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Abstract—This paper considers a design of magnitude 

responses of optimal rational infinite impulse response (IIR) 
filters. The design problem is formulated as an optimization 
problem in which a total weighted absolute error in the passband 
and stopband of the filters (the error function reflects a ripple 
square magnitude) is minimized subject to the specification on 
this weighted absolute error function defined in the 
corresponding passband and stopband, as well as the stability 
condition. Since the cost function is nonsmooth and nonconvex, 
while the constraints are continuous, this kind of optimization 
problem is a nonsmooth nonconvex continuous functional 
constrained problem. To address this issue, our previous 
proposed constraint transcription method is applied to transform 
the continuous functional constraints to equality constraints. 
Then the nonsmooth problem is approximated by a sequence of 
smooth problems and solved via a hybrid global optimization 
method. The solutions obtained from these smooth problems 
converge to the global optimal solution of the original 
optimization problem. Hence, small transition bandwidth filters 
can be obtained. 
 

Index Terms—Rational IIR filters, constraint transcription 
method, hybrid global optimization method. 

I. INTRODUCTION 
LTHOUGH it is more difficult for rational IIR filters to 
have linear phase frequency responses when compared to 

that for finite impulse response (FIR) filters, costs for 
implementing the rational IIR filters are usually lower than 
that for the FIR filters at given passband and stopband 
specifications. Hence, rational IIR filters are preferred in 
many industrial and engineering applications in which phase 
responses are not very important [1]-[3]. In particular, in a 
sigma delta modulator, it consists of a discrete-time filter. 
Since a sigma delta modulator is operated in an oversampling 
manner, a narrow band filter is required. As a result, a rational 
IIR filter is preferred because the cost for employing an FIR 
filter is too high. Due to the quantization process, the phase 
information is seriously corrupted by the quantizer. Hence, the 
phase information cannot be exploited and it is not very 
important for the design of a sigma delta modulator. 

One of the most common methods for designing rational 
IIR filters is via eigenfilter approaches [4]-[8], in which 
optimal solutions can be found by computing the eigenvalues 
of the error matrices. Another method is via a WISE approach 
[19]. An optimal solution can be found by computing a 
gradient of the corresponding cost function. A model 

matching approach [17] was also proposed. This method is to 
model rational IIR filters as FIR filters and then minimized the 
difference between a norm of these two classes of filters. 
However, since all these methods [4]-[8], [17], [19] are based 
on formulating their design problems as unconstrained 
optimization problems, the stability, as well as the size of the 
ripple magnitudes in passbands and stopbands of the filters, 
are not guaranteed. Moreover, they required phase 
information for the desired filter responses. In some 
applications, such as the applications in sigma delta 
modulators [1], phase responses are not very important. 
Imposing extra phase information on desired filter responses 
may cause degradation on filter performances. 

In order to tackle parts of these issues, rational IIR filter 
design problems are formulated as constrained optimization 
problems subject to various constraints. These optimization 
problems are solved via the Gauss-Newton method [18]. 
However, this method replied on smooth cost functions and is 
easy to trap at local minima because these optimization 
problems are not convex. In order to avoid computing the 
gradients of cost functions, these design problems are 
formulated as constrained iterative design problems [9]-[16]. 
Filter coefficients are designed based on initialized 
denominator coefficients and the iteration of the design 
process until the denominator coefficients converged. Since 
these approaches required an initialization of denominator 
coefficients, the global optimal solutions, as well as the 
convergence of the iterative process, are not guaranteed. 

There were some other methods proposed for designing 
rational IIR filters, such as via half band filters [20]. However, 
this approach is not applied if filters are not halfband ones. 
Another method based on controlling frequency response of 
filters continuously was proposed [21]. As it is a kind of 
adaptive filter design techniques, the filters are time-varying. 

