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Disaster and Pandemic Management Using
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Abstract—This article provides a literature review of state-
of-the-art machine learning (ML) algorithms for disaster and
pandemic management. Most nations are concerned about dis-
asters and pandemics, which, in general, are highly unlikely
events. To date, various technologies, such as IoT, object sensing,
UAY, 5G, and cellular networks, smartphone-based system, and
satellite-based systems have been used for disaster and pandemic
management. ML algorithms can handle multidimensional, large
volumes of data that occur naturally in environments related to
disaster and pandemic management and are particularly well
suited for important related tasks, such as recognition and clas-
sification. ML algorithms are useful for predicting disasters
and assisting in disaster management tasks, such as determin-
ing crowd evacuation routes, analyzing social media posts, and
handling the post-disaster situation. ML algorithms also find
great application in pandemic management scenarios, such as
predicting pandemics, monitoring pandemic spread, disease diag-
nosis, etc. This article first presents a tutorial on ML algorithms.
It then presents a detailed review of several ML algorithms and
how we can combine these algorithms with other technologies
to address disaster and pandemic management. It also discusses
various challenges, open issues and, directions for future research.

Index Terms—Crowd evacuation, disaster management,
healthcare, machine learning (ML), pandemic management,
social distancing.

I. INTRODUCTION

VER the last decade, more than 2.6 billion humans have
O suffered from catastrophic disaster outbreaks, such as
tsunamis, floods, earthquakes, cyclones and landslides, and
various pandemics. Disasters have been the cause of several
fatalities in the past, one of the deadliest disasters was an
earthquake in New Guinea which left around 58300 peo-
ple displaced according to the displacement tracking matrix
(DTM) [1]. The floods that took place in China in July 1931,
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caused 4000000 deaths that are yet the highest number of
deaths from a natural disaster. Disasters are usually physi-
cal environmental changes, whereas pandemics refer to the
rapid spread of a disease over a wide area. There also have
been several pandemic outbreaks across the world. To name a
few, there’s the American plague (16th century), yellow fever
in Philadelphia (1793), HIN1 swine flu (2009-2010), Ebola
pandemic (2014-2016), and the recent COVID-19 (2019-
Present). The deadliest one was Black death (14th century)
that had spread from Asia to Europe, causing many deaths.
Recently, disaster and pandemic management has become one
of the hotspot areas for research. There are some recent
and important works done for prevention and management
of COVID-19. Samuel Lalmuanawma and Chhakchhuak [2]
presented a detailed review of applications of machine learning
(ML) and artificial intelligence (Al) for tackling this pandemic.
This article focuses on screening, predicting, forecasting,
contact tracing, and drug development for the COVID-19 pan-
demic. Disasters can be either natural or man made [3]. Such
situations are spontaneous and complex, risking human lives,
the environment, and the economy of a country. Therefore,
any nation would like to opt for the most efficient and accu-
rate algorithms to control such ordeals. The methodology
used to predict the foreseen consequences of a disaster or
pandemic plays a significant role in its management. With
more accurate predictions and understanding, we can utilize
our resources more efficiently. The advances in computer sci-
ence have made available a large volume of data for disaster
management authorities. Such data is often unstructured, mak-
ing it challenging to clean and process such high volumes
of data.

To date, many people suffered greatly because of the lack
of a proper disaster and pandemic management system. A
proper prediction of a disaster could not be done, and vic-
tims were not evacuated on time from the disaster outbreak
area. People were not provided with mitigation measures post-
disaster. Also, during the pandemic, efficient steps could not be
followed to prevent further spread of the outbreak. To address
such issues, this article provides a detailed review of all the
existing procedures and techniques that can be employed dur-
ing the post, and predisaster period to minimize the losses as
much as possible.

The systems developed for assisting with disaster prediction
need to be robust enough to handle the challenges that can
affect a disaster management system [4]. For instance, in case
of a sandstorm or a hurricane, the vision of a system can
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be lowered due to the presence of dust particles, or, in hazy
conditions, autonomous driving system should be safe [5].
Another challenge could be the loss of communication dur-
ing a disaster. Furthermore, other challenging tasks include
maximizing the number of people protected during a disaster
or a pandemic, evacuating people at the right time, identify-
ing the vulnerable areas for the spread of a pandemic, reaching
the most affected people/areas and providing them with suffi-
cient resources, evaluating the loss to the economy, and many
more [6]. Decision-makers are often provided with large vol-
umes of data and need to make predictions and decisions as
quickly as possible [7], [8]. Deep learning techniques can be
used for image classification and 3-D segmentation for medical
purposes [9].

ML has recently emerged as one of the key computing tech-
nologies and is increasingly being applied in day-to-day life,
and various industrial domains [10]. ML is an application of
Al that uses algorithms that work on characteristics of avail-
able data to make further predictions. Nowadays, in the era
of various other emerging technologies, such as unmanned
aerial vehicles (UAV), Internet of Things (IoT), and satellite-
based technology, the network is becoming more autonomous.
Such systems require several local decisions to be made, such
as bandwidth selection, data rate selection, power control,
and user association to a base station. We can use ML algo-
rithms to address these issues and lower human intervention
in uncertain and stochastic environments. To summarize, ML
algorithms have the following advantages over other existing
technologies.

1) ML algorithms can easily process a high volume of data
and can use it to identify trends. Moreover, the ML algo-
rithms help in easily analyzing various types of data.
The application of ML in day-to-day life, such as traffic
predictions, video surveillance, online customer support,
has also increased its popularity.

2) Rule-based technologies in ML can help in detecting
fake messages. The use of ML algorithms reduces the
need for human intervention and decision making. Such
techniques help prevent rumours, especially in the case
of man-made disasters.

3) The performance of ML algorithms tends to improve
as the data increases. For example, in an earthquake
prediction model, when the data increases, the algo-
rithm’s ability to predict also increases.

4) ML algorithms can handle multidimensional data and
detect outliers in the data-set. In situations dealing with
extreme hazards, outlier analysis is an important tech-
nique. Rather than removing all these outliers, special
attention should be given to them when we are try-
ing to predict highly unlikely events like disasters or
pandemics.

Various ML algorithms can be employed in such cases to
make fast and reliable decisions. The further subsections of
this article discuss how these algorithms can be applied to
make decisions with better accuracy. These algorithms have a
wide variety of applications and can help in decreasing human
intervention [11]. Moreover, certain trends can also be identi-
fied to make better predictions based on previous data. These
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algorithms can also be applied to detect and break the chain
of the spread of diseases.

Although there are several surveys related to the use of ML
algorithms, very few focus on the applications of ML in disas-
ter and pandemic management. Sughasiny and Rajeshwari [12]
presented a survey of ML models and big data analytics in
the healthcare field. Shirahatti et al. [13] presented the use of
ML algorithms to detect plant disease. Nguyen [14] give an
overview of the use of Al for management of the COVID-19
pandemic by using it for image processing, data analytics,
etc. Similarly, Chakraborty et al. [15] discussed comprehen-
sive studies that use IoT in smart healthcare, Al, and big data
analytics with a prime focus on COVID-19 pandemic. To the
best of our knowledge, there is no detailed survey that exclu-
sively focuses on the use of ML algorithms for disaster and
pandemic management. In this article, we present a basic tuto-
rial of ML algorithms and a comprehensive literature review
on the applications of ML algorithms for disaster and pan-
demic management. The main contributions of this work are
as follows.

1) We discuss the various ML algorithms that can be used
in different phases of disaster management to construct
deployable models.

2) We present a detailed review of various technologies
used in disaster and pandemic management and how ML
algorithms can be used by them for this end.

3) We discuss how different ML models integrated with
other technologies can be deployed at various phases of
disaster and pandemic management.

4) We carry out an assessment of the open issues, chal-
lenges, and future research directions for ML-based
disaster and pandemic management.

The remainder of this article is organized as follows.
Section II presents a tutorial on ML algorithms. Section III
reviews the applications of ML in predisaster scenarios.
Section IV presents the applications of ML to determine crowd
evacuation routes. Section V reviews ML related works in
post-disaster management. Section VI presents the applications
of ML in pandemic management. Challenges, open issues, and
future research directions are discussed in Section VII. Finally,
Section VIII presents the conclusion of this article.

II. MACHINE LEARNING OVERVIEW

In this section, we present a basic overview of various
ML algorithms that can be used for disaster and pandemic
management.

A. Supervised Learning

In supervised ML algorithms, the training data provided to
the computer is labelled, and a set of expected output results
are provided. We expect the machine to learn the pattern from
this data and predict the output values for new data inputs.

1) Classification Techniques: Classification techniques are
used in the estimation of membership of the community for
data instances, and classify a data item into one of many
predefined classes [16]. Some of the classification techniques
are mentioned below:
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a)

b)

c)

a)

b)

)

d)

K-Nearest Neighbors (KNN): K-nearest neighbours
(KNN) - KNN is a location-based approach used for
classification and sometimes regression. The authors
of [17] have compared KNN with other algo-
rithms to detect Acute Respiratory Infections (ISPA).
Similarly, [18] has used KNN to detect Influenza in
patients.

Support Vector Machine (SVM): Support Vector
Machine (SVM) - This algorithm works by identifying
a hyper-plane that classifies the data points. SVM aims
to find a plan with the maximum range. To reduce costs,
authors of [19] have used SVM to choose the best repre-
sentative crowd reflecting pilgrims’ behaviour. In fact, in
the model in [17], SVM showed the highest accuracy in
comparison to other algorithms for detecting whether a
person is suffering from ISPA. Furthermore, the authors
of [20] have proposed the use of SVM to classify aerial
images into flood-affected and non-flood affected areas.
Naive Bayes: Naive Bayes - Naive Bayes classifiers
are a set of Bayes Theorem-based classification algo-
rithms. The authors of [21] have proposed naive Bayes
combined with UAV technology to assess post-disaster
damage. Also, authors of [22] have combined Deep
Belief Networks (DBN) with naive Bayes to detect the
user’s location. In models mentioned in [23] and [24],
naive Bayes outperformed all other classifiers to classify
tweets.

2) Regression Techniques: The regression technique is
a predictive learning feature that maps a data object to
a predictive variable with real meaning [25]. Following
are a few common regression techniques:

Logistic Regression: Logistic regression is based on
probability and uses sigmoid as its cost function.
Authors of [23] and [24] have used logistic regression
to extract useful post-disaster information from tweets.
Furthermore, authors of [26] have used logistic regres-
sion to determine the survival rate of people during a
disaster.

Decision Trees: In a decision tree, features are repre-
sented by internal nodes, decision rules by branches,
and outcomes by leaf nodes. Authors of [27] have used
decision trees for sandstorm detection. Furthermore, the
authors of [28] have used decision trees to determine the
location of the user during a pandemic.

Bayesian Ridge Regression: A Bayesian approach is a
probabilistic method for estimating statistical models.
An application of this model is given in [29], where the
authors have used Bayesian ridge regression to predict
the number of people in an area.

Random Forest: Random forest is an ensemble (multiple
models combined) model technique in which multiple
decision trees are trained together to produce one out-
put. Authors of [30] have used a random forest to detect
changes post-disaster. Similarly, authors of [31] have
used them to detect damages to buildings. The random
forest model in [32] outperformed the rest with 95%
accuracy in predicting the number of people infected
with influenza in public places.

