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Abstract

Data-Driven Modelling of Multiphase Flow Systems

Keivan Mokhtarpour

Dynamical systems specifically in the field of fluid mechanics are composed of

underlying complicated governing phenomena originated from nonlinearities and

instabilities. Encountered with the challenge of analyzing vast amount of data, the

concept of reduced order modelling (ROM) was emerged to map the high resolu-

tion spatio-temporal data onto a low-dimensional space using the most prominent

embedded features. This dissertation considers two ROM techniques of proper

orthogonal decomposition (POD) and dynamic mode decomposition (DMD) ap-

plied to liquid injection systems. These approaches have been widely used to

tackle the challenges of analyzing spatio-temporal coherence of dynamical sys-

tems. Despite the numerous works implementing POD and DMD, there has been

a lack of physical meaning for the modes generated by them. An interpretation of

POD and DMD modes is provided in this thesis by the recognition of dominating

features. The main focus will be primitively on benchmark problems to validate

the efficacy of the methods and consequently to the liquid jets exposed to air

crossflows in a hierarchical scheme. A grasp of the prominent spatial structures

and their corresponding leading dynamic frequencies will be provided through

the analysis of POD and DMD frequency spectra. Effects of several different fac-

tors such as the gaseous Weber number, liquid-gas momentum flux ratio and the

injector aspect ratio are investigated in this study. Finally, the power of ROM

techniques to create features for machine-learnt classifiers that are sufficient for

categorization of sundry types of flow regimes is investigated in a supervised

manner. These classifiers are opted from a range of classical machine learning

algorithms like support vector machines (SVM) and random forest (RF) that have

been extensively employed for classification tasks in the recent years. The best

combination of reduced order models with the machine learning algorithms are

presented.
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Preface

The content of this thesis has been organized in a manuscript style. The re-

sults of the third chapter has been previously accepted for the canadian society

of mechanical engineering (CSME 2020) conference and was partially submitted

to the transactions of the canadian society for mechanical engineering (TCSME)

journal. The findings of the fourth chapter were also submitted to the journal

of atomizations of sprays. Considering the fact that this thesis is organized in

a manuscript based format, each chapter is dedicated to a specific discussion.

Chapter one brings about a primary understanding of reduced order modelling

techniques with a great focus on POD and DMD where relevant literature to the

current work under study are addressed. The motivations for performing the cur-

rent research and the existing challenges are then implied. Chapter two considers

the underlying governing formulations of POD and DMD, based on which, two

benchmark problems are analysed and the results get correlated to the existing

base knowledge. A hierarchical investigation of liquid breakup systems is the next

step in this chapter where a physical interpretation of such systems is debatable.

In chapter three, DMD is applied to different cases of elliptical liquid jets exposed

to air crossflows at low gaseous Weber numbers. A deep scrutiny of such systems

is performed with a comparative discussion on the characteristics of circular and

elliptical jets. Chapter four propounds the idea of using the POD/DMD modes

as the reliable features to optimally classify different flow regimes of liquid jets in

crossflow. Machine learning algorithms are employed to attain this goal. Chapter

five finalizes the discussion on the previous chapters by deducing the pertaining

results to the performed work and drawing the perspective ahead.

xiv



Chapter 1

Introduction

Data science is usually defined as an interdisciplinary field that uses methods, al-

gorithms and processes to extract insights from structured or non-structured data.

Machine learning (ML) as a well-known branch of data science is the study of

computer algorithms that helps gaining knowledge from data. These algorithms

improve automatically through experience and are widely applied on various

fields such as engineering, finance, biology, neuroscience and etc. The interface

of ML with the fluid mechanics has received a great attention over the last few

years. Flow modelling, flow control and optimization tasks either in experiments

or simulations have been always of the most challenging works of researchers and

engineers where the amount of data to be processed is important.

Driven by the unprecedented volumes of data from experiments, measure-

ments, and large-scale simulations, we are dealt with a vast amount of data. Here

is where we expect ML to play its role and solve the problems in a more efficient

and less time-consuming manner. ML is applicable to tackle many problems in

fluid mechanics such as reduced-order modelling (ROM), optimization and con-

trol. In this work, we limit our focus to only one sub-domain of fluid mechanics

known as the multiphase flow systems. We will model the liquid jet in crossflow

(LJIC) systems (Chapters three and four), and categorize them into sub-flow re-

gions using ML techniques. A brief overview of LJIC systems and different ML

frameworks will be discussed in the next few pages.
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1.1 Liquid Jet in Crossflow (LJIC)

The liquid jets in crossflow or transverse jets have become widely used in a vari-

ety of technological applications, including fuel injection in gas turbine engines,

rocket vehicles, exhaust plumes from power plants, etc. (Wu et al. (1997)). Liq-

uid jets are typically injected from nozzles or the walls of combustors into the

airstream under crossflow conditions. A schematic of the procedure could be

found in Fig.1.1.

Figure 1.1: Global flow field of a jet in crossflow, in which a counter-rotating

vortex pair (CVP) is formed (Cambonie et al. (2013)).

It may be directly understood from the figure that despite the possibility of

the jet injection into the crossflow at a steady rate, the unsteady behaviour of

the evolution of flow structures is vividly evident. The periodic nearfield rollup

of vortical structures contributes to the creation of vortices that dominate the

ensemble-averaged flowfield principally the counter-rotating vortex pair (CVP)

structure observed to dominate the transverse jet’s cross-section in the mean. In

addition to the CVP, there are jet shear layer vortices formed in the nearfield,

horseshoe vortices forming in the plane of the injection wall and the upright wake

vortices that are generated inside the wall boundary layer and then shed beyond

to the jet.

Despite the apparent simplicity of this phenomenon, the modelling of such

processes has been the subject of many experimental and theoretical researches.

2



Extensive knowledge of the exploration of LJIC and their applications may be

found in (Margason (1993)). It is well believed that the instability waves can de-

velop at the interface of the gas and liquid phases and grow further until the jet

disintegrates into large ligaments which will go through further breakup them-

selves.

Breakup Regime Map of LJIC

A good understanding of LJIC would be achieved in the identification process of

the different flow behaviours denoted as the breakup regimes that occur at specific

flow conditions. These conditions are not universal and different opinions have

been mentioned by researchers in the literature. One of the most well accepted of

them is the work of Wu et al. (1997), where they characterized the regime map of

the LJIC into two sub-regimes (column and surface breakup). This classification

was based on the jet-to-air momentum flux ratio (q) and the gaseous Weber num-

ber (We). In the column breakup regime, waves grow on the jet surface that leads

to column fracture without remarkable mass shedding from the column surface.

On the other hand, the stripping of the ligaments and the droplets from the sur-

face of the jet is known as the surface breakup regime that occurs at high jet-air

momentum flux ratios and Weber numbers. In some applications, both regimes

may be present given the fact that the dominance of each regime over the other

would be of significant importance in there.

Wu et al. (1997) also divided the column breakup section into four sub-categories

according to the rise of the Weber number but without any dependence to the q.

These categories are: enhanced capillary, bag, multimode and the shear breakup

regimes. Similar breakup maps were also depicted in the works of Mazallon et al.

(1999) and Sallam et al. (2004). Sallam et al. (2006) categorized the breakup of

a turbulent transverse flow into two major classes of aerodynamic and turbulent

breakup regimes. These regimes were separated using a non-dimensional pa-

rameter ((We)q1/3). It is clear that breakup regimes map is not unique and is

a function of the chosen non-dimensional parameter. Madabhushi et al. (2006)

incorporated the effect of Reynolds number and suggested the partnership of the

Weber number with the Reynolds number for mapping the atomization process.

3



Reynolds number is linked to We and q through the relation below:

Re2
l = qWe/Oh2 (1)

In this relation, Ohnesorge number (Oh = µl/(ρldσ)0.5) groups the parameters

related to atomization. Rel is, however, a direct estimate of whether the jet at the

orifice is laminar, fully turbulent, or is transitioning to turbulence (turbulent core

and laminar surface), and therefore it is more relevant than q as a global parameter

for determining the atomization regime (Madabhushi et al. (2006)). Throughout

this study, we will use the regime map suggested by Wu et al. (1997). The map is

visualized in Fig.1.2.
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Figure 1.2: We− q regime map of primary breakup processes of a nonturbulent

liquid jet in a crossflow. Reprinted from Brown et al. (2006).

1.2 Reduced Order Modelling (ROM)

Analysis of dynamical systems by the extraction of spatio-temporal patterns from

the data generated either by numerical simulation or physical experiment has

been widely used in a vast range of fields as fluids, physics, and machine learn-

ing (Fujii and Kawahara (2019)). Dealing with big data information in multi-

phase flow and thermal spray applications, it is of considerable significance to

take advantage of the modal decomposition methods such as proper orthogonal

4



decomposition (POD) and dynamic mode decomposition (DMD) to extract dy-

namic information from the flow fields. In both frameworks, the data is usually

in the form of modes, each of which is representative of a specific flow regime.

The physical mechanisms embedded in the modes are on a dynamical system of

fewer degrees of freedom compared to the initially given system (Schmid (2010)).

The distinction between the two methods is that POD determines the optimal set

of modes to represent the data based on the energy norm, while DMD captures

dynamic modes with associated growth rates and frequencies.

Of particular obstacles in reaching an optimal spectrum, is the existence of

noising in the system. Adding more modes does not necessarily increase the pre-

cision of the decomposition procedure while it can bring extra noise into the sys-

tem. Therefore, taking an optimum rank truncation number seems crucial as well

as other options like data centering, adding penalty function, etc. (Dang et al.

(2018); Hirsh et al. (2019)). Another challenge while working with the conven-

tional ROM frameworks is their limitation in dealing with high Reynolds number

flows. With POD, for example, 7260 modes are required to reproduce 95% of the

total energy for a turbulent channel flow at Re=180, while we need only 2 POD

modes to cover 99% of the total energy for a flow around a circular cylinder at

Re=100 (Proctor et al. (2016)). In recent years, machine learning has been also

widely applied in the field of fluid dynamics and is well-known for its power

to account for nonlinearity (Fujii and Kawahara (2019)). This task is performed

usually through neural networks of multiple layers. However, we will cover the

application of two classic machine learning algorithms of SVM and RF in the last

chapter of this thesis. In continue, a brief history of the previous works on the

reduced-order modeling of different liquid jet systems is reported.

Early descriptive works in POD goes back to 1993, where Berkooz et al. (1993)

took advantage of it in the analysis and modeling of turbulent flows although

it was already a well-established tool for statistical data analysis and data com-

pression. The claim that a physical understanding of the underlying system is

required besides the promising mathematical approaches, was mentioned at that

time and is still considerable in research. Recent works have been focused on

atomization and liquid jet breakup where POD is suitable for understanding un-

derlying dynamical processes that control the system. For instance, Arndt et al.

5



(1997) applied POD to the far field of an axisymmetric turbulent jet and reported

the dominant frequency peaks. It was the first time that POD was applied to the

pressure field surrounding the jet. Ease of measurement of the pressure fields and

the resulting simplified data analysis set the stage for POD-based control strate-

gies. POD analysis was applied to investigate the jet fluctuation appearing in the

far field for the standard case of large velocity ratios. It was also directed to the

study of the transition between the stable and unstable flow conditions around

the critical velocity ratio (Bernero and Fiedler (2000)). Both velocity and vortic-

ity fields were employed to perform this study where the velocity-based POD

appeared to produce better results than the vorticity POD.

The circulation zone of an annular jet was addressed by particle image ve-

locimetry (PIV) and POD was applied to find the relationship of the radial fre-

quencies to the inner structures of the instantaneous PIV fields. This statistical

method could help to find the overall behaviour of the flow and to link the fluc-

tuations with typical modes. It was shown that the flow could be decomposed

into four main modes where each is responsible for a characteristic motion of the

circulation zone (Patte-Rouland et al. (2001)). Dynamics of flame was revealed as

a set of statistical quantities referred as modes. The flame fluctuations are used to

derive empirical functions representing the most important features of the flame

while the validation of the capabilities of the techniques is limited to the case of

an unsteady laminar flame (Duwig and Iudiciani (2010)).

The impact of the density ratio on the liquid core dynamics of a turbulent

liquid jet injected into gaseous crossflow was studied by Herrmann et al. (2011).

They engaged POD to extract the wavelength of the most dominant feature asso-

ciated with a travelling wave along the jet where it was shown that the increase

in density ratio results in a decrease in the amounts of wavelength. The decrease

in wavelength was further correlated to the noticeable increase in liquid core pen-

etration with reduced bending in the crossflow and spreading in the transeverse

directions.

