoin.unocoinwallet
com.wallet.crypto.trustapp
com.xapo
de.schildbach.wallet
exodusmovement.exodus
org.toshi ✗

piuk.blockchain.android ✗ AES PIN
zebpay.Application

Total 111 38
AES: 12,

Blowfish: 1
11

Table 3: Horus dynamic module analysis summary. Plaintext Sensitive Info column indi-
cates the presence of plaintext sensitive information in wallet artifacts; Encrypted Sensitive
Info column indicates the sensitive information is encrypted, however the encryption key
exist in the device; Saved Transaction Info column indicates the transactions information
is saved in artifacts, blank cell indicates absence of information. Last row provides the total
number for all 311 apps.

contains common English words, and most wallet apps take the mnemonic phrase input

from the user using the default keyboard. The information regarding the words in the

mnemonic phrase is saved in user dictionary [36]. This dictionary can be abused to pre-

dict the mnemonic phrase [53] by extracting frequency information of typed words. Note

that the attacker app requires virtual keyboard permission to access the dictionary, and in

general, input editor and spellchecker apps ask for this permission. Multiple apps can have

virtual keyboard permission on a device. Only 20 apps out of 311 apps (6%) implement
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custom keyboards to defend against this attack. To exploit this vulnerability, the existing

dictionary data is required to be reset, or a snapshot of current dictionary state is preserved.

A malicious app having virtual keyboard permission can reset the database. Then the ma-

licious app inserts the common 2048 English words with the frequency 0 in the database.

From that point onward, if the user types any word from the 2048 English words using the

default keyboard, the dictionary frequency column is updated. The maximum value of the

frequency column is 255 and when a word usage is reached to the maximum frequency

value, then the frequency column will is fixed with 255, no matter how many times that

word is used at any later point. Also, the word length has to be at least 3 characters, oth-

erwise, the frequency value doesn’t get updated, even if the word exists in the database.

However, this update mechanism is not real-time and requires the target app to be closed

or go in the background. Using the updated frequency column an attacker can predict the

typed words by comparing the frequency value. The attacker can only get the list of typed

words but not the order, which is crucial to generate the correct master key. The number

of combinations of a 12-word mnemonic phrase is not high ( 500 million) and all possible

combinations can be brute-forced within a reasonable time. To determine the feasibility of

the brute force attack, we experiment to generate all possible combinations of words in a

mnemonic phrase. We use Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 32 GB RAM

and running Windows 10 operating system, and it requires less than an hour (3540.96s) to

enumerate all possible combinations and generate the corresponding master key and public

key. There are several API services (e.g., Blockchain API22) to verify the account balance

22https://www.blockchain.com/api
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of a particular public key.

4.3 Enabling Allow Backup

This is an attribute declared in the AndroidManifest.xml file, and it is true by default.

It denotes the app data is backed up upon the app’s uninstallation and is restored upon

re-install [18]. When enabled, the app data can be backed up using the Android Debug

Bridge (ADB) command. It enables an attacker to extract an app’s internal files from a non-

rooted device within a few minutes of physical access. Open-source tools such as Android-

Backup-Toolkit23 can be used to extract the backup and gain access to internal files. We

observe 134/311 apps have allow backup attribute enabled in the AndroidManifest.xml file.

4.4 Dangerous Permissions

In the Android ecosystem, some permissions are considered dangerous [21] and require

the user’s explicit consent before being authorized. Most wallet apps require some com-

mon permissions for their functionality (e.g., WRITE_EXTERNAL_STORAGE, READ_-

EXTERNAL_STORAGE, GET_ACCOUNTS, CAMERA). However, some apps ask for

certain privacy-sensitive permissions, such as contact list and record audio, which appear

to be non-essential for the app; see Table 4 for such permissions. Each permission has a

constant value associated with it, such as android.permission.RECORD_AUDIO for audio