€)
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Gradient Boosting: Boosting is a method by which weak
learners are converted into strong learners. Authors of
[32] have used gradient boosting to predict the number
of people infected by Influenza. Also, authors of [33]
have used gradient boosting to patterns for people who
left from the disaster-affected area.

f) Artificial Neural Networks (ANN): ANNs are fully-

g)

h)

a)

b)

¢)

connected, multi-layer neural networks. The authors of
[34] have proposed the use of ANN to identify or calculate
a storm’s intensity. Also, ANN, in integration with IoT
technology, can be used to detect the user’s location [35].
Deep NNs: Neural networks lack creativity, whereas
DNN is a better and adapted model that can be used
for various applications that require creative conclusions.
The authors of [36] have used DNN to determine a
crowd evacuation route, and the model achieved 78%
accuracy. Moreover, the authors of [37] propose a deep
neural architecture which can be used for crowd evacu-
ation. Also, authors of [38] and [39] have used DNN to
predict the number of people in an area.

CNNs: CNN can classify images with better accu-
racy and are better at capturing orientation than ANN.
Authors of [40] have proposed CNN to highlight the risk
in areas after a disaster. Authors of [41] use an approach
based on CNN to identify the areas affected by disaster
and achieve 81-90% accuracy. Furthermore, the authors
of [42] have used a CNN-based model for internet of
healthcare things (IoHT).returning

B. Unsupervised Learning

Unlike supervised machine learning algorithms, the data
fed to the computer in unsupervised learning is unla-
beled. These algorithms try different techniques to detect
patterns or explore the structure of information.

1) Clustering: In clustering, a common descriptive
function [43] in which a finite set of clusters are used
to classify the data is pursued. Few common clustering
techniques are as given below:

K-Means: Authors of [44] used K-means to detect which
areas were damaged and affected by flood. Authors
of [45] have used K-means for clustering crowd behav-
ior. Similarly, it is used to classify the crowd into
different classes by the authors of [46]. Authors of [47]
used it to predict the spread of cholera disease.
K-Medoids: 1t is another clustering technique that is
based on dissimilarities between data points. It works
well with outliers. Authors of [48] have used the K-
medoids algorithm to plan an evacuation route.

Fuzzy C-Means: This also begins by randomly assign-
ing centroids and initializing the data points randomly to
clusters. Authors of [49] have proposed a hybrid model
of Fuzzy C-means with a neural network to classify
Landsat images, that can be used in predicting disasters.

C. Reinforcement Learning

Reinforcement learning is a type of machine learning that

can be regarded as a self-sustainable system, learning itera-
tively. In Q-learning, decision making happens sequentially.
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Authors of [48] and [49] have used reinforcement learning to
determine an evacuation route.

III. APPLICATIONS OF MACHINE LEARNING MODELS IN
PREDISASTER MANAGEMENT

Disaster management aims to reduce the impact of a disaster
and save as many lives as possible. This section presents a
comprehensive review of ML models in association with other
technologies, such as IoT, UAVs, geodesics, satellite, remote-
sensing, and smartphone-based that are used for predicting a
disaster, crowd evacuation, and post-disaster scenarios.

A. Predicting Disaster

If a disaster is predicted in time, warning signals can be
floated to people, and they can take the necessary safety mea-
sures. The accurate prediction of a disaster lies in analyzing
spatial and temporal data of an area and predicting the char-
acteristics of a disaster, such as the water level of a flood or
the magnitude of an earthquake. In the subsequent sections,
we will discuss the use of different technologies in disas-
ter prediction and how various ML-based models can help
in enhancing the efficiency of other methods in predicting
disasters.

1) IoT and ML-Based Models for Disaster Prediction: 10T
is an arrangement of interconnected machines used to col-
lect data over a network without human interference [60].
It has enabled the deployment of a large number of appli-
cations in various fields. Saha et al. [61] presented the use
of sensors on trees for predicting fire outbreaks in forests.
The sensors measure features, such as temperature, CO levels,
greenhouse gases, and moisture. Similarly, microwave sen-
sors can be used to analyze the earth’s movements for the
prediction of earthquakes.

ML algorithms can be used to process the data col-
lected by IoT devices and provide better accuracy. Flood
management raises a variety of obstacles for IoT-based strate-
gies. It involves a complex set of parameters with multiple
interdependencies, including rainfall, pressure, and rate of
flow. The sensor network has to be configured according to
the parameters selected. The number of sensors and their
interconnection relies significantly on the river’s measure-
ments. Anbarasan et al. [62] presented an approach in which
ML is used for detecting a flood. It uses Hadoop MapReduce
for the removal of duplicate values. Then the rules are gen-
erated based on four attributes, namely, rain sensor, humidity,
water flow sensor, and water level sensor. The rules are fur-
ther used in a CNN. The proposed NN classifies the data into
positive and negative for the occurrence of floods.

The model in [63] uses multiple sensors connected to ana-
log to digital converter (ADC) like temperature, moisture,
water level, and CO level. The data is sent to a raspberry-
pi device in digital form. Then, this data is analyzed with
the Q-learning algorithm based on penalty and reward. Q-
values are used to analyze the risk of any activity in mines.
Similarly, the model in [64] uses ANN and logistic regres-
sion for rainfall prediction. An integrated framework focused
on IoT and ML is proposed in [65] to forecast flood risk in
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a river basin. To capture data, the software uses a revamped
mesh network interface via ZigBee to the WSN and a GPRS
module to transfer data over the Internet. The data sets are
then analyzed using an ANN. The findings of the study indi-
cate a significant change in the approaches already in use. The
selection of sensor network deployable areas is also a big chal-
lenge. Additionally, certain QoS parameters, such as latency,
instability, severity thresholds, etc., should be checked before
implementation. Hassija et al. [66] have explained how vari-
ous ML algorithms can be implemented to address the security
concerns of IoT models.

The recent development of UAVs has solved the accessi-
bility issue for areas that are difficult to reach and monitor
because of human and logistic constraints [67]. They amplify
satellite images with observation gaps and are a scalable
and portable solution that can provide high-resolution images.
However, the cost of UAVs makes their deployment an
obstacle for developing countries. Koh and Wich [68] and
Hassija et al. [69], [70] presented cost-effective drones that
have a longer range and bigger payload and can be effectively
used for mapping real-time data and monitoring nearby activ-
ities. Also, conservationdrones.org, a nonprofit organization,
is actively building low-cost UAVs without compromising any
of its features. Yim et al. [71] presented a Smart-eye model
wherein UAVs use LTE to communicate with Smart-eye cen-
ters. This model uses image stitching technology in which
it compares the real-time images with the previous original
images of an area. It uses a closed-circuit television (CCTV)
camera, which makes it cost effective. The minimum altitude
and velocity of UAVs need to be always regulated in this
model. Furthermore, this model lacks a larger flight time. The
model in [72] presents a solution to tackle these parameters
using a Web-based platform in the case of Rotolan landslides.
Furthermore, the model in [73] uses mobile nodes to provide
resilience when a node fails during a disaster. A sensor node,
connected to UAV and acting as a mobile node is deployed
in [74] and is capable of communicating with WSN in the
area. The limitation of this model is that it cannot survive
during extreme weather conditions, and its low battery life is
still a challenge. Though, after utilizing a mobile anchor node
for localizing unknown nodes, WSN provides us with a bet-
ter fault tolerance than other UAV models [75]. It focuses on
predicting floods and deploys a pressure sensor that is used
to easily estimate the height of the water level. Flooding is
predicted based on observation of a sudden increase in water
level. Also, this model needs less aerial space and can easily
land on irregular grounds due to its rotary wings as compared
to conventional fixed wings. With the use of UAVs, there is a
threat to the privacy of the user’s data because it is deployed
in an open atmosphere. Alladi et al. [76] proposed that we use
blockchain for ensuring the data security.

Remote sensing (RS) images are extensively utilized in
diverse fields. After the collection of images from drones, they
need to be classified efficiently. ML algorithms are well suited
for this task. In the work proposed in [77], water features are
distinguished from nonwater features to identify flooded areas
from Landsat 7 (L7) images incorporated with digital elevation
model (DEM) data.
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Unlike [77], the model presented in [84] uses passive
Landsat 7 and active RadarSat images to analyze floods and
develop a flood hazard map. The classification of water and
land areas are easy in RadarSat images, and results were com-
pared with Landsat images. High-resolution Landsat images
could be used to provide information about floods, except for
the monsoon season due to the cloud cover. However, RadarSat
images can analyze during the monsoon season also. A map
highlighting all the information about the risk of floods was
developed using the above and GIS data.

Akshya and Priyadarsini [24] used a hybrid of SVM and
K-means to detect flooded areas. It classifies aerial images
collected by drones into flood-affected and nonflood affected.
This model achieved an accuracy of 92%. This model may also
be deployed on drone sensors so that they can automatically
detect the areas.

Singh et al. [56] aimed at forming a three-band image
with higher resolution, also known as a fused image, using
Brovey transform. Principal component analysis (PCA) is used
to reduce this to a 1-D image. Then, a neuro-fuzzy approach
that uses KCN and FLCIM algorithms are used. The FCM
model depends on the value of m (fuzziness index) and leads
to wrong results. The use of this hybrid approach, called fuzzy
Kohonen local information C-means (FKLICMs), overcomes
the limitations of both these models. This model also shows
a higher accuracy than the FCM approach. The high accu-
racy and nonparametric nature of random forest classifier can
be used for land cover classification [36]. The RF classifier,
due to its advantages mentioned in Section II in this article,
shows better accuracy. The key downside of the model is that
because of the numerous classification trees produced by the
resampling of the same data set, it becomes challenging to
grasp the rules used to produce the final classification.

This has contributed to the advent of object-based image
processing (OBIA) methods that have been developed to
resolve these problems. The RS community has made signif-
icant efforts for almost 20 years now to encourage the usage
of object-based technologies for land-cover mapping [88].
Supervised algorithms combined with object-based detection
methods have always been an important part of land-cover
mapping RS work since 2010 [89]. Many choices, such as
segmentation system, accuracy evaluation, classification algo-
rithm, training data, input characteristics, and objective groups
must be chosen for object-based classification processes. To
address these requirements, many authors have proposed
supervised object-based classification methods particularly
accommodated to each use case. Ma et al. [87] highlighted
that Landsat series RS images are mostly used in controlled
object-based detection due to their strong quality and usability.
Moreover, the blurry rule-based classification strategy meets a
plateau in object-based classification, while supervised object-
based classification reaches a production height. RF shows the
best results in an object-based grouping, followed by SVM. In
fact, NNs remain unsuitable for more comprehensive usage in
the description of objects. However, this approach still needs
to be verified for urban areas.

The model presented in [37] uses a random forest com-
bined with object-oriented image analysis (OOA) for landslide
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detection tested on sample data sets of Haiti, Italy, China and
France, which were recently affected by landslides. Integrated
variable measurement and selection processes, and high-
quality program applications that are freely available, allow
random forests to integrate with OOA, as illustrated in Fig. 1.
The authors found a clear over-prediction of landslide areas for
all situations if a class-balanced sample was utilized in train-
ing. Over-prediction was more prominent for Barcelonnette
(France) and Messina (Italy), where visual inspection of the
photographs already indicated a large difference in class when
compared to the other two regions. More work is required to
refine the segmentation process, which is currently focused
solely on spectral details. Therefore, a preliminary sample-
based estimation of the variable value can be an important
method for determining which additional layers would be
included in the segmentation.

