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Abstract

We propose a material point method (MPM) to model the evolving multi-body contacts due to crack growth and
ragmentation of thermo-elastic bodies. By representing particle interface with an implicit function, we adopt the gradient
artition techniques introduced by Homel and Herbold (2017) to identify the separation between a pair of distinct material
urfaces. This treatment allows us to replicate the frictional heating of the evolving interfaces and predict the energy dissipation
ore precisely in the fragmentation process. By storing the temperature at material points, the resultant MPM model captures

he thermal advection–diffusion in a Lagrangian frame during the fragmentation, which in return affects the structural heating
nd dissipation across the frictional interfaces. The resultant model is capable of replicating the crack growth and fragmentation
ithout requiring dynamic adaptation of data structures or insertion of interface elements. A staggered algorithm is adopted to

ntegrate the displacement and temperature sequentially. Numerical experiments are employed to validate the diffusion between
he thermal contact, the multi-body contact interactions and demonstrate how these thermo-mechanical processes affect the
ath-dependent behaviors of the multi-body systems.
c 2021 Elsevier B.V. All rights reserved.

eywords: Material point method; Multi-body contact; Fragmentation; Brittle fracture; Thermomechanics

1. Introduction

Path-dependent behaviors of particulate systems manifest from both the micro-mechanical responses within
ndividual particles [1–4] and how these particles interact with the surrounding particles over time [5–13]. While
imulations conducted via discrete/distinct element methods may update particle contact connectivity at each
ncremental time step, the contact laws (e.g. Herizan contact [14], linear frictional model [15]) employed in a
iscrete element method are highly idealized. Examples of these idealizations include assuming specific particle
hapes (e.g. sphere, flat half-space), the geometry of contacts (e.g. point-wise contacts, overlapped domain), and
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topology (e.g. two-particle contact, neglected deformation of particles). In recent decades, many studies are dedicated
to analyzing how these idealizations affect the accuracy of the predictions and propose remedies to overcome the
limitations. For instance, contacts of non-spherical particles are often approximated by clustering spheres together
to form regular shapes [16]. Alternatively, Boon et al. [17] and Kawamoto et al. [18] introduce implicit functions
to represent the geometry of particles of different shapes.

Nevertheless, one key issue for these attempts is that the stress field inside individual particles is not available.
ence, alternative theories that are based on force or homogenized stress of individual particles proposed to

dealize the damage process either as an instant splitting of individual particles (e.g. [19]), an instant debonding
f prepackaged agglomerates of particles (e.g. [20]), or removal of particles [e.g. 21]. While these methods may
eplicate some geometrical and topological features due to grain crushing and fragmentation, the instant splitting or
ebonding idealization is not suitable for high-strain rate impact where the crack growth and propagation speed are
mportant. Furthermore, since crack and damage are not only triggered simply by the magnitude of the homogenized
tress of a particle but also by how strain energy stores and concentrates locally, the lack of stress and strain field
ithin the grain in classical discrete element simulations may lead to a violation of fracture mechanics principles

ven in the brittle regimes.
Furthermore, the lack of rate-dependence in the breakage criteria also make those predictions not suitable for

ynamic simulations where mechanics of fragmentation and damage of brittle grains can be triggered by fracture and
rack branching and hence highly sensitive to loading rates [22,23], the microstructures and the spatial heterogeneity
f individual particles [24]. To circumvent these limitations, previous works such as Liu and Sun [25] explored the
ossibility of simulating granular assembles as a multi-body contact in an implicit quasi-static regime. While path-
ependent behaviors could be triggered by rearrangement of particles and the dissipation due to the frictional slip,
he topological changes of the particles due to fracture, damage, and fragmentation are not considered.

The purpose of this paper is to fill this knowledge gap by proposing a material point framework suitable to
odel the multi-body contact thermo-mechanics of assemblies composed of brittle particles. To capture the rate-

ependence and temperature-dependence of the frictional contact and fracture of the particles, we present a material
oint method that captures the thermo-mechanical coupling for both bulk materials and contact surfaces, incorporate
he domain partitioning techniques originated from [26] to handle the continuously evolving contact geometry, and
ntroduce constitutive laws to capture the thermal–mechanical frictional contact, damage laws, interfacial thermal
onduction among particles in the finite deformation regime. Consequentially, the proposed model is a capture of
eplicating the dynamic fracture and fragmentation while handling the evolving contacts due to evolving geometrical
nd topological changes of the crushed particle assembles.

The rest of this paper is organized as follows. We will first provide a brief literature review on topics relevant
o the multi-body thermal–mechanical contact problem in this Section. Section 2 then lists the presumptions and
erives a set of governing equations starting from a free energy representation. Section 3 provides details on the
mplementation of the proposed model in the MPM. Section 4 presents numerical examples for the validation and
emonstration of the capacity of the model. Concluding remarks are provided in Section 5.

.1. Literature review on dynamic fracture simulations

To simulate the evolving contacts properly, one must replicate the deformation, fracture, and damage that trigger
he topological and geometric changes of the interfaces. For high-strain-rate applications where the crack may
ropagate faster than the Rayleigh wave, the crack patterns are highly sensitive to the loading rate as crack branching
ccurs that changes how energy dissipates [24]. Furthermore, the loading rate also plays an important role in the
hermal–mechanical responses of a path-dependent material. While damage, plasticity and elastic structural heating

ay all lead to heat, the local temperature changes and the subsequent heat transfer may also trigger different
eadjustment of deformation pathways and affect the macroscopic mechanical responses [27–29].

At the high-strain-rate regime, the local temperature may change near the crack tips or contact areas due
o elastic/inelastic structural heating and dissipation that occurs almost adiabatically. This thermal effect could
e significant enough to affect the mechanical responses, including the onset and propagation of crack(s). For
nstance, Nowinski [30] stated that a solid body subject to elastic deformation may heat up in a compressive region
nd cool down in a tensile region. It is also experimentally observed in rocks that temperature rises in the regions
ith intensive stress concentration and drops for stress relaxation [31,32]. Meanwhile, temperature also plays a

rofound role in the frictional coefficient of the contacts and affects the strength and ductility [33].
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An important prerequisite to capture these thermo-mechanical coupling effects is the precise representation of the
nterface geometry. This can be achieved by either embedding strong discontinuity in the interpolated displacement
eld or via a smeared crack approach where a continuous indicator function is used to approximate the sharp
iscontinuity. The extended finite element method (X-FEM) and the generalized finite element method (GFEM)
elong to the first strategy. These two methods are synonymous [34] and both rely on the partition-of-unity
nrichment to enrich the displacement field [35]. The crack thus can propagate independently on the mesh, which
vercomes the constraint of the cohesive models [36,37]. Nevertheless, for dynamic cases where crack branching
ay occur, the generation of the enrichment function to replicate the geometry and the integration of the residual are

oth non-trivial [38,39]. Even these technical issues can be resolved, modeling the fragmentation via the embedding
trong discontinuity remains difficult due to the lack of established predictive theory for the onset and the mode of
he crack branching [40].

Smeared crack approaches such as phase field fracture (e.g. [41–46]), nonlocal or gradient damage models
4,47,48] provide an alternative to capture the crack branching process without requiring additional criterion to
redict the onset of crack branching and the additional implementation effort to embed discontinuity. This ease of
mplementation provides a great advantage in handling the evolving interfaces.

To handle the geometrical nonlinearity during fracture, Moutsanidis et al. [49] incorporate the phase field fracture
odel in a material point method (MPM). Meanwhile, Zhang et al. [50] enhance the MPM with eigenerosion

51–54] to simulate dynamic fracturing. Recently, Homel and Herbold [26] employ a damage scalar field to present
he fractures in the material point method and use this scalar field to detect contacts. Nevertheless, the thermal–

echanical coupling effect on path-dependent behaviors such as crack growth, frictional slip, and thermal conduction
cross the interface has not yet been considered.

.2. Literature review on computational contact thermo-mechanics

If a mode II, mode III or mixed-mode crack is propagating under compression or an existing crack is closed, then
he frictional contact may introduce sufficient energy dissipation that alters the fracture patterns. For high-strain-rate
pplications, the dissipation due to friction may lead to a substantial amount of heat building up near the adiabatic
imit and hence affect the path-dependent behaviors of the solids [46,55,56]. Meanwhile, at the low-strain-rate
egime, the thermal conductance across contact boundaries must be replicated in order to capture the interplay
etween the fracture process and thermo-mechanical contact mechanics. In the fully coupled thermomechanical
etting, the heat conductance across the contact boundary depends on the normal contact pressure, while the contact
riction may also decrease as a result of temperature rise [57]. Hence, capturing both the contact conductance
nd normal contact pressure are of critical importance for precisely replicating the thermo-mechanical contacts.
or simplicity, the linear constitutive law for pressure-dependent thermal conductance has been widely used in

he literature (e.g. [57,58]). Meanwhile, Wriggers and Miehe [59] propose a more sophisticated power law to
escribe contact conductance. In these cases, finite element solvers are often the choice to simulate the contact
hermo-mechanical problems.

Early works on the thermo-elastic contact with FEM usually implemented a node-to-segment contact algorithm,
here the contact constraints are enforced via a penalty formulation [57,59,60]. In the last decade, the mortar
ethod provides a variationally consistent way for contact discretization [61,62]. Contact algorithms with the mortar
ethod can enforce the contact constraint exactly via a Lagrange multiplier and therefore improves accuracy as
ell. In addition to modeling the thermo-elastic contact in the elastic regime, more recent work, such as [63],
as also formulated Nitsche’s method to simulate thermal-elasto-plasticity contact problems in a finite element
olver. Nevertheless, to the best knowledge of the authors, there has not yet been any attempt to resolve the
hermo-mechanical contact problems with evolving interfaces due to the brittle fracture via MPM.