If only the magnitude response of rational IIR filters is 
designed, then we can formulate the design problems as 
optimization problems. The cost of the corresponding 
optimization problems can be defined as the total weighted 
absolute error in the passbands and stopbands of the filters, in 
which the error function reflects the ripple square magnitudes, 
subject to constraints based on the specification on this 
weighted absolute error function in the corresponding 
passbands and stopbands, as well as to a stability condition of 
the filters. However, this kind of optimization problem is 
difficult to solve because it involves a nonsmooth nonconvex 
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cost and continuous functional constraints. 
To solve the optimization problems with continuous 

functional constraints, one may sample these continuous 
functional constraints and convert to finite discrete constraints 
[14], [22]. However, it is not guaranteed that solutions 
obtained satisfy the original continuous functional constraints. 
Although the difference between the exact upper bounds of 
discretized constraint functions and that of the corresponding 
continuous functional constraint functions decrease as the 
number of grid points increases, the computational complexity 
increases. To find the global optimal solution of nonconvex 
problems, one may apply the bridging method [23]. However, 
this method is applied only for one-dimensional optimization 
problems. 

In this paper, a magnitude design of rational IIR filters is 
formulated as a nonsmooth nonconvex optimization problem 
with continuous functional constraints. Our previous proposed 
constraint transcription method [24] is applied to transform 
these continuous functional constraints to equality constraints. 
The global optimal solution can be obtained via the hybrid 
global optimization method [25]. The obtained numerical 
experiments show that very small transition bandwidth filters 
can be obtained. 

The outline of this paper is as follows. The problem 
formulation is presented in Section II. The numerical 
experiments are shown in Section III. Finally, a conclusion is 
summarized in Section IV. 

II. PROBLEM FORMULATION 
Consider a general rational IIR filter with frequency 

response 
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where 1−≡j , D  relates to the delay of the filter, M  and N  
are, respectively, the number of non-zero roots of the 
polynomials of ωje−  in the numerator and denominator, 

mb  for 

Mm ,,1,0 L=  and 
na  for Nn ,,2,1 L=  are, respectively, the 

filter coefficients in the numerator and denominator. Solving 
the optimal filter design problem is equivalent to determine 
the values of 

na  for Nn ,,2,1 L=  and 
mb  for Mm ,,1,0 L= . It 

is worth noting that ℜ∈D  is not important for the magnitude 
design problem, where ℜ  denotes the set of all real numbers. 
Here, we only consider filters with real coefficients, which are 
the most usual cases in most applications [1]-[3]. So 

ℜ∈,, mn ba  for Nn ,,2,1 L=  and Mm ,,1,0 L= . It is worth 
noting that both the causal and noncausal filters can be 
designed via the following approach. That means, M  can be 
greater than, equal or less than N , D  can be positive, zero or 
negative numbers, and not necessary to be an integer. 

Let the desired magnitude response of )(ωH  be ( )ωH~ , 
where ( ) 0~ ≥ωH  [ ]ππω ,−∈∀ . We want to achieve 
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where ⋅  denotes the modulus of the corresponding complex 

function. There are many ways to formulate an error function. 
For example, we can formulate an error function as follows: 
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However, this function is not differentiable with respect to the 
filter coefficients. For example, consider a second order 
rational IIR filter with 0=D , -3

0 1017630352.81633570 ×=b , 
-3

1 1045086621.87755713 ×=b  and 
-3

2 1017630632.81633570 ×=b . The plot of )(ωE  against 
( )21, aa  at 0=ω  is shown in Figure 1. It can be seen from the 
figure that )0(E  is not differentiable along the line 

0121 =++ aa . Besides, since this error function consists of 
taking the modulus operators inside the square operator, there 
does not exist any method for solving this kind of nonsmooth 
problem. Although there are some alternative methods to 
define the error function so that the error function is smooth, 
for example, 
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the error function is fourth order, and many local minima and 
maxima would be occurred. In order to tackle this issue, we 
redefine )(ωE  as follows: 
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In this case, )(ωE  is differentiable with respect to the filter 
coefficients. Let the filter coefficients in the numerator and 
denominator be, respectively, 

[ ]TMn bbb ,,, 10 L≡x  (5) 
and 

[ ]TNd aaa ,,, 21 L≡x , (6) 
where the superscript T  denotes the transpose. Define 

[ ]TjMj
n ee ωωω −−≡ ,,,1)( Lη  (7) 

and 
[ ]TjNjj

d eee ωωωω −−−≡ ,,,)( 2 Lη , (8) 
then 

( ) ( )( ) ( ) 222
)(1~)()( d

T
dn

T
n HE xηxη ωωωω +−= . (9) 