Demaria et al. [90] performed an analysis to observe inten-
sity guidance accuracy of tropical cyclones over a period of
two decades. The models proposed to forecast the strength
of the hurricane up to 120 h advance, but forecasts of
severity are less reliable relative to forecasting the path of
the storm [90]. The weather researched forecast (WRF) is
a regional predicting framework that monitors sandstorms
dependent on the previous day’s environmental conditions.
Shaiba et al. [32] predicted whether, in the following hours,
a sand storm would occur or not, by utilizing ML algo-
rithms, such as classification and regression tree (CART)
analysis, logistic regression, and Naive Bayes classifiers. The
system classifies sandstorm or no-sandstorm events and sends
alert signals to people. The results show that CART analy-
sis performed better than Naive Bayes and regression-based
classifiers.

CNNs are resilient to darkness, and capable of suffi-
ciently and most critically obtaining the catastrophe attribute
to resolve misleading by variables, which would impact
the efficacy of disaster prediction. By trimming and scaling
aerial imagery gathered from Google Earth Aerial Imagery,
Amit and Aoki [40] generated training data patches for before
and after disasters. Both patches are qualified using CNN to
isolate the area which is recognized as a catastrophe zone.
The accuracy was 80%—90% for this system. Tang et al. [85]
presented an apriori-based association rule algorithm for
detecting the intensity of tropical cyclones. According to the
associativity algorithm, if items X and Y are selected at ran-
dom, we can be certain that item Z was also selected. For
the association rule, the user specifies minimum support. The
issue with this model is that we need to decrease the mini-
mum support and multiterm associations need to be selected.
To solve this issue, Buranasing and Prayote [42] used sym-
bolic aggregate approximation (SAX) combined with ANN to
approximate the intensity of storms by using eight features.
These features were reduced by piecewise aggregate approxi-
mation (PAA) and were given as inputs to NNs. The F-measure
for this model was 0.93.

With the recent development of airborne-LiDAR, it is
extensively used in diverse fields, such as medical, military,
agriculture, pollution, and architecture [91]. It provides 3-D
high-resolution samples of earth’s topographical features and
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other objects. These detected features may be used to predict
disasters, such as floods, landslides, earthquakes, etc. with bet-
ter accuracy. Geodesic curves are used to estimate the mean
curvature for each vertex [82]. It can detect terrain features
according to a variety of surfaces: 1) pass; 2) channel; 3) pit;
4) ridge; and 5) peak. Then, the Gaussian-weighted average
is computed for those curvatures. The currently used method
in [82] can be sped up by using a multiresolution mesh. Also,
more features could be taken into account, such as normals
and principal curvatures.

Earth observational evidence in mapping disaster manage-
ment is also used by group on earth observations (GEOs)
and the committee on earth observation satellites (CEOSSs).
The application infrastructure provider (AIP) process of GEO
has evolved and recently adopted the reference model of
open distributed processing (RM-ODP) [92]. The global Earth
observation system of systems (GEOSSs) (2005-2012) [93]
aims at disaster reduction and management. By combining
the earth’s observations with other information, it aims at
spreading early warning signals, better preparedness, and risk
assessment for rebuilding houses post-disaster. CEOS is work-
ing on increasing the use and raising awareness of Earth’s
observation (EO) data for disaster management. It has under-
taken a project to reduce the use of ad hoc arrangements
in the management system that have become an obstacle in
processing EO data. Authors of [94] presented us with a
solution for these obstacles, in which research and improved
EO to help tackle the issues encountered by remote agen-
cies in processing satellite data. However, some things remain
unclear, like the resources shared, their interdependencies, the
effect of shape data policies, and how new users can access
services [83]. Percivall et al. [83] presented a CEOS GA.4.D
architecture with an emphasis on using ground controlled
interception (GCI) to address issues, such as user authoriza-
tion and combining socio-economic data with EO for better
observations. It also identifies gaps in services and focuses
on limited resources for victims. However, this architecture
requires more unrestricted access to disaster data. Attempts
to use this architecture at regional and local levels are in
progress.

Emergency departments (EDs) are usually equipped with
syndromic surveillance systems that generally use statistical
detection algorithms like CUmulative SUM (CUSUM) [95],
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auto-regressive integrated moving average (ARIMA), the Holt-
Winters algorithm, and the early aberration reporting system
(EARS). The performance of these algorithms depends on a
tradeoff among false-positive rate, sensitivity, and timeliness.
The work by authors of [96] shows that the models mentioned
above require intensive parameter tuning, and simply using
the preset parameters is not always optimal for a given algo-
rithm or data set. Moreover, they showed that data needs to be
examined regularly to fine-tune the parameters in these algo-
rithms according to the data used. These observations limit the
abilities of small syndromic systems to predict a widespread
outbreak.

B. Early Signals

If early signals are delivered to people in an area at the right
time, numerous causalities can be prevented. Such systems
can be installed in offices, homes, or other public places to
warn people in time. Sensor networks are recommended for the
systems to track disasters (e.g., the Building Administration
System) and address this issue [97], [98]. Such devices need a
wide range of separate sensors, such as smoke, heat, radiation,
etc., installed in advance in houses, and such technologies may
have significant costs to be incurred.

Yawut and Kilaso [99] have proposed a program to suggest
a model that is specialized for weather detection. However,
we can only utilize such systems in limited instances where
the sensor grid has formerly been installed. Even then, if the
system cannot operate due to power loss, sensor damage, bro-
ken transmission lines, and so on, then this sensor network
cannot function properly. The model in [25] aims to improve a
previous model emergency response support system (ERESS)
based on mobile ad hoc network (MANET) using ML [100].
ERESS mobile terminal (EMT) accumulates data from its
sensors. Every EMT uses its personal sensors, which allows
it to operate everywhere. The disaster-recognition algorithm
method is described as follows.

1) An EMT uses SVM for detecting some temporary risk.

2) If the EMT senses a temporary risk, it floods the details
to those in the area.

Each EMT regularly measures temporary risk identifi-
cation accumulation.

3)
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4) Every EMT matches the logistic model with a regression

curve.

5) A disaster is determined if the curve is convergent to

the values of all EMTs within a building in a period of
1 min or less. This method of detection also makes the
system autonomous.

The buffering and bagging SVM (BB-SVM) model’s
EMT [25] has two buffers: 1) state judgment buffer and 2)
disaster detection buffer. The model comprises of two phases.
The first phase is shown in Fig. 2. First, each EMT gener-
ates inputs from all sensors and transfers them to a SVM
model. When the input data is determined to be that of a
crisis, the EMT amasses the outcome in its state judgment
buffer. The outcome stays in the buffer before time to live
(TTL) runs out. If the reserve for the state judgment is reached
to the limit, the EMT must transmit about it being in a cri-
sis. Second, the EMT accumulates the temporary risk in its
disaster detection buffer, ignoring other EMTs. Often, the tem-
porary risk stays in the buffer before TTL runs out. If the
buffer for disaster prediction accumulates to the amount of
half the number of EMTs, a disaster outbreak is determined
by the EMT. The TTL duration of a buffer may be adjusted
through bagging learning. For this purpose, the BB-SVM
changes the temporary warning or disaster outbreak param-
eters according to specific circumstances with less data than
the traditional approach. The EMT in this model changes the
judgment of the disaster outbreak repetitively. Also, there is
the issue that EMT relies on the activity of just the individual
to determine the occurrence of a catastrophe. Finally, ERESS
cannot distinguish the incident caused by an unusual sound
or light.

Sikder et al. [86] presented another approach that uses a
mobile application to alert people. It uses a partition-based
trajectory distance to find the nearest shelter place during evac-
vation. SQLite database is used, and this application processes
the JavaScript object notation (JSON) file and delivers mes-
sages through notification via the app. This model lacks
the ability to deliver early signals during immediate effect
disasters, such as cyclones, floods, etc.

Summary: In this section, we reviewed the various appli-
cations of ML models in disaster management. The vari-
ous algorithms and models used for disaster prediction and
communication are presented. The approaches using ML
algorithms for this are summarized in Table I.
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IV. APPLICATIONS OF MACHINE LEARNING MODELS IN
CROWD EVACUATION

Delays in the evacuation during a disaster often lead to
increased casualties. This often happens because the evac-
uees do not recognize the routes of catastrophe occurrence and
evacuation. To minimize the number of casualties caused by
such incidents, it is necessary to quickly identify catastrophe
locations and to figure out as soon as possible any appropriate
routes for evacuation. However, it is challenging to identify the
catastrophe occurrence and in very limited time, e.g., 30—40
s during earthquakes, to direct individuals to suitable escape
routes. Moreover, traditional approaches have not been able to
assist evacuation immediately following the onset of a catas-
trophe. More rapid evacuation is needed for sudden disasters.
For example, carbon monoxide can spread quickly during fires
in houses [101].

Artificial potential field (APF) can be used to develop
a crowd lives oriented track and help optimization system
(CLOTHO) for crowd evacuation [102]. This app uses a
mobile terminal (IoT side) for collecting data and cloud
for storing data. This model has four main modules: data
collection, network transmission, cloud, and user platform.
Attraction and repulsion potential field from a disaster point
are calculated. The APF calculated is further controlled by
the shelter distance threshold. The resultant force is used to
determine the direction of evacuation. Unlike [102], the model
mentioned in [103] involves two layers: sensor layer, which
is used to collect data and uses the MTS400 CC sensor,
and the IoT layer, in which real-time data is processed using
resource scheduling and banker’s algorithm. The limitation of
this model is that developments are still needed in a heteroge-
neous scenario. ML algorithms can be used to process a large
amount of data in these models.

Mobile phones are an important component used to commu-
nicate with victims during a disaster [104]. The development
of GPS has made it easier to track the location of victims.
During a disaster, the network is often congested due to a lot
of SMS messages, and thus, cell broadcasting service is used
to contact victims [64]. This further reduces panic. For evac-
uation of people, Rossnagel and Scherner [105] presented a
global system for mobile communications (GSM) alarm device
to be deployed in the nearby area for early warnings. This
device collects its data from the weather office, but this does
not provide the residents with a quick way for evacuation.
An area mail disaster information system for tsunami warn-
ing and evacuation system to assist fishermen is presented by
Jayasinghe et al. [106] and Torii et al. [107]. This system
tracks fishing boat locations using GPS and provides them
with warning signals through mobile phones. This is still a
faster approach than the previous one.