23https://sourceforge.net/projects/android-backup-toolkit/
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recording, which is used to check, request, and verify permission from the Android Soft-

ware Development Kit (SDK). The constant values of the permissions are stored as a static

variable in Manifest.permission class [21]. The presence of the static variable or the asso-

ciated constant value of a particular permission in the app’s codebase confirms the usage of

the permission.
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asia.coins.mobile ✗ ✗ ✗

co.bitx.android.wallet ✗ ✗ ✗

co.mona.android ✗ ✗

com.binance.dev ✗ ✗

com.bitcoin.mwallet ✗ ✗ ✗

com.breadwallet ✗ ✗

com.coinomi.wallet
com.paxful.wallet ✗ ✗

com.polehin.android
com.unocoin.unocoinwallet ✗ ✗ ✗

com.wallet.crypto.trustapp ✗

com.xapo ✗ ✗ ✗ ✗ ✗ ✗

de.schildbach.wallet
exodusmovement.exodus
com.mycelium.wallet ✗

org.toshi
piuk.blockchain.android ✗

zebpay.Application ✗

Total 47 75 81 8 84 36 28 40

Table 4: Unnecessary dangerous permissions usage. Last row provides the total number for
all 311 apps. ✗ indicates the app declares the permission requirement in the AndroidMan-
ifest file; Read Profile allows an app to read the user’s personal profile data; Read Phone
State allows the app to access the device’s phone features; Get Tasks allows the app to re-
trieve information about currently and recently running tasks; and Request Install Packages
allows app to install additional packages on the device.
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4.5 Root Exploitation

In the Android ecosystem, root exploitation is well-known [84]. There are legitimate An-

droid apps available in the Google Play Store that facilitate the rooting of phones, referred

to as root providers or one-click root apps. In 2016, 85 million devices downloaded such

root provider apps, and the devices are soft-rootable [42]. In wallet apps, we find 70 apps

out of 311 are checking if the device is rooted before starting its operation; see Table 5.

However, none of the apps terminates upon root detection; instead, the app displays a non-

blocking alert and lets the user continue using the app.
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asia.coins.mobile
co.bitx.android.wallet
co.mona.android
com.binance.dev
com.bitcoin.mwallet
com.breadwallet
com.coinomi.wallet
com.mycelium.wallet
com.paxful.wallet
com.polehin.android
com.unocoin.unocoinwallet
com.wallet.crypto.trustapp
com.xapo
de.schildbach.wallet
exodusmovement.exodus
org.toshi
piuk.blockchain.android
zebpay.Applicaiton
Total 71 33 45 46 21 293 10 10

Table 5: Horus static module analysis summary. Here, indicates the existence of secu-
rity standard implementation in the app and a blank cell indicates the absence of it. Last
row provides the total number for all 311 apps.
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4.6 Strandhogg Attack

This attack [10] is applicable when a malicious app that targets a wallet app opens up before

the wallet app. When the user taps on the wallet app, the malicious app opens up instead.

The malicious app can mimic the wallet app’s UI and ask for its PIN, mnemonic phrase,

etc. No permission is required for the malicious app, and Android versions 8.0-9.0 are

vulnerable to this attack.

Figure 9: Strandhogg 2.0, a malicious app is started instead of legitimate app and attempts
to capture user credential.

4.7 Cryptographic Vulnerabilities

Cryptographic algorithms provide security protection of contents when it falls into the

wrong hand. However, vulnerabilities in using crypto APIs significantly reduce the pro-

tections in practice [30, 41]. Using both static and dynamic approaches, we obtain a

comprehensive picture of crypto misuses by the wallet apps. We use Cryptoguard [70],

a static analyzer that detects the existence of crypto API misuses in source code but can
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not verify the vulnerable code that triggers at runtime. To overcome this issue, we use

Crylogger [68], a dynamic analyzer that detects crypto misuses by instrumenting standard

Java library classes. Both tools complement each other and expose a wide range of mis-

uses by reducing the number of false positives. We observe 278/311 apps have at least one

type of cryptographic misuses and 233/311 apps have at least two. For the summary of the

Cryptoguard findings, see Table 6 and for the summary of Crylogger findings, see Table 7.

No app in our data set has violated two Crylogger rules (Static seed for Pseudo-Random

number generator (PRNG) and textbook algorithm of RSA), therefore we remove the two

rules in the summary table.

