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A B S T R A C T   

With growing anthropogenic pressure on deep-sea ecosystems, large quantities of data are needed to understand 
their ecology, monitor changes over time and inform conservation managers. Current methods of image analysis 
are too slow to meet these requirements. Recently, computer vision has become more accessible to biologists, and 
could help address this challenge. In this study we demonstrate a method by which non-specialists can train a 
YOLOV4 Convolutional Neural Network (CNN) able to count and measure a single class of objects. We apply CV 
to the extraction of quantitative data on the density and population size structure of the xenophyophore 
Syringammina fragilissima, from more than 58,000 images taken by an AUV 1200 m deep in the North-East 
Atlantic. The workflow developed used open-source tools, cloud-base hardware, and only required a level of 
experience with CV commonly found among ecologists. The CNN performed well, achieving a recall of 0.84 and 
precision of 0.91. Individual counts per image and size measurements resulting from model predictions were 
highly correlated (0.96 and 0.92, respectively) with manually collected data. The analysis could be completed in 
less than 10 days thus bringing novel insights into the population size structure and fine scale distribution of this 
Vulnerable Marine Ecosystem. It showed S. fragilissima distribution is patchy. The average density is 2.5 ind.m− 2 

but can vary from up to 45 ind.m− 2 only a few tens of meter away from areas where it is almost absent. The 
average size is 5.5 cm and the largest individuals (>15 cm) tend to be in areas of low density. This study 
demonstrates how researchers could take advantage of CV to quickly and efficiently generate large quantitative 
datasets data on benthic ecosystems extent and distribution. This, coupled with the large sampling capacity of 
AUVs could bypass the bottleneck of image analysis and greatly facilitate future deep-ocean exploration and 
monitoring. It also illustrates the future potential of these new technologies to meet the goals set by the UN 
Ocean Decade.   

1. Introduction 

The deep sea, by convention, the portion of the oceans deeper than 
200 m, covers most of the planet and provides many ecosystem services 
(Borja et al., 2016; Thurber et al., 2014) but is not understood as well as 
other ecosystems (Levin et al., 2019; Ramirez-Llodra et al., 2010, 2011). 
As anthropogenic pressure on these ecosystems is increasing (Halpern 
et al., 2007), the international scientific community is racing to acquire 
relevant biological data to inform the development of effective conser
vation strategies in line with the aims of the UN Decade of Ocean Science 
for Sustainable Development (Danovaro et al., 2017; Folkersen et al., 
2018; Howell et al., 2020; Levin et al., 2019; Poore et al., 2015). 

Recent research has highlighted the limitations of simple records of 
species presence in the sustainable management of the deep sea 

(Danovaro et al., 2020; Howell et al., 2020; Levin et al., 2019; Milo
slavich et al., 2018; Woodall et al., 2018). These authors argue that 
quantitative data are needed to understand complex phenomenon such 
response to disturbance, potential for dispersal, biomass fluctuations, or 
shift in standing stocks and spatial distribution, in the face of increasing 
human use and climate change. Quantitative data on deep-sea mega
faunal species is difficult to acquire. The low density of many deep-sea 
species necessitates survey over a large area to obtain sufficient obser
vations to reliably measure key biological variables such as density and 
population size structure (McClain and Rex, 2015; Perkins et al., 2016; 
Rex and Etter, 2010). Robust sampling designs also necessitate repli
cation in the measures made (Chapman and Underwood, 2008), which 
multiplies the size of datasets by at least a factor of 3, hence raising the 
challenge of collecting representative datasets in the deep sea. 
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Developments in Autonomous Underwater Vehicles (AUV) mean 
that scientists now have the capacity to survey large areas of seafloor in a 
short time using image-based methods (Huvenne et al., 2018; Jones 
et al., 2019; Morris et al., 2014, 2016; Wölfl et al., 2019; Wynn et al., 
2014). With large datasets, questions that were previously difficult to 
address with statistical robustness can now be investigated and there is 
hope that new insights on benthic species distribution can be gained 
using these tools (Brandt et al., 2016; Danovaro et al., 2014; McClain 
and Rex, 2015). AUVs have the capacity to gather not only images, but 
other types of environmental data like hydrographic, oceanographic and 
topographic data from the exact same location (Wynn et al., 2014), thus, 
providing better access to the fine-scale environmental data sought by 
ecologists (Meyer et al., 2019; Milligan et al., 2016; Perkins et al., 2016). 

Benthic megafauna studies that use images as samples require the 
translation of information contained in the pixels to semantic level (i.e. 
locate and identify object or events within the images) that can subse
quently be turned into ecological metrics such as abundance or diversity 
(Gomes-Pereira et al., 2016). This step, referred to as image analysis or 
image annotation mainly relies on manual analysis that is both slow and 
biased (Culverhouse et al., 2003; Durden et al., 2016; Schoening et al., 
2017). The resulting bottleneck is a well-known issue that restrict the 
pace of deep-sea exploration and, to an extent, prevents the exploitation 
of the large datasets collected by modern sampling tools, particularly 
AUVs. Solutions to this bottleneck have been developed including better 
image analysis software (Gomes-Pereira et al., 2016) or citizen science 
(Matabos et al., 2017) but automation of analysis through Computer 
Vision (CV) and Deep-Learning (DL) has also gained traction (Hoeser 
and Kuenzer, 2020; Kattenborn et al., 2021; MacLeod et al., 2010; 
Weinstein, 2018). Indeed, automated image analysis can achieve accu
racy comparable to manual analysis or slightly lower, but orders of 
magnitude faster (Favret and Sieracki, 2016; Kattenborn et al., 2021; 
Weinstein, 2018). The most promising algorithms currently used to 
analyse images rely on a specific type of neural network called a Con
volutional Neural Network (CNN) (Krizhevsky et al., 2012). These 
models are capable of “learning” the features that differentiate one or 
more types of objects from the background of the image and thus are 
able to locate (or detect) and identify it within other images (LeCun 
et al., 2015). These innovations are influencing how remote sensing is 
used in ecology to circumvent the bottleneck of manual labour and CV is 
now commonly employed in vegetation monitoring (Kattenborn et al., 
2021) and animals detection on camera trap footage (Norouzzadeh 
et al., 2018; Tabak et al., 2019; Whytock et al., 2021). In the marine 
environment, CV has been applied to the study of coral reefs (Beijbom 
et al., 2015; González-Rivero et al., 2020; Pavoni et al., 2020; Williams 
et al., 2019) and fish community diversity and abundance (Ditria et al., 
2021; Marini et al., 2018). It has also successfully been used to study the 
diversity, abundance and distribution of benthic communities (Abad- 
Uribarren et al., 2022; Durden et al., 2021; Marburg and Bigham, 2016; 
Marini et al., 2022; Möller and Nattkemper, 2021; Piechaud et al., 2019; 
Schoening et al., 2012) and these authors report satisfying 
performances. 

