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Abstract

Using Synteny in Phylogenomics Algorithms to Cluster Protein Sequences

Christine Houry Kehyayan, Ph.D.

Concordia University, 2014

With the rapid development of genome sequencing technologies, complete genomes are becoming

more available and the need for computational methods for protein functional annotation is becoming

more pressing. A long-standing problem in protein functional annotation is to distinguish orthologs

from paralogs. Several academic efforts have recently emerged to automatically cluster proteins

based on the premise that proteins in the same cluster are likely to have similar functions – or

are orthologs. The effectiveness of these protein clustering algorithms is fundamental for building

accurate functional annotation pipelines.

This dissertation first presents a study of the effectiveness of the similarity graph-based Markov

CLuster algorithm (MCL) in detecting protein families and subfamilies when using it to cluster

experimentally characterized enzymes from fungal genomes in the mycoCLAP database. Our study

shows that the MCL algorithm successfully clusters proteins such that proteins in the same cluster

always happen to be from the same family. However, in most cases, the MCL algorithm does not

separate subfamilies. We evaluate the clusters with several cluster quality metrics, and show that

these metrics can be used to spot outliers.

This dissertation then introduces SynAPhy, a novel graph-based approach for clustering proteins

by leveraging the global context of complete genomes for predicting functional similarity. SynAPhy

integrates genomic neighborhood information into sequence similarity for better prediction of func-

tionally similar protein clusters. It computes the “syntenic reciprocal best hits” of proteins across

genomes and uses this information to produce modified edge weight protein sequence similarity

graphs. The similarity graphs are used as an input to the MCL algorithm to determine orthologous

clusters across genomes. The results of applying SynAPhy on eight fungal genomes show that SynA-

Phy successfully generates clusters with more similar members than the MCL algorithm. However,

there is no gold standard genome scale dataset to evaluate the capability of SynAPhy in generating

orthologous clusters.

We introduce SynAVal, an evaluation framework that can be applied on an orthology prediction

technique. SynAVal first detects paralogs within each input genome, and then detects conserved

connections between genomes that are highly likely orthologs using the synteny knowledge of SynA-

Phy. It uses these data to identify and report confusions raised by paralogs. The results of applying

SynAVal on eight fungal genomes show that SynAVal with synteny resolution can successfully resolve

potential confusions raised by 9.1% of all the proteins of the eight fungal genomes, and 23.33% of

the subset of the proteins of the eight fungal genomes that are likely to raise confusions.
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Chapter 1

Introduction

1.1 Increasing Importance of Protein Function Annotation

The genome of an organism is the complete collection of deoxyribonucleic acid (DNA) in that organ-

ism. The first complete genome was sequenced in 1995 and it was that of Haemophilus influenzae

bacteria [FAW+95]. Thereafter, the advancements in DNA sequencing technologies led to the se-

quencing of genomes of thousands of organisms resulting in plethora of biological data. These data

have been placed in biological databases for analysis. Three widely used publicly accessible biological

sequence databases are: GenBank [BCC+13], the DNA DataBase of Japan (DDBJ) [OMK+13], and

the European Molecular Biology Laboratory Nucleotide Sequence Database (EMBL-Bank), part of

the European Nucleotide Archive (ENA) [LAB+11].

The genome assembly process arranges the DNA sequence of an organism to get a representation

of the original chromosomes from which the DNA originated. Genome assembly is followed by a

process called genome annotation that identifies genomic elements, such as genes, and annotates

them with biological information including functional information. Genes encoding proteins are

transcribed into messenger ribonucleic acid (RNA) molecules, which are then used to create proteins

through a process called translation. Proteins are the main functional components of all cellular

machinery. There are different aspects of a protein function, the most specific one is the molecular or

biochemical function that is supported by a protein. For example, the molecular function of enzymes

is to catalyze biochemical reactions needed for metabolism and for transporters is to move molecules

from one location to another. Knowing the molecular function of a protein helps characterize its

role in the cell. For example, a class of enzymes called glycoside hydrolases highly abundant in

fungal species, individually or in complexes with other enzymes, when exposed to biomass resources,

such as forestry residues, can help in ethanol production. The availability of complete genomes has

provided access to a large number of proteins for which functional annotation is important to help

determine their applications.

1



1.2 Accurate Protein Function Annotation

Accurate protein function annotation can be achieved by experimental characterization. However,

its inherent difficulty and expense makes it challenging to scale up with the increase in protein

database sizes. Computational methods have emerged in the last two decades to speed up the

protein function annotation process. A commonly used computational method is based on protein

sequence similarity and is referred to as Annotation Transfer by Homology (ATH). Homology is

a term used to refer to proteins that share common evolutionary origins. ATH searches sequence

databases for target sequences to a query sequence. If a protein sequence with a significant sequence

similarity is detected, its annotation is transferred to the query. However, by virtue of evolution

there exist types of homologs that do not necessarily have similar functions.

In 1970, Walter Fitch introduced the terms orthology and paralogy to distinguish types of ho-

mologs [Fit70, Fit00]. Orthologs are homologous sequences in two different species that are derived

from a speciation event. Paralogs are homologous sequences in a species that are derived from a

gene duplication event. Orthologs are believed to perform similar functions, while a copy of a paral-

ogous pair is free to evolve new function. This distinction led researchers to consider orthology and

paralogy relationships when comparing proteins [Fit70, Fit00].

In 1998, Jonathan Eisen introduced the term phylogenomics [Eis98] to refer to the study of

genes with respect to their evolutionary relatedness. There are two phylogenomics approaches:

tree-based and graph-based. Tree-based approaches gather homologs, construct a phylogenetic tree

for the homologs, and reconcile the species tree of the homologs to identify the speciation and

duplication events [ZE01, ZE02, KBKS06]. Graph-based approaches construct similarity graphs

of the proteins and cluster the graphs such that proteins in the same cluster are similar proteins

[TKL97, LSR03, RGD08]. Graph-based methods leverage the availability of complete genomes to

identify the closest proteins across genomes and treat them as candidate orthologs. However, as with

ATH, graph-based methods has the potential of selecting non-orthologs in the presence of highly

similar paralogs and gene loss events.

In recent years, methods for orthology prediction that use gene neighborhood information have

emerged. These methods leverage the availability of complete genomes but in the context of consid-

ering proteins with respect to the genomic neighborhoods of their corresponding genes. The premise

behind using gene neighborhood is that in the course of evolution, conserved genomic regions across

genomes contain conserved sequences with conserved adjacencies. These regions are referred to as

syntenic blocks. It is expected that diverged paralogs have diverged sequences, thus they can be dis-

tinguished when compared with highly conserved orthologs with high sequence similarity. However,

in the presence of highly conserved paralogs with high sequence similarity, orthologs and paralogs

can not be distinguished. In these cases, integrating gene neighborhood information should help

distinguish orthologs and paralogs towards accurate protein function annotation.

2



1.3 Thesis and Challenges

1.3.1 Thesis

Our thesis is that gene neighborhood information from complete genomes when integrated into

protein sequence similarity data helps in resolving confusions raised by paralogs. This leads to more

accurate protein function annotation.

We developed Synteny Algorithm in Phylogenomics (SynAPhy), where given a set of proteins

in the context of their complete genomes, SynAPhy first integrates gene neighborhood information

into sequence similarity data, and then applies the MCL algorithm to generate protein clusters. In

order to evaluate the impact of gene neighborhood information, we developed SynAVal, an evalu-

ate framework for an orthology prediction system that first detects the paralogs within each input

genome, and then it detects conserved connections between genomes that are highly likely ortholo-

gous connections. SynAVal then evaluates orthology prediction with respect to these data.

1.3.2 Challenges

We faced several challenges while developing this work.

First, determining appropriate thresholds in protein sequence alignment algorithms. A protein

sequence similarity score and its statistical significance are not objective measurements by which a

pair of sequences with a specific score are assumed similar. Similarity based orthology prediction

systems typically expose these thresholds as parameters with fixed default values. To determine ap-

propriate thresholds for our analysis, we performed query and subject sequence coverage percentage

and pairwise sequence percent identity analyses.

Second, graph-based orthology prediction systems are typically based on protein sequence sim-

ilarity and do not allow providing gene neighborhood information as input. To leverage these

systems, we represented gene neighborhood information as a weight function on top of protein se-

quence similarity values. This function was used to generate new similarity graphs that reflect gene

neighborhood information.

Third, the absence of genome scale gold standard dataset against which to evaluate our ex-

periments. This was one of our main challenges, as there is no publicly accessible genome scale

gold standard dataset for subfamilies, orthologs, and orthologous groups. To address this challenge,

we used the experimentally characterized enzymes of fungal genomes in the mycoCLAP database

[MPW+11]. This database, however, contains accurate annotations for a representative subset of

the input genomes which we use to evaluate our clustering and classification results. To present a

general evaluation of the results, we computed generic cluster quality metrics and inherent structures

in input protein sequence similarity graphs that help us quantify the impact of our algorithm.

1.4 Contributions

This dissertation makes the following contributions:
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• A study for the effectiveness of the graph-based Markov Clustering algorithm (MCL) for pre-

dicting protein families and subfamilies. The evaluation is performed on an experimentally

characterized enzymes from fungal genomes in the mycoCLAP database. Our study shows that

MCL was effective in accurately predicting protein families but the results were not conclusive

for subfamilies.

• We present SynAPhy, a novel graph-based algorithm for resolving orthologs and paralogs.

SynAPhy investigates gene neighborhoods of similar proteins and uses the amount of conser-

vation in the gene neighborhoods to detect syntenic blocks in pairs of genomes. SynAPhy then

uses this information to help resolve confusions raised by paralogs.

• We developed a model for representing similar proteins with corresponding genes in syntenic

blocks. We used the synteny data in SynAPhy to adjust the similarity graph that is used as

a seed for the MCL algorithm. Genes in syntenic blocks have higher similarity weights in the

seed similarity graph directing the MCL algorithm to cluster such proteins together.

• We present SynAVal, an evaluation framework for an orthology prediction technique on clus-

tering the proteins of genomes. The experimental results show that SynAVal can successfully

resolve potential confusions raised by 9.1% of all the proteins of eight input fungal genomes,

and 23.33% of the subset of the proteins of the eight fungal genomes that are likely to raise

confusions.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes the basic biological

concepts that are relevant to our work. Chapter 3 presents a thorough study of using MCL to predict

protein families and subfamilies for a given set of proteins. Chapter 4 presents the design and im-

plementation of SynAPhy. It describes how synteny is computed and modeled in a similarity graph.

This chapter also applies SynAPhy on eight fungal genomes. Chapter 5 presents the design and

implementation of SynAVal, an evaluation framework for SynAPhy and other orthology prediction

systems. Chapter 6 presents future directions concludes the dissertation.
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Chapter 2

Background

2.1 Basic Concepts of Biology

2.1.1 Nucleic Acids

Nucleic acids are long biological molecules formed from smaller molecules called nucleotides. They

carry the genetic information of an organism. There are two types of nucleic acids: deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA). The genetic information in DNA is coded with four types

of characters called bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The sequence

of bases are arranged in two strands that form a spiral called a double helix. Each type of base

on one strand is paired up with a specific type of base on the other strand to form a unit called

base pair. A is paired with T and C with G. The sequence of bases on two strands have opposite

directions. Strands start at the 5 prime end of the nucleotide sequence and end at the 3 prime end.

DNA is found in the nucleus of eukaryotic cells and in the cytoplasm of prokaryotic cells. RNAs

are usually single stranded and are assembled as a sequence of A, G, C, and uracil (U) bases. RNA

molecules are synthesized on DNA templates and are used in protein synthesis in the cytoplasm.

2.1.2 Central Dogma of Molecular Biology

The genetic information on DNA sequence – or genes – of a biological system is used to synthesize

messenger RNA (mRNA) molecules through a process called transcription. The information present

in mRNA molecules is subsequently used to synthesize proteins through a process called translation.

This flow of genetic information through transcription and translation is referred to as the central

dogma of molecular biology and was first stated in 1958 by Francis Crick [Cri58].

A gene can be on either one of the two DNA strands. The strand that contains the gene is called

the template or sense strand for that gene. The complementary strand is called the nonsense strand

as it has no contribution in the synthesis of the specific mRNA. The direction of mRNA synthesis

is 5 prime to 3 prime.

There is a difference in the transcription process of eukaryotic and prokaryotic cells. Because

DNA is found in the nucleus of eukaryotic cells, transcription occurs in nucleus. mRNA molecules
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are then transported to the cytoplasm to be translated. Transcription in prokaryotic cells occurs in

the cytoplasm. Another major difference is that a eukaryotic gene has interleaved coding and non-

coding segments, called exons and introns, respectively. Transcription in eukaryotic cells produces

pre-mRNA strands that are subsequently converted into mRNA by removing introns and splicing

exons.

The translation process synthesizes proteins from the mRNA molecules produced during tran-

scription. Translation happens in the cytoplasm where an rRNA molecule called a ribosome attaches

itself to mRNA and moves along it to produce a specific amino-acid sequence based on codon to

amino-acid mapping. A codon is a triplet of bases coding for a specific amino-acid. There are 20

standard amino-acids. The mapping of codons to amino-acids was determined experimentally and

is called the genetic code [CBBWT61]. There are 64 possible codons, therefore an amino-acid can

be coded by more than one codon.

In our work, we use fungal organisms, which are eukaryotic organisms. SynAPhy uses start and

end codons of genes to report their locations on the DNA.

2.1.3 Proteins

The primary structure of a protein is the sequence of its amino-acid molecules. Each amino-acid is

represented by a letter from the English alphabet. A protein sequence is represented as a string of

letters from a set of English alphabet of size 20. An important aspect of proteins is their function.

The function of a protein is the role that the protein plays in a cell; it can be inferred from the

three-dimensional structure of the protein, which in turn can be obtained from its primary structure

[ARC+54, Anf73, WP99]. A corollary to the central dogma is that proteins that share sequence

similarity are expected to have similar functions. Therefore, it is important to quantify sequence

similarity to determine whether proteins perform similar function or not.

Two protein sequences are said to be homologous if they share a common evolutionary origin. Ho-

mology is a qualitative inference, i.e., there is no degree of homology, proteins are either homologous

or not. Sequence similarity, however, is a quantitative inference measured by sequence alignment

algorithms. Homologous proteins are derived from two evolutionary events, gene duplication and

gene speciation. Gene duplication occurs when regions of DNA containing genes are duplicated

giving rise to duplicates in an organism [Ohn70]. Duplicates are free to evolve new functions. Gene

speciation occurs when a species evolves into two diverged species giving rise to genes in the diverged

species [Coo06, Coo08]. Speciation genes are likely to perform similar functions. Walter Fitch in

1970 [Fit70, Fit00] introduced the terms paralogy and orthology to distinguish the two types of

homologs. Duplicated genes are paralogs and speciation genes are orthologs. Orthologous groups

are groups of proteins in which every pair of proteins is ortholog.

Several other terms for orthologous and paralogous relationships have emerged throughout the

literature to further classify evolutionary relationships. Of these terms are in-paralogs, co-orthologs,

and out-paralogs [SK02]. Figure 1 shows a real-life example of the evolutionary relationships between

human and fly gamma-butyrobetaine dioxygenase. Speciation and duplication events are shown on

branches labeled with characters S and D, respectively. In-paralogs are recently diverged paralogs
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that branched after a speciation event. Q9V6P0, Q9VY24, and Q9W5B5 are in-paralogs making

them co-orthologs of BODG HUMAN. Out-paralogs are ancient paralogs that branched before a

speciation event. Q9V6P0, Q9VY24, and Q9W5B5 are out-paralogous to Q9VDM7 and Q9NVH6.

Co-orthologous relationship is often referred to as one-to-many when a single gene is a co-ortholog

of in-paralogs, and many-to-many when all members of an in-paralogous subtree are co-orthologs to

all members of another in-paralogous subtree.

Figure 1: An illustration of the evolutionary relationships between human and fly gamma-
butyrobetaine dioxygenase [SK02]

SynAPhy aims at resolving orthologs and paralogs in the presence of in-paralogs where sequence

similarity is highly conserved. Out-paralogs are distantly related and are likely to have low sequence

similarity when compared to both themselves and to sequences of genomes sharing a last common

ancestor [SK02].

Functional Hierarchical Organization of Protein Sequences

Protein sequences are organized into a functional hierarchical classification. Margaret Dayhoff intro-

duced the protein superfamily classification [Day74, DMBH75, Day76]. Several other classifications

have been emerged since then including protein family and subfamily classifications. Protein se-

quences in a protein superfamily share common evolutionary origin that is observed from their

structural and functional features. They do not necessarily have high sequence similarity. Protein

sequences in a protein family share common evolutionary origin that is observed from structural

and functional features, and have high sequence similarity. A protein subfamily is a more granular

classification than a protein family. Sequences in a protein subfamily are more uniform in function

than sequences in a protein family.

Domains

A protein domain is a substring of a protein sequence that can fold into a three-dimensional structure

independent from the rest of the protein sequence. As such, it can have a function of its own. A

protein sequence can have more than one domain, and if each performs different function, the

result is a multi-functional protein sequence. For this reason, considering protein domains on their

own is important in protein functional annotation. Protein domain databases exist that organize

protein sequences into protein families based on their domains. Examples of commonly used domain

databases are Pfam [PCE+12] and Conserved Domain Database (CDD) [MBZC+13].
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2.2 Basic Graph and Clustering Terminology

Ortholog prediction algorithms make heavy use of graph theory when both modeling protein sim-

ilarity and determining protein clusters. Below we list the graph theory concepts that we refer to

throughout the document. More details on graph theory be found in [HHM08].

Graph A graph G = (V,E) is an ordered pair of sets V and E, where V represents the set of

vertices, and E represents the set of edges connecting the vertices. Two vertices v1 and v2 are

adjacent if they are connected with an edge e = <v1, v2>.

Weighed graph A weighted graph is a graph G = (V,E,W ), where W represents a weight function

that associates a weight label for each edge in the graph.

Path A path in a graph G = (V,E) is an ordered subset of V .

Connected component A connected component C is a subgraph of G such that every pair of vertex

in C is linked by a path.

Clique A clique is a subgraph of G such that all vertices in E are pairwise adjacent.

bi-partite graph A bi-partite graph is a graph whose vertices can be partitioned into two disjoint

sets S1 and S2 such that every edge has one endpoint in S1 and the other endpoint in S2.

n-partite graph An n-partite graph is a graph with n disjoint partitions where there exist edges

between the partitions and not within the partitions.

Complete n-partite graph A complete n-partite graph is a graph where every vertex of a parti-

tion is connected to every vertex in the other partitions.

We next define several metrics that we use in our evaluations.

Definition 2.1. (Graph edge density) Given a graph G = (V,E), let the cardinality of E be |E|,
and the cardinality of V be |V |. The edge density δ of G is

δ =
2 |E|

|V | (|V | − 1)
. (1)

The range of δ is [0, 1], where a δ of 0 means there are no edges in the graph, and a δ of 1 means

the graph is complete, i.e., there exist an edge connecting every pair of vertices in the graph. When

a cluster is represented as a graph, Equation 1 is used to calculate its edge density.

Definition 2.2. (Cluster purity with respect to classes) Given n objects to cluster, a set of clusters

Ω = {ω1, . . . , ωk}, the set C of classes assigned to cluster members, and |ci| where ci ∈ C is the

most frequent class in ωi. The cluster purity is

purity(Ω, C) =
1

n

k∑
i=1

|ci| . (2)
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Definition 2.3. (F-measure) Given the True Positives (TPs), False Positives (FPs), True Negatives

(TNs), and False Negatives (FNs) of a test, F-measure is an aggregate metric that considers both

precision and recall, where

precision =
TP

TP + FP
, (3)

and

recall =
TP

TP + FN
. (4)

F-measure is

F–measure =
2× precision× recall
precision+ recall

. (5)

The F-measure value is in range [0, 1]. An F-measure value of 1 represents perfect classification, i.e.,

precision and recall values are 1. An F-measure value of 0 represents the case where precision or

recall values are 0, i.e., TP = 0.

2.3 Bioinformatics Algorithms

2.3.1 Pairwise Sequence Alignment

A pairwise sequence alignment algorithm aligns the amino-acids of two sequences. An alignment

position can be interpreted as one of the following: (1) mismatch or point mutation with either one

or both of the amino-acids mutated from their last common ancestor, (2) match with either identical

amino-acids or positive amino-acid substitution and (3) a gap also referred to as indel, with either an

insertion or deletion in one of the sequences. A match position is a conserved position with a degree

of conservation. If the position is highly conserved then the position has identical amino-acids.

The degree of conservation varies with different combination of amino-acid pairs. This variation is

computed and populated in substitution scoring matrices with entries quantifying substituting one

amino-acid with another. The two widely used substitution matrices are Point Accepted Mutation

(PAM) [DSO78] and BLOcks of Amino Acid SUbstitution Matrix (BLOSUM) [HH92].

Given two sequences S1 and S2, and a substitution matrix, a pairwise sequence alignment al-

gorithm aligns the S1 and S2, and computes a score for the alignment. A pairwise alignment can

either be global or local. A global alignment aligns the entire sequences, and local alignment aligns

subsequences of both sequences. One of the first pairwise sequence alignment algorithms is the

Needleman-Wunsch algorithm described by Saul Needleman and Christian Wunsch in 1970 [NW70].

Needleman-Wunsch is a global dynamic programming pairwise sequence algorithm that arranges

two sequences in a matrix and computes the optimal path along the diagonal of the matrix. The

algorithm starts by generating a two-dimensional mxn matrix where the amino acids of sequence

S1 of length m cover the rows of the matrix, and the amino acids of sequence S2 of length n cover

the columns. The first row and the first column of the matrix are represented by gaps in the align-

ment position, where a gap penalty d is pre-defined. The algorithm populates the matrix with scores

based on the following procedure. Let Xij be the best possible score for S1[1...i...m] and S2[1...j...n].

The goal is to find Xmn, the best score for the whole sequences not just prefixes. There are three
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possible ways to end an alignment at positions i and j for which Needleman-Wunsch proceeds with

the maximum Xijmax:

Xi,jmax =


MS1[i],S2[j] +Xi−1,j−1

d+Xi−1,j

d+Xi,j−1

where MS1[i],S2[j] is the substitution value of amino-acids at positions i and j in the S1 and S2,

respectively. The base cases are Xi,0 = i.d and X0,j = j.d.

Once the matrix is populated with scores, the optimal alignment is identified by a trace-back

procedure from the bottom right corner of the matrix.

Another popular pairwise sequence alignment algorithm is the Smith-Waterman algorithm. It

is a local alignment algorithm described by Temple Smith and Michael Waterman in 1981 [SW81].

Smith-Waterman resembles the Needleman-Wunsch algorithm in that it populates a matrix for two

sequences and computes the optimal path along the diagonal of the matrix. Smith-Waterman has

an additional score of 0 for the maximum value of Xi,j , and the base cases are equal to 0. This

property allows the Smith-Waterman algorithm to align substrings of the sequences and not the

whole sequences. Local alignments are more common because they capture conserved regions or

domains of sequences.

2.3.2 Basic Local Alignment Search Tool

Sequence alignment algorithms are typically used to align a query sequence against all sequences in a

sequence database to find similar sequences or matches. Sequence databases can contain millions of

sequences making optimal alignments computationally expensive. As such, fast alignment algorithms

were developed. A popular one is Basic Local Alignment Search Tool (Blast) [AGM+90, AMS+97].

Blast uses a heuristic algorithm to compute local alignments. The idea is that similar proteins must

have short matches. Blast generates all possible short words or substrings of the query sequence. The

default length of a word for protein sequences is 3 and for nucleic acid sequences is 11. The algorithm

scans a sequence database for sequences that match the words with some threshold. Such matches

are called seeds. The original Blast then extends the seeds to the right and left using ungapped

alignments [AGM+90]. In the following releases, Blast uses gapped alignments [AMS+97]. The

algorithm terminates when the score of the extended alignment falls below some threshold S. Blast

reports the extended alignments or hits that have a score at least S with their statistical significance.

Such hits are called High Scoring Pairs (HSPs).

Blast uses a substitution matrix to compute the scores of each HSP. Statistical analysis of Blast

alignment scores have been performed in the literature [ABGW94, AG96, PJ01]. The statistical

significance of a Blast score S is given by the expected number, E-value, of an HSP with a score

equivalent to or better than S. The lower the E-value, the more significant the score and the

alignment are.

For a pair of query and subject sequences, Blast reports all HSPs and their associated measure-

ments. The measurements of interest for the purpose of this document are query coverage, subject

coverage, percent identity, E-value, and score. Query coverage is the ratio of the length of the HSP
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in the query sequence to the full length of the query sequence. Subject coverage is the ratio of the

length of the hit in the subject sequence to the full length of the subject sequence. Percent identity

is the percentage of identical amino-acids at the same positions in the alignment with respect to

the alignment length. Score is the bit score, which is the raw score calculated from the substitution

matrix normalized to parameters including the database size [AMS+97].

Definition 2.4. (all-versus-all Blast search for two sets of protein sequences P and Q) Let P =

{p1, . . . , pm} and Q = {q1, . . . , qn} be two sets of protein sequences. An all-versus-all Blast search

for P and Q aligns each query sequence pi, ∀i ∈ 1, 2, ...,m against each subject sequence qj , ∀j ∈
1, 2, ..., n, and each query sequence qi, ∀i ∈ 1, 2, ..., n against each subject sequence pj , ∀j ∈ 1, 2, ...,m.

Definition 2.5. (all-versus-all self Blast search for a set of proteins P ) Let P = {p1, . . . , pm} be

a set of protein sequences. An all-versus-all self Blast search for P aligns each query sequence pi,

∀i ∈ 1, 2, ...,m against each subject sequence pj , ∀j ∈ 1, 2, ...,m. Unlike Definition 2.4 in which

a query sequence in a set of proteins is aligned against sequences of another set, self Blast search

aligns a query protein against sequences of its own set.

2.3.3 Hidden Markov Models for Protein Sequences

Hidden Markov models (HMMs) were first described in the late 1960’s [Str60] and subsequently

employed in speech processing [Bak75]. In the area of speech processing, an HMM models sounds

forming a word or phoneme and generates an output distribution with a high probability for the

sounds of the word or phoneme it models. A satisfactory model is that which assigns high probability

to the sounds of the word it models and low probability to the sounds of any other word. It was

not until the late 1980’s that HMMs were employed in several applications in computational biology

including modeling homologous nucleotide or protein sequences [KBM+94].