To confirm that each cryptographic misuses identified by the tools apply to wallet apps,

we manually verified the top 18 apps’ decompiled code. We observe a significant number

of issues are coming from 3rd party libraries used by the app, rather than from the app code

itself. Some apps (e.g., asia.coins.mobile, com.paxful.wallet) use obfuscation techniques

that hinder manual source code verification. The vulnerabilities identified and the impact

of the vulnerabilities on wallet apps are as follows:

1. Hardcoded Store Pass: This violation indicates insecure coding styles where hard-

coded secrets are stored inside the source code or in shared preferences. We find

evidence of storing API key, API secret, and API session ID saved in preferences.

In Android, an app can access only its keystore and it has been shown that privilege

escalation attacks that circumvent this restriction allow exploitation of this vulnera-

bility [86].
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2. Dummy Hostname Verifier: Several libraries, such as, Apache HTTP, CleverTap [8]

analytics do not verify hostname, which expands the possibility of the MITM at-

tack surface. Apps like asia.coins.mobile, com.unocoin.unocoinwallet, org.toshi,

and, zebpay.Application are depending on the mentioned libraries. There are several

API client libraries available in the Android ecosystem (e.g. Apache HTTP, okhttp),

and apps or 3rd-party libraries can use any API client libraries to communicate with a

backend server via REST API. An instance of an API client library can be overridden

to use a custom hostname verifier by the instance creator (e.g. apps or 3rd party libs)

instead of its default hostname verifier. We observe the custom hostname verifier is

misconfigured to accept any hostname and doesn’t verify the requesting hostname

and received certificate hostname. To verify the exploitability of this vulnerability,

we create a custom certificate signed by mitmproxy and use the certificate to inter-

cept network communication. We are able to capture the network communication

initiated by the misconfigured API client instances.

3. Used Improper Socket: It detects if SSLSocket is directly used without performing

hostname verification. In Java, a method named ‘verify’ (of class HostnameVerifier)

is invoked to check if any hostname verification is incorporated. To avoid false-

positive results, Cryptoguard does not consider the direct subclass implementation

of SSLSocketFactory.

4. Used HTTP: Analytics libraries like Google Analytics, Appsflyer by Adobe, and

CleverTap use HTTP connections to get static contents like images/icons and send
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analytics events to their servers.

5. Broken Symmetric Crypto Algorithm: To encrypt key revealing information, some

apps use broken crypto algorithm, such as ‘AES/ECB/NoPadding’, AES/CBC/PKCS

5Padding, Blowfish. In our manual investigation, we find a 3rd-party open source li-

brary bitcoinj24 uses the ‘AES/ECB/NoPadding’ algorithm and some apps are using

bitcoinj as the underlying library to handle cryptographic operations, which makes

all such apps insecure. One app (com.mycelium.wallet) is using a TOR connec-

tion to connect with peer nodes and using a 3rd party library Orchid,25 which uses

‘AES/ECB/NoPadding’ cipher to encrypt TOR stream. A popular Chinese library

named Tencent is using broken RC4 to encrypt log files before sending them to the

server. If the communication is intercepted, the app’s usage pattern, activities, and

operational data in log files can be exposed.

6. Insecure Asymmetric Crypto: This rule can detect insecure asymmetric cipher al-

gorithm configurations, such as 1024-bit RSA algorithm, statically defined key, and

insecure default key size. Cryptoguard cannot detect any instance of insecure asym-

metric cipher in the top 18 apps.

7. Broken Hash: This vulnerability indicates the usage of insecure cryptographic hash

functions (e.g., SHA1, MD5, MD4, MD2). In the Orchid library, SHA-1 is used for

TOR message digest and com.mycelium.wallet app is using Orchid library as TOR

client. Hash collisions of these algorithms allow attackers to break the integrity of

24https://github.com/bitcoinj/bitcoinj
25https://github.com/subgraph/Orchid
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any intercepted messages [79]. Apps are using a broken hash algorithm to store user-

provided PIN/password in the device. The hashed value of PIN/password is also used

as the encryption key to encrypt key revealing information.

8. Randomness of Keys: This vulnerability covers static, or badly derived IV, static or

the same salt usage multiple times, and the violation of RFC-8018 recommended

1000 iterations for Password Based Encryption (PBE) [62]. In our manual inspec-

tion, we find static or badly derived IV is a false positive result reported by the tools.