Denote the passband and stopband of the filter be, 
respectively, PB  and 

SB . In order to design a rational IIR filter 
having good frequency selectivity, total ripple energy in both 
the passband and stopband of the filter should be minimized. 
Hence, we define a cost function as follows: 

( ) ( )∫≡
SP BB

dn dEWJ
U

ωωω)(,~ xx , (10) 
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where 0)( >ωW  
SP BB U∈∀ω  is a weighting function. This 

cost function can represent the total weighted absolute ripple 
square magnitude in the passband and stopband of the filter 
because ( )ωE  represents the absolute ripple square 

magnitude. It is worth noting that ( )ωE  is still a nonsmooth 

function. However, since the modulus operator is taken 
outside a smooth function, this kind of optimization problem 
can be solved via the constraint transcription method [24] and 
will be discussed below. 

Although the cost function can be used to minimize the 
total weighted absolute ripple square magnitude in the 
passband and stopband of the filter, there may have a very 
serious overshoot. Hence, a specification based on the 
weighted absolute ripple square magnitude is defined as 
follows: 

( ) ( )ωδωω ~)(~ ≤EW  SP BB U∈∀ω , (11a) 

where 0)(~ >ωW  SP BB U∈∀ω  is a weighting function and 

0)(~
>ωδ  SP BB U∈∀ω  relates to the allowable weighted 

absolute ripple square magnitude in both the passband and 
stopband of the filter. This constraint is equivalent to: 

( ) ( )ωδωω ~)(~ ≤EW  SP BB U∈∀ω  (11b) 
and 

( ) ( )ωωωδ EW )(~~
≤−  SP BB U∈∀ω . (11c) 

In order to guarantee that the designed filter is stable, we 
need to satisfy the following condition: 

( )( ) 0)(1Re <+ d
T

d xη ω  [ ]ππω ,−∈∀ . (12) 
Hence, the rational IIR filter design problem can be 

formulated as the following optimization problem: 
Problem ( P~ ) 

( )dn xx ,
min  ( ) ( )∫≡

SP BB
dn dEWJ

U

ωωω)(,~ xx , (13a) 

subject to ( ) ( ) ( ) 0~)(~,,~
1 ≤−≡ ωδωωω EWg dn xx  

SP BB U∈∀ω ,(13b) 
 ( ) ( ) ( ) 0~)(~,,~

2 ≤−−≡ ωδωωω EWg dn xx  
SP BB U∈∀ω ,(13c) 

 ( ) ( )( ) 0)(1Re,~
3 ≤+≡ d

T
ddg xηx ωω  [ ]ππω ,−∈∀ . (13d) 

It is worth noting that problem P~  consists of a nonsmooth 
nonconvex cost and continuous functional constraints. This 
kind of optimization problem is difficult to solve. In order to 
tackle this issue, our proposed constraint transcription method 
[24] is applied to convert these continuous functional 
constraints to equality constraints and discussed as follows. 
Since 

( ){ } ( )
( )⎩

⎨
⎧

>
≤

=
0,,~ valuepositive
0,,~0

0,,,~max
1

1
1 ω

ω
ω

dn

dn
dn g

g
g

xx
xx

xx , (14) 

by defining 
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Hence, the satisfaction of the constraint defined by 

SP BB U∈∀ω  ( ) 0,,~
1 ≤ωdng xx  is equivalent to the equality 

constraint defined by 0),(ˆ1 =dng xx . Since 
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As ( ) ( ) 0xxxx xx =∇ ωω ,,~,,~2 1),(1 dndn gg
dn

 when 

( ) 0,,~
1 =ωdng xx , so ( ){ }( )21),( 0,,,~max ωdng

dn
xxxx∇  is 

continuous at ( ) 0,,~
1 =ωdng xx . Moreover, since 

( ){ } ( ) 0xxxx xx =∇ ωω ,,~0,,,~max2 1),(1 dndn gg
dn

 

when ( ) 0,,~
1 <ωdng xx  and 
( ){ } ( ) ( ) ( )ωωωω ,,~,,~2,,~0,,,~max2 1),(11),(1 dndndndn gggg

dndn
xxxxxxxx xxxx ∇=∇  

when ( ) 0,,~
1 >ωdng xx , so we have: 