However, although these technologies have existed for more than a 
decade and their use regularly advocated (Gaston and O’Neill, 2004; 
MacLeod et al., 2010), their application to ‘practical’ case-studies 
(especially quantitative mapping of benthic megafauna with AUV) 
remain relatively exceptional and the methods used are often compli
cated to reproduce and require advanced knowledge of CV. With more 
accessible methods that can quickly yield usable results, CV can be 
deployed more regularly by the benthic ecology community to bypass 
the manual image analysis bottleneck and make full use of the large 
image datasets collected by AUVs. This will result in an increased 
amount of data on the extent and distribution of benthic megafauna 
available to inform ecological research and conservation strategies. 

Within the deep-sea biome a number of taxa are recognised as 
Vulnerable Marine Ecosystems (VME) indicator taxa under the United 
Nations resolution 61/105, and states are encouraged to map their 

extent and distribution (Ospar, 2008) in order to avoid significant 
adverse impacts occurring as a result of bottom trawl fishing. One such 
taxon is the xenophyophore Syringammina fragilissima (Brady, 1883). At 
up to 20 cm in diameter, S. fragilissima is possibly the largest 
single-celled organism on the planet. It lives on areas of soft sediment, 
deep in the Atlantic Ocean, and can form highly dense aggregations 
(Bett, 2001; Hughes and Gage, 2004); sometimes dominating the 
benthos as the main habitat-building organism (Howell et al., 2010). 
They are usually associated with areas of high surface productivity, 
which supply abundant organic carbon to the seabed (Levin and 
Gooday, 1992; Tendal, 1972). At very broad scales, they are thought to 
live near geological structures such as banks and margins (Tendal, 1972, 
Levin and Gooday, 1992b) but can also be found near canyons (Gooday 
et al., 2011) and seamounts (Davies et al., 2015). At finer scales, they are 
found near caldera, sediment mounds and walls (Levin and Gooday, 
1992; Tendal, 1972). Their distribution is also known to vary over very 
short distances, in areas of complex topography and sedimentology, 
such as in the Darwin Mounds in the North Atlantic (Bett, 2001). 

Little is known of their physiology, but they grow episodically, 
possibly in reaction environmental parameters changes (Gooday et al., 
1993). Some species of xenophyophores are known to be very sensitive 
to changes in POC influx from the surface (Tsuchiya and Nomaki, 2021) 
and this may make them an important indicator of climate-related 
changes in POC flux. Their tests of agglomerated sediment can form a 
3-dimensional frame, which is known to house other meiobenthic taxa. 
Additionally, a higher diversity of endofauna has been in observed in the 
sediment directly surrounding them (Hughes and Gage, 2004; Levin, 
1991; Levin and Gooday, 1992). The fragility of their structure makes 
them particularly vulnerable to physical damage and unsuitable for 
trawl-based studies (Roberts et al., 2000). Piechaud et al. (2019) showed 
that a CNN trained to identify various benthic taxa in AUV images 
performed unevenly but identified S. fragilissima with more than 90% 
accuracy with enough training data. This species, therefore, represents a 
potentially useful taxa for trialling the application of CV and DL to the 
generation of quantitative data to inform sustainable management of the 
deep sea. 

The aims of this study are two-fold. 1) apply CV to extract quanti
tative data on the density and population size structure of a 
S. fragilissima aggregation in the north-east Atlantic from a large image 
dataset acquired by an AUV, and 2) Demonstrate that a simple open- 
source CV workflow applied to benthic images can replace manual 
analysis to generate accurate data and contribute to the future devel
opment of autonomous biological observations under the UN Ocean 
Decade. 

2. Material and method 

2.1. Study area and data collection 

The data were collected at station 26 of the DeepLinks Cruise 
(Howell et al., 2016) on the 29/05/2016, during mission M116 of the 
Natural Environment and Research Council’s (NERC) AUV Auto
sub6000. The study area lies northeast of Rockall bank (Fig. 1), is 1205 
m deep on average (+ − 25 m) with relatively smooth terrain composed 
of fine sediment. Multibeam bathymetry and backscatter data at 2.5 m 
resolution was collected by Autosub6000 during dive M115 of the same 
cruise (Fig. 1). The area surveyed by multibeam formed a rectangle of 
1.5 by 3.5 km with a data-gap in the in the southern edge where the 
topography was deemed too rough for AUV camera work. The total 
surface area for the study site is 8.6 km2. 