Apps are using SecureRandom without any seed and therefore the seed is null. Ac-

cording to Android documentation both constructions of using SecureRandom, with

and without seed, are valid usage. However, apps are using static or the same salt in

the encryption of transaction information before sending it to the server.

4.8 Generic Vulnerabilities

We find several vulnerabilities, using multiple state-of-the-art static vulnerability analysis

tools. These vulnerabilities are generally applicable to Android apps, not specifically to

crypto wallet apps alone. We consider only critical marked issues to reduce false positives.

For a summary of the result, see Table 8.

The vulnerabilities discovered and associated security risks in apps are the following:

1. Implicit service: Implicit intents do not specify a component name, rather declare an

action. Any component, capable to act, can respond to the Intent [15]. For example,

if the user taps on a link, any browser components installed in the device can respond
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asia.coins.mobile ✗ ✗ ✗ ✗

co.bitx.android.wallet
co.mona.android
com.binance.dev
com.bitcoin.mwallet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.breadwallet
com.coinomi.wallet ✗ ✗ ✗ ✗ ✗ ✗

com.mycelium.wallet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.paxful.wallet ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.polehin.android ✗ ✗ ✗ ✗

com.unocoin.unocoinwallet ✗ ✗ ✗ ✗ ✗

com.wallet.crypto.trustapp
com.xapo
de.schildbach.wallet ✗ ✗ ✗ ✗

exodusmovement.exodus ✗ ✗ ✗ ✗ ✗ ✗

org.toshi ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

piuk.blockchain.android
zebpay.Application ✗ ✗ ✗ ✗ ✗ ✗ ✗

Total 152 260 205 160 106 88 74 18 15 31 39 13 267 115 11 9

Table 6: Cryptographic vulnerabilities and misuses in wallet apps using Cryptoguard (static
analysis). ✗ indicates the existence of the vulnerability in the app. Last row provides the
total number for all 311 apps.

to act. Likewise, an implicit intent can trigger any service in the device that can

perform declared action in the intent. Because, a service does not have a UI, so the

user cannot be certain which service will respond to the intent and start. A malicious

service that exists on the device can be activated and carry out undesirable actions.

2. Exported ContentProvider: Exported ContentProvider allows any other app on the

device to access its controlled database. Critical information of the apps can be

exposed if the data sharing logic is not implemented with caution, see Section 4.9.
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asia.coins.mobile ✗ ✗ ✗ ✗

co.bitx.android.wallet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

co.mona.android ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.binance.dev
com.bitcoin.mwallet ✗ ✗

com.breadwallet ✗ ✗ ✗ ✗ ✗

com.coinomi.wallet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.mycelium.wallet ✗ ✗ ✗

com.paxful.wallet ✗ ✗ ✗ ✗ ✗

com.polehin.android ✗ ✗

com.unocoin.unocoinwallet ✗ ✗

com.wallet.crypto.trustapp
com.xapo ✗ ✗

de.schildbach.wallet ✗ ✗

exodusmovement.exodus ✗ ✗ ✗ ✗

org.toshi
piuk.blockchain.android ✗ ✗

zebpay.Application ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Total 232 6 11 56 31 55 18 43 27 19 3 13 1 4 1 19 162 23 4 7 2 1 13 5

Table 7: Dynamically detecting cryptographic misuses in wallet apps (using Crylogger). ✗

indicates the existence of violation of cryptographic rules in the app. Last row provides the
total number for all 311 apps.

3. URL not under SSL: HTTP protocol is used to communicate with services.

4. CVE-2013-4710 [6]: The target app has the method, addJavascriptInterface, which

can be abused to allow JavaScript to control the host app.

5. Runtime command execution: The use of the critical function Runtime.getRu-

ntime().exec("..."), which can be abused for command injection attack [3].

6. CVE-2013-6271 [7]: The isValidFragment method in every PreferenceActivity

class must be called to avoid exception throwing in Android 4.4.
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7. World read/writable file: MODE_WORLD_READABLE or MODE_WORLD_WRITE-

ABLE allows the file to be accessible by other applications. This vulnerability is

identified as insecure data storage by OWASP [5].