Different from [105], Anzengruber et al. [108] have
proposed a smartphone app that notifies people about
the evacuation routes. They have used two parameters to
evaluate the location of the user and proximity-relations using
Bluetooth. The data is processed through a SVM model
that outperforms the linear regression and Gaussian mod-
els. However, this model requires testing with real-world data
during a disaster. Wang et al. [55] have proposed an improved
reinforcement learning approach for crowd evacuation. The
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TABLE I
SUMMARY OF RELATED WORKS FOR DISASTER PREDICTION AND EARLY SIGNALS (ACRONYMS USED IN THE TABLE- CEOSs: DEM, NOIR:
NETWORK OPTIMIZATION INDICATOR REPORT)

Category Reference Target issue Technology used Hardware/API used Case studies
[53], 2020 Floods prediction Conv?;t;);rkneural Hadoop MapReduce Surat, India
IoT and ML [55], 2019 | Rainfall prediction ANN and Logistic LoraWan UEM Campus
regression
[56], 2016 | Forecast flood risk Artificial Neuraf ZigBee, WSN None
Networks
. . UAVs Base station, ] .
[69], 2019 Prediction Geofencing Flight controller Surat, India
. Adhoc network as Raspberry-p1 with
UAV [70], 2017 Assessing areas aerial mesh network NOIR pi camera UEM Campus
[71], 2019 Disaster SWIETERS DI UAV, ROS library, None
assessment Map server
Disaster Star algorithm, Tabu
[72], 2019 asse‘ssment search, Gradient Multi-UAVs Jiuzhai valley earthquakes
descent
Detecting flood SVM, K-means ] e
ML and UAV [20], 2019 areas clustering and PCA Drones Aerial images
Centre surrounded
[73], 2010 Better prediction filters with gaussian Air-borne LiDAR 2010 Haiti earthquake
Geodesics based weighted mean centers
. 2008 earthquake 1n
[74], 2013 | Better prediction GEOES ?SSCEEOS Sfﬁ;;:fgfu‘feal Sichuan, China and
PP Namibia flood plot
. Water and non- Landsat 7 Thematic Floods in Pitt County,
S (68]. 2002 water features mapper and DEM data None North Carolina
. RADARSAT remote
Remote sensing [75], 2011 Develop flood SuperV}sed MCL sensing data, GIS data Maghna river basin
hazard maps classification
and ground data
ML and }lemote [76]. 2012 Classification of Randovm_ forest Landsat-5 Thematic Province of Granada
sensing land cover classifier Mapper data
Data mining [77], 2005 Tr"%‘nctaeln;yt;l"“e Apriori-base None Atlantic basin
Android based (78], 2017 Alert signals Partition based JSON file Haiti
trajectory distance
. Momance River — Haiti
ML and [79], 2011 Pre%lg(t)l:j)gn of Rar;(liacl)grlniﬁfgrrest None and Wenchuan town —
Object sensing ] - China
Classification of Random forest
[80], 2017 land cover classifier and SVM None Scopus databases
. CART decision tree, .
[27]. 2018 Sandstgrm Naive Bayes and None Riyadh, Dammam, and
detection .. . Jeddah
Logistic Regression
Flood and Convolutional Neural .
[41], 2017 landslide detection Network None Japan and Thailand
ML Symbolic Aggregate
. . Approximation (SAX) . Typhoon and Tropical
[34], 2014 Storm intensity and Artificial Neural Satellite-image data cyclones
Network (ANN)
[811, 2016 relz(’)sg*fitggn BB-SVM ERESS Kansai University

main challenges which were covered were modifications in
the model when there is an increase in people density and
effective communication between authorities. For the initial
clustering, the K-medoids algorithm is used. Deep learning
algorithms could also be implemented for the same model to
improve its accuracy further.

With the recent increase in the usage of smartphones, several
applications have also been deployed for crowd evacuations.
Rahman et al. [110] used an app employing OpenStreetMap
(OSM), document management service (DMS), and Google
C2DM server. The limitation of this app is that the data
must be uploaded on OSM. This model failed when tested

in Bangladesh because of the lack of uploaded data. When
a user logs into the application, he/she is provided with an
unique ID that is then sent to the DMS. If the applica-
tion detects a risk in the user’s area, it notifies him/her. In
case of risk, it also provides users with the shortest route
to the shelter. Aldecimo and De Leon [112] also used OSM
and store data in a PostGIS database. One of its functions,
which is to calculate the minimum distance between two geo-
graphical places, is used. A parameter called building risk
factor (BRF) is calculated, which denotes the danger that
a building poses to the road during an earthquake. Then,
the Dijkstra algorithm is used to find a safe route. This
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Fig. 3. DNN model to determine crowd density [44].

model only uses BRF as the parameter to decide the safest
route. Furthermore, this model did not take into account
the building’s height. The taller a building, the more dan-
ger it would pose to the road. An application that covers
all these limitations using Bayesian networks is proposed by
Haddawy et al. [117].

The use of cameras for collecting data for crowd evacuation
affects people’s privacy. Thus, models are needed that work on
a mechanism different from analyzing and processing camera
images so that the public’s privacy is not violated. Shibata and
Yamamoto [44] have proposed a model that analyzes radio waves
of auser’s smartphone. The strength of waves is measured using
sensors. Due to the complexity of the fluctuations of the device’s
waves, an ML-based model is necessary. The density of the crowd
in an areais determined by using adeep NN (DNN), as illustrated
in Fig. 3. This model achieved an accuracy of 78%. However,
some other ML algorithms can be used that require a smaller
training data set in comparison to this model.

Instead of Micropilot MP-Vision and other components,
Ezequiel et al. [118] used a custom UAV designed with
resources to achieve lower cost and maintain the quality level.
This model’s air-frame uses a Super SkySurfer fixed-wing
extended prediction orbit (EPO) foam frame, ArduPilot Mega
(APM) autopilot system, airspeed sensor, camera payload, and
batteries. Radio telemetry is used to establish communica-
tion between the UAV and ground control station (GCS). The
GCS uses APM Mission Planner that is employed to con-
trol and generate routes for the UAV during its flight. This
UAV has several advantages over others: increased flight time
(30-50 min), and large coverage of area (4 sq km). Also, the
autopilot system is open source, which enables independent
developers to be engaged in identifying issues and updating
software. The disadvantage of this model is the loss of UAV
due to GPS signal loss, and it lacks a safety mechanism dur-
ing failure. Furthermore, it is more prone to hardware errors
(assembly and wiring of parts) and bugs in code. A mecha-
nism is also required to be added in the model to avoid risks
during belly landings. An approach based on Q-learning is
proposed to cover these limitations in [119]. This approach
targets robust radio-network signals by not compromising on
the UAV’s features, such as its flight time, cost, and coverage
area. Chhikara er al. [45] proposed a DNN architecture for
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facilitating navigation of UAV in indoor environments, where
GPS fails in precise localization and navigation.

The use of lane contraflow reversals is important for emer-
gency evacuations. Cities or areas with emergency evacuation
measures in effect may utilize contraflow lanes to increase the
number of roads necessary for traffic to evacuate. Contraflow
lane reversals reverse traffic paths along escape routes from
their usual directions. Hurricane Katrina had devastated south-
east Louisiana in August 2005. An evacuation plan which
successfully evacuated an estimated 1.1 million citizens was
implemented before landfall [114]. The reversal of the con-
traflow lanes was in effect for 25 h and resulted in significantly
decreased traffic delays. However, ML algorithms can be
implemented for locating new parts of the contraflow and
establishing evacuation measures in other sensitive areas.
Research in [120] explores a method focused on existing traf-
fic patterns and path availability to enable contraflow lane
reversals. To model the contraflow plan, the evacuation routes
and local traffic situation graphs are used. A path assessment
algorithm is used to evaluate if existing traffic patterns need
contraflow lane activation. Decision trees are used to determine
when the current state of the evacuation model should activate
all contraflow lanes. The next steps in the proposed method-
ology is to expand the number of features that the training set
takes into consideration, change the methodology to define
specific contraflow segments, and use simulation tools to con-
struct training sets and validate outcomes. Mori et al. [25]
presented a BB-SVM-based model for predicting disasters.
Then an evacuation path is chosen based on depth first search
(DFS) and Dijkstra’s algorithm.

Tracing safe routes can also be done using a multiobjective
genetic algorithm (MOGA) [121]. This process involves three
phases. The collecting phase involves collecting GPS and
acceleration data from the user’s smartphone to the cloud.
The analyzing phase involves calculating the walking dis-
tance between nodes, walking speed (average), and pedestrian
traffic to determine safety evaluations. With safety evalua-
tions, time taken, and the distance between the initial and
final nodes are calculated, and the maps are provided to the
users. This marks the third phase. The user has a choice to
choose maps according to their desired characteristics (short-
est time or shortest distance or safety). The characteristics of
the routes get upgraded continuously, which is a unique fea-
ture of this method compared to other works. Moreover, new
maps are generated using selection and cross-over techniques
that help in providing multiple evacuation route maps. The
model has not yet been validated with real values of average
speed and for pedestrian traffic (the authors here assumed it to
be a set value in calculating safety evaluations). Also, alpha,
beta, and gamma selection for the calculation of safety evalu-
ation value have to be chosen optimistically, which remains
a challenge for different types of places. Ofli et al. [122]
proposed a hybrid of genetic algorithm and ML algorithms,
such as SVM, Naive Bayes, and random forest to process
UAV images for disaster management. This was successfully
deployed on a wildlife reserve in Namibia. The model achieved
80% accuracy with SVM and random forest outperforming
the rest.
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Tracing safe routes can also be implemented through a sim-
ilar approach based on Virtual Voting and Adaptive Pricing
Algorithm [123]. Soni et al. [124] have used K-means cluster-
ing and KNN regression algorithms for the same. Data is first
preprocessed and categorized into crime and accident data sets.
The place is divided into clusters by latitude and longitude by
K-means clustering based on crimes and accidents. “Direction
service” is a class of Google API that gives all possible routes
from source to destination, and way-points are assigned for
every 2 km. The risk score of the way-points is calculated
based on K-nearest clusters around it. A risk score is simply
the summation of accident scores and crime scores determined
by assigning scores to each type of crime and accident. The
value of K is determined by the lowest root mean square error
(RMSE). KNN scores for the way-points are analyzed using
the R? score, which is a simple measure of distance from the
regression line. Experiments were conducted for Manhattan
Borough in New York City, and it successfully showed alter-
nate safe routes that are different from the default route shown
by Google Maps based on the shortest distance. Previous
works failed to categorize small areas and only did larger
area classification with either SVM or other ML algorithms.
However, this work has found safe routes covering small areas.
KNN analysis showed high R2 scores of 0.910 (accident score)
and 0.974 (crime score), which implies that the classifica-
tion has been done well and is distant from the regression
boundary. Moreover, previous works in this field were highly
subjective, whereas this work is not. However, more factors
have to be taken into account in calculating the safety of
the route (risk score). Also, this method consumes more time
in preprocessing, which can be improved (60%—80% of the
entire time).

Traditional NNs encompass some constraints, such as the
inability to vary the length and work on different training
data. To target this issue, Jiang et al. [115] have proposed an
long short-term memory (LSTM) model for planning crowd
evacuation. The CNN layer can be utilized as a filter in this
model that processes spatial data and leaves the LSTM with
only temporal data. Since LSTM can be trained using com-
plex real-time data, it achieved 95% accuracy in the reported
experiments. Different approaches using supervised and unsu-
pervised ML algorithms were presented in [21] and [116].
Radianti and Granmo [116] have used a Naive Bayes model.
This model is deployed in a fire outbreak scenario. Using a
Bayesian model, it determines the routes that are safe to use
for evacuation. It assigns probability-based physical and emo-
tional factors to every route which shows the safety probability
of the route to be used.

Namoun et al. [21] have proposed a model that combines
SVM with fuzzy logic. SVM works on choosing the best
representative crowd group by integrating both the physical
properties of an area and the characteristics of a crowd. The
fuzzy rules are then created on the basis of this output of the
SVM model. The authors reported accuracy of 98.77% for
the model. However, the effect of psychological factors is not
considered in this model.