Given the multiple sequence alignment of protein sequences of a protein family, the functional

sites of the proteins are projected on the multiple sequence alignment as sites with conserved amino-

acids. Other sites with no particular features are less conserved. Therefore, each site has a distinct

probability distribution over the 20 amino-acids that measures the likelihood of each amino-acid

occurring at that site of the protein family, as well as the probability of no amino-acid occurring.

A multiple sequence alignment can then be modeled by a probabilistic model that captures the

consensus nature of a multiple sequence alignment [KBM+94].

One widely used HMM tool is the HMMER package [Edd98]. It has a number of HMM related

programs including hmmbuild to train HMMs and hmmscan to scan protein sequences against trained

HMMs. We use hmmbuild to train subfamily HMMs and subsequently use hmmscan to scan protein

sequences against trained HMMs in Chapter 3.

2.4 Markov Clustering Algorithm

Markov CLustering algorithm (MCL) [VD00a] is a graph-based clustering algorithm. It is based on

the idea that a graph with cluster structure has many edges between members of clusters and few
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edges between members of different clusters. Random walks in such graphs have high probability

for paths that start and end in clusters.

The input to the MCL algorithm is a similarity graph G = (V,E) of the objects to be clustered,

where V is the set of objects and E is the set of weighted edges connecting the objects. Edge weights

correspond to pairwise object similarity strength. The MCL algorithm starts by creating a stochastic

matrix from the similarity graph. A stochastic matrix is a square matrix of nonnegative real numbers

in which entries represent transition probabilities. It then simulates random walks by alternating

two matrix operators, expansion and inflation. Expansion corresponds to matrix multiplication,

and inflation corresponds to raising matrix entries to a power r, where r > 1. The resulting matrix

is then re-normalized to make the matrix stochastic again. The inflation value is a parameter of

the algorithm which controls cluster granularity. Higher values contribute to fine-grained clusters.

Recommended values are from 1.1 to 10.0 [VD00a].

The split/joint distance [VD00b] between two clusterings generated by different inflation values

is used to measure whether clusterings are identical or one is a sub-clustering of another. Therefore,

it measures the consistency of a set of clusterings of different granularity.

Definition 2.6. (split/joint distance of two clusterings A and B) Let A and B be two clusterings of

a set of n objects, the projection of clustering A onto clustering B and clustering B onto clustering

A is

PA(B) =
∑
a∈A

max
b∈B
|a ∩ b| and PB(A) =

∑
b∈B

max
a∈A
|b ∩ a|, (6)

respectively. The split/joint distance is

d(A,B) = 2n− PA(B)− PB(A). (7)

Definition 2.7. (Pair-value distance (dA, dB) of clusteringsA andB) LetA andB be two clusterings

of a set of objects of cardinality n, the pair-value distance (dA, dB) of clusterings A and B is

(dA, dB) = (n− PA(B), n− PB(A)), (8)

where PA(B) and PB(A) are defined by Equation 6. The pair-value distance is useful because if any

of dA or dB values is 0, then the corresponding clustering is a sub-clustering of the other.

Example 2.8. Let n = 10, and A and B be two clusterings {{1}, {2}, {3}, {4, 5, 6}, {7, 8, 9}, {10}}
and {{1}, {2, 3}, {4, 5, 6, 7, 8}, {9}, {10}}, respectively. In this example, PA(B) = 1+1+1+3+2+1

and PB(A) = 1 + 1 + 3 + 1 + 1, therefore d(A,B) = 4. The pair-value distance (dA, dB) is (1, 3), this

means that there is 1 rearrangement that has to be applied on A to make A a sub-clustering of B,

and there are 3 rearrangements that have to be applied on B to make B a sub-clustering of A.

We use the MCL algorithm in both Chapter 3 and Chapter 4 with different inflation values. We

evaluate the consistency of the clusterings with different inflation values on the same graph with the

split/joint distance and show the pair-value distances.
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2.5 Phylogenomics Approaches

Phylogenomics approaches fall into two main camps: tree-based and graph-based. In this section,

we present several techniques from the two approaches.

A tree-based approach predicts the homologs for an input protein set and constructs a gene or

phylogenetic tree for the homologs. It then reconciles the corresponding species tree of the input

protein set with the gene tree to identify speciation and duplication events at the nodes of the gene

tree. The main idea behind reconciliation is that species trees and gene trees are likely to have

different topologies because of evolutionary events at the gene level such as gene duplication and

gene loss. Therefore, reconciling species trees with gene trees leads to the identification of speciation

and duplication events on the gene trees. Once the speciation and duplication events are identified,

orthology and paralogy prediction for a pair of genes depends on the branches leading up to the

genes.

Species tree and gene tree reconciliation is often performed using a maximum parsimony approach

in which the most likely reconciliation is the one that minimizes the duplication events. Speciation

and Duplication Inference (SDI) [ZE01] is an example technique that uses the parsimony approach.

Let G be the set of nodes in the gene tree, and S be the set of nodes in the species tree. For each

node g in G, let γ(g) be the set of the corresponding species of the leaf nodes descendant from g.

For each node s in S, let σ(s) be the set of the species that are at the leaf nodes descendant from s.

A mapping M(g) for any node g in G is the node in S with the smallest number of species satisfying

γ(g) = σ(M(g)). The node g in the gene tree is then labeled as a duplication event if and only if

M(g) = M(g1) or M(g) = M(g2), where g1 and g2 are the children of g.

One key challenge of the tree-based orthology prediction approach is the availability of a reliable

species tree. TreeBeST [LCR+06] and Ensembl Compara [VSUV+09] have worked around this

challenge by not mapping those nodes of a gene tree that correspond to uncertain species tree

regions. Because of the species tree limitation, other tree-based techniques have emerged in the

literature that do not use species tree. Levels of Orthology From Trees (LOFT) [vdHRSvNH07]

is one example technique that does not use a species tree. LOFT annotates gene tree nodes as

duplication events if there exist leaf nodes descendant from the query tree nodes that are from the

same species, otherwise the tree nodes are annotated as speciation events. PhylomeDB [HCDDG07]

adopts a similar approach. Another challenge in tree-based orthology prediction approaches is the

rooting of both gene and species trees. Resampled Inference of Orthologs [ZE02] uses the same

parsimony approach as that of SDI [ZE01] but generates multiple gene trees with different rooting

topologies and selects the one with the shortest tree height.

A graph-based algorithm models the orthology prediction problem as a graph and applies a graph

algorithm to generate orthologous groups. An orthologous group is a group in which every pair of

proteins is orthologs. Typically a graph-based algorithm requires the availability of whole genomes.

For pairwise genomes, a graph-based algorithm applies a sequence alignment algorithm to find the

Reciprocal Best Hits (RBHs) of the genes in the genomes. The main idea is that orthologs in two

genomes diverged the least, therefore the best hit of a query gene in the other genome is a candidate

ortholog of the query gene. RBHs are hits where the genes at the both ends of the hits are RBHs
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when their corresponding genomes are compared. The reciprocal variant raises the confidence of

orthology in cases of evolutionary events such as gene loss. Some orthology prediction algorithms

put together in-paralogs with the orthologs in orthologous groups. The main idea is that in-paralogs

are recently duplicated genes that maintained their ancestral function. Typically, in-paralogs are

computed as the RBHs within genomes where the hits have higher similarity than they have to any

other gene in within and between the given genomes. InParanoid [ÖSF+10] is one of the earliest

graph-based orthology prediction algorithms for pairwise genomes that groups RBHs within and

between genomes in orthologous groups.

When the input set is more than two genomes, the orthology prediction problem then becomes

to identify orthologous groups with proteins from possibly all the input genomes. A graph-based

algorithm for more than two genomes represents the genes as the vertices of the graph and the

RBHs within and between genomes as the edges of the graph, and then applies a graph algorithm to

generate orthologous groups. Cluster of Orthologous Groups (COGs) [TKL97] is a multi-organism

orthology database. It is one of the earliest graph-based orthology prediction algorithms to generate

orthologous groups for more than two genomes. It was initially constructed for prokaryotic genomes,

but later got augmented with euKaryotic Orthologous Groups (KOGs) [TFJ+03]. Given n proteomes

– the complete set of proteins expressed in a genome – the COGs algorithm starts by running an

all-versus-all Blast search as defined in Definition 2.4 and finds RBHs within and between genomes.

The best hits within genomes are joined to represent single entries. The proteins of the within and

between RBHs are then represented as the vertices of an n-partite graph (see Section 2.2) whose edges

are the average similarity scores of the RBHs. The algorithm then proceeds with finding triangles in

the n-partite graph. A triangle is a subgraph with three edges connecting three vertices from three

different proteomes. The idea behind a triangle is to validate the absence of non-orthologs. i.e., if the

protein p from proteome P and protein q from proteome Q are connected by an RBH edge and they

are both connected to the protein z from proteome Z by RBH edges, then the protein z validates that

proteins p and q do not have different RBHs in proteome Z, therefore they are orthologs. The same

concept holds for the other sides of the triangle. The algorithm then iteratively augments triangles

that share a side and pronounces them orthologous groups. The algorithm terminates when no

additional triangles exist to combine. The combined triangles are the predicted orthologous groups.

COGs and KOGs are further extended with additional genomes and are placed in the Non-

supervised Orthology Groups (eggNOG) database [PFS+13]. eggNOG adopts a similar algorithm to

identify the orthologous groups. However, it applies the algorithm to subsets of genomes separately.

For example, fungal genomes are in the fuNOG database.

OrthoMCL [LSR03] is well established graph-based orthology prediction system that applies

the Markov CLustering algorithm (MCL) on a protein sequence similarity graph. The input to

the algorithm is a set of proteomes. Given a set of proteomes, the algorithm starts by running

all-versus-all Blast defined in Definition 2.5 to generate alignment data, and then it processes the

alignment data to create a protein sequence similarity graph. The algorithm connects two proteins

in a proteome if their sequences are RBHs compared to all the other sequences in the input dataset.

The algorithm connects two proteins from different proteomes if their sequences are RBHs when their
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proteomes are compared. Within proteome connections are meant to represent recently diverged

paralogs or in-paralogs with high sequence similarity. Between proteome connections are meant

to represent orthologs. OrthoMCL also connects two proteins from different proteomes if they

are connected through orthology and paralogy. Given proteins p, p
′
, and q, where p and p

′
are in

proteome P , and q is in proteome Q. Proteins p
′

and q are connected through orthology and paralogy

if and only if p and q are RBHs when proteomes P and Q are compared, and p and p
′

are RBHs

in proteome P . The algorithm then applies the MCL algorithm on the computed protein sequence

similarity graph to generate orthologous clusters in which every pair of proteins is orthologous to

each other. The orthoMCL database contains orthologous groups with in-paralogs.

OMA is a leading graph-based orthology prediction system. It starts with an all-versus-all global

alignment using a Point Accepted Mutation (PAM) amino-acid substitution matrix [DSO78]. An

entry in the PAM matrix indicates the likelihood of substituting the amino-acid of that row with the

amino-acid of that column. The alignments in OMA are then refined to the best scoring alignments

using a dynamic programming algorithm. The resulting score is a PAM evolutionary distance because

the score is the log odds ratio of the substitutions calculated from the PAM substitution matrix.

The algorithm then detects potential orthologs by identifying RBHs between proteomes. RBHs

in OMA are referred to as stable pairs and are identified using the PAM evolutionary distances.

Stable pairs are all pairs below some distance threshold. OMA advances stable pairs to verified

pairs – or likely orthologs – if they satisfy an out-group condition. The out-group condition checks

whether a stable pair has a different RBH when both elements of the stable pair are checked against

a third proteome. Verified pairs from more than two proteomes form orthologous groups. At this

stage orthologous groups contain paralogs. OMA proceeds with an additional step to generate

orthologous groups without paralogs (i.e., each organism has at most one representative protein in

an orthologous group). It represents the verified pair relationships as graphs, and implements a

maximum-weight clique algorithm on this graph to compute the clique with the highest similarity

score. This clique is then an orthologous cluster in which every pair of proteins is orthologous to

each other. The OMA database contains orthologous groups without in-paralogs.

Table 1 summarizes the phylogenomics approaches. Altenhoff and Dessimoz in [AD12] provide

a more comprehensive list of phylogenomics techniques.
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The key challenge of phylogenomics techniques is the evaluation. There is no gold standard

genome scale orthology dataset against which the techniques can be evaluated. Orthology bench-

marking is difficult because the evolutionary history of complete genomes is not known. There is an

ongoing effort by the “Quest for Orthologs” consortium [DGR+12] to construct a benchmark dataset

of orthologs for complete genomes. The early benchmarking techniques [HHdVG06] use the conser-

vation of protein function since orthologs are likely to have maintained their ancestral function. The

conservation of function is measured by the conservation of gene co-expression, agreement of domain

architecture, and agreement of protein-protein interaction connections. In addition, conservation of

gene neighborhood as we describe in Section 2.6 is used in orthology benchmarking. The evaluation

of conservation of function, however, is limited by the availability of functional data for complete

genomes. Because orthology is an evolutionary inference, the phylogeny of the corresponding species

is also used as a benchmarking technique [AD09]. However, this technique is also limited by the

uncertainty of the species phylogeny. Therefore, benchmarking is bounded by the availability of the

functional data or the species phylogeny for the underlying dataset.

2.6 Syntenic Block

Genomes evolve through changes in DNA sequences. Changes can be of various forms including inter-

and intra-chromosomal rearrangements such as reciprocal translocation, inversion, and transposition.

Figure 2 depicts toy examples of the three chromosomal rearrangements. We observe in the three

rearrangement types that the genes that have not participated in the rearrangements have kept the

order in which they appear on the chromosome. These regions where the rearrangements occur are

evolutionary conserved regions. Conserved regions of two species have been used to measure their

genomic distance. One of the earliest works towards development of genomic distance measures is

that of Nadeau and Taylor [NT84]. It measures linkage conservation of human and mouse genomes

based on the genetic lengths of chromosomal regions with homologous genes and the number of

homologous genes mapped to these regions. At the time, genetic maps of all species were not

available. For this reason, the term syntenic was introduced [SN96] to refer to genes that could be

mapped to the same chromosome but for which there was no location data or linkage data. The

term conserved synteny was then used to refer to chromosomal regions in two or more species with

homologous genes that have conserved adjacencies. With the increase in the availability of complete

genomes and their genetic maps, the terms synteny, syntenic, or syntenic block are used loosely by

many researchers to mean conserved synteny.

2.6.1 Example

Figure 3 depicts a toy example of a syntenic block. A gene neighborhood of diameter d is a genomic

region with d genes. Mapped neighborhoods in different genomes are referred to as a syntenic block

if there are tN homologous genes in the mapped neighborhoods. Gene neighborhood diameter d is

set to 9 and the number of homologous genes tN is set to 6. Because the mapped neighborhood or

the neighborhood block has six homologous genes, the block is a syntenic block.
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Figure 2: Inter- and intra-chromosomal rearrangements. Genes on chromosomes are depicted as
boxes. There are three rearrangements present in this figure. The first one is translation. Translation
is an inter-chromosomal rearrangement by which genes are exchanged between chromosomes while
keeping their order. The second one is inversion. Inversion is an intra-chromosomal rearrangement
by which genes reverse their order. The third one is transposition. Transposition is an intra-
chromosomal rearrangement by which gene groups are shifted.

2.6.2 Synteny in Orthology Prediction Systems

Use of synteny to measure species divergence was among its early applications [ESN97]. This shed

the light on leveraging gene neighborhood conservation in orthology prediction systems. Synteny

is the basis of our work in SynAPhy; we boost the similarity values of protein sequences with

corresponding genes in syntenic blocks, and use the MCL algorithm to cluster the sequences.

Several ortholog prediction systems have been emerged that have integrated synteny into the

systems to distinguish orthologs from paralogs [CY03, GP06, WPFR07, FBB+12]. We next briefly

describe some of these systems.

2.6.2.1 OrthoParaMap

OrthoParaMap [CY03] distinguishes orthologs from paralogs by integrating synteny resolution and

gene phylogenies. OrthoParaMap works on pairwise genomes. It first identifies syntenic blocks at

the DNA level. A syntenic block in OrthoParaMap is a chromosomal diagonal that is constructed by

joining chromosomes of two genomes that satisfy several conditions. It starts with a seed homologous

genes from different genomes and extends the diagonal if neighboring genes are also homologous until

the similarity of the diagonal drops to below a predefined threshold. OrthoParMap then identifies

candidate gene families by a standard Blast search. For a gene family of interest, it constructs a
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Figure 3: A syntenic block. Two chromosomal regions with genes depicted by boxes and homologous
relationships between the genes of the chromosomes are depicted by dashed lines. There are six
homologous relationships. The gene neighborhood diameter d is set to 9, and the minimum required
number of homologous genes tN in the mapped gene neighborhood for the neighborhood to be a
syntenic block is set to 6. The block is syntenic because it has at least six homologous relationships.

phylogenetic tree and maps the chromosomal diagonal identifiers at the root of a subtree which holds

the sequences of the diagonal. It then pronounces the genes in subtrees mapped to syntenic blocks

as orthologs.

2.6.2.2 PhyOP

PhyOP [GP06] is a tree-based method that distinguishes orthologs from paralogs by reconciling a

gene phylogenetic tree to a species phylogenetic tree. It does not rely on synteny. It uses synteny as a

measure of evaluation of the predicted orthologs when compared to predicted paralogs. It constructs

a gene phylogenetic tree based on a metric that is computed from the number of synonymous

nucleotide substitutions per synonymous site, and reconciles the resulting gene tree to the species

tree. One of the evaluation metrics adopted in PhyOP is the conservation of gene order in which

adjacent orthologs in one species are neighbors in the other species. PhyOP uses the gene order

conservation measures of orthologs as an evaluation metric. Although PhyOP does not use synteny

in the core of ortholog detection system, it is one of the systems that relates synteny to orthology.

2.6.2.3 SYNERGY

SYNERGY [WPFR07] is a tree-based method that distinguishes orthologs from paralogs by con-

structing a gene phylogenetic tree for each internal node of a species tree. It integrates the amount

of gene neighborhood conservation into protein sequence similarity scores that are computed based

on the JTT amino-acid substitution rates [JTT92]. At each internal node of the species phylogenetic

tree, SYNERGY computes candidate orthologous groups by applying a standard transitive closure

algorithm on the weighted directed similarity graph generated for the proteins of the children species.

The similarity graph is a weighted directed graph in which weights correspond to the combined sim-

ilarity scores. For each candidate orthologous group, SYNERGY computes a gene phylogenetic tree
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to label gene duplication and gene lose evolutionary events. Similar to other tree-based methods,

SYNERGY is based on the assumption that a species tree of the genomes under study is provided.

2.6.2.4 PanOCT

PanOCT [FBB+12] is a graph-based method that is the closest to SynAPhy. It computes homologs

and generates a weighted directed similarity graph for the homologs. It then applies a greedy

agglomerative clustering to generate orthologous groups or orthologous clusters. It starts with a

Blast search for the proteins of the genomes under study. It uses the Blast bit scores to compute

hits between genomes that are reciprocally best hits. For each such hit, PanOCT uses a fixed gene

neighborhood of diameter 11 and computes a score for the mapped neighborhoods based on several

criteria of the homologous genes in the mapped neighborhoods. The criteria are (1) the strand of

DNA on which the homologous genes reside, (2) chromosomal inversions as illustrated in Figure 2,

and (3) distances from the RBHs. PanOCT is applied on bacterial strains because its neighborhood

scores are tightened to specific criteria making it applicable to species of very close evolutionary

distances or species strains.
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Chapter 3

Enzyme Family and Subfamily

Clustering

3.1 Introduction

The standard mechanism for protein function annotation in computational biology is Annotation

Transfer by Homology (ATH). In this framework, a query protein sequence is searched against a

target protein sequence database, and if a target sequence with a significant sequence similarity

is detected, its annotation is transferred to the query. This gives an initial approximation of the

function of the protein to prioritize further experimental or computational analysis. Determining

similarity for ATH is commonly performed by Blast [AMS+97]. Another approach for protein

functional annotation is when a protein is aligned against a classifier trained from a set of homologous

proteins, and if the alignment is significant, the consensus annotation of the classifier is transferred to

the query protein. As described in Section 2.1.3, proteins are organized into functional hierarchical

classification in which the degree of similarity in each class differs to reflect the functions performed

by the proteins in their classes. The widely used classifications in sequence databases are superfamily,

family, and subfamily. Sequences in a superfamily share common evolutionary origin apparent in

their structural and functional features. Sequences in a family share common evolutionary origin

and have high sequence similarity. A protein subfamily is more granular classification than protein

family. Sequences in a subfamily are more uniform in function than sequences in a family. If

proteins need to be classified into protein family and subfamily, their sequences are searched against

protein family and subfamily Hidden Markov Models (HMMs) described in Section 2.3.3. HMMs

are trained for protein functional classes and protein sequences are aligned against the HMMs to

determine membership. Because proteins in superfamilies are more diverged in sequence than in

family and subfamily, typically, HMMs are trained for protein families and subfamilies.

There are specialized functional annotation pipelines that are specific to protein functions and

biological classifications. There is an ongoing effort in putting together a functional annotation

pipeline for fungal species [But13]. The manuscript describes in detail the steps of a functional
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annotation pipeline. The initial step aligns protein sequences of interest against enzyme family and

subfamily HMMs to determine membership. The database for Carbohydrate-active enzyme ANno-

tation (dbCAN) [YMY+12] has family HMMs for sequences in the Carbohydrate-Active enZymes

DataBase (CAZyDB) [CCR+09]. An important factor influencing the quality of HMMs is the degree

of similarity of the protein sequences in the training set. In this chapter, we present an evaluation of

the dbCAN family HMMs. To the best of our knowledge, there has not been a comprehensive eval-

uation of the annotation accuracy of the dbCAN protein family HMMs. The evaluation presented

in [YMY+12] is performed on the bacterial genome Clostridium thermocellum ATCC 27405 and the

plant genome Arabidopsis thaliana. This analysis is described in detail in Section 3.3.

We extend our experiments to evaluate subfamily HMMs in addition to family HMMs. One

key limitation of subfamily analysis is the absence of a representative publicly accessible subfamily

dataset to use as a gold standard for evaluation. Unlike family HMMs, dbCAN does not have

subfamily HMMs. This adds the requirement of training subfamily HMMs for our experiments.

Training subfamily HMMs itself requires a representative set of protein sequences with subfamily

annotations. To determine such dataset, we experiment with two directions. First, using a clustering

approach where we use the Markov Clustering algorithm (MCL) described in Section 2.4 to determine

subfamilies of sequences in the mycoCLAP database [MPW+11]. We analyze the effectiveness of

the MCL algorithm to provide a representative subfamily dataset. This analysis is described in

detail in Section 3.4. Second, we map subfamily annotations from CAZyDB to the sequences in the

mycoCLAP database and use this dataset to train our subfamily HMMs. This analysis is described

in detail in Section 3.5.

3.2 Protein Sequence Resources

This section describes the protein sequence databases for family and subfamily clustering and HMM

evaluation analysis.

mycoCLAP

The mycoCLAP database [MPW+11] is a gold standard database that contains Carbohydrate-Active

enZymes (CAZymes) from Glycoside Hydrolase (GH), Polysaccharide Lyase (PL), Carbohydrate

Esterase (CE), and Auxiliary Activities (AA) (such as oxidases) CAZyme classes for enzymes with

experimental characterization of functions in the scientific literature. As of September 2013, myco-

CLAP has 731 proteins in 60 different protein families from 216 different fungal organisms. Table 25

in Appendix A presents a summary of the CAZymes in the mycoCLAP database.

CAZyDB

CAZyDB [CCR+09] is a database of CAZymes that covers a wide range of taxonomic groups. As of

September 2013, it has 271 CAZyme families across GH, PL, CE, and AA CAZyme classes. CAZyDB

has a couple of limitations including access control over protein sequences and absence of automatic
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annotation protocols. For our experiments, we are able to retrieve 9, 691 fungal CAZymes, out of

which 417 have exact copies. The total number of exact copies is 1, 604. The remaining 8, 081 from

101 different CAZyme families are used in our experiments. The exact copies are excluded because

they will skew the results.

As of September 2013, CAZyDB has subfamily classifications for 13 families: GH family 5, GH

family 13, GH family 30, PL family 1, PL family 3, PL family 4, PL family 7, PL family 9, PL family

11, PL family 14, AA family 1, AA family 3, and AA family 5 [ACW+12]. We extract available

sequence subfamily classifications and use them to annotate mycoCLAP sequences.

dbCAN

dbCAN [YMY+12] is a database and a web server for CAZyme annotation. It is put together to

expose new features, such as annotation of CAZymes, to address the limitations present in CAZyDB.

It has HMMs for CAZyme families in CAZyDB. The HMMs are trained from the detected domains

of CAZymes in CAZyDB. dbCAN, however, does not train subfamily HMMs from CAZyDB.

3.3 dbCAN Protein Family HMM Evaluation

We align the 8, 081 fungal Carbohydrate-Active enZymes (CAZymes) we retrieved from CAZyDB

against the dbCAN family HMMs using the hmmscan program from HMMER 3.0 [Edd98] package

with the default search parameters. The hmmscan program has a number of search parameters

including E-value and score thresholds of the alignments, and any filtering bias that has to be

applied to filter out sequences. Note that dbCAN annotation pipeline also runs hmmscan with the

default parameters. After the hmmscan run, we use dbCAN set thresholds to assign CAZymes to

family HMMs. dbCAN uses two inclusion thresholds: E-value and HMM fraction covered. E-value

is set to 1e − 5 for sequence alignment length greater or equal to 80 amino-acids, and 1e − 3 for

sequence alignment length less than 80 amino acids. HMM covered fraction is the ratio of sequence

alignment length to HMM alignment length. dbCAN sets this parameter to 0.3.