During mission M116 the AUV spent 22 h in the water and approx
imately 18 h near the seabed travelling a distance of 82 km. It performed 
27 transects ranging from 1.7 to 3.2 km in length (Fig. 1), at an altitude 
of approximately 3 m above the seabed, and speed of 1.1 m.s− 1. Distance 
between transects ranged from 10 to 90 m. 

Autosub 6000 was equipped with a Grasshopper 2 - GS2-GE-50S5C 
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camera looking vertically down at the seabed. Images of resolution 
2448 × 2048 pixels, were taken every second giving near full coverage 
of the seabed along these tracks providing image data on ~103,000 m2 

of seabed. Vehicle altitude, pitch and roll were recorded by on-board 
sensors, and a USBL system provided real time position data. 

2.2. Image analysis 

Upon recovery of the vehicle images were downloaded for analysis. 
Images were geolocated using AUV position, and colour-corrected using 
the default method implemented in the IrfanView software (Skiljan, 
2012), before further processing. 

Images taken at <2 m and > 3.5 m from the seabed were excluded 
from the dataset to minimize challenges in animal identification and 
quantification resulting from inconsistent field of view and the potential 
for overlapping images. The resulting datasets consisted of 58,922 im
ages of which 58,148 were suitable for analysis. The surface of each 
image in square meters (m2) was calculated with the method described 
in Morris et al. (2014) using the vertical and horizontal acceptance 
angles of the cameras, the focal length of the camera and the altitude, 
pitch and roll of the vehicle. Without proper calibration, the exact error 
margin of this method as well as the effect of the distortion near the edge 
of the images are unknown but is estimated to be in the order of 10%. 

A subset of 1718 images belonging to one of the 27 transects (tran
sect 2 in the south west) were annotated by a single observer using the 
online software Biigle (Langenkämper et al., 2017). Individual xen
ophyophores were located in the images and marked with a circle 
annotation. S. fragilissima was very abundant at station 26 and almost 
all images selected for annotation contained at least one individual. 
Consequently, annotation was faster than it would have been if the 
target was rarer. 

2.3. CNN training 

We used a ‘You Only look Once’ Version 4 (YOLOV4) CNN to detect 
S. fragilissima (Bochkovskiy et al., 2020; Redmon et al., 2016). YOLOV4 
is a highly flexible CNN framework capable of performing both object 
detection and classification. While not the only suitable architecture for 
the objectives of this study, nor the most accurate (Schneider et al., 
2018), it is simple, fast to implement, and one of the most popular open- 
source architectures of CNN used for many different industrial and sci
entific tasks (Hoeser et al., 2020; Redmon et al., 2016). 

We used transfer learning to re-train the last layer of an existing 
YOLOV4 CNN trained on the COCO dataset (Bochkovskiy et al., 2020). 
The CNN used to annotate the benthic images was trained within the 
Darknet (Redmon, 2013) framework through a Google Collaboratory 
Professional (Bisong, 2019) notebook with GPU acceleration and High 
Ram session enabled. This notebook acted as a virtual machine onto 
which a custom combination of command-line and python scripts pre
pared the environment, processed the data and trained the CNN. After 
purchasing ‘Pro’ membership (£8.10/month), this online interface 
required only a connection to the internet thus bypassing the need for 
advanced and expensive computing hardware and its setup on a local 
machine. Although the resource allocation in a Colab session is not 
directly controlled by the user, we most commonly had access to a Tesla 
P100 GPU (16 GB of VRAM memory). The Colab notebook was also set 
to “high RAM session” to avoid memory limitations that could interrupt 
the training process. 

Some model parameters were modified from the default configura
tion to balance use of resources and training speed. We retained a res
olution of 704 × 704, batch size 64, 32 subdivisions and trained up to 
6000 iterations. Other parameters were kept to default or set according 
to guidance by the developers (https://github.com/AlexeyAB/darknet). 

Manual annotations were used to generate training, validation and 
testing datasets. Biigle annotations (label name, centre x, center y, 

Fig. 1. Map of the study area (Station 26) in the general context of the Rockall Trough with EEZ boundaries (inset map, top-right corner) indicating the AUV 
transects, the annotated one (t2), as well as the local topography. Coordinates are UTM28 North. 
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radius – all expressed in raw pixels number with origin in top left corner) 
were downloaded and transformed to fit the format required by YOLO 
(class code name, center.x, center.y, width, height – all in fractions of 
images width and height scaled from 0 to 1) using a custom R script. 
Following recommendations in Piechaud et al. (2019) we aimed to use 
approximately 1000 annotations of the target species in training. Our 
training dataset contained exactly 997 individual S. fragilissima anno
tations from 262 images. A further 269 individuals annotated from 50 
images formed the validation dataset used throughout the training 
process to monitor the performance changes by the Darknet imple
mentation of YOLO. 

2.4. Model evaluation 

The testing dataset was composed of 500 manually annotated images 
from the same transect and was only used to calculate performances 
outside the Darknet framework by comparing CNN predictions with 
manual annotations. 

Predictions come as a .JSON file containing the coordinate of the 
bounding box of each tentative annotation as well as a confidence score 
ranging from 0.05 at minimum (lower confidence scores introduced too 
much noise and therefore were not recorded) to 1 at maximum. Pre
dictions made on the testing set were compared to the manual annota
tion of the same images. 