The primitive work on DMD was done by Schmid (2010), where a new method-

ology capable of extracting dynamic information from the flow fields was intro-

duced. Formerly, the Arnoldi method and various other decomposition tech-

niques were available to provide the tools to extract the dynamics of the flow
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patterns of the simulation data that are more instructive in describing the fluid

process with respect to POD. However, the newly offered DMD technique was the

first to provide temporal dynamic characteristics together with spatially coherent

structures for the experimental data. The modern DMD technique was once again

highlighted in the work of Schmid (2011) and demonstrated on image-based flow

visualization. The technique was applied to PIV data and image-based flow visu-

alizations where the data collection was performed on a numerical simulation of

a flame based on a variable-density jet and on experimental data from a laminar

axisymmetric water jet. It was demonstrated that DMD has vivid advantages over

POD as the former struggles for a representation of the dominant flow features

within a temporally orthogonal framework (pure frequencies), while the latter

is based on a spatially orthogonal model. A general understanding of different

decomposition techniques could be achieved in the review paper of Taira et al.

(2017).

An experimental investigation of the near field pressure of a compressible jet

was performed in the work of Mancinelli et al. (2018) where the POD modes were

interpreted in terms of their hydrodynamic nature through the computation of

the frequency spectrum of the reconstructed space-time pressure fields using each

mode. Higham et al. (2018) showed that the nonlinear dynamics can arise in the

transition regimes of shallow flows to a quasi-2D behaviour which can result in

identifying structures composed of multi frequencies that is a sign of convoluted

dynamics. Thus DMD was recommended for the analysis of such phenomena.

Prakash et al. (2018) attempted to study the liquid jet breakup parameters with

respect to the air flow and liquid jet entry conditions. It was observed that the

dependence of the trajectory of the spray is not just limited to the momentum

flux ratio, q, but also requires correction factors with respect to the injection entry

conditions, which are in turn related to L/D values. L/D parameter was varied

between 10 and 100 in order to obtain fully-developed laminar flow, transition

and turbulent flow. Transient analysis of the liquid jet breakup phenomena was

conducted by subjecting the high-speed images to POD analysis where the liquid

jet manifested various different modes of breakup at different oscillating frequen-

cies. While both the laminar and turbulent jets exhibited whiplash-like action, the
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turbulent jet was observed to be more vigorous showing higher oscillation ampli-

tudes and shorter wavelengths for the corresponding modes. It was correlated to

the great tendency of laminar jets to penetrate much further than the turbulent

jet. Recently, Murata et al. (2020) have developed a novel nonlinear mode decom-

position technique to visualize the decomposed flow fields. Convolutional neural

network auto-encoders (CNN-AE) have been employed in their work. CNNs are

a class of deep neural networks mostly applied to analyze visual imagery.

The architecture of a CNN consists of an input and an output layer as well as

multiple hidden layers. The hidden layers of a CNN typically consist of a series

of convolutional layers that convolve with a multiplication or other dot product.

The activation function is commonly a rectified linear unit (ReLU) layer, and is

subsequently followed by additional convolutions such as pooling layers, fully

connected layers and normalization layers, referred to as hidden layers the details

of which could be accessed in the work of LeCun et al. (1999).

The activation layer of the CNN network in the work of Murata et al. (2020)

was modified over different linear and nonlinear functions to analyse the resulting

models with the ones extracted from POD and it was shown that the decomposed

fields are similar to those of POD in case of a linear activation layer while with the

nonlinear activation function, L2 norm error of the reconstruction was reduced as

compared to those of POD. This was a breakthrough in the data-driven discovery

of fluidic systems due to the capability of the CNNs in representing more infor-

mation with the same number of modes. However, the performance of the deep

learning algorithms is highly controlled by the amount of data. Therefore, the

required data collection could be overwhelming while dealing with experiments.

In this case, a conservative approach seems logical in which we may be victorious

in exploiting the power of machine learning algorithms while we own a limited

amount of data. This issue will be further discussed in the fourth chapter. How-

ever, a general idea of different machine learning algorithms and the ones that we

will use throughout this research are represented in the next section.
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1.3 Machine Learning (ML)

Fluid mechanics has traditionally dealt with massive amounts of data from ex-

periments, field measurements, and large-scale numerical simulations (Brunton

et al. (2020)). Indeed, in the past few decades, big data have been a reality in

fluid mechanics research (Pollard et al. (2016)) due to high-performance comput-

ing architectures and advances in experimental measurement capabilities. Over

the past fifty years, many techniques have been developed to handle such data,

ranging from advanced algorithms for data processing and compression to fluid

mechanics databases (Perlman et al. (2007)). There are several factors which are

each game changers in the sense that they encourage more focus on data-driven

problem solving in the future. These include the persistent increasing trend of

data volume, the abundance of open-source software for computation, and etc.

These levels of evolution in different fields have pumped a huge amount of in-

vestment in the field of machine learning (ML). ML is making its role as a leader

in different industries, specifically fluid mechanics. ML provides us with a wide

range of algorithms that could each be taken advantage of to cope with chal-

lenges in fluid mechanics, such as reduced order modelling (ROM), turbulence

modelling, and flow control. These learning algorithms may be categorized into

supervised, semi-supervised, and unsupervised learning (Fig.1.3).
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Machine Learning
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Regression

Optimization and

Control
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Reinforcement

Learning

Dimensionality Re-
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Clustering

Figure 1.3: Categorization of machine learning algorithms into supervised, unsu-

pervised, and semi-supervised. Adapted from Brunton et al. (2020).

Throughout the current study, we will investigate two applications of machine

learning into our case study (LJIC) which was introduced in the previous chap-

ter. Dimensionality reduction techniques will be deployed as unsupervised ML

algorithms to model the physics of our case on a reduced order basis. These

techniques that are called the reduced order models are extensively discussed in

the next section. Additionally, we will use the classification capabilities of ML for

categorizing the breakup regimes of the LJIC cases relying on the reduced order

models that we will generate as the features.
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1.4 Objectives

The main motivation for the current study is to address the potential merit of

data-driven modelling techniques to obtain explainable solutions for a number of

benchmark and complex problems in fluid mechanics specifically in the field of

multiphase flow.

The objectives are summarized below:

1. Investigation of the spatial and temporal governing modes of the liquid jets

in crossflow.

2. Extracting the dominant frequencies of the jet oscillations and studying the

effects of them in the flow characteristics.

3. Studying the effect of the nozzle aspect ratio in analyzing the liquid jets in

crossflow systems using dimensionality reduction methods.

4. Classifying the flow regimes of the liquid jets in crossflow using the combi-

nation of supervised and unsupervised machine learning algorithms
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Chapter 2

Methodology

2.1 Proper Orthogonal Decomposition (POD)

A short review of the POD technique and its use in deriving reduced models

for the systems is provided here. Dynamical systems consisting of temporal and

spatial processes can be represented by considering the PDE systems of the form:

Ut = N(U, Ux, Uxx, ..., x, t) (2)

where U is a vector of quantities, and the subscripts t and x denote partial dif-

ferentiation. The function N(.) captures the spatio-temporal dynamics that are

specific to the considered system (Chatterjee (2000)).

By the consideration of the variable and basis expansion technique, the stan-

dard eigenfunction expansion assumes a solution of the form:

u(x, t) =
∞

∑
n=1

an(t)φn(x) (3)

where φn(x) can be any orthogonal set of functions such that:

(φj(x), φk(x)) = δjk =

1 j = k

0 j 6= k
(4)

where the δjk denotes the Dirac delta function. In general, it is common to

use a set of eigenfunctions that produce a rapid evaluation of the solutions of (2),

i.e., the fast Fourier transform (FFT). However, the optimal POD basis functions
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decomposed from a singular value decomposition (SVD) of the representative

dynamics of the system are the best low-dimensional framework. A general for-

mulation of SVD that is a built-in subroutine in many software environments as

MATLAB or Python Numpy library comes in continue.

In order to build a complete set of POD modes, a data set represented as the

matrix X is required. Each column of the matrix is a snapshot that is taken at

evenly spaced values in time. Therefore, if the data consists of m spatial points

at n snapshots, then X ∈ Cm×n . The SVD breaks up the matrix X into three

matrices:

X = UΣV∗ (5)

where U ∈ Cm×n, V ∈ Cm×n and Σ ∈ Rm×n (real numbers) and the asterisk

denotes the conjugate transpose. The data matrix X and its SVD factorization (5)

can be expressed as below (6)-(7):

X =



x1
1 x1

2 . . x1
n

x2
1 x2

2 . . x2
n

. . . . .

. . . . .

xm
1 xm

2 . . xm
n


=

[
x1 x2 ... xn

]
(6)

SVD(X) =



−→
φ1

.

.

.
−→
φi

.

.

.
−→
φm.





σ1 0 . . . . . 0 0

0 . . . . . . . 0

. . . . . . . . .

. . . . . . . . .

. . . . σj . . . .

. . . . . . . . .

. . . . . . . . .

0 . . . . . . . 0

0 0 . . . . . 0 σn





−→
ψ1

.

.

.
−→
ψi

.

.

.
−→
ψm



(7)

.

The matrix Σ is a diagonal matrix with non-negative elements σj. The (σj)s are

referred to as the singular values of X and are ordered such that:

σ1 � σ2 � ... � 0.
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the matrices U and V are composed of the eigenvectors
−→
φi (rows of U) and

−→
ψi

(rows of V∗) of the covariance matrices XX∗ and X∗X, respectively. As a result,

SVD returns a complete set of basis functions for the columns of the data matrix

(Chatterjee (2000)).

One way to choose an optimal subset of POD modes is to determine the cu-

mulative energy of that subset defined as:

Ec =
∑r

i=1 σ2
i

∑n
i=1 σ2

i
(8)

The dimensionality reduction could also be performed using the relative en-

ergy Er of one specific (jth mode) defined as:

Er =
σ2

j

∑n
i=1 σ2

i
(9)

where the total energy is normalized as ∑n
i=1 σ2

i = 1 (Chatterjee (2000)) It is

usual that a truncation scheme where the energies of the truncated POD modes

tend to reach 99% of the total energy is a desirable one.

2.2 Dynamic Mode Decomposition (DMD)

A short review of the DMD technique and its use in deriving reduced models for

the systems is provided here. In the DMD scheme, we usually collect the data

from a dynamical system in the following form (Kutz et al. (2016)):

dx/dt = f (x, t; µ) (10)

where x(t) ∈ Rn is the representative vector of the state of the system at time t,

µ includes the system parameters, and f(.) specifies the dynamics. Converting the

continuous-time dynamics from (10) will result in the discrete-time representation

of the form:

xk+1 = F(xk) (11)

The DMD scheme takes the system measurements alone to approximate the

constructing dynamics. The DMD approximates the dynamical system (10) in a

linear system of the form:
dx
dt

= Ax (12)
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That has a well-known solution of the form below, given the initial condition x(0)

(Tu et al. (2013)):

x(t) =
n

∑
k=1

ϕkexp(ωkt)bk = φexp(Ωt)b (13)

where ϕk and ωk are the eigenvectors (DMD modes) and eigenvalues of the matrix

A, and the coefficients bk are the coordinates of x(0) in the eigenvector basis. The

continuous-time map matrix A can also be replaced by the discrete-time map A

as below:

A = exp(A∆t) (14)

Therefore, the solution may be easily expressed in the discrete matrix form us-

ing the eigenvalues λk and eigenvectors ϕk of the discrete-time map A (Tu et al.

(2013)):

xk+1 = Axk =⇒ xk =
n

∑
k=1

ϕjλ
k
j bj = φΛkb. (15)

The DMD algorithm approximates the measured trajectory xk for (k = 1,2,. . . ,m)

in a least-square sense so that the following error function is minimized across

the whole spatial domain:

‖ xk+1 −Axk ‖2 (16)

To aim this purpose, the total number of snapshots (n) will be split into two large

datasets:

X = [x1 | x2 | ... | ... | xn−1], X′ = [x2 | x3 | ... | ... | xn]. (17)

The locally linear approximation can be rewritten in terms of these datasets:

X′ ' AX (18)

The optimum A matrix is given by:

A = X′X† (19)

where † is the Moore-Penrose pseudoinverse 1. To simplify the process, we project

our data onto a lower rank subspace by using (n-1) POD modes and then work

with the lower rank mapping operator in order to reconstruct the eigenvalues

1A general form of the inverse operator supporting matrices with real and/or imaginary
elements
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and eigenvectors of operator Ã without even the need to compute Ã directly. The

DMD algorithm may be continued as follows (Tu et al. (2013)):

1. Singular value decomposition of X (Trefethen and Bau (1997)):

X ' SVD(X) =⇒ X ' UΣV∗ (20)

where U ∈ Cm×r, V ∈ Cn×r and Σ ∈ Rr×r and r is the rank of the reduced SVD of

the X matrix. This step is done in order to find a low-dimensional structure in the

dataset that is possible by calculating the relative energies of the modes defined

in (8) decreasing sharply to zero after a few number of dominant modes.

2. The matrix A is found by multiplying the pseudoinverse of X and the

conjugate transpose of U:

A = X′VΣ−1U∗ (21)

More computationally efficient is to compute Ã, the projection of the full matrix

A onto POD modes:

Ã = U∗AU = U∗X′VΣ−1 (22)

3. Eigen-decomposition of Ã:

ÃW = WΛ (23)

Where the columns of W are eigenvectors and Λ is a diagonal matrix containing

the corresponding eigenvalues λk.