We evaluate the annotation accuracy of dbCAN family HMMs with confusion matrices. We

compute the confusion matrix for each protein family that has at least one sequence passing the

dbCAN inclusion thresholds. We take CAZyDB assigned families as a baseline reference. Therefore,

for a CAZyme, we refer to the CAZyDB assigned family as its expected family, and the predicted

family as its actual family. A CAZyme against a subject family is a:

• True Positive (TP ) if the predicted dbCAN HMM matches both its actual and expected family,

• False Negative (FN) if the predicted dbCAN HMM does not match its actual family but its

expected family is the same as the subject family,

• False Positive (FP ) if the predicted dbCAN HMM matches its actual family but not its

expected family, and
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• True Negative (TN) if the predicted dbCAN HMM does not match its actual family and its

expected family is different from the subject family.

3.3.1 Results

In this section we present the results of the annotation accuracy of the dbCAN family HMMs.

Table 2 tabulates the confusion matrices of the CAZyDB protein families with respect to dbCAN

family HMMs. The expected families are shown in the column labeled Family, the count of CAZymes

classified as TP , FN , FP , and TN are shown in their respective columns. The actual families and

the corresponding count of misclassified CAZymes are shown in the column labeled Confusion. In

this table, we only show the families with F-measures defined in Definition 2.3 not equal to 1. For

all the families, see Table 26 in Appendix A. Note that if a CAZyme is not classified to any dbCAN

family HMM, it is counted as FN .

Out of 8, 081 input CAZymes, dbCAN family HMMs are able to classify 7, 410 out of which only

two are misclassified. The first sequence is a GH family 27 misclassified to GH family 2. The second

is a CE family 10 misclassified to CE family 1. The GH family 27 CAZyme is a multi-functional

CAZyme with both GH family 27 and GH family 2 domains. This means that the misclassified

CAZyme can be classified into both GH family 27 and GH family 2 families, and a classification

into one or the other is not a confusion. The misclassified CE family 10 CAZyme has different

domains than the rest of the CE family 10 sequences. Figure 4 shows the domain architectures of

the CE family 10 CAZymes. The misclassified CAZYme is the one with GenBank accession number

CAA20138.1. Unlike the other sequences in CE family 10, which have an abhydrolase 1 domain,

CAA20138.1 has a dipeptidyl peptidase IV domain. The different domains of CAA20138.1 justify

the misclassification, as not a single fungal CAZyme in CE family 10 has similar domains as that of

CAA20138.1.

The results show that about 91% of the CAZymes are correctly classified. There are 671 CAZymes

that are not classified to any dbCAN family HMM. This represents about 8.3% of the input dataset.

The intriguingly high percentage of unclassified sequences directed the experiment towards analyzing

the results of the thresholds set by dbCAN. We first analyze the E-value thresholds. We ignore the E-

value thresholds set by dbCAN and analyze the E-values of members and non-members. Members

are CAZymes with matching actual and expected CAZyDB family when aligned against dbCAN

family HMMs. They are the aforementioned true positives. Non-members are CAZymes with non-

matching actual and expected CAZyDB family when aligned against dbCAN family HMMs. They

are the aforementioned false positives. Figure 5 displays the E-value box plots of members and non-

members. The binary logarithm of −log10(E-value) is shown on the y-axis. The horizontal dashed

line and solid line represent the 1e− 3 and 1e− 5 E-value thresholds, respectively.

We observe that all members have E-values below the set thresholds. Therefore, the E-value

threshold does not have any effect on the unclassified CAZymes. Note how some non-members have

low E-values. These are CAZymes with better hits to expected HMMs. This is because only two

sequences are misclassified as reported in Table 2.
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Family TP FN FP TN F-measure Confusion

AA9 178 1 0 7902 0.9972 -
GH76 169 1 0 7911 0.9971 -
GH11 170 2 0 7909 0.9942 -
GH47 161 2 0 7918 0.9938 -
GH37 77 1 0 8003 0.9936 -
GH72 206 3 0 7872 0.9928 -
GH12 68 1 0 8012 0.9927 -
GH31 133 2 0 7946 0.9925 -
GH16 361 6 0 7714 0.9918 -
GH81 59 1 0 8021 0.9916 -
GH10 110 2 0 7969 0.991 -
GH20 53 1 0 8027 0.9907 -
GH1 49 1 0 8031 0.9899 -
PL3 48 1 0 8032 0.9897 -
GH92 47 1 0 8033 0.9895 -
GH6 84 2 0 7995 0.9882 -
GH18 745 18 0 7318 0.9881 -
GH38 39 1 0 8041 0.9873 -
GH43 177 5 0 7899 0.9861 -
GH65 35 1 0 8045 0.9859 -
GH51 34 1 0 8046 0.9855 -
AA5 34 1 0 8046 0.9855 -
AA3 125 4 0 7952 0.9843 -
GH55 62 2 0 8017 0.9841 -
GH71 60 2 0 8019 0.9836 -
GH78 57 2 0 8022 0.9828 -
GH2 83 2 1 7995 0.9823 -
GH5 450 17 0 7614 0.9815 -
GH54 25 1 0 8055 0.9804 -
GH115 22 1 0 8058 0.9778 -
GH79 41 2 0 8038 0.9762 -
GH35 40 2 0 8039 0.9756 -
GH63 40 2 0 8039 0.9756 -
GH17 159 10 0 7912 0.9695 -
GH3 298 19 0 7764 0.9691 -
GH28 384 27 0 7670 0.966 -
GH32 149 11 0 7921 0.9644 GH2 : 1
CE1 54 3 1 8023 0.9643 -
GH27 77 6 0 7998 0.9625 -
PL1 115 10 0 7956 0.9583 -
GH7 333 30 0 7718 0.9569 -
GH45 31 3 0 8047 0.9539 -
GH13 266 28 0 7787 0.95 -
AA2 227 30 0 7824 0.938 -
GH26 11 2 0 8068 0.9167 CE1 : 1
GH15 97 20 0 7964 0.9065 -
CE10 4 1 0 8076 0.8889 -
GH94 3 1 0 8077 0.8571 -
GH36 17 13 0 8051 0.7234 -
GH39 3 8 0 8070 0.4286 -
AA1 94 359 0 7628 0.3437 -

Table 2: Confusion matrices of CAZyDB protein families with respect to the dbCAN family HMMs.
The expected families are shown in the column labeled Family, the count of CAZymes classified
as TP , FN , FP , and TN are shown in their respective columns. The actual families and the
corresponding count of misclassified CAZymes are shown in the column labeled Confusion. Note
that only families with F-measures not equal to 1 are shown in this table. For the full list see
Table 26 in Appendix A. The rows are sorted in descending order based on F-measure.
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Figure 4: The domain architectures of CE family 10 fungal CAZymes. The CAZyme with GenBank
accession number CAA20138.1 is misclassified to CE family 1 HMM. We observe that CAA20138.1
has a dipeptidyl peptidase IV domain unlike the other fungal CAZymes of CE family 10, which have
an abhydrolase 1 domain. CE family 10 is no longer in CAZyDB.
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Figure 5: E-value distribution of dbCAN family HMM members and non-members. Members are
CAZymes with matching actual and expected CAZyDB family when aligned against dbCAN family
HMMs. Non-members are CAZymes with non-matching actual and expected CAZyDB family when
aligned against dbCAN family HMMs. The binary logarithm of −log10(E-value) is shown on the
y-axis. The horizontal dashed line and solid line represent the 1e− 3 and 1e− 5 E-value thresholds,
respectively.

26



dbCAN family HMMs with true members
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Figure 6: HMM covered distribution of member CAZymes. The x-axis shows the CAZyDB families.
The y-axis shows the HMM covered fraction. The horizontal solid line represents the dbCAN set
threshold for HMM covered fraction (0.3). 609 out of the 671 unclassified CAZymes fall under the
cutoff line.

We next analyze the effect of the threshold set for HMM fraction covered. We report the distri-

bution of the HMM fraction covered for members of each CAZyDB family for above and below the

dbCAN set threshold. Figure 6 displays a box plot of the HMM fraction covered by the members

of each CAZyDB family. The x-axis shows CAZyDB family. The y-axis shows the HMM covered

fraction. The horizontal solid line represents the dbCAN set threshold for HMM covered fraction.

We observe that a large number of members have lower than 0.3 HMM covered fraction. The

number of members with lower than 0.3 HMM covered fraction is 609, which is about 7.5% of the

input dataset (7.5% of the 8,081 input CAZymes). The HMM covered fraction is introduced to

exclude sequence fragments from being classified. To verify whether the 609 unclassified CAZymes

are fragments, we analyze their sequence lengths against the average sequence lengths of their

expected families. The average sequence length of a family is computed based on the correctly

classified members of that family. Figure 7 displays a bar plot of the frequencies of the unclassified

sequences in ranges corresponding to ratios of their sequence length to the average sequence length

of their families. The bars show three segments in different bar stacks. The segments correspond to

length ratio range. Black segments correspond to ratio range [0, 0.7], grey segments correspond to

ratio range (0.7, 1.2], and light grey segments correspond to ratio range (1.2, 2.0]. We observe from

the plot that AA family 1 has the most number of unclassified sequences, the majority of which

have a length ratio greater than 0.7. About 50% of the unclassified sequences from all the families

fall in the range (0.7, 1.2]. This in an indicator that about 50% of the unclassified sequences are
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Figure 7: Protein frequencies with respect to the ratio of their sequence length to the average
sequence length of their families. The x-axis shows the CAZyDB families. The y-axis shows the
frequency in logarithmic scale of the unclassified protein sequences in three ranges as shown in the
legend.

not fragments. We examine their dbCAN family HMM classifications without the HMM covered

fraction, and notice that only two out of 609 are misclassified.

3.3.2 Discussion

The experimental results show that dbCAN family HMMs are able to correctly classify about 91%

of the input dataset. This indicates that the dbCAN family HMMs are mostly satisfactory to be

used in a protein functional annotation pipeline. About 8.3% of the input dataset is unclassified.

We observe that the majority of the unclassified CAZymes did not pass the HMM fraction covered

inclusion threshold. The HMM fraction covered inclusion threshold is introduced to exclude sequence

fragments from being classified. However, we observe that about 50% of the unclassified CAZymes

have comparable sequence lengths to the average sequence lengths of their expected families. This

indicates that not all of the unclassified CAZymes are fragments. We examine their dbCAN HMM

classifications without the HMM fraction covered threshold, and we observe that only two out of

609 unclassified CAZymes are misclassified. This indicates that the HMM covered fraction inclusion

threshold has a negative effect on the sensitivity of the HMMs. The results of this experiment show

that the variability of thresholds has a direct impact on the results of HMM classifications. This

means that if HMM fraction coverage threshold is to be applied, a manual inspection should be

followed as to confirm that there are no HMM classifiers for the unclassified sequences, because the
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threshold may exclude a large proportion of the input sequences with corresponding HMM classifiers

present in the pool of HMMs.

3.4 Clustering of the mycoCLAP Dataset

We next move to subfamily analysis of the mycoCLAP database. We evaluate the effectiveness of

the Markov CLustering algorithm (MCL) (see Section 2.4) to cluster protein sequences in the my-

coCLAP database into subfamilies. Accurate subfamily clustering would allow us to train HMMs

for the subfamilies and use those HMMs for subfamily prediction in functional annotation pipelines.

We use the mycoCLAP database because it is a gold standard dataset for which proteins are exper-

imentally characterized with their biochemical activities and properties. Therefore, if satisfactory

representative subfamily clusters are provided, their HMMs can be used to annotate novel genes

with respect to a gold standard dataset.

The clusters generated for a set of sequences with the MCL algorithm are based on the similarity

values among the sequences. The similarity values are based on the Blast hits. In addition to E-

value, the Blast hits have query and subject coverage fractions, and percent identity. Some hits with

good similarity scores might be binding domains and not functional domains. These hits will be

clustered together because of their high similarity scores. However, their functional domains might

be different. For this reason, it is important to study the effect of query and sequence coverage

fractions along with similarity score to determine whether sequences clustered together are based on

shorter but more similar domains or longer and more significant domains such as functional domains.

We run a study to explore the possibility of generating representative subfamily clusters. In this

study, we generate different input weighed similarity graphs based on query and subject coverage

fractions and percent identity to pass them to the MCL algorithm. Another dimension of the MCL

algorithm is the inflation parameter, which dictates the granularity of the clusters. We run another

study, in which we generate different clusterings of the same graph with different inflation values

and analyze the results.

3.4.1 Similarity Graphs for Markov Clustering Algorithm

We generate three weighted undirected similarity graphs for the protein sequences in the mycoCLAP

dataset. The first one is based on the E-values, the second one adds the effect of query and subject

coverage percentages, and the third one adds the effect of pairwise sequence percent identity. To

generate these graphs, we first run all-versus-all Blast defined in Definition 2.5 on the set P of

the protein sequences in the mycoCLAP database. Blast 2.2.26+ software version is used with the

following calls and parameters:

>makeblastdb -in <input file> -dbtype ‘prot’ -out <database name>

>blastp -db <database name> -query <input file> -out <output file> -evalue 1e-3

soft masking true -outfmt 6 -use sw tback
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makeblastdb creates a Blast database from the input file <input file>, specifies its type (-dbtype

‘prot’), and outputs it to the output file <database name>. blastp searches protein sequences in the

input file <input file> against the Blast database <database name>, and outputs the alignment data

to the output file <output file>. The E-value threshold is set to 1e-3. The parameter soft masking

true soft masks or ignores low information sequence segments only in the search phase and not in

the alignment phase. The default option is hard masking, which masks the low information sequence

segments in both search and alignment phase. Soft masking uses the time-saving purpose of the

masking while generating more accurate alignments. The parameter -outfmt 6 sets the output

format to a tabular format, and -use sw tback uses the Smith-Waterman algorithm to compute

local optimal alignments as implemented in Blast 2.2.26+. The default alignment algorithm is the

Blast heuristic alignment algorithm.

We define pairwise protein sequence similarity scores and edge weights as follows.

Definition 3.1. (Similarity value bi sim(p, q) of proteins p and q) Given the all-versus-all Blast re-

sults of the set P of proteins, and proteins p, q ∈ P . Proteins p and q have a setH = {h 1, h 2, ..., h n}
of high scoring pairs (see Section 2.3.2). Then the E–value(p, q) is defined as

E–value(p, q) = {E–value(p, q)hi | hi ∈ H and hi has the minimum E–value in H}. (9)

The similarity value of p and q is then defined as

bi sim(p, q) =


max(−log(E–value(p, q)),−log(E–value(p, q))), if E–value(p, q) 6= 0

and E–value(p, q) 6= 0;

Max, if E–value(p, q) = 0

or E–value(p, q) = 0.

(10)

where Max is a positive integer strictly larger than all values −log(E–value(p, q)) ∀ pi, qj ∈ P .

Definition 3.2. (Similarity edge weight wmlec(p, q) of proteins p and q) Given the all-versus-all

Blast results of the set P of proteins, and proteins p, q ∈ P where p 6= q, the mlec similarity edge

weight is defined as

wmlec(p, q) = bi sim(p, q)× query–coverage× subject–coverage, (11)

where bi sim(p, q) is the similarity value of proteins p and q defined in Definition 3.1, query–coverage

is the ratio of the length of the hit to the length of the query sequence, and subject–coverage is the

ratio of the length of the hit to the length of the subject sequence. wmlec(p, q) is rounded to the

nearest integer.

Definition 3.3. (Similarity edge weight wmleci(p, q) of proteins p and q) Given the all-versus-all

Blast results of the set P of proteins, and proteins p, q ∈ P where p 6= q, the mleci similarity edge

weight is defined as

wmleci(p, q) = bi sim(p, q)× query–coverage× subject–coverage× percent–identity, (12)
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Figure 8: Edge frequencies with respect to the similarities of the edges of three protein similarity
graphs. The three similarity graphs are mle, mlec, and mleci. The x-axis shows similarity values.
The y-axis depicts the number of edges on a logarithmic scale for the mle graph by the continuous
line, for the mlec graph by the dash dotted line, and for the mleci graph by the dotted line. Note that
the similarity values of the mlec and mleci graphs are normalized with respect to their respective
scalars applied on the original similarity values.

where bi sim(p, q) is the similarity value of proteins p and q defined in Definition 3.1, query–coverage

is the ratio of the length of the hit to the length of the query sequence, subject–coverage is the ratio

of the length of the hit to the length of the subject sequence, and percent–identity is the percentage

of identical amino-acids at the same positions in the hit with respect to the alignment length.

wmleci(p, q) is rounded to the nearest integer.

We refer to the three similarity graphs as mle, mlec, and mleci. The edge weights of the

mle graph are the corresponding similarity values of the vertices at the ends of edges defined in

Definition 3.1. The edge weights of the mlec and mleci graphs correspond to the edge weights

defined in Definition 3.2 and Definition 3.3, respectively.

We compare the three graphs in terms of the quality of the remaining and filtered edges. There

are 731 proteins in the mycoCLAP database. The total number of edges in the mle graph is 13, 077.

This number drops to 9, 599 with the mlec graph, and to 9, 176 with the mleci graph. The drop

happens when the similarity values become 0 with Definition 3.2 and Definition 3.3. We first compare

the edges of the three graphs in terms of similarity values. Figure 8 depicts the number of edges at

different similarity values. The x-axis shows the similarity values of the edges. The y-axis depicts

the number of edges on a logarithmic scale for the mle graph by the continuous line, for the mlec

graph by the dash dotted line, and for the mleci graph by the dotted line.

We observe from Figure 8 a drop in the number of edges for similarity value range 3 to 25 in the
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mlec graph when compared to the mle graph, as well as in the mleci graph when compared to the

mlec graph. Whereas the number of edges are comparable for similarity values in the range 25 to 181

in the three graphs. This indicates that the mlec and mleci graphs are losing loosely connected edges

with low similarity values. These edges could be short segments, for example, binding domains.

We next compare the edges in terms of query and subject coverage percentages to analyze whether

the lost edges correspond to hits formed from short segments. Figure 9 depicts the number of edges

for each query and subject coverage intervals in the mle, mlec, and mleci graphs in three panels

with respective headings. The horizontal axes for the three panels show query coverage percentage,

and the vertical axes show subject coverage percentage. The frequency in binary logarithm for a

query and subject coverage percentage is color coded.

We observe from Figure 9 that mlec and mleci graphs drop a large number of edges for query

and subject coverage less than 20%. This is shown in the lower left corner of the charts for the mlec

and mleci graphs compared to the mle graph. These hits correspond to short segments because

they have low query and subject coverage fractions.

We next compare the edges in terms of edge connectivity between protein families. Figure 10,

Figure 11, and Figure 12 depict the inter- and intra-protein family edges for mle, mlec, and mleci

graphs, respectively. The dots in the figures represent proteins in the mycoCLAP database. Proteins

are grouped according to their families represented as isolated structures in the figures. Edges

between proteins are depicted by solid lines.

We observe that the mlec graph in Figure 11 compared to the mle graph in Figure 10 drops

a significant number of between protein family edges. The mleci graph in Figure 12 drops fewer

between protein family edges.

We observe that aggregating query and subject coverage percentages and percent identity is

dropping a large number of loosely connected edges in a weighted protein sequence similarity graph

compared to a graph based only on E-value. The standard mechanism to consider query and subject

coverages and percent identity is to introduce inclusion thresholds. The reason we performed this

experiment is not to introduce additional thresholds for query and subject coverage percentage and

percent identity.

3.4.2 Running MCL

We run the mcl program from the MCL 12-068 release [VD00a] on the mle, mlec, and mleci

graphs with eight different inflation values in order to analyze different clusterings generated with

different granularity. The eight inflation values are: 1.4, 2.0, 2.6, 3.2, 3.8, 4.4, 5.0, and 5.6. For the

protein family level, we consider the clusterings with inflation value 5.6, because protein families

are less granular than subfamilies and higher inflation values generate less granular clusters. In

the clusterings generated from the mle and mlec graphs, we notice two clusters with sequences

from multiple families. The families are GH families 5, 9, 45, and CE family 1. The sequences are

connected because they share binding domains. In the clustering generated from the mleci graph,

the clusters are pure with respect to protein families, i.e., there is no cluster with multiple families

in it.
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Figure 9: Edge frequencies at query and subject coverage percentages of three protein similarity
graphs. The frequency in binary logarithm for each query and subject coverage percentage is color
coded. The range of values and their corresponding colors are shown in the color legend to the right
of each panel.
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Figure 10: The mle protein similarity graph of the proteins in the mycoCLAP dataset. The dots
represent proteins in mycoCLAP. Proteins are grouped according to their families represented as
isolated structures. Edges between proteins are depicted by solid lines. The families of the groups
listed row by row starting from the first row in the left to right direction: AA2, AA3, CE1, CE4,
CE5, GH2, GH10, GH11, GH11 CE1, GH12, GH13, GH15, GH16, GH17, GH18, GH2, GH20, GH26,
GH27, GH28, GH3, GH30, GH31, GH32, GH32 GH43, GH35, GH36, GH43, GH45, GH47, GH49,
GH5, GH51, GH53, GH54, GH55, GH6, GH61, GH62, GH65, GH67, GH7, GH71, GH74, GH75,
GH78, GH81, GH9, GH93, PL1, PL3, and PL4.
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Figure 11: The mlec protein similarity graph of the proteins in the mycoCLAP dataset. Compared
to the edge connectivity of the mle presented in Figure 10, mlec has fewer edges between protein
families. The families of the groups listed row by row starting from the first row in the left to right
direction: AA2, AA3, CE1, CE4, CE5, GH2, GH10, GH11, GH11 CE1, GH12, GH13, GH15, GH16,
GH17, GH18, GH2, GH20, GH26, GH27, GH28, GH3, GH30, GH31, GH32, GH32 GH43, GH35,
GH36, GH43, GH45, GH47, GH49, GH5, GH51, GH53, GH54, GH55, GH6, GH61, GH62, GH65,
GH67, GH7, GH71, GH74, GH75, GH78, GH81, GH9, GH93, PL1, PL3, and PL4.
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Figure 12: The mleci protein similarity graph of the proteins in the mycoCLAP dataset. Compared
to the edge connectivity of the mlec presented in Figure 11, mleci has fewer between protein families
edges, however, it does not drop them all. The families of the groups listed row by row starting
from the first row in the left to right direction: AA2, AA3, CE1, CE4, CE5, GH2, GH10, GH11,
GH11 CE1, GH12, GH13, GH15, GH16, GH17, GH18, GH2, GH20, GH26, GH27, GH28, GH3,
GH30, GH31, GH32, GH32 GH43, GH35, GH36, GH43, GH45, GH47, GH49, GH5, GH51, GH53,
GH54, GH55, GH6, GH61, GH62, GH65, GH67, GH7, GH71, GH74, GH75, GH78, GH81, GH93,
PL1, and PL3.
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The mleci graph compared to mle and mlec has the least number of loosely connected edges

in terms of low similarity values as observed in Figure 8, has higher query and subject coverage

percentages as observed in Figure 9, and fewer inter-family edges as observed in Figure 12. In

addition, the clusters are pure with respect to protein families. For this reason, we choose the mleci

graph to proceed with protein subfamily clustering.

We use four evaluation metrics for clusters generated with the MCL algorithm. The first one is

the cluster density defined in Definition 2.1. The second one is the average of the normalized edge

weights defined in Definition 3.4, the third one is the coefficient of variation of the average of the

normalized edge weights defined in Definition 3.5, and the fourth one is the cluster purity defined in

Definition 2.2.

Definition 3.4. (The average of the normalized edge weights w of a cluster C) Given the all-versus-

all Blast results of the set P of proteins, a cluster C, and the set of edges E = {e1, . . . , en} in cluster

C, the average of the normalized edge weights w is

w =

|E|∑
i=1

w(ei)

|E| ×Max
, (13)

where |E| is the cardinality of the edges in C, w(e) is the similarity weight of the edge e, and Max

is a positive integer strictly larger than all values bi sim(pi, pj) (see Definition 3.1) for all pi ∈ P
and pj ∈ P . The range of w is [0, 1], where a w of 0 represents a non-similar cluster, and a w of 1

represents a perfectly similar cluster.

Definition 3.5. (The coefficient of variation cv of the average of the normalized edge weights of a

clustering) Given a set of clusters and their average of the normalized edge weights, the coefficient

of variation cv is

cv =
σ

µ
, (14)

where σ is the standard deviation of w, and µ is the mean of w. The lower the cv value, the less

variability there is in the weights.

We present the results of the MCL runs at different inflation values on the mleci graph in

Table 3. The runs are given by column labeled i. The inflation values are given by column labeled

I. The distance of consecutive clusterings defined in Definition 2.7 is given by column labeled

d(Ci, Ci+1). This distance measure indicates the number of rearrangements that have to be applied

on the corresponding clustering to obtain a sub-clustering of the other. The minimum, maximum,

mean, and standard deviation over all intra-cluster densities defined in Definition 2.1 are given by

columns labeled δmin, δmax, δµ, and δσ, respectively. The minimum, maximum, mean, and standard

deviation over all intra-cluster average of the normalized edge weights defined in Definition 3.4 are

given by columns labeled wmin, wmax, wµ, and wσ, respectively. The minimum, maximum, mean,

and standard deviation over all intra-cluster edge weight variation defined in Definition 3.5 are given

by columns labeled cvmin , cvmax , cvµ , and cvσ , respectively.