One way to plan evacuation routes successfully can be pre-
detection of the behavior of crowds so that optimal steps
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can be taken. Amores er al. [52] have initially detected a
cluster of crowds, built a feature matrix, and then used ML
algorithms. The behavior of crowds is divided into three clus-
ters: 1) the ones assembling in groups; 2) the ones approaching
exit doors; and 3) the ones following leaders or responsible
authority. K-means and hierarchical clustering are used for the
same. Similarly, other behaviors can also be studied to plan
evacuation routes.

During a fire outbreak, people generally rush toward the
exit, which can create chaos and result in more casualties.
To tackle this issue, Tian and Jiang [59] have proposed an
evacuation plan based on reinforcement learning. On the basis
of the previous movement of individuals, their next step is
modified in every iteration. The objective function is defined
as minimizing the evacuation time. However, situations where
people wait for their friends or relatives or follow their paths,
are not taken into account in this model. Also, the effects
of harmful smoke generated from the fire are not taken into
account.

Gupta et al. [39] have proposed a model which analyses
video of the crowd in an area. It uses a deep CNN model to
classify video features, such as the speed of the crowd and
physical features of the environment to classify the crowd’s
behavior as a normal situation or an alert situation. This
achieves an accuracy of 77.82%. Then, three random for-
est classifiers were used to identify abnormal behavior in the
motion of the crowd. Furthermore, multiple cameras can also
be used to speed up the process. To improve the accuracy of
the video-based model, Wei and Sheng [53] have proposed a
new framework. The collected video data is classified in sev-
eral situations by using a CNN model. This model also covers
a mechanism to process distorted images by comparing them
with the original image’s pixels. Furthermore, different crowd
situations are determined based on entropy techniques.

Summary: This section has covered a survey of ML-based
models to determine a crowd evacuation route. Apart from
ML-based models, UAV, IoT, and android-based models are
also discussed. All the models are summarized in Table II. The
common requirement for all ML-based models was an initial
clustering algorithm. K-means and CNNs were found to be
used more commonly as compared to other ML algorithms.

V. APPLICATIONS OF ML MODELS IN POST-DISASTER
MANAGEMENT

A. Detecting Changes

The changes post-disaster are important to analyze in order
to calculate the loss to the economy, to plan specific mea-
sures for the recovery from a disaster, and rehabilitation
measures. First, in order to perform rescue operations, cel-
lular networks have to be regenerated in the affected area
for communication [125], [126]. For this purpose, a frame-
work for networks assisted by three different types of UAVs:
1) tethered Backhaul Drone (tBD); 2) untethered powering
drone (PD); and 3) untethered communication drone base
station (cDBS) is created. Furthermore, algorithms like ant-
foraging are commonly used to drive UAVs to locations with
a high density of survivors. GIS analysis and RS are then
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LSTM: LONG-SHORT-TERM-MEMORY, RCNN: RECURRENT CNN, SSIM: STRUCTURAL SIMILARITY INDEX)

Category Reference Target issue Technology used S A . bl Case studies
used involved
[29()61]é Crowd Evacuation CLOTHO (APA None No CI}\IIZII?.I;&I pCI%Iilrtl;n
IoT and APA-RF) JIne.
[2100138] CloT UAVs None No Snow Avalanches
[104], Evacuation
2012 OpenStreetMap DMS No Bangladesh, India
program
Android L1051, Rescue team Algorithm based . .
based 2014 tracking on location GPS-Receiver No Indonesia
[106], - . e
2016 Finding a safezone OpenStreetMap PostGIS database No Makati, Phillipines
route (Earthquakes)
[107], . .
2019 Clustering (Bird FANETS No None
flocking)
UAV PrioriFy based route Graph theory,
[72], 2019 selection Eule.r cycle and None No Hospital Pavia Arecibo
integer
programming
[108], Activating Decision trees .Weka (Data Yes Hurricanes
2015 Contraflows mining software)
SVM, Linear
[102], 2013 P'revent crowd regression and GPS Sensors Yes San Francisco
disasters Gaussian model
BB-SVM,
Dijkstra’s
[81], 2016 algorithm and ERESS Yes Kansai university
Depth first search
(DES)
Deep Neural Raspberry Pi-3 and . . .
[36], 2019 networks spectrum analyzer Yes Ritsumeikan university
K-medoids and
[48], 2019 . Reinforcement None Yes Office scenario
ML Determ}ne an learning
[109], evacuation Spatio and Kumamoto
2017 route LSTM model temporal features Yes earthquakes
[2101&]’ Naive Bayes None Yes Fire hazard
(191, 2018 SVM anq Fuzzy None Yes Hajj_ (A Muslim
logic pilgrimage event)
K-means and
[45], 2018 hierarchial Alarms Yes An office building
clustering
Deep CNN and ] UMN, UCSD and
[111],2016 Classification of Random Forest None e Pets2009
crowd situation CNN classifier and ] j
[46], 2019 K-means None Yes Video data
Planning Reinforcement Hong Kong fire
(501, 2018 evacuation route learning None Yes outbreak

used to plan and coordinate recovery. This is done by ana-
lyzing spatial differences and then providing the requisite
information to those working on the ground. In the RS-
based assessment, most of the developed methods focus on
physical recovery. Their indicators are mostly at the build-
ing level, and thus collecting information manually becomes
difficult and expensive. Furthermore, the majority of UAVs
have very limited flight time, providing insufficient data for
manual differentiation. Thus, incorporating techniques like ML
through which machines can be trained become extremely
important.

A vision-based disaster detection system using ML algo-
rithms to detect the affected area from aerial images in
real-time needs to be developed. Here, the image data
would be collected by sensors mounted on UAVs, and
then processed by deep learning algorithms, such as CNNs
to detect the presence of a disaster such as fire, flood,
and landslide in real time, and also the number of struc-
tural damages to the buildings [48]. A similar methodol-
ogy using the algorithm of random forests was used in
detecting damages to buildings during the 2010 Haiti earth-
quake [35].

Authorized licensed use limited to: Qatar University. Downloaded on October 29,2022 at 11:23:40 UTC from IEEE Xplore. Restrictions apply.



16058

UAV then sends
data to its base

UAV collecting )
data from o _ _ ¥%"itthen adds a @ |safe arcas
disaster area *n “\_ node
fa\ &
I\

A
// SVM Classification

\
Bayesian network
5 7
\
SVM model delivers a warning | -\ A
for threat areas to UAV’s S

(2)

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 21, NOVEMBER 1, 2021

Area1 .

Area/
é Area 3\

.~\.

e

Fig. 4. UAV-ML model for disaster relief in a city [22]. (a) UAV-ML model for analyzing threats in an area. (b) When SVM model notifies UAYV, it updates

and divides its search based on the information provided.

Ren and Gao [22] have proposed a model in which UAVs
collect the data, and it is further processed by a model built
using structure-variable discrete dynamic Bayesian network
and SVM. In this model, UAV collects data at a particular
time interval from varying distances. As it collects new data,
a new node is added in the Bayesian network with a particular
probability, as shown in Fig. 4(a). This data is fed to a SVM
classifier for identifying any threats in the area. If the SVM
detects any threat, it signals a message to the UAV, and its
time interval of collecting data is further divided into small
time intervals so that the area can be evaluated accurately, as
shown in Fig. 4(b). This leads to a better evaluation of an area.

ML techniques have the advantage of immediately filtering
images, which would have required months to be sorted man-
ually. Temporary settlements can also be detected, indicating
areas of survivors in need. ML approaches can be used to
combine data, remove unreliable data, and identify informa-
tive sources to finally generate a heat map, which identifies
areas of urgent need. By application of CNNs, fire and smoke
have been successfully detected from raw RGB images with
an accuracy of 97.9% [48]. Also, due to their high accu-
racy, they prove to be a much better approach as compared to
other techniques that are in popular use like SVM and random
forests. CNNs have shown advantages over other ML methods.
However, its hidden layer is a black box creating uncertainty
and dependency on the training data.

de Alwis and So [127] used GIS analysis data to detect
changes in an area post-disaster. It uses OpenStreetMap data
and satellite images. Enhanced change detection index (ECDI)
is used as a parameter to differentiate between predisaster
and post-disaster images. This model is deployable in a large
area. Since ECDI calculates edges, gradient, and texture, this
can be further used to analyze effects in buildings. However,
the issue lies in changes in the solar zenith that manipulates
the data. To address these issues, we can incorporate ML to
differentiate between the same. These models have a high
reliance on real-time data sets and georeferencing of data. ML
algorithms can work by only requiring post-disaster images
and can result in better accuracy. The work in [51] shows
how K-means can be used to detect areas that are affected
by a disaster. It achieved an accuracy of 85% with respect to
low-clarity and cloudy images data set. However, the K-means
algorithm mixed the damaged and reconstructed areas during
its initial clustering. The accuracy can be further improved if
high-resolution images are used.

Unlike the K-means approach used in [51], Joshi et al. [34]
used the simple linear iterative clustering algorithm (SLIC) for
segmentation purposes. This method reduces the work further
as the user only needs to specify the number of super-pixels.
By applying the Random forest classifier, an accuracy of 90%
can be obtained with the use of 400 n_trees. Since it takes the
mean of all decision trees, it tends to show better accuracy.
With the help of these results, rescue teams can prioritize their
services to areas based on the level of damage.

Sheykhmousa et al. [128] used land cover information to
evaluate post-disaster areas. This information has been widely
used in remote-sensing technology [129]. SVM classifier is
used to classify images into positive and negative recovery.
Positive recovery refers to the areas which have recovered to
their original state. SVM achieved 90.8% accuracy in this case.
The CNN model, which is also competitive, is not used here
because of the limited amount of training data (CNN models
require a large amount of training data).

B. Extracting Useful Information From Social Media Sites

Social media has become a powerful tool in today’s world.
Data generated on social media sites every second is huge,
and this data can be employed to derive useful results.
Incorporating this data can help post-disaster management
teams to make better and more informed decisions. Studies
have used Twitter data to concentrate on the role of develop-
ment and exchange of knowledge on social networking sites to
increase consciousness about the situation as well as to evalu-
ate post-conditions. Technology is currently concentrating on
using automatic approaches to obtain meaningful data during
disaster times from Twitter data. Starbird and Palen [130] have
differentiated data into initial and secondary from previous
sources, where individuals not only shared information about
their own situation but also the accessible and relevant knowl-
edge that had been retweeted. Vieweg et al. [131] observed
that the tweets contain contextual news that creates awareness
of the disaster. The authors base their conclusions on a study
of the 2009 wildfires in Texas.

Jamali et al. [132] used ML to evaluate people affected by
a disaster, their information, and their comparison with those
who were not affected. All disaster-related tweets are identified
from the Twitter data set [Comment, Date, Location] using
dynamic query expansion (DQE). The location from where a
user tweeted more was estimated as his/her home location.
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To analyze the trending topics, Dirichlet regression was used.
The topics were classified according to factors, such as age,
income, education, etc., and a correlation between them was
observed. A similar study was conducted for people who were
not affected to study the impacts on them. However, it is a bit
difficult to extract reliable patterns from such a large data set.