In this exercise, a tentative annotation was considered a true positive 
if its centre was within a 30 pixel distance from a manual annotation 
centre in the same image. We used a custom R script to spatially match 
CNN predictions and manual annotations so that the number of True 
Positives (TP), False Positives (FP) and False Negatives (FN) could be 
counted in each image in the testing set. Hence, a true positive is an 
automatic annotation that falls within 30 pixels of a manual one. The 30 
pixel distance allowed some leeway in matching annotations as the 
YOLO bounding boxes were rarely centred exactly where the manual 
annotations were centred. This distance is also small enough to avoid a 
single automated annotation to match multiple manual annotation since 
different individual S. fragilissima are never so closely packed. A false 
positive is an automated detection that does not fall within 30 pixels of a 
manual annotation. False negatives are manual annotations that were 
not matched to any automated annotations. 

Production of values for TPs, FPs and FNs enabled us to calculate the 
recall (also referred to a sensitivity and is equal to TP/(TP + FP)) to 
know the true positive rate, and to calculate precision (also referred to as 
specificity and is equal to TP/(TP + FN) to know the false positive rate. 
The F1 score or harmonic mean of recall and precision (2 * (precision +
recall)/ (precision + recall)) combines both values into a single value for 
clarity. 

The Pearson correlation between the number of manually annotated 
S. fragilissima with the number of objects detected by the CNN within 
each image of the testing set was used to provide another measure of 
accuracy in CNN model predictions of. the density of S. fragilissima. 
Note, however, that this metric does not inform on whether or not the 
same individuals were detected by the manual annotators and the CNN. 

2.5. Model selection 

CNNs are sensitive to overfitting (Domingos, 2012). Throughout the 
training process, the algorithm goes through cycles of training on the 
training set - evaluating performance on the validation set – adjusting 
CNN node weights – before repeating the entire cycle. These cycles are 
referred to as epochs or iterations when the training dataset is too large 
to be processed in one stroke and needs to be subdivided in several 
smaller batches as is the case in this study. There is an optimum number 
of iterations before the performance on the validation and training sets 
(independent data that the CNN has not seen) start to diverge as the CNN 
overfits and becomes more specialized at predicting the training set 
while becoming less able to predict the validation set (generalization). 

This optimum point for best performances was sought by interrupting 
the CNN training before it loses capacity to generalize, or early stopping 
(Ying, 2019). Performances were calculated for CNNs trained with 1000, 
2000, 3000, 4000, 5000 and 6000 iterations in order to detect the point 
where performance was best and thus avoid overfitting. During testing, 
every object detected with a confidence value >0.05 were recorded so 
that higher thresholds could later be applied. Performances were 
calculated with confidence thresholds of 0.05, 0.3 (the default), 0.5 and 
0.9 and compared to select the threshold that maximized the TP while 
keeping FP to a reasonable level. 

The weights that offered the best compromise between precision and 
recall were used to make predictions on the whole dataset of 58,148 
images. This was also performed in the same Colab notebook. To limit 
space taken on Cloud storage without compromising performance, they 
were reduced in resolution to a 1224 × 1024. 

2.6. Size and surface area measurement 

In the CNNs predictions, the size of individual S. fragilissima was 
measured as the smallest side of the bounding box. After examination of 
the training set, it became apparent that the sizing of these annotations 
was too inaccurate to compare to the CNN’s bounding boxes which 
tended to fit much more closely to the animal. Indeed, manually fitting 
the circle to the exact size of the individual S. fragilissima size is difficult 
to achieve quickly and consistently during manual annotation. Conse
quently, 100 images containing 467 individuals from the testing set 
were annotated again with particular care given to fitting the circle 
around the individual S. fragilissima and accurately measuring their size 
by manual mean. Evaluation on the accuracy of the sizing were con
ducted by comparing the CNNs predictions and precise manual mea
sures in this small subset exclusively. The size in pixels was converted to 
m based on calculated image size. The area covered by each individual 
was approximated by calculating the surface of circle (π * radius2) of a 
radius equal to half the measured size of the individuals. The Pearson 
correlation between manually and automatically measured sizes in 
pixels was used to express the accuracy of the size measurement. 

2.7. Data analysis and mapping 

The selected CNN was used to analyse all AUV images providing a 
georeferenced spatially explicit dataset from which metrics describing 
the local S. fragilissima population could be calculated. Density of 
S. fragilissima was calculated for each image (nb. individuals/ image 
surface area) and expressed in individuals per meters square (ind.m− 2). 
The percentage of seabed covered by the combined S. fragilissima in
dividuals in each image was calculated as (sum of S. fragilissima surface 
area / image surface) x 100). The relative abundance of different sizes- 
classes of S. fragilissima were explored using histograms. The relation
ship between density and relative seabed cover was explored with 
Pearson, Spearman and Kendall Correlations. All data analysis was 
performed in R (Team, 2021) with the “tidyverse” package (Wickham, 
2017). 

Continuous maps of the density, percentage surface cover and 
average sizes of S. fragilissima at 10 m resolution (and down-sized to 2.5 
m to be overlayed with the resolution of the existing bathymetry 
available for the area) were produced with ordinary Kriging. These 
continuous surfaces were then overlaid with topographic information (i. 
e. bathymetry) to visualize pattern in S. fragilissima distribution, density, 
and population size structure over the local terrain. This was performed 
in R with the “automap v. 1.0-14” package (Hiemstra and Hiemstra, 
2013) to automatically fit the variogram and the “gstat v. 2.0-8” 
(Pebesma, 2004) package to interpolate the values between discrete 
points of measurement and produce a complete surface. QGIS (QGIS 
Development Team, 2020) was then used to visualize the resulting 
spatial layers and export maps. 
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3. Results 

3.1. Model evaluation and selection 

The number of iterations for which the CNN was trained has a strong 
influence on its performances as well as on the confidence it gives to its 
predictions (Fig. 2). In general, longer model training past 1000 itera
tions tended to give higher recall but lower precision. 