We observe from the column (Ci, Ci+1) of Table 3 that there is a consistency in the split/joint

pair-value distances of consecutive runs of the MCL at different inflation values, i.e., the clusterings
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i I d(Ci, Ci+1) δmin δmax δµ δσ wmin wmax wµ wσ cvmin cvmax cvµ cvσ
1 1.4 (67, 0) 0.8 1.0 0.99 0.04 0.01 0.94 0.39 0.22 0.0 2.17 0.55 0.47
2 2.0 (18, 1) 0.8 1.0 0.99 0.04 0.01 0.98 0.43 0.22 0.0 2.17 0.45 0.43
3 2.6 (11, 1) 0.8 1.0 0.99 0.04 0.01 0.98 0.45 0.23 0.0 2.17 0.42 0.41
4 3.2 (11, 1) 0.8 1.0 0.99 0.04 0.01 0.98 0.46 0.23 0.0 2.17 0.4 0.41
5 3.8 (7, 1) 0.8 1.0 0.99 0.03 0.01 0.98 0.47 0.22 0.0 2.17 0.39 0.41
6 4.4 (7, 3) 0.8 1.0 0.99 0.03 0.01 0.98 0.47 0.22 0.0 2.17 0.38 0.4
7 5.0 (8, 1) 0.8 1.0 0.99 0.03 0.01 0.98 0.47 0.22 0.0 2.17 0.38 0.4
8 5.6 - 0.8 1.0 0.99 0.03 0.01 0.98 0.48 0.22 0.0 2.17 0.37 0.4

Table 3: The runs are given by column labeled i. The inflation values are given by column labeled
I. The distance of consecutive clusterings defined in Definition 2.7 is given by column labeled
d(Ci, Ci+1). The columns prefixed with δ show intra-cluster edge density data. The columns prefixed
with w show intra-cluster normalized edge weight data. The columns prefixed with cv show intra-
cluster edge weight variation data.

with higher inflation values are sub-clusterings of the ones with lower inflation values. Consider

entry d(Ci, Ci+1) of run 1 (67, 0). The entry has the number of rearrangements that have to applied

on corresponding clusterings to obtain the other. The first value of the tuple is the distance of

the clustering at inflation value 1.4 to the intersection of the clusterings at inflation values 1.4 and

2.0, and the second value of the tuple is the distance of the clustering at inflation value 2.0 to the

intersection of the clusterings at inflation values 1.4 and 2.0. This means there are 67 rearrangements

in the clustering at inflation value 1.4 to obtain the intersection of the clusterings at inflation values

1.4 and 2.0, and 0 rearrangements in clustering at inflation value 2.0 to obtain the intersection of

the clusterings at inflation values 1.4 and 2.0. This trend converges at higher inflation values.

Intra-cluster edge density data of all the clusterings are satisfactory with a mean of 0.99, and

a standard deviation of 0.03 and 0.04. This indicates that the majority of the clusters are dense

clusters in which the number of edges is close to the number of vertices.

Intra-cluster average of the normalized edge weights, however, is not satisfactory. This indicates

that there are clusters with low edge weights. The minimum for all the clusterings is 0.01 as shown

in the column labeled wmin. On the other side of the spectrum, there are clusters with high edge

weights. This is shown in the column labeled wmax. However, we observe that the means for all the

clusterings as shown in the column labeled wµ are lower than 0.5. The variability of the intra-cluster

edge weights are shown in the columns prefixed with cv. The minimums for all the clusterings as

shown in the column labeled cvmin are 0. This means there is no variability in the edge weights in

these clusters. The maximums for all the clusterings as shown in the column labeled cvmax are 2.17.

This is relatively a high value compared to 0. Note that the higher the cv, the greater the variability

in the given values. This is suggestive of clusters with very high and very low edge weights. The

edge weight variation means are decreasing with higher inflation values. This indicates intra-cluster

edge weights are less dispersed with higher inflation values.

The combined analysis of the three metrics allows the identification of good and bad clusters.

We present all the clusters of the mleci graph at MCL inflation value 5.6 in Table 27 in Appendix A.

More than 50% of the clusters in this table have w of less than 0.5. This result did not motivate us
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CAZyDB subfamily CAZyDB count mycoCLAP count Enzymatic activity

GH5 5 108 21 endoglucanase
GH13 1 112 17 alpha-amylase
GH5 9 175 13 exo-1,3-beta-glucanase
GH5 7 169 12 beta-mannanase
GH5 4 32 7 endoglucanase
PL1 4 98 2 pectin lyase

GH30 3 12 2 endo-1,6-beta-glucanase
GH30 5 4 1 galactanase
GH30 7 13 1 xylanase
GH13 40 60 1 alpha-glucosidase
GH5 2 127 1 bifunctional endoglucanase/xylanase
GH5 15 15 1 endo-1,6-beta-glucanase
GH5 16 17 1 galactanase
PL1 7 32 1 pectate lyase
PL3 2 163 1 pectate lyase
PL4 1 17 1 rhamnogalacturonan lyase
PL4 3 14 1 rhamnogalacturonan lyase
AA3 2 124 1 aryl-alcohol oxidase

Table 4: mycoCLAP sequences in CAZyDB subfamilies. CAZyDB subfamilies are given in the
column labeled CAZyDB subfamily, the number of mycoCLAP sequences assigned to CAZyDB
subfamilies is given in the column labeled Count. The enzymatic activity of a sequence as in
mycoCLAP annotation is given in the column labeled Enzymatic activity. The rows are sorted in
descending order based on the mycoCLAP count. Note that CAZyDB subfamilies with more than
one sequence have the same enzymatic activity as annotated in the mycoCLAP database.

to use the MCL clusters as representative of subfamily clusters for the mycoCLAP database to be

used in a protein functional annotation pipeline.

3.5 Protein Subfamily Hidden Markov Models

The cluster quality metrics indicate that MCL clusters are not good representatives of subfamilies.

In order to evaluate whether subfamily HMMs trained from mycoCLAP sequences are satisfac-

tory to be used in a functional annotation pipeline, we train subfamily HMMs with mycoCLAP

sequences that have well studied subfamily classifications in CAZyDB. Out of 731 sequences in the

mycoCLAP database, only 85 sequences from seven families are classified into 18 well studied sub-

families in CAZyDB. Table 4 shows the distribution of these sequences in CAZyDB subfamilies.

The column showing the enzymatic activities of the sequences for each CAZyDB subfamily indicate

that mycoCLAP sequences in CAZyDB subfamilies are pure with respect to function. We therefore

train HMMs with the mycoCLAP sequences in these subfamilies. Note that we only consider those

subfamilies with more than one sequence to train the HMMs.

We run CAZyDB sequences that are classified into subfamilies against the trained HMMs. We

leave out the training set used to train the HMMs. Out of 8, 081 fungal CAZymes we retrieved

from CAZyDB, 4, 024 are assigned into subfamilies. Table 5 shows the confusion matrices of the

subfamilies. We observe that four out of seven subfamilies have F-measure value 1. This means their
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CAZyDB subfamily TP FN FP TN F-measure Confusion
GH5 5 87 0 0 3,916 1 -
GH13 1 95 0 0 3,912 1 -
GH5 7 157 0 0 3,855 1 -
GH30 3 10 0 0 4,012 1 -
PL1 4 79 17 0 3,926 0.90 -
GH5 9 155 7 2 3,849 0.97 -
GH5 4 0 25 0 3,992 indeterminate GH5 9: 2

Table 5: Confusion matrices of HMMs trained from mycoCLAP sequences. The identifier of the
set of sequences from which HMMs are trained is given in the column labeled CAZyDB subfamily.
The identifiers are of form familyID subfamilyID, where the subfamilyID correspond to CAZyDB
subfamily identifiers. The count of the true positives, false negatives, false positives, and true
negatives are given in the columns labeled TP , FN , FP , and TN . The F-measure is given in the
column labeled F-measure. The number of the misclassified sequences together with the misclassified
HMMs is shown in the column labeled Confusion.

HMMs achieve satisfactory classification. Subfamilies PL1 4, GH5 9, and GH5 4 have a number of

sequences that are not classified. We count unclassified sequences as FNs, which results in a drop

in the F-measure.

We observe that subfamily HMMs trained from relatively small number of sequences are satis-

factory. However, we cannot draw any conclusions from this set, as this set is a small set with low

subfamily diversity within a family. In this set, only GH family 5 has more than one subfamily, and

we notice a confusion between GH5 9 and GH5 4.

3.6 Conclusion

This chapter presents a family and subfamily HMM evaluation for classifying fungal CAZymes. Our

experiments show that existing dbCAN CAZyme family HMMs are satisfactory, i.e., the HMMs

achieve good F-measures with the majority of them scoring greater than 0.85. The F-measure

results indicate that the existing dbCAN family HMMs can be used in a protein functional annotation

pipeline and there is no need to train family HMMs from the experimentally characterized sequences

in the mycoCLAP database.

There are no existing CAZyme subfamily HMMs in the literature to evaluate their potential use in

a protein functional annotation pipeline. For this reason, we clustered the mycoCLAP database into

potential subfamily clusters using the MCL algorithm and evaluated their results. The evaluation

was conducted with cluster quality metrics. The metrics successfully pointed out outliers in the

results, and indicated that while some clusters contain highly similar members, others do not. This

indicates that these clusters may not be subfamily clusters in which every sequence in a cluster is in

the same subfamily. This motivated us to use the very few sequences in the mycoCLAP database

that are classified into well studied CAZyDB subfamilies to train subfamily HMMs and evaluate their

results. We aligned all CAyDB sequences that are classified into well studied subfamilies against the

subfamily HMMs. The subfamily HMMs were satisfactory with reported F-measures of greater than

0.9. However, there were not enough subfamily variety within specific families to evaluate whether
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the subfamily HMMs trained from small number of sequences are satisfactory to be used in a protein

functional annotation pipeline.

We conclude that as more subfamily data emerges, better experiments can be conducted with

subfamilies as to how many sequences are required to train satisfactory HMMs, and whether only

sequences from a specific biological kingdom are needed to train satisfactory subfamily HMMs.
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Chapter 4

The SynAPhy algorithm

4.1 Introduction

This chapter presents SynAPhy (Synteny Algorithm in Phylogenomics), a synteny based algorithm

to predict orthologs. The algorithm is based on protein sequence similarity and gene neighbor-

hood conservation. It showcases proteins with significant sequence similarity and conserved genome

contexts. The idea is that in the course of evolution homologous associations are maintained in

conserved genomic regions. As such, speciation genes – or orthologs – are expected to reside in

conserved genomic regions. We apply SynAPhy on eight well-studied fungal genomes, and compare

the results to that of OrthoMCL [LSR03] and Orthologs MAtrix project (OMA) [RGD08]. We

chose OrthoMCL and OMA because they are both graph-based phylogenomics approaches and their

algorithms are available for download.

4.1.1 Introduction to the SynAPhy Algorithm

In this section, we present a brief overview of the SynAPhy algorithm. Figure 13 shows the SynAPhy

components and illustrates the relationship between them. SynAPhy represents the core of our

orthology prediction framework. It is comprised of three main components: Reciprocal Best Hit

(RBH) detector, syntenic RBH detector, and synteny injector. The input to SynAPhy is the protein

sequence similarity graph generated from all-versus-all Blast searches of a set of proteomes. The

output is a synteny-similarity graph that is used as a seed for the MCL algorithm to generate protein

clusters.

Reciprocal best hits are not a new concept, they are used in OrthoMCL, OMA, and other orthol-

ogy prediction algorithms [TKL97, ÖSF+10, PST+12]. RBHs are considered candidate orthologs.

The idea is that orthologs are the closest proteins when their proteomes are compared because their

last common ancestor diverged by a speciation event after a duplication event. Whereas paralogs

diverged by a duplication event prior to a speciation event. However, in the presence of recently

diverged paralogs (i.e., in-paralogs that diverged after a speciation event) where sequence similarity

is highly conserved, RBHs may introduce erroneous orthologous relationships. Other instances of
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Figure 13: SynAPhy components. SynAPhy has three main components: RBH detector, syntenic
RBH detector, and synteny injector. They are contained by the dashed rectangle and are depicted
as bold border-lined rectangles. The input and output of the components are depicted as ellipses.
The input to SynAPhy is a protein sequence similarity graph generated from all-versus-all Blast
searches. The output of SynAPhy is a synteny-similarity graph that is used as a seed for the MCL
to generate protein clusters.

erroneous orthologous relationships can be formed in the presence of gene loss events. If in a gene

loss event the ortholog of a protein is lost, the protein sequence may form an erroneous reciprocal

best hit connection with a non-ortholog.

The input to the RBH detector component is the protein sequence similarity graph. It detects

the RBHs of a set of proteomes based on the similarity values. The output is the list of RBHs

that are labeled in the similarity graph and passed to the syntenic RBH detector component. The

syntenic RBH detector component checks whether the mapped genomic regions of the detected

RBHs are conserved or not. Genomic regions of RBHs are determined based on gene locations and

the range parameter d passed to the component. Genomic region conservations are determined with

the range parameters tN passed to the component. If an RBH of interest is in a syntenic region

then the connection is labeled as syntenic RBH. The output of the syntenic RBH detector is the

list of syntenic RBHs that are labeled in the similarity graph and passed to the synteny injector

component. The similarity graph at this stage has RBH and syntenic RBH connections labeled.

The synteny injector component scales the similarity values with the input weight parameters of the

RBHs and syntenic RBHs and generates a syntenic-similarity graph. This graph is then used as a

seed for the MCL algorithm to generate protein clusters.
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4.1.2 Evaluation Methodology

We evaluate the performance of SynAPhy in generating high quality clusters. High quality clusters

typically have highly similar members and good presence of RBH and syntenic RBH connections.

We use four cluster quality metrics to perform the evaluation: (1) cluster edge density as defined

in Definition 2.1, (2) cluster normalized edge weights as defined in Definition 3.4, (3) cluster RBH

density as defined in Definition 4.5, and (4) cluster syntenic RBH density as defined in Definition 4.6.

4.1.3 Organization of this Chapter

The remainder of this chapter is organized as follows. Section 4.2 defines the terminologies that

we use in this chapter. Section 4.3 presents a summary of the input dataset. Section 4.4 describes

the SynAPhy algorithm in details and presents the algorithmic components. Section 4.5 presents

the experiments and the results of clusterings on the input dataset. Section 4.6 compares SynAPhy

to orthology prediction systems that use synteny to predict orthologs. Section 4.7 concludes the

chapter.

4.2 Terminology

This section presents terminologies, definitions, and notations that we use throughout this chapter.

4.2.1 Neighborhood

The following notations are used to define a gene neighborhood. Let

p denote a protein;

p.chromosome denote the identifier of the chromosome on which the gene of the protein p lies; and

p.head denote the first position on p.chromosome of the gene of p reading from 3 prime to 5 prime

end of the chromosome.

Definition 4.1. (Neighborhood N(p, d) of a protein p of diameter d = 2 × k + 1) Let p

be a protein of the proteome P and let (p1, . . . , pm) be the proteins corresponding to the genes of

p.chromosome in order of their head. If p is pi in this ordered list, then

N(p, d) = { pj | ( i− k ≤ j ≤ i+ k ) and ( 1 ≤ j ≤ m ) }, (15)

where k is the number of upstream and downstream genes. Note that the second clause in the condi-

tion accommodates neighborhoods at or near the end of the chromosome. Let p.neighborhood(d)

denote the neighborhood of a protein p of diameter d.

4.2.2 Protein Sequence Similarity Graph

This section presents definitions and notations used to describe protein sequence similarity graphs.
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Definition 4.2. (Similarity edge weight sim(p, q) of proteins p and q) Given the all-versus-all

Blast searches of proteomes P and Q, and proteins p ∈ P and q ∈ Q, the similarity edge weight is

then defined as

sim(p, q) =

{
−log(E–value(p, q)), if E–value(p, q) 6= 0;

Max, if E–value(p, q) = 0.
(16)

where Max is a positive integer strictly larger than all values −log(E–value(pi, qj)) for all pi ∈ P
and for all qj ∈ Q. Note that sim(p, q) is unidirectional, i.e., it only considers forward hits when a

proteome is compared against another. This is different from the bi sim(p, q) defined in Definition 3.1

in which forward and backward hits are considered to assign a similarity score for a pair of proteins.

Definition 4.3. (Reciprocal Best Hit) Proteins p and q from distinct proteomes P and Q are

reciprocal best hit, or RBH, if and only if they satisfy all of the following criteria.

1. sim(p, q) ≥ 30;

2. sim(q, p) ≥ 30;

3. q is the best hit for p in proteome Q; that is,

∀y ∈ Q, sim(p, y) ≤ sim(p, q) (17)

and

4. p is the best hit for q in proteome P ; that is,

∀x ∈ P, sim(q, x) ≤ sim(q, p) (18)

then rbh(p, q) = true.

Definition 4.4. (Syntenic Reciprocal Best Hit) Proteins p and q from distinct proteomes P

and Q are syntenic reciprocal best hit, or syntenic RBH, if and only if they satisfy all of the following

criteria.

1. p and q are reciprocal best hits; and

2. p and q have syntenic neighborhoods, that is, for a neighborhood of diameter d, the number

of reciprocal best hits meets or exceeds the threshold tN :

|{ <x, y> | x ∈ N(p, d) ∧ y ∈ N(q, d) ∧ rbh(x, y) = true }| ≥ tN (19)

Given proteins p in proteome P and q in proteome Q. We use the following notations to refer to

the features of p and q in a protein sequence similarity graph. Let

(p, q) denote an edge connecting proteins p and q;

(p, q).sim denote sim(p, q);
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(p, q).maxsim denote max((p, q).sim, (q, p).sim);

(p, q).type denote the type of edge in [edge, hit, best hit, rbh, syn rbh], where

edge indicates (p, q).sim ≥ 3,

hit indicates (p, q).sim ≥ 30,

best hit indicates (p, q).type = hit and ∀y ∈ Q, (p, y).sim ≤ (p, q).sim ,

rbh indicates (p, q).type = best hit and (q, p).type = best hit,

syn rbh denotes that p and q satisfy the criteria for RBH and furthermore the number of

RBHs in the neighborhood of diameter d = 9 meets or exceeds the threshold tN = 4; and

(p, q).weight denote the edge weight. This is defined in terms of the parameters βe, βr, βs as

follows

(p, q).weight =



βe × (p, q).maxsim, if (p, q).type = edge;

βe × (p, q).maxsim, if (p, q).type = hit;

βe × (p, q).maxsim, if (p, q).type = best hit;

βr × (p, q).maxsim, if (p, q).type = rbh; and

βs × (p, q).maxsim, if (p, q).type = syn rbh.

(20)

The weighted protein sequence similarity graph for the set (P1, . . . , Pk) of proteomes is given by

G(P1, . . . , Pk). We apply k2 all-versus-all Blast searches with the following Blast call:

>blastp -db <database name> -query <input file> -out <output file> -evalue 1e-3

soft masking true -outfmt 6 -use sw tback

The Blast call is the same one as in Section 3.4.1. The similarity edge weights of the graph

G(P1, . . . , Pk) is given by the Definition 2.4.

4.3 Dataset

Our dataset is comprised of eight fungal genomes. Table 6 shows their sources as well as abbreviations

we use to refer to them throughout this document. The access date for all is 29 September 2013.

Table 7 shows summary data for the eight fungal genomes.

Strain name Source Version Abbreviation

Aspergillus niger CBS 513.88 www.aspergillusgenome.org s01-m06-r02 A. niger

Aspergillus oryzae RIB40 www.aspergillusgenome.org s01-m08-r15 A. oryzae

Neurospora crassa OR74A www.broadinstitute.org 12 N. crassa

Aspergillus nidulans FGSC A4 www.aspergillusgenome.org s10-m01-r10 A. nidulans

Aspergillus fumigatus Af293 www.aspergillusgenome.org s03-m04-r13 A. fumigatus

Candida albicans SC5314 www.candidagenome.org A21-s02-m07-r10 C. albicans

Saccharomyces cerevisiae S288 www.yeastgenome.org R64-1-1 20110203 S. cerevisiae

Schizosaccharomyces pombe ASM294 www.pombase.org v2.20 S. pombe

Table 6: Sources of the eight input fungal genomes.
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Organism Assembly # components # proteins

A. niger Chromosome 19 14,060

A. oryzae
Chromosome 8

11,902
Contig 3

N. crassa Supercontig 7 10,785
A. nidulans Chromosome 8 10,701

A. fumigatus Chromosome 8 9,783
C. albicans Chromosome 8 6,217

S. cerevisiae Chromosome 16 5,862
S. pombe Chromosome 3 5,144

Table 7: Summary data for the eight input fungal genomes. The abbreviated organism name is
given by the column labeled Organism. The genome assembly components as given by the source
database are given in the column labeled Assembly. The number of assembly components is given by
the column labeled # components. The number of protein sequences present in the corresponding
database is given by the column labeled # proteins. The rows are sorted in descending order based
on number of proteins.

4.4 The SynAPhy Algorithm

In this section, we describe the details of the SynAPhy algorithm (Algorithm 1). SynAPhy takes in

three classes of input for the set (P1, . . . , Pk) of proteomes: (1) the sequence similarity graph that

represents the initial similarity graph that holds the Blast similarity values, (2) neighborhood range

parameters labeled as d and tN as defined in Definition 4.4, where d = 9 represents the diameter of

the neighborhood to consider when calculating syntenic RBHs, and tN = 4 represents the number

of required RBHs in a neighborhood to determine if a pair of proteins is a syntenic RBH, and (3)

a sequence of weight parameters labeled as βe, βr, βs, which are used to compute the edge weights

for the edge types described in Section 4.2.2.

A SynAPhy run over the input graph attaches several labels to the edges representing the edge

types as well as the edge weights. The resulting graph is used as a seed for the MCL algorithm.

Algorithm 1 The SynAPhy algorithm

1: function synaphy(G(P1, . . . , Pk), βe, βr, βs, d, tN )
2: for all <Pi, Pj> ∈ pairs(P1, . . . , Pk) do
3: find hits(Pi, Pj)
4: find rbh(Pi, Pj)
5: find syn rbh(Pi, Pj , d, tN )
6: assign edge weights(Pi, Pj , βe, βr, βs)
7: end for
8: end function

SynAPhy starts by running a sequence of functions on the input proteomes to determine the edge

types. Each function operates on a pair of proteomes at a time and labels parts of the similarity

graph with the edge types based on the available similarity data.

The first step, find hits (Algorithm 2) determines if edges connecting proteins are in the list

[edge, hit, best hit]. This function takes two proteomes P and Q as input. Based on the similarity

values, this function first determines if the edge type is either an edge or a hit (Algorithm 2, line 4).
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Algorithm 2 Determines edge types in [edge, hit, best hit] for each protein pair in a pair of
proteomes P and Q

1: function find hits(P , Q)
2: for all <p, q> ∈ <P,Q> do
3: sim⇐ (p, q).maxsim
4: if sim ≤ 30 then
5: (p, q).type⇐ edge
6: (q, p).type⇐ edge
7: else
8: (p, q).type⇐ hit
9: (q, p).type⇐ hit

10: end if
11: end for
12: for all p ∈ P do
13: max sim⇐ 0
14: max hit⇐ nil
15: for all q ∈ Q do
16: if (p, q).sim ≥ max sim then
17: max sim⇐ (p, q).sim
18: max hit⇐ q
19: end if
20: end for
21: (p,max hit).type⇐ best hit
22: end for
23: for all q ∈ Q do
24: max sim⇐ 0
25: max hit⇐ nil
26: for all p ∈ P do
27: if (q, p).sim ≥ max sim then
28: max sim⇐ (q, p).sim
29: max hit⇐ p
30: end if
31: end for
32: (q,max hit).type⇐ best hit
33: end for
34: end function

Algorithm 3 Determines if the best hits in a pair of proteomes are RBHs

1: function find rbh(P , Q)
2: for all <p, q> ∈ <P,Q> do
3: forward hit⇐ (p, q).type ≡ best hit
4: backward hit⇐ (q, p).type ≡ best hit
5: if forward hit ∧ backward hit then
6: (p, q).type⇐ rbh
7: (q, p).type⇐ rbh
8: end if
9: end for

10: end function

48



Algorithm 4 Determines if the RBHs in a pair of proteomes are syntenic RBHs

1: function find syn rbh(P , Q, d, tN )
2: for all <p, q> ∈ <P,Q> do
3: Np ⇐ p.neighborhood(d)
4: Nq ⇐ q.neighborhood(d)
5: rbh size⇐ 0
6: for all <np, nq> ∈ <Np, Nq> do
7: if (np, nq).type ≡ rbh then
8: rbh size⇐ rbh size+ 1
9: end if

10: end for
11: if rbh size ≥ tN then
12: (p, q).type⇐ syn rbh
13: (q, p).type⇐ syn rbh
14: end if
15: end for
16: end function

Once all edges are labeled, the function runs another pass on the proteins to determine the best hits

for every protein in the given proteomes (Algorithm 2, lines 12 and 23). Note that when calculating

the best hits we find both, the best hits for every protein from proteome P in proteome Q as well

as the best hits for every protein from proteome Q in proteome P . Edges that correspond to best

hits are then relabeled with the edge type best hit.

The second step, find rbh (Algorithm 3) determines the RBHs in the graph as defined in Defini-

tion 4.3. Similar to find hits, this function takes two proteomes P and Q as input. Using the edge

type data from the first step, this method visits each protein pair <p, q> in the input proteomes

and labels the edge type as rbh if both (p, q).type is best hit and (q, p).type is best hit

(Algorithm 3 line 5). The resulting graph with all edge labels combining with the ones in find hits

is referred to as Gsim throughout the chapter.

Now that RBH edges are calculated, the last labeling step is to determine whether the RBH edges

are syntenic or not. This is performed in find syn rbh (Algorithm 4). This function takes in two

proteomes, as well as the range parameters d and tN . find syn rbh performs the following on each

protein pair <p, q>: (1) finds the neighborhoods N(p, d) and N(q, d) as defined in Definition 4.1,

(2) determines the number of RBHs between the proteins in the two neighborhoods (Algorithm 4

line 5), and (3) labels (p, q).type as syn rbh if the number of neighboring RBHs meets or exceeds

tN (Algorithm 4 line 11).

After analyzing the edge types, SynAPhy proceeds with assigning weights to the graph edges.

This is performed in assign edge weights (Algorithm 5), where the weights are calculated as a

function of the similarity values, the edge types as calculated in the previous steps, and the input

weight parameters βe, βr, and βs. The resulting graph is referred to as Gsyn sim throughout the

chapter.

The edge type and weight assignment process is repeated for every pair of proteomes in the input

graph G. SynAPhy terminates when all the edges of the input graph are assigned a weight value.
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Algorithm 5 Assigns weights to the edges based on the edge types

1: function assign edge weights(P , Q, βe, βr, βs)
2: for all <p, q> ∈ <P,Q> do
3: if (p, q).type ≡ syn rbh then
4: (p, q).weight⇐ (p, q).maxsim× βs
5: else if (p, q).type ≡ rbh then
6: (p, q).weight⇐ (p, q).maxsim× βr
7: else
8: (p, q).weight⇐ (p, q).maxsim× βe
9: end if

10: end for
11: end function

4.5 Experiments

We apply MCL, SynAPhy, OrthoMCL, and OMA on the eight fungal genomes listed in Section 4.3.

We start our experiments by performing a detailed analysis of the input proteomes. The analysis

presents the differences of the best hits, RBHs, and syntenic RBHs in terms of their sequence

alignment similarity, hit coverage, and percent identity. This analysis helps us determine whether

thresholds for E-value, query and subject coverage percentages, and percent identity need to be set

for RBHs and syntenic RBHs.