Extracting useful information from tweets is also a help-
ful task. After the preprocessing of data by removing all
the extras and representing it in a vector form using term
frequency inverse document frequency (TF-IDF) and Bag of
Words representation, classification was performed in [28].
SVM (73.66%) and logistic regression (74.58%) achieved the
highest accuracy among all the classifiers. The voting classi-
fier was also proposed, which showed a competitive accuracy
(74.16%) However, a mechanism needs to be added that can
verify tweets and cross-validate the location of the disas-
ter so that there is no misguidance later for the rescuers.
Assery et al. [29] proposed a different approach to classify
tweets by checking whether they can be used as disaster-
related information or not. Natural language processing (NLP)
is used to clean data collected from Twitter. Count and TF-IDF
vectorizer was used to convert tweets to a vector. Then, the
data was fed to several classifiers. Logistic regression (99.7%)
and Naive Bayes (98.8%) outperformed all other classifiers.
This model can also be expanded to classify tweets on the
basis of the nature of users.

Another area of research can be predicting returning pat-
terns for the people who left their homes because of a disaster.
Returning patterns need to be estimated so that further plan-
ning for resource allotment can be done. The government and
disaster management authorities need to be ready to face a
change in demand for vital public services, such as electric
power, gas, and water. Yabe and Ukkusuri [41] used senti-
ments, such as the psychological state of users, the magnitude
of the tweeted tragedy, and success in the recovery area to
understand returning patterns. The assumption in this model
is that sentiment, a manifestation of different dimensions and
restoration levels, could be exploited to predict evacuee return
behavior. Each tweet w is allotted a sentiment score S(w), by
connecting each word in the tweet to a dictionary and allocat-
ing a weight highlighting its emotional effect. Then, the time at
which the evacuees left, the distance, and the destination they
have traveled to are calculated. In addition to these param-
eters, it also extracts parameters from three other networks:
1) offline spatial network; 2) online personal network; and
3) online agency network. The Gradient Boost classifier is
used to predict the returning behavior, which is defined as
0 for a negative return and 1 for a positive return. It out-
performed all other classifiers with an accuracy of 86.4%.
This is because gradient boosts can effectively model non-
linear dependence between the parameters in comparison to
SVM and logistic regression. However, to use this model on
other disasters, certain parameters need to be changed.

C. Minimizing Future Disaster Risk

Future disaster risk minimization is a crucial task that needs
to be performed. A GIS-based emergency response database
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server is used to help the emergency rescue authorities get
prepared for life-saving operations in a small amount of time
by predicting extreme climatic conditions [133]. This database
server provides the climatic information to the relevant author-
ities via a satellite link. The satellite has two functions, first
being RS and weather forecasting, and second is to trans-
mit the extreme input climatic parameters received from GIS
database servers to rescue and medical authorities to prepare
them for life-saving procedures. However, the aforementioned
technology is not well integrated with modern techniques of
Al. The forwarded information is analyzed by humans, a
tedious and error-prone process that can be replaced by more
accurate machines.

Drought prediction systems using DBN, which can calculate
and predict different drought indexes, such as the standard-
ized precipitation index (SPI) with much higher precision
is proposed in [134]. Similarly, ML techniques, such as
pattern recognition NNs, recurrent NNs (RNNs), and ran-
dom forest models can be used to determine relationships
between calculated seismic parameters and future earthquake
occurrences. Moreover, patchwise object detection techniques
based on CNNs can be utilized for automatic disaster detec-
tion, such as floods and landslides [48]. Image classification
based on the deep learning algorithms has been found to
have much higher accuracy for landslide recognition than
previously used methods. In addition, by integrating such
processes, it is possible to respond to the evolving disaster
situations [48]. The accuracy of landslide detection by CNN
is calculated with a precision of 0.93, recall of 0.94, and
F-measure of 0.93. While predicting the disaster, the major
concern is to save human lives. This objective can be fur-
ther accomplished by involving technologies, such as IoT in
the processing. This could turn out to be a quick and alter-
native means of communication in the disaster-struck region,
where IoT-enabled devices (battery-powered wireless devices)
can be used to provide data network resilience during disaster
situations [135].

Summary: This section covered different approaches for
detecting changes post-disaster. In today’s world, social media
generates huge amounts of data every second and it can be
extremely helpful if relevant information can be extracted from
it. This section presented various models to make social media
useful in disaster management. This section further reviewed
ML algorithms for minimizing future disaster risks. Table III
summarizes all the works for post-disaster and to minimize
the future disaster risk.

VI. APPLICATIONS OF MACHINE LEARNING MODELS IN
PANDEMIC MANAGEMENT

A. Prediction and Diagnosis of Pandemic

To prevent the outbreak of a pandemic, an early diag-
nosis is a must. Technologies for early diagnosis of ISPA
(Acute Respiratory Infections) disease are required to reduce
its adverse effects on babies and prevent it from turning fatal.
Ginantra et al. [18] carried out a test to foretell and diag-
nose, whether the person is affected with ISPA or not, which is
done by evaluating the evidence acquired with the usage of the
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TABLE III

SUMMARY OF WORKS FOR POST DISASTER AND TO MINIMIZE FUTURE DISASTER RISK (ACRONYMS USED IN THE TABLE-RS)

Category Reference Target issue Technology used LEETE AT ] ML Case studies
used involved
Collect
RS and UAVs | [120], 2018 | information about Ant foraging GIS analysis No 800#800 area
survivors
A . Naive Bayes and .
[21], 2011 ssess;lng area for SVM None Yes Not mentioned
threats
ML and UAVs CNN and Markov
[40], 2017 | Highlighting areas Re;r;c(i)gg;sﬁg;lato None Yes Earhquake, flood and
with risk collected by UAVs landslides
122 Enhanced change Openstreet map
RS [2017]’ Detect changes detection index and satellite No Van,Turkey
post-disaster (ECDI) images (Earthquake)
(31, 2018 Dettegtlljlllﬁlgiz;nglsges Random forest None Yes Haiti (Earthquake)
Evaluating future .
[40], 2018 disaster risk CNN None Yes Floods and Landslides
Simple Linear
Iterative Clustering Aerial images by
ML [30], 2017 De(t)if_td??:srg:s algorithm (SLIC) GeoEyel Yes Japan ("F::lrrtl};(lllllli:;ke and
POSt-Gis and Random forest )
Classify areas into e
[123], 2019 positive and SVM Land cover data Yes Tacloban,Phillipines
. (Typhoons)
negative recovery
Detect which areas .
[44], 2019 | were damaged and K-means clustering Qp tical - ASTER Yes Tohoku (Tsunami)
affected by flood 1mages
Logistic
[23], 2018 Extracting useful regressmn,.SVM Yes Chennai (Rainfall)
informgation and Voting
classifier
Predict returning New Jersey (Hurricane
[33], 2019 pattern for people Gradient Boosting Yes Sandy) sey
Social medi who left y
oclal media Identifying which Logistic Twitter data i - and
[24], 2019 tweets could be regression Yes Hurqcane Mqr;nc;a an
used for useful and Naive bayes urricane hlichae
information
Relation of tweets Dirichlet .
[127], 2019 between disaster regression  and Yes ?IT;W ) York‘) City
affected and not Dynamic  Query urricanes
affected people Expansion (DQE)

ML algorithms, such as SVM, NNs, KNN, and Naive Bayes.
Various symptoms, such as fever, headache, flu, etc., were used
by the classifiers. The confusion matrix was used to calcu-
late the accuracy, and SVM outperformed all the algorithms.
Yin et al. [19] predicted antigenic variants of HIN1 influenza
structured on a stacking model. In the design of a stacking
model based on epidemics and pandemics, three separate fea-
ture engineering methods were implemented to check its viability
and universal adherence, namely, residue-based methods, ten
regional band-based methods, and five epitope region-based
methods. This stacking model employs a concept similar to
k-fold cross-validation to build out-of-sample predictions that
function for small to medium-size data sets. Accordingly, logistic
regression, Naive Bayes, and NN methods were used to design
the Level 2 models to get better results than single models. Also,
random forest and gradient boosting were applied to create the
Level 2 versions.

Such Level 2 models made projections for the outcome of
all results, which were then put into the second stage of the

training data, identified as Y (n % n). Parameter n accounts for
the number of new functions in the data set. The Level 3 model
was developed by the classifier of logistic regression and eval-
uated on Y(n*n) to generate the resulting effects of antigenic
variant predictions. Because of the rapid antigenic shift or drift
that cause antigenic variants to occur, the effects of specific
mutations on antigenicity are not clearly known. Outputs based
on various function vectors showed no difference, suggesting
that producing new characteristics from residual sites was pos-
sibly not the key reason for affecting prediction. For the proper
modelling of the HIN1 variation mechanism, several more fac-
tors, such as climate and the human immune system, need to
be considered, which is out of focus of this model.

To solve this feature issue, Righetto et al. [54] used rain-
fall as a variable to predict the spread of cholera in Haiti.
The rainfall pattern is treated as a marked Poisson process.
The continuous rainfall events are processed as discrete events
where the depth of rainfall is presented by the mark. K-means
clustering was further used to predict the spread of disease.
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The limitation of this model is the lack of ability to accu-
rately predict the evolution of new cases. The improvement in
the current situation, i.e., real-time data is also not taken into
account.

Pioneering work in using Bayesian networks and NLP
for influenza detection is presented in [145]. Data was col-
lected from free-text ED medical reports comprising of 468
reports on polymerase chain reaction (PCR) positive influenza
patients from the period January 1, 2008 to August 31, 2010
and 29, 004 reports of patients not associated with a posi-
tive PCR test from the period July 1, 2010, to August 31,
2010. The classification architecture comprised of the NLP-
finding- extraction component with Topaz used as NLP parser
to encode findings into one of three values: acute, nonacute,
and missing, followed by a classifier network. The authors
studied seven ML classifiers and compared their diagnostic
capabilities against an expert-built Bayesian classifier. Three
configurations were used based on methods to deal with
missing data for performance evaluation. The authors used
AUROC and Brier Skill Score as a measure of classification
performance while NLP-finding-extraction performance was
measured using accuracy, recall, and precision.

The authors observed a tie between Naive Bayes, logistic
regression, SVM, and ANN with the highest AUC being 0.93
in the configuration where all missing values were assigned
“False.” The NB showed superiority (BSS: 0.35, AUC: 0.93)
in terms of least training time and the ability to treat miss-
ing values without preprocessing. The authors were able to
show that ML classifiers performed better than Expert-made
Bayesian classifiers, for a given NLP extraction system and a
large amount of training data. Similar work was reported by
Ye et al. [146] on the same data set with nine combinations of
finding-extraction methods and Bayesian classifiers. The high-
est AUROC achieved by them was 0.79 for a combination
of expert-finding with a BN-EM-topaz classifier. Moreover,
they only considered AUC for classification evaluation which
is susceptible to bias due to inclination of the test data
with one class, potentially leading to an unskilled classifier
problem. Ye et al. [146] only considered Bayesian networks
as classifiers without a comparative study between other ML
models.