We used the CNN constructed using 3000 iterations, and a confi
dence threshold of 0.3 as the best compromise in terms of maximising 
recall and precision. The selected model had comparable performance to 
one constructed using 4000 iterations but trains faster (Fig. 2). Although 
a higher confidence threshold gave a slightly higher overall performance 
(f1-score) the 0.3 threshold was selected to favour recall (true positives) 
over precision as the latter was above 0.9 regardless of the threshold. 

The recall and precision of our selected model was 0.836 and 0.912 
respectively. This means that 84% of the manually detected individuals 
were also detected by the CNN (84% True positive rate) and 91% of 
automatically detected individuals were also manually detected (9% 
false positive rate). 

The correlation between manually counted and automatically 
counted xenophyophores in each image for which manual measures 
existed reached 0.96. Although this suggests this model performs well it 
also shows manual and automated annotations will both miss in
dividuals that the other method does detect. With the chosen configu
ration of number of iterations and confidence thresholds, the CNN 
detected 8.5% less S. fragilissima individuals than the manual annota
tion. The manually annotated individuals that the CNN failed to detect 
were predominantly small ones. 

The Pearson correlation between the manually and automatically 
measured size of S. fragilissima was 0.92. An example of predictions 
performed on one of the most densely occupied images in the dataset is 
shown in Fig. 3 to illustrate the predictions made by YOLOV4. 

3.2. Density and population size structure of an S. fragilissima 
aggregation in the north East Atlantic 

261,049 individuals were observed in the complete image dataset. 
Their density is on average 2.5 ind.m− 2 and in most images, the density 
was close to this value and higher abundances much rarer (Fig. 4). Some 
patches of seafloor supported a very high density with up to 45 ind.m-2 

in some instances. 

3.3. Size-abundance relationship 

The correlation between density and relative seabed cover (Table 1) 
is high. The average diameter of the individual S. fragilissima encoun
tered at station 26 was near 5 cm. The majority of the individuals 
(50.7%) measured 3.5 to 6 cm and only 2151 (less than 1%) were larger 
than 10 cm. The largest observed individual confirmed to be a S fragi
lissima was measured at 16.2 cm in diameter (some of largest detections 
were false positives). Although both manual and automated methods 
cannot consistently detect individuals smaller than 1 cm, the size-classes 
distribution shows the average-sized individuals are also the most 
abundant (Fig. 5). The largest individuals were observed in images 
where density was low (Fig. 6). 

3.4. Mapping community distribution 

A continuous map of the distribution of S. fragilissima Figure 9shows 
important spatial variability. The percentage of the seabed covered by 
S. fragilissima (Fig. 7) largely follows the density pattern (can be seen in 
Fig. 9 in appendix). Together, all the S. fragilissima observations repre
sent 562 m2 of seabed. On average, they cover less than 1% of the sur
face of the image but this value can go up to 5% in some areas. 
S. fragilissima occupy the whole survey are in various patch sizes but four 
high density patches, 100 to 300 m across, stand out. The transition 
between these areas and their surroundings, where the density is much 
lower, can be very abrupt and go from close to 0 to more than 20 in
dividuals in few tens of meters. The patches of high density are also the 
areas where the average size of S. fragilissima individuals is lowest 
(Fig. 10 in appendix). Overlaying measured density over the local 
topography shows that high density patches are located in small de
pressions slightly deeper than the surrounding seabed (Fig. 8 or view in 
interactive map in Appendix S1). However, density can be very low in 
some depressions and average on some of the raised features. 

3.5. Application of deep-learning computer vision approaches to benthic 
image analysis 

S. fragilissima is very abundant at station 26 and almost all images 
(~85%) selected for annotation contained at least one individual. 
Consequently, the annotation of the training, testing and validation sets 
was relatively fast. Note that, for a simple task like counting xen
ophyophores, manual analysis is quick and hundreds of annotations of 

Fig. 2. Performances of the CNNs with varying numbers of iteration and different confidence thresholds.  
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individuals can be gathered in single hour in areas of high density. 
However, this repetitive task is straining for the annotator who may lose 
focus and consistency, particularly regarding the detection of the 
smallest individuals. Besides, this speed depends largely on the density 
of the target species and it would take longer to form a training set for a 
less abundant target. Thus, the time taken to annotate the training and 
validation sets can vary widely, but it is estimated that the entire process 
from taking the images out of the AUV to having them ready to train the 
CNN could be accomplished in less than 10 days or even less for expe
rienced analysts used to performing this task routinely. 

Training the CNN took approximately 18 h to complete the 6000 
iterations. Measuring the accuracy of the different CNNs and the effect of 
different confidence thresholds took several hours but could be further 
automated. Predictions on the 58,148 images took approximately 10 h 
however the training and predictions phases do not require constant 
supervision and can be performed overnight or while the analysist is free 
to attend to other tasks. Finally, the calculation-intensive nature of the 
training, and to a lesser extent, prediction phases makes their duration 
largely dependent on the hardware used and thus may vary between 
users. Overall, the whole pipeline could be completed within one or two 
weeks (10 days) once the analysists are familiar with it. 

4. Discussion 

Automated annotation of nearly 60,000 images by a CNN trained on 
a relatively small training set produced highly accurate counts and 
measurements of the target species in a very short time that only 
marginally deviated from the manual annotations it was compared to. 
The dataset collected reveals interesting insights into the ecology of 
S. fragilissima and demonstrates the feasibility of applying deep-learning 

Fig. 3. Images of the highest recorded density without (left) and with (right) the bounding boxes of the CNN’s predictions overlaid over individual S. fragilissima.  

Fig. 4. Density classes relative abundance of S. fragilissima at the study site. The bars indicate the number of individuals (count) in each abundance classes.  