( ){ }( ) ( ){ } ( )ωωω ,,~0,,,~max20,,,~max 1),(1
2

1),( dndndn ggg
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xxxxxx xxxx ∇=∇ .(19) 

As a result, we have 
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Similarly, by defining 
( ){ }( )∫≡
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and 
( ){ }( )

[ ]
∫

−

≡
ππ
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33 0,,~max)(ˆ dgg dd xx , (22) 

we have 
( ){ } ( )∫ ∇=∇
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and 
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ππ
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333 ,~0,,~max2)(ˆ dggg ddd dd
xxx xx

. (24) 

As ),(ˆ1 dng xx , ),(ˆ2 dng xx  and )(ˆ3 dg x  are continuously 
differentiable with respect to ),( dn xx  and dx , respectively, 

the optimization problem P~  is equivalent to the following 
optimization problem, denoted as problem P: 
Problem (P) 

( )dn xx ,
min  ( ) ( )∫≡

SP BB
dn dEWJ

U

ωωω)(,~ xx , (25a) 

subject to 0),(ˆ1 =dng xx , (25b) 
 0),(ˆ 2 =dng xx , (25c) 
 0)(ˆ3 =dg x . (25d) 

However, problem P is still a nonsmooth nonconvex 
problem, where the nonsmooth function appears in the cost. 
Thus, standard optimization software packages, such as 
Matlab Optimization toolbox, in theory, cannot be applied 
directly. To overcome this difficulty, the nonsmooth absolute 
function ( )ωE  SP BB U∈∀ω  is handled in the following 

manner. SP BB U∈∀ω  and 0>ε , consider the following 
function: 
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Clearly, the function )(ωεE  possesses the following 
properties: 

i) SP BB U∈∀ω , )(ωεE  is continuously differentiable 
with respect to ),( dn xx . 

ii) ),( dn xx∀  and SP BB U∈∀ω , ( )ωωε EE ≥)( . 

iii) ),( dn xx∀  and SP BB U∈∀ω , ( )
4

)( εωωε ≤− EE . 

iv) ),( dn xx∀ , ),( ∗∗
dn xx  minimizes ( )ωE  if and only if it 

minimizes )(ωεE . 
By virtue of these properties, )(ωεE  is an ideal approximation 
of the nonsmooth function ( )ωE . By replacing )(ωεE  for 

( )ωE  in the cost function (25a), we obtain 

( ) ( )∫≡
SP BB

dn dEWJ
U

ωωω εε )(, xx , (27) 

where the function ( )dnJ xx ,ε
 is now continuously 

differentiable with respect to ),( dn xx  0>∀ε . Hence, we can 
approximate the nonsmooth optimization problem P by a 
smooth optimization problem, where the cost function (27) is 
to be minimized subject to the equality constraints defined in 
(25b), (25c) and (25d). Let this optimization problem be 
referred to as problem 

εQ  as follows: 
Problem (

εQ ) 

( )dn xx ,
min  ( ) ( )∫≡

SP BB
dn dEWJ

U

ωωω εε )(, xx , (28a) 

subject to 0),(ˆ1 =dng xx , (28b) 
 0),(ˆ 2 =dng xx , (28c) 
 0)(ˆ3 =dg x . (28d) 

0>∀ε , let ),( ,,
∗∗

dn εε xx  be an optimal solution to the 

approximate problem 
εQ . Furthermore, let ),( ∗∗

dn xx  be an 
optimal solution to the original problem P. Then, there are two 
questions to be answered. First, how much does ),( ,,

∗∗
dnJ εεε xx  

differ from ),(~ ∗∗
dnJ xx ? Second, what is the relationship 

between { }),( ,,
∗∗

dn εε xx  and { }),( ∗∗
dn xx ? To address the first 

question, we have the following theorem: 
Theorem 1 

Let ),( ,,
∗∗

dn εε xx  and ),( ∗∗
dn xx  be, respectively, optimal 

solutions to problems 
εQ  and P. Then 

( )∫≤−≤ ∗∗∗∗

SP BB
dndn dWJJ

U

ωωε
εεε 4

),(~),(0 ,, xxxx . 