We evaluate the output clusters generated by the MCL, SynAPhy, OrthoMCL, and OMA al-

gorithms using the generic cluster quality metrics: cluster edge density, cluster normalized edge

weights, cluster RBH edge density, and cluster syntenic RBH edge density.

We present two example output clusters generated by the MCL algorithm that have member

sequences with different functions as annotated by the mycoCLAP database. Both examples show

how in the presence of paralogs and absence of syntenic RBHs orthologous relationships are not

distinguished. In particular, the first example shows how the presence of both paralogs and many

RBHs does not allow SynAPhy to separate cluster members with different functions into different

clusters. In addition, it shows how the absence of syntenic RBHs does not allow SynAPhy to separate

members into orthologous clusters in which every pair is orthologous to each other. The second

example showcases the usefulness of RBHs with which SynAPhy was able to separate sequences

with different functions into different clusters.

4.5.1 Similarity of Proteomes

In this section, we study the variation of edge type frequencies with respect to alignment data.

The purpose of this experiment is to investigate if any alignment thresholds are needed to be set

to filter out “poor” hits for SynAPhy. We consider three edge types and three alignment metrics.

The edge types are: best hits, RBHs, and syntenic RBHs, and the alignment metrics are: E-value,

query and subject coverage percentages, and percent identity. The three edge types as presented

in Section 4.2.2 are connections between proteomes. Therefore, the experiments in this section are

performed between proteome and not within proteome connections.
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We first illustrate the frequencies for best hits, RBHs, and syntenic RBHs at different similarity

values. Figure 14 depicts the kernel density estimates showing the distribution of similarity values by

sequence relationship type. The x-axis shows similarity value, and the y-axis shows kernel density

estimate. Best hits are depicted with a dotted line, RBHs are depicted with a dashed line, and

syntenic RBHs are depicted with a solid line.
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Figure 14: Kernel density estimates showing the distribution of similarity values by sequence rela-
tionship type

For best hits, we observe a bump for similarity values within the range 3 to 30. This bump

decreases with RBHs and is not present with syntenic RBHs. Best hits within the range 3 to 30 may

be “poor” hits that are filtered out with RBHs, and in succession “poor” RBHs that are filtered out

with syntenic RBHs. For all three sequence relationship types, we observe peaks for similarity values

across the range 175 to 181. These hits are good hits and are expected to cover a high fraction of

query and subject sequence lengths.
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Figure 15: Blast search hit frequency by sequence relationship type. Panels (a1), (b1), and (c1)
show hit frequencies at query and subject coverage percentages of best hits, RBHs, and syntenic
RBHs, respectively. Panels (a2), (b2), and (c2) show hit frequencies for similarity and percent
identity pair value of best hits, RBHs, and syntenic RBHs, respectively. For all panels, frequencies
are in binary logarithm displayed as color coded ranges shown in the color legends.
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We next demonstrate that most of the hits that are filtered out with RBHs and syntenic RBHs

are short hits. Figure 15 shows hit frequencies by sequence relationship type. Panels (a1), (b1), and

(c1) show frequencies of best hits, RBHs, and syntenic RBHs, respectively, on plots of the percentage

coverage of query sequences against subject sequences. Light blue indicates a very low frequency

and red indicates a very high frequency. We observe from the three panels that the majority of

best hits, RBHs, and syntenic RBHs have almost 100% query and subject coverages and sit in the

upper-right corners of the plots with high query and subject coverage percentages. Moreover, RBHs

shown in panel (b1) filter out a large number of hits with 20% query and subject coverages. This is

shown in the lower-left corner of panel (b1) when compared to panel (a1). Syntenic RBHs shown in

panel (c1) in succession filter out most of the hits below 80% query and subject coverage compared

to RBHs shown in panel (b1). This indicates that RBHs and the majority of syntenic RBHs have

good fraction of their sequences aligned.

We next demonstrate that most of the hits that are filtered out with RBHs and syntenic RBHs

have low percent identities. Panels (a2), (b2), and (c2) in Figure 15 show frequencies of best hits,

RBHs, and syntenic RBHs, respectively, on plots of their similarity value against percent identity.

Light blue indicates a very low frequency and red indicates a very high frequency. We observe from

the three panels that the majority of best hits, RBHs, and syntenic RBHs fall in a percent identity

range from 60 to 80. These are the hits that are not filtered out with RBHs and syntenic RBHs.

Moreover, we observe that most of the hits that are filtered out with RBHs in panel (b2) when

compared to best hits in panel (a2) are hits falling in a percent identity range from 20 to 40 with

similarity value range 3 to 30. More hits are filtered out with higher similarity values. Syntenic

RBHs shown in panel (c2) in succession filter out the majority of hits in a percent identity range

from 20 to 40.

The results of the experiments show that setting a low E-value threshold for similarity values

eliminates the need to incorporate query and subject coverage percentages and percent identity in

similarity edge weights for best hits, RBHs, and syntenic RBHs.

4.5.2 Markov Clustering with and without Synteny

4.5.2.1 General Results

Recall from Section 4.4 that the similarity graph with edge type labels in [edge, hit, best hit, rbh,

syn rbh] is denoted by Gsim and the weighted synteny-similarity graph is denoted by Gsyn sim. In

order to evaluate the impact of scaling RBH and syntenic RBH similarity weights, we apply the

MCL algorithm on both Gsim and Gsyn sim.

We report four cluster quality metrics for the MCL clusters that help us highlight the differences

of Gsim and Gsyn sim: (1) cluster edge density as defined in Definition 2.1, (2) cluster normalized

edge weights as defined in Definition 3.4, (3) cluster RBH density as defined in Definition 4.5, and

(4) cluster syntenic RBH density as defined in Definition 4.6.

Definition 4.5. (Cluster RBH density) Given a cluster with the tuple (|P1|, . . . , |Pk|) of protein

cardinality, where |Pi| is the number of sequences in the cluster from proteome Pi. The maximum
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possible number of edges connecting the proteins of the k proteomes is given by

ParMax =
∑

∀i,j∈k | i<j

|Pi| × |Pj | (21)

Note that the cluster is considered a k-partite graph (see Section 2.2), where proteins from a specific

proteome are contained in a partition. Given n RBH edges between proteins of different proteomes,

the RBH density of the cluster is

δrbh =
n

ParMax
(22)

Definition 4.6. (Cluster syntenic RBH density) Given a protein cluster, m syntenic RBH

edges between proteins of different proteomes, and the maximum possible number of edges between

the proteins of the different proteomes in the cluster ParMax (given by Equation 21), the syntenic

RBH density is

δsyn rbh =
m

ParMax
(23)

Table 8 shows the results of the MCL runs at different inflation values in relation to the four

metrics. The runs are given by the column labeled i. The inflation values are given by the column

labeled I. The split/joint distances as defined in Definition 2.6 given by pair-value distances as

defined in Definition 2.7 between contiguous clusterings are given by the column labeled d(Ci, Ci+1).

The RBH edge weight scalar is given by the column labeled βr, and the syntenic RBH edge weight

scalar is given by the column labeled βs. The minimum, maximum, mean, and standard deviation

of cluster edge densities are given by the columns labeled δmin, δmax, δµ, and δσ, respectively.

The minimum, maximum, mean, and standard deviation of cluster normalized edge weight w are

given by the columns labeled wmin, wmax, wµ, and wσ, respectively. The mean and standard

deviation of RBH densities are given by the columns labeled δrbhµ and δrbhσ , respectively. The

mean and standard deviation of syntenic RBH densities are given by the columns labeled δsyn rbhµ

and δsyn rbhσ , respectively.

We run MCL on three different graphs: (1) Gsim indicated in Table 8 with both βr and βs

equal to 1, we refer to these runs as MCL; (2) Gsyn sim with βr = 1 and βs = 5, we refer to

these runs as SynAPhy 1 5; and (3) Gsyn sim with βr = 3 and βs = 5, we refer to these runs as

SynAPhy 3 5. We first discuss the split/joint pair-value distances. For each graph, we observe a

consistency in the split/joint pair-value distances of contiguous clusterings up until inflation value

15 in that clusterings with higher inflation values are sub-clusterings of the ones with lower inflation

values. This behavior is apparent in the pair-value distances. Consider the entry d(Ci, Ci+1) of run

1. The entry has the split/joint pair-value distance of the clusterings at inflation values 1.4 and 3.2.

The first value of the tuple is 13,705, which is the number of rearrangements that have to be applied

on the clustering at inflation value 1.4 to obtain a sub-clustering of 3.2, and the second value of the

tuple is 374, which is the number of rearrangements that have to be applied on the clustering at

inflation value 3.2 to obtain a sub-clustering of 1.4. This trend is interrupted at run 5 where the

clustering at inflation value 20 is no longer a sub-clustering of the one at inflation value 15. This is

shown with the pair-value (1026, 2309) in the d(Ci, Ci+1) entry of run 5. We observe the same trend

in SynAPhy 1 5 and SynAPhy 3 5. Clusterings at inflation value 20 are not the sub-clusterings of

the ones at inflation value 15 as shown in runs 13 and 21.
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We next discuss the results of the four metrics. The cluster edge density minimums of the three

graphs drop starting at inflation value 20 indicated by the entries δmin of runs 6, 14, and 22. This

is because the clusterings at inflation value 20 generate larger clusters than the ones at inflation

value 15. The cluster edge density maximums of all the clusterings indicated by the column labeled

δmax are 1, which indicates the presence of complete clusters. The cluster edge density means of all

the clusterings indicated by the column labeled δµ are above 0.9, which indicates the cluster edge

density data for all the clusterings are satisfactory.

We next discuss the average of the normalized edge weights w. The minimums of all the cluster-

ings are low. This indicates the presence of clusters with members that have low sequence similarity.

The maximums of all the clusterings are 1, which indicates the presence of perfect clusters with

maximum possible sequence similarity between the members. The means of each graph increase

with higher inflation values. Moreover, the means of the SynAPhy 1 5 at every inflation value are

higher than the ones in MCL, and in turn the means of the SynAPhy 3 5 at every inflation value are

higher than the ones in SynAPhy 1 5. This indicates sequence similarities in SynAPhy 3 5 clusters

are higher than in SynAPhy 1 5 and MCL.

We next discuss RBH edge densities and syntenic RBH edge densities. For all the clusterings,

δrbhmin
and δsyn rbhmin

are equal to 0, and δrbhmax
and δsyn rbhmax

are equal to 1. This indicates that

there are clusters with no RBH or syntenic RBH edge, and there are clusters with every edge typed

as RBH or syntenic RBH edge. The RBH density means indicated by the column labeled δrbhµ

of SynAPhy 1 5 at every inflation value are higher than the ones in MCL, and in turn the means

of SynAPhy 3 5 at every inflation value are higher than the ones in SynAPhy 1 5. This indicates

SynAPhy 3 5 has the most number of clusters with RBH edges. The syntenic RBH edge density

means indicated by the column labeled δsyn rbhµ of SynAPhy 1 5 at every inflation value are higher

than the ones in MCL. However, this behavior is not the same for SynAPhy 3 5 compared to

SynAPhy 1 5. This is because SynAPhy 3 5 clusters RBHs with syntenic RBHs, which is indicated

in high δrbhµ .

In summary, SynAPhy 3 5 generates clusters with higher sequence similarity among the members

than SynAPhy 1 5 and MCL, as well as clusters with more RBH connections. It does not, however,

generate clusters with more syntenic RBH connections than SynAPhy 1 5. For the rest of this

chapter, we only consider the clusterings of MCL, SynAPhy 1 5, and SynAPhy 3 5 at inflation value

15. This is because up until inflation value 15, consecutive clusterings are consistent in relation to

split/joint distances. We refer to the MCL clustering at inflation value 15 as MCL I15, and we

keep the references for SynAPhy 1 5 and SynAPhy 3 5.

4.5.2.2 Example Clusters

We illustrate example output clusters generated by the MCL 15, SynAPhy 1 5, and SynAPhy 3 5

clusterings. Our example clusters are clusters with at least one sequence present in the myco-

CLAP database. The eight fungal genomes have a total of 165 sequences present in the mycoCLAP

database. MCL I15, SynAPhy 1 5, and SynAPhy 3 5 cluster 104 out of the 165. We present two

example output clusters that have member sequences with different functions as annotated by the
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mycoCLAP database. The first example shows a cluster with paralogs and many RBH connec-

tions with not enough syntenic RBH connections. In this example, MCL 15, SynAPhy 1 5, and

SynAPhy 3 5 generate the same cluster.

Figure 16 and Figure 17 illustrate the first example output cluster. Nodes in the figures represent

proteins and edges represent their relationship type. There are three types of edges; hit, rbh, and

syn rbh. Recall from Section 4.2.2 that a hit is an edge with similarity value greater or equal to 30.

The two figures are different snapshots of the same cluster, where Figure 16 has all the three types

of edges depicted, and Figure 17 has only rbh and syn rbh edge types depicted. We show them in

different figures for clarity.
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Figure 16: A cluster with GH family 13 sequences from the mycoCLAP database with hit, rbh,
and syn rbh sequence relationship types. Nodes in the figure represent proteins and edges represent
their relationship type. There are three types of edges; hit edges, rbh edges, and syn rbh edges.
hit edges are depicted by grey dashed lines, rbh edges are depicted by solid black lines, and syn rbh

edges are depicted by red slashed lines. A node label of a protein p is a pipe-delimited string of the
source database identifier, p.chromosome, and the location of the p.head on the gene ordered list
of p.chromosome joined by the total number of genes on p.chromosome. Species are shape coded.
Sequences from A. fumigatus are depicted as triangles, A. niger as diamonds, A. nidulans as ellipses,
A. oryzae as arrow heads, C. albicans as round rectangles, S. pombe as rectangles, S. cerevisiae as
hexagon, and N. crassa as parallelograms.
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Figure 17: A cluster with GH family 13 sequences from the mycoCLAP database with RBH and
syntenic RBH relationship types. The same cluster as in Figure 16 but with only rbh and syn rbh

edges and added edge labels. An edge is labeled with a pipe-delimited string x|i : j|y|z. x corresponds
to their similarity value. i and j correspond to the number of RBHs and syntenic RBHs in their
neighborhood, respectively. y corresponds to the neighborhood edge density, and z corresponds to
the neighborhood normalized edge weights.
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Figure 18: MCL I15 cluster with CE family 1 sequences from the mycoCLAP database. Nodes in the
figures represent proteins and edges represent their relationship type. There are two types of edges;
hit edges and rbh edges. hit edges are depicted by grey dashed lines and rbh edges are depicted
by solid black lines. A node label of a protein p is a pipe-delimited string of the source database
identifier, p.chromosome, and the location of the p.head on the gene ordered list of p.chromosome
joined by the total number of genes on p.chromosome. Species are shape coded. Sequences from A.
fumigatus are depicted as triangles, A. niger as diamonds, A. nidulans as ellipses, A. oryzae as arrow
heads, and N. crassa as parallelograms. An edge is labeled with a pipe-delimited string x|i : j|y|z.
x corresponds to their similarity value. i and j correspond to the number of RBHs and syntenic
RBHs in their neighborhood, respectively. y corresponds to the neighborhood edge density, and z
corresponds to the neighborhood normalized edge weights.
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Figure 19: SynAPhy 3 5 clusters with CE family 1 sequences from the mycoCLAP database. SynA-
Phy 3 5 breaks down the cluster in Figure 18 into two separate clusters shown in panels (a) and
(b).

Consider Figure 16. There is one syn rbh edge, and 35 rbh edges. The graph is a clique

when only hit edges are considered, and a connected component when only RBH edges are con-

sidered. The cluster has four Glycoside Hydrolase (GH) protein family 13 sequences present in

the mycoCLAP database, and they are: AGL13L YEAST, OGL13A YEAST, OGL13B YEAST,

and OGL13E YEAST. They are all from the S. cerevisiae genome. AGL13L YEAST has alpha-

glucosidase as a functional annotation, and the other three have oligo-1,6-glucosidase. The cluster

has a total of seven sequences from S. cerevisiae genome. When these seven S. cerevisiae sequences

are put together as a graph they have a normalized edge weight value 1, i.e., every pair in the com-

ponent has the maximum possible similarity value 181. Therefore, they are clearly paralogs. Note

that AGL13L YEAST is an example of a functionally diverged paralog from OGL13A YEAST,

OGL13B YEAST, and OGL13E YEAST. This is an example cluster in which many RBH connec-

tions did not allow SynAPhy to separate sequences with different functions into different clusters.

In addition, with the absence of syntenic RBHs, we can not draw conclusions as to which RBHs are

the orthologs.

The presence of many RBHs and the absence of syntenic RBHs motivated us to examine RBH

neighborhood conservations to ensure that RBHs are not syntenic RBHs when we increase the

neighborhood diameter. Figure 17 only depicts rbh and syn rbh edges along with edge labels.

Except for the single syn rbh, there is no rbh edge that has conserved neighborhood. This is

indicated in the count of RBHs in their neighborhood. In fact, all the neighborhood RBH counts of

the RBHs are 0. This indicates that even if we increase the neighborhood diameter, RBHs in this

cluster will not become syntenic RBHs.

We next describe our second example output cluster illustrated in Figure 18. The cluster has

three Carbohydrate Esterase (CE) family 1 sequences from the mycoCLAP database, and they are:

AXE1A EMENI, AXE1A ASPOR, and FAE1B NEUCR. AXE1A EMENI and AXE1A ASPOR
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have acetylxylan esterase as a functional annotation, and are from the A. nidulans and the A.

oryzae genomes, respectively. FAE1B NEUCR has feruloyl esterase as a functional annotation, and

is from the N. crassa genome. AXE1A EMENI and AXE1A ASPOR are RBHs. FAE1B NEUCR

has no RBH in the cluster. There are two sequences from A. fumigatus, two from A. nidulans, one

from A. niger, one from A. oryzae, and four from N. crassa. This is an example cluster in which

the RBH connections allowed SynAPhy to separate sequences with different functions into separate

clusters.

In this example of a CE family 1 cluster, MCL I15 and SynAPhy 1 5 have the same cluster

with the same sequence composition. SynAPhy 3 5, however, breaks apart the cluster into two

separate clusters shown in panels (a) and (b) in Figure 19. The cluster in panel (a) has the two

acetylxylan esterases (AXE1A EMENI and AXE1A ASPOR), and the cluster in panel (b) has the

feruloyl esterase (FAE1B NEUCR). While the multi-functional cluster is separated, the A. fumigatus

sequence, Afu8g06570, that forms the most number of RBH edges with sequences in panel (a) in

the MCL I15 clustering, is in a separate cluster in panel (b). Due to the absence of syntenic RBHs

in the cluster, we can not resolve which of the N. crassa sequences is the ortholog, and if the A.

fumigatus sequence, Afu8g06570, is the ortholog of the other aspergilli sequences.

4.5.3 Comparison with OrthoMCL and OMA

4.5.3.1 Cluster Size Distribution

In this section, we compare the results of SynAPhy with that of OrthoMCL and OMA. We first

look at the cluster size distributions of MCL I15, SynAPhy 1 5, SynAPhy 3 5, OrthoMCL, and

OMA to study the variation of the cluster sizes in different systems. Figure 20 depicts their cluster

size distributions. For a cluster of size n shown on the x-axis, the y-axis shows the fraction of all

sequences in a cluster of size at most n, i.e., cumulative fraction of sequences. OMA has a cluster

size range 2 to 8. This is expected because OMA does not report singletons and clusters with

paralogs, i.e., each cluster contains one protein from each input proteome. Most of the clusters fall

in cluster size range 1 to 8 as is observed with the cumulative fraction of sequences approaching 1 in

that range. This makes sense as we have eight genomes. One expects to see clusters with members

from all the input genomes and no more than one member from an input genome as is the case

with OMA. These clusters would be orthologous clusters. However, as we will see in Chapter 5, the

eight genomes have large number of paralogs. Therefore, it is expected to see large clusters when

paralogs are also clustered together. MCL I15 has larger clusters than the others. Its largest cluster

size is 312. The largest of SynAPhy 1 5 is 106, of SynAPhy 3 5 is 98, and of OrthoMCL is 86. The

majority of the sequences in the large clusters are sugar transporters based on their Pfam domains.

4.5.3.2 Cluster Quality Metrics

We compute the four cluster quality metrics for OrthoMCL and OMA, and compare the results

with that of MCL I15, SynAPhy 1 5, and SynAPhy 3 5. The results are tabulated in Table 9.

MCL 15, SynAPhy 1 5, and SynAPhy 3 5 cluster 99.98% of the eight proteomes, while OrthoMCL
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Figure 20: Cluster size distributions for different clusterings of the eight input fungal genomes.
For a cluster of size n shown on the x-axis, the y-axis shows the cumulative fraction of sequences
in a cluster of size at most n. The vertical line at cluster size 8 is drawn to highlight sequence
distributions in cluster sizes for the eight input genomes.

and OMA cluster 78.57% and 66.17%, respectively. As mentioned earlier, OrthoMCL and OMA

only cluster RBHs. OrthoMCL clusters between and within proteome RBHs, and OMA clusters

between proteome RBHs. In addition, OMA does not include members from the same genome in

the same cluster. These restrictions applied by OrthoMCL and OMA have direct effect on the four

clustering metrics.

When we compare MCL, SynAPhy 1 5, and SynAPhy 3 5, SynAPhy 3 5 has the highest cluster

edge density mean, δμ, and cluster normalized edge weight mean, wμ. The δμ indicates that the

clusters of SynAPhy 3 5 are denser than the ones of MCL 15 and SynAPhy 1 5. When we compare

OrthoMCL and MCL, OrthoMCL has better δμ than OMA. In fact, OMA has δmin of 0, this means

OMA has clusters with no edges in them. Recall that the edges are Blast hits with E–value ≤ 30.

OMA has exactly 75 clusters with cluster edge density value 0. However, when we compare wμ of

OrthoMCL and OMA, OMA outperforms OrthoMCL. When we compare all the five clusterings,

OrthoMCL outperforms in cluster edge density, and OMA outperforms in cluster normalized edge

weight. This behavior is expected as both OrthoMCL and OMA filter out a large number of the

input proteins.

We now move to discuss the cluster RBH and syntenic RBH edge densities. The minimums

and maximums for cluster RBH and syntenic RBH edge densities of all the five systems are 0

and 1, respectively. When we compare MCL, SynAPhy 1 5, and SynAPhy 3 5. SynAPhy 3 5 has

the the highest cluster RBH edge density mean δrbhμ . This is expected as SynAPhy 3 5 scales
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Clustering δmin δmax δµ δσ wmin wmax wµ wσ δrbhµ δrbhσ δsyn rbhµ δsyn rbhσ

MCL 0.2857 1.0 0.9656 0.0896 0.01 1.0 0.4833 0.2938 0.6915 0.3617 0.1577 0.2252
SynAPhy 1 5 0.25 1.0 0.9657 0.0883 0.0083 1.0 0.4895 0.297 0.701 0.3522 0.1764 0.2441
SynAPhy 3 5 0.25 1.0 0.9689 0.0863 0.011 1.0 0.5204 0.3066 0.7541 0.3216 0.1508 0.2236

orthoMCL 0.5714 1.0 0.9946 0.0357 0.0221 1.0 0.5998 0.307 0.8395 0.3127 0.1778 0.2673

OMA 0.0 1.0 0.9936 0.0784 0.0 1.0 0.6401 0.3091 0.8657 0.3084 0.2221 0.3081

Table 9: Cluster quality metrics for MCL I15, SynAPhy 1 5, SynAPhy 3 5, OrthoMCL, and OMA.
The columns prefixed with δ show cluster edge density data. The columns prefixed with w show
the normalized edge weights. The columns prefixed with δrbh and δsyn rbh show cluster RBH and
syntenic RBH edge density data, respectively.

the similarity values of both RBHs and syntenic RBHs and SynaPhy 1 5 only scales the similarity

values of syntenic RBHs. As a result, the cluster RBH edge densities of SynAPhy 3 5 are higher

than those of SynAPhy 1 5. SynAPhy 1 5, however, has higher cluster syntenic RBH edge density

mean, δsyn rbhµ , than SynAPhy 3 5. This is because when SynAPhy 3 5 scales the similarity values

of RBHs, many RBHs are clustered with syntenic RBHs reducing the cluster syntenic RBH edge

densities. When we compare the results of OrthoMCL and OMA, OMA outperforms in both metrics.

This is expected because OMA does not cluster proteins from the same genome in the same cluster.

The four cluster quality metrics are good indicators of cluster qualities, however, they do not

indicate whether orthologs and paralogs are resolved. Chapter 5 presents SynAVal, an orthology

and paralogy evaluation framework with respect to RBHs and syntenic RBHs.

4.6 Related Work Revisited

In Section 2.6.2 we describe four orthology prediction systems that use synteny. In this section, we

discuss how these systems are different from SynAPhy.

The first system OrthoParaMap [CY03] is different from SynAPhy in several aspects. First, Or-

thoParaMap computes syntenic blocks at the DNA level, whereas SynAPhy uses protein sequences.

This aspect introduces a significant difference because in SynAPhy RBHs are treated as candidate

orthologs and examined whether their corresponding genes are in syntenic blocks or not. Second, Or-

thoParaMap acts on gene families separately, whereas SynAPhy targets all genes in input genomes.

Third, OrthoParaMap is a tree-based system, whereas SynAPhy is a graph-based system.

The second system PhyOP [GP06] does not use synteny in the core orthology prediction algo-

rithm, it uses synteny to evaluate orthology.

The third system SYNERGY [WPFR07] is different from SynAPhy in several aspects. First, the

integration of syntenic block resolution into sequence similarity scores in SYNERGY is a weighted

measure, whereas in SynAPhy it is a boolean value. i.e., SYNERGY uses the fraction of the conserved

neighboring genes corresponding to the proteins of interest, whereas SynAPhy for an RBH uses the

decision of either in a syntenic block or not in a syntenic block. Second, SYNERGY has different

protein sequence similarity scores and generates different similarity graphs. Third, SYNERGY

recursively generates a similarity graph at each internal node of the species, whereas SynAPhy

generates one graph for all the protein sequences of the genomes.