Table 1 
Correlations between density and relative 
seabed cover by S. fragilissima at station 26.  

Method Value 

Pearson 0.86 
spearman 0.92 
Kendall 0.76  
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computer vision approaches to benthic image analysis. 

4.1. Distribution of S. fragilissima, density, sizes and seabed cover in the 
survey area 

Our results suggest the distribution of S. fragilissima is patchy within 
the study area. Dense aggregations tend to be formed by individuals of 
small to average sizes and the large individuals were only found in areas 
of low density. Abundances above 45 ind.m− 2 were observed, which are 
higher than the previously published values for this species in this area. 
Roberts et al. (2000) reported densities of 10 ind.m− 2 and Bett (2001a) 
reported densities of up 32.8 ind. 100 m− 2 (0.3 ind.m-2) with clear local 
variations. The maximum densities observed within the study area are 
higher although the use of different imaging platforms should be noted 
when comparing these values. It is possible that the environmental 
conditions within the study area could be closer to optimum for 
S. fragilissima than previously studied locations. The patchiness of their 
distribution and sharp variation of density (over tens of meters) have 
been reported previously and have been hypothesized to be a response 
to environmental drivers at very fine scale (Bett, 2001; Levin and 
Gooday, 1992). Large concentrations in small areas are likely linked to 

local environmental drivers forming favourable niches at a microscale. 
Although the drivers of xenophyophore distributions are not known 

with certainty. At broad scales, (~1 km × 1 km) Ashford et al. (2014) 
identified depth, oxygen availability, nitrate concentration, organic 
carbon, and temperature to be the most important parameters driving 
the distribution of xenophyophores. Ross et al. (2015) determined that, 
topographic factors influencing the distribution of S. fragilissima were 
the same at broad (750x750m) and fine (200x200m) scale and 
concluded that the main drivers (here, depth and bathymetric position 
index) of S. fragilissima distribution operated at either of those scales. 

Other in situ observations suggest they inhabit flat muddy terrain, 
such as near the Darwin Mounds (Bett, 2001; Huvenne et al., 2016), as 
well as steep slopes in Canyons (Gooday et al., 2011). Terrain could be 
an important driver of their distribution, as observed in other areas 
where their close proximity with raised features has been reported at 
fine and broad scale (Ross and Howell, 2013; Davies et al., 2015,; 
Huvenne et al., 2016), although not systematically. It has long been 
hypothesized that the dense yet patchily distributed aggregations of 
xenophyophores observed in specific locations, like the Western Darwin 
Mounds, were associated with the scoured tails created by currents 
behind raised structures (Bett, 2001). A counter example exists where 

Fig. 5. Histogram of S. fragilissima population size (in meters) structure. The bars indicate the number of individuals (count) in each size classes.  

Fig. 6. Relationship between local (in-image) density of S. fragilissima and their individual sizes.  
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this association was not observed and the xenophyophores were very 
widespread (Howell et al., 2014). 

Within the study site, patches of medium or high density were found 
both on local peaks and troughs (with elevations differences of no more 
than 25 m), while the relatively small size of the area makes a significant 
effect of depth, temperature, and chemical parameters unlikely. It 
therefore remains to be precisely determined why some areas within the 
surveyed perimeter are almost devoid of xenophyophores while other 
are occupied by higher densities. There are no previous studies that have 
focused on variations at such fine scale and thus we cannot resolve the 
data presented here. Whether the niches that favour these high con
centrations of S. fragilissima are stable in time or are transitional is also 
unknown. Furthermore, the distribution of S. fragilissima may not be 
entirely environmentally driven and could be shaped by biotic in
teractions that can only be observed if the other organisms of the 
community were considered in the analysis. Replicating the analysis of 
datasets of benthic images and topography would better inform fine 
scale spatial variability in the distribution of S. fragilissima and its 
drivers. 

The proportion of seabed cover is correlated to density more than the 
size of the individuals and, interestingly, the largest individuals tended 
to live in the less dense patches rather than the presumably more suit
able areas where the density is high. On average, this cover in the sur
veyed area is 0.5%. This could represent several thousand square meters 
of seabed in this small area alone if the pattern seen in the images is 
repeated outside. If this station is representative of the whole Rockall 
Basin within the depth band occupied by these xenophyophores (which 
is not clearly defined either), their contribution to the local ecosystem 

could be considerable and warrants a closer examination of their func
tional role, population dynamics, sensitivity to disturbance, particularly 
climatic changes, and resilience. More knowledge on their ecology is 
necessary to interpret these results and adequately manage their con
servation. For example, studies such as those of Tsuchiya and Nomaki 
(2021) on metabolism of pacific xenophyophores S. fragilissima could be 
replicated in the Atlantic enabling metabolic calculations for individuals 
and subsequently populations, thus linking density and seabed cover to 
metabolic variables. S. fragilissima and other xenophyophore pop
ulations have been found to be sensitive to organic carbon influx from 
the surface, reproducing and growing rapidly following increased flux of 
organic carbon to the seabed (Gooday et al., 1993; Tsuchiya and 
Nomaki, 2021). 

Large scale surveys of density and sizes measurement between two 
points in time (repeated monitoring) would give statistical and spatially 
explicit visualisation of this phenomenon and complement the in-situ 
studies at individual scales. In this context, repeating surveys with the 
presented method could detect subtle variations over time of the bio
metric variables that the CNNs can measure, and offer a proxy for 
ecosystem metabolism and carbon uptake as well as reveal important 
information on their ecology and life history. Thus, these quick and cost- 
effective measurements could, in future, be applied to monitoring of 
ecosystem health and impacts of climate change. 