4. Reconstruction of the eigen-decomposition of A: eigenvectors of A can

be easily calculated using the eigenvectors of Ã and the eigenvalues Λ which is

common between A and Ã.

φ = X′VΣ−1W (24)

The formulation used above is the so-called exact DMD method which is different

than the version proved by Tu and Rowley (2014) as the projected DMD.

A brief definition of the two proposed methods is given in Table.2.1.
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Table 2.1: Summary of the modal decomposition techniques for fluid flows in this

thesis

Methods Descriptions

POD Finds an optimal number of modes to truncate

the data based on the modes’ energy content (L2 norm).

DMD Extracts the dynamic underlying patterns

with the corresponding growth rates and frequencies.

2.3 Method Demonstration

To demonstrate the efficacy of the POD and DMD algorithms in decomposing the

input signal into its components, two case studies are considered:

1) A mix signal of two spatiotemporal waves

2) A Re = 100 flow around a cylinder wake which is approximately similar to

the near-field results of the liquid jet in crossflow.

2.3.1 Mixed Signal of Two Spatiotemporal Waves

In this example, we consider a simple mixed spatio-temporal signal and the goal

is to analyze the performance of POD and DMD algorithms to decompose the

signal into its parts. The signal under study is:

f (x, t) = f1(x, t) + f2(x, t) = sin(x)exp(i1t) + tanh(x)exp(i2t) (25)

These two spatiotemporal signals f1(x, t) and f2(x, t) are generated using 400 data

points evolving in 200 time frames and then depicted in Fig.2.1.2 Two pertaining

governing frequencies embedded in the physics of this wave are ω1=1 and ω2=2.

We expect that the reduced order modelling techniques (POD & DMD) can easily

extract the base modes and explore out the true frequencies. Their produced

modes could be then utilized to rebuild the entire mixed signal which is displayed

in Fig.2.2.

2The Python code is available in Appendix.A to construct the spatiotemporal signals.
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(a) (b)

Figure 2.1: Spatio-temporal dynamics of each of the two waves, a) f1(x, t),

b) f2(x, t)

Figure 2.2: Mixed signal f (x, t)

Results indicate that while both methods can capture the governing physics

in two modes, POD is incapable of truly finding the exact sine and hyperbolic

tangent behaviours but produces two underlying waves each of which is a mixture

of true modes. On the other hand, DMD modes closely matches with the hidden

components of f1(x, t) & f2(x, t). It can be shown by spatial and temporal spectra

in Figs.(2.3-2.4)
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(a) (b)

Figure 2.3: Spatial spectra of the mixed signal, a) mode 1, b) mode 2

(a) (b)

Figure 2.4: Temporal spectra of the mixed signal, a) mode 1, b) mode 2

It is important in the sense that POD tries to decompose the mixed signal

into orthogonal components that are chosen to maximize the variance in the data

but not necessarily able to identify the independent parts like DMD (Kutz et al.

(2016)). The error pertaining to the POD method is as small as only 1.5538 ×
10−4 and could be calculated using the mean-squared error3. This amount is

approximately equal to 0 for the DMD method. Irrespective of their accuracy,

both methods truncate the initial rank-200 data onto a correct rank-2 structure.
3Mean squared error is defined in Appendix and is found using the MATLAB imsse function.
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2.3.2 Von Karman Vortex Street Past A Cylinder

Problem

A Karman vortex street is known as a recurring pattern of swirling vortices, made

by the separation of flow of a fluid around blunt bodies typically called the vor-

tex shedding process. A street of vortices will be shaped usually over a critical

Reynolds number of 90. The global Reynolds number for a flow is a measure of

the ratio of inertial to viscous forces in the flow of a fluid around bodies or inside

channels. It may be defined as the non-dimensional global speed parameter of

the whole fluid flow.

Rel = ul/ν (26)

where u is the free stream flow speed, l remarks the characteristic length param-

eter which is the diameter of the cylinder here and ν denotes the free stream

kinematic viscosity.

Simulation and Results

For simulating the above described problem, the ICEM CFD software has been

used for generating the mesh and the boundary conditions around a cylinder with

the total diameter of 2cm. Afterwards, the two-dimensional Navier-Stokes equa-

tions are solved in ANSYS Fluent based on the multidomain method of (Colonius

and Taira (2008)). A time step size of ∆t = 0.01s has been also chosen to satisfy

the CFL condition. Contours of velocity are produced and then collected at spec-

ified intervals in time, 20∆t, leading to a sampling frequency of five frames per

second.

To model the fluid flow dynamics on a reduced order system, each of the

velocity snapshots are reshaped into a tall skinny vector xk, and the vectors con-

stitute the columns of the matrices X and X′, as described in (17). Afterwards,

SVD-based techniques of POD and DMD will be implemented and the spatial

modes are generated in result (Figs.2.5a-2.5e).
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(a)

(b) (c)

(d) (e)

Figure 2.5: Spatial domain of the von Karman street past a cylinder, a) mode 0, b)

mode 1, c) mode 2, d) mode 3, e) mode 4
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(a)

(b) (c)

(d) (e)

Figure 2.6: Temporal spectra of the von Karman street past a cylinder, a) mode 0,

b) mode 1, c) mode 2, d) mode 3, e) mode 4

As it can be seen, Mode 0 (Fig.2.5a) shows the average flow that portrays the

flow separation on the cylinder while modes 1 and 2 (Fig.2.5b-2.5c) accurately

capture the von Karman vortex street behaviour. On the other hand, Modes 3 and
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4 (Fig.2.5d-2.5e) are representing a convection physics past the cylinder towards

the downstream. These spatial structures are characterized with positive and

negative pixel values shown with an hsv-type colormap using matplotlib library

in Python where for a given mode, each of red (positive) or blue (negative) pixels

determines the probability of the existence of the fluid in those locations. It means

that, for a single mode, if the liquid is present where the values are positive, then

it is unlikely to be present where the values are negative. The modal frequency

analysis could also tell us how frequently the liquid is present where the values

are positive or negative.

It can be understood from (Figs.2.6a-2.6e) that modes 1,2 and modes 3,4 are

paired modes with 90◦ phase shift with respect to each other. This fact is easily

comprehensible by plotting the temporal dynamics of the paired modes versus

each other. For example, the temporal terms of modes 1 and 2 are plotted versus

each other in (Figs.2.7) where spin-offs around a circle with a known diameter is

obvious. As we may observe, this spinning behaviour stabilizes around a circle of

specified diameter which is due to the development of the von Karman vortices

from the first snapshot all the way to the steady state condition.

Figure 2.7: Temporal spectra of the von Karman street past a cylinder, mode 1 vs.

mode 2

The modal frequency analysis could be discussed for POD and DMD schemes
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to find the corresponding Strouhal numbers. As POD is solely incapable of iden-

tifying the underlying frequencies, a power spectral density (PSD) diagram will

be produced by transforming the POD modes’ temporal terms (V vectors) onto

the Fourier space. Plotting the PSD versus the frequency spectrum, we can find

the critical frequencies where the maximal power spectral densities will happen

(Fig.2.8a).

(a) (b)

Figure 2.8: Modal frequency spectrum for the flow around cylinder at Re=100 a)

POD-PSD, b) DMD energy

We can now extract the frequencies from POD and DMD and compare them

with the experimental results using the dimensionless number called the Strouhal

number (St) defined as below:

St =
fsD
u∞

(27)

Where fs is the shedding frequency, D is the cylinder diameter (2 cm) and u∞

is the free-stream velocity (0.0723 m/s).

As it is evident, DMD extracts a single frequency value equal to 0.673 which

leads to an Strouhal number of 0.186 that is well verified with the experimental

results. PSD spectrum extracted from the POD temporal terms also peaks at the

critical frequency of 0.664 that gives an Strouhal number of 0.183 that is again

satisfying the experimental results.

It is notable that we could use either the vorticity or the velocity fields for the

data-driven modelling. Velocity data snapshots were used here to generate the

reduced model.
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2.4 Hierarchical Investigation of Liquid Breakup Sys-

tems

In this section, we apply the methods introduced in the previous section to the

datasets of liquid injection systems to better understand the fundamental physics

behind the basic fluid flows which will then enable us to investigate more prac-

tical systems like the liquid jets in crossflow. The emphasis will be provided on

creating an insight into the interpretation of modes in a hierarchical structure due

to the lack of a strong link between the decomposition theory and the physical

meaning of the modes.

We will demonstrate again that the modes which capture the true physical

phenomena produce subsequent modes that occur at higher harmonics up until

the Nyquist limit. This point was also highlighted in the first chapter where we

analyzed the decrease of the modal structure scales by gradually increasing the

modal frequency.

2.4.1 Laminar Jet

case 1: Re ≈ 709, Wel ≈ 16 4

The most naive case to be surveyed for POD and DMD in the jet breakup systems

is the laminar jet where the image snapshots have no significant variance during

the breakup’s course of action. Hence, the presumption of the existence of a single

particular mode seems rational.

The first five POD modes are reshaped and illustrated in Fig.2.10 along one

data snapshot (Fig.2.9)5.

4The same setup as the one described in the section 4.2.1 is used here; the liquid is water,
orifice diameter D = 0.43 mm and the inlet velocity u = 1.65 m/s.

5Background elimination has been applied on all snapshots using the ImageJ software
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Figure 2.9: Capillary breakup of a laminar jet

(a) (b) (c) (d) (e)

Figure 2.10: First 5 POD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the laminar jet (Re ≈ 709, Wel ≈ 16)

26



(a) (b) (c) (d) (e)

Figure 2.11: First 5 DMD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the laminar jet (Re ≈ 709, Wel ≈ 16)

First conclusion to be made is the existence of the mode 0-th in both POD

and DMD cases. This mode displays the average of all image frames that is

characterized with a frequency value of 0 Hz.

It is also visible that the pixel intensity values are inverted from POD to DMD.

It is noticeable that this has no great effect on comprehending the physics of the

problem and the first POD/DMD modes are equivalent.

(a) (b)

Figure 2.12: a) temporal spectra, b) cumulative eigenvalue diagram for the lami-

nar jet (Re ≈ 709, Wel ≈ 16)

Vectors of the temporal changes of the first five POD modes are depicted in

(Fig.2.12) where the indigo-colored line represents the constant stable nature of
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the first mode whereas blue and black colored modes are showing the oscillatory

behaviour of the next modes.

These vectors could be transformed into the Fourier space using the FFT com-

mand resulting in power spectral density (PSD) spectrum of the considered modes

(Fig.2.13a). Critical frequency could also be extracted by analysing the energy of

each of the DMD eigenvalues (Fig.2.13b).

(a) (b)

Figure 2.13: Modal frequency spectrum for the laminar jet (Re ≈ 709, Wel ≈ 16)

a) POD-PSD, b) DMD energy

case 2: Re ≈ 1259, Wel ≈ 51 6

By increasing the inlet jet velocity, we expect that the dominant spatial scales

decrease alongside the increase in the amount of system frequencies. This can

be exculsively performed by investigating the PSD for the most important POD

modes (Fig.2.16a).

The first five POD modes are reshaped and illustrated in Fig.2.14.

6The same setup as the one described in the section 4.2.1 is used here; liquid is water, orifice
diameter D = 0.43 mm and the inlet velocity u = 2.93 m/s.
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(a) (b) (c) (d) (e)

Figure 2.14: First 5 POD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the laminar jet (Re ≈ 1259, Wel ≈ 51)

(a) (b) (c) (d) (e)

Figure 2.15: First 5 DMD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the laminar jet (Re ≈ 1259, Wel ≈ 51)

For this case, a delay in the occurrence of breakup could be observed as the

breakup point height is lower compared to the previous case.

The selection of modes may be also discussed by considering both POD and

DMD modal-decomposed patterns. Correlating the spatial structures of the modes
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with the corresponding critical frequencies of the frequency domain, a better re-

alization of the true modes is possible. A similar frequency content between the

POD and DMD spectrum is visible where the fifth POD mode (Fig.2.16a) is well

comparable with the the first and second DMD modes (Fig.2.16b). This is despite

the fact that the first and second POD mode contain a higher energy amplitude.

Here we may choose to put more weight on the fifth POD mode, however this is

against the general idea of POD to arrange the modes based on an energy ranking

scheme.

We also observe a critical frequency in the range of 2400∼2500 Hz in the DMD

spectrum corresponding to the third and fourth DMD modes, that could be de-

fined as a harmonic of the first and second modes (Leask and McDonell (2019)).

Generally, a shift in the values of the critical frequencies of the POD spectrum

is observed with an increase of Re number. This is demonstrated by the fact that

we extracted critical frequency content in the range of 507∼742 Hz for the first

case but a range of 859∼1210 Hz for the second case. This range is both wider

and larger in terms of frequency values for the second case (Fig.2.16a).