Wynants et al. [147] have proposed a method of genome
sequencing to identify SARS-CoV-2 (COVID-19). The method
is based on the additional sequencing of viral complementary
DNA. Sequencing data can be retrieved from the PCR of the
original viral RNA which then can be used along with cDNA
to identify COVID-19. Alignment methods like FASTA and
BLAST are used for classification done from viral sequencing
techniques. However, the major issue with this method is that
it necessarily requires base sequences for the detection or clas-
sification. A detection test has been proposed that combines
molecular testing with deep learning. This work applies state-
of-the-art deep CNNs which can automatically create features
starting with genome sequencing of the coronavirus. Samples
are divided into 9:1 for training and testing using a ten-fold
cross-validation scheme [148]. The data used was genome
sequence data from the repository 2019 Novel Coronavirus
Resource [149] and NCBI repository [150].
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The results of the experiments show that the above approach
correctly classifies SARS-CoV-2 and distinguishes it from
other coronaviruses. The proposed method identifies COVID-
19 with an accuracy of 98%, and can classify different
coronaviruses with an accuracy of 98.75% [148]. There are
several prediction models proposed for COVID-19 detection
based on CT scan images of the chest using deep learning
which have accuracy less than the above method (around
82%), and chest radiography may miss patients with pneu-
monia in early phase [147], [151], [152]. However, the above
model has been trained on very few samples due to limited
data available. Also, limited genome sequences are available
and considered in this model. Santos et al. [153] also proposed
a COVID-19 prediction model, for Brazil, using a time-sliding
window algorithm.

Liang et al. [154] integrated current surveillance data with
Internet search queries to forecast influenza epidemics. Data
were obtained from the China National Scientific Data Center
for Public Health along with a public Baidu search engine
database based on Baidu Index for queries related to influenza.
Regression was performed using SVMs, and hyperparame-
ters were tuned by leave-one-out cross-validation. Performance
metrics used for this task were RMSE, mean absolute per-
centage error (MAE), and root mean square percentage error
(RMSPE). Correlation analysis was performed on data with
different lag times and search queries with a significant cor-
relation coefficient. Olson et al. [155] mention the features
that were chosen for the SVM regression model. Application
of Internet search query data for infectious diseases provides
real-time surveillance of epidemics and overcomes the short-
comings posed by lag-time in conventional flu surveillance. A
strong correlation between search terms and influenza cases
was found in the study. Given the short incubation period
of influenza, most of the search queries related to symptoms
and medication were closely correlated with cases in the same
month. The authors found that the models based on ensembled
data performed better and were more robust than the models
based on other single data sources. Similar work was done by
Google flu trends (GFTs) [156]. However, it was concluded by
Liang et al. [154] that GFT data could not replace conventional
surveillance methods to be a reliable pandemic surveillance
system. This is due to the negligence of epidemiological fac-
tors, such as geographical location, illness complaints, the
age distribution of patients, or clinical manifestations in the
Internet data. The correlation coefficient of the search key-
words relies heavily on existing vocabulary data. However,
due to the changes in the social media environment, many
new search vocabularies are produced. The new vocabularies
were not considered in the model.

One of the most significant aspects of pandemic man-
agement is close monitoring of the people in the affected
areas. Moreira et al. [157] provided a comprehensive sur-
vey that includes the use of several ML algorithms for smart
decision support systems for healthcare. For determining the
reoccurrence of a pandemic, traditional models utilize an
ARIMA model for prediction [158]. The model construction
trades off between parameter estimation, diagnostic check-
ing, and identification. Examples of usage of IoT and big
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data analytics through smart wearables to collect health-related
information of citizens have also been prevalent [15], [159].
Conventionally deployed flu surveillance systems are based
on hospital and laboratory data, thus limiting their real-time
surveillance due to lag-time [160]. The IoT-based data col-
lection techniques assume most citizens to possess a smart
wearable or sensor-enabled device. However, in developing
countries, that are generally the worst hit by an epidemic, this
remains far-fetched.

B. Social Distancing

COVID-19, a major pandemic outbreak, has caused large
scale devastation in the world. Within only nine months
(January to September, 2020), this has spread in 213 countries
already with approximately 32 million cases [161] over-
all. Also, this figure is increasing at a high pace everyday.
Chamola et al. [162] highlight the role of deep learning algo-
rithms during COVID-19 in various phases, such as disease
surveillance, risk prediction, medical diagnosis, screening, and
virus modeling and analysis. Since the spread of influenza,
SARS, and then COVID-19, social distancing has become an
important tool to handle outbreaks [163], [164]. The work
in [165] presents simple methods to maintain distance between
people to prevent virus transfers. Social distancing is defined
as living in such a way that physical contact with people
is avoided. This can be divided into two categories: com-
munity and personal. Community social distancing involves
avoiding any crowd gatherings in public, such as schools,
colleges, and places of worship, minimizing traveling, and
sealing the areas where people have already been affected.
Personal social distancing involves quarantining individuals to
their homes, leaving one’s home only for important purposes,
and motivating others also to follow the same.

Various technologies have been used for social distancing.
GPS is a technology that can assist to detect the locations of
people. Wang et al. [166] proposed indoor wireless position-
ing, which does not require the use of GPS and can thus work
in areas where GPS cannot. Bluetooth is a technology that
works well in such cases, as it allows multiple connections
at the same time. This feature used by the model proposed
in [136] to evaluate the dependency between distance and
radio signal strength (RSS) of any two devices. If the distance
detected is less than 1.4 m, it generates a warning message to
enable the users to be aware and maintain a distance. However,
this model tends to fail in some scenarios due to inaccuracies
in the user’s location, and there is no measure proposed yet
to address it [167]. Also, for this model to work, Bluetooth
should always be on. Thus, there are still challenges for this
technology to work upon. Sattler et al. [168] have proposed a
novel ML algorithm integrated with Bluetooth technology to
calculate the risk of COVID-19 in nearby areas.

For directing people about public social distancing,
Choi et al. [138] proposed a model that provides a count of
people in an area. This model works in a complex network
and is computationally effective, which various models using
ZigBee and WiFi lack. The model works by picking up various
clusters, and the one with the largest size is selected. Then,
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a maximum likelihood equation is derived from a probability
density function plotted. Finally, the number of people is esti-
mated based on the equation. In the same manner, the work
in [139] provides a mathematical design with lower computa-
tional complexity to count the number of people. This model
uses a method based on detecting energy. These models can
be combined with various ML algorithms to improve their
accuracy.

Due to their varied applications, UAVs have proved fruitful
in many situations. Challita et al. [142] have used the combi-
nation of recurrent and CNNs to process data collected from
UAVs. These UAVs and their data are then used to predict
the traffic density in an area. This information can be pro-
vided to users and can be used to signal them about the
overcrowded areas, as shown in Fig. 5(c). Hassija et al. [170]
have proposed a model for estimating traffic jams in an area
based on blockchain and DNNs. Also, Hassija et al. [171]
have proposed a model for intervehicle communication using
a directed acyclic graph and game theory.

A portable device is proposed that collects data via a radar
sensor and a camera and provides it as input to NNs in [140].
The ANN is trained constantly with data to identify whether
the object near it is a vehicle, a stationary object, or a human
being. This model’s accuracy improves with use and gets trained
when the user is near an object. This model can also keep a
track of the users who are violating social distancing. However,
different from [140], Jia et al. [27] proposed another approach for
detecting a users’ locations that is based on their most influential
friends in a social network. Initially, a DBN was implemented
by choosing M top influential friends and evaluating their
social influence on a user. The model showed an approximately
16.87% gap in its theoretical and practical accuracy because it
randomly selects some top friends which does not seem to be
an effective way. Then, a Naive Bayes model was used, and it
showed approximately 19.82% accuracy increase. Naive Bayes
is comparatively more scalable, and its predictions are based
on probability which makes it more reliable.

Cho [20] have combined ML with smartphones’ locations to
warn the users regarding their safety from infected neighbors
in the area. KNN and decision trees are used for determining
the location of a user, and a Markov model is used for loca-
tion prediction. By training the model with the real-time data
set of the area, the movement of infected people can be pre-
dicted. People can get alert notifications on their smartphones,
as shown in Fig. 5(a).

ANN is combined with a robot-based model to increase
location accuracy in [43]. With this integration, the model
becomes more scalable, cost effective, and user friendly, and
it showed an error of only 2.7m. Also, radial basis func-
tion networks are used with ZigBee which has an advantage
over Wi-Fi systems. Wireless networks have low accuracy
while verifying a user’s location and require channel char-
acteristics data to be available. Brighente er al. [23] have
proposed a model using SVM and ANN which outperformed
the traditional wireless networks. This model has a promising
accuracy, and training the models is the only additional task
required here. Yin et al. [143] presented a better model named
the federated localization (FedLoc) framework. This model is
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built for verifying the user’s location, as shown in Fig. 5(b),
without sacrificing their privacy, by using DNNs. This was
compared with a model based on the Gaussian process, where
DNN faired better because of their ability to generalize bet-
ter. FedLoc is based on the integration of the DNN and
Gaussian process models. To protect the user’s privacy, homo-
morphic encryption was used. However, to make the model
more effective, the weights could be modified to a lower
precision level from 64 b. Furthermore, Ahmed et al. [172]
used a deep-learning-based framework for monitoring of the
social distance protocols during COVID-19 pandemic. The
model uses YOLOV3 object recognition paradigm for recog-
nizing humans in a video footage. The use of transfer learning
methodology ensures a higher accuracy for the model.

5G networks have attracted wide attention because of their
low latency, ability to satisfy user’s potential needs, and requir-
ing less energy to operate [173], [174]. Bui et al. [175]
presented a detailed idea of how linear regression can be
used in 5G networks. Polese et al. [33] presented a Bayesian
ridge regression and random forest models to predict the num-
ber of people in an area in combination with 5G cellular
networks. They also aim at using ANN to increase accuracy.
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Furthermore, Alawe et al. [47] proposed to predict the number
of people in an area using DNN and RNNs. RNN outper-
formed DNN as RNN showed 90% accuracy, whereas DNNs
showed 80% accuracy. However, if more training data was
available, then the accuracy of the DNN model could be
improved further. Polese et al. [33] have used ML to predict
the number of people in the user’s proximity. They began with
clustering the base stations. Then, the prediction of the number
of users is done by deploying the Bayesian model regressor,
random forest regressor, and the Gaussian regressor. In order to
predict the number of users who are in proximity to a defined
cluster, we can use WiFi-hotspots. This architecture can also
be deployed to predict the traffic density in an area so that
the users can travel through areas with fewer vehicles so as to
practice social distancing.

Wang et al. [144] presented the use of LSTM NNs inte-
grated with 5G technology to determine the users’ path
based on these historical paths. However, this model is very
computation-intensive and requires a lot of training data
for a single user, which is not practically feasible. Thus, a
multiuser sequence-to-sequence model was proposed which
is more user friendly and tackles all the former issues. This
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sequence-to-sequence LSTM model outperformed SVM and
linear regression. This study has open directions to combine its
model with other information about the users. Bega et al. [46]
presented another model using a mixture of DNN and CNN
to build its several layers. A modified loss function is used
to train this model. This is a cost-effective system and also
tackles service-level agreement (SLA) violations.

Al Hossain et al. [38] have developed a model using ML
to warn users in public places by informing them how many
people near them are infected. This model was built on the
basis of influenza symptoms as its detecting features. With a
microphone array, it analyzes different cough sounds of users,
and cameras are used to analyze the density of that area, as
shown in Fig. 5(d). The random forest model showed the highest
accuracy (95%). This model’s accuracy can be further improved
if its training data set is combined with some real-time data.
This model is highly beneficial in informing people about the
status of a public place during any phase of a pandemic.