8. Insecure Pending Intent: Intent should be explicit to specify an explicit component to

be delivered, otherwise a malicious application could potentially intercept, redirect,

and/or modify implicit Intent. Pending Intent is a wrapper over regular Intent to dele-

gate a task to be performed by another app at a later time. Pending Intent contains the

same authorization right and identity of the originating app. When the pending intent

does not explicitly define a target component, then any app in the device, capable of

handling the intent, becomes a potential responder. If a malicious app is selected by

the user to handle the Intent then the malicious app will have all permissions and

identity of the intent originating app. If there is only one app is the device capable to

handle the intent then the app is selected by default without any interaction from the

user’s end.

9. Insecure broadcast intent: App that registers a broadcast receiver dynamically is

vulnerable to granting unrestricted access to the broadcast receiver. The receiver will

be called with any broadcast Intent that matches the filter.

10. ECB cipher usage: Electronic Code Book (ECB) mode does not provide good con-

fidentiality, hence insecure, because, ECB mode produces the same output for the

same input each time [4]. For example, when a user sends a password, the encrypted

value is always the same. This makes it possible for an attacker to intercept and
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replay the data.

11. Encryption key in source: Encryption keys are packaged with the application.

12. RSA cipher usage: RSA algorithm is used as the cipher mode without padding, which

is insecure [1, 9].
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asia.coins.mobile ✗ ✗ ✗ ✗ ✗ ✗

co.bitx.android.wallet ✗ ✗ ✗ ✗

co.mona.android ✗ ✗ ✗ ✗ ✗ ✗

com.binance.dev ✗ ✗

com.bitcoin.mwallet ✗ ✗ ✗ ✗ ✗ ✗

com.breadwallet ✗

com.coinomi.wallet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

com.mycelium.wallet ✗ ✗ ✗ ✗ ✗ ✗

com.paxful.wallet ✗ ✗ ✗ ✗ ✗ ✗

com.polehin.android ✗ ✗ ✗ ✗ ✗ ✗

com.unocoin.unocoinwallet ✗ ✗ ✗ ✗ ✗ ✗

com.wallet.crypto.trustapp ✗ ✗ ✗ ✗ ✗

com.xapo ✗ ✗ ✗ ✗ ✗

de.schildbach.wallet ✗ ✗ ✗ ✗

exodusmovement.exodus ✗ ✗ ✗ ✗ ✗ ✗

org.toshi ✗ ✗ ✗ ✗ ✗ ✗ ✗

piuk.blockchain.android ✗ ✗ ✗

zebpay.Application ✗ ✗ ✗ ✗ ✗

Total 82 20 124 104 42 9 7 145 150 121 71 20

Table 8: Generic vulnerabilities in wallet apps. ✗ indicates the existence of the vulnerability
in the app.
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In theory, crypto algorithms may provide assurance to protect confidentiality (via en-

cryption) and data integrity (via hashing); however, poor implementations of crypto algo-

rithms can compromise the security of the communication. While dynamic crypto misuses

detector tools, like Crylogger, cannot produce any false-positive result, because the data is

collected from the API calls during runtime and it is evident that the API must be executed

by the app’s functionality. However, dynamic tools may produce false-negative results. On

the other hand, statically detecting crypto misuses tools, like Cryptoguard, may produce a

significant number of false-positive results. By using both static and dynamic approaches,

we find a notable overlap in their misuses criteria and result-set; see Tables 6, 7, 8. For

example, in Table 6, Cryptoguard identifies 152 app instances are using predictable crypto-

graphic keys, whereas Crylogger found only 31 app instances for the same criterion. This

observation indicates the shortcoming of static analysis tools, like Cryptoguard, infers any

hardcoded key-like string as a potential encryption key, which may not be true and thus

producing a false-positive result. Similarly, a dynamic analysis tool, such as Crylogger,

cannot exhaustively navigate all the execution paths of an app and thus fails to identify all

potential encryption keys. In another case, Crylogger identifies 162 apps are using unsafe

PRNG (java.util.Random), whereas Cryptoguard identifies only 15 apps in this criterion.