(a) (b)

Figure 2.16: Modal frequency spectrum for the laminar jet (Re ≈ 1259, Wel ≈ 51)

a) POD-PSD, b) DMD energy

2.4.2 Liquid Jet In Crossflow

In this section, we analyze the behaviour of liquid jets in crossflow, which are the

most practical systems in the industry. We categorize the jet in crossflow phe-

nomenon into three domains with respect to the corresponding gaseous Weber
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number defined as below:

We =
ρu2

gD
σ

(28)

where ρ is the fluid density, ug is the gas velocity, d is the nozzle diameter and σ

is the liquid’s surface tension.

Momentum flux ratio could be also defined as the following:

q =
ρlu2

l
ρgu2

g
(29)

The classification of jets in crossflow based on the corresponding Weber number

was first done by Wu et al. (1997). We pick up a certain case for each of the flow

regimes with specified flow conditions as below:

Table 2.2: Specification of the conditions for the selected datasets in the LJIC flow

regimes

Case No.
Flow Conditions

q We ul ug Class

1 6.4 6.7 2.5 28.2 Capillary

2 11.3 20.5 5.8 49.3 Bag

3 17.2 50.6 11.3 77.6 Multimode

subscripts: (l : liquid, g : gas)

[u] = m/s, D = 0.43 mm

(a) (b) (c)

Figure 2.17: Liquid jet in crossflow regimes: a) enhanced capillary, b) bag, c)

multimode
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Enhanced Capillary Breakup

The laminar jet in crossflow is usually denoted as the enhanced capillary breakup

regime, which is enforced by the gaseous crossflow, the jet bends and forms a

curved trajectory. The first five modes for both POD and DMD schemes are shown

in (Figs.2.18-2.19).

(a) (b) (c) (d) (e)

Figure 2.18: First 5 POD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the enhanced capillary breakup regime

(a) (b) (c) (d) (e)

Figure 2.19: First 5 DMD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the enhanced capillary breakup regime

Here we can observe that although POD method was successful in generating

true modes for simpler cases like the laminar jet, applying it to the liquid jets

in crossflow results in large spatial structures. Whereas with the DMD, we have

extracted the fine scaled patterns in modes 3 and 4. A pile of regions with con-

jugate valued pixel intensities may be observed for both modes of 3 and 4 which

is representative of the movement of the droplets after being detached from the

liquid core.

Considering the POD and DMD modal energy spectra, a modal structure with

frequency content in the range of 100∼200 Hz is detected for both methods. On

the other hand, DMD extracts modes 3 and 4 with quite different structure than
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their POD counterparts. This is also explainable by comparing the PSD peaks

with the DMD-driven frequency for the third and fourth mode that shows no

common content.

Bag Breakup

By increasing the momentum flux ratio and the gaseous weber number, the en-

hanced capillary breakup regime shifts to the bag breakup regime mode. In this

situation, some portions of the liquid get flattened and are forced by the cross-

flowing air to detach from the core of the jet. The first five modes for both POD

and DMD schemes are shown in Figs.2.20-2.21. First 5 POD modes are almost sim-

ilar with the previous first five ones for the enhanced capillary regime although

the occupied area by each of the modes is wider compared to its corresponding

counterpart in the previous case. Despite having similar spatial structures, the

difference between these two regimes could be identified through their PSD di-

agrams. As observed, a remarkable change in the values of the PSD peaks has

happened and a wider area of frequencies is involved with the PSD diagram for

the jet in the enhanced capillary breakup regime.

While the PSD spectrum offers that a more complicated system is under in-

vestigation for the bag breakup regime, this fact is not distinguishable from the

modal spatial patterns. Manual selection of POD modes to better characterize the

bag breakup regime is also not logical due to the essence of POD in automatically

ordering the modes based on their energies which is quantified by their relative

eigenvalues (this variable was defined in (9)).

On the other hand, DMD portrays structures of finer sizes which are charac-

terized by their frequencies. For example, the second DMD mode identifies the

similar structure as the second POD mode where a low-frequency displacement

of the jet is captured. This displacement is in the form of a periodic oscillation

where the jet is either at the maximum or at the minimum pixel intensity values

at certain time-steps. This is better understood by calculating the time interval

between the two consecutive snapshots where the jet is located at similar loca-

tions. This time interval is easily found by dividing the sampling frequency over

the second mode’s frequency ( fs/ f = 5000/756 ' 7). It could be also verified by

checking the location of the jet at every seven timesteps.

33



(a) (b) (c) (d) (e)

Figure 2.20: First 5 POD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the bag breakup regime

(a) (b) (c) (d) (e)

Figure 2.21: First 5 DMD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the bag breakup regime

Multimode Breakup

Further increasing the gaseous Weber number results in the shift of the breakup

regime beyond the bag mode where the atomization is performed through both

the bag breakup scheme and also the shearing of the small droplets off the jet core.

The first five modes for both POD and DMD schemes are shown in Figs.2.22-2.23.

The spatial patterns get even more distributed in terms of size with respect to

the previous case. A more intricate system is expected here and is characterized

using the POD and DMD modal frequency spectra (Fig.2.26).

First DMD modes shown in Fig.2.23 share significant content similarity with

the first DMD modes of the bag breakup case. Except for the 0-th mode, all the

presented modes here are identical in terms of spatial structures where it seems

the third and fourth modes are the higher harmonics of the first and second

modes.
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(a) (b) (c) (d) (e)

Figure 2.22: First 5 POD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the multimode breakup regime

(a) (b) (c) (d) (e)

Figure 2.23: First 5 DMD modes, a) mode 0, b) mode 1, c) mode 2, d) mode 3, e)

mode 4 for the jet in the multimode breakup regime

Frequency Spectrum

(a) (b)

Figure 2.24: Modal frequency spectrum for the enhanced capillary breakup

regime a) POD-PSD, b) DMD energy
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(a) (b)

Figure 2.25: Modal frequency spectrum for the bag breakup regime a) POD-PSD,

b) DMD energy

(a) (b)

Figure 2.26: Modal frequency spectrum for the multimode breakup regime a)

POD-PSD, b) DMD energy

In the table below, an overall estimation of the Strouhal numbers associated with

the DMD modes for each of the cases studied above is presented. These values

are all in the range of 0.06∼0.13 and correspond well with the values reported in

the literature for the jet in the near-field (Eroglu and Breidenthal (2001)).

Table 2.3: Strouhal numbers associated with the near-field oscillations of the jet

Case
Dimensionless Numbers

Re ug/ul St

Enhanced Capillary 1252 11.3 0.06∼0.12

Bag 2900 8.5 0.07∼0.13

Multimode 5640 6.9 0.06∼0.10

36



There are a number of parameters which are highly dependent on the flow

conditions like the gaseous Weber number and the momentum flux ratio. These

parameters include the jet trajectory, penetration height and the column breakup

point (CBP) location.

Jet Trajectory

Jet trajectory is usually defined as the path taken by the lower boundary of the

liquid jet (windward side) (Wu et al. (1997)). While this characteristic parameter

is usually found and depicted using image processing algorithms such as ImageJ

and MATLAB curve-fitting tools, we are interested in characterizing this parame-

ter using the modal spatial structures. For this purpose, POD or DMD first modes

(average modes) could be utilized. These modes are representative of the aver-

age flow existent in all snapshots. A gradient function is applied on all pixels in

order to find the liquid-gas interface and then the coordinates of the pixels with

minimum -x- values in each row are reported as the windward trajectory of the

jet.

A schematic of this procedure is depicted in Fig.2.27.

Figure 2.27: Average mode for the jet in the enhanced capillary breakup regime

Afterwards, a nonlinear least squares error curve fitting tool is used to predict

a polynomial function in the form of the equation below for the trajectory:

y
d
= a(q

x
d
)b (30)
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Constant values of a and b are found for each case, respectively. These values

are comparable with the ones found by Wu et al. (1997).

Table 2.4: Jet trajectory characterization for different LJIC flow regimes

Case
Constants

a b

Enhanced Capillary 1.39 0.49

Bag 1.38 0.50

Multimode 1.37 0.50

Wu et al. (1997) 1.37 0.50

2.5 Summary

In this chapter, an investigation to validate the efficacy of the POD/DMD meth-

ods has been conducted by generating a reduced order set in which each mode

is representative of a meaningful spatial physics inside the phenomenon under

study that also comes with its corresponding temporal content. Although the

same approach seemed very unclear for describing the multiphase flow systems,

it became a foundation upon which the extracted modes of laminar and crossflow

jets may be interpreted. This explanatory study is the cornerstone for the next

chapter where we examine the features of the elliptical jets and perform an ana-

logical reasoning on their dynamic terms. The following chapter will also gain a

great benefit from the discussions made in this chapter. A classification ML prob-

lem will be of interest where the features are the generated POD/DMD modes. It

is highly important that a true set of modes get selected as the features because

modes of higher harmonics do not add up to the available information and will

be merely accumulated as an extra amount of data as previously discussed in this

chapter.
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Chapter 3

Dynamic Mode Decomposition of

Elliptical Liquid Jets in Crossflow 1

Abstract

Dynamics of round and elliptical liquid jets in subsonic crossflow is studied us-

ing high-speed imaging technique. The experiments are performed at constant

gaseous weber number and liquid-gas momentum flux ratio of 6.45 and 17.87 re-

spectively, with orifices of different aspect ratios having an equivalent diameter

of 0.43 mm. All cases are carried out inside an open loop subsonic wind tun-

nel with a test section of 100×100×750 mm. For each case, dynamic modes are

generated directly from the snapshots using a variant of Arnoldi method known

as the dynamic mode decomposition (DMD). DMD results indicate that elliptical

liquid jets have more small-scaled patterns with higher frequencies compared to

the case of round liquid jets. As the first attempt to investigate the dynamics

of elliptical liquid jets in crossflow, present work captures the dominant spatio-

temporal structures. It is also found that the orifice aspect ratio can alter the jet

wavelengths remarkably. The extracted data of this work can provide beneficial

information on the behaviour of elliptical liquid jets exposed to the gas crossflow

in the enhanced capillary breakup regime.

1This chapter has been accepted to the Canadian Society for Mechanical Engineering Inter-
national Congress (CSME 2020). Parts of it was submitted to the journal of Transactions of the
Canadian Society for Mechanical Engineering (TCSME).
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3.1 Introduction

Liquid jet injection into a gaseous crossflow is an applicable mechanism in var-

ious fields such as thermal spray, ink-jet printing, and gas turbine engines (Wu

et al. (1997)). Study of the near field behaviour of liquid jets in crossflow is es-

sential since any oscillations on the jet body affects the functional efficiency of the

spray. Identification of the principal phenomena could be useful in finding the

coherent dynamic features and enhance the system performance as the liquid jet

in crossflow (LJIC) is considered as a multi-scale phenomenon.

There are many governing parameters controlling the LJIC phenomenon. Wu

et al. (1997) found the effect of liquid viscosity on liquid jet breakup. Taylor (1940)

discovered the impact of gas density. Many other parameters were also investi-

gated by analysing their effects on spray characteristics such as penetration height,

column breakup point (CBP), Sauter mean diameter (SMD), spray spread angle

in the works of Sallam et al. (2004); Lee et al. (2007); Herrmann (2010); Yunyi et al.

(1998). Despite numerous researches in this area, only a few works have been

performed on asymmetric nozzles due to their associated complexities. Among

asymmetric nozzles, elliptical type orifices are investigated more than the others.

Gutmark and Grinstein (1999) reported the enhanced mixing and spreading as

the principal benefit of elliptical jets over their circular counterparts. One of the

important features of elliptical liquid jets known as axis-switching is discussed

in the work of Amini and Dolatabadi (2012). Study of such phenomena is often

not straight-forward directly from raw experimental results such as time-resolved

snapshots of high-speed camera. Therefore, flow structures may be analysed by

decomposing them into modes using reduced order modelling (ROM) methods

such as proper orthogonal decomposition (POD) (Weber (1931)), dynamic mode

decomposition (DMD) (Holmes et al. (2012)), discrete Fourier transform (Rowley

et al. (2009)), balancing modes for linear systems (Rowley (2005)), global eigen-

modes for linearized dynamics (Bagheri et al. (2009)) and many other variants of

these techniques.

Recently, Jadidi et al. (2019) showed that the flow structures at the exit of

circular and elliptical nozzles are different and the elliptical nozzles show more

prominent signs of turbulence. They also observed that for a specified momentum

flux ratio and Weber number, the elliptical jets disintegrate earlier.
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In this paper, ROM modelling of elliptical liquid jets exposed to low weber

numbers in the enhanced capillary breakup regime close to the bag breakup

regime is presented based on the DMD technique (Schmid (2010)). Using time-

resolved snapshots, we extract the oscillatory physics of the flow and derive the

relevant frequencies and the associated spatial modes using DMD. Dynamic mode

decomposition (DMD) is an algorithm for finding Koopman modes and a stan-

dard variant of Arnoldi method (Rowley et al. (2009)). As a global stability analy-

sis technique, DMD is applicable over a broad range of linear and nonlinear flows

without any flow assumptions required (Mittal and Kumar (2003)).