Proof 
By virtue of property (ii) of the function )(ωεE , we have 

( )
( ) ( )∗∗∗∗∗∗ =≥≥ dndndndn JJJJ

dn

xxxxxxxx
xx

,~,~min),(~),(
,,,,, εεεεε

. (29) 

Hence, 
( ) 0,~),( ,, ≥− ∗∗∗∗

dndn JJ xxxx εεε
. (30) 

Next, from property (iii) of the function )(ωεE , we have 

( ) ( ) ( )∫≤−≤ ∗∗∗∗

SP BB
dndn dWJJ

U

ωωε
ε 4

,~,0 xxxx . (31) 

But 
( ) ( )∗∗∗∗ ≤ dndn JJ xxxx ,, ,, εεεε

, (32) 

so we have 

( ) ( ) ( )∫≤− ∗∗∗∗

SP BB
dndn dWJJ

U

ωωε
εεε 4

,~, ,, xxxx . (33) 

Hence, this completes the proof.  
To address the second question, we have the following 

theorem: 
Theorem 2 

Let { }),( ,,
∗∗

dn εε xx  be a sequence of optimal solutions to the 

corresponding sequence of approximate problems { }εQ . Then 
an accumulation point exists and it is an optimal solution to 
the original problem P. 
Proof 

Since ( )dnJ xx ,ε
 is continuous with respect to both ),( dn xx  

and ε , { }),( ,,
∗∗

dn εε xx  is a convergent sequence and there exists 

an accumulation point ),( dn xx  and a subsequence of the 
sequence { }),( ,,

∗∗
dn εε xx , which is again denoted by the original 

sequence, such that 0),(),( ,, →−∗∗
dndn xxxx εε

 as 0→ε , 

where ⋅  denotes the Euclidean norm. By Theorem 1, as 

( )∫≤−≤ ∗∗∗∗

SP BB
dndn dWJJ

U

ωωε
εεε 4

),(~),(0 ,, xxxx , we have 

),(~),( ,,
∗∗∗∗ → dndn JJ xxxx εεε

 as 0→ε . Hence, this completes the 

proof.  
Based on these two theorems, problem P~  can be solved via 

solving a sequence of approximate problems { }εQ  by an 
iterative technique stated in [24] with decreasing value of ε  
and the algorithm is summarized as follows: 
Algorithm 1 
Step 0: Initialize 01 >ε  and 1=k . 
Step 1: Solve problem 

kε
Q  by hybrid global optimization 

method discussed in [25]. Denote the solution by 
),( ,,

∗∗
dn kk εε xx . 

Step 2: Set 
L

k
k

εε =+1
, where 1>L  is a prespecified number. 

Step 3: If βεεεε ≤− ∗∗∗∗
−−

),(),( ,,,, 11 dndn kkkk
xxxx , where 0>β  is a 

prescribed small number depending on the accuracy 
desired, then stop. Otherwise, set 1+= kk  and go to 
Step 1. 

In Algorithm 1, we can see that 0→kε  as +∞→k  because 
1>L . Hence, according to Theorem 2, we can see that the 

solution obtained { }),( ,,
∗∗

dn εε xx  converges to the global optimal 
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solution of problem P. 
There are three parameters in the Algorithm 1, namely, 1ε , 

L  and β . 1ε  determines how close the approximate problem 

1ε
Q  and the original problem P. The smaller the value of 1ε , 

the more close will be the problem 
1ε

Q  to problem P, and 

hence less number of iterations of Algorithm 1 is required. 
However, the cost function becomes less smooth. L  also 
determines the number of iterations required. Similarly, the 
larger the value of L , the less number of iterations is required, 
but the cost function becomes less smooth even for small 
values of k . Practically, we find that if 3

1 10−≈ε  and 10≈L , 
then the number of iterations required and the cost function 
will be, respectively, small and smooth enough for most 
optimization problems [24]. β  controls the acceptable 
precision of the obtained solution. The smaller the value of 
β , the more accurate of the solution is. However, the number 
of iterations required increases. Due to practical reasons, such 
as finite number of bits for representing filter coefficients, if 

610 −≈β , then the obtained solution will be good for most 
applications [1]-[3]. 