. Thermo-mechanical contact mechanics with evolving contacts

This section presents the theory of the thermo-mechanical contact mechanics for simulating the path-dependent
esponses of multiple continuum bodies in the geometrically nonlinear regime. Sections 2.1 and 2.2 describe the
onstitutive laws that capture the interplay among the frictional heating, surface, and bulk conduction and the
volution of brittle damages and the evolving interfaces. The balance principles that serve as the constraints for
he material point model are provided in Section 2.3. In addition, the following assumptions are made to simplify

he formulation.
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1. We assume the effective stress theory [cf. 64,65] is valid such that the stored elastic energy of a material point
representing a representative elementary volume (REV) is related to that of a fictitious pure elastic body by a
degradation function.

2. The thermo-mechanical coupling effects are addressed by introducing a coupling function influenced by both
mechanical fields and thermal fields. In this sense, the free energy function consists of three parts: (1) the pure
mechanical storage energy; (2) the pure thermal energy; (3) the thermo-mechanical coupling energy [66].

3. We assume the mechanical damage influences the mechanical and thermo-mechanical coupling free energy
contributions but does not affect the heat capacity.

4. To calibrate the energy consumed during the fracture propagation, we assume all of the energy released in the
damage evolution process is equal to the crack surface energy [67], which is reasonable for brittle fracture.

2.1. Thermoelastic constitutive framework for the bulk continuum

Here we define the constitutive law for bodies in contacts. The continuum bodies are thermally conductive and
may exhibit damage and degradation. Based on the effective stress theory, we assume that the constitutive responses
of the materials in the bodies can be characterized by applying a degradation function to the hyperelastic energy
functional of a fictitious material that exhibits no damage. As such, the corresponding free energy function per unit
mass ψ can be decomposed into three components, i.e.,

ψ(b, d, θ) = ψe(b, d) + M(J, d, θ) + ψ t (θ ), (1)

where b = F FT is the left Cauchy–Green strain tensor, d is the scalar damage, θ is the temperature, and J = det F
is the determinant of F. As such, ψe(b, d) is the mechanical contribution, M(J, d, θ) is the thermo-mechanical
coupling term, and ψ t (θ ) is the thermal contribution (see also [68,69]). Following Simo and Miehe [66], the
expressions for these terms are:

ρoψ
e(b, d) = (1 − d)(U (J ) + W (biso)), (2)

ρo M(J, d, θ) = −3(1 − d)αt (θ − θ0)
∂U
∂ J
, (3)

ψ t (θ ) = c
[
(θ − θ0) − θ log(θ/θ0)

]
, (4)

espectively, where ρo is the mass density on the unit reference volume, biso = J−2/3b represents the isochoric part
of the left Cauchy–Green strain tensor b, U (J ) is the volumetric part of the elastic stored energy, W (biso) is the
isochoric counterpart of the undamaged material, αt is the thermal expansion coefficient, c is the heat capacity per

ass, and θ0 is the reference temperature. The energy contributions of the damaged real material (ψe and M) and
hose of the undamaged fictitious material (ψ

e
and M) are related by the degradation term (1 − d), i.e.,

ψe(b, d) = (1 − d)ψ
e
(b), M(J, d, θ) = (1 − d)M(J, θ), (5)

where ρoψ
e
= U (J ) + W (b) indicates the undamaged storage energy on the unit reference volume only depending

on deformation [70], ρo M(J, θ) = −3αt (θ − θ0) ∂U
∂ J indicates the undamaged thermo-coupling energy component

on the unit reference volume.
The Kirchhoff stress τ , the entropy η and the storage energy release Y on the unit reference volume corresponding

to the free energy read [71],

τ = 2ρo
∂ψ

∂b
b, η = −

∂ψ

∂θ
, Y = −ρo

∂ψ

∂d
. (6)

We also extract the damage multiplier as what (5) does:

τ = (1 − d)τ , τ := 2ρo

(
∂ψ

e

∂b
+
∂M
∂b

)
b, (7)

here τ is called the effective Kirchhoff stress in continuum damage mechanics [72]. This extraction is helpful
since τ indicates the Kirchhoff stress without mechanical damage softening.
4
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2.2. Thermal-sensitive frictional constitutive framework for contacts

Consider a contact between two distinct bodies. The Karush–Kuhn–Tucker (KKT) conditions for the normal and
angential contact on the contact boundary Γc reads [25,58]:

pcn < 0, δn > 0, pcnδn = 0. (8)

|pct | ≤ µc|pcn|,

{
δ̇t = 0 for |pct | < µc|pcn|,

|δ̇t | ≥ 0 for |pct | = µc|pcn|.
(9)

here pcn := pc · n, pct := pc · t indicates the normal and tangential contact stresses with pc the traction on Γc and
n, t the normal vector and right-handed tangential vector for the contact surface; δn and δt denote the magnitude
f the inter-surface gap in the normal and tangential direction respectively; µc is the frictional coefficient; the dots
n (9) denote the time derivative, hence δ̇t indicates the rate of relative slip between two body fields along the
irection of t . Specifically, we refer to δt as:

δ̇tk =

{
vt2 − vt1, for k = 1,
vt1 − vt2, for k = 2.

(10)

here the subscript k is an index for the pair of bodies in contacts [cf. 58]; vtk is the velocity component at the
ocation of contact along the tangential direction t for different bodies.

For non-slip contact problems, the contact boundary can be viewed as a conductive boundary in terms of thermal
ffects, where the normal heat flux is expressed as a multiple of the surface conductance hc and the temperature
ump [θ ] between two surfaces [59]:

qck = hc[θ ]k, [θ ]k =

{
θ2 − θ1, for k = 1,
θ1 − θ2, for k = 2.

(11)

here qc indicates the heat flux across Γc. The constitutive law for the contact surface conductance hc reads [69],

hc = h0

⏐⏐⏐⏐ pcn

p0

⏐⏐⏐⏐ϵ (12)

here p0 > 0 is called Vickers hardness as a regularization of the normal contact stress, h0 is a reference
onductance at |pcn| = p0, ϵ is a material parameter indicating the power scale with respect to pcn . Notice that by
icking ϵ = 1, this law is further simplified into a linear relationship

hc = γ̄ |pcn|, γ̄ :=
h0

p0
. (13)

here γ̄ is the stress–conductance coefficient defined as the ratio between reference conductance and the Vickers
ardness, which can be regarded as a material property.

In frictional contact cases, we need to take into account the heat generated during slipping. We assume that
he surface specific heat is zero and heat dissipates into both fields equally. Then the normal heat flux in (11) is

odified as [73]:

qck = hc[θ ]k +
1
2

pct δ̇t (14)

We also assume that the frictional coefficient on the contact surface is temperature-dependent, which has the
ollowing form [57]:

µc = µco
⟨θdam − max(θ1, θ2)⟩2

(θdam − θref)2 (15)

here θdam indicates the temperature where the frictional response on the contact surface completely disappears;
ref is a reference temperature constant, usually chosen as the initial temperature; µco is the undamaged frictional
oefficient at the reference temperature. ⟨·⟩ are the Macaulay brackets such that ⟨x⟩ = (x + |x |)/2
5
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2.2.1. Specific constitutive relationships
We adopt the compressible Neo-Hookean hyperelastic model to replicate the elastic responses of the brittle

aterials. This hyperelasticity energy consists of two components that calculate the elastic stored energy due to
olumetric and deviatoric deformation, i.e., [74]:

U (J ) =
1
2

K (log J )2, (16)

W (biso) =
1
2

G(tr(biso) − 3). (17)

here K and G are the bulk modulus and the shear modulus respectively. tr(·) is the tensor trace operation. For the
hermal fields, we consider the isotropic Fourier’s heat conduction law in the Eulerian form [30]:

q = −κ∇xθ, (18)

here κ is the heat conduction coefficient. ∇x is the gradient operator on the deformed configuration.
To capture the fracture propagation with damage evolution, we adopt Rankine’s damage model with linear

train-softening for brittle damage (Rankine’s rotating crack model) [75]. In this theory, the damage evolution is
overned by the largest effective principal tensile stress σm assuming that the damage yield function takes the form
Φ(σm, R) = σm − R [76], where R is the damage internal variable. Φ and R should satisfy the KKT condition,
which is addressed as:

Φ ≤ 0, Ṙ ≥ 0, Φ Ṙ = 0. (19)

We assume that the damage is initially zero and starts evolving once σm reaches the critical stress threshold
σ f . This makes it possible to derive an explicit functional representation of the damage internal variable: R =

max(σ f ,maxt (σm)), where maxt (·) indicates finding the largest historical value for a specific term. With this
knowledge, R can be interpreted as the largest effective principal tensile stress in the stress history of a particular
material point.

To complete the formulation of this damage constitutive model, the mapping function from the internal variable
R to the damage scale d must be defined. This is derived from the linear strain-softening after the crack evolution
is triggered [67]:

d(R) =

{
(1 + Hs)(1 −

σ f
R ) , σ f < R < σ f (1 +

1
Hs

),
1 , R ≥ σ f (1 +

1
Hs

).
(20)

here Hs := H slch/(1− H slch) is the mesh-regularized damage modulus with lch indicating the mesh characteristic
length [77] and H s standing for the brittleness factor. lch is often chosen as the diagonal length of a cell in a
structured grid, and H s can be derived from the material properties with Assumption 4 in Section 2.1 (for more

etails, see [77]):

H s =
σ 2

f

2EG f
(21)

here E is Young’s modulus and G f is the critical energy release rate.