Previous insight into the mechanism of LJIC was provided by an analysis tech-

nique based on proper orthogonal decomposition (POD) and spectral analysis

(Arienti and Soteriou (2009)). DMD as the decomposition method used in this pa-

per can be thought of as an ideal combination of spatial dimensionality-reduction

techniques as POD with Fourier transforms in time. Each of the spatial modes in

DMD are also associated with a given temporal frequency, possibly with a growth

or decay rate (Kutz et al. (2016)). Thus, modal analysis of POD modes may result

in association of each mode with different frequencies while DMD decomposes

the input data into modes with singular frequency values for each of them.

3.2 Methodology

The experimental facility in this study consists of an open loop subsonic wind

tunnel with a test section of 100×100×750 mm, liquid injection system and an

imaging system. A schematic of the experimental setup can be found in the work

of Jadidi et al. (2019). A 1.5-HP blower fan made by Aeroflo is used to blow the

ambient air into the wind tunnel. A Honeywell torque controller is utilized in

order to adjust the air speed. The turbulence intensity of the gas velocity vectors

was reported in the work of Farvardin (2013) where it was shown by particle

image velocimetry (PIV) that the air velocity is constant and parallel in all regions

except at the narrow boundary layers on the wall.

The liquid injection system also comprises of a pressure vessel, a flowmeter,

and circular/elliptical injectors with different aspect ratios. Distilled water is the

used liquid throughout the test. Injectors having plain orifices with length to
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diameter of 10 are used where the equivalent diameter of different orifices is 0.43

mm. Aspect ratios are defined based upon the same rule provided in the work

of Marzbali (2011) where the direction of the orifice major axis with respect to

the crossflow direction (parallel/perpendicular) is considered as the criteria for

the aspect ratio calculation. Elliptical orifices of aspect ratios 0.22 and 4.47, and a

circular orifice of aspect ratio 1 are used in the present work. A tapered transition

from 2 mm to 0.43 mm is considered in order to prevent cavitation effects inside

the orifice (Farvardin (2013)). Mass flow rate of the liquid jet and the velocity of

the wind tunnel of 38 g/min and 30 m/s are kept constant during all of the tests

in order to ensure constant gas weber number (We) and momentum flux ratio (q)

of 6.45 and 17.87, respectively.

The imaging facilities in this test include a Photron SA1.1 high-speed digi-

tal camera set at 5000 frames per second with a 1024×1024 resolution, a lens

(AF Micro-Nikkor 105 mm f/2.8, Nikon) and two halogen lamps (type: T-3,

200T3Q/CL/78MM, Satco, USA).

The experimental tests were performed at atmospheric pressure and the room

temperature and were repeated four times for each case at its unique aspect ratio.

Fig.3.1 reveals three random snapshots of circular/elliptical liquid jets with differ-

ent aspect ratios at the enhanced capillary breakup regime. For each of the cases,

Dynamic Mode Decomposition (DMD) was applied on 500 consecutive snapshots

for acquisition of coherent dynamical structures.

Figure 3.1: Enhanced capillary breakup of elliptical liquid jets; We=6.45, q=17.87

Using DMD, one can analyse the temporal coefficients of coherent spatial

modes. Development of this algorithm to extract dynamic mode information from

a flow field was carried out by Schmid (2010) based upon the Koopman analysis
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of dynamical system (Rowley et al. (2009)). Current work is perhaps the first re-

search on capturing the dominant dynamical modes to look at the small-scaled

oscillations around elliptical liquid jets.

3.3 Results and Discussion

A low speed water jet exposed to a low speed gaseous crossflow in the enhanced

capillary regime is investigated by DMD. As mentioned before, 500 snapshots

of data were captured with a 5000 frames per second imaging speed for each of

the circular/elliptical liquid jet cases among which 101 arbitrary snapshots were

used in order to generate an A matrix with a maximum rank of 100 leading

to the generation of maximum 100 dynamic modes. Furtherly, an r-truncation

scheme (Kutz et al. (2016)) is developed in order to optimize the typical Ritz

spectrum to have a near-equilibrium state of the system where the flow dynamics

is almost linear. The exponential growth/decay rate and the stability/instability

condition of the system could be discussed by the conjugate pair of eigenmodes.

In addition, linear condition happens when almost all Ritz values lay on the unit

circle ‖ λi ‖= 1 that informs us about the coincidence of the sample points with

an attracting set (Sarkar et al. (2013)). Similar observation of it was reported in

the work of Rowley et al. (2009) for a liquid jet in crossflow (LJIC) case. As it can

be seen in Fig.3.2, Ritz spectrum diagrams have been depicted for different values

of r equal to 60, 80, 100 in case of having a circular liquid jet. there are different

configurations of data points in order to track the effect of them on the stability

of the reduced-order model.

Figure 3.2: Ritz spectra for different r-truncation schemes; a) r=60, b) r=80, c)

r=100

43



Figure 3.3: Global spectra for different r-truncation schemes; a) r=60, b) r=80, c)

r=100

Hereby, an optimization approach based on trial and error was performed by

maximizing the number of data points laying on the unit circle that guarantees

the stability and also minimizing the energy content of the modes inside the unit

circle. This approach has been applied on all circular/elliptical cases by trying

different r values and an optimum r is found for each of the cases which is equal

to 62, 72, and 67 for orifices with aspect ratios of 0.22, 1 and 4.47 respectively.

The regarding Ritz and global spectra diagrams with the optimum aspect ratio

for each of the circular/elliptical liquid jets is found in Figs.3.4-3.5.

Figure 3.4: Ritz spectra; a) Ar=1, b) Ar=0.22, c) Ar=4.47 at optimum r values
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Figure 3.5: Global spectra; a) Ar=1, b) Ar=0.22, c) Ar=4.47 at optimum r values

In Figs.3.2-3.5, the filled circles in colours indicate the global energy norm of

the associated modes. The red-coloured circle at λi = 0 and λr = 1 denotes the

mean flow. It can be seen that for the case where r=100, two paired modes denoted

by pale blue colour indicate that this model is not well suited since it is not

linear and the decaying modes inside the circle have higher energy magnitudes

with respect to their other counterparts laying on the unit circle. In general, the

stability grows with increasing the value of r. However, higher values of r may

result in modes with remarkable energy content laying inside the unit circle that

is not desirable.

The principal modes of the circular/elliptical cases on the Ritz spectrum in

Fig.3.4 are shown in a larger scale in Fig.3.6 where the associated modes are

annotated with their indices.
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Figure 3.6: Ritz spectra for the mean and dominant dynamic modes at different

aspect ratios; a) Ar=1, b) Ar=0.22, c) Ar=4.47

These modes dominate the entire energy spectrum with specified energy con-

tents. Corresponding energy values are normalized with respect to the energy

content of the mean mode (mode 1) using the definition of the form:

E =
‖ φi ‖
‖ φ1 ‖

(31)

The stability level of a single mode can be discussed based on its closeness to

the unit circle as:

S =
√

λ2
real + λ2

imag (32)

From the Ritz spectra of dominant eigenvalues, the continuous oscillatory fre-

quency can be found by the following relationship (Kutz et al. (2016); Sarkar et al.

(2013)):

Frequency =
imag(ln(λ))

2π∆t
=

arg(λ)
2π∆t

(33)

where ∆t (the sampling time between two snapshots) and arg(λ) are defined

by the following expressions (Eqs.(34)-(35)):

∆t =
1
fs

(34)
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arg(λ) = arctan(
λimag

λreal
) (35)

The sampling frequency is equal to 5000 in this case. Therefore, ∆t will be 0.2

milliseconds. It is notable that the maximum capturable oscillatory frequency by

DMD is limited by half of the sampling frequency.

Tables 3.1,3.2, and 3.3 show the real and complex eigenvalues of the mean and

dominant modes, their associated absolute and normal energy content, stability

S term for each of the modes, the angle of the modes with respect to the pos-

itive real axis and finally their corresponding frequencies. It is interesting that

the dominant mode capturing the oscillatory behaviour of elliptical liquid jets in

the enhanced capillary breakup regime at the threshold of bag breakup regime

own higher frequency levels compared to the case of circular liquid jet. From

Eq.(33), the average oscillatory frequency was calculated as 286 for the circular

liquid jet whereas it was estimated as 349 and 343 for the major and minor axis

elliptical liquid jets respectively (Table 3.4). These results confirm the existence of

more small-scaled patterns with higher frequencies which is equivalent to smaller

wavelengths associated with the elliptical jets with aspect ratios over or under 1.

Fig.3.5 portrays the global DMD spectrum for the circular/elliptical cases.

The global spectrum for the circular liquid jet is presented in Fig.3.4a whereas

Figs.(3.5b-3.4c) represent the same for the elliptical liquid jet. A strong alignment

trend is capable to be considered along the line of the growth/decay rate ηr = 0.

This trend is strongest in the circular case and the weakest in the elliptical case

with the minor axis perpendicular to the direction of the crossflow. Strong align-

ment indicates a nearly linear model which is desirable. This issue could also be

investigated through the S values where the closeness of each mode to the unitary

circle is specified.
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Table 3.1: Eigenvalues, energy content, stability and frequencies of the mean and

dominant modes for the circular liquid jet (Ar = 1)

Mode No. λreal λimag ‖ φ ‖ E S arg(λ) Frequency

1 1.00 0.00 125180 1.0000 1.00 0.00 0

2,3 0.96 ±0.17 2221 0.0177 0.95 0.17 138

4,5 0.94 ±0.05 2016 0.0161 0.94 0.05 44

6,7 0.026 ±0.34 3285 0.0262 0.98 0.35 286

8,9 0.84 ±0.18 5689 0.0454 0.86 0.22 176

10,11 0.84 ±0.30 3207 0.0256 0.89 0.34 275

12,13 0.83 ±0.42 1810 0.0145 0.94 0.47 374

14,15 0.80 ±0.53 2313 0.0185 0.96 0.58 467

16,17 0.73 ±0.57 868 0.0069 0.93 0.66 527

Table 3.2: Eigenvalues, energy content, stability and frequencies of the mean and

dominant modes for the elliptical liquid jet with Ar = 0.22

Mode No. λreal λimag ‖ φ ‖ E S arg(λ) Frequency

1 1.00 0.00 117920 1.0000 1.00 0.00 0

2 0.93 0.00 24 0.0002 0.93 0.00 0

3,4 0.91 ±0.13 2861 0.0247 0.92 0.14 114

5,6 0.89 ±0.22 3963 0.0336 0.92 0.24 196

7,8 0.89 ±0.35 1900 0.0161 0.96 0.3765 299

9,10 0.83 ±0.38 4410 0.0373 0.92 0.43 346

11,12 0.81 ±0.49 2107 0.0179 0.95 0.54 432

13,14 0.80 ±0.55 156 0.0013 0.97 0.59 475

15 0.75 0.00 5221 0.0443 0.75 0.00 0

16,17 0.69 ±0.62 2295 0.0195 0.93 0.73 583
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Table 3.3: Eigenvalues, energy content, stability and frequencies of the mean and

dominant modes for the elliptical liquid jet with Ar = 4.47

Mode No. λreal λimag ‖ φ ‖ E S arg(λ) Frequency

1 1.00 0.00 100070 1.0000 1.00 0.00 0

2,3 0.92 ±0.17 2107 0.0211 0.94 0.18 148

4,5 0.86 ±0.06 3483 0.0348 0.86 0.07 59

6,7 0.87 ±0.37 1554 0.0155 0.95 0.40 323

8,9 0.82 ±0.32 5135 0.0513 0.89 0.37 302

10,11 0.81 ±0.44 2399 0.0240 0.92 0.49 397

12,13 0.75 ±0.54 1048 0.0105 0.93 0.62 497

14,15 0.75 ±0.38 5339 0.0534 0.84 0.47 378

16 0.64 0.00 2182 0.0218 0.64 0.00 0

17,18 0.61 ±0.64 1770 0.0177 0.89 0.80 639

Table 3.4: Averaged stability and frequency of elliptical liquid jets based on their

aspect ratios

Ar S̄ ¯Frequency

0.22 0.92 349

1 0.94 286

4.47 0.89 343

Based on Tables.(3.1-3.3), averaged S values of 0.94, 0.92, and 0.89 are estimated

for the dominant modes in the circular/elliptical liquid jets the results of which

can be found in Table.3.4.

In case of the energy norms, the values of E are given in Table.3.1 for the

circular jet and in Tables.(3.2-3.3) for its elliptical counterparts. Modes with higher

E play a more significant role in terms of contributing their share to the total

energy of all modes in the reduced order model. For example, paired modes

(8,9) in the elliptical case with Ar=4.47 own a 5.13% energy norm higher than

any other paired modes of interest which make them the principal dynamics of

the system. This result is validated by the depiction of the spatial structures

of the real and imaginary parts of the principal modes in Figs.(3.7-3.8). These
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modes were calculated and depicted for Ar=4.47 as the representative of all other

studied cases. It is obvious from the real and imaginary parts of the modes

that a 90◦ phase shift is existing between them. Strong similarity between the

spatial structure of these modes with the original snapshot data depicted in Fig.3.1

explains their higher energy norm compared to the other modes.