Due to code obfuscation, static analysis tools like Cryptoguard cannot identify the usage of

a particular API, whereas dynamic tools can correctly identify the use of the API.
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4.9 Exported Components

Depending on the responsibilities of a component, it may leak information or perform

unauthorized tasks. Android Inter Process Communication (IPC) mechanism allows an

app to share access with other apps on the device. If the IPC mechanism is not intended for

use by other apps then, according to Android developer guidelines, the component must not

be exported [16]. For example, Content providers offer a structured mechanism to allow

other apps to access stored data. If a content provider is exported, it can reveal sensitive

database information to any other app on the device. Similarly, if Activity and Service are

not restricted then other apps can launch the activity or bind to the service, which may allow

a malicious app to gain access to sensitive information, perform unauthorized actions, or

corrupt the internal state of the app [2]. We find each one of the top wallet apps exports

from 3 to 25 components, expanding the attack surface on wallet apps.
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Application ID Activity Service Receiver Provider

asia.coins.mobile 2 1 5 1
co.bitx.android.wallet 5 2 2 0
co.mona.android 5 2 4 0
com.binance.dev 6 6 10 3
com.bitcoin.mwallet 3 3 2 0
com.breadwallet 1 1 2 0
com.coinomi.wallet 6 2 2 0
com.mycelium.wallet 2 6 1 1
com.paxful.wallet 2 1 2 0
com.polehin.android 2 1 3 0
com.unocoin.unocoinwallet 5 0 2 0
com.wallet.crypto.trustapp 2 3 3 1
com.xapo 4 3 2 0
de.schildbach.wallet 4 0 2 0
exodusmovement.exodus 2 1 3 0
org.toshi 3 2 4 0
piuk.blockchain.android 1 1 1 0
zebpay.Application 3 3 2 1

Table 9: Exported components summary for top 18 wallet apps. The values indicate the
number of exported components of a particular type in the app.
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Chapter 5

Evaluation

In this section, we discuss Horus’s current capabilities, limitations, and the challenges we

faced in our work. Horus’s static module is based on the app call graph, enabling the

framework to survive the code obfuscation. Android obfuscation techniques work on the

app code and not on the SDK APIs. We note that Android API calls remain unobfuscated in

the call graph. Our dynamic module is based on the app’s artifacts and network trace. The

dynamic module does not have any dependency on the app platform and source code. The

artifacts analysis technique is equally effective in apps developed using hybrid and cross-

platform technologies. Overall, Horus can quickly assess the security standards followed

by a crypto wallet app using the static module, and provide a deeper understanding of the

app’s sensitive data handling process using the dynamic module.
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5.1 Limitations and Challenges

Static analysis tools suffer from obvious limitations. They can only determine whether

specific APIs or syntax patterns are present in the source code but cannot indicate whether

the implementation is error-free. Depending on the syntax pattern, Horus may indicate

that an app has implemented a security feature, but in reality, the implementation may be

flawed and may still contain serious bugs. The dynamic analysis module of Horus does not

take into account all encryption algorithms supported by the Android platform and thus not

comprehensive. We also do not emulate a scenario when a salt value (static or dynamic) is

used in generating an encryption key.

To make Horus fully automated, we evaluate tools like Monkey26 and Droidbot27 to

perform sign-up, import wallet, and complete a transaction. However, in our evaluation,

we find that the pseudo-random events that Monkey generates cannot accomplish a set of

pre-defined tasks. It is possible to accomplish specific tasks using Droidbot, but it is not

well-suited for a generalized workflow. We have to write a customized script for each

app. Considering the apps’ versatility, writing a script for each app beats the purpose of an

automated framework, and we settled for a semi-automated solution.

We identify some wallet apps that encrypt key revealing information, use salt with the

encryption key. We find hard-coded salt values in the source code and salt values printed

in logs. In Horus we are not automating when salt is used in the encryption key.

26https://developer.android.com/studio/test/monkey
27https://github.com/honeynet/droidbot
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Starting with Android 7.0 (API level 24), system-wide private certificates are not ac-

cepted in Android. Optionally, an app can explicitly choose to rely on a private certifi-

cate [31]. Also, as of Android 9.0 (API level 28), plaintext traffic is not allowed and cannot

be configured as well [22]. To overcome this, we use mitmproxy28 to monitor network

traffic and place the mitmproxy certificate in the system certificate folder. Also, we use

tcpdump to capture network requests in a pcap file to look for key revealing information in

network communication.

5.2 Recommendations for Users

Based on our study, we make the following recommendations for the users of wallet apps.

