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2. Introduction 

Assisted Reproductive Technology (ART) has continued to advance in the re-

cent decades since the birth of the first “test-tube” baby on 25 July 1978. ARTs 

mainly include in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), 

in vitro maturation (IVM), preimplantation genetic diagnosis (PGD), cryopreser-

vation of gametes and embryos, etc. The most popular, IVF, refers to the collec-

tion of oocytes from women's ovaries, and then fertilizing the eggs and main-

taining them in vitro until the embryos are transferred into the uterine cavity. 

However, during the whole operation of IVF, the sperm do not spend a period of 

time residing in the female reproductive tract or undergoing capacitation. Less 

common, ICSI refers to microinjection of single sperm into the oocyte cytoplast, 

and it is usually used in male oligospermia or asthenospermia or due to failed 

fertilization in previous IVF attempts. ICSI lacks the natural selection of human 

reproduction, presenting increased risk of chromosomal aberration, gene muta-

tion, deletion, and epigenetic abnormalities in spermatozoa. For example, the 

deletion of the Y chromosomal Deleted in Azoospermia (DAZ) genes has been 

reported as related to azoospermia or oligozoospermia in humans [1]. Similarly, 

chromosomal abnormalities are five times more frequently found in male ICSI 

candidates in comparison to the normal population [2].  

As of date, the clinical application of the various ART techniques has 

helped many infertility couples and resulted in more than 9 million births world-

wide [3]. Moreover, it is estimated that the overall number of ART children will 

continue to grow due to delayed childbearing, adverse environmental exposure 
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and lifestyle-associated infertility [4]. Nevertheless, ART still faces several chal-

lenges such as (1) ART safety (ART as a technology is applied in the human 

clinical practice but without security verification) and (2) reproductive aging (oo-

cyte aging is one of the main causes of ART failure, but to date, there is still far 

from a solution to this problem). Resolution of these challenges requires com-

prehensive and in-depth biology studies, especially investigations into epige-

nome and transcriptome and changes. Solving these problems would likely help 

increase the success rate of ART, as well as provide a basis for the treatment of 

ART children with epigenetic disorders and other cardiometabolic disorders, 

and pave the way for further development of ART. 

2.1 The epigenome changes in the ART offspring 

ART is a non-physiologic intervention, which can be reflected in the nature of 

procedures such as ovarian stimulation, in vitro manipulation of gametes, in 

vitro embryo culture, transfer, as well as the cryopreservation. Besides, ART 

intervention occurs at a sensitive period for gametogenesis, maturation, and 

early embryo development. During this period, the gamete/embryo undergoes 

extensive epigenetic reprogramming, and it has been revealed that ART manip-

ulation may influence imprint establishment and imprint maintenance, as well as 

further affect the ART offspring's health [5]. Large-scale epidemiological studies 

have reported that the ART offspring have a higher ratio of preterm birth, low 

birth weight, birth defects, and infant mortality compared to those in natural 

pregnancy groups [6-8]. Moreover, it has also been suggested that ART-

children have elevated risk of suffering imprinting diseases and aberrant epige-

netic changes [9]. 
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Among the reported imprinting defects, Beckwith-Wiedemann syndrome 

(BWS) is the most relevant to ART [10]. This is a pediatric overgrowth syn-

drome with increased susceptibility to tumors that results from methylation de-

fects in the imprinting control region (ICR) of Insulin Like Growth Factor 2 

(IGF2)/Imprinted Maternally Expressed Transcript (H19) [11, 12]. The key char-

acteristics of BWS include macroglossia, abdominal wall defects and macro-

somia [13]. According to a study from the UK [14], 4% of infants with BWS 

(6/149) were born as the result of IVF/ICSI, while, in the general population (n= 

4,320,482), only 0.997% of births were derived from IVF/ICSI. Angelman Syn-

drome (AS) is another common imprinting disorder investigated within the con-

text of ART, and it is characterized by particular facies and growth and devel-

opment delays [15]. AS is a neuro-developmental disorder that results from mu-

tations or deletions in the chromosome 15 and is usually associated with the 

loss or mutation of the Ubiquitin Protein Ligase E3A (UBE3A) gene [16]. Be-

sides these, some imprinted genes also present aberrant epigenetic status in 

ART offspring. For instance, Whitelaw et al. [17] analyzed the DNA methylation 

level in genes from the buccal cells of IVF-children (mean age 2.90 years), IC-

SI-children (mean age 2.70 years), and natural conception-children (mean age 

2.81 years), and they found the imprinted gene Small Nuclear Ribonucleopro-

tein Polypeptide N (SNRPN) in the ICSI-children presented significantly higher 

DNA methylation levels compared with that from natural conception-children 

and from IVF-children.  