The fourth system PanOCT [FBB+12] is different from SynAPhy in several aspects. The
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PanOCT weighted similarity graph is a directed graph for which gene neighborhood information

is used to break near ties. The SynAPhy weighted similarity graph is undirected, and the inclusion

of ties in SynAPhy is a boolean flag of the algorithm. Similar to SYNERGY, gene neighborhood

conservation in PanOCT is a weighted measure, whereas in SynAPhy it is a boolean value. In

PanOCT, gene neighborhood conservation is computed based on several criteria that is assumed to

be conserved in species strains, whereas in SynAPhy it is relaxed to accommodate applicability on

distant species.

In general, the main differences between orthology prediction systems that use synteny and

SynAPhy are (1) the methodology of how synteny is computed, and (2) whether the algorithm is

tree-based or graph-based.

4.7 Conclusion

This chapter presents SynAPhy, a novel graph-based algorithm for predicting orthologous clusters.

The algorithm introduces synteny resolution as a mechanism to direct the MCL algorithm into

clustering proteins corresponding to genes in conserved genomic regions. The algorithm was evalu-

ated on eight fungal genomes. There are several key observations from the experimental results of

SynAPhy.

First, using the mycoCLAP dataset, SynAPhy confirms the premise of RBHs and syntenic RBHs

having similar molecular functions. There are 165 sequences from the mycoCLAP dataset that are

present in the eight fungal genomes. Out of these 165, there are 42 RBHs out of which six are syntenic

RBHs. The proteins on both sides of the 42 RBHs have similar functional annotations. Although

mycoCLAP sequences cover a small percentage of the eight fungal genomes, they demonstrate the

potential of identifying more functionally similar RBHs and syntenic RBHs with the emergence of

more experimentally characterized datasets.

Second, the experiments on the similarity of proteomes show that RBHs are more similar than

best hits, and that syntenic RBHs are more similar than RBHs. They also show that RBHs and

syntenic RBHs have longer sequence alignments and better sequence alignment percent identities

than best hits. Sequence similarity and alignment percent coverage and identity are strong indicators

that RBHs and syntenic RBHs filter out “poor” best hits that might lead to erroneous orthologous

relations.

Third, we observe from the results of the cluster quality metrics that SynAPhy generates clusters

with more similar members than the MCL algorithm. This behavior is due to SynAPhy generating

clusters with more RBH and syntenic RBH connections which is apparent in the cluster RBH and

syntenic RBH edge densities. However, when compared to OrthoMCL and OMA, SynAPhy does

not perform as well in the cluster quality metrics because OrthoMCL and OMA filter out a large

number of the input proteins.

Finally, the cluster quality metrics show the performance of the algorithms in generating clusters

with more similar members, however, they do not evaluate the orthology and paralogy of the cluster

members. As there is no gold standard genome scale orthology dataset, we can not perform a
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comprehensive analysis of the orthology prediction systems. Therefore, we propose in Chapter 5

SynAVal an evaluation framework for SynAPhy and other orthology prediction systems in generating

orthologous clusters.
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Chapter 5

The SynAVal Algorithm

The resolution of orthology and paralogy can be integrated into protein functional annotation

pipelines to identify orthologous proteins in the presence of highly similar paralogous sequences.

Recall that orthologs are genes in different organisms that speciated from a common ancestor while

paralogs are genes in the same organism that duplicated from a common ancestor. Orthologs are

functional counterparts and can be used in protein functional annotation pipelines to infer functions

of newly sequenced genomes. A paralog, however, is free to evolve new functions. Both orthologs

and paralogs can be highly similar sequences. Many orthology prediction systems use sequence sim-

ilarity as the basis for predicting orthologs. Similar paralogous sequences pose a key challenge for

orthology prediction systems because the wrong paralogous copies may be predicted as orthologs.

Protein functional annotation pipelines use the results of orthology prediction systems to identify

functionally similar proteins. However, in the presence of confusions raised by paralogous relations,

orthology prediction systems may mistakenly report functionally dissimilar proteins as orthologs.

As a result, a protein functional annotation pipeline reports functionally dissimilar proteins as

functionally similar.

Identifying confusions raised by paralogous relations is a hard problem. There is an ongoing

effort by the scientific community [DGR+12] to evaluate the results of orthology prediction systems.

A common evaluation challenge is the absence of genome scale gold standard orthology dataset, i.e.,

there is no dataset that has the orthologs of each and every gene in a genome when compared to

other genomes.

In this chapter, we present SynAVal, an evaluation framework for an orthology prediction system.

SynAVal identifies and reports confusions raised by paralogs. Given a set of genomes, SynAVal first

identifies the paralogous relations in each genome. This step identifies and quantifies potential

confusion cases. SynAVal then identifies conserved connections between genomes that are likely

orthologs and uses these connections together with the paralogous relations to evaluate orthologous

clusters and report confusion cases. We evaluate SynAVal on the eight fungal genomes listed in

Section 4.3. The results show that SynAVal with synteny resolution is able to resolve confusions

raised by the 9.1% of the proteins of the eight genomes, and 23.33% of the proteins from the eight

genomes that are highly likely to raise confusions because they are paralogs with hits in other
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genomes.

5.1 Example

In this section, we present an example cluster to motivate SynAVal. Figure 21 illustrates the exam-

ple cluster. The cluster has two sequences from each of A. fumigatus, A. niger, A. nidulans, and

A. oryzae genomes. It has two GH protein family 28 sequences present in the gold standard my-

coCLAP database, and they are: PGX28A ASPNG and PGX28X ASPNG. They are both from A.

niger genome and have exo-polygalacturonase functional annotation as annotated in the mycoCLAP

database.

This cluster is generated by the MCL I15 clustering. Recall that the MCL I15 clustering is

the clustering of the proteins of the eight fungal genomes with the MCL algorithm with inflation

parameter value 15. There are two key observations in this cluster. The first one is the presence of

paralogous proteins from each of the four genomes. The paralogs in A. fumigatus are Afu6g02980 and

Afu8g07265, in A. niger are PGX28X ASPNG and PGX28A ASPNG, in A. nidulans are AN8761

and AN9045, and in A. oryzae are AO090026000784 and AO090113000199. An orthology prediction

system should be able to predict which paralogous copies are the orthologs. The second observation

is the RBH clique structure present in the cluster. An RBH clique is a subgraph in a graph in which

any two vertices are connected to each other by an rbh edge. The RBH clique is formed from four

proteins, one from each of the four genomes. The protein sequence identifiers of this RBH clique

are Afu6g02980, PGX28X ASPNG, AN8761, and AO090113000199. Note that the paralogs of these

four sequences do not form an RBH clique or do not have any RBH connection in the cluster. RBHs

are potential orthologs, and RBH cliques of size greater than two raise the confidence of orthology

because there is no proof of non-orthology in the other genomes for a pair. For this reason, it is

expected for an orthology prediction system to put the RBH clique members together in a cluster.

Given this example cluster, SynAVal reports the paralogs and the RBH clique in the cluster.

The report indicates the paralogous proteins that raise confusions, the cluster with confusion, and

the true orthologs based on RBH resolution.

5.2 SynAVal

We next describe SynAVal. We first start by describing how paralogous relations in each input

genome are detected. Second, we describe how RBH and syntenic RBH cliques are detected. Finally,

we put all the components of SynAVal together to describe the overall SynAVal framework.

5.2.1 Gene Copy Detection

Gene copies within a genome are the corresponding paralogous proteins. Therefore, a single-copy

gene is a gene with no paralogs, and a multi-copy gene is a gene with paralogs. SynAVal detects the

sets of gene copies in each input genome. A weighted similarity graph of a proteome P is given by

G(P ) in which the vertices are the set of all the proteins in P and the edges connecting the proteins
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Figure 21: A cluster with GH family 28 sequences from the mycoCLAP database. Nodes represent
proteins and edges represent their relationship types. There are three types of edges; hit edges,
rbh edges, and syn rbh edges. hit edges are depicted by grey dashed lines, rbh edges are depicted
by solid black lines, and syn rbh edges are depicted by red slashed lines. A node label of a pro-
tein p is a pipe-delimited string of the source database identifier, p.chromosome, and the location
of the p.head on the gene ordered list of p.chromosome joined by the total number of genes on
p.chromosome. Species are shape coded. Sequences from A. fumigatus are depicted as triangles, A.
niger as diamonds, A. nidulans as ellipses, and A. oryzae as arrow heads. An edge is labeled with
a pipe-delimited string x|i : j|y|z. x corresponds to their similarity value. i and j correspond to
the number of RBHs and syntenic RBHs in their neighborhood, respectively. y corresponds to the
neighborhood edge density, and z corresponds to the neighborhood normalized edge weights.
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are the self all-versus-all Blast hits defined in Definition 2.5. The weights of the edges are the Blast

similarity values defined in Definition 4.2. The gene copy detector then computes the connected

components of G(P ) to detect the sets of gene copies. The standard Hopcroft and Tarjan connected

component algorithm is used [HT73]. We refer to a connected component as a bin. Therefore, every

pair of proteins in a bin are paralogs. The bin size indicates the number of gene copies in that bin.

A relaxed similarity value threshold generates a similarity graph with fewer connected compo-

nents. These connected components may contain proteins that are not gene copies. To ensure

connected components with only gene copies, we run a similarity value threshold experiment where

we compute the connected components of graphs generated from a consecutive series of similarity

values ranging from 3 to 181.

We evaluate the connected components with respect to Glycoside Hydrolase (GH) protein fami-

lies. We first run the eight fungal genomes against Pfam [PCE+12] domain Hidden Markov Models

(HMMs) with the hmmscan program from the HMMER 3.0 [Edd98] package, and consider only

connected components with at least one protein with a GH family domain. For each genome, we

compute the purity of the connected components. We use the purity metric purity(Ω, C) as defined

in Definition 2.2, where Ω is the set of all the connected components with at least one protein with

a GH family domain, and C is the set of GH families in the connected components. Proteins with

no Pfam domain hits are counted in the purity measures. We assign the highest scoring GH family

Pfam HMM for proteins with multiple GH family Pfam HMM hits.

Figure 22 depicts the scatter plots of gene copy bin purity with respect to GH families of the

eight fungal genomes with similarity value range 3 to 181. Purity values for each genome varies.

We do not observe a monotonic increase in purity with all genomes except for S. cerevisiae and N.

crassa. For most genomes, similarity values in the range 3 to 5 result in low purity. A. fumigatus

and A. nidulans do not reach a purity value of 1. We choose the similarity value threshold following

two steps: (1) for each genome, we report the minimum similarity value that achieves 0.9 purity,

and (2) from the list of minimums we report the maximum similarity value. A. fumigatus reaches

0.9 at 18, A. nidulans at 24, A. niger at 8, A. oryzae at 35, C. albicans for all similarity values, S.

cerevisiae and S. pombe at 5, and N. crassa at 16. The set of the minimum similarity values that

reach a purity value of 0.9 for the eight genomes is {18, 24, 8, 35, 5, 16}, and the maximum of these

values is 35. We therefore set the similarity value threshold for the gene copy bin detector to 35,

and report the connected components of the corresponding graph as the sets of gene copies.

5.2.2 RBH and Syntenic RBH Clique Detection

Reciprocal best hits are more similar to each other than they are to any other sequence when their

corresponding proteomes are compared. For this reason, they are considered as potential orthologs.

The confidence increases with syntenic RBHs, i.e., RBHs in syntenic blocks. The functional anno-

tations of RBHs and syntenic RBHs of proteins in the gold standard mycoCLAP database proved

this premise. In the eight fungal genomes, there are 42 RBHs out of which six are syntenic RBHs.

The proteins on the both sides of the 42 RBHs have similar functional annotations as annotated by

the mycoCLAP database. Although these numbers cover a small proportion of the proteins in the
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Figure 22: Gene copy bin purity with respect to glycoside hydrolase protein family domains for eight
fungal genomes
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eight genomes, they demonstrate the ability of RBHs and syntenic RBHs to identify orthologs.

When orthology is to be predicted for more than two genomes, RBH and syntenic RBH cliques

can be used. An RBH clique is a subgraph in which any two vertices are connected to each other

by a rbh edge. A syntenic RBH clique is a subgraph in which any two vertices are connected to

each other by a syn rbh edge. Such structures are highly likely to be orthologous clusters in which

any two vertices are orthologs. When a clique has a member protein from each input genome, it

represents a high confidence orthologous cluster, i.e., the orthologs of each protein in the other input

genomes are identified with high confidence.

SynAVal computes RBH cliques and syntenic RBH cliques separately. For RBH cliques, the

graph G(V,E) has the set V of vertices that form RBH connections, and the set E of edges that are

the RBH connections. For syntenic RBH cliques, the graph G(V,E) has the set V of vertices that

form syntenic RBH connections, and the set E of edges that are the syntenic RBH connections. To

compute the RBH and syntenic RBH cliques, SynAVal applies the Bron–Kerbosch algorithm [BK73]

on both graphs separately, and reports the cliques.

5.2.3 Framework

Figure 23 illustrates the SynAVal framework. SynAVal has three components: gene copy detector,

clique detector, and orthology resolver. The gene copy detector detects the sets of gene copies in

each input genome. The input to the gene copy detector is the similarity graph G(P ) of a proteome

P built from the result of a self all-versus-all Blast search. The gene copy detector then applies

the standard Hopcroft and Tarjan connected component algorithm on G(P ) to detect the connected

components of G(P ). The output of the gene copy detector is the sets of gene copies or bins.

The clique detector algorithm detects RBH and syntenic RBH cliques. As described in Sec-

tion 5.2.2, the clique detector component of SynAVal builds two graphs, one for RBH connections

and one for syntenic RBH connections. The RBH connections are the output of the RBH detector of

SynAPhy. The syntenic RBH connections are the output of the syntenic RBH detector of SynAPhy.

The clique detector component then applies the Bron–Kerbosch algorithm [BK73] on the two graphs

to compute the RBH and syntenic RBH cliques.

The inputs to the orthology resolver are the sets of gene copies, RBH and syntenic RBH cliques,

and orthologous clusters generated by an orthology prediction system. The orthology resolver reports

three findings: (1) paralogs that may raise confusions, (2) RBH and syntenic RBH cliques with

respect to single- and multi-copy genes, and (3) clusters generated by an orthology prediction system

with and without confusions.

The orthology resolver classifies two types of RBH and syntenic RBH cliques. The classification

is based on gene copy data. The two types are: (1) cliques with only single-copy members, and (2)

cliques with at least one multi-copy member. Members of cliques classified into the first type do not

introduce confusion because there is no choice of paralogs. Members of cliques classified into the

second type introduce confusion because the multi-copy member has multiple choices to be predicted

as ortholog. The orthology resolver detects these two types of cliques in output orthologous clusters,

and if the paralogs of the multi-copy members are clustered with the multi-copy cliques, it reports
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confusion. In addition, SynAVal reports the frequency of multi-copy genes in RBH and syntenic

RBH cliques that may raise confusions, and resolves the confusions by assigning the orthologs to be

the members of RBH or syntenic RBH cliques.

Figure 23: The SynAVal framework. SynAVal has three components: gene copy detector, clique
detector, and orthology resolver. The input to the gene copy detector is the similarity graph built
from the result of self all-versus-all Blast search. The output is the sets of gene copies. The inputs
to the clique detector are the RBH and syntenic RBH connections detected by SynAPhy, and the
outputs are RBH and syntenic RBH cliques. The inputs to the orthology resolver are the sets of
gene copies, the RBH and syntenic RBH cliques, and orthologous clusters generated by an orthology
prediction system. The output is a report of the (1) paralogs that raise confusion, (2) high confidence
orthologs based on RBH and syntenic RBH cliques, and (3) set of output orthologous clusters with
and without confusions.

5.3 Results

In this section, we present and discuss the results of SynAVal on the eight fungal genomes. First,

we present the results of the gene copy detector. We show the proportion of single- and multi-copy

genes in each of the eight genomes. Second we present the proportion of single- and multi-copy
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Bin size
Genome # single-copy % single-copy # multi-copy % multi-copy min max µ σ

A. oryzae 6,928 58.21 4,974 41.79 2 114 4.35 7.98
A. nidulans 6,908 64.55 3,793 35.44 2 105 4.07 6.77
N. crassa 7,052 65.39 3,733 34.61 2 59 2.88 2.94

S. cerevisiae 3,843 65.58 2,019 34.44 2 86 3.08 4.61
A. fumigatus 6,505 66.49 3,278 33.51 2 98 3.79 5.96

A. niger 9,386 66.76 4,674 33.24 2 109 4.3 7.66
S. pombe 3,736 72.63 1,408 27.37 2 49 3.12 3.36

C. albicans 4,577 73.62 1,640 26.38 2 34 3.38 3.25

Table 10: Single- and multi-copy gene frequency in eight fungal genomes. The number and percent-
age of proteins corresponding to single-copy genes are shown in the columns labeled # single-copy
and % single-copy, and the number and percentage of proteins corresponding to multi-copy genes are
shown in the columns labeled # multi-copy and % multi-copy. The minimum, maximum, mean and
standard deviation of bin sizes are shown in the columns labeled min, max, µ, and σ, respectively.
The rows are sorted in descending order based on the % multi-copy column.

genes that are in RBH and syntenic RBH cliques. Finally, we analyze the five different techniques

MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL, and OMA with respect to (1) the presence of RBH

and syntenic RBH cliques with paralogous copies in the generated clusters, and (2) the precision

and recall of the techniques in clustering RBH and syntenic RBH connections together.

5.3.1 Gene Copies

Table 10 shows the frequency of single- and multi-copy genes in eight fungal genomes. The number

and percentage of proteins corresponding to single-copy genes are shown in the columns labeled #

single-copy and % single-copy, and the number and percentage of proteins corresponding to multi-

copy genes are shown in the columns labeled # multi-copy and % multi-copy. The last four columns

of the table show data on bin sizes. The bins are the connected components of the graphs for each

proteome built from the results of self all-versus-all Blast searches. The minimum, maximum, mean

and standard deviation of the bin sizes are shown in the columns labeled min, max, µ, and σ,

respectively. The rows are sorted in descending order based on the % multi-copy column.

We observe that the percentage of proteins corresponding to multi-copy genes ranges from 26.38

for C. albicans to 41.79 with A. oryzae. A. oryzae has the largest bin size 114. The minimum bin

size for each genome is two, but the maximums vary.

We notice that for all the eight genomes the maximum bin sizes are large. This led us to examine

the Pfam domains of the proteins in the largest bins of all the eight genomes. The largest bins of all

four aspergilli genomes are mainly composed of sugar transporters. The bin composition is different

with the other four genomes, but we observe sugar transporters present in large bins. N. crassa and

S. pombe have a majority of protein kinase domains in their largest bins. S. cerevisiae has a majority

of yeast transposon domain in its largest bin, and C. albicans has a majority of leucine-rich repeat

domains. The Pfam domain data of the large bins allows us to confirm the membership consensus

across the eight genomes in terms of functional domains.

We observe that approximately 25% to 40% of the proteins in the eight fungal genomes correspond
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Gene copy # proteins # proteins # proteins # proteins
with hits in RBH cliques in syntenic RBH cliques

Single-copy 48,935 39,535 36,683 16,355
Multi-copy 25,519 24,744 19,460 5,774

Total 74,454 64,279 56,143 22,120

Table 11: Single- and multi-copy gene frequency in relation to protein sequence relation type. The
total number of proteins in the eight fungal genomes is shown in the column labeled # proteins. The
total number of proteins with hits in other proteomes is shown in the column labeled # proteins with
hits. The total numbers of proteins that form part of RBH and synteny RBH cliques are shown in
the columns labeled # proteins in RBH cliques and # proteins in syntenic RBH cliques, respectively.

to multi-copy genes. The large presence of multi-copy genes shows the presence of potential orthology

and paralogy confusions for significant proportion of the input proteomes.

5.3.2 Gene Copies in RBH and Syntenic RBH Cliques

This section presents the results of RBH and syntenic RBH cliques. In particular, the presence of

single- and multi-copy genes in RBH and syntenic RBH cliques, and how SynAVal helps resolve the

orthology of cases with confusion. We first present the frequency of cases that may raise confusion

with respect to multi-copy genes only. We then present the frequency of cases that may raise

confusion with respect to single- and multi-copy genes.

5.3.2.1 Confusions Raised with Respect to Multi-copy Genes

Table 11 shows the frequency of single- and multi-copy genes in RBH and syntenic RBH cliques in

the eight fungal genomes. The column labeled # proteins shows the total number of single- and

multi-copy genes. The column labeled # proteins with hits shows the number of protein sequences

with hits in other proteomes. The columns labeled # proteins in RBH cliques and # proteins in

syntenic RBH cliques, respectively, show the number of protein sequences in RBH and syntenic RBH

cliques. 86.33% of the input proteins from the eight fungal genomes have hits in other proteomes.

These are the proteins that may have orthologs, the other 13.67% may not have orthologs because

orthology comes with some level of sequence similarity. Out of the 86.33% of the input proteomes,

61.50% are single-copy genes, and 38.50% are multi-copy genes. The single-copy genes with hits do

not introduce confusion as there is no choice of which copy is the ortholog. However, the multi-copy

genes do introduce confusion. We consider two resolutions, one for proteins in RBH cliques, and

another for proteins in syntenic RBH cliques. The syntenic RBH cliques are of higher confidence

than the RBH cliques. But if RBH clique resolution is required, 78.65% of the multi-copy genes

with hits are in RBH cliques. Therefore, the orthology of 78.65% of the proteins with confusion may

be resolved. If syntenic RBH resolution is required, the orthology of 23.33% of the proteins with

confusion may be resolved. With syntenic RBH cliques, the orthology of less proteins with confusion

may be resolved than with RBH cliques. This is expected, as less proteins are found in syntenic

RBH cliques.
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5.3.2.2 Single- and Multi-copy Genes in RBH and Syntenic RBH Cliques

Recall from Section 5.2.3 that the orthology resolver reports two types of cliques: (1) cliques with

only single-copy gene members, and (2) cliques with at least one multi-copy gene member. We

present the frequency of RBH and syntenic RBH cliques with at least one multi-copy gene member.

These cliques are the structures where the orthology of the multi-copy gene(s) to the other members

of the clique is resolved. These members can be single- or multi-copy genes.

The clique detector component of SynAVal detected 18, 324 RBH cliques in the graph built from

the RBH connections of the eight fungal genomes. The members of these cliques form about 78.86%

of the eight fungal proteomes. Out of the 18, 324 RBH cliques, 7, 546 are single-copy RBH cliques

with the members forming about 39.44% of the eight fungal proteomes, and 10, 778 are multi-copy

RBH cliques with the members forming about 39.42% of the eight fungal proteomes. We now move

to present the frequency of syntenic RBH cliques. There are 8, 192 syntenic RBH cliques in the

graph built from the syntenic RBH connections of the eight fungal genomes. The members of these

cliques form about 29.86% of the eight fungal proteomes. Out of the 8, 192 syntenic RBH cliques,

5, 645 are single-copy syntenic RBH cliques with the members forming about 20.76% of the eight

fungal proteomes, and 2, 547 are multi-copy syntenic RBH cliques with the members forming about

9.1% of the eight fungal proteomes.

Therefore, with RBH cliques, SynAVal can resolve confusions raised by 39.42% of the proteins in

the eight genomes, and with syntenic RBH cliques, SynAVal can resolve confusions raised by 9.1%

of the proteins in the eight genomes.

We next show the frequency of the single- and multi-copy genes in RBH and syntenic RBH cliques

of different sizes for each of the eight genomes. Table 12 shows the frequency of the multi-copy genes

that are in RBH cliques of different sizes. The number of proteins in each genome is shown in the

column labeled # proteins, and the percentage of multi-copy genes in each genome is shown in the

column labeled % multi-copy. The percentage of multi-copy genes that are in RBH cliques of sizes

ranging from 2 to 8 are shown in their respective columns. The percentage of multi-copy genes that

are in all detected RBH cliques is shown in the column labeled Total. The totals of the columns are

shown in the row labeled Total.

A. fumigatus has the largest fraction of multi-copy genes in RBH cliques with 86.00%, and S.

cerevisiae has the lowest fraction with 67.90%. Consider the row labeled Total. The 34.27% of all the

sequences in all the eight genomes are multi-copy genes. Most of the multi-copy genes are in cliques

of size 2 and 8. Cliques of size 8 are strong indication of orthology because there is an identified

ortholog in each of the remaining input genomes. This table shows strong presence of multi-copy

genes in RBH cliques.

Table 13 shows the percentage of multi-copy genes in syntenic RBH cliques. A. fumigatus has

the highest fraction of multi-copy genes in syntenic RBH cliques with 47.86%, and S. pombe has

the lowest with 0%. Note that S. pombe does not have any multi-copy gene that is in syntenic

RBH clique of any size. The other three yeasts (N. crassa, C. albicans, and S. cerevisiae) have

significantly less than the four aspergilli genomes. The percentage of multi-copy genes in the four

aspergilli genomes ranges from 27.75% to 47.86%. Although these percentages are significantly lower
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RBH clique size
Genome # proteins % multi-copy 2 3 4 5 6 7 8 Total

A. fumigatus 9,783 33.51 12.54 15.89 19.89 12.97 6.35 5.74 12.63 86.00
A. nidulans 10,701 35.44 16.0 15.19 17.4 11.23 5.01 4.93 10.81 80.57

A. niger 14,060 33.24 19.53 15.15 14.96 9.2 4.21 4.13 8.99 76.17
A. oryzae 11,902 41.79 19.14 15.38 14.62 9.33 4.12 3.96 8.75 75.29
N. crassa 10,785 34.61 7.98 7.66 8.17 15.03 7.53 9.7 17.71 73.77
S. pombe 5,144 27.37 6.53 4.97 4.26 4.69 9.59 10.44 31.68 72.16

C. albicans 6,217 26.38 13.6 4.57 4.51 4.82 7.5 10.37 24.09 69.45
S. cerevisiae 5,862 34.44 13.87 6.29 4.06 4.85 5.75 10.45 22.63 67.90

Total 74,454 34.27 14.8 12.26 12.77 9.99 5.7 6.49 14.26 76.26

Table 12: Multi-copy gene frequency in RBH cliques of different sizes. The genomes are shown in
the column labeled Genome. The number of proteins in each genome is shown in the column labeled
# proteins. The percentage of multi-copy genes in each genome is shown in the column labeled
% multi-copy. The percentages of multi-copy genes in RBH cliques of different sizes indicated by
column headings are shown in the merged column labeled RBH clique size. The totals of the rows
and columns are shown in the column and row labeled Total, respectively.