It is worth noting that problem 
kε

Q  is a nonconvex 

problem, so global optimal solution will not be guaranteed if it 
is solved via the existing gradient approach method [18]. In 
order to solve this difficulty, the hybrid global optimization 
method is applied [25] and is summarized as follows: The 
hybrid global optimization method consists of two basic 
components: local optimizers and feasible point finders. Given 
a feasible point, local optimizers will quickly produce a local 
optimal solution in the neighborhood of the feasible point. For 
the feasible point finders, first, choose an initial point 
( )oo

dn kk ,, , εε xx  from the feasible set of the problem 
kε

Q  and start 

the local optimizer. Assume that the local optimizer has 
produced the local optimal solution of ( )dnk

J xx ,ε
 near 

( )oo
dn kk ,, , εε xx . Denote the local optimal solution and the 

corresponding local optimal value as ( )••
dn kk ,, , εε xx  and 

( )••
dn kkk

J ,, , εεε xx . Then a new optimization problem with the 

same cost function but an additional constraint 
( ) ( ) 0,, ,, <− ••

dndn kkk
JJ εεεε xxxx  is added. Since the additional 

constraint is imposed in the optimization problem, the feasible 
set of this new optimization problem is smaller than that of the 
original optimization problem. Denote the new feasible set as 

U
l

j
jS

0=

. If the new optimization problem has no solution, then 

( )••
dn kk ,, , εε xx  is taken as the global optimal solution of the 

original optimization problem. Otherwise, select 
jS  from 

U
l

j
jS

0=

 and use the gradient and Newton method to find a 

feasible point in 
jS  and restart the local optimal solution with 

this new initial feasible point. These procedures are repeated 

until a global optimal solution is obtained. In this hybrid 
global optimization algorithm, we can see that the feasible 
point finders serve two purposes: i) guarantee a solution that 
is better than the one obtained in the previous iteration; and 
most importantly, (ii) if feasible point finders find no solution, 
then the global optimal solution will be found. Therefore, the 
hybrid global optimization method can always correctly find 
the global optimal solution. For the details, we recommend the 
readers to study [25]. 

Although the hybrid global optimization method [25] 
guarantees the global optimal solution, the rate of 
convergence of the algorithm depends on the initial choice of 
( )oo

dn kk ,, , εε xx . In order to have a fast rate of convergence, 

( )oo
dn kk ,, , εε xx  should be selected as close to the global optimal 

solution. For the rational IIR filter design problems, the 
solutions obtained using the elliptic filter design method may 
be a good choice of this initial guess because the solution 
obtained by the elliptic filter design method is a suboptimal 
solution. 

III. NUMERICAL EXPERIMENTS 
In this paper, a unit DC gain highpass halfband filter, that is 

( )
⎩
⎨
⎧

∈
∈

=
S

P

B
B

H
ω
ω

ω
0
1~ , where 

⎥⎦
⎤

⎢⎣
⎡ Δ+⎥⎦

⎤
⎢⎣
⎡ Δ−−−= ππππ ,

22
, UPB  

and 
⎥⎦
⎤

⎢⎣
⎡ Δ−Δ+−=

2
,

2
ππ

SB , in which Δ2  denotes the transition 

bandwidth of the filter, is designed for the illustration of the 
effectiveness of the proposed method. Halfband filters with 
unit DC gain are selected for illustration because they are 
found in many engineering applications, such as in wavelet 
applications. For other filters with different DC gains, such as 
lowpass filters, bandpass filters, band reject filters, notch 
filters, highpass filters with other passbands and stopbands, 
the design method can be applied directly. 