Notwithstanding the above, current studies are not conclusive on whether 

the epigenetic disorders associated with ART are attributable to the ART proto-

col itself or the infertility background of couples. Three possible interpretations 
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may account for this: (1) First, in the ART procedure, the in vitro manipulation 

(such as in vitro embryo culture and transfer) overlaps with widespread epige-

netic reprogramming [18], and this may influence the epigenetic modification of 

the embryo; (2) Second, the induction of superovulation may interfere with oo-

cytes epigenetic establishment by changing the development timeline, recruiting 

low-quality oocytes or influencing epigenetic regulatory enzymes [19, 20]. 

Based on investigations on super ovulated women and mice, Sato et al. report-

ed that [21] superovulation can lead to the production of oocytes without the 

correct primary imprint in both humans and mice; (3) And last but not least, the 

genetic background of the couples’ self-sterility may also contribute to the ge-

netic and epigenetic abnormalities in the offspring. There is no gainsaying the 

fact that most patients undergoing ART are typically of low fertility, advanced 

age, with a history of recurrent miscarriages, and involving male-factor infertility 

(such as azoospermia, asthenozoospermia, oligozoospermia, and terato-

spermia), either of which factors may contribute to abnormalities in fetal and 

neonatal development. Kobayashi et al. [22] also reported that the greater prev-

alence of imprinting disorders in ART children did not originate from the ART 

process alone, and a significant proportion of these epigenetic alterations pre-

existed in the father's genetic line. Moreover, it is currently well recognized that 

no one procedure is fully/solely responsible for epigenetic changes after ART. 

Each of these factors has the potential to influence the establishment and 

maintenance of epigenetic modifications and affect placentation and fetal de-

velopment. 

2.2 The epigenome changes in the ART placenta 
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The placenta is a multifunctional organ at the maternal-fetal interface, with a 

critical role in maternal-fetal communication, such as maternal-fetal immune 

responses, nutrition and metabolism. The placenta is also a barrier organ to 

protect the fetus from invasion by pathogens [23]. Further, the placenta may 

regulate the development of fetal brain, heart, bones, kidneys, and other organs 

and tissues [24]. Hence, it is no surprise that placental dysplasia is known to 

cause adverse perinatal outcomes and long-term risks in fetal health, such as 

adult metabolic syndrome, neurodevelopmental disabilities and tumors [25, 26]. 

Notably, the placenta originates in the trophectoderm (an outer layer of embryos 

in blastocyst stage) and therefore shows more sensitive response (e.g., epige-

netic regulatory changes) to environmental influences and the non-physiologic 

interventions during ART procedure [27]. Animal studies have revealed that the 

in vitro culture and later transfer of embryos contributes to abnormal placenta 

development [28, 29]. Meanwhile, observational studies on humans have simi-

larly revealed ART is associated with increased rates of placental abnormalities, 

such as adherent placentation and abnormal umbilical cord insertion [30, 31]. In 

a large sample observational study (n=536,567), researchers found ART-

derived placenta both larger and heavier than those derived from natural con-

ception [32]. Since the compromised function of the placenta is associated with 

abnormal fetus development, the assessment of placenta derived from ART-

conception is helpful to gaining deeper insight into the influence of ART tech-

nologies on offspring.  

