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Abstract 

 

UAV Path Planning and Obstacle Avoidance Based On Fuzzy Logic and Kinodynamic 

RRT Methods 

Long Chen, MASc. 

Concordia University, 2021 

Path Planning is one of the important problems to be explored in unmanned aerial vehicle (UAV) 

to find the optimal path between starting position and destination. The aim of path planning 

technique is not only to find the shortest path but also to provide the collision-free path for the 

UAV in unknown environment. Although there have been significant advances on the methods of 

path planning where the map of environment is known in advance, there are still some challenges 

to be addressed for dynamic autonomous navigation for the UAV in unknown environment. 

 

This thesis research proposes a new path planning method named Fuzzy Kinodynamic RRT for 

unmanned aerial vehicle flying in the unknown environment. This method generates a global path 

based on RRT [1] (Rapidly-exploring random tree) and utilizes fuzzy logic system to avoid 

obstacles in real time. A set of heuristics fuzzy rules are designed to lead the UAV away from un-

modeled obstacles and to guide the UAV towards the goal. The rules are also tested in different 

scenarios, and they are all working efficiently both in simple and complicated cases. The UAV 

starts to fly along the path generated by RRT, and the fuzzy logic system is then activated when it 

comes across the obstacle. When the sensor detects no collision within a specific distance, the 

fuzzy system is turned off and the UAV flies back to the previous path towards the final destination. 

The simulations of the developed algorithm have been carried out in various scenarios, with the 

sensor to detect the obstacles. The numerical simulations show the satisfactory results in various 

scenarios for path planning that considerably reduces the risk of colliding with other stationary 

and moving obstacles. A more robust and efficient fuzzy logic controller which embeds the path 

planning is finally proposed and the simulation shows the satisfactory results in complicated 

environments. 
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Chapter 1   Introduction 
 

1.1 Background  

Unmanned Aerial Vehicle (UAV) is essentially a flying robot which can be remotely 

controlled or fly autonomously through software controlled flight plans in their embedded 

systems, working in conjunction with the sensors which are onboard instruments and GPS. 

UAVs contain a large number of technological components including electronic speed 

controllers (ESC), flight controller, GPS module, antenna, battery, receiver, cameras and 

sensors such as ultrasonic sensors and collision avoidance sensors, accelerometer and 

altimeter which are used to measure speed and altitude respectively. While UAVs serve a 

variety of purposes, such as recreational, photography, commercial and military, their two 

basic functions are flight and navigation. 

UAV platforms are classified into two main types: rotor, including single-rotor and 

multi-rotor such as quadcopters, or fixed-wing which includes the VTOL (vertical takeoff 

and landing) drones that do not require runways. Single-rotor drones are the most basic 

types and they are ideal for longer flight times since it employs only a single rotor (besides 

the tail unit in some cases) and can often generate thrust more efficiently than their multi-

rotor counterparts. Multi-rotor drones have several rotors positioned at strategic point on 

the drone and these extra rotors make it easier for the drone to maintain the balance while 

hovering. Fixed-wing style drones are more similar to controllable airplanes rather than 

the helicopter style of other drones. Unlike rotors, their wings provide vertical lift, which 

means they only need enough energy to keep moving forward, making them ideal long-

range drones. Different drones have different kinds of advantages and disadvantages as 

follows: 
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1) Single rotor drones. As shown in Figure 1.1(a). 

 Able to hover vertically in the air 

 Have long-lasting flight time  

 Strong and durable 

 Harder to fly than multi-rotor drone types 

 Can be expensive and have higher complexity 

 

2) Multi-rotor drones. As shown in Figure 1.1(b). 

 Easy control and maneuver 

 Very stable 

 Can take off and land vertically 

 Limited flying time (Usually 15-30 minutes) 

 Only have small payload capabilities 

 

3) Fixed-wing drones. As shown in Figure 1.1(c). 

  Flight time is long 

  Can fly at a high altitude 

  Have the ability to carry more weight 

 More difficult to land than two other categories of drones 

 Can only move forward instead of hovering in the air 

 

 

                       (a)                                         (b)                                       (c) 

Figure 1.1 Single rotor drone (a), multi-rotor drone (b) and fixed-wing drone (c)  
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Based on the applications, UAVs can also be categorized as military, commercial and 

personal applications. 

1) In the recent past, UAVs were most often associated with the military, where they 

were used initially for anti-aircraft target practice, intelligence gathering and then, 

more controversially, as weapons platforms. Drones are now also used in a wide 

range of civilian roles ranging from search and rescue, surveillance, traffic 

monitoring, weather monitoring and firefighting, to personal drones and 

business drone-based photography, as well as videography, agriculture and even 

delivery services. 

2) The integration of drones and internet of things (IoT) technology has created 

numerous enterprise use cases. Drones working with on-ground IoT sensor 

networks can help agricultural companies monitor land and crops; energy 

companies survey power lines and operational equipment; and insurance companies 

monitor properties for claims and policies.  

3) Many personal drones are now available for consumer use, offering high definition 

(HD) video or still camera capabilities, or to simply fly around. These drones often 

weigh anywhere from less than a pound to 10 pounds. 

 

UAVs can be equipped with a number of sensors, including distance sensors (ultrasonic, 

laser, lidar), time-of-flight sensors, chemical sensors, and stabilization and orientation 

sensors, among others. Visual sensors offer still or video data, with RGB sensors which 

is the metering sensor that helps the camera analyze the scene and collect standard visual 

red, green and blue wavelengths, and multispectral sensors collecting visible and non-

visible wavelengths, such as infrared and ultraviolet. Accelerometers, gyroscopes, 

magnetometers, barometers and GPS are also common drone features. 

For example, thermal sensors can be integral in surveillance or security applications, 

such as livestock monitoring or heat-signature detection. Hyperspectral sensors can help 

https://whatis.techtarget.com/definition/drone-surveillance
https://whatis.techtarget.com/definition/personal-drone
https://internetofthingsagenda.techtarget.com/definition/drone-photography
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://whatis.techtarget.com/definition/Lidar
https://whatis.techtarget.com/definition/RGB-red-green-and-blue
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identify minerals and vegetation, and are ideal for use in crop health, water quality and 

surface composition. Some drones employ obstacle detection and collision avoidance 

sensors. Initially, the sensors were designed to detect objects in front of the drone. Some 

drones now provide obstacle detection in all six directions: front, back, below, above and 

side to side. For the purpose of landing, the drones employ visual positioning systems 

with downward facing cameras and ultrasonic sensors. The ultrasonic sensors determine 

how close the drone is to the ground. 

In Canada, Transport Canada has launched an RTM (RPAS Traffic Management) 

initiative and organized an action team (RTMAT) comprised of the regulator, Nav 

Canada, NRC, and various industry representatives. In addition, the National Research 

Council (NRC) is collaborating with Transport Canada (TC) to develop a 5-year R&D 

plan to support regulatory development for visual line-of-sight (VLOS)/beyond visual-

line-of-sight (BVLOS) remotely piloted aircraft systems (RPAS) operations and to 

identify technology advancements, testing and certification that will enable safe operation 

of RPAS (also known as drone, UAS or UAV) in Canada. The objectives are to develop 

and oversee the Government of Canada’s transportation policies and programs so that 

Canadians can have access to a transportation system that is safe and secure; green and 

innovative; and efficient. The Consortium for Aerospace Research and Innovation in 

Canada (CARIC) and the Consortium for Research and Innovation in Quebec (CRIAQ) 

will support Transport Canada and NRC to deploy a RPAS R&D Program. 

Over the years, autonomous vehicles have been used to perform missions which are 

dangerous and dirty such as military operations and wild-fire surveillance. It becomes 

crucial for the UAV to react dynamically towards changing environments and missions 

especially in these tasks. For example, forest fires can change rapidly because the 

environment conditions are changing and hard to predict with time going on. Therefore, 

real time decision making becomes essential when dealing with wildfires since conditions 

such are wind are changing dynamically. 
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Because most effective path planning algorithms such as RRT, PRM, A* and Artificial 

potential fields [2] rely on complete prior knowledge of the whole environment, it severely 

limits the implementations and capabilities of UAVs. Additionally, theses algorithms 

cannot obtain solutions for dealing with complex environments. Rapidly-exploring 

random tree algorithm and its variants, for instance, cannot guarantee a complete and 

accurate path in any environments. Furthermore, the UAV always requires new paths re-

generated by these algorithms when environments changing dynamically in real time. 

Therefore, a more sophisticated method to two-dimensional path planning is needed for 

usage of UAVs in dynamically changing, unknown environments. In order to do this, 

UAVs have to do path planning and obstacle avoidance in dynamic sense. Thus, the 

objective of this research is to propose new methods of path planning and obstacle 

avoidance for an UAV that can allow it to operate in real time and unknown environments. 

 

 

 

1.2 Problem Definition  

The research will focus on the path planning and real time obstacle avoidance of the 

UAV in unknown environments in order to meet the challenges that most effective path 

planning algorithms are not applicable in these cases where they severely rely on complete 

prior knowledge of the whole environment. With the methods proposed in our research, 

only a limited amount of information (GPS coordinates of the starting point and target) is 

required for autonomous navigation of the UAV.  

In this work, a sensor system is used to provide feedbacks about the obstacles in the 

UAVs local environment within sensing range. The information is then processed at each 

sampling time and used as one of the factors to determine the motion of the UAV for path 

planning and obstacle avoidance in order to reach the target. 
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 Path planning and obstacle avoidance play a big role in the application of UAVs where 

UAVs fly from the starting point to destination and avoid the obstacles dynamically and 

efficiently. Currently, there are currently a lot of classic and variant methods that have been 

implemented on UAVs, and each method has its own pros and cons according to the 

specific application situation. Thus, it is very essential to utilize an appropriate algorithm 

or methodology in order to improve the efficiency in each specific application. In this 

research, the issues on global path planning will be addressed by RRT algorithm which can 

give an overall planned path for the UAV to follow. Then a fuzzy logic inferencing system 

is designed to drive the UAV to avoid the obstacle in real time, and a novel algorithm 

named Fuzzy Kinodynamic RRT method is developed to guide the UAV towards the goal. 

Finally, a sophisticated and robust fuzzy controller is designed especially for the path 

planning and obstacle avoidance for UAVs in more complicated and unknown 

environments. The research modeled the dynamic constrains of the UAV, developed 

methods for path planning and obstacle avoidance with only sensor information about the 

local environments and validated the proposed methods by simulation in MATLAB and 

AirSim in Unreal Engine. 
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1.3 Motivation and Contribution of this Thesis 

In this research, tremendous efforts have been dedicated to the path planning and 

obstacle avoidance of UAVs and to improve the performance of the autonomous navigation 

for the UAVs. The objectives of this research are to implement an efficient UAV path 

planning and obstacle avoidance method in unknown environments and real-time collision 

avoidance using distance sensor. Even though extensive algorithms have been developed 

for mobile robots [3], the applications to UAVs in dynamically changing environment 

conditions are limited. The main contributions of this work can be summarized as follows: 

1) A fuzzy inferencing system is developed for supporting the UAV to avoid obstacle 

dynamically in unknown environment. This fuzzy system consists of two inputs and 

one output. The rules for different inputs and output for the fuzzy logic inference are 

set up in the form of “IF-THEN” statements, and are based on heuristics and human 

experience with navigating through an environment, which is similar to driving a car. 