.3. Governing equations for the thermo-mechanical problems

Here we briefly review the balance of mass, linear momentum, and energy for the contact problems. The balance
f mass reads:

ρ = ρo/J, (22)

here ρ and ρo are the mass densities on the deformed and reference volume accordingly. In the current
onfiguration, the balance of linear momentum reads:

ρa = ∇x · σ + ρg, (23)

here a is the acceleration, g is the body force per mass, σ =
1
J τ represents the Cauchy stress, ∇x · indicates the

ivergence on the deformed configuration. An important advantage of the MPM formulation is that the grid used
6



M. Xiao, C. Liu and W. Sun Computer Methods in Applied Mechanics and Engineering 385 (2021) 114063

o
s

w

e

w

to compute the residual is also doubled as the updated Lagrangian frame and hence the convection term in the
acceleration in the Eulerian frame does not appear [78].

To formulate the balance of energy, we first define the internal energy per unit mass as e := ψ + θη. The rate
f internal energy change consists of external stress power and the incoming heat flux (we ignore external heat
ources). Hence, the local form of the energy balance equation reads,

ρė = σ : d − ∇x · q (24)

here d :=
1
2 (l + lT ) is the symmetric part of the velocity gradient l = ∇xv with v representing velocity and q

indicating the heat flux on the unit deformed volume. Recall that the rate of the change of internal energy is related
to those of the free Helmholtz energy, temperature, and entropy, i.e.,

ė = ψ̇ + θ̇η + θη̇, (25)

where the time derivative of ψ(b, θ, d) is

ψ̇ =
∂ψ

∂b
: ḃ +

∂ψ

∂θ
θ̇ +

∂ψ

∂d
ḋ, (26)

Substituting η = −∂ψ/∂θ into (26), we have

ψ̇ + θ̇η =
∂ψ

∂b
: ḃ +

∂ψ

∂d
ḋ, (27)

Since we only have the damage scalar as the internal variable in this formulation, we can define the internal
nergy dissipation following [79]:

Dint = −

(
∂ψ

∂d

)
b,θ

ḋ =
1
ρo

(
ψ

e
− 3αt (θ − θ0)

∂U
∂ J

)
ḋ, (28)

here Dint refers to the internal dissipation term for the damage internal variable d .
We further implement the following equation due to η = η(b, θ, d):

θη̇ = θ
∂η

∂b
: ḃ + θ

∂η

∂θ
θ̇ + θ

∂η

∂d
ḋ, (29)

Following [79], (29) is rewritten as:

θη̇ = cF θ̇ + He + Hin, (30)

where

cF = θ

(
∂η

∂θ

)
b,d
, He = θ

(
∂η

∂b

)
θ,d

: ḃ, Hin = θ

(
∂η

∂d

)
b,θ

ḋ, (31)

where cF denotes the specific heat per unit mass, He indicates the structural heating term, induced by the elastic
volumetric deformation, and Hin is the structural heating term due to the damage internal variable.

To handle the partial derivatives w.r.t. η in (31), we substitute the definition of η in (6) with (1):

η = −
∂ψ

∂θ
= −

∂M
∂θ

−
∂ψ t

∂θ
, (32)

Insert (32) to (31), and we have

cF = −θ
∂2 M
∂θ2 − θ

∂2ψ t

∂θ2 , (33)

He = −θ

[
∂2 M
∂θ∂b

+
∂2ψ t

∂θ∂b

]
: ḃ, (34)

Hin = −θ

[
∂2 M
∂θ∂d

+
∂2ψ t

∂θ∂d

]
ḋ, (35)

From the free energy form in Section 2.1, we observe that the coupled energy M is linear in θ , while the pure
thermal energy ψ t is independent of b and d. As such,

∂2 M
= 0,

∂2ψ t

= 0,
∂2ψ t

= 0, (36)

∂θ2 ∂θ∂b ∂θ∂d

7
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In addition, as M is not an explicit function of b but an explicit function of J , we can further simplify the partial
derivative of M with respect to b in (34) as:

∂2 M
∂θ∂b

: ḃ =
∂2 M
∂θ∂ J

J̇ , (37)

Using (36) to eliminate zero terms in (33)–(35) and insert (37) to (34), we derive the following expressions for
he practical calculation of the specific heat and the structural heating terms:

cF = −θ
∂2ψ t

∂θ2 = c, (38)

He = −θ
∂2 M
∂θ∂ J

J̇ =
1
ρo

3αtθ (1 − d)
∂2U
∂ J 2 J̇ , (39)

Hin = −θ
∂2 M
∂θ∂d

ḋ = −
1
ρo

3αtθ
∂U
∂ J

ḋ, (40)

We finally insert all terms in (27) and (31) into (24):

ρ
∂ψ

∂b
: ḃ − ρDint + ρcF θ̇ + ρHe + ρHin = σ : d − ∇x · q (41)

here σ : d = 2ρ ∂ψ
∂b b : d = ρ

∂ψ

∂b : ḃ [cf. 79]. As a result:

ρcF θ̇ + ρHe + ρHin = −∇x · q + ρDint . (42)

By rearranging Eq (42), we recover the balance of energy equation in Eq. (103) of [80]

ρcF θ̇ = −∇x · q + ρDint − ρHe − ρHin, (43)

To complete the formulation of a thermo-mechanical boundary value problem in a deformed body Ω , we
resent the boundary conditions on its boundary Γ . We decompose the mechanical boundary into three parts as

= Γu ∪ Γt ∪ Γc with Γu ∩ Γt = Γu ∩ Γc = Γt ∩ Γc = ∅, where Γu is the displacement boundary, Γt is
he traction boundary and Γc is the contact boundary. We decompose the thermal boundary into four parts as

= Γθ ∪ Γq ∪ Γh ∪ Γc with Γθ ∩ Γq = Γθ ∩ Γh = Γq ∩ Γh = ∅, where Γθ is the temperature boundary, Γq is the
eat flux boundary, Γh is the conductive boundary and none of these three boundaries overlap with Γc. Accordingly,
he boundary conditions are:{

u = u on Γu,

σ · n = t on Γt ,

⎧⎪⎨⎪⎩
θ = θ on Γθ ,

q · n = −q on Γq ,

q · n = h(θ∞ − θ ) on Γh .

(44)

where u is the prescribed displacement on Γu ; t is the applied traction on Γt ; θ is the prescribed temperature on Γθ ;
is the applied normal heat flux on Γq ; h is the surface conductive coefficient and θ∞ is the ambient temperature

on Γh . On Γc, we enforce the mechanical contact governing equations (8) and (9) and the contact heat conduction
equation (14) instead of prescribed boundary conditions.

3. Numerical implementation with MPM

In this section, we describe the numerical implementation of the mathematical framework that captures the
interplay between evolving contacts and dynamic fracture under non-isothermal conditions. We first briefly review
the algorithm of the MPM that updates the updated Lagrangian frame with material points and the implication
of this treatment to handle the convection of heat in the finite deformation range. Then, we elaborate on the
algorithms that detect contact and calculate separation displacement among brittle bodies for dynamic thermo-
mechanics problems. We then discuss the contact calculation with a focus on the thermal effect. The implementation
algorithm is concluded at the end.
8
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3.1. An overview of MPM

In this MPM formulation, all physical variables (such as b, θ , and d) are stored at particles as the Lagrangian
description. These particles are connected with a grid using weighting functions whose augments are the relative
positions between particles and the grid. We then calculate the unbalanced variables (such as acceleration for the
balance of momentum) of nodes and project the information back to particles. After one MPM time step, the
deformed grid is reset to the initial configuration as structured since it only works to connect particles. Therefore,
the framework of MPM belongs to the updated Lagrangian form without any special treatment. For the sake of
clarity, x refers to the current location; the subscript i indicates variables attribute at the discrete grid node i , and
the subscript p is used to present variables at particles.

The weak form of the balance of momentum in the current configuration is:∫
Ω

w · ρadΩ = −

∫
Ω

∇xw : σdΩ +

∫
Ω

w · ρbdΩ +

∫
Γt

w · t̄dΓ +

∫
Γc

w · pcdΓ , (45)

where w is the admissible test function. The discrete form of the momentum equation is [81,82]:

mi ai = f ext
i − f int

i + f cont
i , (46)

where mi , ai , f ext
i , f int

i , and f cont
i represent the mass, acceleration, external force, internal force and the contact

force at grid node i , respectively. These nodal attributes are calculated with the following equations:

mi =

∑
p

m p Si p, (47)

f ext
i =

∑
p

m p Si p g p +

∫
Γt

Si t dΓ , (48)

f int
i =

∑
p

Vpσ p · ∇x Si p, (49)

f cont
i =

∫
Γc

Si pc dΓ . (50)

here m p, Vp, g p, σ p represents the mass, deformed volume, body force, and the Cauchy stress at particle p,
respectively, the operator

∑
p indicates summing the influence of the neighbor particles at a node [26], Si indicates

he standard grid node basis function, Si p and ∇x Si p are the weighting function and its gradient for the mapping
between node i and particle p.