Rhon-Calderon et al. [33] revealed that ART can influence the placenta by 

altering methylation status and the transcription of imprinted genes, which exert 

prominent roles in the placental function and fetal development [5]. St-Pierre et 
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al. [34] revealed that the DNA methylation levels of placental imprinted gene 

IGF2 were correlated with newborn’s weight, and the DNA methylation at the 

IGF2/H19 genes may be a potential moderator of fetal normal growth. In a re-

view article, Argyraki et al. [35] noted in summary that the imprinted genes 

IGF2/H19, Paternally Expressed 10 (PEG10) and Mesoderm Specific Transcript 

(MEST) in tissues such as placenta have extensive impacts on fetal growth and 

birth weight. The disruption of these imprinted genes is associated with preg-

nancy complications, metabolic disturbances, cognitive impairment, and can-

cers. Currently, imprint abnormalities in ART placenta have been revealed by 

both human studies and experimental animal models. Sakian et al. [36] investi-

gated the transcriptional levels of imprinted genes, H19 and IGF2, in human 

placental villi derived from IVF, ICSI, and natural conception using RT-qPCR, 

they found that H19 and IGF2 presented altered expression in IVF and ICSI 

placenta. They mentioned this might indicate a deletion of imprinting on paternal 

alleles. Wang et al. [37] investigated the transcription and DNA methylation lev-

els of two other imprinted genes, L3MBTL Histone Methyl-Lysine Binding Pro-

tein 1 (L3MBTL1) and PEG10, in human placenta and umbilical cord blood from 

newborns. They found that PEG10 showed both abnormal methylation status 

and transcription in both ART-placenta and umbilical cord blood from ART-

offspring. While L3MBTL1 only showed aberrant methylation and transcription 

in ART-placenta. In a mouse model, De Waal et al. [38, 39] found that ART pro-

cedures could increase placental epigenetic perturbations and morphological 

abnormalities by disturbing DNA methylation status of H19/IGF2, PEG3, 

SNRPN and KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) 

ICRs.  
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2.3 Transcriptome changes in aging oocytes 

Despite the increasing popularity and improvements of ART, the live birth rate 

of IVF remains unsatisfactory. Advanced age-associated oocyte quality decline 

is one of the main causes for low IVF success rates. The most recent statistical 

report [40] indicates that, in Australia and New Zealand, for women less than 30 

years old, the live birth rate was 40.4% (for autologous fresh cycles) and 33.9% 

(for autologous thaw cycles) per embryo transfer. While for the women aged 

more than 44 years, the live birth rate was 1.7% (for autologous fresh cycles) 

and 9.2% (for autologous thaw cycles) per embryo transfer. The low success 

rates of IVF mean that women undergo repeat IVF cycles, which may impose a 

heavy burden on women’s mental and physical well-being. The high treatment 

costs will also place a significant burden on the health care system.  

At the moment, the ICSI is the clear solution for impaired sperm quality, in 

this case, sperm could be microinjected into oocytes. However, oocyte aging 

and oocyte quality decline are still an unsolved problem. Fertilization of aged 

oocytes affects not only the embryo development but also the long-term health 

of offspring [41]. The investigation of the mechanisms underlying oocyte aging 

is helpful in developing targeted treatments to age-related oocyte quality decline 

as well as enhancing the success rates of ART technologies. Currently, several 

studies have investigated the impact of maternal age on human oocyte tran-

scriptome via high-throughput technologies. However, the results from these 

studies were inconsistent. Two microarray studies reported that the transcrip-

tome of oocytes at germinal vesicle (GV) stage shows no difference 

among women of different ages [42, 43]; while another single cell smart-seq2 

study reported the expression of 596 genes in human GV oocyte is altered with 
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age [44]. In addition, based on microarray analysis, Grøndahl et al. [45] exam-

ined the genome-wide gene expression profiles of oocytes at metaphase II (MII) 

stage and found 342 differentially expressed genes between the young and old 

age groups (i.e., <36 years old vs. 37–39 years old) which may be involved in 

the sister chromatid separation, chromosome alignment, cell cycle regulation, 

oxidative stress and ubiquitination. Interestingly, contradicting the above finding, 

another study based on Affymetrix Human Transcriptome Arrays (HTA 2.0) [46] 

reported that the mRNA transcriptome of human MII oocytes remained stable 

across ages. Considering the sample sizes in the above studies were relatively 

small, multi-center studies with large sample sizes are still required to increase 

the persuasiveness of the results.  

2.4 Introduction to epigenome and transcriptome 

Epigenome refer to modulation of gene expression without changes of DNA 

sequence, it mainly includes (1) DNA methylation; (2) histone modifications 

(such as histone phosphorylation, acetylation, methylation, ubiquitylation, etc.); 

and (3) chromatin remodeling. DNA methylation alters chromatin architecture, 

DNA conformation and stability, and the way DNA interacts with proteins [47]. 