 

2) Fuzzy-Kinodynamic RRT is a novel method which uses RRT algorithm to do global 

path planning and utilizes fuzzy logic system to avoid obstacles. The UAV starts to 

follow the path generated by global path planning algorithm and the fuzzy logic 

system is activated when it comes across new obstacles. The UAV can avoid 

obstacles dynamically according to the rules designed in this research work and then 

fly back to the previous path. 

3) A more sophisticated and robust fuzzy logic controller with four inputs, two outputs 

and totally 40 fuzzy logic rules is designed for dynamically path planning and 

obstacle avoidance in unknown environments without the support of global path 

planning as implemented in Fuzzy Kinodynamic RRT method. 

4) This dissertation proposes an algorithm on the combination of UAV global path 

planning and sensor-based real-time obstacle avoidance, and validates the 

effectiveness of this method through simulation mainly on Unreal Engine AirSim 

platform.  
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The main advantages over other methods of this work can be summarized as follows: 

(i) This system does not need a priori environment information, and it works well with 

very limited information. 

(ii) It can continue planning the path towards the target while avoiding obstacles 

efficiently. 

(iii) The target and obstacles can either be stationary or moving. 

(iv) The methods are fast and applicable with only onboard sensors, and no camera is 

required. 

 

 

 

1.4 Organization of this Thesis 

This thesis is structured in the following manner: 

 Chapter 2 mainly introduces the literature survey about global path planning methods 

including sampling-based and search-based algorithms for quadrotors. Besides, real 

time obstacle avoidance methods are also presented in this chapter. 

 

 Chapter 3 describes the hardware components and software used in this thesis, such as 

Unreal engine, AirSim and MATLAB. The selection of quadrotors with distance 

sensors or camera is also included in this chapter. 

 

 Chapter 4 illustrates the fuzzy logic inferencing design part including control system, 

problem modeling, membership functions and rules design. Moreover, the 

combination of global path planning and obstacle avoidance method fuzzy 

kinodynamic RRT and its flowchart are also presented. Finally, a more sophisticated 

and robust fuzzy logic controller is designed for efficient obstacle avoidance in more 

complicated environments without global path planning as a prior trajectory for the 
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UAV. 

 

 Chapter 5 presents the test and simulation results on each algorithm in different 

scenarios, including the initial fuzzy logic controller, Fuzzy Kinodynamic RRT and 

the improved fuzzy logic controller. 

 

 Chapter 6 presents the conclusions of the presented research works and summarizes 

several predominant ideas for the future development of the dissertation’s outcomes. 
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Chapter 2   Literature Survey 
 

This chapter will give a comprehensive literature survey on global path planning and local 

path planning methods for the quadrotor in real time obstacle avoidance. 

 

2.1 Global Path Planning 

Global path planning [4] is a type of path planning methods to design an offline 

path from the current position to a target position while avoiding obstacles given a known 

map. Local path planning [5], on the other hand is referred to as the methods that take in 

information from the surroundings in order to generate a simulated field where a path can 

be found. This allows a path to be found in the real-time as well as adapting to dynamic 

obstacles. 

 

Path planning has been widely studied in many fields, such as unmanned aerial vehicle, 

mobile robots and autonomous road vehicles. Many motion planning approaches have 

been presented over the past decades. There are some well-known path planning 

algorithms such as RRT, Potential field method, A* and D* to realize obstacle avoidance.  

 

One of the popular path planning methods in the presence of stationary and moving 

obstacles is the artificial potential field [6] [7]. Charles W. Warren [8] developed an 

artificial potential field technique. However, it can only give one route solution in a static 

environment which may not be the best path with the shortest distance to the goal. Jianli 

Yu [9] illustrated a method of potential field based on 3D path planning where the shape 

and positions of collisions are known. However, this method cannot be implemented on 

path planning in unknown environment and the path needs to be designed beforehand. 

Another method is position estimation method which can generate a path between current 

location and the desired location. The drawback is that this method will accumulate 

estimation error [10] [11] during the whole process. Genetic algorithm [12] [13] is also 



11 

 

applied to solve path planning problem which is a search technique analogous to natural 

evolution [14]. The path planning process is repeated over and over again and the 

population is evolved generation by generation. Toogood et al [15] developed a path 

planning method where obstacle avoidance is achieved by genetic algorithm for 3D robot 

manipulator. Even though genetic algorithm has a strong environmental adaptability and 

has been applied in path planning, it needs to be trained for a long time in order to have 

enough generations to find the optimized solution. 

 

 

2.1.1 Rapidly-Exploring Random Tree 

Rapidly-exploring Random Tree (RRT) is a sampling-based [16] algorithm that is 

designed for efficiently searching non-convex high-dimensional spaces efficiently. RRTs 

are constructed incrementally in a way that quickly reduces the expected distance of a 

randomly-chosen point to the tree. RRTs are particularly suited for path planning problems 

that involve obstacles and differential constraints. It can be considered as a technique for 

generating open-loop trajectories for nonlinear systems with state constraints. 

RRT is a fast algorithm but cannot guarantee asymptotic optimality [17,18]. To improve 

the efficiency of the RRT algorithm, various methods have been proposed including 

Potential Field Planner [19, 20]. RRT relies on the randomly-selected branches and 

collision-checked method to obtain a path in the mission environment. The path is planned 

by building a random tree which starts from the initial point and ends at the desired position. 

When a point is randomly sampled in the space, it then checks whether this point collides 

with the obstacles in the space. If there is no collision, it checks whether the straight line 

starting from this sampling point to the nearest point in the tree has no collisions. If there 

is no collision, this sampling point is then added into the tree and the nearest point is the 

current node. However, this sampling point is ignored and seen as invalid one if it has any 

collisions. The RRT algorithm continuously searches the map and the trees with points and 

the nodes that are formatted during the whole process. Even though RRT can achieve path 

planning in most common cases, the process of RRT is very time-consuming and it cannot 
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even find a final path in some cases where the space is too narrow for the tree to stretch 

out. Thus, an RRT itself may not be sufficient to solve path planning problems. However, 

RRT can be regarded as a component algorithm which can be incorporated into the 

development of many other path planning algorithms.  

As a result, some variations of RRT are designed to improve efficiency. There are many 

RRT-variants such as RRT* [21], DT-RRT [22] and Fast RRT [23] that are widely used 

for optimization. RRT* is one of the recent sampling-based algorithms proposed as an 

extension of RRT [24, 25]. It iteratively generates and optimizes the path as the number of 

sampling times increases. RRT-connect [26] is a bi-directional version method which 

synchronously searches two trees from start point to goal point. The RRT-connect planner 

[27] is designed specifically for path planning that involves no differential constraints [28, 

29]. In this case, the need for incremental motions is less important. The connect heuristic 

is a greedy function that can be considered as an alternative to the extension function. DT-

RRT is a dual tree RRT algorithm with workspace tree and state tree. The workspace tree 

contains the position, type and connections of nodes. The state tree contains the trajectories 

with control inputs. All the RRT-variants [30-34] can optimize the performance of RRT by 

changing the rules or combining it with other methods in different cases. Thus, RRT 

algorithm can be considered as a base method which can be combined with other methods 

to perform better in some cases. 

 

2.1.2 Probabilistic Roadmap  

Another popular sampling-based path planning algorithm is Probabilistic Roadmap 

method (PRM). Instead of generating the graph in each desired path, PRM aims to build 

a single roadmap by generating a limited number of random points in a given area. 

Kavraki [35] proposed an analysis of probabilistic roadmaps for path planning. The 

method has proven to be successful in practice, but the performance is still limited 

theoretically. Path planning method based on PRM algorithm [36, 37] is then 

implemented on car-like mobile robot in unknown environments, where the algorithm 

performs well in the complex environment. In addition, a 3D PRM based real-time path 



13 

 

planning method [38, 39] is proposed for UAV in complex environment, which can 

significantly reduce the computational time than traditional PRM method. However, 

similar to RRT, it is still not efficient enough and may not find a final solution in 

complicated environments where narrow nodes can be ignored. 

 

2.1.3 A* Graph Traversal Path Search  

A* is a search based [40] modification algorithm of Dijkstra ’ s Algorithm that is 

optimized for a single destination. Dijkstra’s Algorithm can find paths to all locations. A* 

finds some paths to one location, or the closest of several locations. It prioritizes the paths 

that seem to be leading closer to a goal. Starting from the initial vertex where the path 

should start, the algorithm marks all direct neighbors of the initial vertex with the cost to 

get there. It then proceeds from the vertex with the lowest cost to all of its adjacent vertices 

and marks them with the cost to get to them if this cost is lower. Once all neighbors of a 

vertex have been checked, the algorithm proceeds to the vertex with the next lowest cost. 

Once the algorithm reaches the goal vertex, it terminates and the robot can follow the edges 

pointing towards the location with the lowest cost.  

While Dijkstra’s Algorithm works well to find the shortest path, it wastes the time 

exploring in the directions that are not promising. That is why A* comes out and is widely 

used in some cases. Depending on the environment, A* might accomplish search much 

faster than Dijkstra’s algorithm does. Greedy Best First Search explores in the promising 

directions but it may not find the shortest path. The A* algorithm uses both the actual 

distance from the start and the estimated distance to the goal. Compared with other artificial 

intelligence algorithms, A* has many advantages such as high efficiency, easy 

implementation and shorter running time. Thus, it has been widely implemented in various 

fields.  
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2.2 Local Path Planning 

2.2.1 Artificial Potential Field(APF) 

The potential field method was first proposed by Khatib [41]. This algorithm is based 

on the principle of potential field force of attraction or repulsion in which robot and 

obstacle act as a positive charge where the goal acts as a negative charge. Thus, obstacles 

repel from the robot by generating repulsive force and the goal attracts the robot due to 

opposite charge results in attractive force. Final force on robot is the vector sum of all 

repulsive and attractive force. 

The idea of a potential field is taken from nature. For instance, a charged particle 

navigating a magnetic field, or a small ball rolling in a hill. The idea is that depending on 

the strength of the field, or the slope of the hill, the particle, or the ball can arrive at the 

source of the field, the magnet, or the valley in this example. In robotics, we can simulate 

the same effect, by creating an artificial potential field that attracts the robot to the goal. 