Noting that Si p links the particles and the grid, we here adopt the Convected Particle Domain Interpolation
CPDI) to compute Si p for accuracy, as proposed in [83]. Assuming that the particle domain is a parallelogram

and that the deformation gradient is approximately constant over the particle domain, the particle domain deforms
according to{

r1 = F · r0
1,

r2 = F · r0
2,

(51)

where (r0
1, r0

2) and (r1, r2) are the vectors defining a particle domain at the initial and updated configuration,
respectively. For the standard FE 4-node (Q4) element, which is adopted in this work, the weighting function and
its gradient are

Si p ∼=
1
4

[
Si (x p

1 ) + Si (x p
2 ) + Si (x p

3 ) + Si (x p
4 )
]
, (52)

∇x Si p
∼=

1
2Vp

{
(Si (x p

1 ) − Si (x p
3 ))
[

rn
1y − rn

2y
rn

2x − rn
1x

]
+ (Si (x p

2 ) − Si (x p
4 ))
[

rn
1y + rn

2y
−rn

1x − rn
2x

]}
, (53)

where x p
α α = 1, 2, 3, 4 are the positions of the corners of the parallelogram, (r1x , r1y) and (r2x , r2y) are the

n n
components of vectors of r1 and r2 , respectively, and the superscript n denotes the nth time step.

9
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We now consider the discrete energy equation. Starting from the variation of the energy equation in terms of
emperature with an arbitrary scalar testing function w:∫

Ω

wρcθ̇dΩ =

∫
Ω

∇xw · qdΩ −

∫
Ω

wHedΩ +

∫
Ω

w(Dint − Hin)dΩ +∫
Γq

wq̄dΓ +

∫
Γh

wh(θ∞ − θ )dΓ +

∫
Γc

wqcn dΓ ,
(54)

Following similar logics in the derivation of (46), the form of discrete energy equation is:

Ci θ̇i = Qext
i + Qint

i + Qecpl
i + Qdcpl

i + Qcont
i , (55)

here Ci and θ̇i indicate the heat capacity and temperature evolution rate for at grid node i ; Qext
i , Qint

i , Qecpl
i , Qdcpl

i ,
Qcont

i represent the external, internal, elastic-coupling, damage-coupling, and contact thermal loads at grid node i ,
espectively. These nodal attributes are calculated with the following equations:

Ci =

∑
p

m pcp Si p, (56)

Qext
i =

∫
Γq

Si q̄ dΓ +

∫
Γq

Si h(θ∞ − θ ) dΓ , (57)

Qint
i =

∑
p

Vpq p · ∇x Si p, (58)

Qecpl
i = −

∑
p

Vp Si p(He)p, (59)

Qdcpl
i =

∑
p

Vp Si p
(
(Dint )p − (Hin)p

)
, (60)

Qcont
i =

∫
Γc

Si qcn dΓ . (61)

here cp, θp, q p indicate the specific heat, the temperature, and the heat flux at each particle p, respectively; (Dint )p,
He)p, and (Hin)p are the internal dissipation, the elastic structural heating and internal variable induced heating
erms at each particle p.

At the end of one MPM time step, we will perform time integration on all nodal unbalanced variables and update
he material fields at particles accordingly. There are two popular time integration strategies to solve a fully coupled
ystem, i.e. the monolithic integration scheme and the staggered integration scheme. The monolithic time integration
equires the equations for different fields to be solved simultaneously [84]. For this approach, an iterative strategy
s usually required to determine the amount of increment in both thermal and mechanical fields since the equations
re strongly coupled together, which increases its computational cost significantly. In the staggered time integration,
owever, the entire system is split into individual fields that perform time marching separately [85]. With the explicit
uler time integration scheme, this approach evolves individual fields sequentially based on the latest information

rom the thermal and mechanical fields [86]. As a result, the staggered scheme is much more efficient than the
onolithic scheme. In this paper, we adopt the staggered time-stepping scheme for the time integration in MPM.
We update thermal fields using:

θn+1
p = θn

p + ∆t
∑

i

θ̇n+1
i Si p, (62)

qn+1
p = qn

p + κp∆t
∑

i

θ̇n+1
i ∇x Si p, (63)

here κp is the heat conductance at each particle p; ∆t is the time increment; all superscripts n, n + 1 refer to the
ariable at the nth, n + 1th time step.

When updating velocities, we use a combination of fluid-implicit-particle (FLIP) and particle-in-cell (PIC)
elocity update scheme [87]:

vn+1
p = (1 − ζ )

(
vn

p + ∆t
∑

an+1
i Si p

)
+ ζ

∑
vn+1

i Si p (64)

i i

10
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where vi , v p are velocities at grid node i or particle p, respectively. ζ is a coefficient indicating the portion of PIC
pdate in the velocity evolution scheme. ζ = 1 gives a pure PIC update of velocities, while ζ = 0 gives a pure

FLIP velocity update. Note that, because the PIC velocity update scheme can be regarded as a spatial smoothing
scheme on the velocity field, it may damp out the high-frequency oscillations [82]. The locations and deformation
gradients associated with the pth material points are updated as follows:

xn+1
p = xn

p + ∆t
∑

i

vn+1
i Si p, (65)

Fn+1
p =

(
I + ∆t

∑
i

vn+1
i ⊗ ∇x Si p

)
Fn

p. (66)

here x p and F p are the location of particle center and the deformation gradient at p, respectively; I denotes the
nd-order identity tensor; ⊗ is the dyadic product operator. The stress tensor and damage scalar are updated upon
btaining the updated mechanical and thermal fields.

.2. The damage field-gradient material partitioning

To identify the locations of the contacts, we employ the partition criterion first proposed in [26] where we would
se the gradient of damage field at the nodes of grid i as an indicator function to partition the continuum bodies
nd identify the potential contacted interfaces. In essence, this approach detects contacts by assuming that contacts
ay take place at damaged interfaces, and one may detect contacts by identifying traits of the gradient of damage
eld projected onto the background mesh to identify the set of contact nodes and compute the relative separation
etween the contacted bodies. While previous works such as [25] and [88] may require one to assigning labels
r level set to a subset of material points to identify the bodies in contacts, the treatment in [26] bypasses this
equirement and hence is ideal for simulating fragmentation where self-contacts must be detected [89]. With i th
ub-domain of bodies partitioned via the node set i , we can elaborate on the relative velocity between different
arts of the body to further determine the contact interactions. The partitioning scheme is briefly reviewed here for
ompleteness.

The normalized smoothed damage field is constructed as:

D(x) =
D(x)
S(x)

, with D(x) :=

∑
p

max(sp, dp)ω(r̄ ), S(x) :=

∑
p

ω(r̄ ), (67)

here sp is a boundary particle indicator such that sp = 1 for boundary particles and sp = 0 otherwise, dp is the
amage parameter at particle p, ω(r̄ ) = 1 − 3r̄2

+ 2r̄3 for 0 ≤ r̄ ≤ 1 and ω(r̄ ) = 0 elsewhere; r̄ = ∥x − x p∥/rp

s a normalized distance measure with a support radius of rp. For plane 2D problems, rp is usually chosen as the
iagonal length of the background cells. The setting of sp is adopted to consider the self-contact (different bodies
xisting initially), and the setting of S(x) is employed to eliminate the boundary effect.

The gradient of damage ∇x D(x) could help identify particles from different fields. Suppose there is a developing
crack crossing a grid node, which makes field partitioning necessary at that node. Usually, the degree of damage of
a particle closer to the surface is much larger than that of internal particles, so the damage gradients typically point
from surfaces (material boundary) to internal regions. Therefore, particles belonging to different material fields in
the influencing region of a grid node generally have damage gradients pointing in relatively opposite directions. To
describe this mathematically, we claim the following criterion for field partition at grid nodes:

∃ particles p1, p2 in the vicinity of node i s.t. ∇x Di · ∇x D p1 > 0 and ∇x Di · ∇x D p2 < 0. (68)

here ∇x Di refers to the gradient of D at i , and ∇x D p = ∇x D(x p). For (68) to be valid, it is necessary that
x Di ̸= 0, but around a fully damaged region, we probably get the value close to zero. Therefore, a nonlocal

pproach is required to determine the grid-node damage gradient. Since we only compare the sign of vector dot
roducts rather than the magnitude and the order of numbering for material fields does not matter, the following
ule for determining the nonlocal damage gradient is adopted:

∇x Di = ∇x D(xmax
i ) where xmax

i = arg max |∇x D(x)|. (69)

|x−xi |<rg

11



M. Xiao, C. Liu and W. Sun Computer Methods in Applied Mechanics and Engineering 385 (2021) 114063

t
f
n

w
m

w
t

d
t

3

W
f
o

where xi is the position of grid node i , rg is a support radius for the range of nonlocal searching, usually chosen as
he diagonal length of the grid cell, and | · | stands for the vector norm operation. To avoid maximizing a complicated
unction in a continuous space, we calculate (69) by searching for the damage gradient with the maximum vector
orm over ∇x D p located at particle centers. Once we divide the bodies into different fields, the update scheme

should be performed separately for different bodies.
Since we use an evolving damage field to identify the location of the fractured interface, an important issue is that

there could be incompletely damaged region(s) that should not be regarded as actually fractured zones during the
fracture. To resolve this issue, we may determine the degree of damage at a grid node. If a grid node is completely
damaged (fractured), the two different material fields may separate apart and we should apply the contact algorithm.
Otherwise, cohesion should be allowed between different fields, making the partitioned material fields still evolve
as a single entity. To define a separable condition that distinguishes the separable and non-separable state at a grid
node, we adopt the average nodal damage for two material fields to evaluate the state of damage [26]:

Dki =

∑
kp m pdp Si p

mki
, (70)

here the subscript k denotes the k-body. The separable condition is: a grid node is separable if its maximum and
inimum averaged nodal damages reach some critical values, namely:

max(D1i , D2i ) > D
cr
, min(D1i , D2i ) > D

min
, (71)

here D
cr

indicates the critical averaged nodal damage required for separation for the maximum over D1i and D2i

o reach, and D
min

indicates the minimum averaged nodal damage required for separation for the minimum over
D1i and D2i to reach.