There are many taxa considered VME indicator taxa that form high 
density monospecific aggregations, which are considered VME when a 
threshold density is reached. These thresholds are, however, not clearly 
defined. Although S. fragilissima aggregations are a widely recognised as 
a VME (Ospar, 2008), there is no precise criterion of density or relative 

Fig. 7. Percentage (%) of the seabed cover distribution. Combination of size and density to evaluate the abundance of S. fragilissima and how much of the seabed it 
occupies. Coordinates are UTM28 North. 
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seabed cover that is used to make a clear decision on where this VME is 
and isn’t present. This complicates the assessment of its extent and 
distribution and is detrimental to its conservation. If applied to other 
known examples of S. fragilissima aggregations this method could 
quickly quantify densities of S. fragilissima and provide numerical data to 
help precisely define the density at which the VME indicator taxa is 
considered a VME. 

4.2. The application of deep-learning computer vision approaches to 
benthic image analysis 

CV based techniques (involving DL or not) for image analysis have 
been available as a tool for a long time (Gaston and O’Neill, 2004; 
MacLeod et al., 2010) but its complexity and difficulty to access trained 
staff for long term projects may have limited its application to the field 
of deep-sea ecology. This workflow uses open-source tools and a remote 
cloud computing platform which makes its implementation easy and 
cost-efficient while achieving high accuracy. A research team using a 
combination of YOLO and Google Colab as we did here can thus have 
access to a CV workflow without hiring a trained computer scientist and 
acquiring the costly hardware needed to run the algorithm. Conse
quently, more ecologists can now use CV and workflow such as this one 
to quickly gather large datasets of ecological data with an accuracy 
comparable to that of manual annotation. 

Implementing our CV workflow onto this dataset yielded excellent 
results in terms of raw enumeration with 96% correlation between 
manual and automated counting but the measures of recall and precision 
indicate that the real accuracy is slightly lower. This is interpreted as the 

sign that the CNN and human annotators, in agreement for the most 
part, do detect or miss different individuals (or possibly make different 
mistakes). It is worth noting that that two equally experienced human 
annotators are unlikely to produce identical datasets and may even 
disagree by a comparable margin (Culverhouse et al., 2003, 2014; 
Durden et al., 2016). Further exploration of the biases of human vs 
machine are necessary to understand the sources of these differences 
and what impact it could have on comparison between manually and 
automatically annotated data. This also raises the question of what the 
gold standard to which annotations are compared to should be (Scho
ening et al., 2016) and a dataset combining the input of multiple human 
annotators would give a less biased evaluation of performances. Inves
tigating the performances of CNNs trained with increasing numbers of 
iterations also showed default parameters (6000 iterations) set by 
Bochkovskiy et al. (2020) may not apply to all cases. Here, testing with 
less iteration showed that slightly higher recall and precision could be 
achieved with half the training time before overfitting starts affecting 
accuracy. This is a known phenomenon that affects CNNs (Domingos, 
2012). Closely monitoring the performances throughout training and 
applying early stopping (Ying, 2019) can yield a significant gain when it 
saves 8 or 9 h and maximizes recall and precision. Picking an arbitrarily 
low number of iterations could save time in the analysis phase if speed of 
analysis is an objective in itself and the best performance are not 
necessarily required. An example situation would be during an explo
ration phase of a sampling exercise when the area of highest concen
tration of a target for physical sampling is sought. Quickly mapping the 
concentration of the target with a CNN such as the one used here would 
quickly provide usable information in the same way the automated 

Fig. 8. Image location coloured by density overlayed onto the local topography. The Bpi index reflects the shape of the terrain and 0 indicates flat terrain at chose 
scale (here, over 250 m). Negative values are dips, troughs and gullies and positive values are peaks and crests. Coordinates are UTM28 North. 
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processing of acoustic data from multibeam echo sounders (Mayer, 
2006) can quickly produce a visual representation of local topography. 
However, it seems good practice to investigate how overfitting affects 
the performance to avoid relying on unnecessarily inaccurate CNNs. 

Depending on the objectives of the study, one could favour a com
bination of number of iterations and confidence threshold that promote 
a high recall (more true positives) or high precision (less false positives) 
or a compromise between the two (highest F1 score). For example, a 
study aiming at generating reliable presence records, would likely 
minimize the number of false positives so that the detections made are 
almost certainly the target species even though individuals are missed. 
Such studies would rather apply a high confidence threshold. On the 
other hand, studies like this one aiming at quantifying the target would 
prefer a balance between the two so the final abundance is as close as 
possible to the actual count. 

The AUV survey took 22 h from deployment to recovery. The whole 
pipeline of analysis including manual annotation and quality assessment 
of the training set, and training and testing of the model itself could take 
5 to 10 days depending on the density of the target species in the images, 
the hardware available and the experience of the operator. The most 
time-consuming tasks are the training sets annotations and the training 
of the CNN. Making predictions on 60,000 images was performed in 10 
h. This means that the presented map of species abundance and relative 
seabed cover could be available in less than a day after the AUV came 
back from its mission provided a working CNN is available prior to the 
launch. In that case, these results would require very little time invest
ment and be available almost immediately. 

Without the use of automated annotation, manually processing the 
near 60,000 images collected by Autosub6000 at station 26 could have 
taken hundreds of hours of manual work. Although the resulting dataset 
would have been potentially more accurate, it could also be less 
consistent as annotators focus varies throughout the process. This 
manual analysis would not have been the best use of time and resources 
available to the researchers and would, most likely, not have been car
ried out. Indeed, the known issue of the image analysis bottleneck 
partially cancels the advantages of AUVs (particularly of the cruising 
class (Huvenne et al., 2018) that offer the best coverage) for benthic 
habitat surveys. This somewhat limits the usefulness of these AUVs, 
particularly if one is reminded of their notorious drawbacks such as lack 
of manoeuvrability, incapacity to safely survey rough terrain, within- 
mission adaptability and their occasional unreliability (Przeslawski 
et al., 2018). 