• User should not use wallet apps in a rooted device; the device and OS’s default

protection is ineffective in a rooted device.

• Trusted app store is an effective protection mechanism for any category of apps.

An app goes through numerous security checks before being released to the public

[46]. However, there are many unofficial stores where an app can be downloaded.

A repackaged app can pose a security hazard by emulating the real app behavior

but internally capture the user’s sensitive data. Users should be more security-aware

about the risk of unofficial stores.

• Taking screenshots is a convenient feature but can introduce significant security risks,

and sensitive data can be exposed if the user or any 3rd-party app takes a screenshot

28https://mitmproxy.org/
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while sensitive data is displayed. Users should be aware of such actions’ security

risks.

• When the user types in a text field, the input is no secret to the keyboard app. The

open nature of Android enables the user to use any 3rd-party app to replace the de-

fault keyboard. Even if the user uses the default keyboard, there are still security

issues by malicious apps having virtual keyboard permission. Users should under-

stand the security risk that comes with replacing the default keyboard option and

providing input permissions to an untrusted app.

5.3 Recommendations for Developers

Based on our study, we make the following recommendations for the developers of wallet

apps.

• A wallet app should detect a rooted device, and upon positive detection, the app

should display a blocking user alert explaining the potential security risks of using a

financial app in a rooted device and exit.

• Developers should implement an integrity checking mechanism in the app to verify

the app’s integrity before starting its operations.

• Taking screenshots should be disabled while the app is operating in the foreground.

• A custom secure keyboard should be implemented in the app to take the key revealing

information from the user.
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• App developers should choose the recommended secure random number generator

available in the platform. For Android, which uses a modified version of Linux ker-

nel, developers should use /dev/urandom [85] to generate seed for SecureRandom [23],

a cryptographically strong random number generator.

• Developers have to be extremely cautious in implementing crypto APIs and follow

API guidelines strictly. In addition to that, developers should be more security con-

scious and develop a perspective to see plausible security vulnerabilities in apps and

not just direct attacks. In a survey [68], developers argue that sensitive data can be in-

correctly encrypted if it is stored only locally because privilege escalation is required

to access it. However, side-channel attacks occur frequently and can pose significant

security threats to apps.

• 2FA provides an additional layer of security and protects the user from compro-

mised credentials. Biometric authentication is a popular 2FA choice along with the

PIN/password in the Android ecosystem. This additional security of 2FA should be

implemented and utilized before performing any sensitive operations.

• Hardware security module is a separate computing environment, which acts as a

safeguard of key revealing information. It is available on relatively newer and high-

end devices and should be utilized (if available) to store the key revealing information

on the device.

• Exported components should be minimized as much as possible, and this is espe-

cially important for financial apps like a wallet. Exported components are used to
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communicate between apps in the device. Crypto wallet apps contain key revealing

information and should act in isolation as much as possible to avoid any potential

data disclosure risk.
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Chapter 6

Conclusion and Future Work

With the massive growth of cryptocurrencies, the number of threat vectors on crypto wal-

let apps is also increasing. This puts millions of users at risk if security concerns are not

adequately addressed in leading wallet apps. We introduced Horus, a semi-automated

framework to analyze and detect security issues in crypto wallet apps. We analyzed 311

apps on the Android platform and discover a unique set of vulnerabilities. Our analysis

indicates that security standards are not followed when developing apps, and there are vul-

nerabilities in the protection of key revealing information. Serious security gaps appear

in popular wallet apps, including asking for dangerous permissions without a proper need.

Based on our analysis, there is a lack of checks and balances in our understanding of wallet

apps’ security and their actual implementation. Users should be more vigilant and proac-

tive in evaluating apps before relying on them. Additionally, developers should be better

informed about the industry’s security standards and strictly adhere to best practices and

recommendations.
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For future work, we can expand our framework to include iOS wallet apps into our

analysis. We plan to incorporate all the encryption algorithms supported by the Android

platform in Horus, such as ChaCha20, Digital Signature Algorithm (DSA), Triple Data

Encryption Standard (DESede), etc. We also plan to consider all hardcoded strings found

in the app codebase as potential encryption keys and potential salt values. Finally, we can

include desktop wallet apps in our investigation and improve our design to support desktop

apps.
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