By designing adequate potential field, we can make the robot exhibit simple behaviors. For 

instance, if there is no obstacle in the environment, the robot should seek this goal. To do 

that in conventional planning, one should calculate the relative position of the robot to the 

goal, and then apply the suitable forces that drive the robot to the goal. In the potential field 

approach, we simple create an attractive field going inside the goal. The potential field is 

defined across the entire free space, and in each time step, we calculate the potential filed 

at the robot position, and then calculate the induced force by this field. The robot then 

should move according to this force. However, APF has its own pros and cons: 

The advantages of APF is that it is applicable for online or real-time environment as well 

with the added obstacle avoidance component. 

The disadvantages are that potential fields method suffers from local minima [42] 

problem and high complexity due to its bi-operational path model. Koren and Borenstein 

[43] identified some problems that are inherent to potential fields, i.e. they exist in all 

implementations of the method: 

The first problem is the trap situations due to local minima. The local minima problem 

may occur when all the vector field from obstacles and the goal point cancel each other so 
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the path never reaches the goal. Furthermore, there is no passage between closely spaced 

obstacles. If two obstacles are placed close to each other like a doorframe, the repulsive 

forces from each obstacle is combined into a single repulsive force that points away from 

the opening between the obstacles. The robot will then turn away from the opening even if 

the goal is on the other side. 

 

2.2.2 Fuzzy Logic Method 

 Fuzzy logic method [44] is more robust and performs better in local minima problem 

compared with artificial potential field. The advantages in fuzzy logic is that it produces 

better result than a human can produce in a short period of time. It is well suited for 

implementing a solution in the complex autonomous mobile system, but it is difficult for 

simple control system. 

Fuzzy logic is a method of reasoning that resembles human reasoning. The approach of 

fuzzy logic imitates the way of decision making in humans that involves all intermediate 

possibilities between digital values YES and NO. The conventional logic block that a 

computer can understand takes precise input and produces a definite output as TRUE or 

FALSE, which is equivalent to human’s YES or NO. The inventor of fuzzy logic, Lotfi 

Zadeh, observed that unlike computers, the human decision making includes a range of 

possibilities between YES and NO, such as definitely yes, possibly yes, and cannot say etc. 

The fuzzy logic works on the levels of possibilities of input to achieve the definite output. 

 

 

The reason why researchers choose Fuzzy Logic on path planning is that it has a perfect 

implementation when it comes to real time obstacle avoidance. The methods discussed 

above assume that the map of the environment is known in advance. Based on that 

knowledge, we can easily find the path that the UAV should follow on according to many 

path planning algorithms. However, if the environment is known, path planning becomes 

very tough for many methods such as RRT and PRM. Therefore, fuzzy logic is useful to 

help deal with the uncertainty. 
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Fuzzy logic [45-47] control and inferencing systems have found applications in several 

path planning methods (c.f., [48] and [49]). Fuzzy logic is a soft computing method and 

has the ability to make use of knowledge expressed in the form of linguistic rules [50, 51]. 

By establishing the Fuzzy logic rules it can implement expert human knowledge and 

experience and perform well for obstacle avoidance [52, 53]. Fuzzy logic can generally 

work with imprecise state of variables and uncertainties. Due to the ability to handle 

unknown conditions and react dynamically [54, 55], fuzzy logic is an ideal tool to address 

the obstacle avoidance problem. Thus, the fuzzy logic-based path planning can lead to an 

efficient approach for UAV to move and avoid obstacle in real time. By far, most of the 

fuzzy logic systems have a large amount of inputs and outputs information to be processed 

and thus do not work efficiently. When no obstacle is detected, the UAV will waste time 

on finding the direction towards the target. In this work, a combination of RRT and fuzzy 

logic controller is implemented for improving the efficiency. This method makes it more 

efficient for the UAV to reach the target since fuzzy logic controller stops searching when 

no obstacles are detected in sensing radius.   

 

2.3 Summary 

In this chapter, a literature survey on global path planning method and local path 

planning and obstacle avoidance method have been carried out. Different methods have 

their own pros and cons according to different implementation cases. For example, RRT, 

PRM and A* are very useful and efficient global path planning algorithms. However, RRT 

is very time-consuming when it comes to narrow corner or 3D environment because the 

nodes are stretching out randomly. Both sampling-based and search-based algorithm has 

to know the map of the environment in advance. Fuzzy logic can then overcome that 

constrains and help avoid obstacle more efficiently in real time without knowing the 

environment. 
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Chapter 3   Integrated System Description 
 

This chapter presents an overview of the drone selection, software simulation 

environment including AirSim, ROS Gazebo with Simulink and fuzzy logic inference 

system in this research. 

 

3.1 UAV Model 

3.1.1 Structure 

In this thesis, a 3D quadrotor Iris Quadrotor model simulation model is chosen. It has 

many virtual parameters, fixed-pith propellers, 850kv brush-less motors, Electronic Speed 

Controllers (ESC), aluminum arms, a power distribution board and GPS. The quadrotor 

is powered by a Hyperion 3s 4000mAh 25C battery. The curved body comes with 4 hands, 

and two of them are black while the other two are green, allowing better orientation. Every 

hand extends from a corner of the body, and a motor with a propeller. The quadrotor is 

shown in Figure 3.1. 

 

 

Figure 3.1 IRIS quadrotor model 
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The quadrotor is chosen to fly in Quadrotor X- configuration. These configurations are 

shown in Figure 3.2, where the blue and green arrows indicate rotor configuration. Green 

indicate clockwise direction of the rotors, while blue indicate counter-clockwise direction. 

 

                

Figure 3.2 Quadrotor X-configuration  

 

3.1.2 Movement principle 

The X-shape quadrotor mathematical modeling of dynamical systems can be presented as 

below [56]: 
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where 𝜙, 𝜃, 𝜑 are the rotation angle (counterclockwise) of the fuselage around the Y-axis, 

X-axis and Z-axis, 𝐼𝑥, 𝐼𝑦 , 𝐼𝑧 are the moment of inertia of the fuselage in three directions, 𝐽𝑟 

is the moment of inertia, 𝐾1, …𝐾6 are the air resistance coefficient,  𝑙 is the arm length from 

the motor to the center of mass, m is the mass of the body and g is the gravitational 

acceleration, and  U is the propellers’ speed input. 

 

Then the X-shape control input can be defined as: 

{
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                                               (3-2) 

where 𝛺𝟏, 𝛺𝟐, 𝛺𝟑, 𝛺𝟒 are the speeds of the four motors respectively, 𝑏, 𝑑 are the force to 

torque scaling factors respectively. 

 

Hovering 

As each motor rotates with its propeller, it generates an upward lift force and a counter-

torque force in the opposite direction. When the counter-torque force generated by the 

two diagonal shafts (motor 1+2 VS motor 3+4) is equal to each other, the system stability 

is guaranteed. At the same time, the combined lift from the four motors is just enough to 

cancel out the plane's own gravity, and the plane hovers. 

 

Figure 3.3 The rotation state of the four motors when hovering 

Vertical motion 

It is ensured that the reversing torques cancel each other and the total lifting force is 
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increased so that it is greater than gravity, and the body can rise vertically. If the total 

lifting force is decreased to the level less than gravity, the body can fall vertically. 

 

Figure 3.4 The rotation state of the four motors when doing Vertical movement 

 

Pitch motion (forward and backward motion) 

At the same time, the speeds of motors 1 and 3 are reduced and the speeds of motors 2 

and 4 are increased, so the aircraft will be bent forward. The total lift in the forward 

position is not vertical, but forward with the plane. This will produce a component going 

forward in the horizontal direction. In this position, the plane moves forward with this 

horizontal force. Similarly, if we increase the speed of motor 2 and 4 and decrease the 

speeds of motors 1 and 3, the plane will lean back. The total lifting force in the case of 

rearward, creates a component of the horizontal rearward force. In this position, the plane 

will move backwards with this horizontal force. 

 

Figure 3.5 The rotation state of the four motors when doing Pitch motion 
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Rolling motion (side motion) 

The principle is similar to pitching motion. If one increases the speeds of motors 1 

and 4, and decreases the speeds of motors 2 and 3, and the plane will roll to the right. If 

one leans to the right, the plane will move to the right. If one increases the speeds of 

motors 2 and 3, and decreases the speed of motors 1 and 4, and the plane will roll to the 

left. If one leans to the left, the plane will move to the left. 

 

Figure 3.6 The rotation state of the four motors when doing Rolling motion 

 

3.1.2 Flight controller 

Pixhawk is a popular general flight controller launched by manufacturer 3DR. It is an 

independent open-hardware project providing readily-available, low-cost, and high-

end, autopilot hardware designs to the academic, hobby and industrial communities, and 

is the reference hardware platform for PX4. 

The primary job of flight controller is to take the desired state as input, estimate actual 

state using sensors data and then drive the actuators in such a way that actual state comes 

as close to the desired state. For quadrotors, the desired state can be specified as roll, pitch 

and yaw, for example. It then estimates the actual roll, pitch and yaw using gyroscope and 

accelerometer. Then it generates appropriate motor signals so that the actual state becomes 

the desired state. 

The Pixhawk has a 32-bit ARM Cortex M4 core with FPU processor, MPU6000 and 

ST Micro 16-bit gyroscope sensors, 7V servo rail high power and many interfaces for 

ports, signals input and output to use. It also includes an Inertial Measurement Unit (IMU) 

https://pixhawk.org/
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with InvenSense MPU-6000, 3-axis Gyro/3-axis Accelerometer, Honeywell HMC5883L-

TR 3-axis Digital Compass and Measurement Specialties MS5611-01BA03 Barometric 

Pressure Sensor.  

 

Figure 3.7 Pixhawk hardware 

In addition, the Pixhawk has a very rich expansion. It has Scalable 1 set of electronic 

compass, 2 sets of NMEA or UBX standard GPS, CAN bus device (ESC), 2 I2C devices 

(smart battery, status light, optical flow smart camera, laser sensor, ultrasonic sensor, etc.) 

This drone control system runs PX4 and ArduPilot environment. It has many powerful 

features with a very high stability. 

 

3.2 Simulation Environment 

Software simulation is essential for quadrotor testing since it has very low cost and 

there are a lot of open source platforms. In this research, AirSim is mainly used for 

simulation, MATLAB is used to design fuzzy logic inference and ROS GAZEBO with 

Simulink is utilized for testing. 
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3.2.1 AirSim and Unreal Engine 

AirSim is a simulator for drones, cars and more, built on Unreal Engine and Unity 

platform. It is open-source, cross platform, and supports software-in-the-loop simulation 

with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 

for physically and visually realistic simulations. It is developed as an Unreal plugin that 

can simply be dropped into any Unreal environment. 