Syntenic RBH clique size
Genome # proteins % multi-copy 2 3 4 5 Total

A. fumigatus 9,783 33.51 12.48 17.91 17.24 0.24 47.86
A. nidulans 10,701 35.44 6.64 13.05 14.92 0.24 34.85
A. oryzae 11,902 41.79 7.02 10.86 12.26 0.14 30.28
A. niger 14,060 33.24 6.01 9.2 12.39 0.15 27.75
N. crassa 10,785 34.61 0.43 0.56 0.46 0.27 1.74

C. albicans 6,217 26.38 0.43 0.06 0 0 0.49
S. cerevisiae 5,862 34.44 0.4 0 0 0 0.4

S. pombe 5,144 27.37 0 0 0 0 0

Total 74,454 34.27 5.18 8.13 9.16 0.16 22.63

Table 13: Multi-copy gene frequency in syntenic RBH cliques of different sizes. The table structure
of this table is similar to that of Table 12, but it shows the percentage of multi-copy genes in syntenic
RBH cliques of different sizes.

than the multi-copy genes in RBH cliques, they still account for a good proportion of the multi-copy

genes.

Table 14 and Table 15 show the percentages of single-copy genes in RBH and syntenic RBH

cliques, respectively. We show the single-copy results for completeness. We are, in particular, inter-

ested whether single-copy genes have more presence in syntenic RBH cliques in the yeast genomes

than the multi-copy genes. As shown in Table 15, S. pombe has no single-copy gene that is in a

syntenic RBH clique. The other three yeast genomes do not have a high percentage of single-copy

genes in syntenic RBH cliques. However, all the eight genomes have significant percentages of their

single-copy genes in RBH cliques. The results of the single-copy genes align with the results of the

multi-copy genes presented in Table 10. The orthology of single-copy genes is trivial to resolve as

there is no choice of which gene copy is the ortholog. Therefore, when present in single-copy RBH or

syntenic RBH cliques, there is no confusion. However, when present in multi-copy RBH or syntenic

RBH cliques, there is confusion.
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Clique size
Genome # proteins % single-copy 2 3 4 5 6 7 8 Total

A. fumigatus 9,783 66.49 7.16 8.55 12.88 16.02 9.1 11.18 23.04 87.92
A. nidulans 10,701 64.55 7.53 8.37 12.19 15.2 9.05 10.35 21.76 84.44

S. pombe 5,144 72.63 3.48 3.05 2.92 5.09 11.67 14.64 39.59 80.43
A. oryzae 11,902 58.21 10.67 7.02 9.93 13.6 7.75 8.62 21.33 78.91

S. cerevisiae 5,862 65.58 9.0 3.43 2.42 3.51 6.3 14.57 38.2 77.44
C. albicans 6,217 73.62 8.08 2.95 2.77 4.37 8.5 15.53 33.25 75.46
N. crassa 10,785 65.39 4.01 4.25 6.1 13.81 8.03 8.47 19.7 64.36
A. niger 14,060 66.76 6.59 5.53 8.32 10.95 6.12 7.2 15.91 60.62

Total 74,454 65.72 7.1 5.76 7.99 11.36 8.09 10.48 24.18 74.96

Table 14: Single-copy gene frequency in RBH cliques. This table is similar to the table structure of
Table 12, but it shows the percentages of single-copy genes in RBH cliques.

Clique size
Genome # proteins % single-copy 2 3 4 5 Total

A. fumigatus 9,783 66.49 13.21 26.46 29.47 0.32 69.45
A. nidulans 10,701 64.55 10.02 22.22 27.61 0.29 60.13
A. oryzae 11,902 58.21 8.3 18.43 26.83 0.32 53.88
A. niger 14,060 66.76 6.26 13.31 20.16 0.23 39.96
N. crassa 10,785 65.39 0.34 0.85 0.64 0.28 2.11

C. albicans 6,217 73.62 0.59 0.02 0 0 0.61
S. cerevisiae 5,862 65.58 0.6 0 0 0 0.6

S. pombe 5,144 72.63 0 0 0 0 0

Total 74,454 65.72 5.7 11.94 15.57 0.21 33.42

Table 15: Single-copy gene frequency in syntenic RBH cliques. This table is similar to the table
structure of Table 12, but it shows the percentages of single-copy genes in syntenic RBH cliques.
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5.3.3 Gene Copies in Clusters

Gene copies and RBH and syntenic RBH cliques allow SynAVal to evaluate techniques that generate

orthologous clusters. The evaluation we present in this section is (1) confusion cases with respect

to clusters, and (2) confusion cases with respect to single- and multi-copy genes. We evaluate the

results of the five techniques presented in Chapter 4: MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL,

and OMA.

5.3.3.1 Confusions Raised with Respect to Clusters

SynAVal detects and reports protein clusters that have multi-copy RBH or syntenic RBH cliques

together with the paralogs of the multi-copy gene(s). These clusters are the ones that raise confusion

as to which copy is the true ortholog of the RBH or syntenic RBH members. Recall that when a

multi-copy RBH or syntenic RBH clique is clustered with the paralogs of the multi-copy gene(s),

the clique members are the proteins forming high confidence orthologous relations.

We present the clustering results of MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL, and OMA

techniques. We classify the generated clusters into three categories; (1) clusters that do not have

RBH or syntenic RBH cliques present; (2) clusters with RBH or syntenic RBH cliques in which none

of the copies of a multi-copy gene member of the cliques is in the cluster; and (3) clusters with RBH

or syntenic RBH cliques in which at least one copy of a multi-copy gene member of the cliques is in

the cluster. SynAVal can not evaluate any member of the clusters in the first category as there is no

RBH or syntenic RBH presence. The RBH or syntenic RBH members of the clusters in the second

category do not raise confusion because the copies of the multi-copy genes are not in the cluster.

SynAVal for this category does not report any confusion. However, it does report a confusion for

clusters in the third category as the copies of the multi-copy genes in RBH or syntenic RBH cliques

are in the clusters.

Table 16 shows the number of clusters in the three categories for the five techniques we are

analyzing with respect to RBH cliques. The number of clusters generated by each technique is

shown in the column labeled # clusters. The number of clusters classified into category one is

shown in the column labeled # clusters with no RBH cliques. The number of clusters classified into

category two is shown in the column labeled # clusters with RBH cliques no multi-copy gene(s)

(no confusion), and the number of clusters classified into category three is shown in the column

labeled # clusters with RBH cliques and multi-copy gene(s) (confusion). We show the number and

percentage of clustered sequences that are in category three clusters in the column labeled sequences

with RBH cliques with confusion – # (%).

The results of MCL, SynAPhy 1 5, and SynAPhy 3 5 show that by integrating the RBH res-

olution to the MCL clustering algorithm, a smaller percentage of the clustered sequences are in

clusters with confusion. SynAVal was able to evaluate the performance increase of SynAPhy 3 5

over SynAPhy 1 5 and SynAPhy 1 5 over MCL. SynAPhy 1 5 has more output clusters than MCL,

and in turn SynAPhy 3 5 has more than SynAPhy 1 5. This is because SynAPhy 1 5 generates

finer grained clusters than MCL with syntenic RBH connections clustered together, and in turn
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Technique # clusters # clusters # clusters # clusters sequences
with no with rbh cliques with rbh cliques and in rbh cliques

rbh cliques no multi-copy gene(s) multi-copy gene(s) with confusion –
(no confusion) (confusion) # (%)

MCL 18,796 9,724 6,326 2,746 22,493 (30%)

SynAPhy 1 5 18,870 9,540 6,408 2,922 22,282 (29%)

SynAPhy 3 5 20,611 9,461 8,145 3,005 17,855 (24%)

orthoMCL 13,133 1,647 9,646 1,840 11,477 (19%)

OMA 12,389 1,152 11,237 NA NA

Table 16: Proportion of confusions reported in clusters with RBH clique resolution in five orthology
prediction systems

SynAPhy 3 5 generates finer grained clusters than SynAPhy 1 5 with RBH and syntenic RBH con-

nections clustered together. Although SynAPhy 1 5 and SynAPhy 3 5 have more clusters than MCL

and SynAPhy 1 5, respectively, the number of clusters with no RBH cliques in SynAPhy 1 5 against

MCL and SynAPhy 3 5 against SynAPhy 1 5 decreases. Another positive result with SynAPhy 1 5

over MCL and SynAPhy 3 5 over SynAPhy 1 5 is that the number of clusters with no confusion

increases. Although the number of clusters with confusion increases with SynAPhy 1 5 over MCL

and SynAPhy 3 5 over SynAPhy 1 5, the percentage of sequences in these clusters decreases from

30% to 24%.

orthoMCL and OMA have smaller number of clusters than MCL, SynAPhy 1 5, and SynA-

Phy 3 5. Consequently, they have smaller number of clusters with no RBH cliques. OMA compared

to orthoMCL has more clusters with no confusion. This is expected as OMA does not generate

clusters with more than one member from a specific genome. For this reason, the results of clus-

ters with confusion, and the total number of sequences in clusters with confusion is Not Applicable

(NA) for OMA. orthoMCL has significantly smaller percentage of sequences that are in clusters

with confusion compared to any of MCL, SynAPhy 1 5, or SynAPhy 3 5. This is expected because

orthoMCL filters out a large number of the input proteins.

Table 17 shows the number of clusters in the three cluster categories for the five techniques

with respect to syntenic RBH cliques. The table structure is the same as that of Table 16. The

results follow the same pattern as that of RBH cliques in the number of sequences that are in

clusters with confusion. SynAPhy 3 5 has smaller percentage of the clustered sequences that are in

clusters with confusions than SynAPhy 1 5, and SynAPhy 1 5 in turn has smaller percentage than

MCL. Syntenic RBH resolution provides higher confidence than RBH resolution. If syntenic RBH

resolution is required, then the results of the Table 17 can be used, and if RBH resolution is required,

then the results of the Table 16 can be used.

5.3.3.2 Confusion Raised in Clusters with Respect to Single- and Multi-copy Genes

In this section, we present the frequency of confusions raised and detected by SynAVal in the clusters

of the five techniques with respect to single- and multi-copy genes. The following notations help us

present the results in tabular form.

Let P be the union of the proteomes.
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Technique # clusters # clusters # clusters # clusters sequences
with no with syn rbh cliques with syn rbh cliques and in syn rbh cliques

syn rbh cliques no multi-copy gene(s) multi-copy gene(s) with confusion –
(no confusion) (confusion) # (%)

MCL 18,796 12,880 4,992 924 4,561 (6.1%)

SynAPhy 1 5 18,870 12,329 5,490 1,051 3,406 (4.5%)

SynAPhy 3 5 20,611 14,121 5,723 773 2,475 (3.3%)

orthoMCL 13,133 6,814 6,002 317 1,204 (2.1%)

OMA 12,389 6,148 6,241 NA NA

Table 17: Proportion of confusions reported with syntenic RBH clique resolution in five orthology
prediction systems

Let C(technique) be the proteins clustered by the technique, that is, the union of the clusters.

Let O be the subset of single-copy genes in P .

Let M be the subset of multi-copy genes in P .

For X being P , O, or M let RX = {p ∈ X | p in RBH clique}.

For X being P , O, or M let SX = {p ∈ X | p in syntenic RBH clique}.

Let P̄ = {p ∈ P | p has a hit in another proteome}.

Let Ō = O ∩ P̄ .

Let M̄ = M ∩ P̄ .

Recall from Table 11 that the total number of proteins in the eight fungal genomes is 74, 454.

MCL, SynAPhy 1 5, and SynAPhy 3 5 cluster 99.99% of the proteins in the eight fungal genomes.

orthoMCL clusters 78.57%, and OMA clusters 66.18%. We show the total number of single- and

multi-copy genes with hits in other genomes in Table 11. MCL, SynAPhy 1 5, and SynAPhy 3 5

cluster 100% of the proteins with hits in other proteomes. orthoMCL clusters 89.27% of the single-

copy gene with hits in other genomes, and 89.02% of the multi-copy genes with hits in other genomes.

While OMA clusters 77.36% of the single-copy genes with hits in other genomes, and 75.21% of the

multi-copy genes with hits in other genomes. These data show that both orthoMCL and OMA are

leaving out a significant proportion of the input proteins with hits in other genomes, with orthoMCL

leaving out about 10% of both single- and multi-copy genes, and OMA leaving out about 25% of

both single- and multi-copy genes. With a large proportion of both single- and multi-copy genes

being unclustered with both orthoMCL and OMA, there is less room for errors as we show later in

the chapter. The situation is more critical with multi-copy genes because multi-copy genes are the

ones that raise confusion.

In Table 18 we show the frequency of single- and multi-copy genes clustered by the five techniques

we are analyzing. In what follows, we look at the frequency of multi-copy genes in RBH cliques

clustered with at least one of their copies. In this case, the paralogs are clustered with the orthologs.

The total number of multi-copy genes in RBH cliques is shown in Table 11 and it is 19,460. Table 19
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Technique |C(technique)| |C(technique) ∩ Ō| |C(technique) ∩ M̄ |
MCL 74,443 39,535 24,744

SynAPhy 1 5 74,443 39,535 24,744
SynAPhy 3 5 74,443 39,535 24,744

orthoMCL 58,499 35,293 22,027

OMA 49,270 30,588 18,609

Table 18: Frequency of clustered single- and multi-copy genes with hits in other proteomes. The
number of proteins clustered by a technique is shown in the column labeled |C(technique)|. The
number of single-copy proteins clustered with hits in other proteomes is shown in the column labeled
|C(technique) ∩ Ō|. The frequency of multi-copy proteins clustered with hits in other proteomes in
shown in the column labeled |C(technique) ∩ M̄ |.

Technique |C(technique) ∩RM̄ | |C(technique) ∩RM̄ | |C(technique) ∩RM̄ |
without copies with copies not clustered

MCL 11,083 8,377 0

SynAPhy 1 5 12,824 6,636 0

SynAPhy 3 5 17,110 2,350 0

orthoMCL 16,783 2,590 87

OMA 17,078 0 2,382

Table 19: Frequency of multi-copy genes in RBH cliques clustered with and without copies. The
frequencies of multi-copy genes forming part of RBH cliques that are clustered with their copies,
without their copies, and not clustered are shown in the columns labeled |C(technique)∩RM̄ | without
copies, |C(technique) ∩RM̄ | with paralogs, and |C(technique) ∩RM̄ | not clustered, respectively.

shows the frequency of multi-copy genes in RBH cliques clustered with their copies, without their

copies, and not clustered by the five techniques we are analyzing. Consider MCL, SynAPhy 1 5,

and SynAPhy 3 5. The three techniques cluster all the mutli-copy genes in RBH cliques. MCL,

SynAPhy 1 5, and SynAPhy 3 5 cluster 11, 083, 12, 824, and 17, 110, of the multi-copy genes in

RBH cliques without their copies, respectively. SynAPhy 3 5 clusters more multi-copy genes without

their copies than SynAPhy 1 5, and in turn SynAPhy 1 5 clusters more. This is a good indication as

with SynAPhy 3 5 less multi-copy genes are being clustered with their copies. Consider orthoMCL

and OMA. orthoMCL is clustering 16, 783 multi-copy genes without their copies, and 2, 590 with

their copies. The latter number is more than that of SynAPhy 3 5, which is 2, 350. OMA does not

cluster paralogs together, therefore the number of multi-copy genes clustered with their copies is 0.

Note that similar to MCL, SynAPhy 1 5, and SynAPhy 3 5, orthoMCL includes proteins from the

same genome that are very similar to each in the protein sequence similarity graph for the MCL

algorithm to cluster. Therefore, it is expected that orthoMCL puts together copies or in-paralogs.

The comparison presented here is not a fair comparison as to whether the correct copy of the paralogs

are being put together in a cluster to be considered as orthologs by a technique. We will present a

fair comparison of the techniques later in the chapter.

Table 20 shows the frequency of multi-copy genes in syntenic RBH cliques clustered with their

copies, without their copies, and not clustered by the five techniques we are analyzing. The table

structure is similar to that of Table 19, except that this one shows multi-copy genes in syntenic RBH

cliques. The total number of multi-copy genes in syntenic RBH cliques is 5, 774 shown in Table 11.
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Technique |C(technique) ∩ SM̄ | |C(technique) ∩ SM̄ | |C(technique) ∩ SM̄ |
without copies with copies not clustered

MCL 4,356 1,418 0

SynAPhy 1 5 5,762 12 0

SynAPhy 3 5 5,763 11 0

orthoMCL 5,564 209 1

OMA 5,675 0 99

Table 20: Frequency of multi-copy genes in syntenic RBH cliques clustered with and without
copies. The frequencies of multi-copy genes forming part of syntenic RBH cliques that are clustered
with their paralogs, without their paralogs, and not clustered are shown in the columns labeled
|C(technique) ∩ SM̄ | without copies, |C(technique) ∩ SM̄ |with paralogs, and |C(technique) ∩ SM̄ | not
clustered, respectively.

The same behavior as that of multi-copy genes in RBH cliques is observed with the multi-copy genes

in syntenic RBH cliques by the five techniques. SynAPhy 3 5 clusters one less multi-copy gene with

its copy than SynAPhy 1 5, and SynAPhy 1 5 clusters 1, 406 less than that of MCL. orthoMCL

clusters 198 more multi-copy genes with their copies than SynAPhy 3 5. OMA does not cluster

copies.

Table 19 and Table 20 show the frequency of multi-copy genes in RBH and syntenic RBH cliques,

respectively, clustered by the five techniques with and without their copies. This comparison, how-

ever, does not show whether the true copies, i.e., the ones that form part of RBH or syntenic RBH

cliques, are clustered with their ortholog. Table 21 and Table 22 show the mis-clustered multi-

copy genes that are in RBH and syntenic RBH cliques, respectively, by the five techniques we are

analyzing. A mis-clustered multi-copy gene is a multi-copy gene that is clustered with the RBH

or syntenic RBH clique member of one of its copies. In Table 21, consider the techniques MCL,

SynAPhy 1 5, and SynAPhy 3 5. MCL has 14, 133 mis-clustered multi-copy genes in RBH cliques,

SynAPhy 1 5 has 12, 831, and SynAPhy 3 5 has 7, 220. We notice that the number of mis-clustered

multi-copy genes with SynAPhy 3 5 is significantly less than that of SynAPhy 1 5, and that of

SynAPhy 1 5 is less than MCL. This is because we are scaling the similarity values of the RBH

connections with SynAPhy 1 5 and SynAPhy 3 5 directing MCL to cluster the RBH connections

together. Consider the techniques orthoMCL and OMA. OMA has less mis-clustered multi-copy

genes in RBH cliques than orthoMCL, and it has less than any of the MCL, SynAPhy 1 5, and

SynAPhy 3 5. We present the percentages of the mis-clustered multi-copy genes in the column la-

beled % wrt |C(technique) ∩ RM̄ | with respect to the multi-copy genes clustered by a technique in

the column labeled |C(technique)∩RM̄ |. We notice an improvement in SynAPhy 1 5 over MCL, and

a significant improvement in SynAPhy 3 5 over SynAPhy 1 5. SynAPhy 3 5 dropping to 37.10%

mis-clustered multi-copy genes. However, this number is less with orthoMCL and OMA, with OMA

leading with only 15.32% of mis-clustered multi-copy genes in RBH cliques.

The same behavior is observed by the five techniques with mis-clustered multi-copy genes in

syntenic RBH cliques shown in Table 22. With syntenic RBH cliques, the percentages are lower

because as we saw in Chapter 4 syntenic RBHs are more similar to each other than RBHs. MCL

mis-clusters 61.38% of the multi-copy genes in syntenic RBH cliques, SynAPhy 1 5 mis-clusters
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Technique |C(technique) ∩RM̄ | |C(technique) ∩RM̄ | % wrt |C(technique) ∩RM̄ |
mis-clustered

MCL 14,133 19,470 72.62
SynAPhy 1 5 12,831 19,470 65.93
SynAPhy 3 5 7,220 19,470 37.10

orthoMCL 5,109 19,373 26.37

OMA 2,616 17,078 15.32

Table 21: Frequency of mis-clustered multi-copy genes in RBH cliques. The number of multi-copy
genes in RBH cliques that are mis-clustered is shown in the column labeled |C(technique) ∩ RM̄ |
mis-clustered. The number of multi-copy genes in RBH cliques that are clustered by a technique is
shown in the column labeled |C(technique)∩RM̄ |, and the percentage of the mis-clustered multi-copy
genes in RBH cliques with respect to the clustered multi-copy genes in RBH cliques is shown in the
column labeled % wrt |C(technique) ∩RM̄ |.

Technique |C(technique) ∩ SM̄ | |C(technique) ∩ SM̄ | % wrt |C(technique) ∩ SM̄ |
mis-clustered

MCL 3,544 5,774 61.38
SynAPhy 1 5 2,104 5,774 36.44
SynAPhy 3 5 1,144 5,774 19.81

orthoMCL 828 5,773 14.34

OMA 48 5,675 0.83

Table 22: Frequency of mis-clustered multi-copy genes in syntenic RBH cliques. The number of
multi-copy genes in syntenic RBH cliques that are mis-clustered is shown in the column labeled
|C(technique)∩SM̄ | mis-clustered. The number of multi-copy genes in syntenic RBH cliques that are
clustered by a technique is shown in the column labeled |C(technique)∩ SM̄ |, and the percentage of
the mis-clustered multi-copy genes in syntenic RBH cliques with respect to the clustered multi-copy
genes in syntenic RBH cliques is shown in the column labeled % wrt |C(technique) ∩ SM̄ |.

36.44%, SynAPhy 3 5 mis-clusters 19.81%, orthoMCL mis-clusters 14.34%, and OMA mis-clusters

0.83%. Note that these percentages are with respect to the number of multi-copy genes in syntenic

RBH cliques that are clustered by each technique. The same behavior is observed with that of

mis-clustered multi-copy genes in RBH cliques. OMA has the least mis-clustered multi-copy genes,

followed by orthoMCL, SynAPhy 3 5, SynAPhy 1 5, and MCL.

Table 21 and Table 22 show that of multi-copy genes in RBH and syntenic RBH cliques, respec-

tively. We next present a comprehensive analysis of all RBH and syntenic RBH clique connections.

We compute the F-measures of the five techniques we are analyzing with respect to RBH and syn-

tenic RBH cliques., i.e., the expected results for each and every pair of proteins in the eight genomes

are with respect to RBH or syntenic RBH cliques. We call a pair of proteins a

• True Positive (TP ) if they are in the same clique and are clustered together in the same cluster;

• False Positive (FP ) if they are not in the same clique but are clustered together in the same

cluster;

• True Negative (TN) if they are not in the same clique and are not clustered together in the

same cluster; and
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Technique TP FP TN FN Precision Recall F-measure

MCL 125,563 107,375 619,865,577 8,435 0.54 0.94 0.69
SynAPhy 1 5 126,211 73,415 619,899,537 7,787 0.63 0.94 0.75
SynAPhy 3 5 127,713 52,586 619,920,366 6,285 0.71 0.95 0.81

orthoMCL 116,698 15,652 619,957,300 17,300 0.88 0.87 0.87

OMA 91,762 1,167 619,971,785 42,236 0.99 0.68 0.81

Table 23: Fmeasures of protein clustering techniques with respect to RBH cliques. True positives,
false positives, true negatives, and false negatives are shown in the columns labeled TP, FP, TN,
and FN, respectively, with respect to RBH cliques.

• False Negative (FN) if they are in the same clique but are not clustered together in the same

cluster.

Table 23 shows the F-measures of the techniques with respect to RBH cliques. The table shows

the techniques under the column labeled Technique. For each system, the table shows the true

positives, false positives, true negatives, and false negatives in the columns labeled TP, FP, TN,

and FN, respectively. The TPs, FPs, TNs, and FNs are as defined above with respect to RBH

cliques. The precision, recall, and F-measure are defined in Definition 2.3. Consider the systems

MCL, SynAPhy 1 5, and SynAPhy 3 5. The precisions of MCL, SynAPhy 1 5, and SynAPhy 3 5

are 0.54, 0.63, and 0.71, respectively. The precision of SynAPhy 1 5 is higher than that of MCL,

and the precision of SynAPhy 3 5 is higher than that of SynAPhy 1 5. This is expected as SynA-

Phy 1 5 scales the similarity values of syntenic RBHs, which are RBHs, and SynAPhy 3 5 scales

the similarity values of all RBHs. This behavior allows SynAPhy 1 5 and SynAPhy 3 5 to cluster

more RBHs together. The recall of MCL, SynAPhy 1 5, and SynAPhy 3 5 are 0.94, 0.94, and 0.95,

respectively. The recalls of the three techniques are comparable and satisfactory. The F-measures

of MCL, SynAPhy 1 5, and SynAPhy 3 5 are 0.69, 0.75, and 0.81, respectively. The F-measure of

SynAPhy 3 5 is better than the other two systems.

Consider orthoMCL and OMA. OMA has a better precision at the expense of recall. OMA has a

very higher precision value 0.99. This means almost all the RBHs are clustered together. orthoMCL

has a precision value 0.88. The precision of orthoMCL is higher than that of SynAPhy 3 5 but lower

than that of OMA. The recalls of orthoMCL and OMA are 0.87 and 0.68, respectively. orthoMCL

has a better recall than OMA, and in turn SynAPhy 3 5 has a higher recall than orthoMCL.

orthoMCL has the highest F-measure among the five techniques with a value of 0.87. OMA and

SynAPhy 3 5 have similar F-measure with a value of 0.81. SynAPhy 1 5 and MCL follow them with

values 0.75 and 0.69. Note that MCL is not an orthology prediction system. By scaling the similarity

values of the RBHs, we are directing MCL to cluster RBHs together. Therefore, SynAPhy 1 5 and

SynAPhy 3 5 have better precision than that of MCL.

Table 23 shows that OMA is leading in precision at the expense of recall. orthoMCL is leading

in F-measure. MCL, SynAPhy 1 5, and SynAPhy 3 5 have higher recall than both orthoMCL and

OMA.