While histone modifications modulate gene expression by affecting the chroma-

tin structure and chromatin accessibility to transcription factors [48]. For exam-

ple, high enrichment of tri-methylated-histone-H3-lysine-4 (H3K4me3) charac-

terizes open chromatin status and active transcription.  

Epigenetic modifications are instrumental in cell development and are envi-

ronmentally sensitive. The cells within an organism have the same genotype, 

but they can differ in phenotypes due to epigenetic heterogeneity which could 

result in differential gene expression [49]. Also, a person’s susceptibility to dis-
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ease is not only determined by the DNA inherited from parents but also deter-

mined by epigenetic mechanisms [49]. Epigenetic modification is sensitive to 

environmental influences and abnormal epigenetic modification has emerged as 

one of the important molecular pathogeneses for various diseases. Chromatin 

immunoprecipitation (ChIP) sequencing is a method that integrates high-

throughput DNA sequencing technology and ChIP to detect nuclear protein-

DNA interaction sites [50]. ChIP is a powerful tool for analyzing histone modifi-

cation sites and transcription factor binding sites. For example, using H3K4me3 

ChIP sequencing data can help to identify H3K4me3 enrichment levels at cer-

tain DNA sites, which is important because most H3K4me3 enrichment occurs 

at promoter regions (which are usually between the 3kb upstream of transcrip-

tion start site (TSS) and the 500 bp downstream of TSS) [51]. Moreover, active-

ly transcribed genes present high levels of H3K4me3 enrichment in promoter 

regions [52]. 

The transcriptome refers to all the RNA species transcribed within a cell or 

an ensemble of cells [53], such as messenger RNA (mRNA), transfer RNA 

(tRNA), ribosomal RNA (rRNA), and non-coding RNA (ncRNA). It is a mirror of 

genetic activity and is essential for transporting genetic information [54]. The 

central dogma of genetics reveals that genetic information unidirectionally flows 

from DNA to mRNA and then to proteins which finally determines cellular func-

tion and behavior. In this process, mRNA functions as a crucial bridge between 

DNA and protein. Transcriptome studies can help interpret the functional ele-

ments of the genome and reveal their molecular constituents [55]. Besides, 

transcriptome studies are also essential for understanding the biological mech-

anisms underlying human health and disease.  
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In recent years, the rapid developments in molecular biology have enabled 

rapid, high-throughput analysis, laying the groundwork for more in-depth tran-

scriptomics studies. Current high throughput approaches mainly include micro-

arrays (based on the hybridization detection) and RNA sequencing (based on 

massive parallel sequencing). Compared with traditional microarray hybridiza-

tion, transcriptome sequencing could analyze global transcription profiles with 

no need to design probes to target the known sequences in advance. It is a 

powerful technology that allows comprehensive and in-depth looks into the 

transcriptome. 

2.5 Aim of the study 

To begin with, although ARTs have rapidly developed and have entered wide-

spread use worldwide, more in-depth mechanism studies and large-scale life-

long follow-up is still required to validate ART safety. Hence, the study aims to 

explore the epigenetic differences in placenta and offspring derived from natural 

conception, IVF and ICSI. The findings from this investigation might provide 

new insights into the safety and knowledge of ARTs.  

Second, with the continuous advance of ART, success rates for ART are 

increasing but there is still much room for further improvement. Herein, we want 

to explore the transcriptomic changes during oocyte aging. Since oocyte aging 

is one of the main causes of ART failure, and remains an open question in the 

field of ART. It is believed that the results from this investigation will provide 

useful information for developing targeted therapies and improving ART suc-

cess rates. 
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Taken together, it is hoped the present work could provide a reference for 

further refinement of ART. 
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3. Summary (English) 

ARTs have been practiced clinically for over 40 years. But despite remarkable 

advances over the past four decades, two major problems remain outstanding 

and need to be explored in depth in the field of ARTs: (1) First, large sample-

size and population-based studies have reported birth defects and perinatal 

complications associated with ART. To improve the safety and quality of ART, 

deeper insights are required into the molecular mechanisms behind this phe-

nomenon; (2) Second, the overall success rates of ART are still not satisfactory. 