AirSim is cross-platform simulator for drone simulation. It can be used in Windows, 

Linux and macOS. It also provides support for PX4 and ArduPilot.  

Since setting up PX4 is not a trivial task in most cases, AirSim also provides a built-in 

flight controller called simple_flight. Normally the flight controllers are designed to run 

on actual hardware on vehicles and their support for running in simulator varies widely. 

They are often fairly difficult to configure for non-expert users and lacking cross platform 

support. All these problems have played significant part in design of simple_flight. 

The built-in simple_flight flight controller can control vehicle by taking the desired 

input as angle rate, angle level, velocity or position. Each axis of control can be specified 

with one of these modes. Internally simple_flight uses the cascade of PID controllers to 

finally generate actuator signals. 

 

3.2.2 Computer vision 

AirSim has a “Computer Vision” mode. In this mode, we can use the keyboard to move 

around the scene, or use APIs to position available cameras in any arbitrary pose, and 

collect images such as depth, disparity, surface normal or object segmentation.  

 

3.2.3 ROS GAZEBO with Simulink 

The Robot Operating System (ROS) is a flexible framework for writing robot software. 

It is a collection of tools, libraries, and conventions that aim to simplify the task of creating 

https://www.unrealengine.com/


24 

 

complex and robust robot behavior across a wide variety of robotic platforms.  

In this research, there is a simulation based on ROS being implemented. GAZEBO is a 

3D environment simulation software, which can load the flight model. In addition, 

Simulink is also used to calculate and generate the path, and publish the commands for 

quadrotor in ROS GAZEBO to use. The PID controller is simulated in SIMULIINK and 

also the trajectory generation is implemented in MATLAB. 

 

 

 

3.3 Inference System  

3.3.1 Fuzzy Logic MATLAB 

Fuzzy Inference System (FIS) is the key unit of a fuzzy logic system whose primary 

work is making the decision. It uses the “IF…THEN” rules along with connectors “OR” 

or “AND” for drawing essential decision rules. 

The following are some characteristics of FIS: 

 The output from FIS is a fuzzy set irrespective of its input which can be fuzzy 

or crisp. 

 It is necessary to have fuzzy output when it is used as a controller. 

 A defuzzification unit would be there with FIS to convert fuzzy variables into 

crisp variables. 

 

The fuzzy inference system has five functional blocks. The first block is the rule base 

which contains fuzzy IF-THEN rules. The second one is database, which defines the 

membership functions of fuzzy sets in fuzzy rules. Then decision making unit is used to 

perform operation on rules. Fuzzification inference unit converts the crisp quantities into 

fuzzy quantities. Finally, Defuzzification Interface Unit converts the fuzzy quantities into 

crisp quantities. The following is a block diagram of fuzzy interference system. 
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Figure 3.8 FIS block diagram 

 

Mamdani Fuzzy Inference System [57] was proposed in 1975 by Ebhasim Mamdani. 

Basically, it was anticipated to control a steam engine and boiler combination by 

synthesizing a set of fuzzy rules obtained from people working on the system. 

In this research, Mamdani Fuzzy Inference System is designed in MATLAB. This fuzzy 

logic inference is implemented to avoid the obstacles efficiently in unknown 

environments in real time. 

 

3. 4 Summary 

This chapter mainly describes the quadrotor selection with movement principles, flight 

controller, simulation experimental environment used in this research. The simulation 

environment includes the AirSim open source platform, ROS Gazebo with Simulink, and 

finally the Fuzzy Logic Inference System designed in MATLAB. 
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Chapter 4   Research Methodologies 

4. 1 Fuzzy Logic Overview 

In this chapter, the developed methodologies will be presented on Fuzzy Kinodynamic 

RRT, which is a combination of rapidly-exploring random tree algorithm and fuzzy logic 

inference for two-dimensional navigation, and the improved fuzzy logic controller 

without global path planning for drone autonomous navigation. First, the fuzzy logic 

inferences involved in the developed methodologies are introduced. 

 

The core part of fuzzy logic controller is the fuzzy logic inference shown in Figure 4.1. 

 

Figure 4.1 Fuzzy logic controller overview 

 

The whole obstacle avoidance for this fuzzy logic inference is very similar to driving a 

car. The agent can be equipped with three sensors, which are on the forward, 45 degrees 

to the left and 45 degrees to the right respectively. Then we can simply set two inputs, 

which are the distance to the front and the distance subtraction between left distance and 

right distance. Based on the designed fuzzy logic rules, we can get the steering angle as 

the output from the system. With the help of this fuzzy logic controller, the agent can 

avoid obstacles effectively in real time. 
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4.2 Path planning and collision avoidance  

A new method is developed for path planning and obstacle avoidance in unknown 

environments. Fuzzy Kinodynamic RRT uses rapidly-exploring random tree (RRT) 

algorithm to find the global trajectory, and the fuzzy logic inference is activated when the 

sensors detect any obstacles to help the drone to avoid collisions dynamically. With the 

help of RRT and fuzzy logic inference, global path can be effectively generated and any 

incoming obstacles can be avoided in real time. However, Fuzzy Kinodynamic RRT 

algorithm is subjected to some constraints because it is not fast enough and the drone needs 

to wait for some time for the system to generate and regenerate the global trajectory. In 

addition, mapping the whole environment is another issue. Thus, the fuzzy logic controller 

for more complicated environments is developed for autonomous drone navigation without 

knowing the map and global path planning in advance. We have conducted simulations of 

the proposed algorithm using MATLAB fuzzy logic inference, Visual Studio Code and 

Microsoft open source platform AirSim in Unreal Engine. 

The following sub-sections explain the individual parts of the presented methods for 

drone path planning and obstacle avoidance. 

 

4.2.1 Rapidly-exploring random tree 

Traditional path planning algorithms include artificial potential field method, fuzzy rule 

method, genetic algorithm, neural network, simulated annealing algorithm, and ant colony 

optimization algorithm. However, all these methods need to model obstacles in a certain 

space. The computational complexity grows exponentially as the robot's degree of freedom 

increases, which is not suitable for path planning of multi-degree-of-freedom robots in 

complex environments. The path planning algorithm based on RRT (rapidly-exploring 

random tree), through the collision detection of sampling points in the state space, avoids 

the modeling of the space, and can effectively solve the path planning in high-dimensional 

space and complex constraints planning issues. The feature of this method is that it can 

search high-dimensional space quickly and effectively. Through random sampling points 
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in the state space, the search is directed to blank areas, so as to find a planned path from 

the starting point to the target point. It is suitable for solving the complex problems of 

multi-degree-of-freedom robots. Similar to PRM, this method is probabilistically complete 

and not optimal. 

The RRT is an efficient planning method in a multi-dimensional space. It uses an initial 

point as the root node, and generates a random extended tree by randomly sampling and 

adding leaf nodes. When the leaf node in the random tree contains the target point or enters 

the target area, one can find a random tree and the path from the initial point to the target 

point. The basic RRT algorithm is shown in the following pseudo code: 

 

 

Figure 4.2 pseudo code RRT 

 

The random tree T contains only one node during initialization: the root node qinit. First, 

the Sample function randomly selects a sampling point qrand (4 lines) from the state space; 

then the Nearest function selects a node qnearest (5 lines) closest to qrand from the random 

tree. Finally, the Extend function extends a distance from qnearest to qrand, Get a new 

node qnew (line 8). If qnew collides with an obstacle, the Extend function returns empty, 

giving up this growth, otherwise adding qnew to the random tree. Repeat the above steps 
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until the distance between qnearest and the target point qgoal is less than a threshold, which 

means that the random tree has reached the target point, and the algorithm returns success 

(lines 6-7). In order to make the algorithm controllable, one can set the upper limit of the 

running time or the upper limit of the number of searches (3 lines). If the target point cannot 

be reached within the limited number of times, the algorithm returns failure. 

The RRT algorithm is used in our Fuzzy Kinodynamic RRT method to make global path 

planning for the drone to follow. The drone will strictly follow the generated path until it 

encounters any obstacles and then utilize the proposed fuzzy logic controller to avoid them. 

 

4.2.2 Fuzzy logic inference design 

A simple Fuzzy logic inference system is implemented in this work for UAV navigation 

and obstacle avoidance, as shown in Fig. 4.3.  

 

 

Figure 4.3. Fuzzy inference inputs and output 
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The system is designed with 2 inputs and 1 output, as defined below: 

 

TABLE 4.1.    Input and output 

 

Input 1 Input 2 Output 

 

Front distance 

to obstacle I 

 

(Left-Right)  

distance to obstacle II 

 

Steering Angle III 

      

I: Front distance to obstacle means the distance from the front of UAV to the obstacle. 

II: (Left-Right) distance to obstacle is the result of from left 45 degrees distance of the 

UAV to the obstacle minus right 45 degrees distance of the UAV to the obstacle. 

III: Steering Angle is the steering reaction of UAV based on Fuzzy logic rules. 

 

There are 9 Fuzzy logic rules in total. The fuzzy logic system is activated when the 

sensor detects any obstacles on the way. De-fuzzification is done by using center of 

gravity (COG) method, which produce a quantifiable result in Crisp logic, given Fuzzy 

sets and corresponding membership degrees. Finally, the output steering angle variable 

and control surface are calculated based on input variables and logic rules.       

In this fuzzy inference system, Gaussian membership function is implemented which 

is given by equation (4.1).    

 

2

2

( )

2( ; , )

x c

f x c e 
 

                        (4.1) 

 

where σ represents standard deviation and c is the mean value for Gaussian function. The 

membership functions for two inputs variables and one output variable with a range of 

{‘small’, ‘medium’, ‘large’} are shown in Figs. 4.4, 4.5 and 4.6 respectively. 
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Figure 4.4. Fuzzy membership function input 1 

 

 
 

Figure 4.5. Fuzzy membership function input 2 

 

 
 

Figure 4.6. Fuzzy membership function output 
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The small, medium and large are based on normal Gaussian function and the parameters 

(mean and standard deviation) for each fuzzy variable are designed. The small, medium 

and large values for input 1 represent the distance to front obstacle. Thus, the value is set 

ranging from -10 to 25. It should be noted that left minus right distance and the output 

angle are possible to be both positive and negative, so the small of these two variables is 

defined as negative, medium as approaching zero and large as positive. The exact values 

are set according to experience at the beginning, and further adjustments are made 

according to the performance in simulation.  

 
Each input and output membership functions are divided into three values which can 

be chosen from a range of {‘small’, ‘medium’, ‘large’}. The physical meaning for three 

sets of input and output variables is shown in TABLE 4.2. 