Figure 3.7: Real and complex parts of mode 2 for the elliptical jet with Ar=4.47

Figure 3.8: Real and complex parts of mode 8 for the elliptical jet with Ar=4.47
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3.4 Conclusions

An investigation of the dynamics of the elliptical liquid jets in gaseous crossflows

is performed at low weber numbers. Different elliptic-type orifices with similar

equivalent diameter are used. Flow conditions are kept constant by enforcing the

same air and liquid velocity for all tests. It is concluded that the flow structures

coming out of the elliptical nozzles are totally different in comparison with their

circular counterparts. For a given momentum flux ratio, the elliptical liquid jets

contain more coherent small-scaled structures with higher frequencies compared

to the circular jets. Higher frequencies lead to lower wavelengths that means faster

disintegration and less penetration into the crossflows for the elliptical jets which

is perhaps due to the effects of drag force, axis-switching and the turbulence. This

conclusion is highly consistent with the previous findings in the work of Jadidi

et al. (2019).
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Chapter 4

Supervised Classification of Liquid

Jets in Crossflow 1

Abstract

Breakup of liquid jets in crossflow (LJIC) contain unique embedded patterns

based on the type of the pertained flow regime. Recognition of these patterns

and correlating them to the underlined flow schemes is a possible but yet chal-

lenging task due to their complex nature. In this research, we have utilized un-

supervised reduced-order models to create a feature-based supervised classifier

that diagnoses multiple flow regimes. These models include proper orthogonal

decomposition (POD), principal component analysis (PCA) and dynamic mode

decomposition (DMD). Snapshots are being extracted by high-speed imaging of

the flow field of fourteen different cases at various categories. These images are

then stacked into a big-data matrix as the train set for the support vector machine

(SVM) and random forest (RF) classifiers to learn. Then, the generated classifiers

in the previous step are used to predict which category belongs to every dataset of

the six newly imported cases. Afterwards, the accuracy level of different permu-

tations of reduced-order models and machine learning algorithms is calculated.

Results indicate that using dynamic modes of DMD in partnership with the RF

algorithm outperforms every other model with the highest accuracy rate of 95%.

Finally, a decision-maker application that classifies the datasets based on the first

1This chapter has been submitted to the journal of atomization and sprays and is currently
under review.
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three models with the highest accuracy levels is introduced to provide a user-

friendly environment for data classification at all other potential conditions.

4.1 Introduction

The breakup processes of liquid jets in crossflow include enhanced capillary, bag,

multimode and shearing regimes. These processes commence with the deforma-

tion and flattening of the liquid column, and the growth of surface waves. Con-

sequently, the liquid column is disintegrated into ligaments and droplets. When

the gaseous Weber number (We) is below 10, the liquid jet is curved by the aero-

dynamic forces that reinforce the capillary forces while being under the control of

the surface tension forces. The corresponding breakup regime to this behaviour

is called the enhanced capillary breakup (Kitamura and Takahashi (1976)). As

the gaseous Weber number increases, the liquid column undergoes breakup be-

haviours similar to the secondary breakup of spherical droplets (Krzeczkowski

(1980)). These behaviours lead to the formation of the bag, multimode and shear

breakup regimes based on the magnitude of We number.

The breakup regimes in the liquid jet in crossflow (LJIC) configurations do

play a significant role in determining the physics of the jet at both the primary

and secondary scales (Wu et al. (1997); Mazallon et al. (1999); Sallam et al. (2004);

Lee et al. (2007)). These processes affect the droplet size and velocity distribu-

tions, penetration depth, and the breakup point location each of which is a game-

changer in several sectors of industry such as delivering fuel in engines, burners,

boilers, agricultural sprays, etc. (Jadidi et al. (2016); Curran (2001)).

Assuming LJIC phenomena as a nonlinear dynamical system, analysis of such

processes seems crucial by the extraction of spatiotemporal patterns from the

data generated by numerical simulations or experiments. To reach this goal, sev-

eral reduced-order modelling techniques, all of which are founded based on the

singular value decomposition (SVD) of data, have been introduced in the fluid

mechanics, mathematics and computer science communities. It could be known

as a generalization of the Fourier transform (Brunton et al. (2020)). SVD has many

applications mainly focused on data reduction, dimensionality reduction and has

been promoted as a foundation for machine learning in recent years. The most
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well-known models in this area are principal component analysis (PCA) (Pear-

son (1901)), proper orthogonal decomposition (POD) initially introduced to the

fluidics community (Berkooz et al. (1993)), and dynamic mode decomposition

(Schmid (2011)).

POD and PCA are both static models analogous to each other in the sense

that they have similar definitions except that PCA uses the mean-subtracted data

as the input. On the other hand, DMD is a dynamic dimensionality reduction

model with the capability to extract dynamic information from flow fields. In both

frameworks (static vs. dynamic), the output data is usually in the form of modes,

each of which is representative of a specific flow regime. The physical mechanism

embedded in the modes is on a dynamical system of importantly, fewer degrees of

freedom compared to the initially given system (Schmid (2011)). The distinction

between these two frameworks relies on the fact that POD and PCA determine

the optimal set of modes to represent the data based on the energy norm. At

the same time, DMD captures dynamic modes with associated growth rates and

frequencies.

As mentioned previously, POD was presented to the fluidics community in

1993 by Berkooz et al. (1993). They described the method, illustrated its use in the

analysis and modelling of turbulent flows. Bernero et al. studied the jet in coun-

terflow phenomena by investigating the generated modes using POD (Bernero

and Fiedler (2000)). Meyer et al. analyzed the experimental data of a turbulent

jet in crossflow using POD and found that the shear layer vortices are not cou-

pled to the dynamics of the wake vortices (Meyer et al. (2007)). Also, hanging

vortices were identified, and their contribution to the counter-rotating vortex pair

(CVP) was described. Arienti et al. linked the observed travelling waves in the

LJIC systems to the fastest growing wave of Kelvin-Helmholtz instability using

the frequency and wavelengths obtained by applying POD (Arienti and Soteriou

(2009)).

In 2009, Rowley et al. (2010) addressed all previous developments in model-

reduction techniques applicable to fluid flows and introduced a new method for

analyzing nonlinear flows based on spectral analysis of the Koopman operator, a

linear operator defined for any nonlinear dynamical system. They showed that,

for an example of a jet in crossflow, the resulting Koopman modes decouple the
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dynamics at different timescales more effectively than POD modes and capture

the relevant frequencies more accurately than linear stability analysis. This work

became a foundation upon which Schmid established dynamic mode decompo-

sition (DMD) and used it to break a fluid process into dynamically relevant and

coherent structures that aid the characterization and quantification of physical

mechanisms in the fluid flows (Schmid (2011)). In 2014, Tu and Rowley (2014)

performed an analysis of 3D separated turbulent flow over a finite-thickness plate

with an elliptical leading edge at Re=100,000. They compared the final POD and

DMD modes in terms of their ability in data reconstruction and frequency cap-

turing. In addition to the fluidics community, DMD has gained a great deal of

attention in the market strategies (Mann and Kutz (2016)), neuroscience (Brunton

et al. (2016)), disease recognition (Xi and Zhao (2019)), etc.

In the current work, we intend to choose different reduced-order modelling

techniques as the feature-extraction tools and furtherly build a machine-learnt

classifier that diagnoses different flow breakup regimes (enhanced capillary, bag,

and multimode) using image snapshots. Previous studies in this area are limited

to the classification of data-driven thermal fluid models (Chang and Dinh (2019)),

classification of boiling regimes (Hobold and Da Silva (2018)), characterization of

two-phase flows (Chakraborty and Das (2020)), and flow pattern classification in

liquid-gas flows using flow-induced vibration (Carvalho et al. (2020)). The ob-

jective of this paper is to compare the accuracy of different models in predicting

the breakup regime of a new LJIC case based on what is learned in the training

step using the image datasets of various LJIC cases with their known breakup

categories. Two classic machine learning algorithms of SVM and RF are used in

this work to generate the desired classifiers. SVM constructs a set of hyperplanes

in a high dimensional space, which can be used for classification, regression, etc.

RF is an ensemble learning method for classification, regression, and other tasks

that operates by constructing a multitude of decision trees at training time and

outputting the class that is the mode of the classes (classification) or mean predic-

tion (regression) of the individual trees. Using other machine learning and deep

learning approaches as convolutional neural networks (CNNs) that are powerful

in image classification was also considered but found to be unsuitable due to the

insufficient number of images (Rawat and Wang (2017)).
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The remaining of this research paper is organized as follows: In the second

part, the experimental setup and the data collection methods are explained. Then,

discussing the methodology and the governing equations behind each model is

included in the third part. Finally, the results are generated and addressed by

implementing the methods in the fourth part.

4.2 Methodology

4.2.1 Experimental Setup

The experimental facility in this study consists of a closed-loop subsonic wind

tunnel with a test section of (200× 200× 400 mm), a liquid injection setup, and a

high-speed image capturing system. The test section is made of plexiglass mate-

rial for better visualization. A schematic of the setup is shown in Fig.4.1. A blower

fan made by ABB is used to blow the air into the wind tunnel. The air velocity

distribution, as well as its turbulence intensity, were measured by particle image

velocimetry (PIV), and a uniform profile was obtained in all regions except at the

5-mm thin boundary layer on the wall at the injector location (Farzad (2019)). The

turbulence intensity was also calculated to be 5% at the same location. The liquid

injection system consists of a pressure vessel, a flowmeter, and a single injector

with an orifice diameter of 0.5-mm. It is also notable that a tapered transition

from 2 mm to 0.5 mm is considered to prevent cavitation inside the orifice. With

DI water as the test liquid, the air crossflow and injection velocities are varied over

a wide range to provide an extensive dataset of experimental results. The liquid

velocity ranges between 2.5 to 11 m/s, whereas the considered velocity range for

the gaseous crossflow is 28 to 84 m/s.

The image capturing system is based on the backlighting technique. It includes

a Photron SA1.1 high-speed digital camera set at 5000 frames per second with a

1024×1024 resolution for all cases, a lens (AF Micro-Nikkor 105 mm f/2.8, Nikon),

and two halogen lamps (type: T-3, 200T3Q/CL/78MM, Satco, USA).
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Figure 4.1: Schematic of the experimental setup

4.3 Data Collection

In this study, we used twenty arbitrary LJIC cases with a test size equal to 0.3

(fourteen cases for the training phase and six cases for the test phase), all located

in the triple-typed flow regimes of the enhanced capillary, bag and multimode

breakup, the details of which are shown in Fig.4.2. It is highly noteworthy that

the existence of surface/column breakup has been neglected here as the amounts

of momentum flux ratio are adequately small. The original map could be found

in the work of Wu et al. (1997). The corresponding amounts of momentum flux

ratio and the gaseous weber number are listed in Table 4.1.

Table 4.1: Specification of the LJIC cases

Case No. 1 2 3 4 5 6 7 8 9 10

q 6.4 34.5 130.1 4.1 22.1 83.5 2.8 15.3 58.2 2.1

We 6.7 6.7 6.7 10.5 10.5 10.5 15.1 15.1 15.1 20.5

Case No. 11 12 13 14 15 16 17 18 19 20

q 11.3 42.6 8.6 32.6 6.8 25.8 4.5 17.2 3.9 14.9

We 20.5 20.5 26.8 26.8 33.9 33.9 50.6 50.6 58.4 58.4
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Figure 4.2: Visualization map of the LJIC cases

As indicated above, a database consisting of 500 consecutive images at twenty

different cases (25 images per case) has been chosen to generate the necessary

patterns. Each picture is converted to a tall skinny columnar matrix with a hex-

adecimal number system (pixels with values 0∼255) and attached to its peer ma-

trix of the next image. This process is performed on both the train and the test

sets. We consider distinct LJIC cases located in different flow regimes, the details

of which are shown in Fig.4.2. A better understanding of the whole process is

shown in Fig.4.3.
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Figure 4.3: Data collection procedure

4.3.1 Supervised Learning Pipeline

The full data matrix X is now ready to be imported into various SVD-based al-

gorithms ie. POD, PCA, and DMD. As indicated previously, a test set size of 0.3

is considered for all iterations. As shown in Fig.4.4, the train set is first used to

build the features. Then, both train and test set images are projected into the fea-

tures to generate the projected data matrix that has a (500×rank) dimension. The

truncation rank can be modified manually or be set to the optimal hard threshold

for singular values found by Gavish and Donoho (2014). This method is used

to recover the low-rank matrices from noisy data by hard thresholding the sin-

gular values obtained from reduced-order models such as POD, PCA and DMD.

For the sake of simplicity, auto-rank selection based on this method is used here

and is found to be equal to 12 for the current train dataset consisting of 350 con-

secutive images at 14 different cases. It means twelve modes are kept in each

reduced-order model. Afterwards, both train and test image datasets (collected

from images) are projected into the available previously generated modes that

have the same dimension as the images (1024×1024). The projected output data
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for the train and test sets will be a dataset with a dimension equal to the number

of input images in each of those datasets times the number of retained modes.