To evaluate the effectiveness of the proposed method, our 
result is compared with the one obtained using the iterative 
approach [9] and that using an elliptic filter. These two design 
methods are chosen for comparisons because that using the 
iterative approach [9] would be of great value for the readers 
working in this field, while that using an elliptic filter because 
the design objectives are the same. For the iterative design 
approach, it was reported in [9] that the magnitude response of 
the filter in the passband and stopband is approximately 
bounded by, respectively, dB1406.0  and 27.8974dB− , if the 
filter order is 14. The corresponding magnitude response is 
shown in Figure 2a, the zoom in the passband, stopband and 
the transition band are shown in, respectively, Figure 3a, 4a 
and 5a. It can be seen from the figure that the transition 
bandwidth is 0.2756. To compare this result with that using an 
elliptic filter, we use the Matlab function “ellip” to implement 
the filter and set the filter order, as well as the passband and 
stopband specifications same as that reported in [9]. The 
corresponding magnitude response is shown in Figure 2b, 
while the zoom in the passband, stopband and the transition 
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band are shown in, respectively, Figure 3b, 4b and 5b. It can 
be seen from the figure that the transition bandwidth of the 
filter is 310382.1 −× . For our design, we set both ( ) 1=ωW  and 

( ) 1~ =ωW  SP BB U∈∀ω  for simplicity reason. In fact, other 
positive weighting functions can be applied directly. For the 
parameters in the algorithm, we choose 3

1 10−=ε , 10=L , 
610−=β  and ( )oo

dn ,, 11
, εε xx  as the elliptic filter coefficients as 

discussed in Section II. After running three iterations, the 
optimization algorithm terminates because the stopping 
criterion satisfies. The magnitude response of the filter is 
shown in Figure 2c, while the zoom in the passband, stopband 
and the transition band are shown in, respectively, Figure 3c, 
4c and 5c. The phase responses and the pole-zero plots of 
these designed filters are shown in, respectively, Figure 6 and 
Figure 7, while the filter coefficients are listed in Table 1. It 
can be checked that the transition bandwidth of our designed 
filter is 410258.6 −× , which is 0.2271% of that using the 
iterative approach and 45.2822% of that using an elliptic 
filter. Our result performs much better than that using the 
iterative design approach [9] because this design approach 
requires a desired phase response and this information is 
necessary and cannot be removed from the design procedure. 
By an extra imposing a desired phase response on the design, 
the magnitude response will be trade-off. Our result also 
performs better than that using an elliptic filter because the 
one obtained using an elliptic filter is a local optimal solution, 
while our result is a global optimal solution. 

It is worth noting that our proposed design method can be 
applied to a strong specification if a solution exists. Since 
there is a tradeoff between a filter length and a reduction on 
the passband and stopband ripple magnitudes, there does not 
exist any design that gives a filter with very short filter length 
but very large reduction on the passband and stopband ripple 
magnitudes. If there exists a stable filter such that it satisfies 
the specifications on the passband and stopband ripple 
magnitudes at a relatively short filter length, then a global 
optimal solution for the optimization problem exists. Since our 
proposed design method guarantees to obtain the global 
optimal solution, our proposed design method works properly 
under a strong specification if a solution exists. 

In order to test the rate of convergence of the algorithm, 
four different initial guesses of ( )oo

dn ,, 11
, εε xx  are used. These 

four initial guesses give the same global optimal solution. The 
design time for choosing ( )oo

dn ,, 11
, εε xx  as the elliptic filter 

coefficients is 2 seconds, that as the Chebyshev Type I filter 
coefficients is 10 minutes, that as the Chebyshev Type II filter 
coefficients is 15 minutes, and that as the one obtained using 
the iterative approach [9] is 1.5 hours, where all numerical 
experiments are running using a PC with Pentium 1.2GHz 
CPU and 256M bytes DDRAM. From these results, we can 
conclude that the required design time will be shorter if the 
initial guess is closer to the global optimal solution. 

IV. CONCLUSION 
The main contribution of this paper is to formulate an 

optimum rational IIR filter design problem as a nonsmooth 
nonconvex optimization problem subject to continuous 
functional constraints. Our previous proposed constraint 
transcription method is applied to transform the continuous 
functional constraints to equality constraints. A hybrid global 
optimization method is applied to find the global optimal 
solution. According to our numerical experiments, small 
transition bandwidth filters are obtained. 
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Figure 1: Plot of )0(E  against different denominator 

coefficients. It can be seen that )0(E  is not differentiable with 
respect to the denominator coefficients. 