 

 

TABLE 4.2.    Physical meaning of rules 

 

 Input 1       Input 2 Output 

Small Very close to 

obstacle 

Left distance less 

than right distance 

Turn left 

Medium Near obstacle Left distance almost 

equal to right 

distance 

Straight ahead 

Large Far away from 

obstacle 

Left distance larger 

than right distance 

Turn right 

 
With all the real meanings discussed above, “IF-AND, THEN” fuzzy logic is used to 

determine the rules of output based on two different inputs. Based on the real physical 

logics discussed above, one needs to consider all the cases where the input and output 

change from “small”, “medium” to “large”. All nine cases are discussed as shown below 

and the verification is implemented on simulation part. 

 

 

Rule 1: If the front distance is small and left minus right is small, that means the drone 
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is near to the obstacles and the distance to left is less than right, then it should turn right 

to avoid obstacles. Thus, the output is large. 

Rule 2: If the front distance is small and left minus right is medium, that means it is 

near obstacle and going straight ahead, then it can go either left or right to avoid obstacles. 

Hence the output is set as large. 

Rule 3: If the front distance is small and left minus right is large, that means it is near 

obstacle and left is larger than right, then it should go left to avoid obstacles. Hence the 

output is set to small. 

Rule 4: If the front distance is medium and (left - right) distance is small, that means 

the front distance is average and left distance is less than right distance, then it should turn 

right to avoid obstacles. Thus, we set the output to large. 

Rule 5: If the front distance is medium and (left - right) distance is medium, that means 

the front distance is average and left distance is similar to right distance, then it does not 

need to turn left or right. Thus, we set the output to medium. 

Rule 6: If the front distance is medium and (left - right) distance is large, that means 

the front distance is average and left distance is larger than right distance, then it should 

turn left to avoid obstacles. Thus, we set the output to small. 

Rule 7: If the front distance is large and (left - right) distance is small, that means it has 

sufficient space to go straight ahead and left distance is less than right distance, then it is 

better to turn right in advance. Thus, we set the output to large. 

Rule 8: If the front distance is large and (left - right) distance is medium, that means it 

has sufficient space to go straight ahead and left distance is similar to right distance, then 

it does not need to do anything. Thus, we set the output to medium. 

Rule 9: If the front distance is large and (left - right) distance is large, that means it has 

sufficient space to go straight ahead and left distance is larger than right distance, then it 

is better to turn left in advance. Thus, we set the output to small. 

 

As discussed above, each of two inputs and the output have three variables as {‘small’, 

‘medium’, ‘large’}. So there are nine logics in total needed to be considered in real world. 

The Fuzzy rules are generated heuristically and are designed to cover most cases where 

the UAV will come across and get the proper output to avoid obstacles in unknown 
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environments. The Fuzzy logic rules and results are summarized in TABLE 4.3 below. 

 
TABLE 4.3.    Summary of Rules and results 

 

 If 

(Input 1) 

And 

(Input 2) 

Then 

(Output) 

Rule 1 Small Small Large 

Rule 2 Small Medium Large 

Rule 3 Small Large Small 

Rule 4 Medium Small Large 

Rule 5 Medium Medium Medium 

Rule 6 Medium Large Small 

Rule 7 Large Small Large 

Rule 8 Large Medium Medium 

Rule 9 Large Large Small 

 
 

 

Based on the rules we can calculate the output variables and the steering angle control 

surface is shown in Fig. 4.7. 

 
 

Figure 4.7. Control surface 
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4.2.3 Fuzzy kinodynamic RRT 

The new Fuzzy-Kinodynamic RRT method presented in this work is based on RRT for 

global path planning and fuzzy rules for obstacle avoidance. RRT is a sampling-based 

method that explores the entire environment to find a connected path from the start to goal 

positions. However, in a scene with many obstacles the chance of finding a point that is 

not lying in an obstacle and able to connect to the tree is very small. The final path 

generated by RRT algorithm is not always the optimum path with the shortest distance 

from the starting to the goal point because the random trees may go far away to avoid 

obstacles. 

The proposed Fuzzy-Kinodynamic RRT method implements both RRT algorithm and 

fuzzy logic and utilizes RRT algorithm to perform global path planning at the first level, 

and then uses fuzzy logic to achieve obstacle avoidance, and finally generates an 

optimized path and a set of path points that the UAV can follow by with good performance.  

First, the global path planning is carried out by RRT and then fuzzy logic inferencing 

is activated when the obstacles are detected during the path. L is the distance from the left 

or right to obstacle and this parameter can be set and adjusted in program. After avoiding 

obstacles, the UAV will move back to and follow the previous path done by RRT, and a 

set of path points will be generated in the final step. The entire algorithm is illustrated in 

the diagram of Fig 4.8. 
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                                               Figure 4.8. Fuzzy-Kinodynamic RRT method flowchart 

 

 

 

The pseudocode of the algorithm is presented below: 

 

 

Table 4.4 Run RRT to make global path planning 

1: function BuildRRT() 

2: Initialize search tree T with x start 

3: while T is less than the maximum tree size do 

4:  xsamp sample from X 

5: xnearest nearest node in T to xsamp 

6:  employ a local planner to find a motion from xnearest to xnew in xsamp direction 
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7:  if the motion if collision-free then 

8:  add xnew to T with edge from xnearest to xnew 

9:   if xnew is in Xgoal then 

10:  return SUCCESS and the motion to xnew 

11:  end if 

12: end if 

13: end while 

14: return FAILURE 

 

Table 4.5 Run Fuzzy Logic Controller to avoid obstacles 

1: function Fuzzy 

2: while obstacles detected by sensor with distance L do 

3:  Initialize Dfront and D(l-r) 

4: Import fuzzy rules  

5: Analyze control output based on fuzzy rules 

6:  employ heading angle to agent 

7: end while 

8: if xcurrent in path  

9: return None 

10: else 

11: set xcurrent to xstart 

12: do function BuildRRT() 

 

 

4.2.4 Improved Fuzzy Logic Controller 

In order to make our fuzzy logic method more robust and efficient in more complicated 

environments without global path planning, we need to design more complex rules. In our 

research, the AirSim built-in distance sensor is used for distance detection. The problem 

formulation is shown as follows: 

The path planning problem is formulated by generating a path from the initial state to 

final state, which are ),( oo yxO and ),( argarg ettett yxT respectively. Thus, the kinematic 

equations for a UAV can be formed as a function of the inertial position ),( yx , the cruise 

velocity ( v ), and the heading angle ( ). The UAV in inertial reference frame is shown 

in Figure 4.9.  
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Figure 4.9: UAV in inertial reference frame 

 

The second-order differential equations which describes the aircraft autopilot system 

were developed by Buzogany et al [58]. The assumption is that the altitude is constant, so 

we only consider all motions in two dimensions and the altitude is removed as a degree 

of freedom. Therefore, we are only interested in controlling the velocity and heading angle 

of the UAV, which is cv  and c  respectively. The motion of the UAV can be described 

as follows in equation (4.3), where v  is the time delays when controlling the velocity, 

while   is the time delays of controlling heading angle 

 

�̇� =
|

v
( cv − 𝑣)      ，�̇� =  

1

𝜏𝜃
(𝜃𝑐 − 𝜃)                                            (4.2) 

 

Further development by Dong et al. [59] illustrates the UAV in the inertial reference 

frame (Figure 4.9).The position of the UAV can be defined using the heading angle and 

distance from the origin which is represented as d  as follows:  

https://www.hindawi.com/journals/afs/2012/989051/fig1/
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    Combing equations (4.2) and (4.5), the kinematic equations can be written in the 

following form: 
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where the control inputs are the velocity ( cv ) and heading angle ( c ). Both the velocity 

and heading angle are constrained as follows in (4.7) and (4.8) respectively. In addition, 

the acceleration and heading angle rate are bounded to prevent instantaneous changes as 

shown in equations (4.9) and (4.10) respectively, 

 

maxmin VVV    (4.7) 

maxmax  
 
(4.8)  

maxmax ava    (4.9) 

 

maxmax   
 
(4.10)
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In this problem setup, the drone is equipped with the AirSim built-in distance sensor, 

which has a sensing range within ±90◦ with a certain sensing radius as shown in Figure 

4.10. 

 

Figure 4.10. Sensing radius 

Assumptions 

For the purpose of this investigation, several simplifying assumptions are made without 

taking away from the applicability of the developed approach. While the control 

methodologies developed in this research can be extended three dimensions, it is assumed 

that all motions are in two dimensions. The altitude is a constant. Additionally, the aircraft 

is regarded as a point mass, and therefore, no moment effects are considered. Furthermore, 

the dynamic constraints of the aircraft are assumed to be known. 

To isolate the performance of the control methodology, several assumptions are made 

on the capabilities of the sensor system. The UAV is assumed to be able to detect the 

obstacles within its sensing range in real time.  

The position of the UAV and the target location are assumed to be known by a GPS 

(global positioning system) with an accurate coordinate. In addition, this information is 

updated at a reasonable sampling time. Furthermore, the start location of the UAV and 

the target positions are given with the GPS locations, and there are no obstacles at these 
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locations. Finally, in this research, it is assumed that a feasible solution and clear path 

exist and the UAV can navigate around the obstacles safely to the target location. This 

includes the assumption that the target location is a “safe” distance away from any 

obstacle. 

Inputs and outputs  

For this problem setup, four inputs are used for the fuzzification and two outputs are 

given after the defuzzification. The inputs into the system are as follows: the distance 

from the UAV to the obstacle, angle between the UAV and the obstacle, the distance to 

the target, and the error between the current heading angle of the UAV and the angle of 

the target in relation to the inertial reference frame. The target inputs are chosen based on 

the assumption that there is only minimal and limited amount of information about the 

target: GPS coordinates. Based on this limited information, no other mapping information 

needs to be known in advance. The outputs for the system is used as the control inputs to 

a UAV system.  

The distance to the obstacle (Figure 4.11) is described by four membership functions: 

Close, Medium Distance, Far, and Very Far which is out of sensing radius. The angle 

between the obstacle and the UAV (Figure 4.12) is described by six membership functions: 

Negative Big (NB), Negative Medium (NM), Negative Small (NS), Positive Small (PS), 

Positive Medium (PM), and Positive Big (PB). Similar to the obstacle distance, the 

distance to the target (Figure 4.13) is described by three membership functions: Close, 

Medium Distance, and Far. Finally, the error between the heading angle and the target 

angle (Figure 4.14) is described by seven membership functions (similar to the obstacle 

to the UAV): Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero, 

Positive Small (PS), Positive Medium (PM), and Positive Big (PB).  

After defining the above inputs, the control input (FIS output also) for the system is 

obtained after decision making rules. Therefore, the outputs of the fuzzy inference system 

are the percent of the maximum velocity and the heading angle change, which are used as 

the control input to the system.  

Thus, the outputs of the FIS are the percent of maximum velocity and the heading angle 
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change. The Mamdani method is used in the FIS. The output velocity (Figure 4.15) is 

represented by four membership functions: Very Slow, Slow, Fast, and Very Fast. 