This amount is equal to (350×12) here for the train and (150×12) for the test set,

respectively. In the next step, the projected data obtained from the train set is

imported along with the corresponding labels (A vector with a size equal to the

number of input images containing the category type info of each image) into the

machine learning model (SVM or RF), and the predictive model is generated in

the output. In the last stage, the projected data obtained from the test set is given

to the predictive model, and a vector of expected labels specifying the category

type of each image is created. The entire procedure is performed for the per-

mutation of three reduced-order models i.e. POD, PCA, and DMD with the two

machine learning methods; SVM, and RF, thus making six different labelling vec-

tors. Each of the six predicted labels is obtained by repeating the whole pipeline

for 10 times to get better classification rate results. A ten-fold cross-validation is

also used for error analysis as described in the work of Xi and Zhao (2019).
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Figure 4.4: Flowchart of the machine learning pipeline
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In the next section, we review the mathematical equations of POD, PCA and

DMD as well as discussing some fundamentals of SVM and RF.
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4.3.2 Methodology and governing equations

Reduced-Order Modelling

This section can be separated into two subsections: static and dynamical mod-

elling. Static models like POD and PCA both use SVD of data to generate the

feature modes. The only difference between POD and PCA lies in the fact that

PCA uses the mean-subtracted data as the input. In contrast, dynamical meth-

ods such as DMD perform this task with three additional steps compared to the

static ones. DMD first computes the correlation matrix that maps the first (N-1)

images to the second (N-1) images in the dataset using the static modes obtained

by performing SVD on the first (N-1) images. Then the dynamic modes are found

by solving the eigendecomposition problem for the correlation matrix. A deeper

insight into the details of this procedure could be found in the recent work of

Brunton and Kutz (2019). It is notable that the columns of the input matrix X

are proceeding in time (Fig.4.5) within one case but have abrupt change from one

case to another. These cases are correlated by the Weber number and momentum

flux ratio, although they are not connected temporally.

Figure 4.5: Schematic of the train set columns’ time proceeding in DMD

A brief mathematical review of different reduced-order modelling techniques

is given in (36)-(37)-(38):

X = UΣV∗ =⇒ U : POD modes (36)

X̂ = X− X̄ =⇒ X̂ = UΣV∗ =⇒ U : PCA modes (37)

(X1) = UΣV∗ =⇒ Ã = U∗(X2)VΣ−1 =⇒

ÃW = WΛ =⇒ ϕ = (X2)VΣ−1W =⇒ ϕ : DMD modes (38)
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In (36), POD takes advantage of the singular value decomposition technique

to decompose the X matrix into its constituent parts. U denotes the matrix of

spatial embedded patterns, Σ remarks the eigenvalues containing the energy of

each pattern and the V matrix specifies the temporal changes of the modes. In

(37), PCA has a similar approach with the same notation for the eigenmodes,

eigenvalues and the temporal terms. In (38), DMD solves the eigenvalue problem

of the correlation matrix Ã and reconstructs the spatial modes ϕ based on that.

A full understanding of the methods is provided by Brunton and Kutz (2019).

Machine Learning Models

Two supervised classical learning methods of SVM and RF are used in this study

due to their superb functionality in classifying datasets (Noble (2006); Liaw et al.

(2002)). A Gaussian kernel has been used for the SVM, and a ten-fold cross-

validation approach for both models is remarkable to minimize the probable over-

fitting of the model. One thousand decision trees are used for the random forest

classifier. The scikit-learn Python library is utilized for training and testing the

classifiers and building the predictive model. The overall accuracy for each model

is then calculated as below (39):

Accuracy = 1− missclassi f ied samples
total samples

(39)

The reduced-order modelling and machine learning parts are all designed and

programmed in object-oriented Python language. We also used the cross-platform

GUI toolkit named Qt to provide the graphical user interface application version

for better user-friendliness. This application is easily accessible through a Github

repository called PySVD 2.

2The data and code corresponding with this work is available online at: https://github.com/
k1mokhtarpour/pysvd
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4.4 Results and discussion

4.4.1 Feature Extraction

In this section, we provide a trivial introduction to the interpretation of features

generated by static and dynamic reduced-order modelling techniques. The liquid

jets are broken up and stretched through the interaction with the cross coming

airflows. The corresponding embedded patterns are correlated with the type of

breakup regime. All singular values are ordered in a descending logarithmic am-

plitude scheme where the first twelve modes are truncated using the optimal hard

threshold method for singular values (Gavish and Donoho (2014)). The logarith-

mic singular values distribution versus the number of modes is displayed in Fig

4.6 for the first 250 modes, where a steep reduction is seen for the first few val-

ues before reaching a near plateau state. This figure shows that nearly all of the

energy relies on the first twelve modes. Therefore, twelve modes are retained for

each of the reduced-order models of POD, PCA and DMD.
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Figure 4.6: Logarithmic singular value distribution versus the mode number

The first twelve modes in both static (POD) and dynamic (DMD) models are

depicted in Fig.4.7, where the average mode called mode zero, is removed in
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both cases. All depicted features are a combination of different physics occurring

at different flow conditions since we considered a big data matrix containing

the information of LJIC systems at fourteen various conditions. Therefore, it is

quite hard to assign any of the features to a single type of flow. Despite this,

we can still observe some modes that are closer to the behavior of one regime.

As an example, here, in the case of the enhanced capillary breakup regime, the

features are cleaner with fewer oscillations as the breakup occurs later, and the jet

penetrates more compared to bag and multimode schemes with the same gaseous

weber number.

(a) (b)

Figure 4.7: First 12 dominant modes, a)POD, and b)DMD

For example, POD mode 11 shows the jet penetration fluctuation of the jet

where the red and blue pixels are representing the maximum, and minimum

values versus the zero-valued paled blue pixels. This result agrees well with the

most jet trajectories in the enhanced capillary case number 3. The similar mode in

DMD (mode 12) is contaminated with some small patterns at different locations.

This observation shows DMD localizes less dominance to the features of single

flow regimes compared to POD while trying to decompose the dataset in terms

of the most spectrally essential patterns. It means DMD adds up elements of the
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same frequency from different flow categories, while POD generates an energy-

based ranking of modes. That is why more trajectories could be seen in the first

DMD modes in comparison with the first POD modes.

Dynamic models could be compared with the static models in the frequency

domain. The power spectral density (PSD) diagram of some POD modes, as well

as the energy versus the modal frequency of DMD modes, is observable in Fig.4.8.

It clearly shows that the PSD amplitudes extracted from the temporal term (V)

vectors contain peaks at various locations. It means that each POD mode is cor-

responding with a few numbers of frequencies, while each DMD mode includes

a single frequency. This fact shows that DMD outperforms POD in the sense that

it distinguishes the exact frequencies, while only a spectrum of frequency could

be found using the fast Fourier transform (FFT).
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Figure 4.8: Frequency spectrum, a)POD, and b)DMD

4.4.2 Supervised Classification

In this section, we consider different combinations of reduced-order models with

classification algorithms. As mentioned earlier, dynamic features are expected to

predict a higher number of samples accurately compared to the static features. To

investigate this issue, the accuracy levels of different models is depicted in Fig.4.9,

where the box plots show the accuracy variance for each of them.
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Figure 4.9: Box plot of classification rates using different combined reduced-order

modelling and machine learning algorithms; (a) SVM and (b) RF

Based on the results, RF outperforms SVM for approximately all feature ex-

traction models. Considering distinct models, DMD performed much better than

the static models such as POD and PCA when using RF or SVM algorithms. With

SVM, there is a jump in the accuracy level from POD with an averaged accuracy

of 73% to PCA with an accuracy as high as 82% to DMD with the highest accuracy

level of 92%. While with RF, these amounts are increased to 80%, 91% and 95% for

POD, PCA and DMD, respectively. We can conclude that RF gives rise to higher

levels of accuracy by shifting from static models to dynamic models in compari-

son with SVM. It means that a classifier trained with dynamic temporal features

outperforms any of its static featured counterparts. This finding is consistently

in agreement with the fact that liquid jet in crossflow has a very strong dynamic

physics. The best classification prediction accuracy belongs to the DMD-RF model

with the highest level of 95%, followed by the DMD-SVM and PCA-RF models

with precision levels as high as 92% and 91%, respectively. Higher efficiency of

DMD here is because the phase transformations between enhanced capillary, bag

and multimode regimes are better captured by using temporal patterns. On the

other hand, static models like POD and PCA lack any kind of temporal features

and extract orthogonal SVD-based patterns. PCA also outperforms POD irrespec-

tive of the machine learning algorithm showing that the background subtraction
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is effectively increasing the model accuracy. A smaller variance range is also re-

markable for RF compared to SVM that emphasizes once again why the results

extracted from RF are more reliable than SVM. It is also notable that most of the

misclassified samples belong to the enhanced capillary breakup regime irrespec-

tive of the used model. The similarity between the trajectories of this breakup

regime to other ones where the patterns are more complex and sparser in case of

a high Weber number could be the reason for misclassification of samples in the

enhanced capillary breakup regime. A visualized understanding of this fact could

be observed in Figs.4.10-4.11 where the confusion matrices of different combined

reduced-order and machine learning models are depicted. Breakup regimes of

the enhanced capillary, bag and multimode are labelled with numbers 1,2 and

3, respectively. Both absolute and normal values are shown in each matrix ele-

ment. These elements are either in the main diagonal or out of it, representing

the average number of truly classified and misclassified samples, respectively.

(a) (b) (c)

Figure 4.10: Confusion matrix of different reduced-order models with SVM clas-

sifier, a)POD, b)PCA, and c)DMD

68



(a) (b) (c)

Figure 4.11: Confusion matrix of different reduced-order models with RF classi-

fier, a)POD, b)PCA, and c)DMD

Despite both support vector machine and random forest classifiers’ perfor-

mance were satisfying in this study, extracted results should not be generalized

to all other case studies. A voting block that decides the final class type for each

sample based on the best three models of DMD-RF, DMD-SVM and PCA-RF is

added to the source code of this paper. This section allows for better results where

the number of classes, samples and other parameters change.
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4.5 Conclusion

In summary, eigenmode-based feature extraction schemes are used in this study

to classify image snapshots of liquid jets in crossflow. A better classification rate

was obtained using random forest classifiers compared to support vector ma-

chines regardless of the used reduced-order model. This trend was the same

while shifting from static models like proper orthogonal decomposition or prin-

cipal component analysis to dynamic mode decomposition models irrespective

of the machine learning algorithm. Afterwards, the best three predictive models

were used to build a decision-maker block that returns the majority vote of them

as the final answer. A graphical user interface application is also provided and

is expected to be used for other case studies since the current built model is a

generic one. Ultimately, the results of this work could be a step towards creating

a closed-loop real-time controller that can update the input flow parameters to

attain the desired breakup regime. There are various possible governing factors

like the number of classes the effect of which are yet to be discovered in future

works.
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Chapter 5

Conclusions and Future work

In this chapter, the conclusion of this study is presented and the future perspec-

tives in the area of data driven modelling of multiphase flow systems are pro-

posed. It has to be mentioned out that the detailed results are summed up in the

conclusion subsections of each chapter and the points noted here are the general-

ized outcomes of the work.

5.1 Conclusions

• In this work, we focused on liquid jets in crossflow and provided some

approaches mostly based on the frequency spectra to interpret the extracted

modes of POD and DMD methods.

• This interpretation was primarily demonstrated by analyzing some trivial

cases like the spatio-temproal 2D wave and the von karman vortex street

past a cylinder in the first chapter as well as the laminar jets of different

inlet velocity in the second chapter.

• By making insights from the simple cases, we make an understanding of

the fundamental spatial and temporal behaviour of the different regimes of

liquid jets in crossflow.

• The effect of the aspect ratio is studied in the third chapter where different

elliptic-type orifices are considered. It is concluded that the elliptical liquid
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jets contain more coherent small-scaled structures with higher frequencies

compared to the circular jets.

• In the final chapter, different eigenmode-based feature extraction schemes

are utilized in order to classify the image snapshots of liquid jets in crossflow

into various sub-regimes.

• Combinations of various reduced-order modelling techniques with machine

learnt classifiers are considered and the most optimum joint model is pre-

sented.

• The results of this work could be a forward step towards creating a closed-

loop real-time controller that can update the flow parameters to attain the

desired breakup regimes.

5.2 Future work

• Data driven modelling could become an strong alternative in discovering

new physical mechanisms and reviewing the existing laws from experimen-

tal and simulation fluid data. Using the recent developed methods like the

sparse identification of nonlinear dynamics (SINDy) may be considered for

further study of multiphase flow systems.

• Alongside the improvements in the area of reduced order modelling and

data-driven optimization, the application of machine learning and deep

learning to amend the performance and reduce the convergence time of

solving complex problems seems crucial. Therefore, bringing into play mod-

ern machine learning environments as neural networks with different archi-

tectures is of interest.