If the partitioned fields are separable from each other, we will further apply a thermo-contact algorithm to
etermine all the contact interactions, especially the contact forces and contact thermal loads. For cases where
he partitioned fields are not separable, both fields evolve as a single one integrally.

.3. Calculations of the contact force and heat flux across contacts

In the MPM, a momentum correction scheme is widely used to approximate the contact forces at grid nodes [90].
e are specifically interested in a double-field formulation of material partitioning for contact modeling. To

ormulate the momentum conservation over both fields, we define the center-of-mass velocity as an evaluation
f the averaged velocity if merging both fields into one: [90,91]:

vcm
i =

∑2
k mki v̂ki∑2

k mki
, (72)

where vcm
i is the nodal center-of-mass velocity, v̂ki represents the updated nodal velocity for the kth material field

before contact adjustment.
A potential in-contact node is defined as a grid node with particles from different material fields in its vicinity.

However, real contact interactions only take place when two material fields have a trend of inter-penetration. We
need the following criterion to distinguish if two material fields are coming into contact:

(v̂ki − vcm
i ) · nki > 0, (73)

where nki is the outward surface normal vector based on the nodal mass gradient [26,82]:

n1i :=
1

|n̂1i − n̂2i |
(n̂1i − n̂2i ), n2i := −n1i with n̂ki =

∑
kp m p∇x Si p

|
∑

kp m p∇x Si p|
. (74)

Once contact is confirmed at a grid node, we will perform the calculation of contact forces. The determination of
normal contact forces should address the normal KKT conditions by eliminating potential inter-penetration. Subject
to momentum conservation, the normal contact force f cont

ni at node i is calculated as:

f cont
=

1
mki (vcm

− v̂ki ) · nki , (75)
ni ∆t i
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One can verify that substituting k with either 1 or 2 into (75) gives the same result. Following the same logic of
omentum correction, the tangential contact forces should be calculated as: f cont

ti =
1
∆t mki (vcm

i − v̂ki ) · tki , where tki
is the right-handed contact tangential vector perpendicular to nki . However, the tangential KKT conditions specify
that the tangential contact forces cannot exceed µc| f cont

ni |. This requires the following correction on the tangential
contact forces:

f cont
ti = min{| f̂ cont

ti | , µc| f cont
ni |} · sign( f̂ cont

ti ), f̂ cont
ti :=

1
∆t

mki (vcm
i − v̂ki ) · tki , (76)

Combining the normal and tangential components gives an expression for total the nodal contact forces:

f cont
ki = f cont

ni · nki + f cont
ti · tki . (77)

We now focus on deriving an expression for the contact thermal load term Qcont
ki . For the simplicity of derivation,

e assume that the power scale ϵ = 1 so that the simplified contact heatflux constitutive law (13) is used, and γ̄ is
niform all over the contact boundary. We start by inserting (13) and (14) into (61):

Qcont
ki =

∫
Γc

[
γ̄ pcn[θ ]k −

1
2

pct δ̇t

]
Si dΓ , (78)

Extracting the temperature jump [θ ] and the relative slip rate δ̇t out of the integral in (78), we have:

Qcont
ki = γ̄ [θ ]avg

ki

∫
Γc

pcn Si dΓ −
1
2

(δ̇t )
avg
ki

∫
Γc

pct Si dΓ , (79)

where [θ ]avg
ki and (δ̇t )

avg
ki are the averaged temperature jump and slip rate observed at the kth material field at

node i , w.r.t. the original integral in (78). For [θ ]avg
ki , we can use the assembled nodal temperatures as a practical

approximation:

[θ ]avg
ki ≈

{
θ2i − θ1i := [θ ]1i k = 1,
θ1i − θ2i := [θ ]2i k = 2.

(80)

For contacts with smooth surfaces, we assume that the spatial variation of contact surface normal vector is
sufficiently low such that the following approximation for normal and tangential contact forces holds:

f cont
ni ≈

∫
Γc

pcn Si dΓ , f cont
ti ≈

∫
Γc

pct Si dΓ . (81)

Substituting (80) and (81) into (79) gives an expression for calculating the nodal thermal contact load term:

Qcont
ki ≈ γ̄ [θ ]ki · f cont

ni −
1
2

(δ̇t )
avg
ki · f cont

ti . (82)

emark 1 (Alternative Formulation for the Computation of the Contact Force). The focus of this work is to simulate
ynamic multi-body contact under a high loading rate in which case the contact model is primarily designed for
apturing the conservation of momentum during collision. To improve efficiency, the prevention of interpenetration
f the contacts in the dynamic MPM simulations is often enforced via a collision contact algorithm that balances the
omentum of the collided bodies, rather than directly enforcing the interpenetration constraints, as we explained

n this section [cf. 26,90,92].

For quasi-static contact mechanics problem, the collision MPM contact algorithm that updates the velocity field
ay not be suitable and hence an alternative formulation that accurately resolves the static contact forces based

n gap function is presented here for completeness. This alternative formulation is used in the Hertzian contact
umerical example (see Section 4.1). To resolve the contact precisely for the quasi-static case where the velocity is
egligible, one may calculate the gap function between the two interfaces and obtain the force required to prevent the
nterpenetration. An implicit MPM model dedicated to quasi-static contact problems can be found in our previous
ork that generates the gap function via a level set approach, i.e., [93]. A comprehensive review on this subject

an be found in [69].
For the ease of implementation, we employ a penalty method to relate normal contact pressures from gap function

alues:
pcn = κnδn (83)

13
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where κn is a normal penalty parameter for interpenetration and δn is the normal component of the gap function.
In the tangential direction, the Coulomb friction law can be implemented in a manner similar to an elasto-plastic
material model. To describe this behavior, we decompose the tangential slip into an “elastic” and a non-recoverable
“plastic” part: δt = δe

t + δ
p
t [94]. The constitutive law for the tangential frictional response is then stated as follows:

φ(pct , pcn) := |pct | − µc|pcn| ≤ 0,

δ̇
p
t = λ̇

pct

|pct |
, λ̇ ≥ 0, λ̇φ = 0.

(84)

here φ is termed the slip function (analogous to yield function in theories of plasticity) [25], and λ̇ indicates the
lip rate. The tangential contact traction is then calculated as:

pct = κt (δt − δ
p
t ) (85)

where κt is the tangential penalty parameter. For frictional contacts, the traction on the contact boundary is
pc = pcnn + pct t . Insert this expression for pc into (50):

f cont
i =

∫
Γc

Si
(
κnδn · n + κt (δt − δ

p
t ) · t

)
dΓ (86)

For the practical calculation of f cont
i in (86), we adopt the concept of boundary layer following [95], where we

e-express (86) with the following manner:

f cont
i ≈

∑
p

sp

[
1
lp

Si p
(
κnδnp · np + κt (δtp − δ

p
tp) · t p

)]
(87)

here δnp, δtp, δ
p
tp are the normal gap, the total tangential gap, and the plastic part of the tangential gap at particle

p, respectively. np and t p indicate the normal and tangential directions at particle p. lp is the thickness of particle
p in the contact normal direction. The expression inside the summation is multiplied by the boundary indicator sp

uch that only the values at boundary particles are used to determine the integrated nodal contact force.

.4. Algorithms for MPM with evolving thermo-mechanical contacts

In this section, we elaborate on the time-stepping algorithm and provide an algorithmic overview for the
mplementation with MPM. In each time step, we first construct a particle-to-grid projection and obtain the smoothed
amage-gradient field. Next, we introduce a thermal–mechanical sub-stepping algorithm where an isothermal
plit enables us to solve the thermo-mechanical problems by updating the temperature and displacement field
equentially [66,96–99]. The sequential solver first updated the temperature (and heat flux) field by solving the
alance of energy with a fixed displacement field. Following the updates of the thermal fields, the mechanical
elds (displacement and damage) are updated by solving the balance of linear momentum equation. Like other
perator-splitting schemes, this sequential approach may lead to consistency issues as such the time step must be
ufficiently small to avoid departure from the equilibrium states. However, since the upper bound for the stable time
tep for the explicit time integrator is usually small, this issue is usually not significant [81].

Algorithm 1 Sequential solver for thermo-mechanical problems with evolving contacts

1: Calculate the weight functions Si p and the corresponding gradients ∇x Si p between material points and grid
nodes.

2: Calculate the smoothed damage field D p and the corresponding gradient ∇x D p for all particles.
3: Find the damage gradient ∇x Di for all nodes.
4: For each node, determine if it is cracking or undergoing contact with (68).
5: Evolve the thermal fields for all particles. See Algorithm 2.
6: Evolve the kinematic and mechanical fields for all particles. See Algorithm 3.

The overall explicit algorithm is listed in Algorithm 1. The detailed time integration algorithms for individual
hermal or mechanical fields are provided in Algorithms 2 and 3 respectively.
14
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Algorithm 2 Incremental updates for the MPM thermal fields

1: Calculate the nodal temperature evolution rate:
2: for all node i do
3: if Eq. (68) holds true then
4: Calculate Cki for the kth material field via (56).
5: Calculate Qext

ki , Qint
ki , Qecpl

ki , Qdcpl
ki for the kth material field via (57)–(60).

6: Find the total nodal thermal load without contact adjustment: Q̂ki = Qext
ki + Qint

ki + Qecpl
ki + Qdcpl

ki .
7: if (71) holds true then
8: Calculate Qcont

ki from (82) using the mechanical results from the last time step.
9: else

10: Obtain Qcont
ki such that θ̇1i = θ̇2i =

Q̂1i +Q̂2i
C1i +C2i

after adjustment on the contact thermal loads.