Furthermore, the output angle change (Figure 4.16) is parallel to the target angle. 

Therefore, the output of heading angle change is broken into seven membership function: 

Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero, Positive Small 

(PS), Positive Medium (PM), and Positive Big (PB). 

 

TABLE 4.6.    Input and output 

 

Input 1 Input 2 Input 3 Input 4 Output 1 Output 2 

oD  
tD  

t  
o  V  

c  

  

     

where: 

 

oD : Distance from the UAV to the obstacle 

tD : Distance from the UAV to the target 

o : Angle between the UAV and the obstacle  

t : The error between the current heading angle of the UAV and the angle of the target 

in relation to the inertial  

V : The percent of the maximum velocity 

   c : The heading angle change 

 

Fuzzy logic rules 

   The fuzzy logic controller rules are using the “IF-THEN” statements and the design 

is based on human experience and heuristics for obstacle avoidance and path planning. 

There are totally 40 rules in this fuzzy logic system. Technically the rules are based on 

two main cases: obstacle within sensing radius, obstacle without sensing range.  

 Firstly, we consider the case where there is no obstacle within the sensing radius ( oD

= Very Far ). In this circumstance, the main objective of the fuzzy logic controller is to 

drive the UAV to fly to the destination directly. Thus, path planning is done by changing 



43 

 

the heading angle of the UAV to match the angle of the target in the inertial reference 

frame, and the heading angle error between these two angles becomes zero. Compared 

with the Fuzzy Kinodynamic RRT method illustrated above, this fuzzy controller does 

not require the mapping information of the whole environment. Therefore, autonomous 

navigation for the UAV in more complicated environments can be done by this fuzzy 

logic inference without global path planning. 

Since there are no obstacles in sensing range in this case, the UAV tends towards its 

maximum operating speed. When the UAV reaches the target location, it changes the 

velocity to slow down and driving the angle error to zero, i.e. the mission is accomplished. 

The rules between 1 and 10 are illustrated in details as shown below: 

 

Rule 1: If  oD = Very Far and  tD = Far, then  V = Very Fast. 

Rule 2: If  oD = Very Far and  tD = Medium Distance, then  V = Slow. 

Rule 3: If  oD = Very Far and  tD = Close, then  V = Very Slow. 

 

 If 

( oD ) 

And 

( tD ) 

Then 

(V ) 

Rule 1 Very Far Far Very Fast 

Rule 2 Very Far Medium Distance Slow 

Rule 3 Very Far Close Very Slow 

 

When there is error between the heading angle of the UAV and target, the fuzzy logic 

controller tends to change the heading angle c to  t  for driving the UAV towards the 

target. 

Rule 4: If  oD = Very Far and  t = Negative Small, then c  = Negative Small. 

Rule 5: If  oD = Very Far and  t = Negative Medium, then c  = Negative Medium. 

Rule 6: If  oD = Very Far and  t = Negative Big, then  c = Negative Big. 

Rule 7: If  oD = Very Far and  t = Zero, then  c = Zero. 

Rule 8: If  oD = Very Far and  t = Positive Small, then  c = Positive Small. 

Rule 9: If  oD = Very Far and  t = Positive Medium, then  c = Positive Medium. 
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Rule 10: If oD = Very Far and  
t = Positive Big, then  c = Positive Big. 

 

 If 

( oD ) 

And 

( t ) 

Then 

( c ) 

Rule 4 Very Far NS NS 

Rule 5 Very Far NM NM 

Rule 6 Very Far NB NB 

Rule 7 Very Far Zero Zero 

Rule 8 Very Far PS PS 

Rule 9 Very Far PM PM 

Rule 10 Very Far PB PB 

 

 

Secondly, when the obstacles are detected within the sensing radius ( oD ={Far, Medium, 

Close}), the UAV changes the velocity and heading angle to avoid the obstacle and then 

comes back to normal fly. Meanwhile, the UAV has to slow down to ensure sufficient 

response time to avoid crash. After it avoids the obstacle, it continues the path toward the 

target. The regarding fuzzy rules are described in details shown below:  

 

Rule 11: If  oD = Far and  o = Negative Small, then  V = Fast and c  = Positive 

Small. 

Rule 12: If  oD = Far and  o = Negative Medium, then  V = Very Fast and  c = Zero. 

Rule 13: If oD  = Far and o  = Positive Medium, then  V = Very Fast and c  = Zero. 

Rule 14: If oD  = Far and  o = Positive Small, then  V = Fast and  c = Negative 

Small. 

 

Rule 15: If  oD = Medium and  o = Negative Big, then  V = Fast and  c = Zero. 

Rule 16: If  oD = Medium and  o = Negative Medium, then  V = Slow and  c = 

Positive Small. 

Rule 17: If  oD = Medium and  o = Negative Small, then  V = Slow and  c = 

Positive Medium. 
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Rule 18: If oD  = Medium and o  = Positive Small, then  V = Slow and  c = 

Negative Medium.  

Rule 19: If oD  = Medium and  o = Positive Medium, then  V = Slow and  c = 

Negative Small. 

Rule 20: If  oD = Medium and  o = Positive Big, then  V = Fast and  c = Zero. 

 

Rule 21: If  oD = Close and  o = Negative Big, then  V = Slow and  c = Positive 

Small. 

Rule 22: If  oD = Close and  o = Negative Medium, then V  = Very Slow and c  = 

Positive Medium. 

Rule 23: If  oD = Close and  o = Negative Small, then  V = Very Slow and  c = 

Positive Big. 

Rule 24: If  oD = Close and  o = Positive Small, then  V = Very Slow and  c = 

Negative Big. 

Rule 25: If  oD = Close and o  = Positive Medium, then V  = Very Slow and  c = 

Negative Medium. 

Rule 26: If  oD = Close and  o = Positive Big, then  V = Slow and  c = Negative 

Small. 

 

 If 

( oD ) 

And 

( o ) 

Then 

(V ) 

Then 

( c ) 

Rule 11 Far NS Fast PS 

Rule 12 Far NM Very Fast Zero 

Rule 13 Far PM Very Fast Zero 

Rule 14 Far PS Fast NS 

Rule 15 Medium NB Fast Zero 

Rule 16 Medium NM Slow PS 

Rule 17 Medium NS Slow PM 

Rule 18 Medium PS Slow NM 

Rule 19 Medium PM Slow NS 

Rule 20 Medium PB Fast Zero 

Rule 21 Close NB Slow PS 
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Rule 22 Close NM Very Slow PM 

Rule 23 Close NS Very Slow PB 

Rule 24 Close PS Very Slow NB 

Rule 25 Close PM Very Slow NM 

Rule 26 Close PB Slow NS 

 

 

Finally, the last set of fuzzy rules is for the cases where the obstacles are far away and 

the heading angle is very big ( oD  = Far and o = Big). In this case, there is not any threat 

of collision. Thus, the main objective for the drone is to move towards the target with the 

same heading angle and fast speed. The fuzzy rules in details are shown below: 

 

Rule 27: If  oD = Far and  o = Negative Big and  t = Negative Big, then  V = 

Fast and  c = Negative Big. 

Rule 28: If  oD = Far and  o = Negative Big  and  t = Negative Med, then  V = 

Fast and  c = Negative Med. 

Rule 29: If  oD = Far and  o = Negative Big  and  t = Negative Small, then  V = 

Fast and  c = Negative Small. 

Rule 30: If  oD = Far and  o = Negative Big  and  t = Zero, then  V = Fast and  c

= Zero. 

Rule 31: If  oD = Far and  o = Negative Big  and  t = Positive Small, then  V = 

Fast and  c = Positive Small. 

Rule 32: If  oD = Far and  o = Negative Big and  t = Positive Med, then V  = 

Fast and  c = Positive Med. 

Rule 33: If  oD = Far and  o = Negative Big  and  t = Positive Big, then  V = 

Fast and  c = Positive Big. 

 

Rule 34: If  oD = Far and  o = Positive Big and  t = Negative Big, then  V = 

Fast and  c = Negative Big. 
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Rule 35: If  oD = Far and  o = Positive Big  and  
t = Negative Med, then  V = 

Fast and  c = Negative Med. 

Rule 36: If  oD = Far and  o = Positive Big and  
t = Negative Small, then  V = 

Fast and  c = Negative Small. 

Rule 37: If  oD = Far and  o = Positive Big and  
t = Zero, then  V = Fast and  c

= Zero. 

Rule 38: If  oD = Far and  o = Positive Big and  t = Positive Small, then  V = 

Fast and c  = Positive Small. 

Rule 39: If  oD = Far and  o = Positive Big and  t = Positive Med, then  V = 

Fast and  c = Positive Med. 

Rule 40: If  oD = Far and  o = Positive Big and  t = Positive Big, then  V = 

Fast and c  = Positive Big. 

 If 

( oD ) 

And 

( o ) 

And 

( t ) 

Then 

(V ) 

Then 

( c ) 

Rule 27 Far NB NB Fast NB 

Rule 28 Far NB NM Fast NM 

Rule 29 Far NB NS Fast NS 

Rule 30 Far NB Zero Fast Zero 

Rule 31 Far NB PS Fast PS 

Rule 32 Far NB PM Fast PM 

Rule 33 Far NB PB Fast PB 

Rule 34 Far PB NB Fast NB 

Rule 35 Far PB NM Fast NM 

Rule 36 Far PB NS Fast NS 

Rule 37 Far PB Zero Fast Zero 

Rule 38 Far PB PS Fast PS 

Rule 39 Far PB PM Fast PM 

Rule 40 Far PB PB Fast PB 

 

 

The membership function designed in MATLAB of four inputs and two outputs are 

shown in the following figures: 
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Figure 4.11: Input one: distance from obstacle to UAV 

 

 

Figure 4.12: Input two: heading angle between obstacle and UAV 
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Figure 4.13: Input three: distance from UAV to target 

 

 

Figure 4.14: heading angle between UAV and target 

 

Figure 4.15: Output one: percentage of maximum velocity 
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Figure 4.16: Output two: heading angle deviation 

 

 

The defuzzifiacation takes the output from the designed “IF-THEN” rules and converts 

it to a crisp number. The centroid method is used for defuzzification in this fuzzy logic 

controller. Based on this designed fuzzy logic inference, the UAV can achieve path 

planning and obstacle avoidance in real time efficiently without mapping the environment 

and global path planning in advance. 
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4.3 Summary 

This chapter illustrates the developed path planning and obstacle avoidance method 

including RRT, a fuzzy logic inference implemented in two-dimensional environments, 

Fuzzy-Kinodynamic RRT, and finally the improved fuzzy logic controller implemented 

in a more complicated environment without global path planning. Each section shows the 

design procedure of the proposed method in details. 
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Chapter 5   Simulations and Results 

 

The proposed path planning and obstacle avoidance algorithms are illustrated and 

evaluated through a series of test cases by simulations. First, three basic cases and three 

sharp and complicated cases are used to test the performance of proposed fuzzy logic 

controller in 2D environment. In addition, the Fuzzy Kinodynamic RRT method which is 

a combination of rapidly-exploring random tree and fuzzy logic controller is tested by 

MATLAB simulation. Finally, the improved fuzzy logic inference simulation in a more 

complicated environment is done on Unreal Engine platform. 