• To be specific, Auto-encoders may be used as alternatives for the traditional

reduced order modelling techniques like POD and DMD.

• We expect that the proposed discussions made in this work could be also

exploited for analyzing more intricate multiphase flow systems where a non-

newtonian liquid is present or there exists an effervescent nozzle or any

other nozzle of different internal geometry, etc.

72



Bibliography

G. Amini and A. Dolatabadi. Axis-switching and breakup of low-speed elliptic

liquid jets. International Journal of Multiphase Flow, 42:96–103, 2012.

M. Arienti and M. Soteriou. Time-resolved proper orthogonal decomposition of

liquid jet dynamics. Physics of Fluids, 21(11):112104, 2009.

R. Arndt, D. Long, and M. Glauser. The proper orthogonal decomposition of

pressure fluctuations surrounding a turbulent jet. Journal of Fluid Mechanics,

340:1–33, 1997.

S. Bagheri, P. Schlatter, P. Schmid, and D. Henningson. Global stability of a jet in

crossflow. Journal of Fluid Mechanics, 624:33–44, 2009.

G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in

the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1):539–575,

1993.

S. Bernero and H. Fiedler. Application of particle image velocimetry and proper

orthogonal decomposition to the study of a jet in a counterflow. Experiments in

Fluids, 29(1):S274–S281, 2000.

C. Brown, V. McDonell, and B. Kiel. Test bed for characterization of liquid jet in-

jection phenomenon at augmentor conditions. In 42nd AIAA/ASME/SAE/ASEE

Joint Propulsion Conference & Exhibit, page 4569, 2006.

B. Brunton, L. Johnson, J. Ojemann, and N. Kutz. Extracting spatial–temporal

coherent patterns in large-scale neural recordings using dynamic mode decom-

position. Journal of Neuroscience Methods, 258:1–15, 2016.

73



S. Brunton and N. Kutz. Data-driven science and engineering: Machine learning,

dynamical systems, and control. Cambridge University Press, 2019.

S. Brunton, B. Noack, and P. Koumoutsakos. Machine learning for fluid mechan-

ics. Annual Review of Fluid Mechanics, 52:477–508, 2020.

T. Cambonie, N. Gautier, and J. Aider. Experimental study of counter-rotating

vortex pair trajectories induced by a round jet in cross-flow at low velocity

ratios. Experiments in Fluids, 54(3):1475, 2013.

F. Carvalho, M. Figueiredo, and A. Serpa. Flow pattern classification in liquid-gas

flows using flow-induced vibration. Experimental Thermal and Fluid Science, 112:

109950, 2020.

S. Chakraborty and P. Das. Characterisation and classification of gas-liquid two-

phase flow using conductivity probe and multiple optical sensors. International

Journal of Multiphase Flow, 124:103193, 2020.

C. Chang and N. Dinh. Classification of machine learning frameworks for data-

driven thermal fluid models. International Journal of Thermal Sciences, 135:559–

579, 2019.

A. Chatterjee. An introduction to the proper orthogonal decomposition. Current

Science, pages 808–817, 2000.

T. Colonius and K. Taira. A fast immersed boundary method using a nullspace

approach and multi-domain far-field boundary conditions. Computer Methods

in Applied Mechanics and Engineering, 197(25-28):2131–2146, 2008.

E. Curran. Scramjet engines: the first forty years. Journal of Propulsion and Power,

17(6):1138–1148, 2001.

Z. Dang, Y. Lv, Y. Li, and G. Wei. Improved dynamic mode decomposition and

its application to fault diagnosis of rolling bearing. Sensors, 18(6):1972, 2018.

C. Duwig and P. Iudiciani. Extended proper orthogonal decomposition for anal-

ysis of unsteady flames. Flow, turbulence and combustion, 84(1):25, 2010.

74



A. Eroglu and R. Breidenthal. Structure, penetration, and mixing of pulsed jets in

crossflow. AIAA, 39(3):417–423, 2001.

E. Farvardin. Biodiesel spray characterization: a combined numerical and experimental

analysis. PhD thesis, Concordia University, 2013.

M. Farzad. Experimental study of rivulet/ice formation by colour-coded point

projection method. Master’s thesis, Concordia University, 2019.

K. Fujii and Y. Kawahara. Supervised dynamic mode decomposition via multitask

learning. Pattern Recognition Letters, 122:7–13, 2019.

M. Gavish and D. Donoho. The optimal hard threshold for singular values is

4/
√

3. IEEE Transactions on Information Theory, 60(8):5040–5053, 2014.

E. Gutmark and F. Grinstein. Flow control with noncircular jets. Annual Review of

Fluid Mechanics, 31(1):239–272, 1999.

M. Herrmann. Detailed numerical simulations of the primary atomization of

a turbulent liquid jet in crossflow. Journal of Engineering for Gas Turbines and

Power, 132(6), 2010.

M. Herrmann, M. Arienti, and M. Soteriou. The impact of density ratio on the

liquid core dynamics of a turbulent liquid jet injected into a crossflow. Journal

of Engineering for Gas Turbines and Power, 133(6), 2011.

J. Higham, W. Brevis, and C. Keylock. Implications of the selection of a particular

modal decomposition technique for the analysis of shallow flows. Journal of

Hydraulic Research, 56(6):796–805, 2018.

S. Hirsh, K. Harris, N. Kutz, and B. Brunton. Centering data improves the dy-

namic mode decomposition. arXiv preprint arXiv:1906.05973, 2019.

G. Hobold and A. Da Silva. Machine learning classification of boiling regimes

with low speed, direct and indirect visualization. International Journal of Heat

and Mass Transfer, 125:1296–1309, 2018.

P. Holmes, J. Lumley, G. Berkooz, and C. Rowley. Turbulence, coherent structures,

dynamical systems and symmetry. Cambridge university press, 2012.

75



M. Jadidi, S. Moghtadernejad, and A. Dolatabadi. Penetration and breakup of liq-

uid jet in transverse free air jet with application in suspension-solution thermal

sprays. Materials & Design, 110:425–435, 2016.

M. Jadidi, V. Sreekumar, and A. Dolatabadi. Breakup of elliptical liquid jets in

gaseous crossflows at low weber numbers. Journal of Visualization, 22(2):259–

271, 2019.

Y. Kitamura and T. Takahashi. Stability of a liquid jet in air flow normal to the jet

axis. Journal of Chemical Engineering of Japan, 9(4):282–286, 1976.

S. Krzeczkowski. Measurement of liquid droplet disintegration mechanisms. In-

ternational Journal of Multiphase Flow, 6(3):227–239, 1980.

N. Kutz, S. Brunton, B. Brunton, and J. Proctor. Dynamic mode decomposition: data-

driven modeling of complex systems. SIAM, 2016.

S. Leask and V. McDonell. On the physical interpretation of proper orthogonal

decomposition and dynamic mode decomposition for liquid injection. arXiv

preprint arXiv:1909.07576, 2019.

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with gradient-

based learning. In Shape, contour and grouping in computer vision, pages 319–345.

Springer, 1999.

K. Lee, C. Aalburg, F. Diez, G. Faeth, and K. Sallam. Primary breakup of turbulent

round liquid jets in uniform crossflows. AIAA journal, 45(8):1907–1916, 2007.

A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R news,

2(3):18–22, 2002.

R. Madabhushi, M. Leong, M. Arienti, C. Brown, and V. McDonell. On the

breakup regime map of liquid jet in crossflow. In ILASS Americas, 19th Annual

Conference on Liquid Atomization and Spray Systems, Toronto, Canada, 2006.

M. Mancinelli, T. Pagliaroli, R. Camussi, and T. Castelain. On the hydrodynamic

and acoustic nature of pressure proper orthogonal decomposition modes in the

near field of a compressible jet. Journal of Fluid Mechanics, 836:998–1008, 2018.

76



J. Mann and N. Kutz. Dynamic mode decomposition for financial trading strate-

gies. Quantitative Finance, 16(11):1643–1655, 2016.

R. Margason. Fifty years of jet in cross flow research. Ceaj, 1993.

M. Marzbali. Penetration of circular and elliptical liquid jets into gaseous crossflow: a

combined theoretical and numerical study. PhD thesis, Concordia University, 2011.

J. Mazallon, Z. Dai, and G. Faeth. Primary breakup of nonturbulent round liquid

jets in gas crossflows. Atomization and Sprays, 9(3), 1999.

K. Meyer, J. Pedersen, and O. Ozcan. A turbulent jet in crossflow analysed with

proper orthogonal decomposition. Journal of Fluid Mechanics, 583:199–227, 2007.

S. Mittal and B. Kumar. Flow past a rotating cylinder. Journal of Fluid Mechanics,

476:303–334, 2003.

T. Murata, K. Fukami, and K. Fukagata. Nonlinear mode decomposition with

convolutional neural networks for fluid dynamics. Journal of Fluid Mechanics,

882, 2020.

W. Noble. What is a support vector machine? Nature Biotechnology, 24(12):1565–

1567, 2006.

B. Patte-Rouland, G. Lalizel, J. Moreau, and E. Rouland. Flow analysis of an an-

nular jet by particle image velocimetry and proper orthogonal decomposition.

Measurement Science and Technology, 12(9):1404, 2001.

K. Pearson. Liii. on lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2

(11):559–572, 1901.

E. Perlman, R. Burns, Y. Li, and C. Meneveau. Data exploration of turbulence sim-

ulations using a database cluster. In Proceedings of the 2007 ACM/IEEE conference

on Supercomputing, pages 1–11, 2007.

A. Pollard, L. Castillo, L. Danaila, and M. Glauser. Whither turbulence and big data

in the 21st century? Springer, 2016.

77



S. Prakash, A. Sinha, G. Tomar, and R. Ravikrishna. Liquid jet in crossflow–effect

of liquid entry conditions. Experimental Thermal and Fluid Science, 93:45–56, 2018.

J. Proctor, S. Brunton, and N. Kutz. Dynamic mode decomposition with control.

SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

W. Rawat and Z. Wang. Deep convolutional neural networks for image classifi-

cation: A comprehensive review, neural computing. MIT Press Journals, 29(9):

2352–2449, 2017.

C. Rowley. Model reduction for fluids, using balanced proper orthogonal decom-

position. International Journal of Bifurcation and Chaos, 15(03):997–1013, 2005.

C. Rowley, I. Mezic, S. Bagheri, P. Schlatter, D. Henningson, et al. Spectral analysis

of nonlinear flows. Journal of Fluid Mechanics, 641(1):115–127, 2009.
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Appendix

Below is attached the python code for constructing the spatiotemporal signals.

# Importing L i b r a r i e s

import numpy as np

import m a t p l o t l i b . pyplot as p l t

# Defining f u n c t i o n s

def f1 ( x , t ) :

re turn np . cos ( x )∗np . exp (1 j ∗ ( 1 )∗ t )

def f2 ( x , t ) :

re turn ( np . tanh ( x ) ) ∗np . exp (1 j ∗ ( 2 )∗ t )

# S e t t i n g the s p a t i a l and temporal boundaries

x = np . l i n s p a c e (−2∗np . pi , 2∗np . pi , 30)

t = np . l i n s p a c e ( 0 , 5 , 30)

# Defining the combined wave

X , T = np . meshgrid ( x , t )

Z = f1 (X , T)+ f2 (X , T )

# POD

U, S , VT = np . l i n a l g . svd (Z , f u l l m a t r i c e s =Fa l se )

V = VT . T
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# DMD

# Finding the t o t a l number of images

t o t a l i m a g e s = np . s i z e ( t )

rank = tota l images−1 # Arbi t rary number in range ( 1 , to ta l images −1)

# Defining the mult ip le matr ices

X1 = np . array (X [ : , 0 : to ta l images −1])

X2 = np . array (X [ : , 1 : t o t a l i m a g e s ] )

# POD of X1

U, S , VT = np . l i n a l g . svd ( X1 , f u l l m a t r i c e s =Fa l se )

V = VT . T

# Construct ing the reduced order SVD matr ices

Ur = np . array (U[ : , 0 : rank ] )

Sr = np . array ( S [ 0 : rank ] )

Vr = np . array (V [ : , 0 : rank ] )

# C a l c u l a t i o n of the l i n e a r operator A

Ati lde = np . dot ( Ur . T , np . dot ( X2 , np . dot ( Vr , np . l i n a l g . inv ( np . diag ( Sr ) ) ) ) )

# Eigenvalues & ei g e nv e c t o rs of the l i n e a r operator A

D, W = np . l i n a l g . e ig ( At i lde )

# DMD modes c a l c u l a t i o n

Phi = np . dot ( X2 , np . dot ( Vr , np . dot ( np . l i n a l g . inv ( np . diag ( Sr ) ) , W) ) )

# V i s u a l i z a t i o n of the modes (POD/DMD modes are denoted with U/Phi )

ind = np . arange ( np . s i z e ( x ) )

p l t . p l o t ( ind ,U[ : , i ] , l inewidth = 1 . 5 ) # ( i )= mode number
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