11: Adjust the rate of temperature change: θ̇ki =
Q̂ki +Qcont

ki
Cki

.
12: else
13: Calculate single-field Ci , Qext

ki , Qint
ki , Qecpl

ki , Qdcpl
ki via (56) ˜ (60) (where k = 1 only)

14: Calculate the single-field θ̇ki (k = 1) with (55).
15: Update all particle temperatures via (62).
16: Update the nodal temperature field using the updated particle temperatures:
17: for all node i do
18: if (68) holds true then
19: Calculate the nodal temperature at different fields: θn+1

ki =
1

Cki

∑
kp m pcpθ

n+1
p Si p

20: else
21: Update the single-field nodal temperature: θn+1

i =
1

Ci

∑
p m pcpθ

n+1
p Si p

22: Update all particle heat fluxes with (63).

4. Numerical examples

This section presents several numerical examples to verify and validate the implementation of the MPM contact
odels and demonstrate the capacity of the proposed model in handling evolving multi-body thermo-mechanical

ontacts due to fracture and damage. We first verify the implementation of the MPM contact models with a Hertzian
ontact problem and a thermal contact problem. Simulation results of these two examples are compared with
nalytical solutions and in the first example, a mesh refinement study has been conducted. Furthermore, a validation
xercise against the Kalthoff–Winkler dynamic fracture experiment is included to test whether the Rankine damage
odel implemented in the MPM framework may replicate the same crack pattern observed in experiments. We then

emonstrate the capacity of the model to simulate thermal–mechanical damage and contact mechanics for multiple
odies in contact. A disk-squish problem is introduced to demonstrate the MPM model’s capacity to solve multi-
ody thermo-mechanical contact problems, while a three-grain particle fragmentation problem is used to demonstrate
he capability to simulate evolving thermo-mechanical contacts during the fracture and subsequent fragmentation
rocess. We then analyze how impact velocity affects the damage, fracture, and fragmentation of particle assemblies
uring the non-isothermal fragmentation process.

.1. Verification against Hertz’s contact benchmark problem

This numerical example is included to verify the implementation of the MPM simulations by comparing the
nalytical solution for a Hertz contact problem with non-flat contact surfaces. We replicate the same simulation
onfiguration previously used in [25] while the height of the body is changed to 4 mm, as shown in Fig. 1. Body

exhibits a 10 GPa Young’s modulus of 10 GPa and 0 Poisson ratio, while Body 2 is considered rigid. The
orresponding analytical solutions for the radius of the contact area b and the maximum contact pressure pmax are

listed in Eq. (88) [cf. 14,100,101],

b = 2

√
2F R

, pmax =
2F

(88)

πE ′ πb
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Algorithm 3 Incremental updates for the MPM mechanical fields

1: Calculate the nodal acceleration:
2: for all node i do
3: if (68) holds true then
4: Calculate mki with (47) and Dki via (70) for the kth material field.
5: Calculate the nodal velocities for both material fields with: mkiv

n
ki =

∑
kp m pv

n
p Si p.

6: Find the contact normal vectors nki via (74).
7: Calculate f ext

ki and f int
ki via (48) and (49).

8: Update v̂ki without contact adjustment: v̂
n+1
ki = vn

ki + ∆t
f ext

ki − f int
ki

mki
9: if (71) holds true then

10: Calculate the center-of-mass velocity vcm
i from (72).

11: if n1i · (v̂n+1
1i − vcm

i ) > 0 then
12: Find the frictional coefficient with (15) using the updated temperatures θ1i , θ2i .
13: Calculate the contact force f cont

ki via (77).
14: else
15: Set f cont

ki as zero vectors.
16: else
17: Obtain f cont

ki such that vn+1
1i = vn+1

2i = vcm
i after contact adjustment on nodal velocities.

18: Adjust the nodal velocities with: vn+1
ki = v̂

n+1
ki +

f cont
ki

mki
∆t

19: Find the nodal accelerations for both fields with (46).
20: else
21: Calculate the single-field nodal attributes mki , f ext

ki , f int
ki (where k = 1 only).

22: Calculate the single-field nodal velocities with: mkiv
n
ki =

∑
p m pv

n
p Si p (where k = 1 only).

23: Calculate the nodal acceleration (46) (where k = 1 only).
24: Update the nodal velocity with: vn+1

ki = vn
ki + ∆t · at

ki (where k = 1 only).
25: Update the particle locations, velocities, and deformation gradients via (65)–(66).
26: Update the particle stresses with the corresponding constitutive law, using the updated mechanical and thermal

results.
27: Evolve the particle damage via Rankine’s damage law.

where F is the magnitude normal line load, R =
R1 R2

R1+R2
is the equivalent body radius, where R1, R2 are the radii

of the two contact surfaces, respectively. As the contact surface on the lower body is flat, its radius is infinite and
R can be simplified as the radius of the upper contact surface. E ′ is the effective Young’s modulus defined as:
2
E ′ =

1−ν2
1

E1
+

1−ν2
2

E2
where E1, ν1 and E2, ν2 are Young’s modulus and Poisson ratio for the two contacting elastic

bodies, respectively. With b, pmax defined, the distribution of contact pressure along the contact surface can be
expressed as follows:

pcn = −pmax

√
1 − (

s
b

)2 for 0 ≤ s ≤ b (89)

where pcn is the contact pressure (negative in sign) and s is the distance to the center of the contact area. Since our
MPM time integration is explicit, the static equilibrium solution is obtained via a dynamic relaxation method [8,102].
The vertical force applied on the top boundary (per unit width) is 156.7 N/mm. This value is substituted into (88)
to determine the analytical solution on the contact surface.

We perform a mesh convergence study on this problem by discretizing the domain into three mesh sizes (size of
the cells in the background grid): 0.2 mm, 0.1 mm, and 0.05 mm. The density of material points in a cell is always
4 (as a 2 × 2 grid) except for some cells located near the domain boundary.

We collect the contact forces on the grid nodes and use them to compute the normal contact pressure. We then
compare the simulation results with the analytical solution of the normal reaction loading in Fig. 2. We observe that,

the simulated contact pressure converges into the analytical pressure distribution upon consecutive mesh refinement,
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0

Fig. 1. Configuration for the Hertzian problem (unit in the figure is in mm).

Fig. 2. Comparison of simulated contact pressure and Hertzian analytical contact pressure distribution on the contact surface. (a) mesh size
.2 mm, (b) mesh size 0.1 mm, (c) mesh size 0.05 mm.

Fig. 3. Convergence of relative RMSE on the simulated contact pressures with different mesh sizes.

as indicated by the root mean square error (RMSE) of the pressure over collocation points at the contact boundary.
The RMSE normalized by the maximum contact pressure is shown in Fig. 3. The stress distributions of all three
cases are presented in Fig. 4, where we clearly observe a stress concentration near the contact boundary, and the
maximum stress value is close to the maximum analytical contact pressure. These findings verify our approach to
resolve contact problems with a gap function.
17
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Fig. 4. Convergence study for the Hertzian contact problem with the stress contour displayed on material point clouds. (a) mesh size 0.2 mm,
(b) mesh size 0.1 mm, (c) mesh size 0.05 mm.

Fig. 5. Configuration of the contact heat conduction problem: (a) geometry and boundary conditions, (b) vertical profile of the steady-state
temperature.

4.2. Verification against Wrigger’s thermal contact benchmark problem

The purpose of this numerical example is to verify the thermo-mechanical contact MPM simulation between
wo contacting squared blocks subjected to both mechanical loading and thermal gradient. Previously, the same
oundary value problem has been used to verify a finite element model for thermo-mechanical contact in [59]. The
oundary conditions and the domain of this initial boundary value problem are shown in Fig. 5(a). The length l

for both blocks is 2.5 mm and the background grid cell size is 0.5 mm. The density of material point in a cell is
4 everywhere. We fix the temperature on the top and bottom as θhot = 50 ◦C, θcool = 20 ◦C. A uniform pressure
p is applied on the top to ensure that there is a heat transfer across the interface due to contact pressure. The
motion of the lower body at the bottom is fixed. We use the same material properties for both blocks specified in
Table 1, which are typical aluminum properties. The thermal expansion is ignored. This example is simulated using
∆t = 5 × 10−8 s, and we specify ζ = 1 so that a steady-state solution can be obtained.

The analytical solution of the temperature field along the vertical axis is piece-wise linear with a jump at the con-
tact surface, with the specific temperature θ1 and θ2 for the upper and the lower body on the contact surface [cf. 59]:

θ1 =
(1 + κc)θhot + κcθcool

, θ2 =
(1 + κc)θcool + κcθhot

, κc :=
hcl
, (90)
1 + 2κc 1 + 2κc κ
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Table 1
Material properties (Aluminum) for the contact heat
transfer verification.

Young’s modulus (GPa) E 70
Poisson’s ratio ν 0.33
Density (g/cm3) ρ 2.7
Specific heat (m2/(s2K)) c 900
Conductivity (N/(sK)) K 150

Fig. 6. Temperature at the contact surface versus the contact pressure.

where hc is calculated from the normal contact stress (which is equal to p) with (11). As for the surface conductance
coefficient γ̄ , we assign it with a rather large value (equals to 1) to accelerate the convergence to the steady state.
The comparison between analytical results and the output from our numerical simulation is provided in Fig. 6.
We observe that the stationary temperature on the two sides of the contact boundary obtained from the MPM
simulation matches the analytical solutions well. This numerical example suggests that the proposed MPM is capable
of simulating thermal–mechanical contacts with pressure-dependent conductance.