 

 

5.1 Fuzzy Logic Scenario Test 2D 

5.1.1 Basic Cases 

The simulation is performed using Python in Visual Studio Code. The Fuzzy logic 

method proposed in this thesis is implemented on 2D scenarios in order to test the 

performance. The obstacles are corridors when the agent is moving forward. First, the 

basic environment maps are used for testing. As shown in Figure 5.1, the starting point is 

on corner bottom right, while the desired zone is the red square on top left. 
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Fig. 5.1 Staring point 

Firstly, the fuzzy logic rule 8 is fired to drive the agent move forward since at this time, 

front distance is medium, and the distance of left minus right is medium. Thus, the output 

of the fuzzy logic controller is medium with no steering angle change. 

 

Fig. 5.2 Rule8 fired 
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The agent moves straight ahead until it comes to the first corner. The front distance to 

the wall is medium and the (left-right) distance is small. It means the front distance is 

average, but left distance is less than right distance. Thus Rule 4 is fired for the first corner, 

and output is set to large, to drive the agent turning right for obstacle avoidance. 

 

Fig. 5.3 Rule4 fired 

 

After that, the agent safely passed the first corner, and the Rule 8 is fired in quite a short 

time until it comes to the second corner. In this circumstance, the front distance is medium, 

and the distance between left and right is large. Thus, the output of the fuzzy logic 

controller is small to drive the agent to turn left and avoid the obstacle. 
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Fig. 5.4 Rule6 fired 

 

Finally, all corners are passed and Rule 8 is fired to drive the agent moving straight 

ahead. The front distance is medium or large while the distance between left and right is 

medium, so the output of the fuzzy logic controller is medium with no steering angle. 

 

Fig. 5.5 Rule8 fired 



56 

 

 

The whole trajectory is shown in Figure 5.6 below. The agent can avoid the obstacle 

and arrive at the destination successfully and efficiently in this basic environment. 

 

                                        Fig. 5.6. Basic case 1 

 

The fuzzy logic controller is also tested on another two basic environments. Different 

fuzzy logic rules are implemented in real time to help the agent to avoid obstacles 

dynamically and finally arrive at the desired position. The simulation result with the whole 

trajectory are shown in Figure 5.7 and Figure 5.8. 
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                                           Fig. 5.7. Basic case 2 

 

                                         Fig. 5.8. Basic case 3 
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5.1.2 Complicated Cases 

First, a complicated runway map is shown in Figure 5.9. Similarly, the starting point is 

on corner bottom right, while the desired zone is the red square on top left. 

 

 

Fig. 5.9 Staring point 

 

 

The fuzzy logic rule 8 is fired to drive the agent move forward at the beginning. It 

continues to go straight ahead until the first corner. 
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Fig. 5.10 Rule8 fired 

Then the agent comes across the first corner. The front distance to the obstacle is 

medium and the (left-right) distance is small. Rule 4 is fired for the first corner, and output 

is set to large, to drive the agent turning right for obstacle avoidance. 

 

Fig. 5.11 Rule4 fired 



60 

 

In the second corner, the agent also implements Rule4 to turn right to avoid the obstacle 

while moving forward in the map. 

 

 

 

Fig. 5.12 Rule4 fired 

 

 

After that, the front distance is large and the distance to left and right is almost the same. 

Thus, Rule8 is fired to help the agent move forward when there is no obstacle and threat 

at all.  
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                                    Fig. 5.13 Rule8 fired 

Furthermore, the agent comes to the third corner. In this case, front distance is medium 

while left minus right distance is large. Thus, the output is small and Rule6 is implemented 

to drive the agent turning left. 

 

Fig. 5.14 Rule6 fired 
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Finally, all sharp corners are passed and Rule9 is fired to drive the agent turning left 

with a small angle. The agent can then move towards the destination until it arrives and 

stop. 

 

Fig. 5.15 Rule9 fired 

 

In this complicated runway map, the majority of designed fuzzy logic rules are 

implemented in the obstacle avoidance process. Some rules are fired for a very short time 

so they are not described in detail. Overall, the fuzzy logic controller can work precisely 

for the complex environment, and the whole trajectory is shown in Figure 5.16. 
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                                        Fig. 5.16. Complicated runway  

 

The fuzzy logic controller is also tested on another two complicated environments, 

which are maze map and multiple choice map respectively. The simulation results are 

shown in Figure 5.17 and Figure 5.18. 
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                                           Fig. 5.17 maze map 

 

                                         Fig. 5.18 multiple choice map 

 

 

Even though there are multiple turns in these cases, they can also refer to the rule 

changes to make decisions and finally arrive at the destination successfully and precisely. 

The Fuzzy logic method proposed in this thesis can be implemented for each scene and 

has good performance on achieving obstacle avoidance. 
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5.2 Fuzzy Kinodynamic RRT method 

Based on the Fuzzy logic method proposed above, we also test the performance of 

Fuzzy-Kinodynamic RRT method. The simulation result is shown in Fig. 5.19. In this 

scenario, path planning is done from the black circle (starting point) to blue circle (goal 

point), and optimized path using Fuzzy- Kinodynamic RRT method is expected where 

Fuzzy logic method is utilized to do obstacle avoidance during the path following.  

The red dash line is the path generated by RRT. The green path is the optimized path 

done by Fuzzy-Kinodynamic RRT, and the blue trajectories show a set of path points 

where UAV can follow by. It is obvious that the optimized path done by Fuzzy-

Kinodynamic RRT has shorter distance from starting point to desired point, and has a 

better performance to avoid collisions compared with the traditional RRT. 

 

 

Figure 5.19 Fuzzy Kinodynamic RRT  
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The whole path planning and obstacle avoidance workflow is illustrated as follows: 

 

First, the global trajectory is generated by RRT which is the red dash line in the 

simulation. The agent follows the trajectory until there is any obstacle detected within 

sensing radius L. Then, the fuzzy logic inference is activated to do local obstacle 

avoidance and corresponding fuzzy rules are implemented in real time. After collisions 

are avoided or there is no obstacle within sensing range, fuzzy logic inference is disabled. 

The agent finally moves along the previous trajectory until arriving at the destination. The 

pseudo code is shown in Table 5.1. 

 

 

Table 5.1 Fuzzy Kinodynamic RRT method 

1: do function BuildRRT() 

2: Trajectory generated by RRT 

3: Distance sensor is on with sensing radius L 

4: Import fuzzy logic rules 

5: Agent follows the generated trajectory 

6: while obstacles detected within sensing range L 

7:  Fuzzy Logic Inference Activated 

8: Analyze control output based on fuzzy rules 

9: Agent avoids obstacle based fuzzy logic controller  

10: end while 

11: return previous trajectory 

12: return True 

 

 

The whole path planning and obstacle avoidance using Fuzzy Kinodynamic RRT 

method is illustrated in details in Figure 5.20. 
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Figure 5.20 Fuzzy Kinodynamic RRT in details 

 

* Starting point: black circle 

* Destination: blue circle  

* Obstacles: black zone 

* Trajectory by RRT: red dash line 

* Trajectory by Fuzzy Kinodynamic RRT:  green line 

 

In addition, the red arrow in the map is the sensing radius L, while the yellow stars are 

the points when fuzzy logic controller is activated and disabled. 

 

At the beginning, RRT is implemented to generate the global trajectory. The agent is 

then set to follows the red dash trajectory until it comes to the first yellow star. In this 

circumstance, the obstacle is within sensing range L which is set to 5 in this map. So, the 

fuzzy logic inference is activated at this time and Rule 9 is fired to drive the agent turning 

left for obstacle avoidance. 
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When it comes to the second yellow star, the obstacle is no longer within sensing range. 

Thus, the fuzzy logic controller is disabled and the agent goes back to its previous path 

generated by RRT until it arrives at the destination. If there is any obstacle detected again, 

the system will recall the fuzzy logic inference to do obstacle avoidance, and finally the 

agent can reach the desired zone successfully. 

 

The advantage of the proposed Fuzzy Kinodynamic RRT is to improve efficiency and 

optimize the trajectory with a shorter distance. The reason is that RRT is a sampling-based 

algorithm and tries to find the path with nodes stretching out randomly. In this case, the 

trajectory is not always the shortest and optimized one, since the nodes can be generated 

far away from the destination. With the help of Fuzzy Kinodynamic RRT method, the 

trajectory is optimized and the agent can move towards desired zone efficiently and 

precisely. 

 

Algorithm Comparison  

 

In this section, a comparison between Fuzzy Kinodynamic RRT and Artificial Potential 

Field (APF) will be shown in the following figures and tables. In the simulation, three 

group path planning results of both Fuzzy Kinodynamic RRT versus APF will be 

compared in the same scenarios.  

 

The path of APF is generated in another simulation in MATLAB with the same set of 

obstacle points. Then this trajectory is imported into the same scenario of Fuzzy 

Kinodynamic RRT simulation for better visualization. 

 

The first scenario is the same environment in section 5.2. As shown below, the starting 

coordinate is (90, 95) and end coordinate is (90, 60). The final trajectory generated by 

Fuzzy Kinodynamic RRT algorithm is shown as blue line in Figure 5.21.  
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Figure 5.21 Fuzzy Kinodynamic RRT scenario one 

 

However, APF suffers from local minima problem where the attractive forces and 

repulsive forces are balanced, so the agent is trapped into the local minima and stuck at 

one point as shown in Figure 5.22.  

 

Local minima problem can also be found in the cases of closely spaced obstacles or 

dead end. Obviously, path planning fails when APF comes into local minima problem in 

some cases and it cannot generate the collision-free trajectory. 
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Figure 5.22 APF scenario one 

 

 

The second case is shown in Figure 5.23 with starting coordinate (80, 60) and end point 

(8, 12). The path generated by Fuzzy Kinodynamic RRT is the blue one, while the 

trajectory generated by APF is the red line. 

 

In this case, APF can generate the right path, and the trajectory is along the obstacles 

with the appropriate repulsive force radius which is adjusted in codes. The execution time 

of both algorithms are very similar. 
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Figure 5.23 Fuzzy Kinodynamic RRT vs APF scenario two 

 

 

The third case is shown in Figure 5.24 with starting coordinate (5, 60) and end point 

(85, 70). The path generated by Fuzzy Kinodynamic RRT is the blue one, while the 

trajectory generated by APF is the red line. 