Table 24 shows the F-measures of MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL, and OMA

techniques with respect to syntenic RBH cliques. The sequence of results are similar to that of RBH
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Technique TP FP TN FN Precision Recall F-measure

MCL 26,298 325,832 1,603,554,203 129 0.07 1.0 0.13
SynAPhy 1 5 26,302 217,829 1,603,662,206 125 0.11 1.0 0.2
SynAPhy 3 5 26,237 127,239 1,603,752,796 190 0.17 0.99 0.29

orthoMCL 25,667 72,515 1,603,807,520 760 0.26 0.97 0.41

OMA 24,300 31,952 1,603,848,083 2,127 0.43 0.92 0.59

Table 24: Fmeasures of protein clustering techniques with respect to syntenic RBH cliques. True
positives, false positives, true negatives, and false negatives are shown in the columns labeled TP,
FP, TN, and FN, respectively, with respect to syntenic RBH cliques.

cliques presented in Table 23. Consider MCL, SynAPhy 1 5, and SynAPhy 3 5. SynAPhy 3 5 has

a higher precision than that of SynAPhy 1 5, and in turn SynAPhy 3 5 has a higher precision than

that of MCL. The recalls of the three techniques are similar. Both MCL and SynAPhy 1 5 have

a recall value of 1, which means all the syntenic RBHs are clustered. SynAPhy 3 5 has a recall

value of 0.99. The F-measure of SynAPhy 3 5 is the highest, with a value of 0.29, while that of

SynAPhy 1 5 is 0.2 and MCL 0.13.

Consider orthoMCL and OMA. Similar to the results of RBH cliques, OMA has a higher precision

at the expense of recall. OMA has a better F-measure than the rest of the techniques for syntenic

RBH cliques. Similar to the conclusion presented for the RBH cliques, precision of OMA is higher

at the expense of recall.

The analysis of Table 23 and Table 24 would not have been possible without the orthology resolver

component of SynAVal. We showed the prospect of RBHs and syntenic RBHs to be functionally

similar with the mycoCLAP gold standard dataset. Although the numbers of RBHs and syntenic

RBHs present in the mycoCLAP dataset are low, all the present cases have similar functional

annotation presented by the mycoCLAP dataset.

5.4 Conclusion

To evaluate an orthologous cluster, the orthology of each and every pair in the cluster has to be

confirmed. In the presence of highly similar paralogs, the evaluation of orthology and paralogy is a

hard problem. With the absence of gold standard genome scale dataset, the problem of evaluation

becomes even harder. In this chapter, we present SynAVal, an evaluation framework for an orthology

prediction system that first detects the paralogs of each input genome, and then detects the high

confidence orthologs. It uses these data to identify and report the confusions in orthologous clusters

generated by an orthology prediction system.

The paralogs are detected with the gene copy detector. Approximately 25% to 40% of the input

proteins correspond to multi-copy genes. This range is significant, it shows that a large percentage

of the input proteomes may be subject to orthology and paralogy confusion.

The clique detector builds high confidence orthologous relations. If RBH resolution is required,

the orthology of 39.42% of the proteins in the eight fungal genomes may be resolved, and if the

syntenic RBH resolution is required the orthology of 9.1% of the proteins in the eight fungal genomes
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may be resolved. These results are based on both single- and multi-copy genes that are in multi-copy

RBH cliques. Moreover, if the background data is with respect to the multi-copy genes that have

hits in other genomes, SynAVal with RBH resolution is able to resolve confusions raised by 78.65% of

multi-copy genes with hits in other proteomes, and with syntenic RBH cliques 23.33% of multi-copy

genes with hits in other proteomes.

SynAVal detects and reports output orthologous clusters that contain multi-copy RBH or syntenic

RBH cliques together with the paralogs of the multi-copy gene(s). These are the clusters that are

flagged as confusion. SynAVal not only reports high confidence orthology dataset, but also evaluates

the results of orthology prediction system and reports those clusters with confusion.

We applied SynAVal on MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL, and OMA, and compared

the results. MCL, SynAPhy 1 5, and SynAPhy 3 5 are compared against each other because they

consider all the input proteomes. orthoMCL and OMA filter out a large number of the input

proteins. Note that MCL is not an orthology prediction system, we present its results to measure the

performance of SynAPhy 1 5 and SynAPhy 3 5 over the standard pairwise similarity scores. OMA

does not cluster paralogs, therefore, its results are not included in comparisons where evaluation of

clusters are conducted with respect to the presence of paralogs.

SynAVal allowed us to evaluated the correctness of the orthology relations in the generated

clusters for MCL, SynAPhy 1 5, SynAPhy 3 5, orthoMCL, and OMA. With both RBH and syntenic

RBH cliques, SynAPhy 3 5 has higher F-measure than that of SynAPhy 1 5, and SynAPhy 1 5 has

a higher F-measure than that of MCL. With RBH cliques, orthoMCL has higher F-measure than

that of OMA, MCL, SynAPhy 1 5, and SynAPhy 3 5. With syntenic RBH cliques OMA has the

highest. We observed that the precisions of both orthoMCL and OMA in RBH and syntenic RBH

cliques are higher than that of SynAPhy 3 5 at the expense of recall.

The RBH and syntenic RBH connections proved consistent with the functional annotations of

the small set of experimentally characterized proteins in the mycoCLAP dataset. Although syntenic

RBHs are less frequent than RBHs, they provide high confidence orthology relations for 23.33%

of the multi-copy genes with hits in other proteomes that are highly likely to raise orthology and

paralogy confusions.

87



Chapter 6

Conclusion and Future Work

Accurate protein functional annotation is important in order to understand the roles of proteins

in cells as well as their application in different fields. As the number of sequenced genomes is

increasing, the need for accurate automated protein functional annotation is becoming more pressing.

Phylogenomic methods consider the orthology and paralogy resolution in determining evolutionary

conserved proteins towards accurate protein function annotation. However, a long-standing problem

in phylogenomics is distinguishing orthologs from paralogs. In this dissertation, we presented a novel

graph-based algorithm to distinguish orthologs from paralogs in multiple eukaryotic species.

We first presented an evaluation of CAZyme family HMMs and subfamily HMMs. The results

of the family HMMs were satisfactory to be used in a functional annotation pipeline targeted for

CAZymes. We showed, however, that care must be taken when setting inclusion thresholds for

HMMs. The results of the subfamily HMMs were inconclusive as there was not enough diversity

in the underlying data to carry out exhaustive experiments and draw strong conclusions. We also

presented a study of the effectiveness of the MCL algorithm for clustering protein families and sub-

families. The MCL algorithm was able to accurately separate protein families of an experimentally

characterized dataset, however, it did not perform similarly for subfamilies. We showed that cluster

metrics can be used to mark good quality clusters and outliers.

We then presented SynAPhy, a novel graph-based algorithm to predict orthologs that integrates

synteny resolution. SynAPhy detects RBHs and syntenic RBHs and builds a protein sequence

similarity graph from the results of all-versus-all Blast. It then scales the similarity values of RBHs

and syntenic RBHs with different scalars and applies the Markov CLustering algorithm (MCL) in

the resulting protein sequence similarity graph. SynAPhy was applied on eight fungal genomes and

the results were compared to that of OrthoMCL and OMA. The evaluation was conducted with four

cluster quality metrics. SynAPhy shows improvement when MCL is applied on the original protein

sequence similarity graph. OMA outperformed in most of the metrics. It is important to note that

OMA does not cluster more than one protein sequence from a specific genome in a cluster. This

filtering contributes positively in the cluster quality metrics.

Although the cluster quality metrics evaluate cluster qualities in terms of sequence similarity

within clusters, they are not indicators of orthology and paralogy, i.e., they do not evaluate whether
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every pair within an orthologous cluster is ortholog. We proposed SynAVal, an evaluation framework

for orthology and paralogy. SynAVal first detects the paralogs within each genome, and then detects

high confidence orthologs. The high confidence orthologs are the RBH and syntenic RBH cliques.

The results show that with synteny resolution SynAVal can resolve confusions raised by 9.1% of the

proteins of the eight input genomes, and 23.33% of the proteins from the eight genomes that can

raise orthology and paralogy confusions.

SynAPhy considers two signals for pairwise proteins, sequence similarity and gene neighborhood

conservation. Several additional biological signals can be used to extend SynAPhy as new data

emerges. For example, conformational features extracted from protein-protein interaction networks

and weighted gene coexpression networks. It is expected that interactions of orthologs are conserved,

and that there is a positive gene coexpression correlation between orthologs and their gene neighbors

in gene coexpression networks of different genomes [TVO+10]. Another signal is the pattern of

presence and absence of genes in different genomes (gene phylogenetic profiles). The idea is that

orthologs have similar patterns of presence and absence in different genomes [EW02]. This correlation

can be integrated into the list of pairwise protein sequence features. These features, separate and

combined are another avenue to consider in distinguishing orthologs from paralogs.

SynAPhy treats RBHs as candidate orthologous seeds, and then examines whether their corre-

sponding genes are in gene neighborhoods with a predefined number of RBHs. This approach is a

bottom up approach for computing syntenic blocks. Some orthology prediction systems compute

syntenic blocks at the DNA level. SynAPhy can be extended to cover a top down approach in which

syntenic blocks are computed at the DNA level. This approach allows one to examine the blocks in

SynAPhy in which RBHs of interest have less than the required number of neighboring RBHs for

the blocks to be pronounced syntenic blocks. This analysis can lead to the detection of gene model

errors, where homologous genes that do not correspond to RBHs can be extended to check whether

they can form RBHs or not. In addition, syntenic blocks at DNA level allows examining potential

similarities in the non-protein coding regions preceding the syntenic blocks.
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Appendix A

Enzyme Family and Subfamily

Clustering

A.1 mycoCLAP Dataset

Table 25 presents a summary of the CAZymes in the mycoCLAP database as of September 2013.

It shows the CAZyme families, the number of sequences in each family, the molecular functions in

each family, and the number of sequences with a specific molecular function in each family. Note

that there are five bifunctional CAZymes denoted as GH11 CE1 and GH32 GH43.

Family Frequency Enzymatic activity Frequency

GH16 10

endo-beta-1,3-galactanase 1

laminarinase 1

licheninase 2

mixed-link glucanase 6

GH17 2
laminarinase 1

exo-1,3-beta-glucanase 1

GH15 20 glucoamylase 20

GH12 32

licheninase 1

xyloglucanase 3

endoglucanase 28

GH13 24

oligo-1,6-glucosidase 3

alpha-glucosidase 4

alpha-amylase 17

PL1 4
pectate lyase 2

pectin lyase 2

GH11 68 xylanase 68

CE12 1 rhamnogalacturonan acetylesterase 1

GH18 34
endo-beta-n-acetylglucosaminidase 1

chitinase 33

GH75 8 chitosanase 8

GH51 9 alpha-arabinofuranosidase 9
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GH74 6

oligoxyloglucan cellobiohydrolase 2

xyloglucanase 3

endoglucanase 1

GH71 5 mutanase 5

GH54 13
alpha-arabinofuranosidase/beta-xylosidase 1

alpha-arabinofuranosidase 12

GH55 10
laminarinase 3

exo-1,3-beta-glucanase 7

GH30 6

endo-1,6-beta-glucanase 4

galactanase 1

xylanase 1

GH33 1 exo-alpha-sialidase 1

GH78 4 alpha-l-rhamnosidase 4

GH79 1 beta-glucuronidase 1

GH36 8 alpha-galactosidase 8

GH53 6 arabinogalactanase 6

GH61 4 polysaccharide monooxygenase 4

GH31 14

invertase 1

alpha-xylosidase 1

alpha-glucosidase 11

glucoamylase 1

GH32 17

exo-inulinase 4

invertase 10

endo-inulinase 3

GH10 28
tomatinase 1

xylanase 27

GH11 CE1 1 xylanase/acetylxylan esterase 1

GH65 2 trehalase 2

GH35 3 beta-galactosidase 3

GH81 3 laminarinase 3

GH85 1 n-acetylglucosaminidase 1

GH32 GH43 4
exo-inulinase 2

endo-inulinase 2

PL4 2 rhamnogalacturonan lyase 2

GH67 6
alpha-glucuronidase 5

xylan alpha-1,2-glucuronosidase 1

CE6 1 acetylxylan esterase 1

CE5 5
acetylxylan esterase 2

cutinase 3

CE4 4
acetylxylan esterase 1

chitin deacetylase 3

GH49 4
dextranase 3

isopullulanase 1

GH62 5
arabinoxylan arabinofuranosidase 2

arabinoxylan arabinofuranohydrolase 3

CE1 12
acetylxylan esterase 4

feruloyl esterase 8

GH45 16 endoglucanase 16

GH47 6 alpha-1,2-mannosidase 6
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GH20 12 hexosaminidase 12

GH27 14 alpha-galactosidase 14

GH26 4 beta-mannanase 4

GH43 14

exo-beta-1,3-galactanase 1

beta-xylosidase 3

alpha-arabinofuranosidase/beta-xylosidase 1

exo-1,3-beta-galactanase 1

arabinoxylan arabinofuranohydrolase 2

endo-1,5-alpha-arabinanase 6

CE8 1 pectin methylesterase 1

GH5 71

endo-1,6-beta-glucanase 3

exo-1,3-beta-glucanase 14

endoglucanase 38

galactanase 1

endoglucanase/xylanase 1

beta-mannanase 14

GH1 8 beta-glucosidase 8

GH6

17

cellobiohydrolase 16

endoglucanase 1

GH7 38

cellobiohydrolase 25

mixed-link glucanase 1

endoglucanase 11

xylanase 1

GH2 5

exo-glucosaminidase 2

beta-galactosidase 1

beta-mannosidase 2

GH3 40

beta-glucosidase 28

tomatinase 1

beta-xylosidase 8

avenacinase 3

GH9 1 endoglucanase 1

AA5 1 glyoxal oxidase 1

GH28 67

rhamnogalacturonan hydrolase 4

alpha-l-rhamnosidase 1

exo-polygalacturonase 11

endo-polygalacturonase 50

xylogalacturonase 1

AA3 7

aryl-alcohol oxidase 2

pyranose 2-oxidase 1

glucose oxidase 4

AA2 20

lignin peroxidase 9

peroxidase 2

manganese peroxidase 6

versatile peroxidase 3

GH115 1 xylan alpha-1,2-glucuronidase 1

GH93 2 exo-arabinanase 2

PL3 3 pectate lyase 3

Table 25: mycoCLAP database summary
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A.2 Confusion Matrices of CAZyme Families

Table 26 shows the confusion matrices of all CAZyme families in CAZyDB when members are

searched against the dbCAN family HMMs. The count of CAZymes classified as TP , FN , FP ,

and TN are shown in their respective columns. The actual families and the corresponding count

of misclassified CAZymes are shown in the column labeled Confusion. The rows are sorted in

descending order of F-measure and then sorted in descending order of TP . GH families 36 and 39,

and AA family 1 have the lowest F-measure, which is the result of the unclassified sequences.

Family TP FN FP TN F-measure Confusion

CE4 144 0 0 7937 1 -

GH132 103 0 0 7978 1 -

CE5 86 0 0 7995 1 -

AA6 74 0 0 8007 1 -

GH128 49 0 0 8032 1 -

GH125 38 0 0 8043 1 -

CE8 35 0 0 8046 1 -

CE3 30 0 0 8051 1 -

PL4 30 0 0 8051 1 -

GH75 30 0 0 8051 1 -

CE12 27 0 0 8054 1 -

GH105 25 0 0 8056 1 -

GH93 25 0 0 8056 1 -

CE16 25 0 0 8056 1 -

GH30 24 0 0 8057 1 -

CE9 23 0 0 8058 1 -

GH62 22 0 0 8059 1 -

GH114 20 0 0 8061 1 -

GH88 18 0 0 8063 1 -

GH53 18 0 0 8063 1 -

AA7 17 0 0 8064 1 -

GH67 15 0 0 8066 1 -

GH131 13 0 0 8068 1 -

GH95 12 0 0 8069 1 -

CE15 12 0 0 8069 1 -

GH64 11 0 0 8070 1 -

GH74 10 0 0 8071 1 -
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GH33 9 0 0 8072 1 -

GH49 9 0 0 8072 1 -

GH9 8 0 0 8073 1 -

GH85 8 0 0 8073 1 -

PL14 8 0 0 8073 1 -

GH130 7 0 0 8074 1 -

GH29 6 0 0 8075 1 -

GH25 6 0 0 8075 1 -

GH24 6 0 0 8075 1 -

AA4 5 0 0 8076 1 -

GH23 4 0 0 8077 1 -

GH19 4 0 0 8077 1 -

PL20 4 0 0 8077 1 -

CE2 4 0 0 8077 1 -

PL9 4 0 0 8077 1 -

GH127 4 0 0 8077 1 -

PL7 3 0 0 8078 1 -

CE6 2 0 0 8079 1 -

GH48 2 0 0 8079 1 -

GH42 2 0 0 8079 1 -

GH8 1 0 0 8080 1 -

GH89 1 0 0 8080 1 -

GH84 1 0 0 8080 1 -

AA9 178 1 0 7902 0.9972 -

GH76 169 1 0 7911 0.9971 -

GH11 170 2 0 7909 0.9942 -

GH47 161 2 0 7918 0.9938 -

GH37 77 1 0 8003 0.9936 -

GH72 206 3 0 7872 0.9928 -

GH12 68 1 0 8012 0.9927 -

GH31 133 2 0 7946 0.9925 -

GH16 361 6 0 7714 0.9918 -

GH81 59 1 0 8021 0.9916 -

GH10 110 2 0 7969 0.991 -

GH20 53 1 0 8027 0.9907 -

GH1 49 1 0 8031 0.9899 -

PL3 48 1 0 8032 0.9897 -

GH92 47 1 0 8033 0.9895 -
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GH6 84 2 0 7995 0.9882 -

GH18 745 18 0 7318 0.9881 -

GH38 39 1 0 8041 0.9873 -

GH43 177 5 0 7899 0.9861 -

GH65 35 1 0 8045 0.9859 -

GH51 34 1 0 8046 0.9855 -

AA5 34 1 0 8046 0.9855 -

AA3 125 4 0 7952 0.9843 -

GH55 62 2 0 8017 0.9841 -

GH71 60 2 0 8019 0.9836 -

GH78 57 2 0 8022 0.9828 -

GH2 83 2 1 7995 0.9823 -

GH5 450 17 0 7614 0.9815 -

GH54 25 1 0 8055 0.9804 -

GH115 22 1 0 8058 0.9778 -

GH79 41 2 0 8038 0.9762 -

GH35 40 2 0 8039 0.9756 -

GH63 40 2 0 8039 0.9756 -

GH17 159 10 0 7912 0.9695 -

GH3 298 19 0 7764 0.9691 -

GH28 384 27 0 7670 0.966 -

GH32 149 11 0 7921 0.9644 GH2 : 1

CE1 54 3 1 8023 0.9643 -

GH27 77 6 0 7998 0.9625 -

PL1 115 10 0 7956 0.9583 -

GH7 333 30 0 7718 0.9569 -

GH45 31 3 0 8047 0.9539 -

GH13 266 28 0 7787 0.95 -

AA2 227 30 0 7824 0.938 -

GH26 11 2 0 8068 0.9167 CE1 : 1

GH15 97 20 0 7964 0.9065 -

CE10 4 1 0 8076 0.8889 -

GH94 3 1 0 8077 0.8571 -

GH36 17 13 0 8051 0.7234 -

GH39 3 8 0 8070 0.4286 -

AA1 94 359 0 7628 0.3437 -

Table 26: Confusion matrices of CAZyDB protein families with

respect to the dbCAN family HMMs.

102



A.3 The Quality of MCL Clusters on mleci Graph

Table 27 shows the cluster qualities of all the MCL clusters of the mleci graph. The intra-cluster

density is given by the column labeled δ. The number of vertices in the cluster is given in the column

labeled # vertices. The minimum and maximum similarities are given in the columns labeled by

simmin and simmax, respectively. The average of the normalized edge weights is given by the column

labeled w, and the coefficient of variation of average normalized edge weights is given in the column

labeled cv. The rows are sorted in decreasing order of w, and then in decreasing order of cv.

ID δ # vertices simmin simmax w cv

cluster 59 3 1 3 175 179 0.9779 0.0092

cluster 88 2 1 2 171 171 0.9448 0

cluster 92 2 1 2 171 171 0.9448 0

cluster 78 2 1 2 168 168 0.9282 0

cluster 85 2 1 2 168 168 0.9282 0

cluster 95 2 1 2 164 164 0.9061 0

cluster 66 3 1 3 153 162 0.8692 0.0234

cluster 39 5 1 5 122 181 0.8586 0.1732

cluster 70 3 1 3 132 179 0.8177 0.1481

cluster 86 2 1 2 146 146 0.8066 0

cluster 100 2 1 2 144 144 0.7956 0

cluster 55 4 1 4 109 177 0.7716 0.1914

cluster 83 2 1 2 136 136 0.7514 0

cluster 93 2 1 2 136 136 0.7514 0

cluster 14 13 1 13 118 181 0.7458 0.093

cluster 84 2 1 2 132 132 0.7293 0

cluster 87 2 1 2 128 128 0.7072 0

cluster 101 2 1 2 124 124 0.6851 0

cluster 90 2 1 2 123 123 0.6796 0

cluster 43 5 1 5 97 150 0.6785 0.1442

cluster 98 2 1 2 122 122 0.674 0

cluster 46 5 1 5 106 143 0.6492 0.0836

cluster 77 2 1 2 117 117 0.6464 0

cluster 37 6 1 6 100 170 0.6287 0.1401

cluster 38 6 1 6 77 181 0.6254 0.2368

cluster 31 6 1 6 91 173 0.6254 0.2452

cluster 64 3 1 3 109 115 0.6225 0.0233

cluster 51 4 1 4 97 135 0.6225 0.1076
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cluster 67 3 1 3 97 134 0.6225 0.1387

cluster 44 5 1 5 83 159 0.5983 0.1858

cluster 81 2 1 2 106 106 0.5856 0

cluster 63 3 1 3 76 164 0.5856 0.387

cluster 103 2 1 2 105 105 0.5801 0

cluster 35 6 1 6 70 173 0.5797 0.3016

cluster 79 2 1 2 104 104 0.5746 0

cluster 102 2 1 2 104 104 0.5746 0

cluster 29 7 1 7 69 181 0.5738 0.2953

cluster 91 2 1 2 103 103 0.5691 0

cluster 30 6 1 6 72 125 0.5617 0.1618

cluster 22 8 1 8 69 179 0.5345 0.2597

cluster 10 17 1 17 2 181 0.5225 0.4356

cluster 15 12 1 12 32 181 0.5192 0.3275

cluster 68 3 1 3 81 116 0.512 0.1781

cluster 54 4 1 4 57 140 0.5046 0.292

cluster 74 3 1 3 88 94 0.5028 0.0269

cluster 65 3 1 3 84 91 0.4862 0.0335

cluster 73 3 1 3 82 99 0.4862 0.0885

cluster 58 4 1 4 31 159 0.4807 0.6329

cluster 41 5 1 5 19 170 0.4801 0.65

cluster 97 2 1 2 86 86 0.4751 0

cluster 20 9 1 9 44 181 0.4731 0.3859

cluster 61 3 1 3 69 110 0.4623 0.223

cluster 72 3 1 3 79 90 0.4604 0.0574

cluster 57 4 1 4 54 174 0.4586 0.4987

cluster 13 13 1 13 27 148 0.4567 0.5296

cluster 48 4 1 4 44 175 0.4383 0.6167

cluster 69 3 1 3 47 134 0.4291 0.5136

cluster 18 10 1 10 25 179 0.4231 0.5094

cluster 80 2 1 2 76 76 0.4199 0

cluster 3 33 0.9697 33 1 181 0.4194 0.471

cluster 49 4 1 4 5 162 0.4134 0.9411

cluster 4 31 0.9441 31 1 181 0.4085 0.3992

cluster 6 22 0.8571 22 1 177 0.4062 0.6528

cluster 27 8 1 8 33 181 0.3958 0.599

cluster 24 8 1 8 51 177 0.3848 0.3534

cluster 99 2 1 2 67 67 0.3702 0
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cluster 16 11 1 11 10 181 0.3624 0.5994

cluster 28 7 1 7 9 177 0.3452 0.6916

cluster 9 17 1 17 21 181 0.3418 0.5558

cluster 94 2 1 2 61 61 0.337 0

cluster 21 9 1 9 25 153 0.334 0.5328

cluster 2 35 1 35 8 179 0.3282 0.5058

cluster 8 18 1 18 7 181 0.3233 0.5299

cluster 32 6 1 6 14 125 0.323 0.6647

cluster 11 14 1 14 6 115 0.3203 0.5347

cluster 23 8 1 8 18 170 0.3122 0.5712

cluster 52 4 1 4 46 71 0.3112 0.1452

cluster 12 14 0.9341 14 1 177 0.3008 0.5151

cluster 40 5 1 5 23 99 0.3006 0.4875

cluster 5 26 1 26 1 177 0.2936 0.7904

cluster 42 5 1 5 23 133 0.289 0.6488

cluster 45 5 1 5 13 170 0.2867 0.9479

cluster 19 10 1 10 3 131 0.2689 0.9271

cluster 34 6 1 6 9 129 0.26 0.907

cluster 36 6 1 6 18 115 0.2472 0.6774

cluster 17 10 1 10 3 157 0.2442 0.9162

cluster 47 5 0.8 5 2 128 0.2417 1.177

cluster 82 2 1 2 43 43 0.2376 0

cluster 89 2 1 2 40 40 0.221 0

cluster 56 4 0.8333 4 5 128 0.2188 1.1518

cluster 1 50 0.9918 50 1 165 0.2074 0.594

cluster 53 4 1 4 4 181 0.2035 1.7524

cluster 26 8 1 8 3 179 0.2017 1.0894

cluster 76 3 1 3 14 70 0.1842 0.7782

cluster 7 19 1 19 9 150 0.1825 0.7418

cluster 62 3 1 3 13 65 0.175 0.7461

cluster 75 3 1 3 24 39 0.1639 0.2242

cluster 71 3 1 3 19 38 0.1492 0.2978

cluster 25 8 1 8 8 143 0.1433 0.9426

cluster 60 3 1 3 15 34 0.1216 0.3875

cluster 33 6 1 6 4 173 0.105 2.173

cluster 50 4 0.8333 4 1 47 0.0774 1.2172

cluster 96 2 1 2 1 1 0.0055 0

Table 27: The results of all the MCL clusters of the mleci graph.
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