C. Extent to Which Economy Is Affected

Cho et al. [176] have tried to assess the economic impact
of earthquakes through a hybrid model Southern California
Planning Model (SCPM) which follows the Garin-Lowry model
and is an integration of state-of-the-art input—output model
and spatial allocation model. The work also encompasses the
network model and structure performance model. The idea
behind this model is to estimate economic losses by looking at
the direct business and structure loss, lifeline network disrup-
tion, and spatial impacts that occurred due to the disaster. The
key technology used for damage estimation is GIS and drives
the state-of-the-art early post-earthquake damage assessment
tool (EPEDAT) model [176]. Although these models estimate
the cost of a disaster and its immediate impact on the economy,
they do not explain the important long-term impact of disasters
like earthquakes on the economy and growth.

Another method has been proposed which caters to the issues
in [176] and estimates the sign and magnitude of both short
and long-run effects of disaster on growth [177]. The study
pursues a comparative event study approach, which compares
the situation of affected countries post-disaster with the super-
ficial situation of the country if the disaster would not have
happened and estimates the loss. The superficial state of the
country is generated by comparison from the built synthetic
control group. The data used is the data on natural disasters
from the emergency events database (EM-DAT), data from the
Penn world tables, and real gross domestic product (GDP)
per-capita at purchasing power parity (PPP). The above work’s
results show that only very large disasters display an impact on
GDP growth in both long and short runs. Also, the results show
that these impacts on the economy are driven by the event of
radical political changes in the country post-earthquake, and the
impacts are not significant in the absence of political changes.
Results are informative about the long-run cost of disasters
and the involvement of political structure in causing damage
to the economy and can be used in further studies. This model
works only when a set of regions is affected, and another set
is totally unaffected by the disaster (i.e., control group), and
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hence cannot be used in case of a global crisis. An approach
using Naive Bayes can be used to calculate such an effect [178].

D. Classifying Areas Into Red, Orange, and Green Zones
According to Spread During Pandemic

Classification is generally done through ML algorithms.
However, there are technologies like RS that capture sentinel-
satellite images where data is collected across spectrums.
However, those data are classified through ML algorithms [179].
Therefore, ML is inevitable.

Classification of areas into green, yellow, and red is based on
certain features: number of infected patients, rate of infectivity,
rate of recovery, death rate, and number of deaths. These features
are extracted from the given statistical data of a given area
and based upon these, the areas are classified. A comparison
of KNN and SVM-based classification techniques is done on
textual data to find the type of disease in [180]. First, the
parameters are evaluated based on training data. The model is
built using KNN and SVM, and the performance is evaluated
using test data. Then, N cross-validations accuracy, model build
time, search time, and memory used are compared between the
two. Different sample sizes were chosen as training data, and
results were compared. The results showed that KNN shows
decreased accuracy when the size of the data increased, whereas
SVM works better with a large amount of data. In all the varying
sample set data, KNN consumed more build time and search
time than SVM. The difference was significantly large as the
sample size increased (from 50 to 1000). The memory used for
both the algorithms was almost constant. Thus, if the sample
size is small, KNN is preferable, and if the sample size is
large, SVM is preferable. In our case, if we have to classify
zones on a country basis, we would go for KNN else if it is
based on states or cities, we go for SVM. However, the above
algorithm comparison was done for textual data for medical
purposes. The actual implementation of the classification of
statistical data on COVID-19 has not been done yet.

Summary: This section reviewed the applications of ML
models in pandemic management. First, it presented different
ML models for early prediction and diagnosis of a pandemic
which can be helpful in the prevention of an outbreak. Social
distancing becomes essential if the spread of virus transfers
needs to be controlled. This section also presented how ML
algorithms integrated with various other technologies, like IoT,
can be helpful in practising social distancing. KNN and SVM
can be used for appropriate classification purposes, such as to
classify the areas into red, orange, and green zones. Also, ML
algorithms, such as Naive Bayes can be used to determine the
extent to which the economy is affected. Table IV summarizes
all the ML works for pandemic management.

VII. CHALLENGES, OPEN ISSUES, AND FUTURE
RESEARCH DIRECTIONS

The previous sections have discussed different ML algorithms
and how they can be used in various phases during a disaster
or a pandemic. However, some challenges, open issues, and
research directions also exist, which are discussed as follows.
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Category Reference Target issue Technology used S PTG . hilk Case studies
used involved
SVM, KNN, Neural
[17], 2020 Detecting ISPA Networks and Naive None Yes Indonesia
Bayes
antgenic varants | SYM: KN, Neurl
ML [18], 2018 gene. ) Networks and Naive Stacking model Yes WHO
of HINI influenza
. Bayes
virus
[47], 2013 Predicting sP read K-means None Yes Haiti
of cholera disease
. Wireless
Android-based L131], To d‘gtect dlstanf:e Bluetooth, RSS positioning and No Not mentioned
2013 and signal the user GPS
. [132], To detect distance A Transmitter and .
Radio-waves 2013 and signal the user Ultrasound A detector No A hospital
ML in ..
android based [28], 2019 .Movement of KNN and Decision Service Provider Yes Not mentioned
apD infected people Tree
Sensor based [133], Count people in an Maximum 1.1 kelihood Radar sensor No Novelda, Norway
2017 area equation
Radar-based [21031‘;]’ Count p;(;};le 1 an Posteriori algorithm None No Not mentioned
ML and Detect distance
Radar [2103250], between people in ANN ?‘3? Kalman Radar sensor and a Yes Not mentioned
Sensors a crowded area ers camera
Sy D] [136], Detect human Improvgd heading Smartphone No iPhone 4s
2012 movements indoor estimation model sensors
ML and ToT (35]. 2014 Detect user’s ANN anq Radial FT-6200 kit, Zig Yes Third ﬂoqr, Chung
location functions bee Hua university
Recurrent Neural
ML and UAV (1371, Predict traffic level networks' and UAV Yes Not mentioned
2020 Convolutional
networks
Detect user’s Deep Belief Gowalla network
[22], 2016 ) . ) Networks(DBN) and None Yes and Brightkite
ocation . ,
Naive Bayes network
[138], 2019 verity users ANN and SVM Wireless networks Yes Momentum
ML location project, Germany
Random Forest and Microphone and Microsoft COCO
321, 2020 . Gradient Boosting Thermal Cameras Yes dataset
Predict number of - -
[139], infected people DNN and Gaussian None Yes Indoor shopping
2020 ! peop process mall
[39], 2018 RNN and DNN Simpy simulator Yes Big datﬁ a(i?aallenge,
[140], LSTM Neural . .
ML and 2019 Predict number of Network None Yes Geolife project
5G cellular people in an area Bageszian relgressor,
networks [29], 2018 andom Forest None Yes San Francisco
regressor and Gaussian
regressor
A mobile network
[38], 2020 DNN and CNN GPRS Yes data, Youtube,

Snapchat and
Facebook

A. Challenges

1) Requirement of Specific Data: ML algorithms require

features in its training data set to provide a better evacuation

data to be cleaned and refined for further processing. They

sometimes also require the extraction of certain features
from data, which is a costly process when the data is
large. For example, when CNN is used to isolate the areas
into catastrophe zones, it requires specific forecast fea-
tures [40]. Similarly, the model in [120] requires certain other

system.
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2) Accuracy Measurement: There exist several parameters
for a model’s accuracy, such as precision, recall, AUC, F-
measure, and many more. To accurately measure a model, a
nonbiased parameter must be chosen according to the scenario.
Ye et al. [146] have only used the AUC measure, which is
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susceptible to bias due to the inclination of the test data with
one class.

Furthermore, certain parameters for many algorithms need
to be set to increase accuracy. For example, the number of
trees needs to be specified for better accuracy in random forest
models [34]. Similarly, in the fuzzy model, parameter m needs
to be set appropriately.

3) User’s Privacy: The privacy of users must not be violated
by any model [181], [182]. This is a factor which the devel-
oper must keep in mind before developing any model. There
is a need for mechanisms to protect the user’s privacy when
their data is used by ML algorithms [48]. Some of the ML
algorithms we discussed above also require the use of technolo-
gies like IoT, which can breach the privacy of it’s users, and
hence, some mitigation strategies are required [183]. Moreover,
Hassija et al. [184] presented a survey discussing the security
threats and solution architectures in a supply chain using ML
and other technologies. With an increase in the use of smart
healthcare devices, user’s health can be at risk because of the
system’s vulnerabilities [185]. Mobile-health system architec-
ture also poses threat to user’s data, and an encryption algorithm
is needed to protect such vulnerabilities [186].

B. Open Issues

1) Neural Networks Are Not Deterministic: NNs are stochas-
tic in nature and not deterministic. A NN does not understand
that smoke density cannot be negative, or that the amount of
rainfall in an area cannot be negative. Some constraints to
evaluate the inputs need to be added to these algorithms.

2) Requirement of Large Amount of Data: Kim et al. [151]
have a limited amount of data to detect COVID-19. The CNN
model requires a large number of samples for training, which
are unavailable. Due to a lack of availability of large training
data, it is often not possible to use the CNN model [47], [129].
Shibata and Yamamoto [44] need an ML algorithm that requires
less amount of data.

3) Inaccurate Data: The data fed to Al systems can be
inaccurate in some scenarios. Thus, the results produced will
also be inaccurate. There is no mechanism to crosscheck such
large amounts of data. Also, since the results are based on
previous trend data, sometimes accurate predictions cannot
be made. For instance, in case of an earthquake, consider a
particular area that always experiences mild earthquakes. This
area experiences a strong earthquake in a certain year. Based
on the previous trends, ML algorithms will predict the results
inaccurately.

C. Future Research Directions

To predict a pandemic, ML algorithms, apart from the symp-
toms of the disease, need to encompass certain other features,
such as climate and human immune systems. The model men-
tioned in [19] lacks both features. However, the rainfall pattern
as a feature is used to predict the spread of cholera disease,
but the human immune system is still not considered in this
model [54]. Also, in OOA integrated with random forests, the
segmentation process needs to focus on more details so that
random forest’s model accuracy can be increased. Currently,
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the model is only focused on spectral details. Other features
may be included to analyze the areas [37].

1) The preprocessing time for many models must be reduced
to save time for their deployment in real scenarios. For
example, in the model in [124], the preprocessing time
comprises 60%—80% of the total time.

2) Models need to be adaptable to real-world changes in
order to be successful in real disaster scenarios. There
is no such mechanism for this when the crowd density
of the area is increased [55].

3) Accuracy can be increased if high-resolution images are
used in ML models [51]. Low-clarity and cloudy images
can lead to the under-fitting of the model.

4) Some models which have proven to work well with
virtual laboratory data sets need to be tested on real-time
data, for example, the model presented in [160]. Also,
we expect that many existing models that use different
technologies can be combined with ML algorithms to
increase their accuracy. Some examples of such models
are [23] and [43].

VIII. CONCLUSION

In the past few years, natural disasters and pandemics have
become much more damaging and frequent. This surge in the
number of disasters and pandemics has caused a strain on
the emergency services, and this is where ML algorithms are
required to work efficiently and make the best use of existing
resources. This article presented a comprehensive survey of
the applications of ML in disaster and pandemic management.
This article first presented a detailed explanation of ML algo-
rithms. Then, we discussed various phases of disasters and
pandemics where ML algorithms can be used. The phases are
predicting a disaster, detecting a pandemic, delivering early sig-
nals, determining crowd evacuation routes, minimizing future
disaster risk, social distancing, and other miscellaneous issues.
We have also discussed key issues in several technologies and
how ML algorithms can overcome these issues. Finally, we
sketched various challenges, open issues, and future research
directions.
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