And impaired oocyte quality associated with advanced age is an important fac-

tor in low ART success rates. To improve the efficiency of ART practice, it is 

necessary to explore the molecular mechanisms underlying oocyte aging.  

3.1    Epigenome changes in ART-derived placenta and offspring 

The placenta is a critical component of the life support system of the fetus and 

could influence fetal development. Therefore, the present study investigated the 

epigenetic difference in placentae and newborns derived from IVF, ICSI, and 

natural conception. It was found that global H3K4me3 levels were reduced in 

ICSI-derived placentae, suggesting that ICSI technology may affect the placen-

tal epigenetic landscape. However, no significant difference was discovered in 

the global levels of H3K4me3  between the IVF and the natural conception 

groups. We also found the cord blood mononuclear cells from ICSI-offspring 

(but not IVF-offspring), especially ICSI-boy, presented more genes with altered 

H3K4me3 enrichment levels compared with those from natural conceived chil-

dren. Besides, the present study identified Polr2A as a novel regulator of 
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H3K4me3. It was also found that oxygen tension can impact H3K4me3 enrich-

ment, highlighting the importance of proper oxygen conditions during ART prac-

tice. Based on the above investigations, it is possible that H3K4me3 may act as 

a potential marker for assessing ART influences and this deserves further in-

vestigation. 

3.2    Transcriptome changes in aging oocyte 

Aging is the leading cause for impaired oocyte quality, which can further con-

tribute to ART failure. We compared the transcriptomes of oocytes from young 

and old age groups and identified hundreds of genes with significant changes in 

transcript levels during oocyte aging. Functional enrichment analysis revealed 

these genes were enriched during DNA replication, cellular metabolism, and 

histone modifications. Notably, among these genes, the expression of FAM111 

Trypsin Like Peptidase A (FAM111A) presented robust correlations with age in 

different datasets and analytical methods. FAM111A may also be involved in 

the regulation of cell cycle and chromosome segregation. As far as is known, 

neither another such study nor similar results have been reported. These find-

ings could advance the understanding of the mechanisms behind oocyte aging, 

and potentially support the development of targeted treatments to age-related 

decline in oocyte quality. 

Collectively, based on the comparison of epigenome in placentae and off-

spring derived from IVF, ICSI, and natural conception, the present study found 

that: (1) the placentae and newborn cord blood from ICSI, but not IVF group 

displayed altered H3K4me3 levels; (2) ICSI-boys presented more genes with 

altered H3K4me3 enrichment compared with ICSI-girls; and (3) H3K4me3 might 

be a promising biomarker for evaluating ART influence. On the other hand, 
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through exploring transcriptomic alterations during human oocyte aging, it found: 

(1) hundreds of genes underwent significant transcriptional changes during oo-

cyte aging. (2) Among these age-related genes, FAM111A has potential as a 

novel molecular marker for oocyte aging. All the findings above could provide a 

reference for potential therapeutic targets and help improve the safety, quality, 

and efficiency of ART practice. 
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4. Zusammenfassung (Deutsch) 

ARTs werden seit über 40 Jahren klinisch praktiziert. Trotz bemerkenswerter 

Fortschritte in den letzten 40 Jahren gibt es immer noch zwei große Probleme 

auf dem Gebiet von ARTs, die noch weiter erforscht werden müssen: (1) 

Erstens haben große Stichproben und bevölkerungsbezogene Studien über 

Geburtsfehler und perinatale Komplikationen im Zusammenhang mit ART 

berichtet. Um die Sicherheit und Qualität von ART zu verbessern, ist ein tieferer 

Einblick in die molekularen Mechanismen hinter diesem Phänomen erforderlich. 

(2) Zweitens ist die Gesamterfolgsquote der ART immer noch nicht 

zufriedenstellend. Die mit fortgeschrittenem Alter einhergehende verminderte 

Eizellenqualität ist ein wichtiger Faktor für die geringe Erfolgsquote der ART. 

Um die Effizienz der ART-Praxis zu verbessern, ist es notwendig, die 

molekularen Mechanismen der Eizellalterung zu erforschen. 