 

In this case, since the end zone is broad and the obstacles does not block the way when 

the nodes are stretching out towards the destination. Thus, the Fuzzy Kinodynamic RRT 

method gives a shorter path and costs less computer computation time. 
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Figure 5.24 Fuzzy Kinodynamic RRT vs APF scenario three 

 

The starting point, end point, execution time and path planning result of these two 

algorithms are shown in Table 5.2. 

Table 5.2 Fuzzy Kinodynamic RRT vs APF details 

 Start Point End Point Execution Time Result 

Fuzzy Kinodynamic 

RRT 

(80, 60) (8, 12) 3.285s Success 

(5, 60) (85, 70) 3.692s Success 

(90, 95) (90, 60) 2.371s Success 

APF (80, 60) (8, 12) 3.592s Success 

(5, 60) (85, 70) 4.916s Success 

(90, 95) (90, 60) Infinity Failed 
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In the three comparison groups, the Fuzzy Kinodynamic RRT method costs less 

execution time than APF, and the trajectories generated by two algorithms are very similar 

when successful. However, APF is not as general as proposed Fuzzy Kinodynamic RRT 

to use, since path planning may be trapped at one point when attractive forces and 

repulsive forces are balanced. 

 

5.3 Fuzzy Logic Test in 3D environment 

5.3.1 AirSim Block Environment Test 

Finally, we implement the fuzzy logic method for obstacle avoidance in AirSim block 

environment. At first, a drone moves straight ahead towards an orange ball at a constant 

speed. The fuzzy logic system is activated when the front distance of the drone to obstacle 

is less than or equal to a specific value which can be set in program. Then the drone avoids 

the ball by flying to left or right. The fuzzy logic is the same as implemented on 2D fuzzy 

logic inference. It will fly with a certain altitude, and continues to move forward when 

fuzzy logic system is disconnected since there are no obstacles on the way. 

The simulation of UAV on Unreal Engine is done using Fuzzy logic method to realize 

obstacle avoidance. The process of UAV obstacle avoidance from side for the same 

orange ball is shown in Figs. 5.25, 5.26 and 5.27. The simulation results verify the 

effectiveness and accuracy of the proposed Fuzzy logic technique for obstacle avoidance 

of UAV in the block environment.  
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Fig. 5.25 Side obstacle avoidance start pose 

 

 
 

Fig. 5.26 Side obstacle avoidance process pose 

 

Fig. 5.27 Side obstacle avoidance end pose 
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5.3.2 AirSim Landscape Environment Test 

Furthermore, the improved fuzzy logic controller is tested on AirSim Landscape 

environment, which is a big and complicated map in Unreal Engine with a lot of trees as 

the obstacles. This method is applied and only tested with the AirSim built-in UAV, in 

Unreal Engine, Windows 10 platform. The overview of the Landscape environment is 

shown in Figure 5.28 and Figure 5.29. Although the fuzzy logic methodology is designed 

with the assumption of constant altitude for the UAV, the method can be implemented in 

three-dimensional environment autonomous navigation and obstacle avoidance in real 

time. 

 

 

Figure 5.28 Landscape Overview1 
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Figure 5.29 Landscape Overview2 

 

The core part of this environment is selected for testing the improved fuzzy logic 

controller in Figure 5.30. As shown in the figure, the start point is located at initial position 

of the coordinate, and the destination is marked with red star. The main objective is UAV 

autonomous navigation by implementing fuzzy logic controller to drive the UAV to arrive 

at the destination and avoid obstacles (forests in this environment) in real time. 

 

 

Figure 5.30 UAV start point and destination 



77 

 

 

There are some default settings and configurations for the simulation as follows: 

 

First, the initial altitude of the UAV is set to be 5 meters above the ground. Moreover, 

as the coordinate frame shown in Figure 5.30, the UAV is initially heading forward along 

the red one. Furthermore, the position coordinates of the target and the UAV are known 

with the help of GPS. Also, the AirSim has its built-in distance sensors [60] for developers 

to use. The setting codes regarding GPS and distance sensor in this simulation are shown 

in Figure 5.31. 

 

 

Figure 5.27 Sensors setting 

 

The whole procedure of the UAV autonomous navigation using the improved fuzzy 

logic controller in the simulation are illustrated in details as follows: 
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First, the drone is taken off at the starting position as shown in Figure 5.32. In this 

circumstance, there are no obstacles within the sensing radius ( oD = Very Far ). The main 

objective of the fuzzy logic controller is to drive the UAV to fly towards the destination 

directly. Since there is error between the heading angle of the UAV and target, the fuzzy 

logic controller tends to change the heading angle c to 
t  for driving the UAV towards 

the target. In this case, the obstacles are very far away from the UAV, and the target is on 

the UAV’s right side with small angles. 

 Hence,  Rule 8( If  oD = Very Far and  t = Positive Small, then  c = Positive Small) 

is fired for heading angle control. In addition, Rule 1 (If  oD = Very Far and  tD = 

Far, then  V = Very Fast) is also fired for speed control, because the distance between the 

UAV and the target is far. The UAV is flying straight towards the target by setting the 

heading angle c  to t  with a fast speed as shown in Figure 5.33. 

 

 

Figure 5.32Take off 
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Figure 5.33 Rule1 and Rule8 fired 

 

Then, the UAV continues to fly until it is about to comes to the first obstacle on the 

way in Figure 5.34. 

 

 
 

Figure 5.34 First obstacle on the way 

In this case, the distance between the UAV and the object is medium, and the angle 

between the UAV and the object is positive small. Hence, Rule 18 (If oD  = 

Medium and o  = Positive Small, then  V = Slow and  c = Negative Medium) is fired 
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to drive the drone to turn left and avoid the obstacle. The output of the fuzzy logic 

controller are slow speed and negative medium heading angle change. As shown in Figure 

5.35, Rule 18 is fired to help the UAV to avoid the obstacle with a low speed.  

 

 
 

Figure 5.35 Rule 18 fired 

After avoiding the first obstacle, the distance between the UAV and obstacle is very far 

away and the distance between the UAV and the target is medium. Thus, Rule 2 (If  oD = 

Very Far and  tD = Medium Distance, then  V = Slow) is fired. Also, Rule 9 (If  oD = 

Very Far and  t = Positive Medium, then  c = Positive Medium) is fired since the angle 

between the heading angle of the UAV and the target becomes larger after turning left for 

avoiding the first obstacle. Hence, the Rule 2 and Rule 9 are fired to drive the UAV flying 

towards the target directly with a low speed as shown in Figure 5.36. 
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Figure 5.36 Rule2 and Rule9 fired 

 

Then, the UAV is about to come to the second obstacle on the way in Figure 5.37. 

Similar to the case of avoiding the first obstacle, Rule 18 (If oD  = Medium and o  = 

Positive Small, then  V = Slow and  c = Negative Medium) is fired to drive the drone to 

turn left and avoid the second obstacle. The UAV successfully avoids the obstacle with a 

low speed as shown in Figure 5.38. 

 

 
 

Figure 5.37 Second obstacle on the way 
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Figure 5.38 Rule18 fired 

 

Then the UAV comes to the third obstacle on the way. In this case, Rule 17 (If  oD = 

Medium and  o = Negative Small, then  V = Slow and  c = Positive Medium) is fired 

to drive the UAV to turn right with a slow speed to avoid the obstacle as shown in Figure 

5.39. 

 

 
 

Figure 5.39 Rule17 fired 
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Finally, the distance between the UAV and the target is very small and the UAV is 

about to arrive at the destination. Also, there is no obstacle in sensing range and the 

distance between the UAV and the obstacle is very far. In this case, Rule 3 (If  oD = Very 

Far and  
tD = Close, then  V = Very Slow) is fired to make the UAV move slowly to the 

final destination. 

 

Figure 5.40 Rule3 fired 

 

Figure 5.41 Mission Completed 
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5.4 Discussion 

As shown in the simulation above, firstly the designed fuzzy logic inference is tested on 

three basic cases and three complicated cases. The whole obstacle avoidance procedure is 

illustrated step by step, and the result shows all rules are working successfully. Then the 

proposed Fuzzy Kinodynamic RRT is tested in simulation. With the combination of 

designed fuzzy logic controller and rapidly-exploring random tree, this method can 

improve the efficiency of RRT and give an optimized trajectory solution which the UAV 

can follow in the simulation. Finally, the improved fuzzy logic controller which embeds 

path planning and is more robust and efficient is designed to avoid obstacles for the UAV 

in real time. 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusions 

In this dissertation, several methods of UAV path planning and obstacle avoidance are 

proposed. The main contributions of the research work are summarized as follows: 

 A fuzzy inferencing system is developed for supporting the UAV to avoid obstacle 

dynamically in unknown environment. This fuzzy system consists of two inputs and 

one output. The rules for different inputs and output for the fuzzy logic inference are 

set up in the form of “IF-THEN” statements, and are based on heuristics and human 

experience with navigating through an environment, which is similar to driving a car.  

 Fuzzy-Kinodynamic RRT is a combination method which uses RRT algorithm to do 

global path planning and utilizes fuzzy logic system to avoid obstacles. The UAV starts 

to follow the path generated by global path planning algorithm and the fuzzy logic 

system is activated when it comes across new obstacles. The UAV can avoid obstacles 

dynamically according to the rules designed in this research work and then fly back to 

the previous path. 

 A more sophisticated and robust fuzzy logic controller with four inputs, two outputs 

and totally 40 fuzzy logic rules is designed for dynamically path planning and obstacle 

avoidance in unknown environments without the support of global path planning as 

implemented in Fuzzy Kinodynamic RRT method. 

 This dissertation proposes an algorithm on the combination of UAV global path 

planning and sensor-based real-time obstacle avoidance, and validates the 

effectiveness of this method through simulation mainly on Unreal Engine AirSim 

platform.  
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6.2 Future works 

Based on the current research in this dissertation, the following future directions are 

outlined: 

 The real flight test has not been implemented even though this method works well in 

the simulation. The physical test for UAV can be done with Pixhawk and distance 

sensors. 

 The proposed Fuzzy Kinodynamic RRT performs well in simple environment but has 

its own constrains. The agent needs to recall RRT to generate path again when the 

fuzzy logic inference is disabled but the agent is too far way to go back to the previous 

trajectory, which can reduce the efficiency in this case. 

 The fuzzy logic algorithm developed in this work was primarily designed for 2D 

environment and as the next step it may be extended to more general 3D cases. The 

early simulations that provided in section 5.3.1 illustrate the algorithm’s potential for 

such these cases.  

 The UAV dynamics are not considered by Fuzzy Kinodynamic RRT method. Future 

work will include the UAV dynamics and make an improvement for the algorithm. 

 The proposed methods are currently tested in the environment where there are only 

obstacles and one drone. Future work will include the simulation where other drones 

are added into the map for validation. 
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