4.3. Validation exercise against Kalthoff–Winkler dynamic fracture experiment

The purpose of this numerical example is to validate the MPM model via an experiment reported by Kalthoff
and Winkler where an edge-cracked metal plate is impacted by a projectile [103], which persists as a verification
for the crack modeling with damage field in this paper. Due to the embedded symmetry of this experiment, we
only model the upper half of the plate, where we set the boundary conditions at the bottom as symmetric boundary
conditions. To simplify the impact loading, we assume the projectile has the same elastic impedance as the plate
so that we can apply half of the impact rate as a velocity boundary condition to the surface being impacted [104].
The configuration is shown in Fig. 7. The background grid cell size is 1 mm. The cell density of material point is
4 per cell everywhere. We apply the impact load on the specimen with two velocities: 33 m/s and 100 m/s, where
v0 should be set as 16.5 m/s and 50 m/s as explained before.

The specimen is composed of steel. To utilize the Rankine damage model, we specify the critical crack energy
and the critical failure stress as G f = 22.13 N/mm and σ f = 570 MPa, respectively [26]. (See Table 2).

Fig. 8 shows the results of crack propagation with applied impact velocity v0 = 16.5 m/s, which corresponds
o the standard impact velocity in Kalthoff and Winkler’s experiments. The fracture pattern is indicated by the
amage field. But according to the separation criterion in (71), fracture separation is triggered after all particles in
he vicinity of a node are “fully damaged”. In order to correctly retrieve the fracture propagation from such nodal

nformation, it only matters where the damages at all associated particles are very close to 1. In this sense, we
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Fig. 7. Configuration of the impact fracture problem.

Fig. 8. Damage field at different times when impacted at 33 m/s.

Table 2
Material properties of the steel that composes the specimen used in
the dynamic fracture experiment.

Young’s modulus (GPa) E 190
Poisson’s ratio ν 0.3
Density (g/cm3) ρ 7.8
Specific heat (m2/(s2K)) c 460
Conductivity (N/(sK)) K 55
Thermal expansion (1/K) α 1.0 × 10−5

Failure stress (MPa) σ f 570
Fracture energy (N/mm) G f 22.13
20
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s

Fig. 9. Damage field at different times when impacted at 100 m/s.

Fig. 10. Temperature field at different times when impacted at 33 m/s.

regularized the dimensionless scalar damage exponentially by dreg = (e5d
− 1)/(e5

− 1). As shown in Fig. 8, we
uccessfully capture a crack propagating along the direction with an angle around 67◦ starting at the end of the

pre-notched crack, and this corresponds to the experimental results.
Apart from the standard verification problem, we are also interested in illustrating the capability of capturing

complicated fracture patterns induced by fracture branching under a higher loading rate. Hence, we apply an impact
velocity v0 = 50 m/s and compare the simulation results with another numerical study of fracture branching in this
impact fracture test. We observe that the resulting fracture pattern branches on the major tensile crack. (See Fig. 9.)

In addition to replicating crack propagation, we also investigate on the thermal response in this dynamic fracture
problem. The temperature fields of both cases are shown in Figs. 10 and 11. We observe that there is a noticeable
temperature increase at the lower corner of the pre-notched cracked, which is caused by stress concentration at this

location and strong coupling effects. Interestingly, the crack tip cools down while the crack path behind the tip
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Fig. 11. Temperature field at different times when impacted at 100 m/s.

Fig. 12. Configuration of the disk squish problem.

heats up. These observations are consistent with experimental and numerical findings reported in [105] in which
crack tip cooling has been observed due to the thermo-elastic cooling effect.

4.4. Thermomechanical coupling effect in dish-squish problem

In this numerical example, we adopt the “disk-squish” boundary value problem originally proposed in [26] and
incorporate the thermo-mechanical coupling effect to investigate the frictional heat generated via contacts and how
the friction-induced heat affects the deformation and contact evolution in return in this multi-body contact problem.
The configuration is shown in Fig. 12. The cell size of the background mesh is 1 mm. The cell density of material
point is always 4 per cell except for those cells adjacent to the boundaries of solid bodies. There are 2905 material
points in total. The material properties are listed in Table 3, which applies to all three distinct bodies. The initial
frictional contact coefficient is set as 0.4. The horizontal component of the prescribed traction p shown in Fig. 12
s 100 MPa. We use a time step of 2 × 10−8 s.

We perform a series of simulations for three different conditions: (1) isothermal conditions; (2) thermo-
echanical coupling without the thermo-mechanical softening effects on the frictional coefficient µ ; and
c
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Table 3
Material parameters for the disk-squish test.

Young’s modulus (GPa) E 2.25
Poisson’s ratio ν 0.125
Density (g/cm3) ρ 1.0
Specific heat (m2/(s2K)) c 500
Conductivity (N/(sK)) K 50
Thermal expansion (1/K) α 1.0 × 10−5

(3) thermo-mechanical coupling with softening on the frictional coefficient µc, where θdam = 800 ◦C and
ref = 20 ◦C. Figs. 13 and 14 show the results of both kinematic fields and thermal fields. In fact, the frictional
oefficient µc = 0.4 is sufficiently large that the body motions and x velocity distribution under both isothermal and
hermo-mechanical coupling conditions are close to the non-slip contact response in [26], as shown in Fig. 13(a),
b), (c) and (d).

Comparing Fig. 13(a) and (b) with Fig. 13(c) and (d) reveals that introducing the thermo-mechanical coupling
ffects alone does not affect the final configuration significantly. The difference in the motions and velocity
istributions of these two cases is minor. However, as shown in Fig. 14(b), the contact surface can heat up to
temperature over 900 ◦C due to friction and structural heating if the thermo-mechanical coupling effects are

onsidered. If the constitutive responses of the interfaces are thermally sensitive, then the frictional heating may
roduce significant enough changes in the mechanical responses. This scenario is exhibited in the last simulation
here the thermal softening of the frictional coefficient µc is considered. Fig. 13(e) and (f) demonstrate the motions

nd velocities of the three bodies under the conditions where µc decreases as temperature rises. Due to the loss
of friction caused by the increased temperature, the disk in the last simulation got squeezed out of the sidewall
of the rectangular body and hence the velocity of the disk is now noticeably higher in Fig. 13(f) than those
exhibited in Fig. 13(b) and (d) where the friction on the contact is sufficient to prevent the sliding of the disk.
These numerical simulations indicate the importance of incorporating the two-way coupling thermal–mechanical
effect on the constitutive responses for the frictional contact.

As for the thermal responses, the thermal-induced reduction on frictional coefficient does lead to less heat
generated at the contact. This behavior is attributed both to the difference in constitutive responses as well as the
difference in the deformed geometry of the contacts affected by the constitutive responses and the two-way thermal–
mechanical couplings as demonstrated in Fig. 14. Another interesting effect worth noticing is that the simulations
are conducted near the adiabatic limit such that the dominated heat transfer mechanism is the convection due to the
movement of the bodies. As indicated in Fig. 14, the temperature rise only takes place in few particles around the
frictional contact surface, but it does not diffuse into the interior region of the bodies. Although the material is in
the convection-dominated regime, the MPM framework does not trigger any spurious oscillation due to the usage
of the Lagrangian description of motion for the material points.

4.5. The three-grain fragmentation problem

In this last example, we conduct a set of grains crushing simulations in a two-dimensional domain where an
impact load is applied on the top of a column of three particles lumped on top of each other. This boundary
value problem mimics the experiments reported in [2] but is not a direct digital replica due to the 2D idealization.
Capturing the real experiments in large-scale three-dimensional simulations may require significant improvement
on computational efficiency with GPU-enabled parallel computing. Such an extension will be considered in future
studies but is out of the scope of this work. In this last set of numerical experiments, we conduct three simulations
in which the top rigid platten are prescribed with three velocities: 8 m/s, 16 m/s, and 80 m/s, with a time step of
10−8 s. The simulation configuration presented by the material point cloud is shown in Fig. 15. The cell size is
0.1 mm and the density of material points in a cell is always 4 (as a 2 × 2 grid) except for some cells located near
the domain boundary. There are 37627 material points in total. Meanwhile, the sidewalls and the bottom platten are
rigid and fixed without any movement. The material properties of the three grains are identical and homogeneous.

They are also typical for quartz sand (see Table 4).
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Fig. 13. The horizontal component of the velocity field at different time steps for the isothermal case (a and b), the thermo-mechanical case
without thermal-dependent friction (c and d), and the thermo-mechanical case with thermal-dependent friction (e and f).

The effects of the loading rate on the global responses can be seen in the force–displacement curve of Fig. 16. As
expected, the higher loading rate triggered a larger reaction force while the slower loading rate leads to a lower peak
reaction force. Nevertheless, since the granular assemblies only consist of three particles initially, an interpretation
based on homogenization is not appropriate. Furthermore, due to the dynamic nature of the simulations, wave
propagation within and across the particles may affect the reaction force and hence the reaction force exhibits
oscillation in the temporal domain. The detailed analysis on the simulated fragmentation process, the effect of the
loading rate on the evolving contacts and the thermo-mechanical responses, as well as the role of the frictional
heating on the fragmentation patterns are provided in Sections 4.5.1 and 4.5.2 accordingly.
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w

Fig. 14. Temperature distribution at different time steps for the thermal–mechanical case without thermal-dependent friction (a and b) and

ith thermal-dependent friction (c and d).