4.1    Epigenetische Veränderungen in ART-abgeleiteten Plazenta und 

Nachkommen 

Die Plazenta ist ein wichtiger Bestandteil des Lebenserhaltungssystems des 

Fötus und könnte die fötale Entwicklung beeinflussen. Wir untersuchten die 

epigenetischen Unterschiede in Plazenta und Neugeborenen aus IVF, ICSI und 

natürlicher Empfängnis. Wir haben festgestellt, dass die globalen H3K4me3-

Spiegel in der ICSI-Plazenta reduziert waren, was darauf hindeutet, dass die 

ICSI-Technologie die epigenetische Landschaft der Plazenta beeinflussen 

könnte. Die globalen H3K4me3-Konzentrationen zeigten jedoch keinen 

signifikanten Unterschied zwischen IVF-Plazenta und Plazenta aus natürlicher 
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Empfängnis. Wir haben auch festgestellt, dass die mononukleären Zellen des 

Nabelschnurblutes von ICSI-Nachkommen (aber nicht von IVF-Nachkommen), 

insbesondere von ICSI-Jungen, mehr Gene mit veränderten H3K4me3-

Anreicherungsgräden aufwiesen als die von Kindern mit natürlicher Empfängnis. 

Außerdem identifizierte unsere Studie Polr2A als einen neuartigen Regulator 

von H3K4me3. Wir haben noch festgestellt, dass die Sauerstoffspannung die 

H3K4me3-Anreicherung beeinflussen kann, was die Bedeutung einer 

angemessenen Sauerstoffversorgung in der ART-Praxis unterstreicht. Auf der 

Grundlage der obigen Untersuchungen ist es möglich, dass H3K4me3 ein 

potenzieller Marker für die Bewertung der Wirkungen von ART sein könnte und 

weitere Untersuchungen verdient. 

4.2    Transkriptomischen Veränderungen in alternden Eizellen 

Das Altern ist die Hauptursache für die Beeinträchtigung der Eizellenqualität, 

was weiter zum ART-Fehler führen kann. Wir haben das Transkriptom von 

Eizellen junger und alter Gruppen verglichen und Hunderte von Genen 

identifiziert, deren Transkriptionspiegel sich während der Alterung der Eizellen 

signifikant verändert. Die funktionelle Anreicherungsanalyse, dass solche Gene 

in den Bereichen DNA-Replikation, Zellstoffwechsel und Histonmodifikationen 

angereichert sind. Bemerkenswert ist, dass unter diesen Genen die Expression 

von FAM111 Trypsin-ähnlichen Peptidase A (FAM111A) in verschiedenen 

Datensätzen und Analysemethoden hohe Korrelationen mit dem Alter aufweist. 

FAM111A könnte an der Regulierung des Zellzyklus und der 

Chromosomensegregation beteiligt sein. Soweit bekannt, wurden weder eine 

weitere derartige Studie noch ähnliche Ergebnisse berichtet. Diese Ergebnisse 

könnten unser Verständnis der Mechanismen hinter der Alterung von Eizellen 
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wecken und möglicherweise die Entwicklung gezielter Krebstherapien gegen 

die altersbedingte Verschlechterung der Eizellenqualität unterstützen. 

Insgesamt haben wir durch den Vergleich des Epigenoms in der Plazenta 

und in den Nachkommen aus IVF, ICSI und natürlicher Empfängnis festgestellt: 

(1) Die Plazenta und das neugeborene Nabelschnurblut der ICSI-Gruppe 

wiesen veränderte H3K4me3-Spiegel auf, während sich die in der IVF-Gruppe 

nicht verändert haben; (2) Im Vergleich zu ICSI-Mädchen wiesen ICSI-Jungen 

mehr Gene mit veränderter H3K4me3-Anreicherung auf; (3) H3K4me3 könnte 

ein vielversprechender Biomarker für die Bewertung der Wirkungen von ART 

sein. Andererseits haben wir bei der Untersuchung der transkriptomischen 

Veränderungen während der Alterung menschlicher Eizellen festgestellt: (1) 

Hunderte von Genen erfuhren während der Alterung von Eizellen signifikante 

transkriptionellen Veränderungen; (2) Unter diesen altersbedingten Genen hat 

FAM111A das Potenzial als neuartiger molekularer Marker für die Alterung von 

Eizellen. Alle oben genannten Erkenntnisse könnten als Referenz für 

potenzielle therapeutische Ziele dienen und dazu beitragen, die Sicherheit, 

Qualität und Effizienz der ART-Praxis zu verbessern. 
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