Although the potential contribution of easily implemented CV is 
enticing and could have large benefits for benthic ecology, there are a 
number of drawbacks that must be kept in mind by potential future 
users. Assessment of CV capacities and limitations to offer a clear picture 
of what it can achieve are necessary to avoid introducing unknown 
biases in the datasets it generates and make inappropriate use of the 
results. As the dataset generated also increase in size, subsequent anal
ysis may also need proportionally more computing power which could 
also become a limitation. Therefore, future studies using CV will need to 
consider using methods and platforms that can accommodate their large 
datasets or risk simply shifting the data analysis bottleneck down the 
analysis pipeline. Subsampling (taking a representative subset of the 
data that replicates the trend found in the whole dataset) would be an 
obvious solution (Hurlbert, 1984; Morrisey et al., 1992). This requires a 
larger than necessary dataset from which the right sample size to get 
statically robust results can be extracted. This can be impractical or even 
wasteful of the annotators time if not all the images they analyse are use. 
On the other hand, once a CNN is trained, analysing 5000 or 50,000 
images makes little difference for the annotators as, although the com
puter will need more time (a matter of hours), the inference requires no 
supervision. Gathering a larger than necessary dataset can thus be 
achieved at no extra cost if the images have been collected in sufficient 
number, which is often the case with AUV sampling (Morris et al., 2014; 
Pizarro et al., 2013). 

In this study we trained a CNN to identify a single taxa that previous 
research had shown was well identified by another CNN trained on the 
same dataset (Piechaud et al., 2019). However, this previous work 
showed that performance of CV was taxon-specific and always plateaued 
some way below 100% and sometimes too low for the results to be 
considered usable. Hence, ecologists wishing to focus on a single taxon 
must consider their target carefully and always keep in mind that CV 
may not be accurate enough and, consequently, resort to using manual 
or semi-automated annotations. Moving forward, training of CNNs to 
accurately classify multiple classes of benthic megafauna (rather than a 
single taxon) would be more efficient and ecologically more valuable 
although other challenges must be addressed with this approach. For 
example, the uneven performances observed in multi-species classifiers 
across classes is likely to make interpretation of the resulting ecological 
metrics complicated (Durden et al., 2021; González-Rivero et al., 2020; 
Piechaud et al., 2019). The amount of training data needed for such 
classifiers is also far greater in order to sufficiently represent the rarer 
taxa (Durden et al., 2021) and they are sensitive to class imbalance 
(Menardi and Torelli, 2014; Schneider et al., 2020). 

In this study, we also used CV to measure the size of individuals, 
made possible because this species always grows in a circular shape, and 
the bounding box of the annotation gave a reasonable estimate of the 
size of the individual. However, using the bounding box to approximate 
sizes would be inaccurate for taxa with irregular shapes like corals or 
sponges or for taxa whose perceived size can be altered by movements 
and changes of orientation like crustaceans or fishes. Other CV methods 
like semantic segmentation have a more complex perception of the 
shape of the object they detect and thus be more flexible (Pavoni et al., 
2019) but would still not be appropriate to measure the size of every 
marine taxa on two dimensional images. 

Finally, although we have trained a CNN to reliably identify our 
target taxa in images obtained by the Autosub6000 AUV at one site 
visited on one research cruise, transferring this model to a new dataset 
(generalizing or adapting its domain) is unlikely to be successful (Li 
et al., 2017; Schneider et al., 2020). Use of CNNs trained on a specific 
dataset should only be used on other datasets with great care. The 
consequence of this is that the long procedure of training the CNN will 
have to be implemented on a dataset-by-dataset basis. This highlights 
the need to retain expert knowledge for annotation but also raises a 
number of questions regarding the best strategy to adopt in the future as 
to the most sensible way to gather, combine and expand on existing 
datasets of annotated benthic imagery and this topic will require more 
research (González-Rivero et al., 2020; Kattenborn et al., 2021; Li et al., 
2017). In the future, a specific CNN trained from the scratch from a large 
dataset of expert annotations of marine taxa or functional classes on 
underwater images would be the best solution (Beyan and Browman, 
2020; Katija et al., 2021) but requires a concerted effort to standardize 
annotation data and international cooperation through projects like 
‘Challenger 150’ for the UN Decade of Ocean Science for Sustainable 
Development (Howell et al., 2019, 2021). 

5. Conclusion 

This study addresses the need for more data to study deep sea eco
systems and especially VMEs. It uses an open source, easily accessible 
yet powerful CV pipeline to quickly and accurately count and measure 
individuals of the VME indicator species S. fragilissima in images 
collected by an AUV. This relatively large dataset brings new knowledge 
on the fine scale distribution and population size structure of this species 
in the north-east Atlantic and was collected and analysed in a very short 
time. It illustrates how application of CV to AUV images can potentially 
yield more data than analysis, and could, therefore, replace this method 
in specific scenarios. This increased speed of analysis comes at no extra 
staff cost, little hardware investment and is accessible to scientists 
without advanced programming skills. Hence, it becomes more logisti
cally feasible to investigate aspects of deep-sea ecology that require 
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these large datasets. We are now in the second year of the UN Decade of 
Ocean Science for Sustainable Development, and lack of data on deep- 
sea ecosystems has been highlighted as a key challenge to be 
addressed (Howell et al., 2020) as well as the role of new technology in 
doing so. This study provides a first step, hinting at what might be 
possible by 2030. 
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