 
Figure 2. Magnitude responses of various filters. (a) Filter 

designed via the iterative approach [9]. (b) Filter designed via 
an elliptic filter. (c) Filter designed via our proposed 

approach. All the passband and stopband ripple magnitudes 
are the same. 

 
Figure 3. Zoom of the magnitude responses in the passband. 
(a) Filter designed via the iterative approach [9]. (b) Filter 
designed via an elliptic filter. (c) Filter designed via our 

proposed approach. All the passband ripple magnitudes are 
the same. 

 
Figure 4. Zoom of the magnitude responses in the stopband. 
(a) Filter designed via the iterative approach [9]. (b) Filter 
designed via an elliptic filter. (c) Filter designed via our 

proposed approach. All the stopband ripple magnitudes are the 
same. 

 
Figure 5. Zoom of the magnitude responses in the transition 
band. (a) Filter designed via the iterative approach [9]. The 

transition bandwidth of the filter is 0.2756. (b) Filter designed 
via an elliptic filter. The transition bandwidth of the filter is 

310382.1 −× . (c) Filter designed via our proposed approach. 
The transition bandwidth of the filter is 410258.6 −× . 
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Figure 6. Phase responses of various filters. (a) Filter designed 

via the iterative approach [9]. (b) Filter designed via an 
elliptic filter. (c) Filter designed via our proposed approach. 
The phase response of the filter designed using the iterative 
approach [9] is approximately linear, while those of via an 

elliptic filter and our design method are nonlinear. 

 
Figure 7. Pole-zero plots of various filters. (a) Filter designed 

via the iterative approach [9]. (b) Filter designed via an 
elliptic filter. (c) Filter designed via our proposed approach. 
The poles and zeros of the filter designed using the iterative 
approach [9] are spread over a wide region in the complex 

plane, while those of the filters designed via an elliptic filter 
and our design method are located in a small region in the 

complex plane. 
Numerator 

coefficients of filter 
in [9] 

Denominator 
coefficients of filter in 

[9] 
0.00216452 1 
0.01422263 0.85183505 
0.01070862 1.40277206 
-0.00173896 1.15151797 
-0.00056474 0.95948743 
0.01648599 0.81499579 
0.01450372 0.68685173 
-0.01424925 0.52355787 
-0.01101010 0.35584783 
0.04991283 0.23561367 
0.04637753 0.15595331 
-0.19765241 0.08260605 
0.33139538 0.01749834 
-0.25569216 -0.01347975 
0.13691517 -0.01109415 
Numerator 

coefficients of an 
elliptic filter 

Denominator 
coefficients of an 

elliptic filter 
0.14216384559483 1 
-0.33386656595210 0.12993638934053 
1.17827982115402 5.51295641219684 
-2.02956611583674 0.67443232223880 
3.90213338343642 12.68806334048509 

-5.11347674406074 1.44167986327036 
6.81014800154999 15.67113003662362 
-6.83555438838710 1.62037059531367 
6.81014800154999 11.06560681872877 
-5.11347674406074 1.00631571864580 
3.90213338343642 4.35630309971892 
-2.02956611583674 0.32569583211244 
1.17827982115402 0.83772771965056 
-0.33386656595210 0.04256677838515 
0.14216384559483 0.05100833029873 

Numerator 
coefficients of our 

designed filter 

Denominator 
coefficients of our 

designed filter 
0.14209728097632 1 
-0.33303728431125 0.13466225640668 
1.17628228645335 5.51353217578228 
-2.02389980294615 0.69650844908505 
3.89299890676338 12.69055280095869 
-5.09827278525309 1.48339221237488 
6.79226627722614 15.67539561982942 
-6.81482053324876 1.66075436190002 
6.79226627722614 11.06922930471550 
-5.09827278525310 1.02707195172405 
3.89299890676339 4.35783717002457 
-2.02389980294615 0.33088092780985 
1.17628228645335 0.83799800124816 
-0.33303728431125 0.04301731830653 
0.14209728097632 0.05101514127115 

Table 1. Filter coefficients of various filters. 