Fig. 15. Configuration for the three-grain fragmentation problem.
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Table 4
Material properties typical of rock for particle crash simulation.

Young’s modulus (GPa) E 50
Poisson’s ratio ν 0.2
Density (g/cm3) ρ 2.3
Specific heat (m2/(s2K)) c 2000
Conductivity (N/(sK)) K 5
Thermal expansion (1/K) α 1.0 × 10−5

Failure stress (MPa) σ f 25
Fracture energy (N/mm) G f 0.1
Frictional coefficient at 293 K µco 0.2

Fig. 16. Force–displacement response on the top loading platten.

4.5.1. Morphology of fragmented particles at different loading rates
As the top grain is fragmented significantly, the evolution of the topology and geometry of contacts may

significantly affect the reaction force exerted on the top platten. As such, we analyze the morphology of the
fragmented particles using ImageJ for all three loading cases in order to examine how impact velocity affects the
dynamic fracture process. The morphological study is enabled by an open-source image analysis software called
ImageJ [cf. 106]. We mask material points with d = 1 so that individual fragments can be distinguished from the
ully crushed zones near the crack surface. For each of the three simulations of different loading rates, we analyze
hree snapshots of fragmentation patterns taken at selected time steps during the fragmentation process: initially
racked, fragmenting, fully crushed.

Our focus is on analyzing the probability distribution of two important geometric measures, the equivalent
iameter (see Fig. 17), the diameter of a sphere (circle in 2D) that shares the same area of the fragment and the
oundness (see Fig. 18), a normalized shape descriptor that measures how close the particle cross section resembles
circle, with a value of 1 indicates a perfect circle and zero indicates a line [106].
Fig. 17 shows the empirical cumulative distribution of the equivalent diameters for all three cases. This data

s obtained by first identify all individual particles by identifying the boundaries of particles through image
egmentation (see Figs. 19, 20, and 21). In all three cases, the impact-induced fragmentation progressively reduces
he mean equivalent diameter and increases the variance of the particle size. The maximum equivalent diameter
lso decreases during fragmentation. These trends can be verified by the fragment pattern shown in Figs. 19, 20,
nd 21.

Here the top grain is initially in one piece with some initial cracks and small comminuted particles around. As the
ragmentation progresses, the top grain is fragmented into smaller pieces of a variety of sizes, while the number of
ragments increases significantly. This increase in the variety on particle size explains why this empirical cumulative
26
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Fig. 17. Cumulative distribution of the equivalent diameter of fragmented particles (of the top particle) for simulations with loading rates =
(a) 8 m/s, (b) 16 m/s and (c) 80 m/s. The blue, red and yellow curves are obtained when the prescribed displacement on the top reaches
0.2 mm, 0.8 mm and 4 mm accordingly (except (c), see Table 4). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 18. Cumulative distribution of the roundness of fragmented particles (of the top particle) for simulations with loading rates = (a) 8 m/s,
b) 16 m/s and (c) 80 m/s. The blue, red and yellow curves are obtained when the prescribed displacement on the top reaches 0.2 mm,
.8 mm and 4 mm accordingly (except (c), see Table 4). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

istribution is smoother and more distributed as the platen moves downward. Fig. 17 also reveals that the high-speed
mpact tends to generate fragmentation of more distributed particle sizes. This trend may be attributed to the fact
hat the higher impact speed may promote crack branching. As a higher external power is supplied to the granular
ssembles in the case with a higher loading rate, crack branching may occur more frequently when the crack velocity
eaches a threshold value [23]. As the particles split, the equivalent diameter of the new fragmented particles gets
maller than that of their “parent” particle and that further reduces the feasible length of the new crack path in the
ragmented particles. Consequently, this size effect of fragmentation leads to the particle distribution becomeing
ncreasingly well graded as the impact load is applied.

In addition to the size of fragments, we analyze the shape of fragments as well. The empirical distributions of the
ragment roundness for simulations with different loading rates are shown in Fig. 18. In all three cases, the value
f roundness of the fragmented particles tends to be smaller than those at the initial or fully crushed stages. This
uggests that when the top grain is being fragmented starting from the initially cracked status, the newly generated
ragments tend to be less rounded since the fragmentation may lead the fragmented particles with a higher aspect
han the intact “parent” particle, a phenomenon also reported in [107]. However, when the fragmented particles are
etting crushed further, the fragments are more rounded. This can be explained by the fact that stress concentration

s more likely to occur when a sharp object is in contact with a smooth surface, which increases the probability of
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Fig. 19. Fragment patterns in the initial cracking stage where the prescribed displacement on the top = 0.2 mm for (a) and (b) and 0.4 mm
for (c).

Fig. 20. Fragment patterns after the fragmentation is triggered where the prescribed displacement on the top = 0.8 mm.

Fig. 21. Fragment patterns when the top grain is almost fully crushed where the prescribed displacement on the top = 4 mm.

breakage into smaller and more rounded pieces for those fragments. This observation is consistent with the Weibull
theory for the particle crushing process, which indicates that the survival probability of a fragmented particle under
crushing is a function of the nominal tensile strength [108,109].

4.5.2. Effect of frictional and structural heating on the fragmentation
One important reason that we incorporate thermo-coupling into the mechanical formulation is to study the

thermal effects involved during the fracturing process. To examine how thermo-mechanical coupling affects the
fragmentation process, we introduce a control experiment where the material is assumed to remain under the
isothermal condition and set the loading rate as 16 m/s. We then compare the crack pattern of the isothermal case
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Fig. 22. Comparison of crack pattern between grain crushing simulations (a) without and (b) incorporating thermo-mechanical coupling
effect. The loading rate of the top platen is 16 m/s.

and the thermo-mechanical coupling case at displacement = 16 mm in Fig. 22, where we masked fully damaged
material points (d = 1).

Although the fragmentation pattern of the top grain looks similar, the crack pattern for the middle grain and
ottom the bottom grain differs from each other significantly: in the isothermal case we observe one major vertical
rack in the middle grain, but it moves to the bottom grain in the thermo-mechanical coupling case. These results
ndicate that crack pattern is often sensitive to perturbation and hence even the thermomechanical coupling effect
ith moderate temperature increase is capable of triggering a profoundly different deformed configuration. As the

ncreased temperature reduces the frictional coefficient, and the contact stresses affect the thermal conductance of
he contact, the evolution of contacts could be profoundly altered by the heat transfer and vice versa.

Note that discrete element models or level set based splitting method that uses the homogenized stress and
emperature of each particle as the fragmentation criterion are incapable of replicating the interplay among the
rictional contact, the heat transfer inside and across the particle, and the stress concentration at the particle contacts
nd hence may provide unrealistic reasons. This simplification of mechanics and geometry may have a profound
ffect on the interpretation of the energy scaling for the dissipated energy after the fragmentation [110,111]. Further
nvestigations on the implication of the energy scaling using the proposed MPM framework will be considered in
uture studies. Figs. 23–25 show the temperature distribution in the deformed configuration for the three simulations
ith different loading rates. In Fig. 23, there are a few major cracks that split the top and middle particles. The crack
ranching around these dominating cracks is very limited. In contrast, Fig. 24 shows that the crack branching is
ore profound in the top grain. Those branching and diverging cracks eventually fragment the top grain into smaller

ieces but there is no crack propagated into the grains at the middle and the bottom. In the last case where the
mpact velocity increased to 80 m/s, the region with increased temperature grows spatially due to thermal convection
nd no significant crack branching occur until a large portion of the prescribed displacement applied.

In all three cases, the thermal diffusivity is sufficiently low (relative to the loading rate) such that the thermal
onvection and the local heat caused by the damage and frictional dissipation are factors that dominate the
emperature profiles. While the temperature rise in these simulations is not significant, the temperature distribution

ay nevertheless indicate the propagation of damage. By comparing Figs. 23–25, one may observe that the increase
f the loading rate may promote crack branching and allow the heat to accumulate locally without noticeable
iffusion. The crack branching may lead to a larger amount of energy dissipation at the top grain before a sufficient
mount of strain energy flux causes damage in the grains at the middle and the bottom.

Note that the material could have melted if (1) the specific heat is low and/or (2) the energy dissipation is large
uch that the local temperature may reach the melting point without significant diffusion [112,113]. Furthermore,

more profound temperature increase may also trigger the brittle–ductile transition that affects the mechanical
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Fig. 23. Temperature field in the deformed configuration of the particles under an impact velocity of 8 m/s on the top platen.

Fig. 24. Temperature field in the deformed configuration of the particles under an impact velocity of 16 m/s on the top platen.
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Fig. 25. Temperature field in the deformed configuration of the particles under an impact velocity of 80 m/s on the top platen.

responses and fracture patterns [43]. These mechanisms are not captured in this research but will be considered in
future studies.

5. Concluding remarks

We propose a material point modeling framework designed to replicate the coupled fracture and contact mechan-
cs under non-isothermal conditions. We incorporate a smoothed damage field gradient approach to successfully
dentify the field separation at potential contacting nodes while capturing the convection–diffusion of heat with
agrangian material points. To overcome mesh sensitivity, thermal-sensitive contact and non-local damage models
re used such that the degradation of the bulk material, as well as the thermal softening of the frictional interface,
an both be triggered without spurious mesh dependence. We validate the resultant numerical schemes as well as use
he resultant numerical models to simulate fracture and fragmentation of particle assembles with evolving contacts.
ur numerical results indicate that the proposed model is capable of replicating the complex fracture patterns and

he capturing the evolution of contacts under different strain rates. The role of the frictional heating on the crack
rowth, crack branching and the resultant fragmentation processes is analyzed.
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